1
|
Liu Y, Liu H, Zhang F, Xu H. The initiation of mitochondrial DNA replication. Biochem Soc Trans 2024; 52:1243-1251. [PMID: 38884788 PMCID: PMC11346463 DOI: 10.1042/bst20230952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
Mitochondrial DNA replication is initiated by the transcription of mitochondrial RNA polymerase (mtRNAP), as mitochondria lack a dedicated primase. However, the mechanism determining the switch between continuous transcription and premature termination to generate RNA primers for mitochondrial DNA (mtDNA) replication remains unclear. The pentatricopeptide repeat domain of mtRNAP exhibits exoribonuclease activity, which is required for the initiation of mtDNA replication in Drosophila. In this review, we explain how this exonuclease activity contributes to primer synthesis in strand-coupled mtDNA replication, and discuss how its regulation might co-ordinate mtDNA replication and transcription in both Drosophila and mammals.
Collapse
Affiliation(s)
- Yi Liu
- Hubei Jiangxia Laboratory, Wuhan 430200, China
| | - Haibin Liu
- Hubei Jiangxia Laboratory, Wuhan 430200, China
| | - Fan Zhang
- National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, U.S.A
| | - Hong Xu
- National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, U.S.A
| |
Collapse
|
2
|
Marinov GK, Ramalingam V, Greenleaf WJ, Kundaje A. An updated compendium and reevaluation of the evidence for nuclear transcription factor occupancy over the mitochondrial genome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597442. [PMID: 38895386 PMCID: PMC11185660 DOI: 10.1101/2024.06.04.597442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
In most eukaryotes, mitochondrial organelles contain their own genome, usually circular, which is the remnant of the genome of the ancestral bacterial endosymbiont that gave rise to modern mitochondria. Mitochondrial genomes are dramatically reduced in their gene content due to the process of endosymbiotic gene transfer to the nucleus; as a result most mitochondrial proteins are encoded in the nucleus and imported into mitochondria. This includes the components of the dedicated mitochondrial transcription and replication systems and regulatory factors, which are entirely distinct from the information processing systems in the nucleus. However, since the 1990s several nuclear transcription factors have been reported to act in mitochondria, and previously we identified 8 human and 3 mouse transcription factors (TFs) with strong localized enrichment over the mitochondrial genome using ChIP-seq (Chromatin Immunoprecipitation) datasets from the second phase of the ENCODE (Encyclopedia of DNA Elements) Project Consortium. Here, we analyze the greatly expanded in the intervening decade ENCODE compendium of TF ChIP-seq datasets (a total of 6,153 ChIP experiments for 942 proteins, of which 763 are sequence-specific TFs) combined with interpretative deep learning models of TF occupancy to create a comprehensive compendium of nuclear TFs that show evidence of association with the mitochondrial genome. We find some evidence for chrM occupancy for 50 nuclear TFs and two other proteins, with bZIP TFs emerging as most likely to be playing a role in mitochondria. However, we also observe that in cases where the same TF has been assayed with multiple antibodies and ChIP protocols, evidence for its chrM occupancy is not always reproducible. In the light of these findings, we discuss the evidential criteria for establishing chrM occupancy and reevaluate the overall compendium of putative mitochondrial-acting nuclear TFs.
Collapse
Affiliation(s)
- Georgi K Marinov
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | | | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California 94305, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
3
|
Bernardino Gomes TM, Vincent AE, Menger KE, Stewart JB, Nicholls TJ. Mechanisms and pathologies of human mitochondrial DNA replication and deletion formation. Biochem J 2024; 481:683-715. [PMID: 38804971 PMCID: PMC11346376 DOI: 10.1042/bcj20230262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
Human mitochondria possess a multi-copy circular genome, mitochondrial DNA (mtDNA), that is essential for cellular energy metabolism. The number of copies of mtDNA per cell, and their integrity, are maintained by nuclear-encoded mtDNA replication and repair machineries. Aberrant mtDNA replication and mtDNA breakage are believed to cause deletions within mtDNA. The genomic location and breakpoint sequences of these deletions show similar patterns across various inherited and acquired diseases, and are also observed during normal ageing, suggesting a common mechanism of deletion formation. However, an ongoing debate over the mechanism by which mtDNA replicates has made it difficult to develop clear and testable models for how mtDNA rearrangements arise and propagate at a molecular and cellular level. These deletions may impair energy metabolism if present in a high proportion of the mtDNA copies within the cell, and can be seen in primary mitochondrial diseases, either in sporadic cases or caused by autosomal variants in nuclear-encoded mtDNA maintenance genes. These mitochondrial diseases have diverse genetic causes and multiple modes of inheritance, and show notoriously broad clinical heterogeneity with complex tissue specificities, which further makes establishing genotype-phenotype relationships challenging. In this review, we aim to cover our current understanding of how the human mitochondrial genome is replicated, the mechanisms by which mtDNA replication and repair can lead to mtDNA instability in the form of large-scale rearrangements, how rearranged mtDNAs subsequently accumulate within cells, and the pathological consequences when this occurs.
Collapse
Affiliation(s)
- Tiago M. Bernardino Gomes
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- NHS England Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, U.K
| | - Amy E. Vincent
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| | - Katja E. Menger
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| | - James B. Stewart
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| | - Thomas J. Nicholls
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| |
Collapse
|
4
|
Meynier V, Hardwick SW, Catala M, Roske JJ, Oerum S, Chirgadze DY, Barraud P, Yue WW, Luisi BF, Tisné C. Structural basis for human mitochondrial tRNA maturation. Nat Commun 2024; 15:4683. [PMID: 38824131 PMCID: PMC11144196 DOI: 10.1038/s41467-024-49132-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/21/2024] [Indexed: 06/03/2024] Open
Abstract
The human mitochondrial genome is transcribed into two RNAs, containing mRNAs, rRNAs and tRNAs, all dedicated to produce essential proteins of the respiratory chain. The precise excision of tRNAs by the mitochondrial endoribonucleases (mt-RNase), P and Z, releases all RNA species from the two RNA transcripts. The tRNAs then undergo 3'-CCA addition. In metazoan mitochondria, RNase P is a multi-enzyme assembly that comprises the endoribonuclease PRORP and a tRNA methyltransferase subcomplex. The requirement for this tRNA methyltransferase subcomplex for mt-RNase P cleavage activity, as well as the mechanisms of pre-tRNA 3'-cleavage and 3'-CCA addition, are still poorly understood. Here, we report cryo-EM structures that visualise four steps of mitochondrial tRNA maturation: 5' and 3' tRNA-end processing, methylation and 3'-CCA addition, and explain the defined sequential order of the tRNA processing steps. The methyltransferase subcomplex recognises the pre-tRNA in a distinct mode that can support tRNA-end processing and 3'-CCA addition, likely resulting from an evolutionary adaptation of mitochondrial tRNA maturation complexes to the structurally-fragile mitochondrial tRNAs. This subcomplex can also ensure a tRNA-folding quality-control checkpoint before the sequential docking of the maturation enzymes. Altogether, our study provides detailed molecular insight into RNA-transcript processing and tRNA maturation in human mitochondria.
Collapse
Affiliation(s)
- Vincent Meynier
- Expression Génétique Microbienne, Université Paris Cité, CNRS, Institut de Biologie Physico-Chimique (IBPC), 75005, Paris, France
| | - Steven W Hardwick
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Marjorie Catala
- Expression Génétique Microbienne, Université Paris Cité, CNRS, Institut de Biologie Physico-Chimique (IBPC), 75005, Paris, France
| | - Johann J Roske
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Stephanie Oerum
- Expression Génétique Microbienne, Université Paris Cité, CNRS, Institut de Biologie Physico-Chimique (IBPC), 75005, Paris, France
| | - Dimitri Y Chirgadze
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Pierre Barraud
- Expression Génétique Microbienne, Université Paris Cité, CNRS, Institut de Biologie Physico-Chimique (IBPC), 75005, Paris, France
| | - Wyatt W Yue
- Centre for Medicines Discovery, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Ben F Luisi
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Carine Tisné
- Expression Génétique Microbienne, Université Paris Cité, CNRS, Institut de Biologie Physico-Chimique (IBPC), 75005, Paris, France.
| |
Collapse
|
5
|
Vučković A, Freyer C, Wredenberg A, Hillen HS. The molecular machinery for maturation of primary mtDNA transcripts. Hum Mol Genet 2024; 33:R19-R25. [PMID: 38779769 PMCID: PMC11112384 DOI: 10.1093/hmg/ddae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 05/25/2024] Open
Abstract
Human mitochondria harbour a circular, polyploid genome (mtDNA) encoding 11 messenger RNAs (mRNAs), two ribosomal RNAs (rRNAs) and 22 transfer RNAs (tRNAs). Mitochondrial transcription produces long, polycistronic transcripts that span almost the entire length of the genome, and hence contain all three types of RNAs. The primary transcripts then undergo a number of processing and maturation steps, which constitute key regulatory points of mitochondrial gene expression. The first step of mitochondrial RNA processing consists of the separation of primary transcripts into individual, functional RNA molecules and can occur by two distinct pathways. Both are carried out by dedicated molecular machineries that substantially differ from RNA processing enzymes found elsewhere. As a result, the underlying molecular mechanisms remain poorly understood. Over the last years, genetic, biochemical and structural studies have identified key players involved in both RNA processing pathways and provided the first insights into the underlying mechanisms. Here, we review our current understanding of RNA processing in mammalian mitochondria and provide an outlook on open questions in the field.
Collapse
MESH Headings
- Humans
- DNA, Mitochondrial/genetics
- RNA Processing, Post-Transcriptional
- Mitochondria/genetics
- Mitochondria/metabolism
- RNA, Mitochondrial/genetics
- RNA, Mitochondrial/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Animals
- Transcription, Genetic
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
Collapse
Affiliation(s)
- Ana Vučković
- Department of Cellular Biochemistry, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
- Research Group Structure and Function of Molecular Machines, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Christoph Freyer
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Anna Steckséns gata 47, 171 64 Solna, Sweden
| | - Anna Wredenberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Anna Steckséns gata 47, 171 64 Solna, Sweden
| | - Hauke S Hillen
- Department of Cellular Biochemistry, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
- Research Group Structure and Function of Molecular Machines, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Robert-Koch-Straße 40, 37073 Göttingen, Germany
- Research Group Structure and Function of Molecular Machines, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, Goettingen 37077, Germany
| |
Collapse
|
6
|
Xu P, Yang T, Kundnani DL, Sun M, Marsili S, Gombolay A, Jeon Y, Newnam G, Balachander S, Bazzani V, Baccarani U, Park V, Tao S, Lori A, Schinazi R, Kim B, Pursell Z, Tell G, Vascotto C, Storici F. Light-strand bias and enriched zones of embedded ribonucleotides are associated with DNA replication and transcription in the human-mitochondrial genome. Nucleic Acids Res 2024; 52:1207-1225. [PMID: 38117983 PMCID: PMC10853789 DOI: 10.1093/nar/gkad1204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/22/2023] Open
Abstract
Abundant ribonucleoside-triphosphate (rNTP) incorporation into DNA by DNA polymerases in the form of ribonucleoside monophosphates (rNMPs) is a widespread phenomenon in nature, resulting in DNA-structural change and genome instability. The rNMP distribution, characteristics, hotspots and association with DNA metabolic processes in human mitochondrial DNA (hmtDNA) remain mostly unknown. Here, we utilize the ribose-seq technique to capture embedded rNMPs in hmtDNA of six different cell types. In most cell types, the rNMPs are preferentially embedded on the light strand of hmtDNA with a strong bias towards rCMPs; while in the liver-tissue cells, the rNMPs are predominately found on the heavy strand. We uncover common rNMP hotspots and conserved rNMP-enriched zones across the entire hmtDNA, including in the control region, which links the rNMP presence to the frequent hmtDNA replication-failure events. We show a strong correlation between coding-sequence size and rNMP-embedment frequency per nucleotide on the non-template, light strand in all cell types, supporting the presence of transient RNA-DNA hybrids preceding light-strand replication. Moreover, we detect rNMP-embedment patterns that are only partly conserved across the different cell types and are distinct from those found in yeast mtDNA. The study opens new research directions to understand the biology of hmtDNA and genomic rNMPs.
