1
|
Minami-Ogawa Y, Kiyokage E, Yamanishi H, Horie S, Ichikawa S, Toida K. Structural Basis for Histaminergic Regulation of Neural Circuits in the Mouse Olfactory Bulb. J Comp Neurol 2024; 532:e25671. [PMID: 39387358 DOI: 10.1002/cne.25671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/21/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024]
Abstract
Odor information is modulated by centrifugal inputs from other brain regions to the olfactory bulb (OB). Neurons containing monoamines, such as serotonin, acetylcholine, and noradrenaline, are well known as centrifugal inputs; however, the role of histamine, which is also present in the OB, is not well understood. In this study, we examined the histaminergic neurons projecting from the hypothalamus to the OB. We used an antibody against histidine decarboxylase (HDC), a synthesizing enzyme of histamine, to identify histaminergic neurons and assess their localization within the OB and the ultrastructure of their fibers and synapses using multiple immunostaining laser microscopy, ultra-high voltage electron microscopy (EM), and EM to confirm their relationships with other neurons. To further identify the origin nucleus of the histaminergic neurons projecting to the OB, we injected the retrograde tracer FluoroGold and analyzed the pathway to the OB anterogradely. HDC-immunoreactive (-ir) fibers were abundant in the olfactory nerve (ON) layer compared to other monoamines. HDC-ir neurons received asymmetrical synapses from ONs and formed synapses containing pleomorphic vesicles with variable postsynaptic densities to non-ON elements, thus forming serial synapses. We also confirmed that histaminergic neurons project from the rostral ventral tuberomammillary nucleus to the granule cell layer of the OB and, for the first time, successfully visualized their axons from the hypothalamus to the OB. These findings indicate that histamine may regulate odor discrimination in the OB, suggesting a regulatory relationship between hypothalamic function and olfaction. We thus elucidate morphological mechanisms with tuberomammillary nucleus-derived histaminergic neurons involved in olfactory information.
Collapse
Affiliation(s)
| | - Emi Kiyokage
- Department of Medical Technology, Kawasaki University of Medical Welfare, Kurashiki, Okayama, Japan
| | - Haruyo Yamanishi
- Department of Anatomy, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Sawa Horie
- Department of Anatomy, Kawasaki Medical School, Kurashiki, Okayama, Japan
- Department of Anatomy, National Defense Medical College, Tokorozawa, Japan
| | - Satoshi Ichikawa
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Ibaraki, Osaka, Japan
| | - Kazunori Toida
- Department of Anatomy, Kawasaki Medical School, Kurashiki, Okayama, Japan
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Ibaraki, Osaka, Japan
| |
Collapse
|
2
|
Rahimi S, Joyce L, Fenzl T, Drexel M. Crosstalk between the subiculum and sleep-wake regulation: A review. J Sleep Res 2024; 33:e14134. [PMID: 38196146 DOI: 10.1111/jsr.14134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 01/11/2024]
Abstract
The circuitry underlying the initiation, maintenance, and coordination of wakefulness, rapid eye movement sleep, and non-rapid eye movement sleep is not thoroughly understood. Sleep is thought to arise due to decreased activity in the ascending reticular arousal system, which originates in the brainstem and awakens the thalamus and cortex during wakefulness. Despite the conventional association of sleep-wake states with hippocampal rhythms, the mutual influence of the hippocampal formation in regulating vigilance states has been largely neglected. Here, we focus on the subiculum, the main output region of the hippocampal formation. The subiculum, particulary the ventral part, sends extensive monosynaptic projections to crucial regions implicated in sleep-wake regulation, including the thalamus, lateral hypothalamus, tuberomammillary nucleus, basal forebrain, ventrolateral preoptic nucleus, ventrolateral tegmental area, and suprachiasmatic nucleus. Additionally, second-order projections from the subiculum are received by the laterodorsal tegmental nucleus, locus coeruleus, and median raphe nucleus, suggesting the potential involvement of the subiculum in the regulation of the sleep-wake cycle. We also discuss alterations in the subiculum observed in individuals with sleep disorders and in sleep-deprived mice, underscoring the significance of investigating neuronal communication between the subiculum and pathways promoting both sleep and wakefulness.
Collapse
Affiliation(s)
- Sadegh Rahimi
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Leesa Joyce
- Clinic of Anesthesiology and Intensive Care, School of Medicine, Technical University of Munich, München, Germany
| | - Thomas Fenzl
- Clinic of Anesthesiology and Intensive Care, School of Medicine, Technical University of Munich, München, Germany
| | - Meinrad Drexel
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
3
|
Warwick RA, Riccitelli S, Heukamp AS, Yaakov H, Swain BP, Ankri L, Mayzel J, Gilead N, Parness-Yossifon R, Di Marco S, Rivlin-Etzion M. Top-down modulation of the retinal code via histaminergic neurons of the hypothalamus. SCIENCE ADVANCES 2024; 10:eadk4062. [PMID: 39196935 PMCID: PMC11352916 DOI: 10.1126/sciadv.adk4062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 07/24/2024] [Indexed: 08/30/2024]
Abstract
The mammalian retina is considered an autonomous circuit, yet work dating back to Ramon y Cajal indicates that it receives inputs from the brain. How such inputs affect retinal processing has remained unknown. We confirmed brain-to-retina projections of histaminergic neurons from the mouse hypothalamus. Histamine application ex vivo altered the activity of various retinal ganglion cells (RGCs), including direction-selective RGCs that gained responses to high motion velocities. These results were reproduced in vivo with optic tract recordings where histaminergic retinopetal axons were activated chemogenetically. Such changes could improve vision of fast-moving objects (e.g., while running), which fits with the known increased activity of histaminergic neurons during arousal. An antihistamine drug reduced optomotor responses to high-speed moving stimuli in freely moving mice. In humans, the same antihistamine nonuniformly modulated visual sensitivity across the visual field, indicating an evolutionary conserved function of the histaminergic system. Our findings expose a previously unappreciated role for brain-to-retina projections in modulating retinal function.
Collapse
Affiliation(s)
- Rebekah A. Warwick
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Serena Riccitelli
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Alina S. Heukamp
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Hadar Yaakov
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Bani Prasad Swain
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Lea Ankri
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Jonathan Mayzel
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Gilead
- Ophthalmology Department, Kaplan Medical Center, Rehovot, Israel
| | | | - Stefano Di Marco
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | | |
Collapse
|
4
|
Tsuji T, Tolstikov V, Zhang Y, Huang TL, Camara H, Halpin M, Narain NR, Yau KW, Lynes MD, Kiebish MA, Tseng YH. Light-responsive adipose-hypothalamus axis controls metabolic regulation. Nat Commun 2024; 15:6768. [PMID: 39117652 PMCID: PMC11310318 DOI: 10.1038/s41467-024-50866-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Light is fundamental for biological life, with most mammals possessing light-sensing photoreceptors in various organs. Opsin3 is highly expressed in adipose tissue which has extensive communication with other organs, particularly with the brain through the sympathetic nervous system (SNS). Our study reveals a new light-triggered crosstalk between adipose tissue and the hypothalamus. Direct blue-light exposure to subcutaneous white fat improves high-fat diet-induced metabolic abnormalities in an Opsin3-dependent manner. Metabolomic analysis shows that blue light increases circulating levels of histidine, which activates histaminergic neurons in the hypothalamus and stimulates brown adipose tissue (BAT) via SNS. Blocking central actions of histidine and denervating peripheral BAT blunts the effects of blue light. Human white adipocytes respond to direct blue light stimulation in a cell-autonomous manner, highlighting the translational relevance of this pathway. Together, these data demonstrate a light-responsive metabolic circuit involving adipose-hypothalamus communication, offering a potential strategy to alleviate obesity-induced metabolic abnormalities.
Collapse
Affiliation(s)
- Tadataka Tsuji
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | | | - Yang Zhang
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Tian Lian Huang
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Henrique Camara
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Meghan Halpin
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | | | - King-Wai Yau
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew D Lynes
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
| | | | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
5
|
Benoy A, Ramaswamy S. Histamine in the neocortex: Towards integrating multiscale effectors. Eur J Neurosci 2024; 60:4597-4623. [PMID: 39032115 DOI: 10.1111/ejn.16447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/10/2024] [Accepted: 06/05/2024] [Indexed: 07/22/2024]
Abstract
Histamine is a modulatory neurotransmitter, which has received relatively less attention in the central nervous system than other neurotransmitters. The functional role of histamine in the neocortex, the brain region that controls higher-order cognitive functions such as attention, learning and memory, remains largely unknown. This article focuses on the emerging roles and mechanisms of histamine release in the neocortex. We describe gaps in current knowledge and propose the application of interdisciplinary tools to dissect the detailed multiscale functional logic of histaminergic action in the neocortex ranging from sub-cellular, cellular, dendritic and synaptic levels to microcircuits and mesoscale effects.
Collapse
Affiliation(s)
- Amrita Benoy
- Neural Circuits Laboratory, Biosciences Institute, Newcastle University, Newcastle, UK
| | - Srikanth Ramaswamy
- Neural Circuits Laboratory, Biosciences Institute, Newcastle University, Newcastle, UK
- Theoretical Sciences Visiting Program (TSVP), Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| |
Collapse
|
6
|
Maurer JJ, Lin A, Jin X, Hong J, Sathi N, Cardis R, Osorio-Forero A, Lüthi A, Weber F, Chung S. Homeostatic regulation of rapid eye movement sleep by the preoptic area of the hypothalamus. eLife 2024; 12:RP92095. [PMID: 38884573 PMCID: PMC11182646 DOI: 10.7554/elife.92095] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024] Open
Abstract
Rapid eye movement sleep (REMs) is characterized by activated electroencephalogram (EEG) and muscle atonia, accompanied by vivid dreams. REMs is homeostatically regulated, ensuring that any loss of REMs is compensated by a subsequent increase in its amount. However, the neural mechanisms underlying the homeostatic control of REMs are largely unknown. Here, we show that GABAergic neurons in the preoptic area of the hypothalamus projecting to the tuberomammillary nucleus (POAGAD2→TMN neurons) are crucial for the homeostatic regulation of REMs in mice. POAGAD2→TMN neurons are most active during REMs, and inhibiting them specifically decreases REMs. REMs restriction leads to an increased number and amplitude of calcium transients in POAGAD2→TMN neurons, reflecting the accumulation of REMs pressure. Inhibiting POAGAD2→TMN neurons during REMs restriction blocked the subsequent rebound of REMs. Our findings reveal a hypothalamic circuit whose activity mirrors the buildup of homeostatic REMs pressure during restriction and that is required for the ensuing rebound in REMs.
