1
|
Lavoie JPC, Simard M, Kalkan H, Rakotoarivelo V, Huot S, Di Marzo V, Côté A, Pouliot M, Flamand N. Pharmacological evidence that the inhibitory effects of prostaglandin E2 are mediated by the EP2 and EP4 receptors in human neutrophils. J Leukoc Biol 2024; 115:1183-1189. [PMID: 38345417 PMCID: PMC11135612 DOI: 10.1093/jleuko/qiae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/13/2024] [Accepted: 01/21/2024] [Indexed: 05/30/2024] Open
Abstract
Prostaglandin E2 (PGE2) is a recognized inhibitor of granulocyte functions. However, most of the data supporting this was obtained when available pharmacological tools mainly targeted the EP2 receptor. Herein, we revisited the inhibitory effect of PGE2 on reactive oxygen species production, leukotriene biosynthesis, and migration in human neutrophils. Our data confirm the inhibitory effect of PGE2 on these functions and unravel that the effect of PGE2 on human neutrophils is obtained by the combined action of EP2 and EP4 agonism. Accordingly, we also demonstrate that the inhibitory effect of PGE2 is fully prevented only by the combination of EP2 and EP4 receptor antagonists, underscoring the importance of targeting both receptors in the effect of PGE2. Conversely, we also show that the inhibition of ROS production by human eosinophils only involves the EP4 receptor, despite the fact that they also express the EP2 receptor.
Collapse
Affiliation(s)
- Jean-Philippe C Lavoie
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, 2725 Chemin Sainte-Foy, Québec City, QC G1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, 2325 Rue de l'Université, Québec City, QC G1V 0A6, Canada
| | - Mélissa Simard
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, 2725 Chemin Sainte-Foy, Québec City, QC G1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, 2325 Rue de l'Université, Québec City, QC G1V 0A6, Canada
| | - Hilal Kalkan
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, 2725 Chemin Sainte-Foy, Québec City, QC G1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, 2325 Rue de l'Université, Québec City, QC G1V 0A6, Canada
| | - Volatiana Rakotoarivelo
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, 2725 Chemin Sainte-Foy, Québec City, QC G1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, 2325 Rue de l'Université, Québec City, QC G1V 0A6, Canada
| | - Sandrine Huot
- Département de microbiologie et immunologie, Faculté de Médecine de l'Université Laval, Centre de Recherche du CHU de Québec, Université Laval, 2325 Rue de l'Université, Québec City, QC G1V 0A6, Canada
- Axe maladies infectieuses et immunitaires, Centre de Recherche du CHU de Québec, Université Laval, 2725 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Vincenzo Di Marzo
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, 2725 Chemin Sainte-Foy, Québec City, QC G1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, 2325 Rue de l'Université, Québec City, QC G1V 0A6, Canada
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale Delle Ricerche, 80078 Pozzuoli, Italy
- Institut sur la nutrition et les aliments fonctionnels, Centre NUTRISS, École de Nutrition, Faculté des Sciences de l’agriculture et de l’alimentation, Université Laval, 2440 Bd Hochelaga Suite 1710, Québec City, QC G1V 0A6, Canada
- Joint International Unit between the Consiglio Nazionale delle Ricerche (Italy) and Université Laval (Canada) on Chemical and Biomolecular Research on the Microbiome and Its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), 80078 Pozzuoli, Italy and Québec City, QC, Canada
| | - Andréanne Côté
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, 2725 Chemin Sainte-Foy, Québec City, QC G1V 4G5, Canada
| | - Marc Pouliot
- Département de microbiologie et immunologie, Faculté de Médecine de l'Université Laval, Centre de Recherche du CHU de Québec, Université Laval, 2325 Rue de l'Université, Québec City, QC G1V 0A6, Canada
- Axe maladies infectieuses et immunitaires, Centre de Recherche du CHU de Québec, Université Laval, 2725 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Nicolas Flamand
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, 2725 Chemin Sainte-Foy, Québec City, QC G1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, 2325 Rue de l'Université, Québec City, QC G1V 0A6, Canada
| |
Collapse
|
2
|
Archambault AS, Zaid Y, Rakotoarivelo V, Turcotte C, Doré É, Dubuc I, Martin C, Flamand O, Amar Y, Cheikh A, Fares H, El Hassani A, Tijani Y, Côté A, Laviolette M, Boilard É, Flamand L, Flamand N. High levels of eicosanoids and docosanoids in the lungs of intubated COVID-19 patients. FASEB J 2021; 35:e21666. [PMID: 34033145 PMCID: PMC8206770 DOI: 10.1096/fj.202100540r] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 is responsible for coronavirus disease 2019 (COVID-19). While COVID-19 is often benign, a subset of patients develops severe multilobar pneumonia that can progress to an acute respiratory distress syndrome. There is no cure for severe COVID-19 and few treatments significantly improved clinical outcome. Dexamethasone and possibly aspirin, which directly/indirectly target the biosynthesis/effects of numerous lipid mediators are among those options. Our objective was to define if severe COVID-19 patients were characterized by increased bioactive lipids modulating lung inflammation. A targeted lipidomic analysis of bronchoalveolar lavages (BALs) by tandem mass spectrometry was done on 25 healthy controls and 33 COVID-19 patients requiring mechanical ventilation. BALs from severe COVID-19 patients were characterized by increased fatty acids and inflammatory lipid mediators. There was a predominance of thromboxane and prostaglandins. Leukotrienes were also increased, notably LTB4 , LTE4 , and eoxin E4 . Monohydroxylated 15-lipoxygenase metabolites derived from linoleate, arachidonate, eicosapentaenoate, and docosahexaenoate were also increased. Finally yet importantly, specialized pro-resolving mediators, notably lipoxin A4 and the D-series resolvins, were also increased, underscoring that the lipid mediator storm occurring in severe COVID-19 involves pro- and anti-inflammatory lipids. Our data unmask the lipid mediator storm occurring in the lungs of patients afflicted with severe COVID-19. We discuss which clinically available drugs could be helpful at modulating the lipidome we observed in the hope of minimizing the deleterious effects of pro-inflammatory lipids and enhancing the effects of anti-inflammatory and/or pro-resolving lipid mediators.
Collapse
Affiliation(s)
- Anne-Sophie Archambault
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Faculté de médecine, Département de médecine, Université Laval, Québec, QC, Canada.,Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Québec, QC, Canada
| | - Younes Zaid
- Biology Department, Faculty of Sciences, Mohammed V University, Rabat, Morocco.,Cheikh Zaïd Hospital, Abulcasis University of Health Sciences, Rabat, Morocco
| | - Volatiana Rakotoarivelo
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Faculté de médecine, Département de médecine, Université Laval, Québec, QC, Canada.,Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Québec, QC, Canada
| | - Caroline Turcotte
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Faculté de médecine, Département de médecine, Université Laval, Québec, QC, Canada.,Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Québec, QC, Canada
| | - Étienne Doré
- Centre de Recherche du Centre Hospitalier, Universitaire de Québec-Université Laval, Québec, QC, Canada.,Centre de Recherche Arthrite, Université Laval, Québec, QC, Canada
| | - Isabelle Dubuc
- Centre de Recherche du Centre Hospitalier, Universitaire de Québec-Université Laval, Québec, QC, Canada
| | - Cyril Martin
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Faculté de médecine, Département de médecine, Université Laval, Québec, QC, Canada.,Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Québec, QC, Canada
| | - Olivier Flamand
- Centre de Recherche du Centre Hospitalier, Universitaire de Québec-Université Laval, Québec, QC, Canada
| | - Youssef Amar
- Moroccan Foundation for Advanced Science, Innovation & Research (MAScIR), Rabat, Morocco
| | - Amine Cheikh
- Cheikh Zaïd Hospital, Abulcasis University of Health Sciences, Rabat, Morocco
| | - Hakima Fares
- Cheikh Zaïd Hospital, Abulcasis University of Health Sciences, Rabat, Morocco
| | - Amine El Hassani
- Cheikh Zaïd Hospital, Abulcasis University of Health Sciences, Rabat, Morocco
| | - Youssef Tijani
- Faculty of Medicine, Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Andréanne Côté
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Faculté de médecine, Département de médecine, Université Laval, Québec, QC, Canada
| | - Michel Laviolette
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Faculté de médecine, Département de médecine, Université Laval, Québec, QC, Canada
| | - Éric Boilard
- Centre de Recherche du Centre Hospitalier, Universitaire de Québec-Université Laval, Québec, QC, Canada.,Centre de Recherche Arthrite, Université Laval, Québec, QC, Canada.,Département de Microbiologie-Infectiologie et d'immunologie, Université Laval, Québec, QC, Canada
| | - Louis Flamand
- Centre de Recherche du Centre Hospitalier, Universitaire de Québec-Université Laval, Québec, QC, Canada.,Département de Microbiologie-Infectiologie et d'immunologie, Université Laval, Québec, QC, Canada
| | - Nicolas Flamand
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Faculté de médecine, Département de médecine, Université Laval, Québec, QC, Canada.,Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Québec, QC, Canada
| |
Collapse
|
3
|
He Z, Tao D, Xiong J, Lou F, Zhang J, Chen J, Dai W, Sun J, Wang Y. Phosphorylation of 5-LOX: The Potential Set-point of Inflammation. Neurochem Res 2020; 45:2245-2257. [PMID: 32671628 DOI: 10.1007/s11064-020-03090-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/11/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022]
Abstract
Inflammation secondary to tissue injuries serves as a double-edged sword that determines the prognosis of tissue repair. As one of the most important enzymes controlling the inflammation process by producing leukotrienes, 5-lipoxygenase (5-LOX, also called 5-LO) has been one of the therapeutic targets in regulating inflammation for a long time. Although a large number of 5-LOX inhibitors have been explored, only a few of them can be applied clinically. Surprisingly, phosphorylation of 5-LOX reveals great significance in regulating the subcellular localization of 5-LOX, which has proven to be an important mechanism underlying the enzymatic activities of 5-LOX. There are at least three phosphorylation sites in 5-LOX jointly to determine the final inflammatory outcomes, and adjustment of phosphorylation of 5-LOX at different phosphorylation sites brings hope to provide an unrecognized means to regulate inflammation. The present review intends to shed more lights into the set-point-like mechanisms of phosphorylation of 5-LOX and its possible clinical application by summarizing the biological properties of 5-LOX, the relationship of 5-LOX with neurodegenerative diseases and brain injuries, the phosphorylation of 5-LOX at different sites, the regulatory effects and mechanisms of phosphorylated 5-LOX upon inflammation, as well as the potential anti-inflammatory application through balancing the phosphorylation-depended set-point.
Collapse
Affiliation(s)
- Zonglin He
- Department of Physiology, Basic Medical School, Jinan University, Huangpu Avenue 601, Tianhe District, Guangzhou, Guangdong Province, China.,Faculty of Medicine, International school, Jinan University, Huangpu Avenue 601, Tianhe District, Guangzhou, Guangdong Province, China
| | - Di Tao
- Department of Physiology, Basic Medical School, Jinan University, Huangpu Avenue 601, Tianhe District, Guangzhou, Guangdong Province, China.,Faculty of Medicine, International school, Jinan University, Huangpu Avenue 601, Tianhe District, Guangzhou, Guangdong Province, China
| | - Jiaming Xiong
- Department of Physiology, Basic Medical School, Jinan University, Huangpu Avenue 601, Tianhe District, Guangzhou, Guangdong Province, China
| | - Fangfang Lou
- Department of Physiology, Basic Medical School, Jinan University, Huangpu Avenue 601, Tianhe District, Guangzhou, Guangdong Province, China
| | - Jiayuan Zhang
- Department of Physiology, Basic Medical School, Jinan University, Huangpu Avenue 601, Tianhe District, Guangzhou, Guangdong Province, China
| | - Jinxia Chen
- Department of Physiology, Basic Medical School, Jinan University, Huangpu Avenue 601, Tianhe District, Guangzhou, Guangdong Province, China
| | - Weixi Dai
- Department of Physiology, Basic Medical School, Jinan University, Huangpu Avenue 601, Tianhe District, Guangzhou, Guangdong Province, China.,Faculty of Medicine, International school, Jinan University, Huangpu Avenue 601, Tianhe District, Guangzhou, Guangdong Province, China
| | - Jing Sun
- Department of Physiology, Basic Medical School, Jinan University, Huangpu Avenue 601, Tianhe District, Guangzhou, Guangdong Province, China
| | - Yuechun Wang
- Department of Physiology, Basic Medical School, Jinan University, Huangpu Avenue 601, Tianhe District, Guangzhou, Guangdong Province, China.
