1
|
Vibert YM, Ashraf QM, Mishra OP, Delivoria-Papadopoulos M. Mechanism of Ca2+-influx and Ca2+/calmodulin-dependent protein kinase IV activity during in utero hypoxia in cerebral cortical neuronal nuclei of the guinea pig fetus at term. Neurosci Lett 2008; 440:227-31. [PMID: 18571321 DOI: 10.1016/j.neulet.2008.05.095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 05/22/2008] [Accepted: 05/24/2008] [Indexed: 10/22/2022]
Abstract
Previously we showed that following hypoxia there is an increase in nuclear Ca(2+)-influx and Ca(2+)/calmodulin-dependent protein kinase IV activity (CaMK IV) in the cerebral cortex of term guinea pig fetus. The present study tests the hypothesis that clonidine administration will prevent hypoxia-induced increased neuronal nuclear Ca(2+)-influx and increased CaMK IV activity, by blocking high-affinity Ca(2+)-ATPase. Studies were conducted in 18 pregnant guinea pigs at term, normoxia (Nx, n=6), hypoxia (Hx, n=6) and clonidine with Hx (Hx+Clo, n=6). The pregnant guinea pig was exposed to a decreased FiO(2) of 0.07 for 60 min. Clonidine, an imidazoline inhibitor of high-affinity Ca(2+)-ATPase, was administered 12.5 microg/kg IP 30 min prior to hypoxia. Hypoxia was determined biochemically by ATP and phosphocreatine (PCr) levels. Nuclei were isolated and ATP-dependent (45)Ca(2+)-influx was determined. CaMK IV activity was determined by (33)P-incorporation into syntide 2 for 2 min at 37 degrees C in a medium containing 50mM HEPES (pH 7.5), 2mM DTT, 40muM syntide 2, 0.2mM (33)P-ATP, 10mM magnesium acetate, 5 microM PKI 5-24, 2 microM PKC 19-36 inhibitor peptides, 1 microM microcystine LR, 200 microM sodium orthovanadate and either 1mM EGTA (for CaMK IV-independent activity) or 0.8mM CaCl(2) and 1mM calmodulin (for total activity). ATP (mumoles/gbrain) values were significantly different in the Nx (4.62+/-0.2), Hx (1.65+/-0.2, p<0.05 vs. Nx), and Hx+Clo (1.92+/-0.6, p<0.05 vs. Nx). PCr (mumoles/g brain) values in the Nx (3.9+/-0.1), Hx (1.10+/-0.3, p<0.05 vs. Nx), and Hx+Clo (1.14+/-0.3, p<0.05 vs. Nx). There was a significant difference between nuclear Ca(2+)-influx (pmoles/mg protein/min) in Nx (3.98+/-0.4), Hx (10.38+/-0.7, p<0.05 vs. Nx), and Hx+Clo (7.35+/-0.9, p<0.05 vs. Nx, p<0.05 vs. Hx), and CaM KIV (pmoles/mg protein/min) in Nx (1314.00+/-195.4), Hx (2315.14+/-148.5, p<0.05 vs. Nx), and Hx+Clo (1686.75+/-154.3, p<0.05 vs. Nx, p<0.05 vs. Hx). We conclude that the mechanism of hypoxia-induced increased nuclear Ca(2+)-influx is mediated by high-affinity Ca(2+)-ATPase and that CaMK IV activity is nuclear Ca(2+)-influx-dependent. We speculate that hypoxia-induced alteration of high-affinity Ca(2+)-ATPase is a key step that triggers nuclear Ca(2+)-influx, leading to CREB protein-mediated increased expression of apoptotic proteins and hypoxic neuronal death.
Collapse
Affiliation(s)
- Yanick M Vibert
- Department of Pediatrics, Drexel University College of Medicine and St. Christopher's Hospital for Children, Philadelphia, PA 19102, United States.
| | | | | | | |
Collapse
|
2
|
Bala S, Kumar A, Soni S, Sinha S, Hanspal M. Emp is a component of the nuclear matrix of mammalian cells and undergoes dynamic rearrangements during cell division. Biochem Biophys Res Commun 2006; 342:1040-8. [PMID: 16510120 DOI: 10.1016/j.bbrc.2006.02.060] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Accepted: 02/10/2006] [Indexed: 11/29/2022]
Abstract
Emp, originally detected in erythroblastic islands, is expressed in numerous cell types and tissues suggesting a functionality not limited to hematopoiesis. To study the function of Emp in non-hematopoietic cells, an epitope-tagged recombinant human Emp was expressed in HEK cells. Preliminary studies revealed that Emp partitioned into both the nuclear and Triton X-100-insoluble cytoskeletal fractions in approximately a 4:1 ratio. In this study, we report investigations of Emp in the nucleus. Sequential extractions of interphase nuclei showed that recombinant Emp was present predominantly in the nuclear matrix. Immunofluorescence microscopy showed that Emp was present in typical nuclear speckles enriched with the spliceosome assembly factor SC35 and partially co-localized with actin staining. Coimmunoprecipitation and GST-pull-down assays confirmed the apparent close association of Emp with nuclear actin. During mitosis, Emp was detected at the mitotic spindle/spindle poles, as well as in the contractile ring during cytokinesis. These results suggest that Emp undergoes dynamic rearrangements within the nuclear architecture that are correlated with cell division.
Collapse
Affiliation(s)
- Shashi Bala
- Center of Cell Biology, Department of Medicine, Caritas St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA 02135, USA
| | | | | | | | | |
Collapse
|
3
|
Lund LM, McQuarrie IG. Calcium/calmodulin-dependent protein kinase IIbeta isoform is expressed in motor neurons during axon outgrowth and is part of slow axonal transport. J Neurosci Res 2002; 67:720-8. [PMID: 11891785 DOI: 10.1002/jnr.10162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Previously, we identified calcium/calmodulin-dependent protein kinase IIbeta (CaMKIIbeta) mRNA in spinal motor neurons with 372 bp inserted in what corresponds to the "association" domain of the protein. This was interesting because known additions and deletions to CaMKIIbeta mRNA are usually less than 100 bp in size and found in the "variable" region. Changes in the association domain of CaMKIIbeta could influence substrate specificity, activity or intracellular targeting. We show that three variations of this insert are found in CNS neurons or sciatic motor neurons of Sprague-Dawley rats. We used PCR and nucleic acid sequencing to identify inserts of 114, 243, or 372 bases. We also show that addition of the 372 bases is associated with outgrowth of the axon (the standard CaMKIIbeta downregulates when axon outgrowth occurs). Radiolabeling, immunoblots, and 2D PAGE identified this larger CaMKIIbeta as part of the group of soluble proteins moving at the slowest rate of axonal transport (SCa) in sciatic motor neurons (similar1 mm/day). This group is composed mainly of structural proteins (e.g., tubulin) used to assemble the cytoskeleton of regrowing axons.
Collapse
|
4
|
Laabich A, Li G, Cooper NG. Calcium/calmodulin-dependent protein kinase II containing a nuclear localizing signal is altered in retinal neurons exposed to N-methyl-D-aspartate. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 76:253-65. [PMID: 10762700 DOI: 10.1016/s0169-328x(00)00006-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
This study investigated N-methyl-D-aspartate (NMDA) mediated cell death and its possible regulation by calcium/calmodulin-dependent protein kinase II (CaMKII) in the adult rat retina. To investigate cell death, the terminal deoxyribonucleotidyltransferase (TdT)-mediated biotin-16-dUTP nick-end labelling (TUNEL) method was used to detect fragmented DNA in fixed tissue sections of rat retina. The TUNEL assay confirmed that apoptosis occurs in the inner nuclear layer (INL) and ganglion cell layer (GCL) following NMDA injection. The level of antibody binding to CaMKII-alpha, the activity of CaMKII, and the mRNA level for the alpha(B) subunit of CaMKII were found to be elevated for short time periods (30 min, 2 h) after a single intravitreal injection of NMDA. In contrast to this, there was a decrease in CaMKII activity and in the CaMKII-alpha(B) mRNA levels at longer time periods (24 h) following injection of NMDA. These effects were specific for the mRNA for the alpha(B) subunit, an alternatively spliced product of the CaMKII-alpha gene, that contains a nuclear localizing signal (NLS) known to target this protein to the nucleus. It is suggested that regulated expression of CaMKII-alpha(B) could be involved in the NMDA-mediated cell death in retinal neurons.