Collapse
Affiliation(s)
- Penghao Xu
- School of Biological Sciences, Georgia Institute of Technology, Atlanta 30332, GA, USA
| | - Taehwan Yang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta 30332, GA, USA
| | - Deepali L Kundnani
- School of Biological Sciences, Georgia Institute of Technology, Atlanta 30332, GA, USA
| | - Mo Sun
- School of Biological Sciences, Georgia Institute of Technology, Atlanta 30332, GA, USA
| | - Stefania Marsili
- School of Biological Sciences, Georgia Institute of Technology, Atlanta 30332, GA, USA
| | - Alli L Gombolay
- School of Biological Sciences, Georgia Institute of Technology, Atlanta 30332, GA, USA
| | - Youngkyu Jeon
- School of Biological Sciences, Georgia Institute of Technology, Atlanta 30332, GA, USA
| | - Gary Newnam
- School of Biological Sciences, Georgia Institute of Technology, Atlanta 30332, GA, USA
| | - Sathya Balachander
- School of Biological Sciences, Georgia Institute of Technology, Atlanta 30332, GA, USA
| | - Veronica Bazzani
- Department of Medicine, University of Udine, Udine 33100, Italy
- IMol Polish Academy of Sciences, Warsaw 02-247, Poland
| | - Umberto Baccarani
- Department of Medicine, University of Udine, Udine 33100, Italy
- General Surgery Clinic and Liver Transplant Center, University-Hospital of Udine, Udine 33100, Italy
| | - Vivian S Park
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University of Medicine, New Orleans, LA 70118, USA
| | - Sijia Tao
- Center for ViroScience and Cure, Department of Pediatrics, Laboratory of Biochemical Pharmacology, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta 30322, GA, USA
| | - Adriana Lori
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta 30329, GA, USA
- Department of Population Science, American Cancer Society, Kennesaw 30144, GA, USA
| | - Raymond F Schinazi
- Center for ViroScience and Cure, Department of Pediatrics, Laboratory of Biochemical Pharmacology, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta 30322, GA, USA
| | - Baek Kim
- Center for ViroScience and Cure, Department of Pediatrics, Laboratory of Biochemical Pharmacology, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta 30322, GA, USA
| | - Zachary F Pursell
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University of Medicine, New Orleans, LA 70118, USA
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, Udine 33100, Italy
| | - Carlo Vascotto
- Department of Medicine, University of Udine, Udine 33100, Italy
- IMol Polish Academy of Sciences, Warsaw 02-247, Poland
| | - Francesca Storici
- School of Biological Sciences, Georgia Institute of Technology, Atlanta 30332, GA, USA
| |
Collapse
|
7
|
Tan BG, Gustafsson CM, Falkenberg M. Mechanisms and regulation of human mitochondrial transcription. Nat Rev Mol Cell Biol 2024; 25:119-132. [PMID: 37783784 DOI: 10.1038/s41580-023-00661-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2023] [Indexed: 10/04/2023]
Abstract
The expression of mitochondrial genes is regulated in response to the metabolic needs of different cell types, but the basic mechanisms underlying this process are still poorly understood. In this Review, we describe how different layers of regulation cooperate to fine tune initiation of both mitochondrial DNA (mtDNA) transcription and replication in human cells. We discuss our current understanding of the molecular mechanisms that drive and regulate transcription initiation from mtDNA promoters, and how the packaging of mtDNA into nucleoids can control the number of mtDNA molecules available for both transcription and replication. Indeed, a unique aspect of the mitochondrial transcription machinery is that it is coupled to mtDNA replication, such that mitochondrial RNA polymerase is additionally required for primer synthesis at mtDNA origins of replication. We discuss how the choice between replication-primer formation and genome-length RNA synthesis is controlled at the main origin of replication (OriH) and how the recent discovery of an additional mitochondrial promoter (LSP2) in humans may change this long-standing model.
Collapse
Affiliation(s)
- Benedict G Tan
- Institute for Mitochondrial Diseases and Ageing, Faculty of Medicine and University Hospital Cologne, Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Claes M Gustafsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
8
|
Scala G, Ambrosio S, Menna M, Gorini F, Caiazza C, Cooke MS, Majello B, Amente S. Accumulation of 8-oxodG within the human mitochondrial genome positively associates with transcription. NAR Genom Bioinform 2023; 5:lqad100. [PMID: 37954575 PMCID: PMC10632194 DOI: 10.1093/nargab/lqad100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/03/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023] Open
Abstract
Mitochondrial DNA (mtDNA) can be subject to internal and environmental stressors that lead to oxidatively generated damage and the formation of 8-oxo-7,8-dihydro-2'-deoxyguanine (8-oxodG). The accumulation of 8-oxodG has been linked to degenerative diseases and aging, as well as cancer. Despite the well-described implications of 8-oxodG in mtDNA for mitochondrial function, there have been no reports of mapping of 8-oxodG across the mitochondrial genome. To address this, we used OxiDIP-Seq and mapped 8-oxodG levels in the mitochondrial genome of human MCF10A cells. Our findings indicated that, under steady-state conditions, 8-oxodG is non-uniformly distributed along the mitochondrial genome, and that the longer non-coding region appeared to be more protected from 8-oxodG accumulation compared with the coding region. However, when the cells have been exposed to oxidative stress, 8-oxodG preferentially accumulated in the coding region which is highly transcribed as H1 transcript. Our data suggest that 8-oxodG accumulation in the mitochondrial genome is positively associated with mitochondrial transcription.
Collapse
Affiliation(s)
- Giovanni Scala
- Department of Biology, University of Naples Federico II, 80138 Naples, Italy
| | - Susanna Ambrosio
- Department of Biology, University of Naples Federico II, 80138 Naples, Italy
| | - Margherita Menna
- Department of Biology, University of Naples Federico II, 80138 Naples, Italy
| | - Francesca Gorini
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy
| | - Carmen Caiazza
- Department of Biology, University of Naples Federico II, 80138 Naples, Italy
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Barbara Majello
- Department of Biology, University of Naples Federico II, 80138 Naples, Italy
| | - Stefano Amente
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
9
|
Jacobs HT. A century of mitochondrial research, 1922-2022. Enzymes 2023; 54:37-70. [PMID: 37945177 DOI: 10.1016/bs.enz.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Although recognized earlier as subcellular entities by microscopists, mitochondria have been the subject of functional studies since 1922, when their biochemical similarities with bacteria were first noted. In this overview I trace the history of research on mitochondria from that time up to the present day, focussing on the major milestones of the overlapping eras of mitochondrial biochemistry, genetics, pathology and cell biology, and its explosion into new areas in the past 25 years. Nowadays, mitochondria are considered to be fully integrated into cell physiology, rather than serving specific functions in isolation.
Collapse
Affiliation(s)
- Howard T Jacobs
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Department of Environment and Genetics, La Trobe University, Melbourne, VIC, Australia.
| |
Collapse
|
10
|
Kozhukhar N, Alexeyev MF. 35 Years of TFAM Research: Old Protein, New Puzzles. BIOLOGY 2023; 12:823. [PMID: 37372108 DOI: 10.3390/biology12060823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/29/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023]
Abstract
Transcription Factor A Mitochondrial (TFAM), through its contributions to mtDNA maintenance and expression, is essential for cellular bioenergetics and, therefore, for the very survival of cells. Thirty-five years of research on TFAM structure and function generated a considerable body of experimental evidence, some of which remains to be fully reconciled. Recent advancements allowed an unprecedented glimpse into the structure of TFAM complexed with promoter DNA and TFAM within the open promoter complexes. These novel insights, however, raise new questions about the function of this remarkable protein. In our review, we compile the available literature on TFAM structure and function and provide some critical analysis of the available data.
Collapse
Affiliation(s)
- Natalya Kozhukhar
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Mikhail F Alexeyev
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|
11
|
Rubalcava-Gracia D, García-Villegas R, Larsson NG. No role for nuclear transcription regulators in mammalian mitochondria? Mol Cell 2023; 83:832-842. [PMID: 36182692 DOI: 10.1016/j.molcel.2022.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/17/2022] [Accepted: 09/08/2022] [Indexed: 10/14/2022]
Abstract
Although the mammalian mtDNA transcription machinery is simple and resembles bacteriophage systems, there are many reports that nuclear transcription regulators, as exemplified by MEF2D, MOF, PGC-1α, and hormone receptors, are imported into mammalian mitochondria and directly interact with the mtDNA transcription machinery. However, the supporting experimental evidence for this concept is open to alternate interpretations, and a main issue is the difficulty in distinguishing indirect regulation of mtDNA transcription, caused by altered nuclear gene expression, from direct intramitochondrial effects. We provide a critical discussion and experimental guidelines to stringently assess roles of intramitochondrial factors implicated in direct regulation of mammalian mtDNA transcription.
Collapse
Affiliation(s)
- Diana Rubalcava-Gracia
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Rodolfo García-Villegas
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Nils-Göran Larsson
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
12
|
Van Haute L, O'Connor E, Díaz-Maldonado H, Munro B, Polavarapu K, Hock DH, Arunachal G, Athanasiou-Fragkouli A, Bardhan M, Barth M, Bonneau D, Brunetti-Pierri N, Cappuccio G, Caruana NJ, Dominik N, Goel H, Helman G, Houlden H, Lenaers G, Mention K, Murphy D, Nandeesh B, Olimpio C, Powell CA, Preethish-Kumar V, Procaccio V, Rius R, Rebelo-Guiomar P, Simons C, Vengalil S, Zaki MS, Ziegler A, Thorburn DR, Stroud DA, Maroofian R, Christodoulou J, Gustafsson C, Nalini A, Lochmüller H, Minczuk M, Horvath R. TEFM variants impair mitochondrial transcription causing childhood-onset neurological disease. Nat Commun 2023; 14:1009. [PMID: 36823193 PMCID: PMC9950373 DOI: 10.1038/s41467-023-36277-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/20/2023] [Indexed: 02/25/2023] Open
Abstract
Mutations in the mitochondrial or nuclear genomes are associated with a diverse group of human disorders characterized by impaired mitochondrial respiration. Within this group, an increasing number of mutations have been identified in nuclear genes involved in mitochondrial RNA biology. The TEFM gene encodes the mitochondrial transcription elongation factor responsible for enhancing the processivity of mitochondrial RNA polymerase, POLRMT. We report for the first time that TEFM variants are associated with mitochondrial respiratory chain deficiency and a wide range of clinical presentations including mitochondrial myopathy with a treatable neuromuscular transmission defect. Mechanistically, we show muscle and primary fibroblasts from the affected individuals have reduced levels of promoter distal mitochondrial RNA transcripts. Finally, tefm knockdown in zebrafish embryos resulted in neuromuscular junction abnormalities and abnormal mitochondrial function, strengthening the genotype-phenotype correlation. Our study highlights that TEFM regulates mitochondrial transcription elongation and its defect results in variable, tissue-specific neurological and neuromuscular symptoms.