| |
Collapse
|
4
|
Hao Q, Gudapati V, Monsel A, Park JH, Hu S, Kato H, Lee JH, Zhou L, He H, Lee JW. Mesenchymal Stem Cell-Derived Extracellular Vesicles Decrease Lung Injury in Mice. THE JOURNAL OF IMMUNOLOGY 2019; 203:1961-1972. [PMID: 31451675 DOI: 10.4049/jimmunol.1801534] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 07/30/2019] [Indexed: 12/20/2022]
Abstract
Human mesenchymal stem cell (MSC) extracellular vesicles (EV) can reduce the severity of bacterial pneumonia, but little is known about the mechanisms underlying their antimicrobial activity. In the current study, we found that bacterial clearance induced by MSC EV in Escherichia coli pneumonia in C57BL/6 mice was associated with high levels of leukotriene (LT) B4 in the injured alveolus. More importantly, the antimicrobial effect of MSC EV was abrogated by cotreatment with a LTB4 BLT1 antagonist. To determine the role of MSC EV on LT metabolism, we measured the effect of MSC EV on a known ATP-binding cassette transporter, multidrug resistance-associated protein 1 (MRP1), and found that MSC EV suppressed MRP1 mRNA, protein, and pump function in LPS-stimulated Raw264.7 cells in vitro. The synthesis of LTB4 and LTC4 from LTA4 are competitive, and MRP1 is the efflux pump for LTC4 Inhibition of MRP1 will increase LTB4 production. In addition, administration of a nonspecific MRP1 inhibitor (MK-571) reduced LTC4 and subsequently increased LTB4 levels in C57BL/6 mice with acute lung injury, increasing overall antimicrobial activity. We previously found that the biological effects of MSC EV were through the transfer of its content, such as mRNA, microRNA, and proteins, to target cells. In the current study, miR-145 knockdown abolished the effect of MSC EV on the inhibition of MRP1 in vitro and the antimicrobial effect in vivo. In summary, MSC EV suppressed MRP1 activity through transfer of miR-145, thereby resulting in enhanced LTB4 production and antimicrobial activity through LTB4/BLT1 signaling.
Collapse
Affiliation(s)
- Qi Hao
- Department of Anesthesiology, University of California San Francisco, San Francisco, CA 94143
| | - Varun Gudapati
- Department of Anesthesiology, University of California San Francisco, San Francisco, CA 94143
| | - Antoine Monsel
- Department of Anesthesiology, University of California San Francisco, San Francisco, CA 94143
| | - Jeong H Park
- Department of Anesthesiology, University of California San Francisco, San Francisco, CA 94143
| | - Shuling Hu
- Department of Anesthesiology, University of California San Francisco, San Francisco, CA 94143
| | - Hideya Kato
- Department of Anesthesiology, University of California San Francisco, San Francisco, CA 94143
| | - Jae H Lee
- Department of Anesthesiology, University of California San Francisco, San Francisco, CA 94143
| | - Li Zhou
- Department of Anesthesiology, University of California San Francisco, San Francisco, CA 94143
| | - Hongli He
- Department of Anesthesiology, University of California San Francisco, San Francisco, CA 94143
| | - Jae W Lee
- Department of Anesthesiology, University of California San Francisco, San Francisco, CA 94143
| |
Collapse
|
5
|
Murphy RC, Folco G. Lysophospholipid acyltransferases and leukotriene biosynthesis: intersection of the Lands cycle and the arachidonate PI cycle. J Lipid Res 2019; 60:219-226. [PMID: 30606731 DOI: 10.1194/jlr.s091371] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/03/2019] [Indexed: 12/18/2022] Open
Abstract
Leukotrienes (LTs) are autacoids derived from the precursor arachidonic acid (AA) via the action of five-lipoxygenase (5-LO). When inflammatory cells are activated, 5-LO translocates to the nuclear membrane to initiate oxygenation of AA released by cytosolic phospholipase A2 (cPLA2) into leukotriene A4 (LTA4). LTA4 can also be exported from an activated donor cell into an acceptor cell by the process of transcellular biosynthesis. When thimerosal is added to cells, the level of free AA increases by inhibition of lysophospholipid acyltransferases of the Lands pathway of phospholipid remodeling. Another arachidonate phospholipid cycle involves phosphatidylinositol (PI) in the plasma membrane that undoubtedly intersects with the Lands pathway of phospholipid remodeling. The highest abundance of PI occurs between the ER and the plasma membrane and is probably a result of the importance of the PI signaling cascade in cellular biochemistry. Because transport proteins mediate the rapid intracellular movement of phospholipids, largely as result of physical membrane contact, 5-LO-dependent production of LTA4 could be mediated by the disappearance of free AA from the nuclear membrane, transfer to the ER for Lands cycle reesterification into PI, and population of PI(18:0/20:4) for cell membrane signaling.
Collapse
Affiliation(s)
- Robert C Murphy
- Department of Pharmacology, University of Colorado Denver, Aurora, CO 80045
| | - Giancarlo Folco
- Department of Pharmacology, University of Colorado Denver, Aurora, CO 80045
| |
Collapse
|
6
|
Effects of Rhodomyrtus tomentosa extract on virulence factors of Candida albicans and human neutrophil function. Arch Oral Biol 2018; 87:35-42. [DOI: 10.1016/j.archoralbio.2017.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 10/31/2017] [Accepted: 11/16/2017] [Indexed: 11/18/2022]
|
7
|
Abstract
Bioactive lipids regulate most physiological processes, from digestion to blood flow and from hemostasis to labor. Lipid mediators are also involved in multiple pathologies including cancer, autoimmunity or asthma. The pathological roles of lipid mediators are based on their intricate involvement in the immune system, which comprises source and target cells of these mediators. Based on their biosynthetic origin, bioactive lipids can be grouped into different classes [e.g. sphingolipids, formed from sphingosine or eicosanoids, formed from arachidonic acid (AA)]. Owing to the complexity of different mediator classes and the prominent immunological roles of eicosanoids, this review will focus solely on the immune-regulation of eicosanoids. Eicosanoids do not only control key immune responses (e.g. chemotaxis, antigen presentation, phagocytosis), but they are also subject to reciprocal control by the immune system. Particularly, key immunoregulatory cytokines such as IL-4 and IFN-γ shape the cellular eicosanoid profile, thus providing efficient feedback regulation between cytokine and eicosanoid networks. For the purpose of this review, I will first provide a short overview of the most important immunological functions of eicosanoids with a focus on prostaglandins (PGs) and leukotrienes (LTs). Second, I will summarize the current knowledge on immunological factors that regulate eicosanoid production during infection and inflammation.
Collapse
|
8
|
Salehi F, Hosseini-Zare MS, Aghajani H, Seyedi SY, Hosseini-Zare MS, Sharifzadeh M. Effect of bucladesine, pentoxifylline, and H-89 as cyclic adenosine monophosphate analog, phosphodiesterase, and protein kinase A inhibitor on acute pain. Fundam Clin Pharmacol 2017; 31:411-419. [PMID: 28267871 DOI: 10.1111/fcp.12282] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 01/26/2017] [Accepted: 03/02/2017] [Indexed: 11/30/2022]
Abstract
The aim of this study was to determine the effects of cyclic adenosine monophosphate (cAMP) and its dependent pathway on thermal nociception in a mouse model of acute pain. Here, we studied the effect of H-89 (protein kinase A inhibitor), bucladesine (Db-cAMP) (membrane-permeable analog of cAMP), and pentoxifylline (PTX; nonspecific phosphodiesterase (PDE) inhibitor) on pain sensation. Different doses of H-89 (0.05, 0.1, and 0.5 mg/100 g), PTX (5, 10, and 20 mg/100 g), and Db-cAMP (50, 100, and 300 nm/mouse) were administered intraperitoneally (I.p.) 15 min before a tail-flick test. In combination groups, we injected the first and the second compounds 30 and 15 min before the tail-flick test, respectively. I.p. administration of H-89 and PTX significantly decreased the thermal-induced pain sensation in their low applied doses. Db-cAMP, however, decreased the pain sensation in a dose-dependent manner. The highest applied dose of H-89 (0.5 mg/100 g) attenuated the antinociceptive effect of Db-cAMP in doses of 50 and 100 nm/mouse. Surprisingly, Db-cAMP decreased the antinociceptive effect of the lowest dose of H-89 (0.05 mg/100 g). All applied doses of PTX reduced the effect of 0.05 mg/100 g H-89 on pain sensation; however, the highest dose of H-89 compromised the antinociceptive effect of 20 mg/100 g dose of PTX. Co-administration of Db-cAMP and PTX increased the antinociceptive effect of each compound on thermal-induced pain. In conclusion, PTX, H-89, and Db-cAMP affect the thermal-induced pain by probably interacting with intracellular cAMP and cGMP signaling pathways and cyclic nucleotide-dependent protein kinases.
Collapse
Affiliation(s)
- Forouz Salehi
- Department of Pharmacology and Toxicology, Pharmaceutical Science Research Center, Tehran University of Medical Science, PO Box 14155-6451, Tehran, Iran
| | - Mahshid S Hosseini-Zare
- Department of Pharmacology and Toxicology, Pharmaceutical Science Research Center, Tehran University of Medical Science, PO Box 14155-6451, Tehran, Iran.,Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| | - Haleh Aghajani
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Seyedeh Yalda Seyedi
- Department of Pharmacology and Toxicology, Pharmaceutical Science Research Center, Tehran University of Medical Science, PO Box 14155-6451, Tehran, Iran
| | | | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Pharmaceutical Science Research Center, Tehran University of Medical Science, PO Box 14155-6451, Tehran, Iran
| |
Collapse
|
9
|
Turcotte C, Zarini S, Jean S, Martin C, Murphy RC, Marsolais D, Laviolette M, Blanchet MR, Flamand N. The Endocannabinoid Metabolite Prostaglandin E 2 (PGE 2)-Glycerol Inhibits Human Neutrophil Functions: Involvement of Its Hydrolysis into PGE 2 and EP Receptors. THE JOURNAL OF IMMUNOLOGY 2017; 198:3255-3263. [PMID: 28258202 DOI: 10.4049/jimmunol.1601767] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/01/2017] [Indexed: 01/05/2023]
Abstract
The endocannabinoids 2-arachidonoyl-glycerol and N-arachidonoyl-ethanolamine mediate an array of pro- and anti-inflammatory effects. These effects are related, in part, to their metabolism by eicosanoid biosynthetic enzymes. For example, N-arachidonoyl-ethanolamine and 2-arachidonoyl-glycerol can be metabolized by cyclooxygenase-2 into PG-ethanolamide (PG-EA) and PG-glycerol (PG-G), respectively. Although PGE2 is a recognized suppressor of neutrophil functions, the impact of cyclooxygenase-derived endocannabinoids such as PGE2-EA or PGE2-G on neutrophils is unknown. This study's aim was to define the effects of these mediators on neutrophil functions and the underlying cellular mechanisms involved. We show that PGE2-G, but not PGE2-EA, inhibits leukotriene B4 biosynthesis, superoxide production, migration, and antimicrobial peptide release. The effects of PGE2-G were prevented by EP1/EP2 receptor antagonist AH-6809 but not the EP4 antagonist ONO-AE2-227. The effects of PGE2-G required its hydrolysis into PGE2, were not observed with the non-hydrolyzable PGE2-serinol amide, and were completely prevented by methyl-arachidonoyl-fluorophosphate and palmostatin B, and partially prevented by JZL184 and WWL113. Although we could detect six of the documented PG-G hydrolases in neutrophils by quantitative PCR, only ABHD12 and ABHD16A were detected by immunoblot. Our pharmacological data, combined with our protein expression data, did not allow us to pinpoint one PGE2-G lipase, and rather support the involvement of an uncharacterized lipase and/or of multiple hydrolases. In conclusion, we show that PGE2-G inhibits human neutrophil functions through its hydrolysis into PGE2, and by activating the EP2 receptor. This also indicates that neutrophils could regulate inflammation by altering the balance between PG-G and PG levels in vivo.