Collapse
Affiliation(s)
- A Laabich
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | | | | |
Collapse
|
5
|
Solà C, Tusell JM, Serratosa J. Comparative study of the distribution of calmodulin kinase II and calcineurin in the mouse brain. J Neurosci Res 1999. [DOI: 10.1002/(sici)1097-4547(19990901)57:5<651::aid-jnr7>3.0.co;2-g] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Lund LM, McQuarrie IG. Calcium/calmodulin-dependent protein kinase II expression in motor neurons: effect of axotomy. JOURNAL OF NEUROBIOLOGY 1997; 33:796-810. [PMID: 9369152 DOI: 10.1002/(sici)1097-4695(19971120)33:6<796::aid-neu7>3.0.co;2-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Although Ca2+/calmodulin-dependent (CaM) protein kinase II isoforms are present in the nervous system in high amounts, many aspects of in vivo expression, localization, and function remain unexplored. During development, CaM kinase IIalpha and IIbeta are differentially expressed. Here, we examined CaM kinase II isoforms in Sprague-Dawley rat sciatic motor neurons before and after axotomy. We cut the L4-5 spinal nerves unilaterally and exposed the proximal nerve stumps to a fluoroprobe, to retrogradely label the neurons of origin. Anti-CaM kinase IIbeta antibody showed immunoreactivity in motor neurons, which decreased to low levels by 4 days after axotomy. We found a similar response by in situ hybridization with riboprobes. The decrease in expression of mRNA and protein was confined to fluorescent motor neurons. For CaM kinase IIalpha, in situ hybridization showed that the mRNA was in sciatic motor neurons, with a density unaffected by axotomy. However, these neurons were also enlarged, suggesting an up-regulation of expression. Northern blots confirmed an mRNA increase. We were unable to find CaM kinase IIalpha immunoreactivity before or after axotomy in sciatic motor neuron cell bodies, suggesting that CaM kinase IIalpha is in the axons or dendrites, or otherwise unavailable to the antibody. Using rats with crush lesions, we radiolabeled axonal proteins being synthesized in the cell body and used two-dimensional polyacrylamide gel electrophoresis with Western blots to identify CaM kinase IIalpha as a component of slow axonal transport. This differential regulation and expression of kinase isoforms suggests separate and unique intracellular roles. Because we find CaM kinase IIbeta down-regulates during axonal regrowth, its role in these neurons may be related to synaptic transmission. CaM kinase IIalpha appears to support axonal regrowth.
Collapse
Affiliation(s)
- L M Lund
- VA Medical Center, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
7
|
Overexpression of Ca2+/calmodulin-dependent protein kinase II in PC12 cells alters cell growth, morphology, and nerve growth factor-induced differentiation. J Neurosci 1997. [PMID: 8994047 DOI: 10.1523/jneurosci.17-03-00924.1997] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To examine the role of Ca2+/calmodulin-dependent protein kinase II (CaMKII) in cell differentiation and neuronal functions, stable transformants of PC12 cells were established that expressed levels of the alpha-subunit of CaMKII (alpha CaMKII) equivalent to mammalian neurons. The expression of the transfected alpha CaMKII gene or the endogenous beta CaMKII gene was monitored by RNase protection assays, and alpha CaMKII protein expression was determined by Western blots. Several PC12-derived clones expressed amounts of alpha CaMKII mRNA and alpha CaMKII protein similar to that of hippocampal tissues and several orders of magnitude greater than untransfected PC12 cells. CaMKII catalytic activity was four times higher in extracts from alpha CaMKII-overexpressing compared with untransfected PC12 cells. All clones overexpressing alpha CaMKII displayed altered cellular growth and adhesion properties including increased cell-to-substrate adhesion, decreased cell-to-cell adhesion, enhanced contact inhibition, and prolonged survival at confluency. Furthermore, the alpha CaMKII activity in overexpressing PC12 cells inhibited neurite elongation during NGF-induced differentiation. Inhibition of CaMKII activity in vivo with KN-62 caused the morphological phenotypes of alpha CaMKII-overexpressing cells to partially revert to that of untransfected PC12 cells. These results show that alpha CaMKII catalytic activity affects growth, morphology, and NGF-induced differentiation of PC12 cells.
Collapse
|
8
|
Massé T, Kelly PT. Overexpression of Ca2+/calmodulin-dependent protein kinase II in PC12 cells alters cell growth, morphology, and nerve growth factor-induced differentiation. J Neurosci 1997; 17:924-31. [PMID: 8994047 PMCID: PMC6573171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
To examine the role of Ca2+/calmodulin-dependent protein kinase II (CaMKII) in cell differentiation and neuronal functions, stable transformants of PC12 cells were established that expressed levels of the alpha-subunit of CaMKII (alpha CaMKII) equivalent to mammalian neurons. The expression of the transfected alpha CaMKII gene or the endogenous beta CaMKII gene was monitored by RNase protection assays, and alpha CaMKII protein expression was determined by Western blots. Several PC12-derived clones expressed amounts of alpha CaMKII mRNA and alpha CaMKII protein similar to that of hippocampal tissues and several orders of magnitude greater than untransfected PC12 cells. CaMKII catalytic activity was four times higher in extracts from alpha CaMKII-overexpressing compared with untransfected PC12 cells. All clones overexpressing alpha CaMKII displayed altered cellular growth and adhesion properties including increased cell-to-substrate adhesion, decreased cell-to-cell adhesion, enhanced contact inhibition, and prolonged survival at confluency. Furthermore, the alpha CaMKII activity in overexpressing PC12 cells inhibited neurite elongation during NGF-induced differentiation. Inhibition of CaMKII activity in vivo with KN-62 caused the morphological phenotypes of alpha CaMKII-overexpressing cells to partially revert to that of untransfected PC12 cells. These results show that alpha CaMKII catalytic activity affects growth, morphology, and NGF-induced differentiation of PC12 cells.
Collapse
Affiliation(s)
- T Massé
- Immuno-Virologie Moleculaire et Cellulaire, Centre National de la Recherche Scientifique-UMR 5537, Faculte de Medecine Lyon-Laënnec, France
| | | |
Collapse
|
9
|
de Cárcer G, Lallena MJ, Correas I. Protein 4.1 is a component of the nuclear matrix of mammalian cells. Biochem J 1995; 312 ( Pt 3):871-7. [PMID: 8554533 PMCID: PMC1136195 DOI: 10.1042/bj3120871] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Protein 4.1 is a major component of the erythrocyte membrane skeleton that promotes the interaction of spectrin with actin and links the resulting complex network to integral membrane proteins. Here we analyse the distribution of different 4.1 proteins within the nucleus of mammalian cells. Nuclear matrices have been prepared from Madin-Darby canine kidney (MDCK) and HeLa cells and protein fractions isolated at each step of the purifications have been analysed by immunoblotting using characterized polyclonal antibodies against protein 4.1. Two 4.1 polypeptides of M(r) approximately 135,000 and 175,000 are extracted after DNase I digestion and 0.25 M ammonium sulphate treatments, suggesting that they may be associated with chromatin. Interestingly, nuclear matrices isolated after DNase I digestion and sequential treatments with increasing ionic strength contain a third 4.1 polypeptide of M(r) approximately 75,000 (4.1p75), suggesting that it is a component of the nuclear matrix. Immunoblot analyses of nuclear matrices isolated from different cell types and species indicate that 4.1p75 is a common element of the nuclear matrix of mammalian cells. Moreover, 4.1p75 distributes to typical nuclear speckles which are enriched with the spliceosome assembly factor SC35, as revealed by double-label immunofluorescence analyses. Protein 4.1p75 might be an anchoring element of the nucleoskeleton, playing a role similar to that described for the erythroid protein 4.1 in red blood cells.