Collapse
Affiliation(s)
- Lindsey Van Haute
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Emily O'Connor
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada
| | - Héctor Díaz-Maldonado
- Department of Biochemistry and Cell Biology, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Benjamin Munro
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Kiran Polavarapu
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Daniella H Hock
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, VIC, 3052, Australia
| | - Gautham Arunachal
- Department of Human genetics, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Alkyoni Athanasiou-Fragkouli
- UCL London, Department of Neuromuscular Disorders, Institute of Neurology, University College London, London, UK
| | - Mainak Bardhan
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Magalie Barth
- Department of Genetics, Mitovasc INSERM 1083, CNRS 6015, University Hospital of Angers, Angers, France
| | - Dominique Bonneau
- Department of Genetics, Mitovasc INSERM 1083, CNRS 6015, University Hospital of Angers, Angers, France
| | - Nicola Brunetti-Pierri
- Department of Translational Medicine, University of Naples Federico II, Via s. Pansini, 5, 80131, Naples, Italy
| | - Gerarda Cappuccio
- Department of Translational Medicine, University of Naples Federico II, Via s. Pansini, 5, 80131, Naples, Italy
| | - Nikeisha J Caruana
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, VIC, 3052, Australia
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, 3011, Australia
| | - Natalia Dominik
- UCL London, Department of Neuromuscular Disorders, Institute of Neurology, University College London, London, UK
| | - Himanshu Goel
- Hunter Genetics, Waratah, University of Newcastle, Callaghan, NSW, 2298, Australia
| | - Guy Helman
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia
| | - Henry Houlden
- UCL London, Department of Neuromuscular Disorders, Institute of Neurology, University College London, London, UK
| | - Guy Lenaers
- Department of Genetics, Mitovasc INSERM 1083, CNRS 6015, University Hospital of Angers, Angers, France
| | - Karine Mention
- Pediatric Inherited Metabolic Disorders, Hôpital Jeanne de Flandre, Lille, France
| | - David Murphy
- UCL London, Department of Neuromuscular Disorders, Institute of Neurology, University College London, London, UK
| | - Bevinahalli Nandeesh
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Catarina Olimpio
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | | | | | - Vincent Procaccio
- Department of Genetics, Mitovasc INSERM 1083, CNRS 6015, University Hospital of Angers, Angers, France
| | - Rocio Rius
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, 3010, Australia
| | | | - Cas Simons
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia
| | - Seena Vengalil
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, 12311, Egypt
| | - Alban Ziegler
- Department of Genetics, Mitovasc INSERM 1083, CNRS 6015, University Hospital of Angers, Angers, France
| | - David R Thorburn
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, 3010, Australia
| | - David A Stroud
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, VIC, 3052, Australia
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia
| | - Reza Maroofian
- UCL London, Department of Neuromuscular Disorders, Institute of Neurology, University College London, London, UK
| | - John Christodoulou
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Claes Gustafsson
- Department of Biochemistry and Cell Biology, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Atchayaram Nalini
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Hanns Lochmüller
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK.
| | - Rita Horvath
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
13
|
Shtolz N, Mishmar D. The metazoan landscape of mitochondrial DNA gene order and content is shaped by selection and affects mitochondrial transcription. Commun Biol 2023; 6:93. [PMID: 36690686 PMCID: PMC9871016 DOI: 10.1038/s42003-023-04471-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 01/12/2023] [Indexed: 01/25/2023] Open
Abstract
Mitochondrial DNA (mtDNA) harbors essential genes in most metazoans, yet the regulatory impact of the multiple evolutionary mtDNA rearrangements has been overlooked. Here, by analyzing mtDNAs from ~8000 metazoans we found high gene content conservation (especially of protein and rRNA genes), and codon preferences for mtDNA-encoded tRNAs across most metazoans. In contrast, mtDNA gene order (MGO) was selectively constrained within but not between phyla, yet certain gene stretches (ATP8-ATP6, ND4-ND4L) were highly conserved across metazoans. Since certain metazoans with different MGOs diverge in mtDNA transcription, we hypothesized that evolutionary mtDNA rearrangements affected mtDNA transcriptional patterns. As a first step to test this hypothesis, we analyzed available RNA-seq data from 53 metazoans. Since polycistron mtDNA transcripts constitute a small fraction of the steady-state RNA, we enriched for polycistronic boundaries by calculating RNA-seq read densities across junctions between gene couples encoded either by the same strand (SSJ) or by different strands (DSJ). We found that organisms whose mtDNA is organized in alternating reverse-strand/forward-strand gene blocks (mostly arthropods), displayed significantly reduced DSJ read counts, in contrast to organisms whose mtDNA genes are preferentially encoded by one strand (all chordates). Our findings suggest that mtDNA rearrangements are selectively constrained and likely impact mtDNA regulation.
Collapse
Affiliation(s)
- Noam Shtolz
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Dan Mishmar
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|
14
|
Conor Moran J, Del'Olio S, Choi A, Zhong H, Barrientos A. Mitoribosome Biogenesis. Methods Mol Biol 2023; 2661:23-51. [PMID: 37166630 PMCID: PMC10639111 DOI: 10.1007/978-1-0716-3171-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Mitoribosome biogenesis is a complex and energetically costly process that involves RNA elements encoded in the mitochondrial genome and mitoribosomal proteins most frequently encoded in the nuclear genome. The process is catalyzed by extra-ribosomal proteins, nucleus-encoded assembly factors that act in all stages of the assembly process to coordinate the processing and maturation of ribosomal RNAs with the hierarchical association of ribosomal proteins. Biochemical studies and recent cryo-EM structures of mammalian mitoribosomes have provided hints regarding their assembly. In this general concept chapter, we will briefly describe the current knowledge, mainly regarding the mammalian mitoribosome biogenesis pathway and factors involved, and will emphasize the biological sources and approaches that have been applied to advance the field.
Collapse
Affiliation(s)
- J Conor Moran
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Samuel Del'Olio
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Austin Choi
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Hui Zhong
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Antoni Barrientos
- Department of Neurology and Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
15
|
Tan BG, Mutti CD, Shi Y, Xie X, Zhu X, Silva-Pinheiro P, Menger KE, Díaz-Maldonado H, Wei W, Nicholls TJ, Chinnery PF, Minczuk M, Falkenberg M, Gustafsson CM. The human mitochondrial genome contains a second light strand promoter. Mol Cell 2022; 82:3646-3660.e9. [PMID: 36044900 DOI: 10.1016/j.molcel.2022.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/21/2022] [Accepted: 08/07/2022] [Indexed: 11/30/2022]
Abstract
The human mitochondrial genome must be replicated and expressed in a timely manner to maintain energy metabolism and supply cells with adequate levels of adenosine triphosphate. Central to this process is the idea that replication primers and gene products both arise via transcription from a single light strand promoter (LSP) such that primer formation can influence gene expression, with no consensus as to how this is regulated. Here, we report the discovery of a second light strand promoter (LSP2) in humans, with features characteristic of a bona fide mitochondrial promoter. We propose that the position of LSP2 on the mitochondrial genome allows replication and gene expression to be orchestrated from two distinct sites, which expands our long-held understanding of mitochondrial gene expression in humans.
Collapse
Affiliation(s)
- Benedict G Tan
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Christian D Mutti
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Yonghong Shi
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Xie Xie
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Xuefeng Zhu
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Pedro Silva-Pinheiro
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Katja E Menger
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Héctor Díaz-Maldonado
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Wei Wei
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Thomas J Nicholls
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Patrick F Chinnery
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Michal Minczuk
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK.
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg 405 30, Sweden.
| | - Claes M Gustafsson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg 405 30, Sweden.
| |
Collapse
|
16
|
Abd Radzak SM, Mohd Khair SZN, Ahmad F, Patar A, Idris Z, Mohamed Yusoff AA. Insights regarding mitochondrial DNA copy number alterations in human cancer (Review). Int J Mol Med 2022; 50:104. [PMID: 35713211 PMCID: PMC9304817 DOI: 10.3892/ijmm.2022.5160] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/26/2022] [Indexed: 11/25/2022] Open
Abstract
Mitochondria are the critical organelles involved in various cellular functions. Mitochondrial biogenesis is activated by multiple cellular mechanisms which require a synchronous regulation between mitochondrial DNA (mtDNA) and nuclear DNA (nDNA). The mitochondrial DNA copy number (mtDNA-CN) is a proxy indicator for mitochondrial activity, and its alteration reflects mitochondrial biogenesis and function. Despite the precise mechanisms that modulate the amount and composition of mtDNA, which have not been fully elucidated, mtDNA-CN is known to influence numerous cellular pathways that are associated with cancer and as well as multiple other diseases. In addition, the utility of current technology in measuring mtDNA-CN contributes to its extensive assessment of diverse traits and tumorigenesis. The present review provides an overview of mtDNA-CN variations across human cancers and an extensive summary of the existing knowledge on the regulation and machinery of mtDNA-CN. The current information on the advanced methods used for mtDNA-CN assessment is also presented.
Collapse
Affiliation(s)
- Siti Muslihah Abd Radzak
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Siti Zulaikha Nashwa Mohd Khair
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Farizan Ahmad
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Azim Patar
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Zamzuri Idris
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| |
Collapse
|
17
|
Kozhukhar N, Spadafora D, Rodriguez YAR, Alexeyev MF. A Method for In Situ Reverse Genetic Analysis of Proteins Involved mtDNA Replication. Cells 2022; 11:2168. [PMID: 35883613 PMCID: PMC9316749 DOI: 10.3390/cells11142168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/29/2022] [Accepted: 07/10/2022] [Indexed: 02/01/2023] Open
Abstract
The unavailability of tractable reverse genetic analysis approaches represents an obstacle to a better understanding of mitochondrial DNA replication. Here, we used CRISPR-Cas9 mediated gene editing to establish the conditional viability of knockouts in the key proteins involved in mtDNA replication. This observation prompted us to develop a set of tools for reverse genetic analysis in situ, which we called the GeneSwap approach. The technique was validated by identifying 730 amino acid (aa) substitutions in the mature human TFAM that are conditionally permissive for mtDNA replication. We established that HMG domains of TFAM are functionally independent, which opens opportunities for engineering chimeric TFAMs with customized properties for studies on mtDNA replication, mitochondrial transcription, and respiratory chain function. Finally, we present evidence that the HMG2 domain plays the leading role in TFAM species-specificity, thus indicating a potential pathway for TFAM-mtDNA evolutionary co-adaptations.
Collapse
Affiliation(s)
| | | | | | - Mikhail F. Alexeyev
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA; (N.K.); (D.S.); (Y.A.R.R.)
| |
Collapse
|
18
|
Abstract
In the course of its short history, mitochondrial DNA (mtDNA) has made a long journey from obscurity to the forefront of research on major biological processes. mtDNA alterations have been found in all major disease groups, and their significance remains the subject of intense research. Despite remarkable progress, our understanding of the major aspects of mtDNA biology, such as its replication, damage, repair, transcription, maintenance, etc., is frustratingly limited. The path to better understanding mtDNA and its role in cells, however, remains torturous and not without errors, which sometimes leave a long trail of controversy behind them. This review aims to provide a brief summary of our current knowledge of mtDNA and highlight some of the controversies that require attention from the mitochondrial research community.
Collapse
Affiliation(s)
- Inna Shokolenko
- Department of Biomedical Sciences, Pat Capps Covey College of Allied Health Professions, University of South Alabama, Mobile, AL 36688, USA
| | - Mikhail Alexeyev
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA
- Correspondence:
| |
Collapse
|
19
|
Mitochondria homeostasis: Biology and involvement in hepatic steatosis to NASH. Acta Pharmacol Sin 2022; 43:1141-1155. [PMID: 35105958 PMCID: PMC9061859 DOI: 10.1038/s41401-022-00864-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/09/2022] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial biology and behavior are central to the physiology of liver. Multiple mitochondrial quality control mechanisms remodel mitochondrial homeostasis under physiological and pathological conditions. Mitochondrial dysfunction and damage induced by overnutrition lead to oxidative stress, inflammation, liver cell death, and collagen production, which advance hepatic steatosis to nonalcoholic steatohepatitis (NASH). Accumulating evidence suggests that specific interventions that target mitochondrial homeostasis, including energy metabolism, antioxidant effects, and mitochondrial quality control, have emerged as promising strategies for NASH treatment. However, clinical translation of these findings is challenging due to the complex and unclear mechanisms of mitochondrial homeostasis in the pathophysiology of NASH.