Collapse
Affiliation(s)
- Caroline Turcotte
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Faculté de Médecine, Université Laval, Quebec City, Quebec G1V 4G5, Canada; and
| | - Simona Zarini
- Department of Pharmacology, University of Colorado Denver, Aurora, CO 80045
| | - Stéphanie Jean
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Faculté de Médecine, Université Laval, Quebec City, Quebec G1V 4G5, Canada; and
| | - Cyril Martin
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Faculté de Médecine, Université Laval, Quebec City, Quebec G1V 4G5, Canada; and
| | - Robert C Murphy
- Department of Pharmacology, University of Colorado Denver, Aurora, CO 80045
| | - David Marsolais
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Faculté de Médecine, Université Laval, Quebec City, Quebec G1V 4G5, Canada; and
| | - Michel Laviolette
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Faculté de Médecine, Université Laval, Quebec City, Quebec G1V 4G5, Canada; and
| | - Marie-Renée Blanchet
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Faculté de Médecine, Université Laval, Quebec City, Quebec G1V 4G5, Canada; and
| | - Nicolas Flamand
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Faculté de Médecine, Université Laval, Quebec City, Quebec G1V 4G5, Canada; and
| |
Collapse
|
10
|
Giambelluca MS, Pouliot M. Early tyrosine phosphorylation events following adenosine A 2A receptor in human neutrophils: identification of regulated pathways. J Leukoc Biol 2017; 102:829-836. [PMID: 28179537 DOI: 10.1189/jlb.2vma1216-517r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/16/2017] [Accepted: 01/23/2017] [Indexed: 12/30/2022] Open
Abstract
Activation of the adenosine 2A receptor (A2AR) elevates intracellular levels of cAMP and acts as a physiologic inhibitor of inflammatory neutrophil functions. In this study, we looked into the impact of A2AR engagement on early phosphorylation events. Neutrophils were stimulated with well-characterized proinflammatory agonists in the absence or presence of an A2AR agonist {3-[4-[2-[ [6-amino-9-[(2R,3R,4S,5S)-5-(ethylcarbamoyl)-3,4-dihydroxy-oxolan-2-yl]purin-2-yl]amino] ethyl] phenyl] propanoic acid (CGS 21680)}, PGE2, or a mixture of the compounds RO 20-1724 and forskolin. As assessed by immunoblotting, several proteins were tyrosine phosphorylated; CGS 21680 markedly decreased tyrosine phosphorylation levels of 4 regions (37-45, 50-55, 60, and 70 kDa). Key signaling protein kinases-p38 MAPK, Erk-1/2, PI3K/Akt, Hck, and Syk-showed decreased phosphorylation, whereas Lyn, SHIP-1, or phosphatase and tensin homolog (PTEN) was spared. PGE2 or the intracellular cAMP-elevating combination of RO 20-1724 and forskolin mostly mimicked the effect of CGS 21680. Together, results unveil intracellular signaling pathways targeted by the A2AR, some of which might be key in modulating neutrophil functions.
Collapse
Affiliation(s)
- Miriam S Giambelluca
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, Canada
| | - Marc Pouliot
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, Canada
| |
Collapse
|
11
|
Myofibroblast repair mechanisms post-inflammatory response: a fibrotic perspective. Inflamm Res 2016; 66:451-465. [PMID: 28040859 DOI: 10.1007/s00011-016-1019-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/10/2016] [Accepted: 12/15/2016] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Fibrosis is a complex chronic disease characterized by a persistent repair response. Its pathogenesis is poorly understood but it is typically the result of chronic inflammation and maintained with the required activity of transforming growth factor-β (TGFβ) and extracellular matrix (ECM) tension, both of which drive fibroblasts to transition into a myofibroblast phenotype. FINDINGS As the effector cells of repair, myofibroblasts migrate to the site of injury to deposit excessive amounts of matrix proteins and stimulate high levels of contraction. Myofibroblast activity is a decisive factor in whether a tissue is properly repaired by controlled wound healing or rendered fibrotic by deregulated repair. Extensive studies have documented the various contributing factors to an abrogated repair response. Though these fibrotic factors are known, very little is understood about the opposing antifibrotic molecules that assist in a successful repair, such as prostaglandin E2 (PGE2) and ECM retraction. The following review will discuss the general development of fibrosis through the transformation of myofibroblasts, focusing primarily on the prominent profibrotic pathways of TGFβ and ECM tension and antifibrotic pathways of PGE2 and ECM retraction. CONCLUSIONS The idea is to understand the ways in which the cell, after an injury and inflammatory response, normally controls its repair mechanisms through its homeostatic regulators so as to mimic them therapeutically to control abnormal pathways.
Collapse
|
12
|
Martin GR, Wallace JL. Gastrointestinal Inflammation: A Central Component of Mucosal Defense and Repair. Exp Biol Med (Maywood) 2016; 231:130-7. [PMID: 16446488 DOI: 10.1177/153537020623100202] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The mucosal layer of the gastrointestinal (GI) tract is able to resist digestion by the endogenous substances that we secrete to digest foodstuffs. So-called “mucosal defense” is multifactorial and can be modulated by a wide range of substances, many of which are classically regarded as inflammatory mediators. Damage to the GI mucosa, and its subsequent repair, are also modulated by various inflammatory mediators. In this article, we provide a review of some of the key Inflammatory mediators that modulate GI mucosal defense, Injury, and repair. Among the mediators discussed are nitric oxide, polyamines, the elcosanolds (prostaglandins and II-poxlns), protease-activated receptors, and cytokines. Many of these endogenous factors, or the enzymes involved in their synthesis, are considered potential therapeutic targets for the treatment of diseases of the digestive tract that are characterized by Inflammation and ulceration.
Collapse
Affiliation(s)
- Gary R Martin
- Mucosal Inflammation Research Group, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | |
Collapse
|
13
|
Jana B, Czarzasta J. Effect of lipopolysaccharide and cytokines on synthesis and secretion of leukotrienes from endometrial epithelial cells of pigs. Anim Reprod Sci 2016; 168:116-125. [DOI: 10.1016/j.anireprosci.2016.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 03/07/2016] [Accepted: 03/14/2016] [Indexed: 01/09/2023]
|
14
|
Mahshid Y, Markoutsa S, Dincbas-Renqvist V, Sürün D, Christensson B, Sander B, Björkholm M, Sorg BL, Rådmark O, Claesson HE. Phosphorylation of serine 523 on 5-lipoxygenase in human B lymphocytes. Prostaglandins Leukot Essent Fatty Acids 2015. [PMID: 26210919 DOI: 10.1016/j.plefa.2015.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The key enzyme in leukotriene (LT) biosynthesis is 5-lipoxygenase (5-LO), which is expressed in myeloid cells and in B lymphocytes. There are three phosphorylation sites on 5-LO (Ser271, Ser523 and Ser663). Protein kinase A (PKA) phosphorylates 5-LO on Ser523. In this report, we demonstrate by immunoblotting that native 5-LO in mantle B cell lymphoma (MCL) cells (Granta519, JEKO1, and Rec1) and in primary chronic B lymphocytic leukemia cells (B-CLL) is phosphorylated on Ser523. In contrast, we could not detect phosphorylation of 5-LO on Ser523 in human granulocytes or monocytes. Phosphorylated 5-LO was purified from Rec1 cells, using an ATP-agarose column, and the partially purified enzyme could be dephosphorylated with alkaline phosphatase. Incubation of Rec1 cells with 8-Br-cAMP or prostaglandin E2 stimulated phosphorylation at Ser523. Furthermore, FLAG-5LO was expressed in Rec1 cells, and the cells were cultivated in the presence of 8-Br-cAMP. The 5-LO protein from these cells was immunoprecipitated, first with anti-FLAG, followed by anti-pSer523-5-LO. The presence of 5-LO protein in the final precipitate further supported the finding that the protein recognized by the pSer523 antibody was 5-LO. Taken together, this study shows that 5-LO in B cells is phosphorylated on Ser523 and demonstrates for the first time a chemical difference between 5-LO in myeloid cells and B cells.
Collapse
Affiliation(s)
- Yilmaz Mahshid
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Stavroula Markoutsa
- Institute of Pharmaceutical Chemistry/ZAFES, Goethe-University, 60438 Frankfurt am Main, Germany
| | - Vildan Dincbas-Renqvist
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Duran Sürün
- University of Frankfurt Medical School, Department of Molecular Hematology, 60590 Frankfurt am Main, Germany
| | - Birger Christensson
- Department of Laboratory Medicine, Division of Pathology, Karolinska University Hospital Huddinge and Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Birgitta Sander
- Department of Laboratory Medicine, Division of Pathology, Karolinska University Hospital Huddinge and Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Magnus Björkholm
- Department of Medicine, Karolinska Hospital Solna and Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Bernd L Sorg
- Institute of Pharmaceutical Chemistry/ZAFES, Goethe-University, 60438 Frankfurt am Main, Germany
| | - Olof Rådmark
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Hans-Erik Claesson
- Department of Medicine, Karolinska Hospital Solna and Karolinska Institutet, 171 76 Stockholm, Sweden.
| |
Collapse
|
15
|
Mao YX, Xu JF, Seeley EJ, Tang XD, Xu LL, Zhu YG, Song YL, Qu JM. Adipose Tissue-Derived Mesenchymal Stem Cells Attenuate Pulmonary Infection Caused by Pseudomonas aeruginosa via Inhibiting Overproduction of Prostaglandin E2. Stem Cells 2015; 33:2331-42. [PMID: 25788456 DOI: 10.1002/stem.1996] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/19/2015] [Indexed: 12/12/2022]
Abstract
RATIONALE New strategies for treating Pseudomonas aeruginosa pulmonary infection are urgently needed. Adipose tissue-derived mesenchymal stem cells (ASCs) may have a potential therapeutic role in P. aeruginosa-induced pulmonary infection. METHODS The therapeutic and mechanistic effects of ASCs on P. aeruginosa pulmonary infection were evaluated in a murine model of P. aeruginosa pneumonia. RESULTS ASCs exhibited protective effects against P. aeruginosa pulmonary infection, evidenced by reduced bacterial burdens, inhibition of alveolar neutrophil accumulation, decreased levels of myeloperoxidase, macrophage inflammatory protein-2 and total proteins in broncho-alveolar lavage fluid (BALF), and attenuated severity of lung injury. ASCs had no effects on BALF and serum levels of keratinocyte growth factor or Ang-1. ASCs had no effects on the levels of insulin growth factor 1 (IGF-1) in BALF, but increased IGF-1 levels in serum. ASCs inhibited the overproduction of prostaglandin E2 (PGE2 ) by decreasing the expression of cyclooxygenase-2 (COX2) and enhancing the expression of 15-PGDH. In addition, the addition of exogenous PGE2 with ASCs abolished many of the protective effects of ASCs, and administrating PGE2 alone exacerbated lung infection. By inhibiting production of PGE2 , ASCs improved phagocytosis and the bactericidal properties of macrophages. Furthermore suppressing PGE2 signaling by COX2 inhibition or EP2 inhibition exhibited protective effects against pulmonary infection as well. CONCLUSIONS In a murine model of P. aeruginosa pneumonia, ASCs exhibited protective effects by inhibiting production of PGE2 , which subsequently improved phagocytosis and the bactericidal properties of macrophages. ASCs may provide a new strategy for managing pulmonary infection caused by P. aeruginosa.
Collapse
Affiliation(s)
- Yan-Xiong Mao
- Department of Pulmonary Medicine, Huadong Hospital and d, Fudan University, Shanghai, People's Republic of China
| | - Jin-Fu Xu
- Department of Pulmonary Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Eric J Seeley
- Department of Pulmonary and Critical Care Medicine, University of California, San Francisco, USA
| | - Xiao-Dan Tang
- Department of Pulmonary Medicine, Huadong Hospital and d, Fudan University, Shanghai, People's Republic of China
| | - Lu-Lu Xu
- Department of Pulmonary Medicine, Huadong Hospital and d, Fudan University, Shanghai, People's Republic of China
| | - Ying-Gang Zhu
- Department of Pulmonary Medicine, Huadong Hospital and d, Fudan University, Shanghai, People's Republic of China
| | - Yuan-Lin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jie-Ming Qu
- Department of Pulmonary Medicine, Huadong Hospital and d, Fudan University, Shanghai, People's Republic of China.,Department of Pulmonary Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
16
|
Suthar SK, Sharma M. Recent Developments in Chimeric NSAIDs as Safer Anti-Inflammatory Agents. Med Res Rev 2014; 35:341-407. [DOI: 10.1002/med.21331] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sharad Kumar Suthar
- Department of Pharmacy; Jaypee University of Information Technology; Waknaghat 173234 India
| | - Manu Sharma
- Department of Pharmacy; Jaypee University of Information Technology; Waknaghat 173234 India
| |
Collapse
|
17
|
Machado-Carvalho L, Roca-Ferrer J, Picado C. Prostaglandin E2 receptors in asthma and in chronic rhinosinusitis/nasal polyps with and without aspirin hypersensitivity. Respir Res 2014; 15:100. [PMID: 25155136 PMCID: PMC4243732 DOI: 10.1186/s12931-014-0100-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 08/13/2014] [Indexed: 12/25/2022] Open
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) and asthma frequently coexist and are always present in patients with aspirin exacerbated respiratory disease (AERD). Although the pathogenic mechanisms of this condition are still unknown, AERD may be due, at least in part, to an imbalance in eicosanoid metabolism (increased production of cysteinyl leukotrienes (CysLTs) and reduced biosynthesis of prostaglandin (PG) E2), possibly increasing and perpetuating the process of inflammation. PGE2 results from the metabolism of arachidonic acid (AA) by cyclooxygenase (COX) enzymes, and seems to play a central role in homeostasis maintenance and inflammatory response modulation in airways. Therefore, the abnormal regulation of PGE2 could contribute to the exacerbated processes observed in AERD. PGE2 exerts its actions through four G-protein-coupled receptors designated E-prostanoid (EP) receptors EP1, EP2, EP3, and EP4. Altered PGE2 production as well as differential EP receptor expression has been reported in both upper and lower airways of patients with AERD. Since the heterogeneity of these receptors is the key for the multiple biological effects of PGE2 this review focuses on the studies available to elucidate the importance of these receptors in inflammatory airway diseases.