Collapse
Affiliation(s)
- John J Maurer
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Alexandra Lin
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Xi Jin
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Jiso Hong
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Nicholas Sathi
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Romain Cardis
- Department of Fundamental Neurosciences, University of LausanneLausanneSwitzerland
| | | | - Anita Lüthi
- Department of Fundamental Neurosciences, University of LausanneLausanneSwitzerland
| | - Franz Weber
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Shinjae Chung
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
7
|
Gao M, Dekker ME, Leurs R, Vischer HF. Pharmacological characterization of seven human histamine H 3 receptor isoforms. Eur J Pharmacol 2024; 968:176450. [PMID: 38387718 DOI: 10.1016/j.ejphar.2024.176450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 02/24/2024]
Abstract
The histamine H3 receptor (H3R) regulates as a presynaptic G protein-coupled receptor the release of histamine and other neurotransmitters in the brain, and is consequently a potential therapeutic target for neuronal disorders. The human H3R encodes for seven splice variants that vary in the length of intracellular loop 3 and/or the C-terminal tail but are all able to induce heterotrimeric Gi protein signaling. The last two decades H3R drug discovery and lead optimization has been exclusively focused on the 445 amino acids-long reference isoform H3R-445. In this study, we pharmacologically characterized for the first time all seven H3R isoforms by determining their binding affinities for reference histamine H3 receptor agonists and inverse agonists. The H3R-453, H3R-415, and H3R-413 isoforms display similar binding affinities for all ligands as the H3R-445. However, increased agonist binding affinities were observed for the three shorter isoforms H3R-329, H3R-365, and H3R-373, whereas inverse agonists such as the approved anti-narcolepsy drug pitolisant (Wakix®) displayed significantly decreased binding affinities for the latter two isoforms. This opposite change in binding affinity of agonist versus inverse agonists on H3R-365 and H3R-373 is associated with their higher constitutive activity in a cAMP biosensor assay as compared to the other five isoforms. The observed differences in pharmacology between longer and shorter H3R isoforms should be considered in future drug discovery programs.
Collapse
Affiliation(s)
- Meichun Gao
- Department of Medicinal Chemistry, Amsterdam Institute of Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands
| | - Mabel E Dekker
- Department of Medicinal Chemistry, Amsterdam Institute of Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands
| | - Rob Leurs
- Department of Medicinal Chemistry, Amsterdam Institute of Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands.
| | - Henry F Vischer
- Department of Medicinal Chemistry, Amsterdam Institute of Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands.
| |
Collapse
|
8
|
Maurer J, Lin A, Jin X, Hong J, Sathi N, Cardis R, Osorio-Forero A, Lüthi A, Weber F, Chung S. Homeostatic regulation of REM sleep by the preoptic area of the hypothalamus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.22.554341. [PMID: 37662417 PMCID: PMC10473649 DOI: 10.1101/2023.08.22.554341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Rapid-eye-movement sleep (REMs) is characterized by activated electroencephalogram (EEG) and muscle atonia, accompanied by vivid dreams. REMs is homeostatically regulated, ensuring that any loss of REMs is compensated by a subsequent increase in its amount. However, the neural mechanisms underlying the homeostatic control of REMs are largely unknown. Here, we show that GABAergic neurons in the preoptic area of the hypothalamus projecting to the tuberomammillary nucleus (POAGAD2→TMN neurons) are crucial for the homeostatic regulation of REMs. POAGAD2→TMN neurons are most active during REMs, and inhibiting them specifically decreases REMs. REMs restriction leads to an increased number and amplitude of calcium transients in POAGAD2→TMN neurons, reflecting the accumulation of REMs pressure. Inhibiting POAGAD2→TMN neurons during REMs restriction blocked the subsequent rebound of REMs. Our findings reveal a hypothalamic circuit whose activity mirrors the buildup of homeostatic REMs pressure during restriction and that is required for the ensuing rebound in REMs.
Collapse
Affiliation(s)
- John Maurer
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alex Lin
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xi Jin
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jiso Hong
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas Sathi
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Romain Cardis
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005 Lausanne, Switzerland
| | - Alejandro Osorio-Forero
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005 Lausanne, Switzerland
| | - Anita Lüthi
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005 Lausanne, Switzerland
| | - Franz Weber
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shinjae Chung
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
9
|
Tighilet B, Trico J, Marouane E, Zwergal A, Chabbert C. Histaminergic System and Vestibular Function in Normal and Pathological Conditions. Curr Neuropharmacol 2024; 22:1826-1845. [PMID: 38504566 PMCID: PMC11284731 DOI: 10.2174/1570159x22666240319123151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/20/2023] [Accepted: 10/13/2023] [Indexed: 03/21/2024] Open
Abstract
Most neurotransmitter systems are represented in the central and peripheral vestibular system and are thereby involved both in normal vestibular signal processing and the pathophysiology of vestibular disorders. However, there is a special relationship between the vestibular system and the histaminergic system. The purpose of this review is to document how the histaminergic system interferes with normal and pathological vestibular function. In particular, we will discuss neurobiological mechanisms such as neuroinflammation that involve histamine to modulate and allow restoration of balance function in the situation of a vestibular insult. These adaptive mechanisms represent targets of histaminergic pharmacological compounds capable of restoring vestibular function in pathological situations. The clinical use of drugs targeting the histaminergic system in various vestibular disorders is critically discussed.
Collapse
Affiliation(s)
- Brahim Tighilet
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Marseille, Groupe de Recherche Vertige (GDR#2074), France
| | - Jessica Trico
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Marseille, Groupe de Recherche Vertige (GDR#2074), France
| | - Emna Marouane
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Marseille, Groupe de Recherche Vertige (GDR#2074), France
- Normandie Université, UNICAEN, INSERM, COMETE, CYCERON, CHU Caen, 14000, Caen, France
| | - Andreas Zwergal
- Department of Neurology, LMU University Hospital, Munich, Germany
- German Center for Vertigo and Balance Disorders, LMU University Hospital, Munich, Germany
| | - Christian Chabbert
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Marseille, Groupe de Recherche Vertige (GDR#2074), France
| |
Collapse
|
10
|
Xu L, Lin W, Zheng Y, Wang Y, Chen Z. The Diverse Network of Brain Histamine in Feeding: Dissect its Functions in a Circuit-Specific Way. Curr Neuropharmacol 2024; 22:241-259. [PMID: 36424776 PMCID: PMC10788888 DOI: 10.2174/1570159x21666221117153755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/20/2022] Open
Abstract
Feeding is an intrinsic and important behavior regulated by complex molecular, cellular and circuit-level mechanisms, one of which is the brain histaminergic network. In the past decades, many studies have provided a foundation of knowledge about the relationship between feeding and histamine receptors, which are deemed to have therapeutic potential but are not successful in treating feeding- related diseases. Indeed, the histaminergic circuits underlying feeding are poorly understood and characterized. This review describes current knowledge of histamine in feeding at the receptor level. Further, we provide insight into putative histamine-involved feeding circuits based on the classic feeding circuits. Understanding the histaminergic network in a circuit-specific way may be therapeutically relevant for increasing the drug specificity and precise treatment in feeding-related diseases.
Collapse
Affiliation(s)
- Lingyu Xu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Wenkai Lin
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhong Chen
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
11
|
Buzoianu AD, Sharma A, Muresanu DF, Feng L, Huang H, Chen L, Tian ZR, Nozari A, Lafuente JV, Sjöqvist PO, Wiklund L, Sharma HS. Nanodelivery of histamine H3 receptor inverse agonist BF-2649 with H3 receptor antagonist and H4 receptor agonist clobenpropit induced neuroprotection is potentiated by antioxidant compound H-290/51 in spinal cord injury. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 172:37-77. [PMID: 37833018 DOI: 10.1016/bs.irn.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Military personnel are often victims of spinal cord injury resulting in lifetime disability and decrease in quality of life. However, no suitable therapeutic measures are still available to restore functional disability or arresting the pathophysiological progression of disease in victims for leading a better quality of life. Thus, further research in spinal cord injury using novel strategies or combination of available neuroprotective drugs is urgently needed for superior neuroprotection. In this regard, our laboratory is engaged in developing TiO2 nanowired delivery of drugs, antibodies and enzymes in combination to attenuate spinal cord injury induced pathophysiology and functional disability in experimental rodent model. Previous observations show that histamine antagonists or antioxidant compounds when given alone in spinal cord injury are able to induce neuroprotection for short periods after trauma. In this investigation we used a combination of histaminergic drugs with antioxidant compound H-290/51 using their nanowired delivery for neuroprotection in spinal cord injury of longer duration. Our observations show that a combination of H3 receptor inverse agonist BF-2549 with H3 receptor antagonist and H4 receptor agonist clobenpropit induced neuroprotection is potentiated by antioxidant compound H-290/51 in spinal cord injury. These observations suggests that histamine receptors are involved in the pathophysiology of spinal cord injury and induce superior neuroprotection in combination with an inhibitor of lipid peroxidation H-290/51, not reported earlier. The possible mechanisms and significance of our findings in relation to future clinical approaches in spinal cord injury is discussed.
Collapse
Affiliation(s)
- Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Dept. Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; ''RoNeuro'' Institute for Neurological Research and Diagnostic, Mircea Eliade Street, Cluj-Napoca, Romania
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan Road (West), Shijiazhuang, Hebei Province, P.R. China
| | - Hongyun Huang
- Beijing Hongtianji Neuroscience Academy, Beijing, P.R. China
| | - Lin Chen
- Department of Neurosurgery, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing, P.R. China
| | - Z Ryan Tian
- Dept. Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Ala Nozari
- Department of Anesthesiology, Boston University, Albany str, Boston MA, United States
| | - José Vicente Lafuente
- LaNCE, Dept. Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Per-Ove Sjöqvist
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden; LaNCE, Dept. Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain.
| |
Collapse
|
12
|
Tang Q, Godschall E, Brennan CD, Zhang Q, Abraham-Fan RJ, Williams SP, Güngül TB, Onoharigho R, Buyukaksakal A, Salinas R, Sajonia IR, Olivieri JJ, Calhan OY, Deppmann CD, Campbell JN, Podyma B, Güler AD. Leptin receptor neurons in the dorsomedial hypothalamus input to the circadian feeding network. SCIENCE ADVANCES 2023; 9:eadh9570. [PMID: 37624889 PMCID: PMC10456850 DOI: 10.1126/sciadv.adh9570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023]
Abstract
Salient cues, such as the rising sun or availability of food, entrain biological clocks for behavioral adaptation. The mechanisms underlying entrainment to food availability remain elusive. Using single-nucleus RNA sequencing during scheduled feeding, we identified a dorsomedial hypothalamus leptin receptor-expressing (DMHLepR) neuron population that up-regulates circadian entrainment genes and exhibits calcium activity before an anticipated meal. Exogenous leptin, silencing, or chemogenetic stimulation of DMHLepR neurons disrupts the development of molecular and behavioral food entrainment. Repetitive DMHLepR neuron activation leads to the partitioning of a secondary bout of circadian locomotor activity that is in phase with the stimulation and dependent on an intact suprachiasmatic nucleus (SCN). Last, we found a DMHLepR neuron subpopulation that projects to the SCN with the capacity to influence the phase of the circadian clock. This direct DMHLepR-SCN connection is well situated to integrate the metabolic and circadian systems, facilitating mealtime anticipation.