Collapse
|
20
|
Miranda M, Bonekamp NA, Kühl I. Starting the engine of the powerhouse: mitochondrial transcription and beyond. Biol Chem 2022; 403:779-805. [PMID: 35355496 DOI: 10.1515/hsz-2021-0416] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/09/2022] [Indexed: 12/25/2022]
Abstract
Mitochondria are central hubs for cellular metabolism, coordinating a variety of metabolic reactions crucial for human health. Mitochondria provide most of the cellular energy via their oxidative phosphorylation (OXPHOS) system, which requires the coordinated expression of genes encoded by both the nuclear (nDNA) and mitochondrial genomes (mtDNA). Transcription of mtDNA is not only essential for the biogenesis of the OXPHOS system, but also generates RNA primers necessary to initiate mtDNA replication. Like the prokaryotic system, mitochondria have no membrane-based compartmentalization to separate the different steps of mtDNA maintenance and expression and depend entirely on nDNA-encoded factors imported into the organelle. Our understanding of mitochondrial transcription in mammalian cells has largely progressed, but the mechanisms regulating mtDNA gene expression are still poorly understood despite their profound importance for human disease. Here, we review mechanisms of mitochondrial gene expression with a focus on the recent findings in the field of mammalian mtDNA transcription and disease phenotypes caused by defects in proteins involved in this process.
Collapse
Affiliation(s)
- Maria Miranda
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, D-50931, Germany
| | - Nina A Bonekamp
- Department of Neuroanatomy, Mannheim Center for Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University, Mannheim, D-68167, Germany
| | - Inge Kühl
- Department of Cell Biology, Institute of Integrative Biology of the Cell (I2BC), UMR9198, CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, F-91190, France
| |
Collapse
|
21
|
Guitton R, Dölle C, Alves G, Ole-Bjørn T, Nido GS, Tzoulis C. Ultra-deep whole genome bisulfite sequencing reveals a single methylation hotspot in human brain mitochondrial DNA. Epigenetics 2022; 17:906-921. [PMID: 35253628 PMCID: PMC9423827 DOI: 10.1080/15592294.2022.2045754] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
While DNA methylation is established as a major regulator of gene expression in the nucleus, the existence of mitochondrial DNA (mtDNA) methylation remains controversial. Here, we characterized the mtDNA methylation landscape in the prefrontal cortex of neurological healthy individuals (n=26) and patients with Parkinson’s disease (n=27), using a combination of whole-genome bisulphite sequencing (WGBS) and bisulphite-independent methods. Accurate mtDNA mapping from WGBS data required alignment to an mtDNA reference only, to avoid misalignment to nuclear mitochondrial pseudogenes. Once correctly aligned, WGBS data provided ultra-deep mtDNA coverage (16,723 ± 7,711) and revealed overall very low levels of cytosine methylation. The highest methylation levels (5.49 ± 0.97%) were found on CpG position m.545, located in the heavy-strand promoter 1 region. The m.545 methylation was validated using a combination of methylation-sensitive DNA digestion and quantitative PCR analysis. We detected no association between mtDNA methylation profile and Parkinson’s disease. Interestingly, m.545 methylation correlated with the levels of mtDNA transcripts, suggesting a putative role in regulating mtDNA gene expression. In addition, we propose a robust framework for methylation analysis of mtDNA from WGBS data, which is less prone to false-positive findings due to misalignment of nuclear mitochondrial pseudogene sequences.
Collapse
Affiliation(s)
- Romain Guitton
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Christian Dölle
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Guido Alves
- The Norwegian Centre for Movement Disorders and Department of Neurology, Stavanger University Hospital, Stavanger, Norway.,Department of Mathematics and Natural Sciences, University of Stavanger, University of Bergen, Stavanger, Norway
| | - Tysnes Ole-Bjørn
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Gonzalo S Nido
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Charalampos Tzoulis
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
22
|
Choi WS, Garcia-Diaz M. A minimal motif for sequence recognition by mitochondrial transcription factor A (TFAM). Nucleic Acids Res 2021; 50:322-332. [PMID: 34928349 PMCID: PMC8754647 DOI: 10.1093/nar/gkab1230] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 11/13/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Mitochondrial transcription factor A (TFAM) plays a critical role in mitochondrial transcription initiation and mitochondrial DNA (mtDNA) packaging. Both functions require DNA binding, but in one case TFAM must recognize a specific promoter sequence, while packaging requires coating of mtDNA by association with non sequence-specific regions. The mechanisms by which TFAM achieves both sequence-specific and non sequence-specific recognition have not yet been determined. Existing crystal structures of TFAM bound to DNA allowed us to identify two guanine-specific interactions that are established between TFAM and the bound DNA. These interactions are observed when TFAM is bound to both specific promoter sequences and non-sequence specific DNA. These interactions are established with two guanine bases separated by 10 random nucleotides (GN10G). Our biochemical results demonstrate that the GN10G consensus is essential for transcriptional initiation and contributes to facilitating TFAM binding to DNA substrates. Furthermore, we report a crystal structure of TFAM in complex with a non sequence-specific sequence containing a GN10G consensus. The structure reveals a unique arrangement in which TFAM bridges two DNA substrates while maintaining the GN10G interactions. We propose that the GN10G consensus is key to facilitate the interaction of TFAM with DNA.
Collapse
Affiliation(s)
- Woo Suk Choi
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Miguel Garcia-Diaz
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
23
|
Mitochondrial Glucocorticoid Receptors and Their Actions. Int J Mol Sci 2021; 22:ijms22116054. [PMID: 34205227 PMCID: PMC8200016 DOI: 10.3390/ijms22116054] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 12/18/2022] Open
Abstract
Mitochondria are membrane organelles present in almost all eukaryotic cells. In addition to their well-known role in energy production, mitochondria regulate central cellular processes, including calcium homeostasis, Reactive Oxygen Species (ROS) generation, cell death, thermogenesis, and biosynthesis of lipids, nucleic acids, and steroid hormones. Glucocorticoids (GCs) regulate the mitochondrially encoded oxidative phosphorylation gene expression and mitochondrial energy metabolism. The identification of Glucocorticoid Response Elements (GREs) in mitochondrial sequences and the detection of Glucocorticoid Receptor (GR) in mitochondria of different cell types gave support to hypothesis that mitochondrial GR directly regulates mitochondrial gene expression. Numerous studies have revealed changes in mitochondrial gene expression alongside with GR import/export in mitochondria, confirming the direct effects of GCs on mitochondrial genome. Further evidence has made clear that mitochondrial GR is involved in mitochondrial function and apoptosis-mediated processes, through interacting or altering the distribution of Bcl2 family members. Even though its exact translocation mechanisms remain unknown, data have shown that GR chaperones (Hsp70/90, Bag-1, FKBP51), the anti-apoptotic protein Bcl-2, the HDAC6- mediated deacetylation and the outer mitochondrial translocation complexes (Tom complexes) co-ordinate GR mitochondrial trafficking. A role of mitochondrial GR in stress and depression as well as in lung and hepatic inflammation has also been demonstrated.
Collapse
|
24
|
Sebastian W, Sukumaran S, Gopalakrishnan A. The signals of selective constraints on the mitochondrial non-coding control region: insights from comparative mitogenomics of Clupeoid fishes. Genetica 2021; 149:191-201. [PMID: 33914198 DOI: 10.1007/s10709-021-00121-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/22/2021] [Indexed: 11/24/2022]
Abstract
The vertebrate mitochondrial genome is characterized by an exceptional organization evolving towards a reduced size. However, the persistence of a non-coding and highly variable control region is against this evolutionary trend that is explained by the presence of conserved sequence motifs or binding sites for nuclear-organized proteins that regulate mtDNA maintenance and expression. We performed a comparative mitogenomic investigation of the non-coding control region to understand its evolutionary patterns in Clupeoid fishes which are widely distributed across oceans of the world, exhibiting exemplary evolutionary potential. We confirmed the ability of sequence flanking the conserved sequence motifs in the control region to form stable secondary structures. The existence of evolutionarily conserved secondary structures without primary structure conservation suggested the action of selective constraints towards maintaining the secondary structure. The functional secondary structure is maintained by retaining the frequency of discontinuous AT and TG repeats along with compensatory base substitutions in the stem forming regions which can be considered as a selective constraint. The nucleotide polymorphism along the flanking regions of conserved sequence motifs can be explained as errors during the enzymatic replication of secondary structure-forming repeat elements. The evidence for selective constraints on secondary structures emphasizes the role of the control region in mitogenome function. Maintenance of high frequency of discontinuous repeats can be proposed as a model of adaptive evolution against the mutations that break the secondary structure involved in the efficient regulation of mtDNA functions substantiating the efficient functioning of the control region even in a high nucleotide polymorphism environment.
Collapse
Affiliation(s)
- Wilson Sebastian
- ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O, Kochi, 682018, Kerala, India
| | - Sandhya Sukumaran
- ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O, Kochi, 682018, Kerala, India.
| | - A Gopalakrishnan
- ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O, Kochi, 682018, Kerala, India
| |
Collapse
|
25
|
Proulex GCR, Meade MJ, Manoylov KM, Cahoon AB. Mitochondrial mRNA Processing in the Chlorophyte Alga Pediastrum duplex and Streptophyte Alga Chara vulgaris Reveals an Evolutionary Branch in Mitochondrial mRNA Processing. PLANTS (BASEL, SWITZERLAND) 2021; 10:576. [PMID: 33803683 PMCID: PMC8003010 DOI: 10.3390/plants10030576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 11/17/2022]
Abstract
Mitochondria carry the remnant of an ancestral bacterial chromosome and express those genes with a system separate and distinct from the nucleus. Mitochondrial genes are transcribed as poly-cistronic primary transcripts which are post-transcriptionally processed to create individual translationally competent mRNAs. Algae post-transcriptional processing has only been explored in Chlamydomonas reinhardtii (Class: Chlorophyceae) and the mature mRNAs are different than higher plants, having no 5' UnTranslated Regions (UTRs), much shorter and more variable 3' UTRs and polycytidylated mature mRNAs. In this study, we analyzed transcript termini using circular RT-PCR and PacBio Iso-Seq to survey the 3' and 5' UTRs and termini for two green algae, Pediastrum duplex (Class: Chlorophyceae) and Chara vulgaris (Class: Charophyceae). This enabled the comparison of processing in the chlorophyte and charophyte clades of green algae to determine if the differences in mitochondrial mRNA processing pre-date the invasion of land by embryophytes. We report that the 5' mRNA termini and non-template 3' termini additions in P. duplex resemble those of C. reinhardtii, suggesting a conservation of mRNA processing among the chlorophyceae. We also report that C. vulgaris mRNA UTRs are much longer than chlorophytic examples, lack polycytidylation, and are polyadenylated similar to embryophytes. This demonstrates that some mitochondrial mRNA processing events diverged with the split between chlorophytic and streptophytic algae.