Collapse
Affiliation(s)
- G de Cárcer
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, Spain
| | | | | |
Collapse
|
10
|
Schulman H, Heist K, Srinivasan M. Decoding Ca2+ signals to the nucleus by multifunctional CaM kinase. PROGRESS IN BRAIN RESEARCH 1995; 105:95-104. [PMID: 7568901 DOI: 10.1016/s0079-6123(08)63287-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Multifunctional Ca2+/calmodulin-dependent protein kinase (CaM kinase) is one of the major protein kinases coordinating cellular responses to neurotransmitters and hormones. CaM kinase transduces changes in intracellular free Ca2+ into changes in the phosphorylation state and activity of target proteins involved in neurotransmitter synthesis and release, neuronal plasticity and gene expression. Structure/function analyses of the kinase reveal the kinase is kept inactive in its basal state by a regulatory domain that is displaced by the binding of Ca2+/calmodulin. Once activated by Ca2+/calmodulin, autophosphorylation occurs if a pair of proximate subunits of the decameric kinase have calmodulin bound. The frequency of Ca2+ oscillations or spikes may be decoded by CaM kinase via this autophosphorylation. Calmodulin is essentially trapped by autophosphorylation which converts CaM kinase into a high affinity calmodulin-binding protein. Repetitive stimulation of the kinase may promote recruitment of calmodulin to the kinase so that it becomes increasingly active with each stimulus in a frequency-dependent manner. The association domain at the C-terminal end of CaM kinase contains a variable region that targets isoforms of the kinase to the nucleus or cytoskeleton and assembles the kinase into a decameric structure. Alternative splicing introduces a short nuclear localization signal that targets transfected kinase to the nucleus where it may regulate nuclear functions. The regulatory properties of CaM kinase provide for molecular potentiation of Ca2+ signals and frequency detection whereas its association domain should enable it to decode such Ca2+ fluctuations in the nucleus.
Collapse
Affiliation(s)
- H Schulman
- Department of Neurobiology, Stanford University School of Medicine, CA 94305-5401, USA
| | | | | |
Collapse
|
11
|
Srinivasan M, Edman CF, Schulman H. Alternative splicing introduces a nuclear localization signal that targets multifunctional CaM kinase to the nucleus. J Cell Biol 1994; 126:839-52. [PMID: 7519621 PMCID: PMC2120112 DOI: 10.1083/jcb.126.4.839] [Citation(s) in RCA: 214] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Intracellular targeting may enable protein kinases with broad substrate-specificities, such as multifunctional Ca2+/calmodulin-dependent protein kinase (CaM kinase) to achieve a selectivity of action in vivo. We have examined the intracellular targeting of three delta-CaM kinase isoforms. The delta B-CaM kinase isoform is targeted to the nucleus in transfected cells while the delta A- and delta C-CaM kinase isoforms are cytosolic/cytoskeletal. A chimeric construct of alpha-CaM kinase containing the delta B-CaM kinase variable domain is rerouted to the nucleus while the native alpha-CaM kinase and chimeras of alpha-CaM kinase which contain the delta A- or delta C-CaM kinase variable domains are retained in the cytoplasm. Using site-directed mutagenesis, we have defined a nuclear localization signal (NLS) within an 11-amino acid sequence, likely inserted by alternative splicing, in the variable domain of delta B-CaM kinase. Isoform-specific nuclear targeting of CaM kinase is probably a key mechanism in the selective regulation of nuclear functions by CaM kinase. CaM kinase is a multimer that can be composed of several isoforms. We find that when cells express two different isoforms of CaM kinase, cellular targeting is determined by the ratio of the isoforms. When an excess of the cytoplasmic isoform of CaM kinase is coexpressed along with the nuclear isoform, both isoforms are localized in the cytoplasm. Conversely an excess of the nuclear isoform can reroute the cytoplasmic isoform to the nucleus. The nuclear isoform likely coassembles with the cytosolic isoform, to form a heteromultimeric holoenzyme which is transported into the nucleus. These experiments demonstrate isoform-specific targeting of CaM kinase and indicate that such targeting can be modified by the expression of multiple isoforms of the enzyme.
Collapse
Affiliation(s)
- M Srinivasan
- Department of Neurobiology, Stanford University School of Medicine, California 94305-5401
| | | | | |
Collapse
|
12
|
Colomer J, Agell N, Engel P, Bachs O. Expression of calmodulin and calmodulin binding proteins in lymphoblastoid cells. J Cell Physiol 1994; 159:542-50. [PMID: 8188768 DOI: 10.1002/jcp.1041590318] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Calmodulin is encoded in vertebrates by three different genes: CALM1, CALM2, and CALM3. We have examined the mRNAs expressed from these three genes in eight lines of human lymphoblastoid cells (Namalwa, Raji, Ramos, JY, Molt-4, Jurkat, CEM, and HPB-ALL). We found that all these cell lines (except Ramos) overexpressed CALM3 transcripts, which led to an increase of total CaM protein with respect to quiescent normal T lymphocytes. The nuclear concentration of calmodulin was measured in two of these lymphoblastoid cell lines (JY and HPB-ALL) and compared to quiescent and phytohemagglutinin-activated T lymphocytes. Activated lymphocytes showed a 2-fold increase of nuclear calmodulin with respect to quiescent cells, whereas in the two lymphoblastoid cell lines, nuclear calmodulin remained similar to that of quiescent cells. The levels of a calmodulin-binding protein of 150 kDa in the homogenates of the eight lymphoblastoid lines was found to be higher than those of quiescent and activated lymphocytes. Likewise, the amount of three calmodulin-binding proteins of 240, 200, and 170 kDa was also increased in several of the cell lines, but not in all of them. The 170-kDa protein was only expressed by activated lymphocytes and lymphoblastoid cells, suggesting that it could be specific for proliferating cells. In the nuclei of activated lymphocytes and lymphoblastoid cells, a decrease of a calmodulin-binding protein of 110 kDa and increases of three other of 240, 180 and 170 kDa were also detected.
Collapse
Affiliation(s)
- J Colomer
- Departament de Biologia Cellular, Facultat de Medicina, Universitat de Barcelona, Spain
| | | | | | | |
Collapse
|
13
|
Abstract
By using a 125I-calmodulin overlay assay, three major high-affinity calmodulin-binding proteins, showing apparent molecular masses of 135, 60, and 50 kDa, have been detected in purified nuclear fractions isolated from rat neurons. It has been shown that after extraction of the nuclei with nucleases and high salt, all these proteins remain strongly associated with the nuclear matrix. The 60- and 50-kDa proteins have been previously identified as subunits of the calmodulin-dependent protein kinase II. We report here the immunoblot identification of the 135-kDa calmodulin-binding protein as myosin light chain kinase. We also show that the calmodulin-dependent protein phosphatase calcineurin is present in the neuronal nuclei and associated with the nuclear matrix. The nuclear localization of both calcineurin and myosin light chain kinase has been confirmed by immunocytochemical studies.
Collapse
Affiliation(s)
- M J Pujol
- Departamento de Biología Celular, Universidad de Barcelona, Spain
| | | | | | | | | |
Collapse
|
14
|
Bastos R, Engel P, Pujades C, Falchetto R, Aligué R, Bachs O. Increase of cytokeratin D during liver regeneration: association with the nuclear matrix. Hepatology 1992; 16:1434-46. [PMID: 1280245 DOI: 10.1002/hep.1840160621] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An increase of a 45 kD protein (p45) in the nuclear matrix has been observed when rat liver cells were proliferatively activated in vivo by a partial hepatectomy. The maximal levels of the association of p45 with the nuclear matrix have been detected 24 hr after hepatectomy just at the time when DNA replication is also maximal. By amino acid sequence analysis, immunoblotting and immunocytochemical methods, it has been demonstrated that p45 is identical to rat cytokeratin D. Immunogold staining of nuclear matrix-intermediate filament preparations from cultured hepatocytes indicated that p45 is associated with cytoskeletal filaments that are strongly interconnected to the lamina, whereas no intranuclear localization of the protein has been detected. With an overlay assay a specific binding of labeled p45 to two nonidentified high-molecular weight proteins and also to lamin B has been observed. Northern blot analysis revealed a biphasic pattern of expression of the messenger RNA for cytokeratin D during liver regeneration. A sharp increase in the messenger RNA levels occurred in the prereplicative phase of liver regeneration a few hours before the accumulation of the protein in the nuclear matrix fraction, and a second peak occurred 48 hr after partial hepatectomy.