Collapse
Affiliation(s)
- Qijun Tang
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Elizabeth Godschall
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Charles D. Brennan
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Qi Zhang
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | | | - Sydney P. Williams
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Taha Buğra Güngül
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Roberta Onoharigho
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Aleyna Buyukaksakal
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Ricardo Salinas
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Isabelle R. Sajonia
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Joey J. Olivieri
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - O. Yipkin Calhan
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Christopher D. Deppmann
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
- Program in Fundamental Neuroscience, Charlottesville, VA 22904, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22904, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - John N. Campbell
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Brandon Podyma
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
- Medical Scientist Training Program, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Ali D. Güler
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
- Program in Fundamental Neuroscience, Charlottesville, VA 22904, USA
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
13
|
Khouma A, Moeini MM, Plamondon J, Richard D, Caron A, Michael NJ. Histaminergic regulation of food intake. Front Endocrinol (Lausanne) 2023; 14:1202089. [PMID: 37448468 PMCID: PMC10338010 DOI: 10.3389/fendo.2023.1202089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/06/2023] [Indexed: 07/15/2023] Open
Abstract
Histamine is a biogenic amine that acts as a neuromodulator within the brain. In the hypothalamus, histaminergic signaling contributes to the regulation of numerous physiological and homeostatic processes, including the regulation of energy balance. Histaminergic neurons project extensively throughout the hypothalamus and two histamine receptors (H1R, H3R) are strongly expressed in key hypothalamic nuclei known to regulate energy homeostasis, including the paraventricular (PVH), ventromedial (VMH), dorsomedial (DMH), and arcuate (ARC) nuclei. The activation of different histamine receptors is associated with differential effects on neuronal activity, mediated by their different G protein-coupling. Consequently, activation of H1R has opposing effects on food intake to that of H3R: H1R activation suppresses food intake, while H3R activation mediates an orexigenic response. The central histaminergic system has been implicated in atypical antipsychotic-induced weight gain and has been proposed as a potential therapeutic target for the treatment of obesity. It has also been demonstrated to interact with other major regulators of energy homeostasis, including the central melanocortin system and the adipose-derived hormone leptin. However, the exact mechanisms by which the histaminergic system contributes to the modification of these satiety signals remain underexplored. The present review focuses on recent advances in our understanding of the central histaminergic system's role in regulating feeding and highlights unanswered questions remaining in our knowledge of the functionality of this system.
Collapse
Affiliation(s)
- Axelle Khouma
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - Moein Minbashi Moeini
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - Julie Plamondon
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, QC, Canada
| | - Denis Richard
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, QC, Canada
- Faculté de Medicine, Université Laval, Québec, QC, Canada
| | - Alexandre Caron
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
- Montreal Diabetes Research Center, Montreal, QC, Canada
| | - Natalie Jane Michael
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| |
Collapse
|
14
|
Maurer JJ, Choi A, An I, Sathi N, Chung S. Sleep disturbances in autism spectrum disorder: Animal models, neural mechanisms, and therapeutics. Neurobiol Sleep Circadian Rhythms 2023; 14:100095. [PMID: 37188242 PMCID: PMC10176270 DOI: 10.1016/j.nbscr.2023.100095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/16/2023] [Accepted: 04/08/2023] [Indexed: 05/17/2023] Open
Abstract
Sleep is crucial for brain development. Sleep disturbances are prevalent in children with autism spectrum disorder (ASD). Strikingly, these sleep problems are positively correlated with the severity of ASD core symptoms such as deficits in social skills and stereotypic behavior, indicating that sleep problems and the behavioral characteristics of ASD may be related. In this review, we will discuss sleep disturbances in children with ASD and highlight mouse models to study sleep disturbances and behavioral phenotypes in ASD. In addition, we will review neuromodulators controlling sleep and wakefulness and how these neuromodulatory systems are disrupted in animal models and patients with ASD. Lastly, we will address how the therapeutic interventions for patients with ASD improve various aspects of sleep. Together, gaining mechanistic insights into the neural mechanisms underlying sleep disturbances in children with ASD will help us to develop better therapeutic interventions.
Collapse
|
15
|
Tang Q, Godschall E, Brennan CD, Zhang Q, Abraham-Fan RJ, Williams SP, Güngül TB, Onoharigho R, Buyukaksakal A, Salinas R, Olivieri JJ, Deppmann CD, Campbell JN, Podyma B, Güler AD. A leptin-responsive hypothalamic circuit inputs to the circadian feeding network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.24.529901. [PMID: 36865258 PMCID: PMC9980144 DOI: 10.1101/2023.02.24.529901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Salient cues, such as the rising sun or the availability of food, play a crucial role in entraining biological clocks, allowing for effective behavioral adaptation and ultimately, survival. While the light-dependent entrainment of the central circadian pacemaker (suprachiasmatic nucleus, SCN) is relatively well defined, the molecular and neural mechanisms underlying entrainment associated with food availability remains elusive. Using single nucleus RNA sequencing during scheduled feeding (SF), we identified a leptin receptor (LepR) expressing neuron population in the dorsomedial hypothalamus (DMH) that upregulates circadian entrainment genes and exhibits rhythmic calcium activity prior to an anticipated meal. We found that disrupting DMHLepR neuron activity had a profound impact on both molecular and behavioral food entrainment. Specifically, silencing DMHLepR neurons, mis-timed exogenous leptin administration, or mis-timed chemogenetic stimulation of these neurons all interfered with the development of food entrainment. In a state of energy abundance, repetitive activation of DMHLepR neurons led to the partitioning of a secondary bout of circadian locomotor activity that was in phase with the stimulation and dependent on an intact SCN. Lastly, we discovered that a subpopulation of DMHLepR neurons project to the SCN with the capacity to influence the phase of the circadian clock. This leptin regulated circuit serves as a point of integration between the metabolic and circadian systems, facilitating the anticipation of meal times.
Collapse
Affiliation(s)
- Qijun Tang
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Elizabeth Godschall
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Charles D. Brennan
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Qi Zhang
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | | | - Sydney P. Williams
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Taha Buğra Güngül
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Roberta Onoharigho
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Aleyna Buyukaksakal
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Ricardo Salinas
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Joey J. Olivieri
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Christopher D. Deppmann
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
- Program in Fundamental Neuroscience, Charlottesville, VA 22904, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA, 22904, USA
- Department Biomedical Engineering, University of Virginia, Charlottesville, VA, 22904, USA
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - John N. Campbell
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Brandon Podyma
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
- Medical Scientist Training Program, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Ali D. Güler
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
- Program in Fundamental Neuroscience, Charlottesville, VA 22904, USA
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
16
|
Histamine Release in the Prefrontal Cortex Excites Fast-Spiking Interneurons while GABA Released from the Same Axons Inhibits Pyramidal Cells. J Neurosci 2023; 43:187-198. [PMID: 36639899 PMCID: PMC9838703 DOI: 10.1523/jneurosci.0936-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/06/2022] [Accepted: 11/03/2022] [Indexed: 12/13/2022] Open
Abstract
We studied how histamine and GABA release from axons originating from the hypothalamic tuberomammillary nucleus (TMN) and projecting to the prefrontal cortex (PFC) influence circuit processing. We optostimulated histamine/GABA from genetically defined TMN axons that express the histidine decarboxylase gene (TMNHDC axons). Whole-cell recordings from PFC neurons in layer 2/3 of prelimbic, anterior cingulate, and infralimbic regions were used to monitor excitability before and after optostimulated histamine/GABA release in male and female mice. We found that histamine-GABA release influences the PFC through actions on distinct neuronal types: the histamine stimulates fast-spiking interneurons; and the released GABA enhances tonic (extrasynaptic) inhibition on pyramidal cells (PyrNs). For fast-spiking nonaccommodating interneurons, histamine released from TMNHDC axons induced additive gain changes, which were blocked by histamine H1 and H2 receptor antagonists. The excitability of other fast-spiking interneurons in the PFC was not altered. In contrast, the GABA released from TMNHDC axons predominantly produced divisive gain changes in PyrNs, increasing their resting input conductance, and decreasing the slope of the input-output relationship. This inhibitory effect on PyrNs was not blocked by histamine receptor antagonists but was blocked by GABAA receptor antagonists. Across the adult life span (from 3 to 18 months of age), the GABA released from TMNHDC axons in the PFC inhibited PyrN excitability significantly more in older mice. For individuals who maintain cognitive performance into later life, the increases in TMNHDC GABA modulation of PyrNs during aging could enhance information processing and be an adaptive mechanism to buttress cognition.SIGNIFICANCE STATEMENT The hypothalamus controls arousal state by releasing chemical neurotransmitters throughout the brain to modulate neuronal excitability. Evidence is emerging that the release of multiple types of neurotransmitters may have opposing actions on neuronal populations in key cortical regions. This study demonstrates for the first time that the neurotransmitters histamine and GABA are released in the prefrontal cortex from axons originating from the tuberomammillary nucleus of the hypothalamus. This work demonstrates how hypothalamic modulation of neuronal excitability is maintained throughout adult life, highlighting an unexpected aspect of the aging process that may help maintain cognitive abilities.