Collapse
Affiliation(s)
- Grayson C. R. Proulex
- Department of Natural Sciences, The University of Virginia’s College at Wise, 1 College Ave., Wise, VA 24293, USA; (G.C.R.P.); (M.J.M.)
| | - Marcus J. Meade
- Department of Natural Sciences, The University of Virginia’s College at Wise, 1 College Ave., Wise, VA 24293, USA; (G.C.R.P.); (M.J.M.)
| | - Kalina M. Manoylov
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, GA 31061, USA;
| | - A. Bruce Cahoon
- Department of Natural Sciences, The University of Virginia’s College at Wise, 1 College Ave., Wise, VA 24293, USA; (G.C.R.P.); (M.J.M.)
| |
Collapse
|
26
|
Medini H, Cohen T, Mishmar D. Mitochondria Are Fundamental for the Emergence of Metazoans: On Metabolism, Genomic Regulation, and the Birth of Complex Organisms. Annu Rev Genet 2020; 54:151-166. [PMID: 32857636 DOI: 10.1146/annurev-genet-021920-105545] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Out of many intracellular bacteria, only the mitochondria and chloroplasts abandoned their independence billions of years ago and became endosymbionts within the host eukaryotic cell. Consequently, one cannot grow eukaryotic cells without their mitochondria, and the mitochondria cannot divide outside of the cell, thus reflecting interdependence. Here, we argue that such interdependence underlies the fundamental role of mitochondrial activities in the emergence of metazoans. Several lines of evidence support our hypothesis: (a) Differentiation and embryogenesis rely on mitochondrial function; (b) mitochondrial metabolites are primary precursors for epigenetic modifications (such as methyl and acetyl), which are critical for chromatin remodeling and gene expression, particularly during differentiation and embryogenesis; and (c) mitonuclear coregulation adapted to accommodate both housekeeping and tissue-dependent metabolic needs. We discuss the evolution of the unique mitochondrial genetic system, mitochondrial metabolites, mitonuclear coregulation, and their critical roles in the emergence of metazoans and in human disorders.
Collapse
Affiliation(s)
- Hadar Medini
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501 Israel;
| | - Tal Cohen
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501 Israel;
| | - Dan Mishmar
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501 Israel;
| |
Collapse
|
27
|
Bruni F, Proctor-Kent Y, Lightowlers RN, Chrzanowska-Lightowlers ZM. Messenger RNA delivery to mitoribosomes - hints from a bacterial toxin. FEBS J 2020; 288:437-451. [PMID: 32329962 PMCID: PMC7891357 DOI: 10.1111/febs.15342] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 04/06/2020] [Accepted: 04/21/2020] [Indexed: 11/28/2022]
Abstract
In mammalian mitochondria, messenger RNA is processed and matured from large primary transcripts in structures known as RNA granules. The identity of the factors and process transferring the matured mRNA to the mitoribosome for translation is unclear. Nascent mature transcripts are believed to associate initially with the small mitoribosomal subunit prior to recruitment of the large subunit to form the translationally active monosome. When the small subunit fails to assemble, however, the stability of mt‐mRNA is only marginally affected, and under these conditions, the LRPPRC/SLIRP RNA‐binding complex has been implicated in maintaining mt‐mRNA stability. Here, we exploit the activity of a bacterial ribotoxin, VapC20, to show that in the absence of the large mitoribosomal subunit, mt‐mRNA species are selectively lost. Further, if the small subunit is also depleted, the mt‐mRNA levels are recovered. As a consequence of these data, we suggest a natural pathway for loading processed mt‐mRNA onto the mitoribosome.
Collapse
Affiliation(s)
- Francesco Bruni
- The Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, UK.,Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Italy
| | - Yasmin Proctor-Kent
- The Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, UK
| | - Robert N Lightowlers
- The Wellcome Centre for Mitochondrial Research, Institute for Cell and Molecular Biosciences, Newcastle University, UK
| | | |
Collapse
|
28
|
Donath A, Jühling F, Al-Arab M, Bernhart SH, Reinhardt F, Stadler PF, Middendorf M, Bernt M. Improved annotation of protein-coding genes boundaries in metazoan mitochondrial genomes. Nucleic Acids Res 2020; 47:10543-10552. [PMID: 31584075 PMCID: PMC6847864 DOI: 10.1093/nar/gkz833] [Citation(s) in RCA: 240] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 08/30/2019] [Accepted: 09/29/2019] [Indexed: 11/13/2022] Open
Abstract
With the rapid increase of sequenced metazoan mitochondrial genomes, a detailed manual annotation is becoming more and more infeasible. While it is easy to identify the approximate location of protein-coding genes within mitogenomes, the peculiar processing of mitochondrial transcripts, however, makes the determination of precise gene boundaries a surprisingly difficult problem. We have analyzed the properties of annotated start and stop codon positions in detail, and use the inferred patterns to devise a new method for predicting gene boundaries in de novo annotations. Our method benefits from empirically observed prevalances of start/stop codons and gene lengths, and considers the dependence of these features on variations of genetic codes. Albeit not being perfect, our new approach yields a drastic improvement in the accuracy of gene boundaries and upgrades the mitochondrial genome annotation server MITOS to an even more sophisticated tool for fully automatic annotation of metazoan mitochondrial genomes.
Collapse
Affiliation(s)
- Alexander Donath
- Center for Molecular Biodiversity Research (ZMB), Zoological Research Museum Alexander Koenig (ZFMK), Adenauerallee 160, D-53113 Bonn, Germany
| | - Frank Jühling
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 3 Rue Koeberlé, F-67000 Strasbourg, France.,Université de Strasbourg, 4 Rue Blaise Pascal, F-67081 Strasbourg, France
| | - Marwa Al-Arab
- Bioinformatics, Department of Computer Science, Universität Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany.,Doctoral School of Science and Technology, AZM Center for Biotechnology Research, Lebanese University, Tripoli, Lebanon
| | - Stephan H Bernhart
- Bioinformatics, Department of Computer Science, Universität Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany.,Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany
| | - Franziska Reinhardt
- Bioinformatics, Department of Computer Science, Universität Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany
| | - Peter F Stadler
- Bioinformatics, Department of Computer Science, Universität Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany.,Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany.,Competence Center for Scalable Data Services and Solutions Dresden/Leipzig, German Centre for Integrative Biodiversity Research (iDiv), and Leipzig Research Center for Civilization Diseases, Universität Leipzig, Leipzig, Germany.,Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany.,Fraunhofer Institut for Cell Therapy and Immunology, Perlickstraße 1, D-04103 Leipzig, Germany.,Department of Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria.,Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA
| | - Martin Middendorf
- Swarm Intelligence and Complex Systems, Department of Computer Science, Universität Leipzig, Augustusplatz 10, D-04109 Leipzig, Germany
| | - Matthias Bernt
- Swarm Intelligence and Complex Systems, Department of Computer Science, Universität Leipzig, Augustusplatz 10, D-04109 Leipzig, Germany.,Helmholtz Centre for Environmental Research - UFZ, Young Investigators Group Bioinformatics and Transcriptomics Permoserstraße 15, D-04318 Leipzig, Germany
| |
Collapse
|
29
|
Ccm1p is a 15S rRNA primary transcript processing factor as elucidated by a novel in vivo system in Saccharomyces cerevisiae. Curr Genet 2020; 66:775-789. [PMID: 32152734 DOI: 10.1007/s00294-020-01064-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/15/2020] [Accepted: 02/24/2020] [Indexed: 10/24/2022]
Abstract
In Saccharomyces cerevisiae, the mitoribosomal RNA of the minor subunit, 15S rRNA, is transcribed as a bicistronic transcript along with tRNAW. 5' and 3' sequences flanking the mature transcript must be removed by cleavage at the respective junctions before incorporating it into the mitoribosome. An in vivo dose-response triphasic system was created to elucidate the role of Ccm1p in the processing of 15S rRNA: Ccm1p supply ("On"), deprivation ("Off"), and resupply ("Back on"). After 72 h under "Off" status, the cells started to exhibit a complete mutant phenotype as assessed by their lack of growth in glycerol medium, while keeping their mitochondrial DNA integrity (ρ+). Full functionality of mitochondria was reacquired upon "Back on." 15S rRNA levels and phenotype followed the Ccm1p intramitochondrial concentrations throughout the "On-Off-Back on" course. Under "Off" status, cells gradually accumulated unprocessed 5' and 3' junctions, which reached significant levels at 72-96 h, probably due to a saturation of the mitochondrial degradosome (mtEXO). The Ccm1p/mtEXO mutant (Δccm1/Δdss1) showed a copious accumulation of 15S rRNA primary transcript forms, which were cleaved upon Ccm1p resupply. The gene that codes for the RNA component of RNase P was conserved in wild-type and mutant strains. Our results indicate that Ccm1p is crucial in processing the 15S rRNA primary transcript and does not stabilize the already mature 15S rRNA. Consequently, failure of this function in Δccm1 cells results, as it happens to any other unprocessed primary transcripts, in total degradation of 15S rRNA by mtEXO, whose mechanism of action is discussed.
Collapse
|
30
|
Pronsato L, Milanesi L, Vasconsuelo A. Testosterone induces up-regulation of mitochondrial gene expression in murine C2C12 skeletal muscle cells accompanied by an increase of nuclear respiratory factor-1 and its downstream effectors. Mol Cell Endocrinol 2020; 500:110631. [PMID: 31676390 DOI: 10.1016/j.mce.2019.110631] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 01/03/2023]
Abstract
The reduction in muscle mass and strength with age, sarcopenia, is a prevalent condition among the elderly, linked to skeletal muscle dysfunction and cell apoptosis. We demonstrated that testosterone protects against H2O2-induced apoptosis in C2C12 muscle cells. Here, we analyzed the effect of testosterone on mitochondrial gene expression in C2C12 skeletal muscle cells. We found that testosterone increases mRNA expression of genes encoded by mitochondrial DNA, such as NADPH dehydrogenase subunit 1 (ND1), subunit 4 (ND4), cytochrome b (CytB), cytochrome c oxidase subunit 1 (Cox1) and subunit 2 (Cox2) in C2C12. Additionally, the hormone induced the expression of the nuclear respiratory factors 1 and 2 (Nrf-1 and Nrf-2), the mitochondrial transcription factors A (Tfam) and B2 (TFB2M), and the optic atrophy 1 (OPA1). The simultaneous treatment with testosterone and the androgen receptor antagonist, Flutamide, reduced these effects. H2O2-oxidative stress induced treatment, significantly decreased mitochondrial gene expression. Computational analysis revealed that mitochondrial DNA contains specific sequences, which the androgen receptor could recognize and bind, probably taking place a direct regulation of mitochondrial transcription by the receptor. These findings indicate that androgen plays an important role in the regulation of mitochondrial transcription and biogenesis in skeletal muscle.
Collapse
Affiliation(s)
- Lucía Pronsato
- Instituto de Investigaciones Biológicas y Biomédicas del Sur (INBIOSUR-CONICET), 8000, Bahía Blanca, Argentina.
| | - Lorena Milanesi
- Instituto de Investigaciones Biológicas y Biomédicas del Sur (INBIOSUR-CONICET), 8000, Bahía Blanca, Argentina.
| | - Andrea Vasconsuelo
- Instituto de Investigaciones Biológicas y Biomédicas del Sur (INBIOSUR-CONICET), 8000, Bahía Blanca, Argentina
| |
Collapse
|
31
|
Holt IJ. The mitochondrial R-loop. Nucleic Acids Res 2019; 47:5480-5489. [PMID: 31045202 PMCID: PMC6582354 DOI: 10.1093/nar/gkz277] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/11/2019] [Accepted: 04/29/2019] [Indexed: 12/18/2022] Open
Abstract
The DNA in mitochondria contributes essential components of the organelle’s energy producing machinery that is essential for life. In 1971, many mitochondrial DNA molecules were found to have a third strand of DNA that maps to a region containing critical regulatory elements for transcription and replication. Forty-five years later, a third strand of RNA in the same region has been reported. This mitochondrial R-loop is present on thousands of copies of mitochondrial DNA per cell making it potentially the most abundant R-loop in nature. Here, I assess the discovery of the mitochondrial R-loop, discuss why it remained unrecognized for almost half a century and propose for it central roles in the replication, organization and expression of mitochondrial DNA, which if compromised can lead to disease states.