Collapse
Affiliation(s)
- R Bastos
- Departamento de Biología Celular, Facultad de Medicina, Universidad de Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
15
|
Rostas JA, Dunkley PR. Multiple forms and distribution of calcium/calmodulin-stimulated protein kinase II in brain. J Neurochem 1992; 59:1191-202. [PMID: 1328514 DOI: 10.1111/j.1471-4159.1992.tb08428.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- J A Rostas
- Neuroscience Group, Faculty of Medicine, University of Newcastle, New South Wales, Australia
| | | |
Collapse
|
16
|
Nickerson JA, Krockmalnic G, Wan KM, Turner CD, Penman S. A normally masked nuclear matrix antigen that appears at mitosis on cytoskeleton filaments adjoining chromosomes, centrioles, and midbodies. J Cell Biol 1992; 116:977-87. [PMID: 1734026 PMCID: PMC2289346 DOI: 10.1083/jcb.116.4.977] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
mAbs were generated against HeLa nuclear matrix proteins and one, HIB2, which selectively stained mitotic cells, was selected for further study. Western blot analysis showed H1B2 antibody detected a protein of 240 kD in the nuclear matrix fractions. The H1B2 antigen was completely masked in immunofluorescently stained interphase cells. However, removing chromatin with DNase I digestion and 0.25 M ammonium sulfate extraction exposed the protein epitope. The resulting fluorescence pattern was bright, highly punctate, and entirely nuclear. Further extraction of the nuclear matrix with 2 M NaCl uncovers an underlying, anastomosing network of 9-13 nm core filaments. Most of the H1B2 antigen was retained in the fibrogranular masses enmeshed in the core filament network and not in the filaments themselves. The H1B2 antigen showed remarkable behavior at mitosis. As cells approached prophase the antigen became unmasked to immunofluorescent staining without the removal of chromatin. First appearing as a bright spot, the antibody staining spread through the nucleus finally concentrating in the region around the condensed chromosomes. The antibody also brightly stained the spindle poles and, more weakly, in a punctate pattern in the cytoskeleton around the spindle. As the chromosomes separated at anaphase, H1B2 remained with the separating daughter sets of chromosomes. The H1B2 antigen returned to the reforming nucleus at telophase, but left a bright staining region in the midbody. Immunoelectron microscopy of resinless sections showed that, in the mitotic cell, the H1B2 antibody did not stain chromosomes and centrioles themselves, but decorated a fibrogranular network surrounding and connected to the chromosomes and a fibrogranular structure surrounding the centriole.
Collapse
Affiliation(s)
- J A Nickerson
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | | | | | | | |
Collapse
|
17
|
Nuclear and axonal localization of Ca2+/calmodulin-dependent protein kinase type Gr in rat cerebellar cortex. Proc Natl Acad Sci U S A 1991; 88:2850-3. [PMID: 2011593 PMCID: PMC51337 DOI: 10.1073/pnas.88.7.2850] [Citation(s) in RCA: 169] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The granule cell-enriched Ca2+/calmodulin-dependent protein kinase (CaM kinase-Gr) is a recently discovered neuron-specific enzyme. The kinase avidly phosphorylates synapsin I and contains a polyglutamate sequence, which suggests an association with chromatin as well. A possible role in synapsin I phosphorylation and in nuclear Ca2+ signaling was supported by immunochemical and ultrastructural examination of CaM kinase-Gr distribution. CaM kinase-Gr immunoreactivity was present in the molecular and granule cell layers of the rat cerebellum. This pattern corresponded to the occurrence of the enzyme in the granule cell axons and nuclei, respectively. Immunoblots confirmed these findings. Thus, CaM kinase-Gr may mediate and coordinate Ca2(+)-signaling within different subcellular compartments.
Collapse
|
18
|
Lozano F, Alberola-Ila J, Places L, Gallart T, Vives J. Phosphorylation-mediated changes in the electrophoretic mobility of CD5 molecules. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 193:469-77. [PMID: 1699760 DOI: 10.1111/j.1432-1033.1990.tb19361.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This work shows that tumor promoter agents (TPA) induce the post-translational modification of the human lymphocyte surface CD5 antigen (Tp67) in several cellular types. Treatment of [32P]orthophosphate- and [35S]cysteine-labeled normal and lymphoblastoid T and B cells with active tumor promoters induced the rapid, transitory and dose-dependent appearance of hyperphosphorylated CD5 forms with higher apparent molecular masses. These changes in the electrophoretic mobility of CD5 molecules were independent of RNA and protein synthesis, as well as of differences in neuraminic acid content. The inhibition of the TPA-mediated changes by protein kinase C inhibitors (staurosporine and 1-(5-isoquinolylsulfonyl)-2-methylpiperazine) indicated its protein-kinase-C-mediated nature. Phosphatase digestion of CD5 immunoprecipitates reverted the TPA-mediated mobility changes showing its dependence on phosphorylation. Neuraminidase digestion of intact cells revealed that the target of the TPA effects are surface-expressed CD5 molecules. In conclusion, we suggest that the heterogeneity in the electrophoretic mobility induced by TPA could reflect some structural and/or functional differences within CD5 molecules.
Collapse
Affiliation(s)
- F Lozano
- Servei d'Immunologia, Hospital Clinic i Provincial de Barcelona, Spain
| | | | | | | | | |
Collapse
|
19
|
Sunyer T, Sahyoun N. Sequence analysis and DNA-protein interactions within the 5' flanking region of the Ca2+/calmodulin-dependent protein kinase II alpha-subunit gene. Proc Natl Acad Sci U S A 1990; 87:278-82. [PMID: 2153289 PMCID: PMC53246 DOI: 10.1073/pnas.87.1.278] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The 5' flanking region of the brain Ca2+/calmodulin-dependent protein kinase II alpha-subunit gene was identified and characterized. A total of 430 bases was sequenced upstream from the translation initiation codon, and the site of transcription initiation was located at -149 or -147 bases as determined by primer extension and S1 nuclease protection analysis, respectively. TATA and CAAT boxes were absent from their standard positions; however, the 5' flanking region was rich in G + C and contained a GGGCG and a TATATAA sequence 76 and 160 bases upstream from the transcription initiation site, respectively. Moreover, the sequence CAACGG was found 85 and 146 bases upstream from this site, indicating presumptive binding sites for the Myb protein. Gel-mobility shift assays revealed that a 120-base-pair fragment, which included the G + C-rich, TATA, and CAACGG sequences bound nuclear proteins specifically. DNA-protein complexes with similar gel mobilities were obtained with nuclear extracts from rat forebrain or cerebellum and from neonatal or adult brains. Extracts from rat liver, kidney, and spleen generated specific DNA-protein complexes with different electrophoretic mobilities, suggesting the occurrence of different nuclear proteins that bind to 5' regulatory elements of the Ca2+/calmodulin-dependent kinase II alpha-subunit gene.
Collapse
Affiliation(s)
- T Sunyer
- Cell Biology Division, Wellcome Research Laboratories, Research Triangle Park, NC 27709
| | | |
Collapse
|
20
|
Roberts-Lewis JM, Cimino M, Krause RG, Tyrrell DF, Davis LG, Weiss B, Lewis ME. Anatomical localization of calmodulin mRNA in the rat brain with cloned cDNA and synthetic oligonucleotide probes. Synapse 1990; 5:247-54. [PMID: 2343377 DOI: 10.1002/syn.890050311] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Calmodulin is a small, acidic calcium-binding protein that regulates a number of calcium-dependent enzyme activities and is thought to be involved in neurotransmission. To begin to explore further the regulation of this important protein in the brain, we have cloned a rat calmodulin cDNA and designed an oligonucleotide probe based on this sequence. Both the cDNA and oligonucleotide probes revealed a markedly heterogeneous distribution of hybridization signal for calmodulin mRNA in the rat brain. The greatest apparent abundance of mRNA for calmodulin was seen in the hippocampus and cerebral cortex, whereas many brain regions showed relatively low hybridization signal, including the striatum and portions of the hypothalamus and brainstem.