Collapse
|
17
|
Berger SN, Baumberger B, Samaranayake S, Hersey M, Mena S, Bain I, Duncan W, Reed MC, Nijhout HF, Best J, Hashemi P. An In Vivo Definition of Brain Histamine Dynamics Reveals Critical Neuromodulatory Roles for This Elusive Messenger. Int J Mol Sci 2022; 23:14862. [PMID: 36499189 PMCID: PMC9738190 DOI: 10.3390/ijms232314862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 12/05/2022] Open
Abstract
Histamine is well known for mediating peripheral inflammation; however, this amine is also found in high concentrations in the brain where its roles are much less known. In vivo chemical dynamics are difficult to measure, thus fundamental aspects of histamine's neurochemistry remain undefined. In this work, we undertake the first in-depth characterization of real time in vivo histamine dynamics using fast electrochemical tools. We find that histamine release is sensitive to pharmacological manipulation at the level of synthesis, packaging, autoreceptors and metabolism. We find two breakthrough aspects of histamine modulation. First, differences in H3 receptor regulation between sexes show that histamine release in female mice is much more tightly regulated than in male mice under H3 or inflammatory drug challenge. We hypothesize that this finding may contribute to hormone-mediated neuroprotection mechanisms in female mice. Second, a high dose of a commonly available antihistamine, the H1 receptor inverse agonist diphenhydramine, rapidly decreases serotonin levels. This finding highlights the sheer significance of pharmaceuticals on neuromodulation. Our study opens the path to better understanding and treating histamine related disorders of the brain (such as neuroinflammation), emphasizing that sex and modulation (of serotonin) are critical factors to consider when studying/designing new histamine targeting therapeutics.
Collapse
Affiliation(s)
- Shane N. Berger
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | | | - Srimal Samaranayake
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Melinda Hersey
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
- Department of Physiology, Pharmacology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Sergio Mena
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Ian Bain
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - William Duncan
- Department of Mathematics, Montana State University, Bozeman, MT 59717, USA
| | - Michael C. Reed
- Department of Mathematics, Duke University, Durham, NC 27710, USA
| | | | - Janet Best
- Department of Mathematics, Ohio State University, Columbus, OH 43210, USA
| | - Parastoo Hashemi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
18
|
Tran Q, Pham TL, Shin HJ, Shin J, Shin N, Kwon HH, Park H, Kim SI, Choi SG, Wu J, Ngo VTH, Park JB, Kim DW. Targeting spinal microglia with fexofenadine-loaded nanoparticles prolongs pain relief in a rat model of neuropathic pain. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 44:102576. [PMID: 35714922 DOI: 10.1016/j.nano.2022.102576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Targeting microglial activation is emerging as a clinically promising drug target for neuropathic pain treatment. Fexofenadine, a histamine receptor 1 antagonist, is a clinical drug for the management of allergic reactions as well as pain and inflammation. However, the effect of fexofenadine on microglial activation and pain behaviors remains elucidated. Here, we investigated nanomedicinal approach that targets more preferentially microglia and long-term analgesics. Fexofenadine significantly abolished histamine-induced microglial activation. The fexofenadine-encapsulated poly(lactic-co-glycolic acid) nanoparticles (Fexo NPs) injection reduced the pain sensitivity of spinal nerve ligation rats in a dose-dependent manner. This alleviation was sustained for 4 days, whereas the effective period by direct fexofenadine injection was 3 h. Moreover, Fexo NPs inhibited microglial activation, inflammatory signaling, cytokine release, and a macrophage phenotype shift towards the alternative activated state in the spinal cord. These results show that Fexo NPs exhibit drug repositioning promise as a long-term treatment modality for neuropathic pain.
Collapse
Affiliation(s)
- Quangdon Tran
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea; Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea; Molecular Biology Laboratory, Department of Medical Laboratories, Hai Phong International Hospital, Hai Phong City #18000, Viet Nam
| | - Thuy Linh Pham
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea; Department of Histology & Embryology, Hai Phong University of Medicine & Pharmacy, Hai Phong 042-12, Viet Nam
| | - Hyo Jung Shin
- Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
| | - Juhee Shin
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
| | - Nara Shin
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
| | - Hyeok Hee Kwon
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
| | - Hyewon Park
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
| | - Song I Kim
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
| | - Seoung Gyu Choi
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
| | - Junhua Wu
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
| | - Van T H Ngo
- Graduate Department of Healthcare Science, Dainam University, Viet Nam
| | - Jin Bong Park
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea; Department of Physiology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
| | - Dong Woon Kim
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea; Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea.
| |
Collapse
|
19
|
Sergeeva OA, Mazur K, Kernder A, Haas HL, De Luca R. Tachykinins amplify the action of capsaicin on central histaminergic neurons. Peptides 2022; 150:170729. [PMID: 34958850 DOI: 10.1016/j.peptides.2021.170729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/27/2021] [Accepted: 12/23/2021] [Indexed: 12/30/2022]
Abstract
Substance P (SP), a product of the tachykinin 1 (Tac1) gene, is expressed in many hypothalamic neurons. Its wake-promoting potential could be mediated through histaminergic (HA) neurons of the tuberomamillary nucleus (TMN), where functional expression of neurokinin receptors (NKRs) waits to be characterized. As in the process of nociception in the peripheral nervous system (PNS) capsaicin-receptor (transient potential vanilloid 1: TRPV1) signalling is amplified by local release of histamine and SP, we tested the involvement of tachykinins in the capsaicin-induced long-lasting enhancement (LLEcaps) of HA neurons firing by investigating selective neurokinin receptor ligands in the hypothalamic mouse brain slice preparation using patch-clamp recordings in cell-attached mode combined with single-cell RT-PCR. We report that the majority of HA neurons respond to SP (EC50 3 nM), express the SP precursor tachykinin 1 (Tac1) gene and at least one of the neurokinin receptors. Responses to selective agonists of three known neurokinin receptors were sensitive to corresponding antagonists. LLEcaps was significantly impaired by the neurokinin receptor antagonists, indicating that in hypothalamus, as in the PNS, release of tachykinins downstream to TRPV1 activation is able to boost the release of histamine. The excitatory action of SP on histaminergic neurons adds another pathway to the noradrenergic and orexinergic ones to synergistically enhance cortical arousal. We show NK1R to play a prominent role on HA neurons and thus the control of wakefulness.
Collapse
Affiliation(s)
- O A Sergeeva
- Institute of Clinical Neuroscience and Medical Psychology (ICNMP), Group of Molecular Neurophysiology, Heinrich-Heine-University, Medical Faculty, D-40225, Düsseldorf, Germany; Institute of Neural and Sensory Physiology, Heinrich-Heine-University, Medical Faculty, D-40225, Düsseldorf, Germany.
| | - K Mazur
- Institute of Clinical Neuroscience and Medical Psychology (ICNMP), Group of Molecular Neurophysiology, Heinrich-Heine-University, Medical Faculty, D-40225, Düsseldorf, Germany
| | - A Kernder
- Institute of Neural and Sensory Physiology, Heinrich-Heine-University, Medical Faculty, D-40225, Düsseldorf, Germany
| | - H L Haas
- Institute of Neural and Sensory Physiology, Heinrich-Heine-University, Medical Faculty, D-40225, Düsseldorf, Germany
| | - R De Luca
- Institute of Neural and Sensory Physiology, Heinrich-Heine-University, Medical Faculty, D-40225, Düsseldorf, Germany
| |
Collapse
|
20
|
Arrigoni E, Fuller PM. The Role of the Central Histaminergic System in Behavioral State Control. Curr Top Behav Neurosci 2022; 59:447-468. [PMID: 34595740 DOI: 10.1007/7854_2021_263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Histamine is a small monoamine signaling molecule that plays a role in many peripheral and central physiological processes, including the regulation of wakefulness. The tuberomammillary nucleus is the sole neuronal source of histamine in the brain, and histamine neurons are thought to promote wakefulness and vigilance maintenance - under certain environmental and/or behavioral contexts - through their diffuse innervation of the cortex and other wake-promoting brain circuits. Histamine neurons also contain a number of other putative neurotransmitters, although the functional role of these co-transmitters remains incompletely understood. Within the brain histamine operates through three receptor subtypes that are located on pre- and post-synaptic membranes. Some histamine receptors exhibit constitutive activity, and hence exist in an activated state even in the absence of histamine. Newer medications used to reduce sleepiness in narcolepsy patients in fact enhance histamine signaling by blunting the constitutive activity of these histamine receptors. In this chapter, we provide an overview of the central histamine system with an emphasis on its role in behavioral state regulation and how drugs targeting histamine receptors are used clinically to treat a wide range of sleep-wake disorders.
Collapse
Affiliation(s)
- Elda Arrigoni
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| | - Patrick M Fuller
- Department of Neurological Surgery, University of California Davis School of Medicine, Davis, CA, USA
| |
Collapse
|
21
|
Kitanaka N, Hall FS, Tanaka KI, Tomita K, Igarashi K, Nishiyama N, Sato T, Uhl GR, Kitanaka J. Are Histamine H 3 Antagonists the Definitive Treatment for Acute Methamphetamine Intoxication? Curr Drug Res Rev 2022; 14:162-170. [PMID: 35431009 DOI: 10.2174/2589977514666220414122847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/21/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Methamphetamine (METH) is classified as a Schedule II stimulant drug under the United Nations Convention on Psychotropic Substances of 1971. METH and other amphetamine analogues (AMPHs) are powerful addictive drugs. Treatments are needed to treat the symptoms of METH addiction, chronic METH use, and acute METH overdose. No effective treatment for METH abuse has been established because alterations of brain functions under the excessive intake of abused drug intake are largely irreversible due in part to brain damage that occurs in the course of chronic METH use. OBJECTIVE Modulation of brain histamine neurotransmission is involved in several neuropsychiatric disorders, including substance use disorders. This review discusses the possible mechanisms underlying the therapeutic effects of histamine H3 receptor antagonists on symptoms of methamphetamine abuse. CONCLUSION Treatment of mice with centrally acting histamine H3 receptor antagonists increases hypothalamic histamine contents and reduces high-dose METH effects while potentiating lowdose effects via histamine H3 receptors that bind released histamine. On the basis of experimental evidence, it is hypothesized that histamine H3 receptors may be an effective target for the treatment METH use disorder or other adverse effects of chronic METH use.