Collapse
Affiliation(s)
- Ian J Holt
- Biodonostia Health Research Institute, 20014 San Sebastián, Spain & IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.,Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London, NW3 2PF, UK.,CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases, Ministry of Economy and Competitiveness, Institute Carlos III), Madrid, Spain
| |
Collapse
|
32
|
Bouda E, Stapon A, Garcia-Diaz M. Mechanisms of mammalian mitochondrial transcription. Protein Sci 2019; 28:1594-1605. [PMID: 31309618 DOI: 10.1002/pro.3688] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 01/06/2023]
Abstract
Numerous age-related human diseases have been associated with deficiencies in cellular energy production. Moreover, genetic alterations resulting in mitochondrial dysfunction are the cause of inheritable disorders commonly known as mitochondrial diseases. Many of these deficiencies have been directly or indirectly linked to deficits in mitochondrial gene expression. Transcription is an essential step in gene expression and elucidating the molecular mechanisms involved in this process is critical for understanding defects in energy production. For the past five decades, substantial efforts have been invested in the field of mitochondrial transcription. These efforts have led to the discovery of the main protein factors responsible for transcription as well as to a basic mechanistic understanding of the transcription process. They have also revealed various mechanisms of transcriptional regulation as well as the links that exist between the transcription process and downstream processes of RNA maturation. Here, we review the knowledge gathered in early mitochondrial transcription studies and focus on recent findings that shape our current understanding of mitochondrial transcription, posttranscriptional processing, as well as transcriptional regulation in mammalian systems.
Collapse
Affiliation(s)
- Emilie Bouda
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York
| | - Anthony Stapon
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York
| | - Miguel Garcia-Diaz
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York
| |
Collapse
|
33
|
Transcription, Processing, and Decay of Mitochondrial RNA in Health and Disease. Int J Mol Sci 2019; 20:ijms20092221. [PMID: 31064115 PMCID: PMC6540609 DOI: 10.3390/ijms20092221] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 12/16/2022] Open
Abstract
Although the large majority of mitochondrial proteins are nuclear encoded, for their correct functioning mitochondria require the expression of 13 proteins, two rRNA, and 22 tRNA codified by mitochondrial DNA (mtDNA). Once transcribed, mitochondrial RNA (mtRNA) is processed, mito-ribosomes are assembled, and mtDNA-encoded proteins belonging to the respiratory chain are synthesized. These processes require the coordinated spatio-temporal action of several enzymes, and many different factors are involved in the regulation and control of protein synthesis and in the stability and turnover of mitochondrial RNA. In this review, we describe the essential steps of mitochondrial RNA synthesis, maturation, and degradation, the factors controlling these processes, and how the alteration of these processes is associated with human pathologies.
Collapse
|
34
|
Chen Z, Zhang F, Xu H. Human mitochondrial DNA diseases and Drosophila models. J Genet Genomics 2019; 46:201-212. [DOI: 10.1016/j.jgg.2019.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/05/2019] [Accepted: 03/25/2019] [Indexed: 01/06/2023]
|
35
|
Moore TM, Zhou Z, Cohn W, Norheim F, Lin AJ, Kalajian N, Strumwasser AR, Cory K, Whitney K, Ho T, Ho T, Lee JL, Rucker DH, Shirihai O, van der Bliek AM, Whitelegge JP, Seldin MM, Lusis AJ, Lee S, Drevon CA, Mahata SK, Turcotte LP, Hevener AL. The impact of exercise on mitochondrial dynamics and the role of Drp1 in exercise performance and training adaptations in skeletal muscle. Mol Metab 2019; 21:51-67. [PMID: 30591411 PMCID: PMC6407367 DOI: 10.1016/j.molmet.2018.11.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Mitochondria are organelles primarily responsible for energy production, and recent evidence indicates that alterations in size, shape, location, and quantity occur in response to fluctuations in energy supply and demand. We tested the impact of acute and chronic exercise on mitochondrial dynamics signaling and determined the impact of the mitochondrial fission regulator Dynamin related protein (Drp)1 on exercise performance and muscle adaptations to training. METHODS Wildtype and muscle-specific Drp1 heterozygote (mDrp1+/-) mice, as well as dysglycemic (DG) and healthy normoglycemic men (control) performed acute and chronic exercise. The Hybrid Mouse Diversity Panel, including 100 murine strains of recombinant inbred mice, was used to identify muscle Dnm1L (encodes Drp1)-gene relationships. RESULTS Endurance exercise impacted all aspects of the mitochondrial life cycle, i.e. fission-fusion, biogenesis, and mitophagy. Dnm1L gene expression and Drp1Ser616 phosphorylation were markedly increased by acute exercise and declined to baseline during post-exercise recovery. Dnm1L expression was strongly associated with transcripts known to regulate mitochondrial metabolism and adaptations to exercise. Exercise increased the expression of DNM1L in skeletal muscle of healthy control and DG subjects, despite a 15% ↓(P = 0.01) in muscle DNM1L expression in DG at baseline. To interrogate the role of Dnm1L further, we exercise trained male mDrp1+/- mice and found that Drp1 deficiency reduced muscle endurance and running performance, and altered muscle adaptations in response to exercise training. CONCLUSION Our findings highlight the importance of mitochondrial dynamics, specifically Drp1 signaling, in the regulation of exercise performance and adaptations to endurance exercise training.
Collapse
Affiliation(s)
- Timothy M Moore
- Department of Biological Sciences, Dana & David Dornsife College of Letters, Arts, and Sciences, University of Southern California, CA 90089-0372, USA; David Geffen School of Medicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Zhenqi Zhou
- David Geffen School of Medicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Whitaker Cohn
- David Geffen School of Medicine, Department of Psychiatry and Biobehavioral Sciences, The Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90095, USA
| | - Frode Norheim
- David Geffen School of Medicine, Human Genetics, University of California, Los Angeles, CA 90095, USA
| | - Amanda J Lin
- David Geffen School of Medicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Nareg Kalajian
- David Geffen School of Medicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Alexander R Strumwasser
- David Geffen School of Medicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Kevin Cory
- David Geffen School of Medicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Kate Whitney
- David Geffen School of Medicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Theodore Ho
- David Geffen School of Medicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Timothy Ho
- David Geffen School of Medicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Joseph L Lee
- David Geffen School of Medicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Daniel H Rucker
- David Geffen School of Medicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Orian Shirihai
- David Geffen School of Medicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Alexander M van der Bliek
- David Geffen School of Medicine, Department of Biological Chemistry, University of California, Los Angeles, CA 90095, USA
| | - Julian P Whitelegge
- David Geffen School of Medicine, Department of Psychiatry and Biobehavioral Sciences, The Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90095, USA
| | - Marcus M Seldin
- David Geffen School of Medicine, Human Genetics, University of California, Los Angeles, CA 90095, USA
| | - Aldons J Lusis
- David Geffen School of Medicine, Human Genetics, University of California, Los Angeles, CA 90095, USA; David Geffen School of Medicine, Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Sindre Lee
- University Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Christian A Drevon
- University Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Department of Endocrinology, Morbid Obesity and Preventive Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Sushil K Mahata
- VA San Diego Healthcare System, San Diego, CA 92161, USA; Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lorraine P Turcotte
- Department of Biological Sciences, Dana & David Dornsife College of Letters, Arts, and Sciences, University of Southern California, CA 90089-0372, USA
| | - Andrea L Hevener
- David Geffen School of Medicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA; Iris Cantor-UCLA Women's Health Research Center, Los Angeles, CA 90095, USA.
| |
Collapse
|
36
|
Xu X, Ji H, Jin X, Cheng Z, Yao X, Liu Y, Zhao Q, Zhang T, Ruan J, Bu W, Chen Z, Gao S. Using Pan RNA-Seq Analysis to Reveal the Ubiquitous Existence of 5' and 3' End Small RNAs. Front Genet 2019; 10:105. [PMID: 30838030 PMCID: PMC6382676 DOI: 10.3389/fgene.2019.00105] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/30/2019] [Indexed: 12/03/2022] Open
Abstract
In this study, we used pan RNA-seq analysis to reveal the ubiquitous existence of both 5′ and 3′ end small RNAs (5′ and 3′ sRNAs). 5′ and 3′ sRNAs alone can be used to annotate nuclear non-coding and mitochondrial genes at 1-bp resolution and identify new steady RNAs, which are usually transcribed from functional genes. Then, we provided a simple and cost effective way for the annotation of nuclear non-coding and mitochondrial genes and the identification of new steady RNAs, particularly long non-coding RNAs (lncRNAs). Using 5′ and 3′ sRNAs, the annotation of human mitochondrial was corrected and a novel ncRNA named non-coding mitochondrial RNA 1 (ncMT1) was reported for the first time in this study. We also found that most of human tRNA genes have downstream lncRNA genes as lncTRS-TGA1-1 and corrected the misunderstanding of them in previous studies. Using 5′, 3′, and intronic sRNAs, we reported for the first time that enzymatic double-stranded RNA (dsRNA) cleavage and RNA interference (RNAi) might be involved in the RNA degradation and gene expression regulation of U1 snRNA in human. We provided a different perspective on the regulation of gene expression in U1 snRNA. We also provided a novel view on cancer and virus-induced diseases, leading to find diagnostics or therapy targets from the ribonuclease III (RNase III) family and its related pathways. Our findings pave the way toward a rediscovery of dsRNA cleavage and RNAi, challenging classical theories.
Collapse
Affiliation(s)
- Xiaofeng Xu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haishuo Ji
- College of Life Sciences, Nankai University, Tianjin, China.,Institute of Statistics, Nankai University, Tianjin, China
| | - Xiufeng Jin
- College of Life Sciences, Nankai University, Tianjin, China
| | - Zhi Cheng
- College of Life Sciences, Nankai University, Tianjin, China
| | - Xue Yao
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yanqiang Liu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Qiang Zhao
- College of Life Sciences, Nankai University, Tianjin, China
| | - Tao Zhang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Jishou Ruan
- School of Mathematical Sciences, Nankai University, Tianjin, China
| | - Wenjun Bu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Ze Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shan Gao
- College of Life Sciences, Nankai University, Tianjin, China.,Institute of Statistics, Nankai University, Tianjin, China
| |
Collapse
|
37
|
Lapp HE, Bartlett AA, Hunter RG. Stress and glucocorticoid receptor regulation of mitochondrial gene expression. J Mol Endocrinol 2019; 62:R121-R128. [PMID: 30082335 DOI: 10.1530/jme-18-0152] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/06/2018] [Indexed: 01/05/2023]
Abstract
Glucocorticoids have long been recognized for their role in regulating the availability of energetic resources, particularly during stress. Furthermore, bidirectional connections between glucocorticoids and the physiology and function of mitochondria have been discovered over the years. However, the precise mechanisms by which glucocorticoids act on mitochondria have only recently been explored. Glucocorticoids appear to regulate mitochondrial transcription via activation of glucocorticoid receptors (GRs) with elevated circulating glucocorticoid levels following stress. While several mechanistic questions remain, GR and other nuclear transcription factors appear to have the capacity to substantially alter mitochondrial transcript abundance. The regulation of mitochondrial transcripts by stress and glucocorticoids will likely prove functionally relevant in many stress-sensitive tissues including the brain.
Collapse
|
38
|
Mitochondrial DNA Integrity: Role in Health and Disease. Cells 2019; 8:cells8020100. [PMID: 30700008 PMCID: PMC6406942 DOI: 10.3390/cells8020100] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 01/06/2023] Open
Abstract
As the primary cellular location for respiration and energy production, mitochondria serve in a critical capacity to the cell. Yet, by virtue of this very function of respiration, mitochondria are subject to constant oxidative stress that can damage one of the unique features of this organelle, its distinct genome. Damage to mitochondrial DNA (mtDNA) and loss of mitochondrial genome integrity is increasingly understood to play a role in the development of both severe early-onset maladies and chronic age-related diseases. In this article, we review the processes by which mtDNA integrity is maintained, with an emphasis on the repair of oxidative DNA lesions, and the cellular consequences of diminished mitochondrial genome stability.