Collapse
Affiliation(s)
- Liliana Machado-Carvalho
- Immunoal · lèrgia Respiratòria Clínica i Experimental, CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Casanova 143, Barcelona, 08036, Spain.
| | | | | |
Collapse
|
18
|
The Multifaceted Roles Neutrophils Play in the Tumor Microenvironment. CANCER MICROENVIRONMENT 2014; 8:125-58. [PMID: 24895166 DOI: 10.1007/s12307-014-0147-5] [Citation(s) in RCA: 319] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 05/19/2014] [Indexed: 02/06/2023]
Abstract
Neutrophils are myeloid cells that constitute 50-70 % of all white blood cells in the human circulation. Traditionally, neutrophils are viewed as the first line of defense against infections and as a major component of the inflammatory process. In addition, accumulating evidence suggest that neutrophils may also play a key role in multiple aspects of cancer biology. The possible involvement of neutrophils in cancer prevention and promotion was already suggested more than half a century ago, however, despite being the major component of the immune system, their contribution has often been overshadowed by other immune components such as lymphocytes and macrophages. Neutrophils seem to have conflicting functions in cancer and can be classified into anti-tumor (N1) and pro-tumor (N2) sub-populations. The aim of this review is to discuss the varying nature of neutrophil function in the cancer microenvironment with a specific emphasis on the mechanisms that regulate neutrophil mobilization, recruitment and activation.
Collapse
|
19
|
Mangal D, Uboh CE, Jiang Z, Soma LR. Interleukin-1β inhibits synthesis of 5-lipooxygenase in lipopolysaccharide-stimulated equine whole blood. Prostaglandins Other Lipid Mediat 2014; 108:9-22. [PMID: 24530239 DOI: 10.1016/j.prostaglandins.2014.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 01/07/2014] [Accepted: 01/28/2014] [Indexed: 12/25/2022]
Abstract
Interleukin-1β (IL-1β) is a pro-inflammatory cytokine. It induces the synthesis of prostaglandin E2 (PGE2) catalyzed by cyclooxygenase (COX) and microsomal prostaglandin E synthase (m-PGES). Besides its pro-inflammatory properties, PGE2 also exhibits anti-inflammatory properties by inhibiting synthesis of 5-lipooxygenase (5-LO) products which are in themselves, pro-inflammatory mediators. Thus, inhibition of 5-LO products is beneficial in regulating immune-responses and pro-inflammatory processes. To investigate the hypothesis that IL-1β is responsible for the increase in the synthesis of PGE2 and in the reduction of 5-LO products, equine whole blood (EWB) was treated with lipopolysaccharide (LPS). In vitro treatment of EWB with LPS resulted in increased expression of IL-1β while expression of 5-LO was suppressed. Quantification of eicosanoids using liquid-chromatography-mass spectrometry/multiple reaction monitoring (LC-MS/MRM) showed increased concentrations of prostaglandins and decreased 5-LO products in LPS-treated EWB. Pretreatment of EWB with IL-1β followed by calcium ionophore A23187 (CI) reduced synthesis of 5-LO products. However, pretreatment of EWB with COX-2 inhibitor (NS-398) or m-PGES-1 inhibitor (CAY 10526) and IL-1β followed with CI resulted in a significant (p<0.0001) increase in 5-LO products. Pretreatment of EWB with phospholipase C inhibitor (U73122) followed with LPS reduced PGE2 production but increased 5-LO products. The result of this study indicated that increased PGE2 production led to reduction in 5-LO products in LPS-treated EWB via IL-1β. However, other pathways, cytokines and mediators may be involved in inhibiting 5-LO products but the present study did not include those other potential pathways. Inhibition of 5-LO products by PGE2 in EWB may regulate the initiation and pathogenesis of inflammatory responses in the horse.
Collapse
Affiliation(s)
- Dipti Mangal
- University of Pennsylvania School of Veterinary Medicine, Department of Clinical Studies, New Bolton Center Campus, 382 West Street Road, Kennett Square, PA 19348, USA
| | - Cornelius E Uboh
- University of Pennsylvania School of Veterinary Medicine, Department of Clinical Studies, New Bolton Center Campus, 382 West Street Road, Kennett Square, PA 19348, USA; PA Equine Toxicology & Research Center, West Chester University, Department of Chemistry, 220 East Rosedale Avenue, West Chester, PA 19382, USA.
| | - Zibin Jiang
- University of Pennsylvania School of Veterinary Medicine, Department of Clinical Studies, New Bolton Center Campus, 382 West Street Road, Kennett Square, PA 19348, USA
| | - Lawrence R Soma
- University of Pennsylvania School of Veterinary Medicine, Department of Clinical Studies, New Bolton Center Campus, 382 West Street Road, Kennett Square, PA 19348, USA
| |
Collapse
|
20
|
Agard M, Asakrah S, Morici LA. PGE(2) suppression of innate immunity during mucosal bacterial infection. Front Cell Infect Microbiol 2013; 3:45. [PMID: 23971009 PMCID: PMC3748320 DOI: 10.3389/fcimb.2013.00045] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 07/30/2013] [Indexed: 12/28/2022] Open
Abstract
Prostaglandin E2 (PGE2) is an important lipid mediator in inflammatory and immune responses during acute and chronic infections. Upon stimulation by various proinflammatory stimuli such as lipopolysaccharide (LPS), interleukin (IL)-1β, and tumor necrosis factor (TNF)-α, PGE2 synthesis is upregulated by the expression of cyclooxygenases. Biologically active PGE2 is then able to signal through four primary receptors to elicit a response. PGE2 is a critical molecule that regulates the activation, maturation, migration, and cytokine secretion of several immune cells, particularly those involved in innate immunity such as macrophages, neutrophils, natural killer cells, and dendritic cells. Both Gram-negative and Gram-positive bacteria can induce PGE2 synthesis to regulate immune responses during bacterial pathogenesis. This review will focus on PGE2 in innate immunity and how bacterial pathogens influence PGE2 production during enteric and pulmonary infections. The conserved ability of many bacterial pathogens to promote PGE2 responses during infection suggests a common signaling mechanism to deter protective pro-inflammatory immune responses. Inhibition of PGE2 production and signaling during infection may represent a therapeutic alternative to treat bacterial infections. Further study of the immunosuppressive effects of PGE2 on innate immunity will lead to a better understanding of potential therapeutic targets within the PGE2 pathway.
Collapse
Affiliation(s)
- Mallory Agard
- Department of Microbiology and Immunology, Tulane University School of Medicine New Orleans, LA 70119, USA
| | | | | |
Collapse
|
21
|
James A, Daham K, Backman L, Brunnström A, Tingvall T, Kumlin M, Edenius C, Dahlén SE, Dahlén B, Claesson HE. The influence of aspirin on release of eoxin C4, leukotriene C4 and 15-HETE, in eosinophilic granulocytes isolated from patients with asthma. Int Arch Allergy Immunol 2013; 162:135-42. [PMID: 23921438 DOI: 10.1159/000351422] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/12/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The effect of aspirin on the release of key arachidonic acid metabolites in activated eosinophils from subjects with aspirin-intolerant asthma (AIA) has not been investigated previously, despite the characteristic eosinophilia in AIA. METHODS Peripheral blood eosinophils were isolated from four groups of subjects: healthy volunteers (HV; n = 8), mild asthma (MA; n = 8), severe asthma (SA; n = 9) and AIA (n = 7). In the absence or presence of lysine-aspirin, eosinophils were stimulated with arachidonic acid or calcium ionophore to trigger the 15-lipoxygenase-1 (15-LO) and 5-lipoxygenase (5-LO) pathways, respectively. 15(S)-hydroxy-eicosatetraenoic acid (15-HETE) and eoxin C4 (EXC4) were measured as 15-LO products and leukotriene (LT)C4 as a product of the 5-LO pathway. RESULTS Activated eosinophils from patients with SA and AIA produced approximately five times more 15-HETE than eosinophils from HV or MA patients. In the presence of lysine-aspirin, eosinophils from AIA, MA and SA patients generated higher levels of 15-HETE than in the absence of lysine-aspirin. Furthermore, in the presence of lysine-aspirin, formation of EXC4 was also significantly increased in eosinophils from AIA patients, and LTC4 synthesis was increased both in AIA and SA patients. CONCLUSIONS Taken together, this study shows an increased release of the recently discovered lipid mediator EXC4, as well as the main indicator of 15-LO activity, 15-HETE, in activated eosinophils from severe and aspirin-intolerant asthmatics, and also elevated EXC4 and LTC4 formation in eosinophils from AIA patients after cellular activation in the presence of lysine-aspirin. The findings support a pathophysiological role of the 15-LO pathway in SA and AIA.
Collapse
Affiliation(s)
- Anna James
- The Centre for Allergy Research, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhang W, Yang AL, Liao J, Li H, Dong H, Chung YT, Bai H, Matkowskyj KA, Hammock BD, Yang GY. Soluble epoxide hydrolase gene deficiency or inhibition attenuates chronic active inflammatory bowel disease in IL-10(-/-) mice. Dig Dis Sci 2012; 57:2580-91. [PMID: 22588244 PMCID: PMC3664520 DOI: 10.1007/s10620-012-2217-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 04/25/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND Soluble epoxide hydrolase (sEH) metabolizes anti-inflammatory epoxyeicosatrienoic acids (EETs) into their much less active dihydroxy derivatives dihydroxyeicosatrienoic acids. Thus, targeting sEH would be important for inflammation. AIMS To determine whether knockout or inhibition of sEH would attenuate the development of inflammatory bowel disease (IBD) in a mouse model of IBD in IL-10(-/-) mice. METHODS Either the small molecule sEH inhibitor trans/-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (t-AUCB) or sEH knockout mice were used in combination with IL-10(-/-) mice. t-AUCB was administered to mice in drinking fluid. Extensive histopathologic, immunochemical, and biochemical analyses were performed to evaluate effect of sEH inhibition or deficiency on chronic active inflammation and related mechanism in the bowel. RESULTS Compared to IL-10 (-/-) mice, sEH inhibition or sEH deficiency in IL-10(-/-) mice resulted in significantly lower incidence of active ulcer formation and transmural inflammation, along with a significant decrease in myeloperoxidase-labeled neutrophil infiltration in the inflamed bowel. The levels of IFN-γ, TNF-α, and MCP-1, as well VCAM-1 and NF-kB/IKK-α signals were significantly decreased as compared to control animals. Moreover, an eicosanoid profile analysis revealed a significant increase in the ratio of EETs/DHET and EpOME/DiOME, and a slightly down-regulation of inflammatory mediators LTB(4) and 5-HETE. CONCLUSION These results indicate that sEH gene deficiency or inhibition reduces inflammatory activities in the IL-10 (-/-) mouse model of IBD, and that sEH inhibitor could be a highly potential in the treatment of IBD.