Collapse
Affiliation(s)
- Nobue Kitanaka
- Department of Pharmacology, Hyogo College of Medicine, Hyogo 663-8501, Japan
| | - F Scott Hall
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio 43614, USA
| | - Koh-Ichi Tanaka
- Division of Pharmacology, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Hyogo 650-8530, Japan
| | - Kazuo Tomita
- Department of Applied Pharmacology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Kento Igarashi
- Neurology and Research Services, New Mexico VA Healthcare System, Albuquerque, New Mexico 87108, USA
| | - Nobuyoshi Nishiyama
- Division of Pharmacology, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Hyogo 650-8530, Japan
| | - Tomoaki Sato
- Department of Applied Pharmacology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - George R Uhl
- Neurology and Research Services, New Mexico VA Healthcare System, Albuquerque, New Mexico 87108, USA
- Departments of Neurology, Neuroscience, Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Junichi Kitanaka
- Department of Pharmacology, Hyogo College of Medicine, Hyogo 663-8501, Japan
| |
Collapse
|
22
|
The Histamine System in Zebrafish Brain: Organization, Receptors, and Behavioral Roles. Curr Top Behav Neurosci 2021; 59:291-302. [PMID: 34761361 DOI: 10.1007/7854_2021_259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Three of the four histamine receptors have been identified in zebrafish. Whereas only one histamine receptor 1 gene (hrh1) is known, two copies of histamine receptor 2 (hrh2a and hrh2b) have been identified. Although initially only one gene encoding for histamine receptor 3 (hrh3) was recognized in zebrafish, the genome database contains information for two more hrh3-like genes, whereas no genes corresponding for histamine receptor 4 with expression mainly in the immune system have been identified. Hrh1 and hrh3 show prominent uneven expression in the zebrafish brain, with the strongest expression in the dorsal telencephalon. Quantitatively significant expression of hrh1, hrh2, and hrh3 can also be found in several peripheral organs. Whereas antagonists of hrh1, hrh2, and hrh3 all affect the locomotor activity of zebrafish larvae, interpretation of the data is hampered by a lack of information on receptor binding and signaling characteristics. Zebrafish mutants lacking any of the three histamine receptors have shown modest behavioral phenotypes, possibly due to genetic compensation. None of the receptor mutant fish have shown significant sleep phenotypes. Adult zebrafish lacking hrh3 display decreased locomotor activity. The zebrafish histamine system shows significant life-long plasticity: presenilin 1 mutant zebrafish develop an abnormally large number of histamine neurons and increased thigmotaxis and anxiety-related phenotype. Overexpression of histidine decarboxylase (hdc) in larval zebrafish is associated with an increased number of hypocretin neurons, whereas translation inhibition of hdc or exposure to α-fluoromethylhistidine leads to decreased numbers of hypocretin neurons. Current pharmacological evidence suggests that this may be mediated by hrh1. Further studies using acute, e.g., pharmacogenetic or optogenetic manipulation of selected components of brain circuits, are required to understand the full range of physiological functions of zebrafish histamine receptors.
Collapse
|
23
|
Sharma A, Muresanu DF, Patnaik R, Menon PK, Tian ZR, Sahib S, Castellani RJ, Nozari A, Lafuente JV, Buzoianu AD, Skaper SD, Bryukhovetskiy I, Manzhulo I, Wiklund L, Sharma HS. Histamine H3 and H4 receptors modulate Parkinson's disease induced brain pathology. Neuroprotective effects of nanowired BF-2649 and clobenpropit with anti-histamine-antibody therapy. PROGRESS IN BRAIN RESEARCH 2021; 266:1-73. [PMID: 34689857 DOI: 10.1016/bs.pbr.2021.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Military personnel deployed in combat operations are highly prone to develop Parkinson's disease (PD) in later lives. PD largely involves dopaminergic pathways with hallmarks of increased alpha synuclein (ASNC), and phosphorylated tau (p-tau) in the cerebrospinal fluid (CSF) precipitating brain pathology. However, increased histaminergic nerve fibers in substantia nigra pars Compacta (SNpc), striatum (STr) and caudate putamen (CP) associated with upregulation of Histamine H3 receptors and downregulation of H4 receptors in human cases of PD is observed in postmortem cases. These findings indicate that modulation of histamine H3 and H4 receptors and/or histaminergic transmission may induce neuroprotection in PD induced brain pathology. In this review effects of a potent histaminergic H3 receptor inverse agonist BF-2549 or clobenpropit (CLBPT) partial histamine H4 agonist with H3 receptor antagonist, in association with monoclonal anti-histamine antibodies (AHmAb) in PD brain pathology is discussed based on our own observations. Our investigation shows that chronic administration of conventional or TiO2 nanowired BF 2649 (1mg/kg, i.p.) or CLBPT (1mg/kg, i.p.) once daily for 1 week together with nanowired delivery of HAmAb (25μL) significantly thwarted ASNC and p-tau levels in the SNpC and STr and reduced PD induced brain pathology. These observations are the first to show the involvement of histamine receptors in PD and opens new avenues for the development of novel drug strategies in clinical strategies for PD, not reported earlier.
Collapse
Affiliation(s)
- Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Stephen D Skaper
- Anesthesiology & Intensive Care, Department of Pharmacology, University of Padua, Padova, Italy
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Manzhulo
- Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
24
|
Shan L, Swaab DF. Changes in histaminergic system in neuropsychiatric disorders and the potential treatment consequences. Curr Neuropharmacol 2021; 20:403-411. [PMID: 34521328 PMCID: PMC9413789 DOI: 10.2174/1570159x19666210909144930] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/05/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022] Open
Abstract
In contrast to that of other monoamine neurotransmitters, the association of the histaminergic system with neuropsychiatric disorders is not well documented. In the last two decades, several clinical studies involved in the development of drugs targeting the histaminergic system have been reported. These include the H3R-antagonist/inverse agonist, pitolisant, used for the treatment of excessive sleepiness in narcolepsy, and the H1R antagonist, doxepin, used to alleviate symptoms of insomnia. The current review summarizes reports from animal models, including genetic and neuroimaging studies, as well as human brain samples and cerebrospinal fluid measurements from clinical trials, on the possible role of the histaminergic system in neuropsychiatric disorders. These studies will potentially pave the way for novel histamine-related therapeutic strategies.
Collapse
Affiliation(s)
- Ling Shan
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam. Netherlands
| | - Dick F Swaab
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam. Netherlands
| |
Collapse
|
25
|
Different Peas in the Same Pod: The Histaminergic Neuronal Heterogeneity. Curr Top Behav Neurosci 2021; 59:303-327. [PMID: 34455575 DOI: 10.1007/7854_2021_241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The histaminergic neuronal system is recently receiving increasing attention, as much has been learned over the past 25 years about histamine role as a neurotransmitter. Indeed, this amine is crucial in maintaining arousal and provides important contributions to regulate circadian rhythms, energy, endocrine homeostasis, motor behavior, and cognition. The extent to which these distinct physiological functions are operated by independent histamine neuronal subpopulation is unclear. In the rat brain histamine neuronal cell bodies are grouped within the tuberomamillary nucleus of the posterior hypothalamus in five clusters, E1-E5, each sending overlapping axons throughout the entire central nervous system with no strict topographical pattern. These features lead to the concept that histamine regulation of a wide range of functions in the central nervous system is achieved by the histaminergic neuronal system as a whole. However, increasing experimental evidence suggesting that the histaminergic system is organized into distinct pathways modulated by selective mechanisms challenges this view. In this review, we summarized experimental evidence supporting the heterogeneity of histamine neurons, and their organization in functionally distinct circuits impinging on separate brain regions and displaying selective control mechanisms. This implies independent functions of subsets of histaminergic neurons according to their respective origin and terminal projections with relevant consequences for the development of specific compounds that affect only subsets of histamine neurons, thus increasing the target specificity.
Collapse
|
26
|
Mochizuki T. Histamine as an Alert Signal in the Brain. Curr Top Behav Neurosci 2021; 59:413-425. [PMID: 34448132 DOI: 10.1007/7854_2021_249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Sleep-wake behavior is a well-studied physiology in central histamine studies. Classical histamine H1 receptor antagonists, such as diphenhydramine and chlorpheniramine, promote sleep in animals and humans. Further, neuronal histamine release shows a clear circadian rhythm in parallel with wake behavior. However, the early stages of histamine-associated knockout mouse studies showed relatively small defects in normal sleep-wake control. To reassess the role of histamine in behavioral state control, this review summarizes the progress in sleep-wake studies of histamine-associated genetic mouse models and discusses the significance of histamine for characteristic aspects of wake behavior. Based on analysis of recent mouse models, we propose that neuronal histamine may serve as an alert signal in the brain, when high attention or a strong wake-drive is needed, such as during exploration, self-defense, learning, or to counteract hypersomnolent diseases. Enhanced histaminergic neurotransmission may help performance or sense of signals concerning internal or environmental dangers, like peripheral histamine from mast cells in response to allergic stimuli and inflammatory signals.
Collapse
Affiliation(s)
- Takatoshi Mochizuki
- Department of Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan.
| |
Collapse
|
27
|
Shan L, Martens GJM, Swaab DF. Histamine-4 Receptor: Emerging Target for the Treatment of Neurological Diseases. Curr Top Behav Neurosci 2021; 59:131-145. [PMID: 34432256 DOI: 10.1007/7854_2021_237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A major challenge in the field of the biogenic amine histamine is the search for new-generation histamine receptor specific drugs. Daniel Bovet and Sir James Black received their Nobel Prizes for Medicine for their work on histamine-1 receptor (H1R) and H2R antagonists to treat allergies and gastrointestinal disorders. The first H3R-targeting drug to reach the market was approved for the treatment of the neurological disorder narcolepsy in 2018. The antagonists for the most recently identified histamine receptor, H4R, are currently under clinical evaluation for their potential therapeutic effects on inflammatory diseases such as atopic dermatitis and pruritus. In this chapter, we propose that H4R antagonists are endowed with prominent anti-inflammatory and immune effects, including in the brain. To substantiate this proposition, we combine data from transcriptional analyses of postmortem human neurodegenerative disease brain samples, human genome-wide association studies (GWAS), and translational animal model studies. The results prompt us to suggest the potential involvement of the H4R in various neurodegenerative diseases and how manipulating the H4R may create new therapeutic opportunities in central nervous system diseases.