Collapse
Affiliation(s)
- J M Roberts-Lewis
- Department of Pharmacology, Medical College of Pennsylvania, Eastern Pennsylvania Psychiatric Institute, Philadelphia 19129
| | | | | | | | | | | | | |
Collapse
|
21
|
Colbran RJ, Soderling TR. Calcium/calmodulin-dependent protein kinase II. CURRENT TOPICS IN CELLULAR REGULATION 1990; 31:181-221. [PMID: 2173993 DOI: 10.1016/b978-0-12-152831-7.50007-x] [Citation(s) in RCA: 123] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
There is a great deal known about the in vitro properties of CaM kinase II, both in terms of its substrate specificity and its regulation by calmodulin and autophosphorylation. Much of this characterization is based on experiments performed with the rat brain isozyme of CaM kinase II, although in the aspects examined to date isozymes of the kinase from other tissues appear to behave in a broadly similar manner in vitro. However, relatively little is known about the functions of the kinase in vivo. The proteins phosphorylated by the kinase (with the probable exception of synapsin I and tyrosine hydroxylase) and the role of kinase autophosphorylation in vivo remain largely unknown. Investigation of the physiological role of the kinase in brain and other tissues will be a particularly exciting area for future work. The current knowledge of the in vitro properties and the availability of cDNA clones will hopefully expedite this research.
Collapse
Affiliation(s)
- R J Colbran
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | | |
Collapse
|
22
|
Rostas JAP, Brent VA, Seccombe M, Weinberger RP, Dunkley PR. Purification and characterization of calmodulin-stimulated protein kinase II from two-day and adult chicken forebrain. J Mol Neurosci 1989. [DOI: 10.1007/bf02918895] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Yamamoto H, Maeda N, Niinobe M, Miyamoto E, Mikoshiba K. Phosphorylation of P400 protein by cyclic AMP-dependent protein kinase and Ca2+/calmodulin-dependent protein kinase II. J Neurochem 1989; 53:917-23. [PMID: 2547906 DOI: 10.1111/j.1471-4159.1989.tb11792.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Purified P400 protein was phosphorylated by both purified Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) and the catalytic subunit of cyclic AMP-dependent protein kinase (A-kinase). Because P400 protein was suggested to function as an integral membrane protein, we investigated the phosphorylation of P400 protein using crude mitochondrial and microsomal fractions (P2/P3 fraction). Incubation of the P2/P3 fraction from mouse cerebellum with cyclic AMP or the catalytic subunit of A-kinase stimulated the phosphorylation of P400 protein. The phosphorylation of P400 protein was not observed in the P2/P3 fraction from mouse forebrain. Cyclic AMP and A-kinase enhanced the phosphorylation of several proteins, including P400 protein, suggesting that P400 protein is one of the best substrates for A-kinase in the P2/P3 fraction. Although endogenous and exogenous CaM kinase II stimulated the phosphorylation of some proteins in the P2/P3 fraction, the phosphorylation of P400 protein was weak. Immunoprecipitation with the monoclonal antibody to P400 protein confirmed that the P400 protein itself was definitely phosphorylated by the catalytic subunit of A-kinase and CaM kinase II. A-kinase phosphorylated only the seryl residue in P400 protein. Immunoblot analysis of the cells in primary culture of mouse cerebellum confirmed the expression of P400 protein, which migrated at the same position on sodium dodecyl sulfate-polyacrylamide gel electrophoresis as that in the P2/P3 fraction. Incubation of the cultured cerebellar cells with [32P]orthophosphate resulted in the labeling of P400 protein.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- H Yamamoto
- Department of Pharmacology, Kumamoto University Medical School, Japan
| | | | | | | | | |
Collapse
|
24
|
Rostas JA, Brent VA, Seccombe M, Weinberger RP, Dunkley PR. Purification and characterization of calmodulin-stimulated protein kinase II from two-day and adult chicken forebrain. J Mol Neurosci 1989; 1:93-104. [PMID: 2561876 DOI: 10.1007/bf02896893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Soluble calmodulin-stimulated protein kinase II has been purified from 2-day and adult chicken forebrain. At both ages the holoenzyme eluted from a Superose-6B column with an apparent molecular weight of approximately 700,000 daltons and contained three subunits. The subunits were found to be the counterparts of the alpha, beta, and beta' subunits of the enzyme purified from adult rat brain in that they had one-dimensional phosphopeptide maps that were indistinguishable from those of the corresponding subunit in the rat enzyme and they migrated in SDS-polyacrylamide gels with the same apparent molecular weights. However, the doublet formed by the beta subunit was much more clearly resolved in the chicken enzyme and the beta' subunit, which was much more abundant in the adult chicken than in the adult rat, was also found to be a doublet. The ratio of the concentrations of the alpha and beta subunits changed during development. By autoradiography following autophosphorylation, the alpha:beta ratios of the 2-day and adult enzymes were 0.89 +/- 0.07 and 1.92 +/- 0.26, respectively; by silver staining the alpha:beta ratios were 0.95 +/- 0.11 and 1.85 +/- 0.17, respectively. The concentration of the beta' subunit was equal to that of the beta subunit at both ages. Autophosphorylation produced a decrease in the electrophoretic mobility of the alpha and beta subunits in SDS-polyacrylamide gels and a marked decrease in the calcium dependence of the substrate phosphorylation activity of the enzyme at both ages. The purified enzyme from chicken brain appeared to be more stable under standard in vitro assay conditions than the rat enzyme, and this was particularly so for the enzyme from 2-day forebrain.