Collapse
Affiliation(s)
- Wanying Zhang
- Department of Pathology, Northwestern University, Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL 60611
| | - Allison L. Yang
- Department of Pathology, Northwestern University, Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL 60611
| | - Jie Liao
- Department of Pathology, Northwestern University, Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL 60611
| | - Haonan Li
- Department of Pathology, Northwestern University, Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL 60611
| | - Hua Dong
- Department of Entomology, University of California, One Shields Avenue, Davis, CA 95616
| | - Yeon Tae Chung
- Department of Pathology, Northwestern University, Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL 60611
| | - Han Bai
- Department of Pathology, Northwestern University, Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL 60611
| | - Kristina A. Matkowskyj
- Department of Pathology, Northwestern University, Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL 60611
| | - Bruce D. Hammock
- Department of Entomology, University of California, One Shields Avenue, Davis, CA 95616
| | - Guang-Yu Yang
- Department of Pathology, Northwestern University, Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL 60611
| |
Collapse
|
23
|
The effect of an interleukin receptor antagonist (IL-1ra) on colonocyte eicosanoid release. Mediators Inflamm 2012; 5:449-52. [PMID: 18475751 PMCID: PMC2365825 DOI: 10.1155/s0962935196000622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We investigated whether an interleukin 1 receptor antagonist (IL-1ra) altered cellular release of prostanoids and leukotrienes in a transformed colonic cell line (CACO-2) in the presence of proinflammatory stimuli. Cellular inflammation was induced by treatment with lipopolysaccharide (LPS) or the cytokine, interleukin 1 beta (IL-1β). In a separate set of experiments, cells were pretreated with IL-1ra prior to exposure to LPS or IL-1β. Prostaglandin E2 and leukotriene B4 (LTB4) levels were quantified by ELISA assays. Both LPS and IL-1β exposure were noted to stimulate cellular PGE2 release, a response which was significantly inhibited by IL-1ra treatment. Either stimulant when administered alone failed to stimulate release of LTB4. When administered after IL-1ra pretreatment however, both stimuli caused a significant increase in LTB4 release. These results suggest that a cytokine receptor antagonist can selectively influence eicosanoid production in this cell line. Furthermore, this study suggests that a IL-1ra may have a future clinical role in the treatment of inflammatory disorders of the colon which are intimately linked to enhanced eicosanoid synthesis.
Collapse
|
24
|
Antczak A, Ciebiada M, Pietras T, Piotrowski WJ, Kurmanowska Z, Górski P. Exhaled eicosanoids and biomarkers of oxidative stress in exacerbation of chronic obstructive pulmonary disease. Arch Med Sci 2012; 8:277-85. [PMID: 22662001 PMCID: PMC3361040 DOI: 10.5114/aoms.2012.28555] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 10/14/2010] [Accepted: 11/30/2010] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Eicosanoids and oxidants play an important role in inflammation, but their role in chronic obstructive pulmonary disease (COPD) is uncertain. In this study we hypothesized that levels of exhaled leukotrienes, prostaglandins and biomarkers of oxidative stress are increased in infectious exacerbations of COPD and that they decrease after antibiotic therapy. MATERIAL AND METHODS Cysteinyl-leukotrienes (LTs), leukotriene B(4) (LTB(4)), prostaglandin E(4), hydrogen peroxide (H(2)O(2)) and 8-isoprostane were measured in exhaled breath condensate (EBC) in 16 COPD patients with infectious exacerbations (mean age 64 ±12 years, 13 male) on day 1, during antibiotic therapy (days 2-4), 2-4 days after therapy and at a follow-up visit when stable (21-28 days after therapy). RESULTS There was a significant fall in concentration of cys-LTs, LTB(4) and 8-isoprostane at visit 3 compared to day 1 (cys-LTs: 196.5 ±38.4 pg/ml vs. 50.1 ±8.2 pg/ml, p < 0.002; LTB(4): 153.6 ±25.5 pg/ml vs. 71.9 ±11.3 pg/ml, p < 0.05; 8-isoprostane: 121.4 ±14.6 pg/ml vs. 56.1 ±5.2 pg/ml, p < 0.03, respectively). Exhaled H(2)O(2) was higher on day 1 compared to that at visits 2 and 3 (0.74 ±0.046 µM vs. 0.52 ±0.028 µM and 0.35 ±0.029 µM, p < 0.01 and p < 0.01, respectively). Exhaled PGE(2) levels did not change during exacerbations of COPD. Exhaled eicosanoids and H(2)O(2) in EBC measured at the follow-up visit (stable COPD) were significantly higher compared to those from healthy subjects. CONCLUSIONS We conclude that eicosanoids and oxidants are increased in infectious exacerbations of COPD. They are also elevated in the airways of stable COPD patients compared to healthy subjects.
Collapse
Affiliation(s)
- Adam Antczak
- Department of Pneumology and Allergy, Medical University of Lodz, Poland
| | | | | | | | | | | |
Collapse
|
25
|
Boudreau LH, Maillet J, LeBlanc LM, Jean-François J, Touaibia M, Flamand N, Surette ME. Caffeic acid phenethyl ester and its amide analogue are potent inhibitors of leukotriene biosynthesis in human polymorphonuclear leukocytes. PLoS One 2012; 7:e31833. [PMID: 22347509 PMCID: PMC3276500 DOI: 10.1371/journal.pone.0031833] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 01/12/2012] [Indexed: 01/20/2023] Open
Abstract
Background 5-lipoxygenase (5-LO) catalyses the transformation of arachidonic acid (AA) into leukotrienes (LTs), which are important lipid mediators of inflammation. LTs have been directly implicated in inflammatory diseases like asthma, atherosclerosis and rheumatoid arthritis; therefore inhibition of LT biosynthesis is a strategy for the treatment of these chronic diseases. Methodology/Principal Findings Analogues of caffeic acid, including the naturally-occurring caffeic acid phenethyl ester (CAPE), were synthesized and evaluated for their capacity to inhibit 5-LO and LTs biosynthesis in human polymorphonuclear leukocytes (PMNL) and whole blood. Anti-free radical and anti-oxidant activities of the compounds were also measured. Caffeic acid did not inhibit 5-LO activity or LT biosynthesis at concentrations up to 10 µM. CAPE inhibited 5-LO activity (IC50 0.13 µM, 95% CI 0.08–0.23 µM) more effectively than the clinically-approved 5-LO inhibitor zileuton (IC50 3.5 µM, 95% CI 2.3–5.4 µM). CAPE was also more effective than zileuton for the inhibition of LT biosynthesis in PMNL but the compounds were equipotent in whole blood. The activity of the amide analogue of CAPE was similar to that of zileuton. Inhibition of LT biosynthesis by CAPE was the result of the inhibition of 5-LO and of AA release. Caffeic acid, CAPE and its amide analog were free radical scavengers and antioxidants with IC50 values in the low µM range; however, the phenethyl moiety of CAPE was required for effective inhibition of 5-LO and LT biosynthesis. Conclusions CAPE is a potent LT biosynthesis inhibitor that blocks 5-LO activity and AA release. The CAPE structure can be used as a framework for the rational design of stable and potent inhibitors of LT biosynthesis.
Collapse
Affiliation(s)
- Luc H. Boudreau
- Département de chimie et biochimie, Université de Moncton, Moncton, Canada
- Centre de recherche de l'institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), Département de médecine, Faculté de médecine, Université Laval, Québec, Canada
| | - Jacques Maillet
- Département de chimie et biochimie, Université de Moncton, Moncton, Canada
| | - Luc M. LeBlanc
- Département de chimie et biochimie, Université de Moncton, Moncton, Canada
| | | | - Mohamed Touaibia
- Département de chimie et biochimie, Université de Moncton, Moncton, Canada
| | - Nicolas Flamand
- Centre de recherche de l'institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), Département de médecine, Faculté de médecine, Université Laval, Québec, Canada
| | - Marc E. Surette
- Département de chimie et biochimie, Université de Moncton, Moncton, Canada
- * E-mail:
| |
Collapse
|
26
|
Chouinard F, Lefebvre JS, Navarro P, Bouchard L, Ferland C, Lalancette-Hébert M, Marsolais D, Laviolette M, Flamand N. The endocannabinoid 2-arachidonoyl-glycerol activates human neutrophils: critical role of its hydrolysis and de novo leukotriene B4 biosynthesis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:3188-96. [PMID: 21278347 DOI: 10.4049/jimmunol.1002853] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Although endocannabinoids are important players in nociception and obesity, their roles as immunomodulators remain elusive. The main endocannabinoids described to date, namely 2-arachidonoyl-glycerol (2-AG) and arachidonyl-ethanolamide (AEA), induce an intriguing profile of pro- and anti-inflammatory effects. This could relate to cell-specific cannabinoid receptor expression and/or the action of endocannabinoid-derived metabolites. Importantly, 2-AG and AEA comprise a molecule of arachidonic acid (AA) in their structure and are hydrolyzed rapidly. We postulated the following: 1) the released AA from endocannabinoid hydrolysis would be metabolized into eicosanoids; and 2) these eicosanoids would mediate some of the effects of endocannabinoids. To confirm these hypotheses, experiments were performed in which freshly isolated human neutrophils were treated with endocannabinoids. Unlike AEA, 2-AG stimulated myeloperoxidase release, kinase activation, and calcium mobilization by neutrophils. Although 2-AG did not induce the migration of neutrophils, it induced the release of a migrating activity for neutrophils. 2-AG also rapidly (1 min) induced a robust biosynthesis of leukotrienes, similar to that observed with AA. The effects of 2-AG were not mimicked nor prevented by cannabinoid receptor agonists or antagonists, respectively. Finally, the blockade of either 2-AG hydrolysis, leukotriene (LT) B(4) biosynthesis, or LTB(4) receptor 1 activation prevented all the effects of 2-AG on neutrophil functions. In conclusion, we demonstrated that 2-AG potently activates human neutrophils. This is the consequence of 2-AG hydrolysis, de novo LTB(4) biosynthesis, and an autocrine activation loop involving LTB(4) receptor 1.
Collapse
Affiliation(s)
- François Chouinard
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec City, Québec G1V 4G5, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Esser J, Gehrmann U, Salvado MD, Wetterholm A, Haeggström JZ, Samuelsson B, Gabrielsson S, Scheynius A, Rådmark O. Zymosan suppresses leukotriene C₄ synthase activity in differentiating monocytes: antagonism by aspirin and protein kinase inhibitors. FASEB J 2011; 25:1417-27. [PMID: 21228223 DOI: 10.1096/fj.10-175828] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cysteinyl leukotrienes (cysLTs) are potent proinflammatory mediators with particular relevance for asthma. However, control of cysLT biosynthesis in the time period after onset of acute inflammation has not been extensively studied. As a model for later phases of inflammation, we investigated regulation of leukotriene (LT) C(4) synthase (LTC(4)S) in differentiating monocytes, exposed for several days to fungal zymosan. Incubations with LTA(4) revealed 20-fold increased LTC(4)S activity during differentiation of monocytic Mono Mac 6 (MM6) cells, which was reduced by 80% in the presence of zymosan (25 μg/ml, 96 h). Zymosan (48 h) similarly attenuated LTC(4)S activity of primary human monocyte-derived macrophages and dendritic cells. Several findings indicate phosphoregulation of LTC(4)S: increased activity during MM6 cell differentiation correlated with reduced phosphorylation of 70-kDa ribosomal protein S6 kinase (p70S6K), which could phosphorylate purified LTC(4)S; the p70S6K inhibitor rapamycin (20 nM) doubled LTC(4)S activity of undifferentiated MM6 cells, and protein kinase A and C inhibitors (H-89, CGP-53353, and staurosporine) reversed the zymosan-induced suppression of LTC(4)S activity. Finally, zymosan (48 h) up-regulated PGE(2) biosynthesis, and aspirin (10 μM) or prostaglandin E(2) (PGE(2)) receptor antagonists counteracted the zymosan effect. Our results suggest a late PGE(2)-mediated phosphoregulation of LTC(4)S during microbial exposure, which may contribute to resolution of inflammation, with implications for aspirin hypersensitivity.
Collapse
Affiliation(s)
- Julia Esser
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Moore BB, Peters-Golden M. Opposing roles of leukotrienes and prostaglandins in fibrotic lung disease. Expert Rev Clin Immunol 2010; 2:87-100. [PMID: 20477090 DOI: 10.1586/1744666x.2.1.87] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Lung fibrosis is a devastating disease that involves a variable degree of inflammation, alveolar epithelial injury, fibroblast hyperplasia and the deposition of extracellular matrix. Standard therapies that consist of corticosteroids and immunosuppressive agents offer little benefit and most patients experience a progressive deterioration in lung function which is ultimately fatal within 2-5 years of diagnosis. New pathogenetic insights and therapeutic approaches are badly needed. Eicosanoids are lipid mediators derived from arachidonic acid metabolism, the best studied of which are prostaglandins and leukotrienes. Although these mediators are primarily known for their roles in asthma, pain, fever and vascular responses, they also exert relevant effects on immune and inflammatory cells as well as structural cells such as epithelial cells and fibroblasts - cell types which participate in fibrogenesis. In general, leukotrienes promote while prostaglandin E(2) opposes fibrogenic responses. Lung fibrosis is associated with increased production of leukotrienes and decreased production of prostaglandin E(2). Furthermore, responses to prostaglandin E(2) are altered in fibrotic conditions. This review highlights the role of this leukotriene/prostaglandin imbalance in the evolution of fibrotic lung disease, offers insights into the mechanisms that underlie the dysregulated responses and discusses approaches for therapeutic targeting of eicosanoids in these conditions.