Collapse
Affiliation(s)
- Ling Shan
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
| | - Gerard J M Martens
- Department of Molecular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Neuroscience, Nijmegen, GA, The Netherlands
| | - Dick F Swaab
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| |
Collapse
|
28
|
Hersey M, Hashemi P, Reagan LP. Integrating the monoamine and cytokine hypotheses of depression: Is histamine the missing link? Eur J Neurosci 2021; 55:2895-2911. [PMID: 34265868 DOI: 10.1111/ejn.15392] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 06/26/2021] [Accepted: 07/06/2021] [Indexed: 12/28/2022]
Abstract
Psychiatric diseases, like depression, largely affect the central nervous system (CNS). While the underlying neuropathology of depressive illness remains to be elucidated, several hypotheses have been proposed as molecular underpinnings for major depressive disorder, including the monoamine hypothesis and the cytokine hypothesis. The monoamine hypothesis has been largely supported by the pharmaceuticals that target monoamine neurotransmitters as a treatment for depression. However, these antidepressants have come under scrutiny due to their limited clinical efficacy, side effects, and delayed onset of action. The more recent, cytokine hypothesis of depression is supported by the ability of immune-active agents to induce "sickness behaviour" akin to that seen with depression. However, treatments that more selectively target inflammation have yielded inconsistent antidepressive results. As such, neither of these hypotheses can fully explain depressive illness pathology, implying that the underlying neuropathological mechanisms may encompass aspects of both theories. The goal of the current review is to integrate these two well-studied hypotheses and to propose a role for histamine as a potential unifying factor that links monoamines to cytokines. Additionally, we will focus on stress-induced depression, to provide an updated perspective of depressive illness research and thereby identify new potential targets for the treatment of major depressive disorder.
Collapse
Affiliation(s)
- Melinda Hersey
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, USA.,Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Parastoo Hashemi
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina, USA.,Department of Bioengineering, Imperial College, London, UK
| | - Lawrence P Reagan
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, USA.,WJB Dorn Veterans Affairs Medical Center, Columbia, South Carolina, USA
| |
Collapse
|
29
|
Inflammation-Induced Histamine Impairs the Capacity of Escitalopram to Increase Hippocampal Extracellular Serotonin. J Neurosci 2021; 41:6564-6577. [PMID: 34083254 DOI: 10.1523/jneurosci.2618-20.2021] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 01/11/2023] Open
Abstract
Commonly prescribed selective serotonin reuptake inhibitors (SSRIs) inhibit the serotonin transporter to correct a presumed deficit in extracellular serotonin signaling during depression. These agents bring clinical relief to many who take them; however, a significant and growing number of individuals are resistant to SSRIs. There is emerging evidence that inflammation plays a significant role in the clinical variability of SSRIs, though how SSRIs and inflammation intersect with synaptic serotonin modulation remains unknown. In this work, we use fast in vivo serotonin measurement tools to investigate the nexus between serotonin, inflammation, and SSRIs. Upon acute systemic lipopolysaccharide (LPS) administration in male and female mice, we find robust decreases in extracellular serotonin in the mouse hippocampus. We show that these decreased serotonin levels are supported by increased histamine activity (because of inflammation), acting on inhibitory histamine H3 heteroreceptors on serotonin terminals. Importantly, under LPS-induced histamine increase, the ability of escitalopram to augment extracellular serotonin is impaired because of an off-target action of escitalopram to inhibit histamine reuptake. Finally, we show that a functional decrease in histamine synthesis boosts the ability of escitalopram to increase extracellular serotonin levels following LPS. This work reveals a profound effect of inflammation on brain chemistry, specifically the rapidity of inflammation-induced decreased extracellular serotonin, and points the spotlight at a potentially critical player in the pathology of depression, histamine. The serotonin/histamine homeostasis thus, may be a crucial new avenue in improving serotonin-based treatments for depression.SIGNIFICANCE STATEMENT Acute LPS-induced inflammation (1) increases CNS histamine, (2) decreases CNS serotonin (via inhibitory histamine receptors), and (3) prevents a selective serotonin reuptake inhibitor (SSRI) from effectively increasing extracellular serotonin. A targeted depletion of histamine recovers SSRI-induced increases in extracellular hippocampal serotonin.
Collapse
|
30
|
Short- and Long-Term Social Recognition Memory Are Differentially Modulated by Neuronal Histamine. Biomolecules 2021; 11:biom11040555. [PMID: 33918940 PMCID: PMC8069616 DOI: 10.3390/biom11040555] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
The ability of recognizing familiar conspecifics is essential for many forms of social interaction including reproduction, establishment of dominance hierarchies, and pair bond formation in monogamous species. Many hormones and neurotransmitters have been suggested to play key roles in social discrimination. Here we demonstrate that disruption or potentiation of histaminergic neurotransmission differentially affects short (STM) and long-term (LTM) social recognition memory. Impairments of LTM, but not STM, were observed in histamine-deprived animals, either chronically (Hdc−/− mice lacking the histamine-synthesizing enzyme histidine decarboxylase) or acutely (mice treated with the HDC irreversible inhibitor α-fluoromethylhistidine). On the contrary, restriction of histamine release induced by stimulation of the H3R agonist (VUF16839) impaired both STM and LTM. H3R agonism-induced amnesic effect was prevented by pre-treatment with donepezil, an acetylcholinesterase inhibitor. The blockade of the H3R with ciproxifan, which in turn augmented histamine release, resulted in a procognitive effect. In keeping with this hypothesis, the procognitive effect of ciproxifan was absent in both Hdc−/− and αFMH-treated mice. Our results suggest that brain histamine is essential for the consolidation of LTM but not STM in the social recognition test. STM impairments observed after H3R stimulation are probably related to their function as heteroreceptors on cholinergic neurons.
Collapse
|
31
|
Kamei C. [Effects of Histamine and Related Compounds on the Central Nervous System]. YAKUGAKU ZASSHI 2021; 141:93-110. [PMID: 33390452 DOI: 10.1248/yakushi.20-00197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There has been little information about the role of histamine on the central nervous system (CNS), different from dopamine and serotonin. In the present study, therefore, the effects of histamine and related compounds on the CNS were studied using rats. Intracerebroventricular (i.c.v.) injection of histamine and 2-methylhistamine ameliorated memory deficit after long interrution of learning in active avoidance response. First generation H1-antagonists inhibited active avoidance response, whereas newly develpoed H1-antagonists showed little effect. α-Fluoromethylhistidine, an histidine decarboxylase inhibitor, also inhibited active avoidance response. In radial maze performance, almost the same findings were obtained. I.c.v. injection of histamine and H1-agonists inhibited amygdaloid kindled seizures. First generation H1-antagonists attenuated histamine-induced inhibition of amygdaloid kindled seizures. Both i.c.v. and intraperitoneal injections of H3-antagonist, thioperamide, resulted in a dose-related inhibition of amygdaloid kindled seizures. The effect of thioperamide was inhibited by an H3-agonists and H1-antagonists. Similar to nitrazepam, diphenhydramine and chlorpheniramine caused a shortening of sleep latency. On the other hand, no significant effects were observed with second generation H1-antagonists. These findings suggest that histamine plays an important role in learning and memory via H1-receptors, an inhibition of amygdaloid kindled seizures induced by histamine occurred through not only H1-receptors but also H3-receptors, and that classic H1-antagonists can be useful as a effective hypnotic for difficulty in falling asleep.
Collapse
Affiliation(s)
- Chiaki Kamei
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Yasuda Women's University.,Department of Medicinal Pharmacology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
| |
Collapse
|
32
|
Panula P. Histamine receptors, agonists, and antagonists in health and disease. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:377-387. [PMID: 34225942 DOI: 10.1016/b978-0-12-820107-7.00023-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Histamine in the brain is produced by a group of tuberomamillary neurons in the posterior hypothalamus and a limited number of mast cells in different parts of the brain. Four G-protein-coupled receptors mediate the effects of histamine. Two of these receptors, H3 and H4 receptors, are high-affinity receptors in the brain and immune system, respectively. The two classic histamine receptors, H1 receptor and H2 receptor, are well known as drug targets for allergy and gastric ulcer, respectively. These receptors have lower affinity for histamine than the more recently discovered H3 and H4 receptors. The H1 and H2 receptors are important postsynaptic receptors in the brain, and they mediate many of the central effects of histamine on, e.g., alertness and wakefulness. H3 receptor is a pre- and postsynaptic receptor, which regulates release of histamine and several other neurotransmitters, including serotonin, GABA, and glutamate. H4 receptor is found in cerebral blood vessels and microglia, but its expression in neurons is not yet well established. Pitolisant, a H3 receptor antagonist, is used to treat narcolepsy and hypersomnia. H1 receptor antagonists have been used to treat insomnia, but its use requires precautions due to potential side effects. H2 receptor antagonists have shown efficacy in treatment of schizophrenia, but they are not in widespread clinical use. H4 receptor ligands may in the future be tested for neuroimmunological disorders and potentially neurodegenerative disorders in which inflammation plays a role, but clinical tests have not yet been initiated.
Collapse
Affiliation(s)
- Pertti Panula
- Department of Anatomy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
33
|
Hayashi T, Watanabe C, Katsuyama S, Agatsuma Y, Scuteri D, Bagetta G, Sakurada T, Sakurada S. Contribution of Histamine to Nociceptive Behaviors Induced by Intrathecally Administered Cholecystokinin-8. Front Pharmacol 2020; 11:590918. [PMID: 33250769 PMCID: PMC7673449 DOI: 10.3389/fphar.2020.590918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/01/2020] [Indexed: 01/04/2023] Open
Abstract
The involvement of spinal release of histamine in the nociceptive behaviors induced by cholecystokinin-8 (CCK-8) was investigated in mice. Intrathecal (i.t.) injection of CCK-8 elicited the nociceptive behaviors consisting of biting and licking. The nociceptive behaviors induced by i.t. treatment with CCK-8 showed two bell-shaped patterns. The histamine H3 receptor antagonist significantly promoted the nociceptive behaviors induced by CCK-8 at doses of 1–100 fmol and 100 pmol. The nociceptive behaviors elicited by CCK-8 was inhibited by i.t. administration of the CCK-B receptor antagonist in a dose-dependent manner, but not by the CCK-A receptor antagonist. The nociceptive behaviors induced by CCK-8 were markedly suppressed by i.t. pretreatment with antiserum against histamine and were abolished in histidine decarboxylase-deleted gene mice. In histamine H1 receptor-deleted gene mice, the nociceptive behaviors induced at both 10 amol and 10 pmol of CCK-8 were not affected. The tachykinin neurokinin-1 (NK1) receptor antagonists inhibited CCK-8 (10 pmol)-induced nociceptive behaviors in a dose-dependent manner. CCK-8 (10 amol)-induced nociceptive behaviors was not antagonized by co-administration with the tachykinin NK1 receptor antagonists. The nociceptive behaviors elicited by CCK-8 were inhibited by i.t. administration of the antagonist for the N-methyl-D-aspartate (NMDA) receptor in a dose-dependent manner. Our results suggest that the nociceptive behaviors induced by i.t. administration of CCK-8 (10 pmol) are mediated through the spinal release of histamine and are elicited via activation of the tachykinin NK1 and NMDA receptors, whereas the nociceptive behaviors induced by i.t. administration of CCK-8 (10 amol) are mediated through the spinal release of histamine and elicited via NMDA receptor activation.