Collapse
Affiliation(s)
- J A Rostas
- Neuroscience Group, Faculty of Medicine, University of Newcastle, N.S.W., Australia
| | | | | | | | | |
Collapse
|
25
|
Ohmstede CA, Jensen KF, Sahyoun NE. Ca2+/Calmodulin-dependent Protein Kinase Enriched in Cerebellar Granule Cells. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)83630-4] [Citation(s) in RCA: 103] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
26
|
Loeffler JP, Kley N, Louis JC, Demeneix BA. Ca2+ regulates hormone secretion and proopiomelanocortin gene expression in melanotrope cells via the calmodulin and the protein kinase C pathways. J Neurochem 1989; 52:1279-83. [PMID: 2926401 DOI: 10.1111/j.1471-4159.1989.tb01876.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The mechanism by which Ca2+ regulates proopiomelanocortin (POMC)-derived peptide secretion and POMC mRNA levels was investigated in primary cultures of porcine intermediate lobe (IL) cells maintained in serum-free medium. POMC gene expression was evaluated by the dot blot hybridization assay with a 32P-labeled DNA probe complementary to the full-length sequence of porcine POMC mRNA. Treatment of IL cells for 24 h with the calmodulin (CAM) antagonists W7 and W13 reduced POMC mRNA levels by a maximum of 50% in a dose-dependent manner (ED50 approximately 10(-8) M). Accumulation of alpha-melanocyte-stimulating hormone (alpha-MSH) in the medium was also depressed by 50% after 8 h of treatment. The role of protein kinase C (PKC) was investigated by depleting the IL cell PKC content with phorbol ester treatment. Phorbol 12-myristate 13-acetate (PMA) at 5 X 10(-8) M induced a rapid translocation of cytoplasmic PKC activity toward the membrane. After 12 h of PMA treatment, PKC activity was undetectable in either the cytoplasmic or the particulate fractions. The same dose of PMA induced a time-dependent decrease in POMC mRNA levels (50% inhibition after 24 h). The same effect was seen with the phorbol ester phorbol 12,13-dibutyrate at 5 X 10(-8) M, whereas the inactive phorbol ester 4 alpha-phorbol at 5 X 10(-8) M was without effect after 24 h of treatment. PMA treatment had a biphasic effect on alpha-MSH secretion.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J P Loeffler
- Institut de Physiologie Générale, Université Louis Pasteur, UA 309 du CNRS, Strasbourg, France
| | | | | | | |
Collapse
|
27
|
DiFiglia M, Christakos S, Aronin N. Ultrastructural localization of immunoreactive calbindin-D28k in the rat and monkey basal ganglia, including subcellular distribution with colloidal gold labeling. J Comp Neurol 1989; 279:653-65. [PMID: 2918090 DOI: 10.1002/cne.902790411] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Normal cellular function depends on the controlled flux of Ca++ within intracellular compartments and across the plasma membrane. Proteins that bind Ca++ are thought to contribute to the regulation of intracellular Ca++ and, perhaps more importantly, signal functional changes in cell activity. In the brain, calbindin-D28k is among a class of calcium-binding proteins that are widely and heterogeneously distributed in select populations of neurons, among them neostriatal cells, but whose function is largely unknown. In this study of the monkey and rat neostriatum and globus pallidus, calbindin-D28k was localized with immunoperoxidase and immunogold methods in order to identify striatal cell populations that contain this protein and the subcellular compartments in which it is likely to function. Light and electron microscopy showed intense and extensive labeling of immunoreactive calbindin-D28k in the cell bodies, dendrites, and spines of medium-sized neostriatal spiny neurons and in their axon terminals which end in the globus pallidus. More discrete labeling with a gold-conjugated second antibody showed that the predominant site of calbindin-D28k was the matrix of the cytoplasm. Gold label was also associated with the karyoplasm of spiny cells and with the neurofilaments and axoplasmic matrix of striatopallidal axons and terminals, respectively. Membranes were either sparsely labeled (endoplasmic reticulum, mitochondria) or devoid of gold particles (nuclear envelope and plasmalemma). Radioimmunoassays of striatal subcellular fractions supported the anatomical findings by indicating that the soluble fractions of neostriatal tissue homogenates contained most of the calbindin-D28k immunoreactivity and that washes from forebrain synaptosomes treated with Triton X-100 yielded high levels of immunoreactive calbindin-D28k. These findings show that immunoreactive calbindin-D28k is localized to spiny neurons of the striatopallidal pathway and are consistent with previous observations on subcellular localization in nonneuronal tissues. If, as recently speculated, calbindin-D28k regulates calcium concentrations in neostriatal spiny neurons, this feature may be particularly involved with the high density of glutamatergic inputs to these cells. More work is needed to determine whether calbindin-D28k, when complexed to Ca++ in neostriatal spiny cells, signals the activation of protein kinases, phosphorylation, and/or neurotransmitter release, as has been shown for other Ca++-binding proteins in mammalian tissues.
Collapse
Affiliation(s)
- M DiFiglia
- Department of Neurology, Harvard Medical School, Boston, Massachusetts
| | | | | |
Collapse
|
28
|
Lickteig R, Shenolikar S, Denner L, Kelly PT. Regulation of Ca2+/calmodulin-dependent protein kinase II by Ca2+/calmodulin-independent autophosphorylation. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)37414-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
29
|
Ackerman P, Glover CV, Osheroff N. Phosphorylation of DNA topoisomerase II in vivo and in total homogenates of Drosophila Kc cells. The role of casein kinase II. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)37803-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
30
|
Rostas JA, Seccombe M, Weinberger RP. Two developmentally regulated isoenzymes of calmodulin-stimulated protein kinase II in rat forebrain. J Neurochem 1988; 50:945-53. [PMID: 2828551 DOI: 10.1111/j.1471-4159.1988.tb03003.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Soluble calmodulin-stimulated protein kinase II has been purified from adult and 10-day-old rat forebrain. By autoradiography, the alpha/beta subunit ratios of the 10-day and adult enzymes were 0.67 +/- 0.03 and 2.20 +/- 0.15, respectively. By silver staining, the alpha/beta subunit ratios were 1.02 +/- 0.06 and 2.36 +/- 0.10, respectively. The apparent holoenzyme molecular masses of the purified 10-day and adult enzymes were 500,000 daltons and 700,000 daltons. However, varying the purification conditions revealed higher and lower molecular mass forms at both ages and suggested that the form of the kinase that is usually purified is merely that which has the highest affinity for calmodulin-Sepharose and may not be the form of the kinase that exists in vivo. The subunits of the adult and 10-day enzymes were indistinguishable by one- and two-dimensional electrophoresis and one-dimensional proteolytic peptide maps. These results are consistent with the suggestion that at least two developmentally regulated isoenzymes of this kinase exist in rat forebrain.
Collapse
Affiliation(s)
- J A Rostas
- Neuroscience Group, Faculty of Medicine, University of Newcastle, New South Wales, Australia
| | | | | |
Collapse
|
31
|
Fay FS, Williams DA, Kargacin G, Tucker RW, Scanlon M. Role of local [Ca+2] in the control of cell function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1988; 232:213-9. [PMID: 3063079 DOI: 10.1007/978-1-4757-0007-7_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- F S Fay
- Dept. of Physiology, University of Massachusetts Medical School, Worcester 01655
| | | | | | | | | |
Collapse
|
32
|
Kelly PT, Shields S, Conway K, Yip R, Burgin K. Developmental changes in calmodulin-kinase II activity at brain synaptic junctions: alterations in holoenzyme composition. J Neurochem 1987; 49:1927-40. [PMID: 2824699 DOI: 10.1111/j.1471-4159.1987.tb02456.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Synaptic junctions (SJs) from rat forebrain were isolated at increasing postnatal ages and examined for endogenous protein kinase activities. Our studies focused on the postnatal maturation of the multifunctional protein kinase designated Ca2+/calmodulin-dependent protein kinase II (CaM-kinase II). This kinase is comprised of a major 50-kilodalton (kDa) and a minor 60-kDa subunit. Experiments examined the developmental properties of CaM-kinase II associated with synaptic plasma membranes (SPMs) and synaptic junctions (SJs), as well as the holoenzyme purified from cytosolic extracts. Large developmental increases in CaM-kinase II activity of SJ fractions were observed between postnatal days 6 and 20; developmental changes were examined for a number of properties including (a) autophosphorylation, (b) endogenous substrate phosphorylation, (c) exogenous substrate phosphorylation, and (d) immunoreactivity. Results demonstrated that forebrain CaM-kinase II undergoes a striking age-dependent change in subunit composition. In early postnatal forebrain the 60-kDa subunit constitutes the major catalytic and immunoreactive subunit of the holoenzyme. The major peak of CaM-kinase II activity in SJ fractions occurred at approximately postnatal day 20, a time near the end of the most active period of in vivo synapse formation. Following this developmental age, CaM-kinase II continued to accumulate at SJs; however, its activity was not as highly activated by Ca2+ plus calmodulin.