Collapse
Affiliation(s)
- Bethany B Moore
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, 6220 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-0642, USA.
| | | |
Collapse
|
30
|
Brauer R, Marx T, Ulm K, Stangl M. Effect of Perioperative Administration of a Drug Regimen on the Primary Function of Human Renal Allografts. Transplant Proc 2010; 42:1523-5. [DOI: 10.1016/j.transproceed.2010.01.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 10/26/2009] [Accepted: 01/07/2010] [Indexed: 10/19/2022]
|
31
|
Abstract
Neutrophils are well-recognized phagocytes in the first line of host defense, and are also a major source of pro-inflammatory cytokines, chemokines and lipid mediators, thereby contributing to the onset and early orchestration of the inflammatory response. In contrast, recent studies indicate that neutrophils have tools to limit the magnitude and length of an inflammatory response, and may take part in engaging the resolution process. This article describes endogenous signals that may transform the phenotype of a neutrophil: from a pro-inflammatory cell to one that promotes resolution. Adenosine, an autacoid which can be found at high concentrations in inflammatory sites, inhibits several inflammatory functions of the neutrophil via engagement of the A2A receptor and reshapes the profile of lipid mediators and cytokines released, causing cells to terminate the release of pro-inflammatory signals while progressing toward resolution. These endogenous resolution pathways may represent a key target for better treatments of inflammatory diseases.
Collapse
Affiliation(s)
- Aline Dumas
- Centre de recherche en rhumatologie et immunologie du CHUQ, et département d'anatomie-physiologie, CHUL, Faculté de médecine, Université Laval, 2705, boulevard Laurier, bureau T1-49, Québec (Québec), G1V 4G2 Canada.
| | | |
Collapse
|
32
|
Beck-Speier I, Oswald B, Maier KL, Karg E, Ramseger R. Oxymetazoline inhibits and resolves inflammatory reactions in human neutrophils. J Pharmacol Sci 2009; 110:276-84. [PMID: 19609065 PMCID: PMC7128694 DOI: 10.1254/jphs.09012fp] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The nasal decongestant oxymetazoline (OMZ) exhibits anti-oxidative and anti-inflammatory properties (I. Beck-Speier et al., J Pharmacol Exp Ther. 2006;316:842-851). In a follow up study, we hypothesized that OMZ generates pro-resolving lipoxins being paralleled by production of immune-modulating prostaglandin E(2) (PGE(2)) and anti-inflammatory 15(S)-hydroxy-eicosatetraenoic acid [15(S)-HETE] and depletion of pro-inflammatory leukotriene B(4) (LTB(4)). Human neutrophils (PMN) were chosen as the cellular system. The effect of OMZ on these parameters as well as on respiratory burst activity and oxidative stress marker 8-isprostane was analyzed in unstimulated and co-stimulated PMN by ultrafine carbon particles (UCP) or opsonized zymosan (OZ), respectively. In unstimulated cells, OMZ induced formation of PGE(2), 15(S)-HETE, and LXA(4). The levels of LTB(4) and 8-isoprostane were not affected, whereas respiratory burst activity was drastically inhibited. In UCP- and OZ-stimulated control cells, all parameters were elevated. Here, OMZ maintained the increased levels of PGE(2), 15(S)-HETE, and LXA(4), but substantially suppressed levels of LTB(4) and 8-isoprostane and inhibited the respiratory burst activity. These findings suggest a switch from the pro-inflammatory eicosanoid class LTB(4) to the pro-resolving LXA(4). Since LXA(4) is most relevant in returning inflamed tissue to homeostasis, OMZ is postulated to terminate rhinitis-related inflammation, thus contributing to shortening of disease duration.
Collapse
Affiliation(s)
- Ingrid Beck-Speier
- Helmholtz-Center Munich, German Research Center for Environmental Health, Institute of Lung Biology and Disease, Germany.
| | | | | | | | | |
Collapse
|
33
|
Olivry T, Guaguère E, Héripret D. Treatment of canine atopic dermatitis with misoprostol, a prostaglandin E1analogue. J DERMATOL TREAT 2009. [DOI: 10.3109/09546639709160529] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
34
|
St-Onge M, Dumas A, Michaud A, Laflamme C, Dussault AA, Pouliot M. Impact of anti-inflammatory agents on the gene expression profile of stimulated human neutrophils: unraveling endogenous resolution pathways. PLoS One 2009; 4:e4902. [PMID: 19295914 PMCID: PMC2654409 DOI: 10.1371/journal.pone.0004902] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 02/09/2009] [Indexed: 01/25/2023] Open
Abstract
Adenosine, prostaglandin E(2), or increased intracellular cyclic AMP concentration each elicit potent anti-inflammatory events in human neutrophils by inhibiting functions such as phagocytosis, superoxide production, adhesion and cytokine release. However, the endogenous molecular pathways mediating these actions are poorly understood. In the present study, we examined their impact on the gene expression profile of stimulated neutrophils. Purified blood neutrophils from healthy donors were stimulated with a cocktail of inflammatory agonists in the presence of at least one of the following anti-inflammatory agents: adenosine A(2A) receptor agonist CGS 21680, prostaglandin E(2), cyclic-AMP-elevating compounds forskolin and RO 20-1724. Total RNA was analyzed using gene chips and real-time PCR. Genes encoding transcription factors, enzymes and regulatory proteins, as well as secreted cytokines/chemokines showed differential expression. We identified 15 genes for which the anti-inflammatory agents altered mRNA levels. The agents affected the expression profile in remarkably similar fashion, suggesting a central mechanism limiting cell activation. We have identified a set of genes that may be part of important resolution pathways that interfere with cell activation. Identification of these pathways will improve understanding of the capacity of tissues to terminate inflammatory responses and contribute to the development of therapeutic strategies based on endogenous resolution.
Collapse
Affiliation(s)
- Mireille St-Onge
- Centre de Recherche en Rhumatologie et Immunologie du CHUQ and Department of Anatomy-Physiology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Aline Dumas
- Centre de Recherche en Rhumatologie et Immunologie du CHUQ and Department of Anatomy-Physiology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Annick Michaud
- Centre de Recherche en Rhumatologie et Immunologie du CHUQ and Department of Anatomy-Physiology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Cynthia Laflamme
- Centre de Recherche en Rhumatologie et Immunologie du CHUQ and Department of Anatomy-Physiology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Andrée-Anne Dussault
- Centre de Recherche en Rhumatologie et Immunologie du CHUQ and Department of Anatomy-Physiology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Marc Pouliot
- Centre de Recherche en Rhumatologie et Immunologie du CHUQ and Department of Anatomy-Physiology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
35
|
Wallace JL. Prostaglandins, NSAIDs, and gastric mucosal protection: why doesn't the stomach digest itself? Physiol Rev 2008; 88:1547-65. [PMID: 18923189 DOI: 10.1152/physrev.00004.2008] [Citation(s) in RCA: 431] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Except in rare cases, the stomach can withstand exposure to highly concentrated hydrochloric acid, refluxed bile salts, alcohol, and foodstuffs with a wide range of temperatures and osmolarity. This is attributed to a number of physiological responses by the mucosal lining to potentially harmful luminal agents, and to an ability to rapidly repair damage when it does occur. Since the discovery in 1971 that prostaglandin synthesis could be blocked by aspirin and other nonsteroidal anti-inflammatory drugs (NSAIDs), there has been great interest in the contribution of prostaglandins to gastric mucosal defense. Prostaglandins modulate virtually every aspect of mucosal defense, and the importance of this contribution is evident by the increased susceptibility of the stomach to injury following ingestion of an NSAID. With chronic ingestion of these drugs, the development of ulcers in the stomach is a significant clinical concern. Research over the past two decades has helped to identify some of the key events triggered by NSAIDs that contribute to ulcer formation and/or impair ulcer healing. Recent research has also highlighted the fact that the protective functions of prostaglandins in the stomach can be carried out by other mediators, in particular the gaseous mediators nitric oxide and hydrogen sulfide. Better understanding of the mechanisms through which the stomach is able to resist injury in the presence of luminal irritants is helping to drive the development of safer anti-inflammatory drugs, and therapies to accelerate and improve the quality of ulcer healing.
Collapse
Affiliation(s)
- John L Wallace
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
36
|
Chávez-Piña AE, Vong L, McKnight W, Dicay M, Zanardo RCO, Ortiz MI, Castañeda-Hernández G, Wallace JL. Lack of effects of acemetacin on signalling pathways for leukocyte adherence may explain its gastrointestinal safety. Br J Pharmacol 2008; 155:857-64. [PMID: 18695646 DOI: 10.1038/bjp.2008.316] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Acemetacin is a non-steroidal anti-inflammatory drug which is rapidly bioconverted to indomethacin, but produces significantly less gastric damage than indomethacin. This study was performed to investigate several possible mechanisms that could account for the gastrointestinal tolerability of acemetacin. EXPERIMENTAL APPROACH The gastric and intestinal damaging effects of acemetacin and indomethacin were examined in the rat. Effects of the drugs on blood levels of leukotriene B(4) and thromboxane B(2), on leukocyte-endothelial adherence in post-capillary mesenteric venules, and on gastric expression of tumour necrosis factor-alpha (TNF-alpha) were determined. The two drugs were also compared for gastric toxicity in rats pretreated with inhibitors of COX-2 and NOS. KEY RESULTS Acemetacin induced significantly less gastric and intestinal damage than indomethacin, despite markedly suppressing COX activity. Indomethacin, but not acemetacin, significantly increased leukocyte adherence within mesenteric venules, and gastric expression of TNF-alpha. Pretreatment with L-nitro-arginine methyl ester or lumiracoxib increased the severity of indomethacin-induced gastric damage, but this was not the case with acemetacin. CONCLUSIONS AND IMPLICATIONS The increased gastric and intestinal tolerability of acemetacin may be related to the lack of induction of leukocyte-endothelial adherence. This may be attributable to the reduced ability of acemetacin to elevate leukotriene-B(4) synthesis and TNF-alpha expression, compared to indomethacin, despite the fact that acemetacin is rapidly bioconverted to indomethacin after its absorption.
Collapse
Affiliation(s)
- A E Chávez-Piña
- Sección Externa de Farmacología, CINVESTAV/IPN, Mexico City, DF, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Leclerc P, Biarc J, St-Onge M, Gilbert C, Dussault AA, Laflamme C, Pouliot M. Nucleobindin co-localizes and associates with cyclooxygenase (COX)-2 in human neutrophils. PLoS One 2008; 3:e2229. [PMID: 18493301 PMCID: PMC2373884 DOI: 10.1371/journal.pone.0002229] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Accepted: 04/15/2008] [Indexed: 11/26/2022] Open
Abstract
The inducible cyclooxygenase isoform (COX-2) is associated with inflammation, tumorigenesis, as well as with physiological events. Despite efforts deployed in order to understand the biology of this multi-faceted enzyme, much remains to be understood. Nucleobindin (Nuc), a ubiquitous Ca(2+)-binding protein, possesses a putative COX-binding domain. In this study, we investigated its expression and subcellular localization in human neutrophils, its affinity for COX-2 as well as its possible impact on PGE(2) biosynthesis. Complementary subcellular localization approaches including nitrogen cavitation coupled to Percoll fractionation, immunofluorescence, confocal and electron microscopy collectively placed Nuc, COX-2, and all of the main enzymes involved in prostanoid synthesis, in the Golgi apparatus and endoplasmic reticulum of human neutrophils. Immunoprecipitation experiments indicated a high affinity between Nuc and COX-2. Addition of human recombinant (hr) Nuc to purified hrCOX-2 dose-dependently caused an increase in PGE(2) biosynthesis in response to arachidonic acid. Co-incubation of Nuc with COX-2-expressing neutrophil lysates also increased their capacity to produce PGE(2). Moreover, neutrophil transfection with hrNuc specifically enhanced PGE(2) biosynthesis. Together, these results identify a COX-2-associated protein which may have an impact in prostanoid biosynthesis.