Collapse
Affiliation(s)
- Takafumi Hayashi
- Laboratory of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Chizuko Watanabe
- Department of Physiology and Anatomy, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Soh Katsuyama
- Center for Clinical Pharmacology and Pharmaceutics, Nihon Pharmaceutical University, Saitama, Japan
| | - Yasuyuki Agatsuma
- Laboratory of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Damiana Scuteri
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health Science and Nutrition, University of Calabria, Cosenza, Italy
| | - Giacinto Bagetta
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health Science and Nutrition, University of Calabria, Cosenza, Italy
| | - Tsukasa Sakurada
- Center for Supporting Pharmaceutical Education, Faculty of Pharmaceutical sciences, Daiichi University of Pharmacy, Fukuoka, Japan
| | - Shinobu Sakurada
- Department of Physiology and Anatomy, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
34
|
Stein T, Tonussi CR. Involvement of the tuberomammillary nucleus of the hypothalamus in the modulation of nociception and joint edema in a model of monoarthritis. Life Sci 2020; 262:118521. [PMID: 33022280 DOI: 10.1016/j.lfs.2020.118521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/22/2020] [Accepted: 09/26/2020] [Indexed: 10/23/2022]
Abstract
AIMS Investigate the involvement of the histaminergic projections from tuberomammillary nucleus (TMN) to the spinal cord in the modulation of nociception and peripheral edema in a model of monoarthritis. MAIN METHODS Subacute monoarthritis was induced by an intraarticular injection of carrageenan followed by LPS 72 h later. Disability and joint edema were assessed at the 3rd hour after LPS and at every hour up to 6 h. KEY FINDINGS Intrathecal administration of histamine potentiated joint incapacitation and edema, while the H1R antagonist cetirizine decreased both. The H3R agonist immepip decreased both incapacitation and edema, while the H3R antagonist thioperamide had the opposite effect. The microinjection of glutamate into the ventral TMN (vTMN) caused an increase of incapacitation and articular edema, whereas the blockade of this nucleus by cobalt chloride inhibited both parameters. Intrathecal administration of cetirizine prevented the increase of incapacitation and joint edema caused by glutamate microinjection into the vTMN. Similarly, an intrathecal injection of the NKCC1 cotransporter inhibitor bumetanide prevented the effects of glutamate microinjection into the vTMN, whereas coadministration of histamine with bumetanide only inhibited the potentiation of joint edema. A microinjection of orexin B into the vTMN potentiated incapacitation and joint edema, while coadministration of the OX1/2 receptor antagonist almorexant with orexin B did not. SIGNIFICANCE These data support the notion that TMN participates in the modulation of a peripheral inflammatory process by means of histaminergic projections to the spinal cord, and the hypothalamus may trigger TMN activation by means of glutamate and orexin.
Collapse
Affiliation(s)
- T Stein
- Program in Biosciences and Health, State University of Western Paraná, Cascavel, PR 85819-110, Brazil
| | - C R Tonussi
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil.
| |
Collapse
|
35
|
Yoshikawa T, Nakamura T, Yanai K. Histaminergic neurons in the tuberomammillary nucleus as a control centre for wakefulness. Br J Pharmacol 2020; 178:750-769. [PMID: 32744724 DOI: 10.1111/bph.15220] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 07/21/2020] [Accepted: 07/25/2020] [Indexed: 12/15/2022] Open
Abstract
Histamine plays pleiotropic roles as a neurotransmitter in the physiology of brain function, this includes the maintenance of wakefulness, appetite regulation and memory retrieval. Since numerous studies have revealed an association between histaminergic dysfunction and diverse neuropsychiatric disorders, such as Alzheimer's disease and schizophrenia, a large number of compounds acting on the brain histamine system have been developed to treat neurological disorders. In 2016, pitolisant, which was developed as a histamine H3 receptor inverse agonist by Schwartz and colleagues, was launched for the treatment of narcolepsy, emphasising the prominent role of brain histamine on wakefulness. Recent advances in neuroscientific techniques such as chemogenetic and optogenetic approaches have led to remarkable progress in the understanding of histaminergic neural circuits essential for the control of wakefulness. In this review article, we summarise the basic knowledge about the histaminergic nervous system and the mechanisms underlying sleep/wake regulation that are controlled by the brain histamine system. LINKED ARTICLES: This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.4/issuetoc.
Collapse
Affiliation(s)
- Takeo Yoshikawa
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tadaho Nakamura
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kazuhiko Yanai
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
36
|
Michael NJ, Zigman JM, Williams KW, Elmquist JK. Electrophysiological Properties of Genetically Identified Histaminergic Neurons. Neuroscience 2020; 444:183-195. [PMID: 32599122 DOI: 10.1016/j.neuroscience.2020.06.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 11/27/2022]
Abstract
Histaminergic neurons of the tuberomammillary nucleus (TMN) are important regulators of behavioral and homeostatic processes. Previous work suggested that histaminergic neurons exhibit a characteristic electrophysiological signature, allowing for their identification in brain slice preparations. However, these previous investigations focused on neurons in the ventral subregion of the TMN of rats. Consequently, it remains unclear whether such electrophysiological properties extend to mice, including other subregions of the TMN, and the potential for differences between males and females. To further characterize the electrophysiological properties of histaminergic neurons, we performed whole-cell patch-clamp recordings on transgenic mice expressing Cre recombinase in histidine decarboxylase (HDC)-expressing cells; the sole enzyme for histamine synthesis (Hdc-cre::tdTomato). Despite similarities with the electrophysiological properties reported in rats, we observed considerable variability in mouse HDC neuron passive membrane properties, action potential firing, and intrinsic subthreshold active membrane properties. Overall, the electrophysiological properties of HDC neurons appeared similar across subregions of the TMN, consistent with a lack of topographical organization in this nucleus. Moreover, we found no obvious sex differences in the electrical excitability of HDC neurons. However, our data reveal a diversity in the electrophysiological properties of genetically identified histaminergic neurons from mice not previously appreciated from rat studies. Thus, these data highlight the utility of mouse genetics to target the widespread histaminergic neuronal population within the TMN and support the idea that histaminergic neurons are a heterogeneous neuronal population.
Collapse
Affiliation(s)
- Natalie J Michael
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390-9077, United States; Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada
| | - Jeffrey M Zigman
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390-9077, United States
| | - Kevin W Williams
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390-9077, United States.
| | - Joel K Elmquist
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390-9077, United States; Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390-9077, United States.
| |
Collapse
|
37
|
Michael NJ, Caron A, Lee CE, Castorena CM, Lee S, Zigman JM, Williams KW, Elmquist JK. Melanocortin regulation of histaminergic neurons via perifornical lateral hypothalamic melanocortin 4 receptors. Mol Metab 2020; 35:100956. [PMID: 32244183 PMCID: PMC7082550 DOI: 10.1016/j.molmet.2020.01.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/23/2020] [Accepted: 01/28/2020] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE Histaminergic neurons of the tuberomammillary nucleus (TMN) are wake-promoting and contribute to the regulation of energy homeostasis. Evidence indicates that melanocortin 4 receptors (MC4R) are expressed within the TMN. However, whether the melanocortin system influences the activity and function of TMN neurons expressing histidine decarboxylase (HDC), the enzyme required for histamine synthesis, remains undefined. METHODS We utilized Hdc-Cre mice in combination with whole-cell patch-clamp electrophysiology and in vivo chemogenetic techniques to determine whether HDC neurons receive metabolically relevant information via the melanocortin system. RESULTS We found that subsets of HDC-expressing neurons were excited by melanotan II (MTII), a non-selective melanocortin receptor agonist. Use of melanocortin receptor selective agonists (THIQ, [D-Trp8]-γ-MSH) and inhibitors of synaptic transmission (TTX, CNQX, AP5) indicated that the effect was mediated specifically by MC4Rs and involved a glutamatergic dependent presynaptic mechanism. MTII enhanced evoked excitatory post-synaptic currents (EPSCs) originating from electrical stimulation of the perifornical lateral hypothalamic area (PeFLH), supportive of melanocortin effects on the glutamatergic PeFLH projection to the TMN. Finally, in vivo chemogenetic inhibition of HDC neurons strikingly enhanced the anorexigenic effects of intracerebroventricular administration of MTII, suggesting that MC4R activation of histaminergic neurons may restrain the anorexigenic effects of melanocortin system activation. CONCLUSIONS These experiments identify a functional interaction between the melanocortin and histaminergic systems and suggest that HDC neurons act naturally to restrain the anorexigenic effect of melanocortin system activation. These findings may have implications for the control of arousal and metabolic homeostasis, especially in the context of obesity, in which both processes are subjected to alterations.