Collapse
Affiliation(s)
- P T Kelly
- Department of Neurobiology and Anatomy, University of Texas Health Science Center, Houston 77225
| | | | | | | | | |
Collapse
|
33
|
Levine H, Sahyoun NE. Characterization of a soluble Mr-30,000 catalytic fragment of the neuronal calmodulin-dependent protein kinase II. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 168:481-6. [PMID: 3311750 DOI: 10.1111/j.1432-1033.1987.tb13442.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Chymotryptic digestion of postsynaptic densities releases a soluble, catalytically active fragment of the alpha (Mr 50,000) subunit of the neuronal cytoskeletal calmodulin-dependent protein kinase II. The purified soluble form of the kinase likewise yields the fragment. Denaturation of the enzyme results in more extensive proteolytic degradation. 125I-Iodopeptide maps of the isolated catalytic portions of both forms of the enzyme are similar and are contained within the map of the isolated alpha subunit. Catalytic fragments of both forms of the enzyme comigrate on two-dimensional SDS-PAGE/isoelectric focusing with pI 6.7-7.2. The fragment phosphorylates microtubule-associated protein (MAP-2) but is not activated by Ca+2/calmodulin nor is it inhibited by trifluoperazine. Km values for MAP-2 and ATP are indistinguishable from those of the holoenzyme, while the Vmax is similar to that of the holoenzyme activated with Ca+2/calmodulin. Overlays of Western blots of fragment with 125I-calmodulin shows a loss of calmodulin binding. Both the number of phosphorylation sites and the ability to autophosphorylate are markedly reduced in the catalytic fragment. Evaluation of the hydrodynamic parameters of the purified fragment yielded Mr value of 25,600 with a frictional ratio (f/f0) of 1.12; the Mr value determined by SDS-PAGE was 30,000. Thus, the catalytic fragment appears to represent an activated form of the kinase with a monomeric, globular structure unlike the native enzyme which exhibits oligomerization and cytoskeletal association. These results are consistent with a tertiary structure for the calmodulin-dependent protein kinase that contains distinct domains responsible for catalytic activity, regulation by calmodulin, cytoskeletal association and the multimeric organization of enzyme subunits.
Collapse
Affiliation(s)
- H Levine
- Wellcome Research Laboratories, Research Triangle Park, North Carolina 27709
| | | |
Collapse
|
34
|
Williams DA, Becker PL, Fay FS. Regional changes in calcium underlying contraction of single smooth muscle cells. Science 1987; 235:1644-8. [PMID: 3103219 DOI: 10.1126/science.3103219] [Citation(s) in RCA: 155] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The role of calcium in regulating the contractile state of smooth muscle has been investigated by measuring calcium and contraction in single smooth muscle cells with the calcium-sensitive dye fura-2 and the digital imaging microscope. The concentration of free calcium in the cytoplasm increased after stimulation of the cells by depolarization with high potassium or by application of carbachol. Changes in calcium always preceded contraction. The increase in calcium induced by these stimuli was limited to less than 1 microM. Calcium within the nucleus was also subject to a limitation of its rise during contraction. Intranuclear calcium rose from 200 nM at rest to no more than 300 nM while cytoplasmic calcium rose to over 700 nM. These apparent ceilings for both cytoplasmic and intranuclear calcium may result either from negative feedback of calcium on cytoplasmic and nuclear calcium channel gating mechanisms, respectively, or from the presence of calcium pumps that are strongly activated at the calcium ceilings.
Collapse
|
35
|
Lou LL, Lloyd SJ, Schulman H. Activation of the multifunctional Ca2+/calmodulin-dependent protein kinase by autophosphorylation: ATP modulates production of an autonomous enzyme. Proc Natl Acad Sci U S A 1986; 83:9497-501. [PMID: 3467320 PMCID: PMC387167 DOI: 10.1073/pnas.83.24.9497] [Citation(s) in RCA: 160] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The multifunctional Ca2+/calmodulin-dependent protein kinase purified from rat brain cytosol undergoes an intramolecular self-phosphorylation or autophosphorylation. Autophosphorylation produces two strikingly different effects on kinase activity that are dependent on the level of ATP used in the reaction. At low but saturating levels of ATP (5 microM), autophosphorylation causes a 75% reduction in kinase activity, with the residual activity still retaining a dependence on Ca2+ and calmodulin. By contrast, at high but physiological levels of ATP (500 microM), the kinase is converted by autophosphorylation to a form that is autonomous of Ca2+ and calmodulin, with no accompanying reduction in activity. The extent of phosphate incorporation does not determine whether the kinase becomes inhibited or autonomous. Autophosphorylated kinase shows the functional change characteristic of the ATP concentration used during the reaction--inhibited at low ATP and autonomous at high ATP--even when compared at the same level of incorporated phosphate. ATP appears to regulate the site(s) phosphorylated during activation of the kinase and thereby modulates the dual effects of autophosphorylation. Events triggered by transient elevations of cellular Ca2+ may be potentiated and retained by generation of the Ca2+/calmodulin-independent protein kinase activity.
Collapse
|
36
|
Suzuki T, Tanaka R. Characterization of Ca2+/calmodulin-dependent protein kinase associated with rat cerebral synaptic junction: substrate specificity and effect of autophosphorylation. J Neurochem 1986; 47:642-51. [PMID: 3734797 DOI: 10.1111/j.1471-4159.1986.tb04548.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The Ca2+/calmodulin (CaM)-dependent protein kinase associated with rat cerebral synaptic junction (SJ) was characterized, using the SJ fraction as the enzyme preparation, to clarify the functional significance of the enzyme in situ. The protein kinase was greatly activated in the presence of micromolar concentrations of both Ca2+ and calmodulin (EC50 for Ca2+, 1.0 microM; that for CaM, 100 nM). The Km for ATP was 150 microM. SJ proteins were phosphorylated without a lag time, and the phosphorylation reached its maximum within 2-10 min at 25 degrees C. The endogenous substrates consisted of four major (160K, 120K, 60K, and 51K Mr) and 10 minor proteins. Compared with the endogenous substrate phosphorylation, the phosphorylation of exogenously added proteins (myosin light chains from chicken muscle, casein, arginine-rich histone, microtubule-associated protein-2, tau-protein, and tubulin) was weak, although they are expected to be good substrates for the soluble form of the Ca2+/CaM-dependent protein kinase. Autophosphorylation of the enzyme in SJ inhibited its activity and did not alter the subcellular distribution of the enzyme.
Collapse
|
37
|
Wandosell F, Serrano L, Hernández MA, Avila J. Phosphorylation of tubulin by a calmodulin-dependent protein kinase. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)67528-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
38
|
Yang ZW, Babitch JA. Detection and characterization of some new basic proteins in chicken postsynaptic densities. J Neurochem 1986; 47:282-90. [PMID: 3711904 DOI: 10.1111/j.1471-4159.1986.tb02860.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Chicken brain postsynaptic density (PSD) polypeptides, obtained by treating synaptosomes with 0.5% Triton X-100 and then further purified on a sucrose gradient, are demonstrated to contain four basic proteins of 76K (pI greater than 9.2), 58K (pI 8.1-8.8, heterogeneous), 40K (pI 9.0), and 24K (pI 8.9). Nonequilibrium pH gradient-sodium dodecyl sulfate two-dimensional gels further reveal six more basic proteins with pI values higher than 9.2: 76K, 52K, 47K, 45K, 36K, and 34K. These basic proteins are a major part of the total chicken PSD polypeptides appearing on the gels. Some of these basic proteins (58K, 52K, 47K, 36K, 24K, and two at 76K) are distinguishable from those of brain mitochondria, the major contaminant. The 40K and 34K proteins may be common mitochondrial polypeptides. The 45K protein is probably a mitochondrial contaminant. A number of proteins including 76K (synapsin I-like protein) and 58K, along with some other minor ones, can be phosphorylated by endogenous protein kinase(s) in the presence of Ca2+, Mg2+, and [gamma-32P]ATP. No PSD basic proteins bind Ca2+.
Collapse
|
39
|
Chou YH, Rebhun LI. Purification and characterization of a sea urchin egg Ca2+-calmodulin-dependent kinase with myosin light chain phosphorylating activity. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(19)57228-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
40
|
Le Vine H, Sahyoun NE, Cuatrecasas P. Binding of calmodulin to the neuronal cytoskeletal protein kinase type II cooperatively stimulates autophosphorylation. Proc Natl Acad Sci U S A 1986; 83:2253-7. [PMID: 3008156 PMCID: PMC323270 DOI: 10.1073/pnas.83.7.2253] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The kinetics of autophosphorylation of the cytoskeletal form of the neuronal calmodulin-dependent protein kinase type II were studied as a function of calmodulin binding under the same conditions. Whereas calmodulin binding was noncooperative with respect to calmodulin concentration (Hill coefficient = 1), the activation of autophosphorylation and the phosphorylation of exogenous substrates showed marked positive cooperativity (Hill coefficient greater than or equal to 1.6). Reduction of the active calmodulin concentration by the addition of the calmodulin antagonist trifluoperazine confirmed the cooperative nature of enzyme activation, because autophosphorylation was more sensitive to the drug than was binding at high concentrations of calmodulin. At intracellular levels of calmodulin the binding and activation of autophosphorylation were cooperative functions of magnesium and calcium concentration. The calmodulin-dependent cooperative activation seems to be a unique feature of the cytoskeletal, but not the soluble, form of the protein kinase and may result from the supramolecular organization of the cytoskeletal enzyme. These observations suggest that interactions among the subunits of the oligomeric cytoskeletal calmodulin-dependent protein kinase regulate enzyme activation, enhancing the sensitivity of the enzyme to small changes in the intracellular calcium levels that may be particularly relevant to signaling at the synapse.