Collapse
Affiliation(s)
- Patrick Leclerc
- Centre de Recherche en Rhumatologie et Immunologie and Department of Anatomy-Physiology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Jordane Biarc
- Centre de Recherche en Rhumatologie et Immunologie and Department of Anatomy-Physiology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Mireille St-Onge
- Centre de Recherche en Rhumatologie et Immunologie and Department of Anatomy-Physiology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Caroline Gilbert
- Centre de Recherche en Rhumatologie et Immunologie and Department of Anatomy-Physiology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Andrée-Anne Dussault
- Centre de Recherche en Rhumatologie et Immunologie and Department of Anatomy-Physiology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Cynthia Laflamme
- Centre de Recherche en Rhumatologie et Immunologie and Department of Anatomy-Physiology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Marc Pouliot
- Centre de Recherche en Rhumatologie et Immunologie and Department of Anatomy-Physiology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
38
|
Zweifel BS, Hardy MM, Anderson GD, Dufield DR, Pufahl RA, Masferrer JL. A rat air pouch model for evaluating the efficacy and selectivity of 5-lipoxygenase inhibitors. Eur J Pharmacol 2008; 584:166-74. [PMID: 18295198 DOI: 10.1016/j.ejphar.2008.01.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 12/03/2007] [Accepted: 01/28/2008] [Indexed: 10/22/2022]
Abstract
The 5-lipoxygenase (5-LOX) pathway has been associated with a variety of inflammatory diseases including asthma, atherosclerosis, rheumatoid arthritis, pain, cancer and liver fibrosis. Several classes of 5-LOX inhibitors have been identified, but only one drug, zileuton, a redox inhibitor of 5-LOX, has been approved for clinical use. To better evaluate the efficacy of 5-LOX inhibitors for pharmacological intervention, a rat model was modified to test the in vivo efficacy of 5-LOX inhibitors. Inflammation was produced by adding carrageenan into a newly formed air pouch and prostaglandins produced. While macrophages and neutrophils are present in the inflamed pouch, little 5-LOX products are formed. Cellular 5-LOX activation was obtained by adding calcium ionophore (A23187) into the pouch thus providing a novel model to evaluate the efficacy and selectivity of 5-LOX inhibitors. Also, we described modifications to the in vitro 5-LOX enzyme and cell assays. These assays included a newly developed fluorescence-based enzyme assay, a 5-LOX redox assay, an ex vivo human whole blood assay and an IgE-stimulated rat mast cell assay, all designed for maximal production of leukotrienes. Zileuton and CJ-13,610, a competitive, non-redox inhibitor of 5-LOX, were evaluated for their pharmacological properties using these assays. Although both compounds achieved dose-dependent inhibition of 5-LOX enzyme activity, CJ-13,610 was 3-4 fold more potent than zileuton in all-assays. Evaluation of 5-LOX metabolites-by LC/MS/MS and ELISA confirmed that both compounds selectively inhibited all products downstream of 5-hydroperoxy eicosatetraenoic acid (5-HPETE), including 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxoETE), without inhibition of 12-lipoxygenase (12-LOX), 15-lipoxygenase (15-LOX), or cyclooxygenase (COX) products. In the rat air pouch model, oral dosing of CJ-13,610 and zileuton resulted in selective inhibition 5-LOX activity from pouch exudate and ex vivo rat whole blood with similar potency to in vitro assay. These data show that the rat air pouch model is a reliable and useful tool for evaluating in vivo efficacy of 5-LOX inhibitors and may aid in the development of the next generation of 5-LOX inhibitors, such as the non-redox inhibitors similar to CJ-13,610.
Collapse
Affiliation(s)
- Ben S Zweifel
- Pfizer Global Research & Development, Pfizer Inc., St. Louis, MO 63017, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Chávez-Piña AE, McKnight W, Dicay M, Castañeda-Hernández G, Wallace JL. Mechanisms underlying the anti-inflammatory activity and gastric safety of acemetacin. Br J Pharmacol 2007; 152:930-8. [PMID: 17876306 PMCID: PMC2078220 DOI: 10.1038/sj.bjp.0707451] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Acemetacin is regarded as a pro-drug of indomethacin and induces significantly less gastric damage but the reasons for this greater gastric safety of acemetacin are unclear. The anti-inflammatory effects of acemetacin have been attributed, at least in part, to its hepatic biotransformation to indomethacin. The aim of this study was to determine the effects of acemetacin and indomethacin in an in vivo model of acute inflammation and to examine the importance of biotransformation of acemetacin (to indomethacin) to its anti-inflammatory actions. EXPERIMENTAL APPROACH The zymosan airpouch model was used in rats. Indomethacin or acemetacin (2.7-83.8 micromol kg(-1)) were administered orally or directly into the pouch. Leukocyte infiltration, prostaglandin (PG) E(2) and leukotriene (LT) B(4) levels in exudates, and whole blood thromboxane (TX) B(2) synthesis were measured. KEY RESULTS Acemetacin was rapidly converted to indomethacin after its administration. Both acemetacin and indomethacin elicited comparable, dose-dependent reductions of leukocyte infiltration and of PGE(2) and TXB(2) synthesis. However, indomethacin induced more gastric damage than acemetacin and elevated LTB(4) production in the airpouch. CONCLUSIONS AND IMPLICATIONS The similar effects of acemetacin and indomethacin on leukocyte infiltration and PG synthesis are consistent with rapid biotransformation of acemetacin to indomethacin. Some of this biotransformation may occur extra-hepatically, for instance in inflammatory exudates. Acemetacin probably exerts actions independent of conversion to indomethacin, given the different effects of these two drugs on LTB(4) production. Such differences may contribute to the relative gastric safety of acemetacin compared to indomethacin.
Collapse
Affiliation(s)
- A E Chávez-Piña
- Seccion Externa de Farmacologia, CINVESTAV/IPN Mexico City, DF, Mexico
- Inflammation Research Network, University of Calgary Calgary, Alberta, Canada
| | - W McKnight
- Inflammation Research Network, University of Calgary Calgary, Alberta, Canada
| | - M Dicay
- Inflammation Research Network, University of Calgary Calgary, Alberta, Canada
| | | | - J L Wallace
- Inflammation Research Network, University of Calgary Calgary, Alberta, Canada
- Author for correspondence:
| |
Collapse
|
40
|
St-Onge M, Flamand N, Biarc J, Picard S, Bouchard L, Dussault AA, Laflamme C, James MJ, Caughey GE, Cleland LG, Borgeat P, Pouliot M. Characterization of prostaglandin E2 generation through the cyclooxygenase (COX)-2 pathway in human neutrophils. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1771:1235-45. [PMID: 17643350 PMCID: PMC2891965 DOI: 10.1016/j.bbalip.2007.06.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 06/01/2007] [Accepted: 06/18/2007] [Indexed: 01/08/2023]
Abstract
In the present study, we characterized the generation of prostaglandin (PG)E2 in human neutrophils. We found that the Ca2+-dependent type IV cytosolic phospholipase A2 (cPLA2) was pivotally involved in the COX-2-mediated generation of PGE2 in response to a calcium ionophore, as determined by the use of selected PLA2 inhibitors. PGE2 biosynthesis elicited by bacterial-derived peptides or by phagocytic stimuli acting on cell surface receptors also showed to be dependent on cPLA2 activity. We then assessed metabolism of unesterified arachidonic acid (AA), and observed that PGE2 production becomes favored over that of LTB4 with higher AA concentrations. Withdrawal of calcium prevented the generation of PGE2 in response to a calcium ionophore but did not affect the up-regulation of COX-2 or its capacity to convert AA, thus limiting its implication at the level of cPLA2 activation. Of the main eicosanoids produced by neutrophils, only LTB4 was able to up-regulate COX-2 expression. Finally, the only PGE synthase isoform found in neutrophils is microsomal PGE synthase-1; it co-localized with COX-2 and its expression appeared mainly constitutive. These results highlight key differences in regulatory processes of the 5-LO and COX pathways, and enhance our knowledge at several levels in the PGE2 biosynthesis in neutrophils.
Collapse
Affiliation(s)
- Mireille St-Onge
- Centre de Recherche en Rhumatologie et Immunologie du CHUQ (CHUL), 2705 Laurier Boulevard, Office T1-49, Sainte-Foy, and Department of Anatomy-Physiology, Faculty of Medicine, Laval University, Quebec, Canada G1V 4G2
| | - Nicolas Flamand
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109-0642, USA
| | - Jordane Biarc
- Centre de Recherche en Rhumatologie et Immunologie du CHUQ (CHUL), 2705 Laurier Boulevard, Office T1-49, Sainte-Foy, and Department of Anatomy-Physiology, Faculty of Medicine, Laval University, Quebec, Canada G1V 4G2
| | - Serge Picard
- Centre de Recherche en Rhumatologie et Immunologie du CHUQ (CHUL), 2705 Laurier Boulevard, Office T1-49, Sainte-Foy, and Department of Anatomy-Physiology, Faculty of Medicine, Laval University, Quebec, Canada G1V 4G2
| | - Line Bouchard
- Centre de Recherche en Rhumatologie et Immunologie du CHUQ (CHUL), 2705 Laurier Boulevard, Office T1-49, Sainte-Foy, and Department of Anatomy-Physiology, Faculty of Medicine, Laval University, Quebec, Canada G1V 4G2
| | - Andrée-Anne Dussault
- Centre de Recherche en Rhumatologie et Immunologie du CHUQ (CHUL), 2705 Laurier Boulevard, Office T1-49, Sainte-Foy, and Department of Anatomy-Physiology, Faculty of Medicine, Laval University, Quebec, Canada G1V 4G2
| | - Cynthia Laflamme
- Centre de Recherche en Rhumatologie et Immunologie du CHUQ (CHUL), 2705 Laurier Boulevard, Office T1-49, Sainte-Foy, and Department of Anatomy-Physiology, Faculty of Medicine, Laval University, Quebec, Canada G1V 4G2
| | - Michael J. James
- Rheumatology Unit, Royal Adelaide Hospital, North Terrace, Adelaide, SA 5000, Australia
| | - Gillian E. Caughey
- Rheumatology Unit, Royal Adelaide Hospital, North Terrace, Adelaide, SA 5000, Australia
| | - Leslie G. Cleland
- Rheumatology Unit, Royal Adelaide Hospital, North Terrace, Adelaide, SA 5000, Australia
| | - Pierre Borgeat
- Centre de Recherche en Rhumatologie et Immunologie du CHUQ (CHUL), 2705 Laurier Boulevard, Office T1-49, Sainte-Foy, and Department of Anatomy-Physiology, Faculty of Medicine, Laval University, Quebec, Canada G1V 4G2
| | - Marc Pouliot
- Centre de Recherche en Rhumatologie et Immunologie du CHUQ (CHUL), 2705 Laurier Boulevard, Office T1-49, Sainte-Foy, and Department of Anatomy-Physiology, Faculty of Medicine, Laval University, Quebec, Canada G1V 4G2
| |
Collapse
|
41
|
Burelout C, Thibault N, Harbour D, Naccache PH, Bourgoin SG. The PGE2-induced inhibition of the PLD activation pathway stimulated by fMLP in human neutrophils is mediated by PKA at the PI3-Kgamma level. Biochem Pharmacol 2007; 74:730-41. [PMID: 17631865 DOI: 10.1016/j.bcp.2007.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 06/07/2007] [Accepted: 06/11/2007] [Indexed: 11/21/2022]
Abstract
Prostaglandin E2 (PGE2), an eicosanoid that modulates inflammation, inhibits several chemoattractant-elicited functions in neutrophils such as chemotaxis, production of superoxide anions, adhesion, secretion of cytotoxic enzymes and synthesis of leukotriene B4. We previously reported that PGE2 inhibits the fMLP signaling pathway that leads to PLD activation through suppression of PI3-Kgamma activity and the decreased recruitment to membranes of PLD activation factors, PKC, Rho and Arf-GTPases. This effect is mediated via the EP2 receptors known to raise cAMP in cells. The inhibition of most fMLP-induced functional responses by PGE2 via EP2 receptors is mediated by PKA, except the chemotactic response. We have investigated the role of PKA in the EP2-mediated inhibition of the PLD activation pathway. H-89, a selective PKA pharmacological inhibitor suppressed the inhibitory effects of PGE2 at all stages of the PLD pathway activated by fMLP, i.e. PLD activity, translocation to membranes of PKCalpha, Rho and Arf-GTPases, calcium influx, tyrosine phosphorylation of proteins and finally translocation of p110gamma catalytic subunit of PI3-K to membranes. However, neither PLD nor PI3-Kgamma was substrate of PKA. These data provide evidence that PGE2-stimulated PKA activity regulates the PLD pathway stimulated by fMLP at the level of PI3-Kgamma and that the inhibition of PI3-Kgamma activation by PKA is a complex mechanism that remains to be completely elucidated.