Collapse
|
39
|
Arena G, Cissé MY, Pyrdziak S, Chatre L, Riscal R, Fuentes M, Arnold JJ, Kastner M, Gayte L, Bertrand-Gaday C, Nay K, Angebault-Prouteau C, Murray K, Chabi B, Koechlin-Ramonatxo C, Orsetti B, Vincent C, Casas F, Marine JC, Etienne-Manneville S, Bernex F, Lombès A, Cameron CE, Dubouchaud H, Ricchetti M, Linares LK, Le Cam L. Mitochondrial MDM2 Regulates Respiratory Complex I Activity Independently of p53. Mol Cell 2019; 69:594-609.e8. [PMID: 29452639 DOI: 10.1016/j.molcel.2018.01.023] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 12/21/2017] [Accepted: 01/18/2018] [Indexed: 12/12/2022]
Abstract
Accumulating evidence indicates that the MDM2 oncoprotein promotes tumorigenesis beyond its canonical negative effects on the p53 tumor suppressor, but these p53-independent functions remain poorly understood. Here, we show that a fraction of endogenous MDM2 is actively imported in mitochondria to control respiration and mitochondrial dynamics independently of p53. Mitochondrial MDM2 represses the transcription of NADH-dehydrogenase 6 (MT-ND6) in vitro and in vivo, impinging on respiratory complex I activity and enhancing mitochondrial ROS production. Recruitment of MDM2 to mitochondria increases during oxidative stress and hypoxia. Accordingly, mice lacking MDM2 in skeletal muscles exhibit higher MT-ND6 levels, enhanced complex I activity, and increased muscular endurance in mild hypoxic conditions. Furthermore, increased mitochondrial MDM2 levels enhance the migratory and invasive properties of cancer cells. Collectively, these data uncover a previously unsuspected function of the MDM2 oncoprotein in mitochondria that play critical roles in skeletal muscle physiology and may contribute to tumor progression.
Collapse
Affiliation(s)
- Giuseppe Arena
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France; Equipe Labélisée par la Ligue contre le Cancer; Unit of Stem Cells and Development, Team Stability of Nuclear and Mitochondrial DNA, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS, Paris, France
| | - Madi Yann Cissé
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France; Equipe Labélisée par la Ligue contre le Cancer
| | - Samuel Pyrdziak
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France; Equipe Labélisée par la Ligue contre le Cancer
| | - Laurent Chatre
- Unit of Stem Cells and Development, Team Stability of Nuclear and Mitochondrial DNA, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS, Paris, France
| | - Romain Riscal
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France; Equipe Labélisée par la Ligue contre le Cancer
| | - Maryse Fuentes
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France; Equipe Labélisée par la Ligue contre le Cancer
| | - Jamie Jon Arnold
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, State College, PA, USA
| | - Markus Kastner
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, State College, PA, USA
| | - Laurie Gayte
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France; Equipe Labélisée par la Ligue contre le Cancer
| | - Christelle Bertrand-Gaday
- Dynamique Musculaire et Métabolisme Laboratory, INRA, Université de Montpellier, Montpellier, France
| | - Kevin Nay
- Dynamique Musculaire et Métabolisme Laboratory, INRA, Université de Montpellier, Montpellier, France
| | - Claire Angebault-Prouteau
- INSERM, CNRS, Université de Montpellier, Centre Hospitalier Régional Universitaire de Montpellier, Montpellier, France
| | - Kerren Murray
- Institut Pasteur Paris, Cell Polarity, Migration and Cancer Unit, CNRS, INSERM, Paris, France
| | - Beatrice Chabi
- Dynamique Musculaire et Métabolisme Laboratory, INRA, Université de Montpellier, Montpellier, France
| | | | - Béatrice Orsetti
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France; Equipe Labélisée par la Ligue contre le Cancer
| | - Charles Vincent
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France; Equipe Labélisée par la Ligue contre le Cancer
| | - François Casas
- Dynamique Musculaire et Métabolisme Laboratory, INRA, Université de Montpellier, Montpellier, France
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for the Biology of Disease, VIB, Leuven, Belgium; Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | | | - Florence Bernex
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France; Réseau d'Histologie Expérimentale de Montpellier, BioCampus, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Anne Lombès
- Institut Cochin, INSERM, CNRS, Université Paris Descartes, Paris, France
| | - Craig Eugene Cameron
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, State College, PA, USA
| | | | - Miria Ricchetti
- Unit of Stem Cells and Development, Team Stability of Nuclear and Mitochondrial DNA, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS, Paris, France
| | - Laetitia Karine Linares
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France; Equipe Labélisée par la Ligue contre le Cancer.
| | - Laurent Le Cam
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France; Equipe Labélisée par la Ligue contre le Cancer.
| |
Collapse
|
40
|
Chinnery PF, Gomez-Duran A. Oldies but Goldies mtDNA Population Variants and Neurodegenerative Diseases. Front Neurosci 2018; 12:682. [PMID: 30369864 PMCID: PMC6194173 DOI: 10.3389/fnins.2018.00682] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/10/2018] [Indexed: 12/31/2022] Open
Abstract
mtDNA is transmitted through the maternal line and its sequence variability, which is population specific, is assumed to be phenotypically neutral. However, several studies have shown associations between the variants defining some genetic backgrounds and the susceptibility to several pathogenic phenotypes, including neurodegenerative diseases. Many of these studies have found that some of these variants impact many of these phenotypes, including the ones defining the Caucasian haplogroups H, J, and Uk, while others, such as the ones defining the T haplogroup, have phenotype specific associations. In this review, we will focus on those that have shown a pleiotropic effect in population studies in neurological diseases. We will also explore their bioenergetic and genomic characteristics in order to provide an insight into the role of these variants in disease. Given the importance of mitochondrial population variants in neurodegenerative diseases a deeper analysis of their effects might unravel new mechanisms of disease and help design new strategies for successful treatments.
Collapse
Affiliation(s)
- Patrick F Chinnery
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.,Medical Research Council-Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Aurora Gomez-Duran
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.,Medical Research Council-Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
41
|
Barshad G, Marom S, Cohen T, Mishmar D. Mitochondrial DNA Transcription and Its Regulation: An Evolutionary Perspective. Trends Genet 2018; 34:682-692. [DOI: 10.1016/j.tig.2018.05.009] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/19/2018] [Accepted: 05/31/2018] [Indexed: 12/15/2022]
|
42
|
Mitochondrial transcription and translation: overview. Essays Biochem 2018; 62:309-320. [PMID: 30030363 PMCID: PMC6056719 DOI: 10.1042/ebc20170102] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/14/2018] [Accepted: 05/14/2018] [Indexed: 12/13/2022]
Abstract
Mitochondria are the major source of ATP in the cell. Five multi-subunit complexes in the inner membrane of the organelle are involved in the oxidative phosphorylation required for ATP production. Thirteen subunits of these complexes are encoded by the mitochondrial genome often referred to as mtDNA. For this reason, the expression of mtDNA is vital for the assembly and functioning of the oxidative phosphorylation complexes. Defects of the mechanisms regulating mtDNA gene expression have been associated with deficiencies in assembly of these complexes, resulting in mitochondrial diseases. Recently, numerous factors involved in these processes have been identified and characterized leading to a deeper understanding of the mechanisms that underlie mitochondrial diseases.
Collapse
|
43
|
Kim YA, Kim YM, Lee YJ, Cheon CK. The First Korean case of combined oxidative phosphorylation deficiency-17 diagnosed by clinical and molecular investigation. KOREAN JOURNAL OF PEDIATRICS 2017; 60:408-412. [PMID: 29302266 PMCID: PMC5752642 DOI: 10.3345/kjp.2017.60.12.408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/16/2017] [Accepted: 10/23/2017] [Indexed: 11/27/2022]
Abstract
Combined oxidative phosphorylation deficiency-17 (COXPD-17) is very rare and is caused by homozygous or compound heterozygous mutations in the ELAC2 gene on chromosome 17p12. The ELAC2 gene functions as a mitochondrial tRNA processing gene, and only 4 different pathogenic mutations have been reported in ELAC2-associated mitochondrial dysfunction involving oxidative phosphorylation. Affected patients show various clinical symptoms and prognosis, depending on the genotype. We report a novel mutation in the ELAC2 gene (c.95C>G [p.Pro32Arg], het), in an infant with COXPD-17 who presented with encephalopathy including central apnea and intractable epilepsy, and growth and developmental retardation. During hospitalization, consistently elevated serum lactic acid levels were noted, indicative of mitochondrial dysfunction. The patient suddenly died of shock of unknown cause at 5 months of age. This is the first case report of COXPD-17 in Korea and was diagnosed based on clinical characteristics and genetic analysis.
Collapse
Affiliation(s)
- Young A Kim
- Department of Pediatrics, Pusan National University Children's Hospital, Yangsan, Korea
| | - Yoo-Mi Kim
- Department of Pediatrics, Pusan National University Children's Hospital, Yangsan, Korea
| | - Yun-Jin Lee
- Department of Pediatrics, Pusan National University Children's Hospital, Yangsan, Korea
| | - Chong Kun Cheon
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| |
Collapse
|
44
|
Sun Y, Kurisaki M, Hashiguchi Y, Kumazawa Y. Variation and evolution of polyadenylation profiles in sauropsid mitochondrial mRNAs as deduced from the high-throughput RNA sequencing. BMC Genomics 2017; 18:665. [PMID: 28851277 PMCID: PMC5576253 DOI: 10.1186/s12864-017-4080-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 08/21/2017] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Genes encoded in vertebrate mitochondrial DNAs are transcribed as a polycistronic transcript for both strands, which is later processed into individual mRNAs, rRNAs and tRNAs, followed by modifications, such as polyadenylation at the 3' end of mRNAs. Although mechanisms of the mitochondrial transcription and RNA processing have been extensively studied using some model organisms, structural variability of mitochondrial mRNAs across different groups of vertebrates is poorly understood. We conducted the high-throughput RNA sequencing to identify major polyadenylation sites for mitochondrial mRNAs in the Japanese grass lizard, Takydromus tachydromoides and compared the polyadenylation profiles with those identified similarly for 23 tetrapod species, featuring sauropsid taxa (reptiles and birds). RESULTS As compared to the human, a major polyadenylation site for the NADH dehydrogenase subunit 5 mRNA of the grass lizard was located much closer to its stop codon, resulting in considerable truncation of the 3' untranslated region for the mRNA. Among the other sauropsid taxa, several distinct polyadenylation profiles from the human counterpart were found for different mRNAs. They included various truncations of the 3' untranslated region for NADH dehydrogenase subunit 5 mRNA in four taxa, bird-specific polyadenylation of the light-strand-transcribed NADH dehydrogenase subunit 6 mRNA, and the combination of the ATP synthase subunit 8/6 mRNA with a neighboring mRNA into a tricistronic mRNA in the side-necked turtle Pelusios castaneus. In the last case of P. castaneus, as well as another example for NADH dehydrogenase subunit 1 mRNAs of some birds, the association between the polyadenylation site change and the gene overlap was highlighted. The variations in the polyadenylation profile were suggested to have arisen repeatedly in diverse sauropsid lineages. Some of them likely occurred in response to gene rearrangements in the mitochondrial DNA but the others not. CONCLUSIONS These results demonstrate structural variability of mitochondrial mRNAs in sauropsids. The efficient and comprehensive characterization of the mitochondrial mRNAs will contribute to broaden our understanding of their structural and functional evolution.