Collapse
|
41
|
Sahyoun N, Wolf M, Besterman J, Hsieh T, Sander M, LeVine H, Chang KJ, Cuatrecasas P. Protein kinase C phosphorylates topoisomerase II: topoisomerase activation and its possible role in phorbol ester-induced differentiation of HL-60 cells. Proc Natl Acad Sci U S A 1986; 83:1603-7. [PMID: 3006058 PMCID: PMC323131 DOI: 10.1073/pnas.83.6.1603] [Citation(s) in RCA: 159] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
DNA topoisomerase II from Drosophila was phosphorylated effectively by protein kinase C. With a Km of about 100 nM, the reaction was rapid, occurring at 4 degrees C as well as at 30 degrees C and requiring as little as 0.6 ng of the protein kinase per 170 ng of topoisomerase. About 0.85 mol of phosphate could be incorporated per mol of topoisomerase II, with phosphoserine as the only phospho amino acid produced. The reaction was dependent on Ca2+ and phosphatidylserine and was stimulated by phorbol esters. Calmodulin-dependent protein kinase II, but not cyclic AMP-dependent protein kinase, was also able to phosphorylate the topoisomerase. Phosphorylation of topoisomerase II by protein kinase C resulted in appreciable activation of the topoisomerase, suggesting that it may represent a possible target for the regulation of nuclear events by protein kinase C. This possibility is supported by the finding that the phorbol ester-induced differentiation of HL-60 cells was blocked by the topoisomerase II inhibitors novobiocin and 4'-(9-acridinylamino)methanesulfon-m-anisidide(m-AMSA), but not by the inactive analog o-AMSA.
Collapse
|
42
|
Alderson RF, Sze PY. Purification and characterization of a soluble cyclic nucleotide-independent Ca2+-calmodulin-sensitive protein kinase from rat brain. J Neurochem 1986; 46:594-603. [PMID: 3001228 DOI: 10.1111/j.1471-4159.1986.tb13009.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Following partial purification, the characteristics of a cytosol protein kinase were investigated. The protein kinase was purified by ammonium sulfate precipitation and diethylaminoethyl-cellulose, ATP-agarose, and hydroxyapatite chromatography. Analysis of the purified protein kinase preparation by polyacrylamide gel electrophoresis revealed three major protein bands. The cytosol protein kinase was purified approximately 442-fold, as calculated from the cyclic nucleotide independent protein kinase activity in the 40,000 g supernatant. The activity of the kinase was found to be independent of either cyclic AMP or cyclic GMP. Moreover, the kinase activity was unaffected by the addition of the endogenous protein kinase inhibitor, or the regulatory subunit from the type II cyclic AMP-dependent protein kinase from bovine heart. The molecular weight of the enzyme was determined to be 95,000 by Sephadex G-200 gel filtration. The activity of the kinase was increased approximately twofold in the presence of 10 microM Ca+2 and calmodulin. This increase was reversed by the addition of EGTA. The subcellular distribution of the protein kinase was also examined. The soluble fraction from nerve terminal was found to have the highest concentration of the kinase activity.
Collapse
|
43
|
Rostas JA, Brent VA, Heath JW, Neame RL, Powis DA, Weinberger RP, Dunkley PR. The subcellular distribution of a membrane-bound calmodulin-stimulated protein kinase. Neurochem Res 1986; 11:253-68. [PMID: 3703104 DOI: 10.1007/bf00967973] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Incubation of subcellular fractions isolated from rat cerebral cortex with [gamma-32P]ATP results in the phosphorylation of a number of proteins including two with apparent molecular weights of approximately 50,000 and 60,000 daltons. These phosphoproteins were shown to be the autophosphorylated subunits of a calmodulin-stimulated protein kinase by a number of physicochemical criteria, including their mobility on non-equilibrium pH gradient electrophoresis, their phosphopeptide profiles and phosphorylation characteristics. When a crude membrane fraction obtained following osmotic lysis of a P2 fraction was labeled and subsequently fractionated on sucrose density gradients, approximately 80% of the autophosphorylated kinase was associated with fractions enriched in synaptic plasma membranes. Other substrates of calmodulin kinase(s) were similarly distributed. Detergent extraction of synaptic plasma membranes to produce synaptic junctions and post-synaptic densities indicated that the majority of the autophosphorylated kinase was solubilized, apparently as a holoenzyme. The major post synaptic density protein (mPSDp) was not readily extracted by detergents and was largely unlabeled under the conditions used for phosphorylation, and yet this protein is structurally closely related to the kinase subunit. It is possible that this lack of labeling is due to the mPSDp being attached to the PSD in a different way or being present there in a different isoenzymic form from that of the readily autophosphorylated enzyme subunit. Thus, the data suggest that, in vitro at least, a number of pools of calmodulin kinase exist in neuronal membranes.
Collapse
|
44
|
Stull JT, Nunnally MH, Michnoff CH. 4 Calmodulin-Dependent Protein Kinases. ACTA ACUST UNITED AC 1986. [DOI: 10.1016/s1874-6047(08)60429-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
45
|
Rostas JA, Weinberger RP, Dunkley PR. Multiple pools and multiple forms of calmodulin-stimulated protein kinase during development: relationship to postsynaptic densities. PROGRESS IN BRAIN RESEARCH 1986; 69:355-71. [PMID: 2833805 DOI: 10.1016/s0079-6123(08)61070-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
46
|
Sahyoun N, LeVine H, Bronson D, Siegel-Greenstein F, Cuatrecasas P. Cytoskeletal calmodulin-dependent protein kinase. Characterization, solubilization, and purification from rat brain. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(20)71233-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
47
|
LeVine H, Sahyoun NE, Cuatrecasas P. Calmodulin binding to the cytoskeletal neuronal calmodulin-dependent protein kinase is regulated by autophosphorylation. Proc Natl Acad Sci U S A 1985; 82:287-91. [PMID: 3855553 PMCID: PMC397022 DOI: 10.1073/pnas.82.2.287] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A brain cytoskeletal preparation that is highly enriched in calmodulin-dependent protein kinase facilitated the study of the binding of 125I-labeled calmodulin to the native enzyme. The binding was specific, saturable, Ca2+-dependent, and inhibited by trifluoperazine. Stoichiometric analysis revealed that the ratio of bound calmodulin to the alpha subunit of the protein kinase was about 1:10 (+/-30%), indicating that in the native state not all of the enzyme subunits were accessible to bind calmodulin. The Kd for the binding reaction was 7 X 10(-9) M and was subject to regulation by divalent cations other than Ca2+, decreasing to 1.7 X 10(-9) M in the presence of 7 mM MgCl2. Activation of the protein kinase in the presence of Ca2+ and calmodulin resulted in marked autophosphorylation of the enzyme subunits. The autophosphorylation was accompanied by a 2-fold decrease in the affinity and number of 125I-labeled calmodulin binding sites. This effect was also reflected by an increase in the apparent Km for Ca2+ from 90 to 200 X 10(-9) M. Thus, enzyme autophosphorylation appears to represent a negative feedback signal, rendering the enzyme less sensitive to subsequent stimulation by physiologic increases in the intracellular Ca2+ concentration. These results help to clarify the mode of neuronal intracellular Ca2+ signaling.
Collapse
|