Collapse
Affiliation(s)
- Chantal Burelout
- Centre de Recherche en Rhumatologie-Immunologie, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Département d'Anatomie-Physiologie, Québec, Canada
| | | | | | | | | |
Collapse
|
42
|
Piotrowski WJ, Antczak A, Marczak J, Nawrocka A, Kurmanowska Z, Górski P. Eicosanoids in exhaled breath condensate and BAL fluid of patients with sarcoidosis. Chest 2007; 132:589-96. [PMID: 17573522 DOI: 10.1378/chest.07-0215] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Measurement of inflammatory mediators in exhaled breath condensate (EBC) is an easy and noninvasive diagnostic method, which has gained popularity in the past few years. However, the source of these mediators is not precisely defined. It has been only presumed that inflammatory cells present in the airway lumen are the main source. Therefore, the aim of this study was to verify the relationship between EBC and BAL fluid (BALF) eicosanoids, and the percentage, number, and activity of cells in BALF. METHODS In 28 sarcoidosis patients and 17 healthy subjects, 8-isoprostane, cysteinyl leukotrienes (CysLTs), and leukotriene B4 (LTB4) were measured in EBC by enzyme immunoassay. Eicosanoids were also examined in BALF in the study group. Cell count, percentage, and superoxide production by BALF cells were estimated. RESULTS The mean (+/- SEM) CysLT and 8-isoprostane concentrations were higher in the sarcoidosis group (6.5 +/- 0 vs 27.82 +/- 6.65 pg/mL, respectively; and 2.67 +/- 0.16 vs 13.95 +/- 2.59 pg/mL, respectively). There were positive correlations between EBC and BALF 8-isoprostane concentration (r = 0.68, p < 0.0001) and LTB4 concentration (r = 0.43; p = 0.026). EBC LTB4 levels correlated with the number of lymphocytes per milliliter of BALF. The percentage and number of eosinophils in BALF correlated with EBC 8-isoprostane and BALF CysLT concentrations. No positive correlation was found between concentrations of EBC eicosanoids and percentages BALF lymphocytes, BALF macrophages, or superoxide production. CONCLUSIONS The levels of 8-isoprostane and CysLT are elevated in EBC in sarcoidosis patients; however, a lack of correlation with BALF lymphocyte percentage does not encourage us to recommend the measurement of eicosanoids as activity markers. The positive correlation of EBC 8-isoprostane and BALF CysLT concentrations with the percentage of eosinophils in BALF, and the higher percentage of eosinophils in BALF from patients with grade 3 sarcoidosis, may suggest the possible prognostic value.
Collapse
Affiliation(s)
- Wojciech J Piotrowski
- Division of Pneumonology and Allergy, Medical University of Lodz, 22 Kopciñskiego Str 90, 153 Lodz, Poland.
| | | | | | | | | | | |
Collapse
|
43
|
Rådmark O, Samuelsson B. 5-Lipoxygenase: Regulation and possible involvement in atherosclerosis. Prostaglandins Other Lipid Mediat 2007; 83:162-74. [PMID: 17481551 DOI: 10.1016/j.prostaglandins.2007.01.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
This review article focuses on two aspects regarding 5-lipoxygenase. First, mechanisms for activation of the enzyme. Second, the involvement of 5-lipoxygenase and leukotrienes in atherosclerosis.
Collapse
Affiliation(s)
- Olof Rådmark
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institute, S-17177 Stockholm, Sweden.
| | | |
Collapse
|
44
|
Burelout C, Naccache PH, Bourgoin SG. Dissociation between the translocation and the activation of Akt in fMLP-stimulated human neutrophils--effect of prostaglandin E2. J Leukoc Biol 2007; 81:1523-34. [PMID: 17339610 DOI: 10.1189/jlb.0406256] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
PGE(2) and other cAMP-elevating agents are known to down-regulate most functions stimulated by fMLP in human polymorphonuclear neutrophils. We reported previously that the inhibitory potential of PGE(2) resides in its capacity to suppress fMLP-stimulated PI-3Kgamma activation via the PGE(2) receptor EP(2) and hence, to decrease phosphatidylinositol 3,4,5-triphosphate [PI(3,4,5)P(3)] formation. Akt activity is stimulated by fMLP through phosphorylation on threonine 308 (Thr308) and serine 473 (Ser473) by 3-phosphoinositide-dependent kinase 1 (PDK1) and MAPK-AP kinase (APK)-APK-2 (MAPKAPK-2), respectively, in a PI-3K-dependent manner. Despite the suppression of fMLP-induced PI-3Kgamma activation observed in the presence of PGE(2), we show that Akt is fully phosphorylated on Thr308 and Ser473. However, fMLP-induced Akt translocation is decreased markedly in this context. PGE(2) does not affect the phosphorylation of MAPKAPK-2 but decreases the translocation of PDK1 induced by fMLP. Other cAMP-elevating agents such as adenosine (Ado) similarly block the fMLP-induced PI-3Kgamma activation process but do not inhibit Akt phosphorylation. However, Akt activity stimulated by fMLP is down-regulated slightly by agonists that elevate cAMP levels. Whereas protein kinase A is not involved in the maintenance of Akt phosphorylation, it is required for the inhibition of Akt translocation by PGE(2). Moreover, inhibition of fMLP-stimulated PI-3Kdelta activity by the selective inhibitor IC87114 only partially affects the late phase of Akt phosphorylation in the presence of PGE(2). Taken together, these results suggest that cAMP-elevating agents, such as PGE(2) or Ado, are able to induce an alternative mechanism of Akt activation by fMLP in which the translocation of Akt to PI(3,4,5)P(3)-enriched membranes is not required prior to its phosphorylation.
Collapse
Affiliation(s)
- Chantal Burelout
- Centre de Recherche en Rhumatologie-Immunologie, Centre de Recherche du CHUL, 2705 Boul. Laurier, Room T1-49, Sainte-Foy, Québec, Canada G1V 4G2
| | | | | |
Collapse
|
45
|
Aronoff DM, Carstens JK, Chen GH, Toews GB, Peters-Golden M. Short communication: differences between macrophages and dendritic cells in the cyclic AMP-dependent regulation of lipopolysaccharide-induced cytokine and chemokine synthesis. J Interferon Cytokine Res 2006; 26:827-33. [PMID: 17115901 DOI: 10.1089/jir.2006.26.827] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cyclic adenosine monophosphate (cAMP) is an intracellular signaling molecule responsible for directing cellular responses to extracellular signals. Once believed to signal exclusively through its ability to bind protein kinase A (PKA), recent research has revealed alternative cAMP-binding targets involved in PKA-independent processes. In this study we addressed the hypothesis that the guanine nucleotide exchange protein directly activated by cAMP (Epac-1) and PKA differentially regulate inflammatory mediator production in distinct phagocytic cell types. To accomplish this, we compared the release of cAMP-regulated polypeptide inflammatory mediators in both macrophages (obtained from the lung and peritoneum) and bone marrow-derived dendritic cells (DCs) stimulated with bacterial endotoxin. Using the highly selective Epac-1 and PKA activating cAMP analogs 8-pCPT-2 -O-Me-cAMP and 6-Bnz-cAMP, respectively, we found that macrophages differ from DCs in the involvement of these distinct cAMP pathways in modulating inflammatory mediator release in response to endotoxin. Whereas the regulation of cytokine and chemokine production in macrophages by cAMP was solely dependent on PKA, we found that both Epac-1 and PKA activation could regulate mediator production in DCs. This finding may be important in the pharmacologic regulation of immune responses through manipulation of cAMP signaling cascades and contributes to our understanding of the differences between these cell types.
Collapse
Affiliation(s)
- David M Aronoff
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA.
| | | | | | | | | |
Collapse
|
46
|
|
47
|
Rådmark O, Samuelsson B. Regulation of 5-lipoxygenase enzyme activity. Biochem Biophys Res Commun 2005; 338:102-10. [PMID: 16122704 DOI: 10.1016/j.bbrc.2005.08.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Accepted: 08/04/2005] [Indexed: 11/27/2022]
Abstract
In this article, regulation of human 5-lipoxygenase enzyme activity is reviewed. First, structural properties and enzyme activities are described. This is followed by the activating factors: Ca2+, membranes, ATP, and lipid hydroperoxide. Also, studies on phosphorylation of 5-lipoxygenase and nuclear localization sequences are reviewed.
Collapse
Affiliation(s)
- Olof Rådmark
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, S-17177 Stockholm, Sweden.
| | | |
Collapse
|
48
|
Bedetti C, Cantafora A. Extraction and purification of arachidonic acid metabolites from cell cultures. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2005; 35:47-81. [PMID: 3113186 DOI: 10.1007/bfb0004426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
49
|
Fischer L, Poeckel D, Buerkert E, Steinhilber D, Werz O. Inhibitors of actin polymerisation stimulate arachidonic acid release and 5-lipoxygenase activation by upregulation of Ca2+ mobilisation in polymorphonuclear leukocytes involving Src family kinases. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1736:109-19. [PMID: 16126002 DOI: 10.1016/j.bbalip.2005.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 07/13/2005] [Accepted: 07/27/2005] [Indexed: 12/30/2022]
Abstract
Here, we show that actin polymerisation inhibitors such as latrunculin B (LB), and to a minor extent also cytochalasin D (Cyt D), enhance the release of arachidonic acid (AA) as well as nuclear translocation of 5-lipoxygenase (5-LO) and 5-LO product synthesis in human polymorphonuclear leukocytes (PMNL), challenged with thapsigargin (TG) or N-formyl-methionyl-leucyl-phenylalanine. The concentration-dependent effects of LB (EC50 approximately 200 nM) declined with prolonged preincubation (>3 min) prior TG and were barely detectable when PMNL were stimulated with Ca2+-ionophores. Investigation of the stimulatory mechanisms revealed that LB (or Cyt D) elicits Ca2+ mobilisation and potentiates stimulus-induced elevation of intracellular Ca2+, regardless of the nature of the stimulus. LB caused rapid but only moderate activation of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK)2. The selective Src family kinase inhibitors PP2 and SU6656 blocked LB- or Cyt D-mediated Ca2+ mobilisation and suppressed the upregulatory effects on AA release and 5-LO product synthesis, without affecting AA metabolism evoked by ionophore alone. We conclude that in PMNL, inhibitors of actin polymerisation cause enhancement of intracellular Ca2+ levels through Src family kinase signaling, thereby facilitating stimulus-induced release of AA and 5-LO product formation.
Collapse
Affiliation(s)
- Lutz Fischer
- Institute of Pharmaceutical Chemistry, University of Frankfurt, Marie-Curie Strasse 9, D-60439 Frankfurt, Germany
| | | | | | | | | |
Collapse
|
50
|
Luo M, Jones SM, Flamand N, Aronoff DM, Peters-Golden M, Brock TG. Phosphorylation by protein kinase a inhibits nuclear import of 5-lipoxygenase. J Biol Chem 2005; 280:40609-16. [PMID: 16230355 DOI: 10.1074/jbc.m507045200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The enzyme 5-lipoxygenase initiates the synthesis of leukotrienes from arachidonic acid. Protein kinase A phosphorylates 5-lipoxygenase on Ser(523), and this reduces its activity. We report here that phosphorylation of Ser(523) also shifts the subcellular distribution of 5-lipoxygenase from the nucleus to the cytoplasm. Phosphorylation and redistribution of 5-lipoxygenase could be produced by overexpression of the protein kinase A catalytic subunit alpha, by pharmacological activators of protein kinase A, and by prostaglandin E(2). Mimicking phosphorylation by replacing Ser(523) with glutamic acid caused cytoplasmic localization; replacement of Ser(523) with alanine prevented phosphorylation and redistribution in response to protein kinase A activation. Because Ser(523) is positioned within the nuclear localization sequence-518 of 5-lipoxygenase, the ability of protein kinase A to phosphorylate and alter the localization of green fluorescent protein fused to the nuclear localization sequence-518 peptide was also tested. Site-directed replacement of Ser(523) with glutamic acid within the peptide impaired nuclear accumulation; overexpression of the protein kinase A catalytic subunit alpha and pharmacological activation of protein kinase caused phosphorylation of the fusion protein at Ser(523), and the phosphorylated protein was found chiefly in the cytoplasm. Taken together, these results indicate that phosphorylation of Ser(523) inhibits the nuclear import function of a nuclear localization sequence, resulting in the accumulation of 5-lipoxygenase enzyme in the cytoplasm. As cytoplasmic localization can be associated with reduced leukotriene synthetic capacity, phosphorylation of Ser(523) serves to inhibit leukotriene production by both impairing catalytic activity and by placing the enzyme in a site that is unfavorable for action.
Collapse
Affiliation(s)
- Ming Luo
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | |
Collapse
|