Collapse
Affiliation(s)
- Yao Sun
- Department of Information and Basic Science and Research Center for Biological Diversity, Graduate School of Natural Sciences, Nagoya City University, 1 Yamanohata, Mizuho-cho, Mizuho-ku, Nagoya, 467-8501, Japan
| | - Masaki Kurisaki
- Department of Information and Basic Science and Research Center for Biological Diversity, Graduate School of Natural Sciences, Nagoya City University, 1 Yamanohata, Mizuho-cho, Mizuho-ku, Nagoya, 467-8501, Japan
| | | | - Yoshinori Kumazawa
- Department of Information and Basic Science and Research Center for Biological Diversity, Graduate School of Natural Sciences, Nagoya City University, 1 Yamanohata, Mizuho-cho, Mizuho-ku, Nagoya, 467-8501, Japan.
| |
Collapse
|
45
|
Two novel lncRNAs discovered in human mitochondrial DNA using PacBio full-length transcriptome data. Mitochondrion 2017; 38:41-47. [PMID: 28802668 DOI: 10.1016/j.mito.2017.08.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 06/11/2017] [Accepted: 08/07/2017] [Indexed: 11/23/2022]
Abstract
In this study, we established a general framework to use PacBio full-length transcriptome sequencing for the investigation of mitochondrial RNAs. As a result, we produced the first full-length human mitochondrial transcriptome using public PacBio data and characterized the human mitochondrial genome with more comprehensive and accurate information. Other results included determination of the H-strand primary transcript, identification of the ND5/ND6AS/tRNAGluAS transcript, discovery of palindrome small RNAs (psRNAs) and construction of the "mitochondrial cleavage" model, etc. These results reported for the first time in this study fundamentally changed annotations of human mitochondrial genome and enriched knowledge in the field of animal mitochondrial studies. The most important finding was two novel long non-coding RNAs (lncRNAs) of MDL1 and MDL1AS exist ubiquitously in animal mitochondrial genomes.
Collapse
|
46
|
Uchida A, Murugesapillai D, Kastner M, Wang Y, Lodeiro MF, Prabhakar S, Oliver GV, Arnold JJ, Maher LJ, Williams MC, Cameron CE. Unexpected sequences and structures of mtDNA required for efficient transcription from the first heavy-strand promoter. eLife 2017; 6. [PMID: 28745586 PMCID: PMC5552277 DOI: 10.7554/elife.27283] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/25/2017] [Indexed: 12/16/2022] Open
Abstract
Human mtDNA contains three promoters, suggesting a need for differential expression of the mitochondrial genome. Studies of mitochondrial transcription have used a reductionist approach, perhaps masking differential regulation. Here we evaluate transcription from light-strand (LSP) and heavy-strand (HSP1) promoters using templates that mimic their natural context. These studies reveal sequences upstream, hypervariable in the human population (HVR3), and downstream of the HSP1 transcription start site required for maximal yield. The carboxy-terminal tail of TFAM is essential for activation of HSP1 but not LSP. Images of the template obtained by atomic force microscopy show that TFAM creates loops in a discrete region, the formation of which correlates with activation of HSP1; looping is lost in tail-deleted TFAM. Identification of HVR3 as a transcriptional regulatory element may contribute to between-individual variability in mitochondrial gene expression. The unique requirement of HSP1 for the TFAM tail may enable its regulation by post-translational modifications. DOI:http://dx.doi.org/10.7554/eLife.27283.001
Collapse
Affiliation(s)
- Akira Uchida
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, State College, United States
| | | | - Markus Kastner
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, State College, United States
| | - Yao Wang
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, State College, United States
| | - Maria F Lodeiro
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, State College, United States
| | - Shaan Prabhakar
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, State College, United States
| | - Guinevere V Oliver
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, State College, United States
| | - Jamie J Arnold
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, State College, United States
| | - L James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, United States
| | - Mark C Williams
- Department of Physics, Northeastern University, Boston, United States
| | - Craig E Cameron
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, State College, United States
| |
Collapse
|
47
|
Mulder H. Transcribing β-cell mitochondria in health and disease. Mol Metab 2017; 6:1040-1051. [PMID: 28951827 PMCID: PMC5605719 DOI: 10.1016/j.molmet.2017.05.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/13/2017] [Accepted: 05/22/2017] [Indexed: 12/17/2022] Open
Abstract
Background The recent genome-wide association studies (GWAS) of Type 2 Diabetes (T2D) have identified the pancreatic β-cell as the culprit in the pathogenesis of the disease. Mitochondrial metabolism plays a crucial role in the processes controlling release of insulin and β-cell mass. This notion implies that mechanisms controlling mitochondrial function have the potential to play a decisive pathogenetic role in T2D. Scope of the review This article reviews studies demonstrating that there is indeed mitochondrial dysfunction in islets in T2D, and that GWAS have identified a variant in the gene encoding transcription factor B1 mitochondrial (TFB1M), predisposing to T2D due to mitochondrial dysfunction and impaired insulin secretion. Mechanistic studies of the nature of this pathogenetic link, as well as of other mitochondrial transcription factors, are described. Major conclusions Based on this, it is argued that transcription and translation in mitochondria are critical processes determining mitochondrial function in β-cells in health and disease.
Collapse
Key Words
- AMPK, AMP-dependent protein kinase
- ATGL, adipocyte triglyceride lipase
- COX, Cytochrome c oxidase
- CYTB, Cytochrome b
- ERR-α, Estrogen-related receptor-α
- Expression quantitative trait locus (eQTL)
- GDH, Glutamate dehydrogenase
- GSIS, Glucose-stimulated insulin secretion
- GWAS, Genome-wide association study
- Genome-wide association study (GWAS)
- HSL, Hormone-sensitive lipase
- ICDc, Cytosolic isocitrate dehydrogenase
- Insulin secretion
- Islets
- KATP, ATP-dependent K+-channel
- MTERF, Mitochondrial transcription termination factor
- Mitochondria
- ND, NADH dehydrogenase
- NRF, Nuclear respiratory factor
- NSUN4, NOP2/Sun RNA methyltransferase family member 4
- OXPHOS, Oxidative phosphorylation
- PC, Pyruvate carboxylase
- PDH, pyruvate dehydrogenase
- PGC, Peroxisome proliferator-activated receptor-γ co-activator
- POLRMT, Mitochondrial RNA polymerase
- POLγ, DNA polymerase-γ
- PPARγ, Peroxisome proliferator-activated receptor-γ
- PRC, PGC1-related coactivator
- SENP1, Sentrin/SUMO-specific protease-1
- SNP, Single Nucleotide Polymorphism
- SUR1, Sulphonylurea receptor-1
- T2D, Type 2 Diabetes
- TCA, Tricarboxylic acid
- TEFM, Mitochondrial transcription elongation factor
- TFAM, Transcription factor A mitochondrial
- TFB1M, Transcription factor B1 mitochondrial
- TFB2M, Transcription factor B2 mitochondrial
- eQTL, Expression quantitative trait locus
- β-Cell
Collapse
Affiliation(s)
- Hindrik Mulder
- Unit of Molecular Metabolism, Lund University Diabetes Centre, Malmö, Sweden
| |
Collapse
|
48
|
Mitochondrial DNA replication: a PrimPol perspective. Biochem Soc Trans 2017; 45:513-529. [PMID: 28408491 PMCID: PMC5390496 DOI: 10.1042/bst20160162] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 12/20/2022]
Abstract
PrimPol, (primase-polymerase), the most recently identified eukaryotic polymerase, has roles in both nuclear and mitochondrial DNA maintenance. PrimPol is capable of acting as a DNA polymerase, with the ability to extend primers and also bypass a variety of oxidative and photolesions. In addition, PrimPol also functions as a primase, catalysing the preferential formation of DNA primers in a zinc finger-dependent manner. Although PrimPol's catalytic activities have been uncovered in vitro, we still know little about how and why it is targeted to the mitochondrion and what its key roles are in the maintenance of this multicopy DNA molecule. Unlike nuclear DNA, the mammalian mitochondrial genome is circular and the organelle has many unique proteins essential for its maintenance, presenting a differing environment within which PrimPol must function. Here, we discuss what is currently known about the mechanisms of DNA replication in the mitochondrion, the proteins that carry out these processes and how PrimPol is likely to be involved in assisting this vital cellular process.
Collapse
|
49
|
Blumberg A, Rice EJ, Kundaje A, Danko CG, Mishmar D. Initiation of mtDNA transcription is followed by pausing, and diverges across human cell types and during evolution. Genome Res 2017; 27:362-373. [PMID: 28049628 PMCID: PMC5340964 DOI: 10.1101/gr.209924.116] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 12/29/2016] [Indexed: 12/13/2022]
Abstract
Mitochondrial DNA (mtDNA) genes are long known to be cotranscribed in polycistrones, yet it remains impossible to study nascent mtDNA transcripts quantitatively in vivo using existing tools. To this end, we used deep sequencing (GRO-seq and PRO-seq) and analyzed nascent mtDNA-encoded RNA transcripts in diverse human cell lines and metazoan organisms. Surprisingly, accurate detection of human mtDNA transcription initiation sites (TISs) in the heavy and light strands revealed a novel conserved transcription pausing site near the light-strand TIS. This pausing site correlated with the presence of a bacterial pausing sequence motif, with reduced SNP density, and with a DNase footprinting signal in all tested cells. Its location within conserved sequence block 3 (CSBIII), just upstream of the known transcription–replication transition point, suggests involvement in such transition. Analysis of nonhuman organisms enabled de novo mtDNA sequence assembly, as well as detection of previously unknown mtDNA TIS, pausing, and transcription termination sites with unprecedented accuracy. Whereas mammals (Pan troglodytes, Macaca mulatta, Rattus norvegicus, and Mus musculus) showed a human-like mtDNA transcription pattern, the invertebrate pattern (Drosophila melanogaster and Caenorhabditis elegans) profoundly diverged. Our approach paves the path toward in vivo, quantitative, reference sequence-free analysis of mtDNA transcription in all eukaryotes.
Collapse
Affiliation(s)
- Amit Blumberg
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105 Israel
| | - Edward J Rice
- Baker Institute for Animal Health, Cornell University, Ithaca, New York 14853, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, California 94305-5120, USA
| | - Charles G Danko
- Baker Institute for Animal Health, Cornell University, Ithaca, New York 14853, USA
| | - Dan Mishmar
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105 Israel
| |
Collapse
|
50
|
Shokolenko IN, Alexeyev MF. Mitochondrial transcription in mammalian cells. Front Biosci (Landmark Ed) 2017; 22:835-853. [PMID: 27814650 DOI: 10.2741/4520] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
As a consequence of recent discoveries of intimate involvement of mitochondria with key cellular processes, there has been a resurgence of interest in all aspects of mitochondrial biology, including the intricate mechanisms of mitochondrial DNA maintenance and expression. Despite four decades of research, there remains a lot to be learned about the processes that enable transcription of genetic information from mitochondrial DNA to RNA, as well as their regulation. These processes are vitally important, as evidenced by the lethality of inactivating the central components of mitochondrial transcription machinery. Here, we review the current understanding of mitochondrial transcription and its regulation in mammalian cells. We also discuss key theories in the field and highlight controversial subjects and future directions as we see them.
Collapse
Affiliation(s)
- Inna N Shokolenko
- University of South Alabama, Patt Capps Covey College of Allied Health Professions, Biomedical Sciences Department, 5721 USA Drive N, HAHN 4021, Mobile, AL 36688-0002, USA
| | - Mikhail F Alexeyev
- Department of Physiology and Cell Biology, University of South Alabama, 5851 USA Dr. North, MSB3074, Mobile, AL 36688, USA,
| |
Collapse
|