Collapse
MESH Headings
- Animals
- Behavior, Animal/drug effects
- Eating/drug effects
- Excitatory Postsynaptic Potentials/drug effects
- Histamine/metabolism
- Histidine Decarboxylase/genetics
- Histidine Decarboxylase/metabolism
- Hypothalamic Area, Lateral/cytology
- Hypothalamic Area, Lateral/metabolism
- Locomotion/drug effects
- Male
- Melanocortins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Neurons/drug effects
- Neurons/metabolism
- Peptides, Cyclic/pharmacology
- Receptor, Melanocortin, Type 4/agonists
- Receptor, Melanocortin, Type 4/genetics
- Receptor, Melanocortin, Type 4/metabolism
- alpha-MSH/analogs & derivatives
- alpha-MSH/pharmacology
Collapse
Affiliation(s)
- Natalie J Michael
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390-9077, USA
| | - Alexandre Caron
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390-9077, USA
| | - Charlotte E Lee
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390-9077, USA
| | - Carlos M Castorena
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390-9077, USA
| | - Syann Lee
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390-9077, USA
| | - Jeffrey M Zigman
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390-9077, USA
| | - Kevin W Williams
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390-9077, USA.
| | - Joel K Elmquist
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390-9077, USA; Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, 75390-9077, USA.
| |
Collapse
|
38
|
Korpi ER, Lindholm D, Panula P, Tienari PJ, Haltia M. Finnish neuroscience from past to present. Eur J Neurosci 2020; 52:3273-3289. [PMID: 32017266 DOI: 10.1111/ejn.14693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Esa R Korpi
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Dan Lindholm
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Pertti Panula
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pentti J Tienari
- Research Programs Unit, Translational Immunology, University of Helsinki, Helsinki, Finland.,Department of Neurology, Neurocenter, Helsinki University Hospital, Helsinki, Finland
| | - Matti Haltia
- Department of Pathology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
39
|
Schredelseker T, Driever W. Conserved Genoarchitecture of the Basal Hypothalamus in Zebrafish Embryos. Front Neuroanat 2020; 14:3. [PMID: 32116574 PMCID: PMC7016197 DOI: 10.3389/fnana.2020.00003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 01/20/2020] [Indexed: 12/15/2022] Open
Abstract
Analyses of genoarchitecture recently stimulated substantial revisions of anatomical models for the developing hypothalamus in mammalian and other vertebrate systems. The prosomeric model proposes the hypothalamus to be derived from the secondary prosencephalon, and to consist of alar and basal regions. The basal hypothalamus can further be subdivided into tuberal and mamillary regions, each with distinct subregions. Albeit being a widely used model system for neurodevelopmental studies, no detailed genoarchitectural maps exist for the zebrafish (Danio rerio) hypothalamus. Here, we compare expression domains of zebrafish genes, including arxa, shha, otpa, isl1, lhx5, nkx2.1, nkx2.2a, pax6, and dlx5a, the orthologs of which delimit specific subregions within the murine basal hypothalamus. We develop the highly conserved brain-specific homeobox (bsx) gene as a novel marker for genoarchitectural analysis of hypothalamic regions. Our comparison of gene expression patterns reveals that the genoarchitecture of the basal hypothalamus in zebrafish embryos 48 hours post fertilization is highly similar to mouse embryos at E13.5. We found the tuberal hypothalamus in zebrafish embryos to be relatively large and to comprise previously ill-defined regions around the posterior hypothalamic recess. The mamillary hypothalamus is smaller and concentrates to rather medial areas in proximity to the anterior end of the neural tube floor plate. Within the basal hypothalamus we identified longitudinal and transverse tuberal and mamillary subregions topologically equivalent to those previously described in other vertebrates. However, the hypothalamic diencephalic boundary region and the posterior tuberculum still provide a challenge. We applied the updated prosomeric model to the developing zebrafish hypothalamus to facilitate cross-species comparisons. Accordingly, we applied the mammalian nomenclature of hypothalamic organization to zebrafish and propose it to replace some controversial previous nomenclature.
Collapse
Affiliation(s)
- Theresa Schredelseker
- Developmental Biology, Institute Biology I, Faculty of Biology, University of Freiburg, Freiburg, Germany.,CIBSS and BIOSS - Centres for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Wolfgang Driever
- Developmental Biology, Institute Biology I, Faculty of Biology, University of Freiburg, Freiburg, Germany.,CIBSS and BIOSS - Centres for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
40
|
Provensi G, Passani MB, Costa A, Izquierdo I, Blandina P. Neuronal histamine and the memory of emotionally salient events. Br J Pharmacol 2020; 177:557-569. [PMID: 30110713 PMCID: PMC7012950 DOI: 10.1111/bph.14476] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/24/2018] [Accepted: 07/30/2018] [Indexed: 01/08/2023] Open
Abstract
In this review, we describe the experimental paradigms used in preclinical studies to unravel the histaminergic brain circuits that modulate the formation and retrieval of memories associated with aversive events. Emotionally arousing events, especially bad ones, are remembered more accurately, clearly and for longer periods of time than neutral ones. Maladaptive elaborations of these memories may eventually constitute the basis of psychiatric disorders such as generalized anxiety, obsessive-compulsive disorders and post-traumatic stress disorder. A better understanding of the role of the histaminergic system in learning and memory has not only a theoretical significance but also a translational value. Ligands of histamine receptors are among the most used drugs worldwide; hence, understanding the impact of these compounds on learning and memory may help improve their pharmacological profile and unravel unexplored therapeutic applications. LINKED ARTICLES: This article is part of a themed section on New Uses for 21st Century. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.3/issuetoc.
Collapse
Affiliation(s)
- Gustavo Provensi
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del BambinoUniversità degli Studi di FirenzeFlorenceItaly
| | | | - Alessia Costa
- Dipartimento di Scienze della SaluteUniversità degli Studi di FirenzeFlorenceItaly
| | - Ivan Izquierdo
- Memory Center, Brain Institute of Rio Grande do SulPontifical Catholic University of Rio Grande do Sul (PUCRS)Porto AlegreRSBrazil
- National Institute of Translational Neuroscience (INNT)National Research Council of BrazilBrasíliaBrazil
| | - Patrizio Blandina
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del BambinoUniversità degli Studi di FirenzeFlorenceItaly
| |
Collapse
|
41
|
Jones BE. Arousal and sleep circuits. Neuropsychopharmacology 2020; 45:6-20. [PMID: 31216564 PMCID: PMC6879642 DOI: 10.1038/s41386-019-0444-2] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/16/2019] [Accepted: 06/11/2019] [Indexed: 12/20/2022]
Abstract
The principal neurons of the arousal and sleep circuits are comprised by glutamate and GABA neurons, which are distributed within the reticular core of the brain and, through local and distant projections and interactions, regulate cortical activity and behavior across wake-sleep states. These are in turn modulated by the neuromodulatory systems that are comprised by acetylcholine, noradrenaline, dopamine, serotonin, histamine, orexin (hypocretin), and melanin-concentrating hormone (MCH) neurons. Glutamate and GABA neurons are heterogeneous in their profiles of discharge, forming distinct functional cell types by selective or maximal discharge during (1) waking and paradoxical (REM) sleep, (2) during slow wave sleep, (3) during waking, or (4) during paradoxical (REM) sleep. The neuromodulatory systems are each homogeneous in their profile of discharge, the majority discharging maximally during waking and paradoxical sleep or during waking. Only MCH neurons discharge maximally during sleep. They each exert their modulatory influence upon other neurons through excitatory and inhibitory receptors thus effecting a concerted differential change in the functionally different cell groups. Both arousal and sleep circuit neurons are homeostatically regulated as a function of their activity in part through changes in receptors. The major pharmacological agents used for the treatment of wake and sleep disorders act upon GABA and neuromodulatory transmission.
Collapse
Affiliation(s)
- Barbara E. Jones
- 0000 0004 1936 8649grid.14709.3bDepartment of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4 Canada
| |
Collapse
|
42
|
Antihistamine agents and pitolisant might be useful for anorexia nervosa. Med Hypotheses 2019; 132:109342. [DOI: 10.1016/j.mehy.2019.109342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/29/2019] [Indexed: 01/05/2023]
|
43
|
The role of co-neurotransmitters in sleep and wake regulation. Mol Psychiatry 2019; 24:1284-1295. [PMID: 30377299 PMCID: PMC6491268 DOI: 10.1038/s41380-018-0291-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 09/17/2018] [Accepted: 10/08/2018] [Indexed: 12/11/2022]
Abstract
Sleep and wakefulness control in the mammalian brain requires the coordination of various discrete interconnected neurons. According to the most conventional sleep model, wake-promoting neurons (WPNs) and sleep-promoting neurons (SPNs) compete for network dominance, creating a systematic "switch" that results in either the sleep or awake state. WPNs and SPNs are ubiquitous in the brainstem and diencephalon, areas that together contain <1% of the neurons in the human brain. Interestingly, many of these WPNs and SPNs co-express and co-release various types of the neurotransmitters that often have opposing modulatory effects on the network. Co-transmission is often beneficial to structures with limited numbers of neurons because it provides increasing computational capability and flexibility. Moreover, co-transmission allows subcortical structures to bi-directionally control postsynaptic neurons, thus helping to orchestrate several complex physiological functions such as sleep. Here, we present an in-depth review of co-transmission in hypothalamic WPNs and SPNs and discuss its functional significance in the sleep-wake network.
Collapse
|
44
|
Denton AR, Samaranayake SA, Kirchner KN, Roscoe RF, Berger SN, Harrod SB, Mactutus CF, Hashemi P, Booze RM. Selective monoaminergic and histaminergic circuit dysregulation following long-term HIV-1 protein exposure. J Neurovirol 2019; 25:540-550. [PMID: 31102184 PMCID: PMC6750960 DOI: 10.1007/s13365-019-00754-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/06/2019] [Accepted: 04/15/2019] [Indexed: 12/21/2022]
Abstract
Between 30 and 60% of HIV-seropositive individuals develop symptoms of clinical depression and/or apathy. Dopamine and serotonin are associated with motivational alterations; however, histamine is less well studied. In the present study, we used fast-scan cyclic voltammetry in HIV-1 transgenic (Tg) rats to simultaneously analyze the kinetics of nucleus accumbens dopamine (DA), prefrontal cortical serotonin (5-HT), and hypothalamic histamine (HA). For voltammetry, subjects were 15 HIV-1 Tg (7 male, 8 female) and 20 F344/N (11 male, 9 female) adult rats. Both serotonergic and dopaminergic release and reuptake kinetics were decreased in HIV-1 Tg animals relative to controls. In contrast, rates of histamine release and reuptake increased in HIV-1 Tg rats. Additionally, we used immunohistochemical (IHC) methods to identify histaminergic neurons in the tuberomammillary nucleus (TMN) of the hypothalamus. For IHC, subjects were 9 HIV-1 Tg (5 male, 4 female) and 9 F344/N (5 male, 4 female) adult rats. Although the total number of TMN histaminergic cells did not differ between HIV-1 Tg rats and F344/N controls, a significant sex effect was found, with females having an increased number of histaminergic neurons, relative to males. Collectively, these findings illustrate neurochemical alterations that potentially underlie or exacerbate the pathogenesis of clinical depression and/or apathy in HIV-1.
Collapse
Affiliation(s)
- Adam R Denton
- Behavioral Neuroscience Laboratory, Department of Psychology, University of South Carolina, Columbia, SC, USA
| | | | - Kristin N Kirchner
- Behavioral Neuroscience Laboratory, Department of Psychology, University of South Carolina, Columbia, SC, USA
| | - Robert F Roscoe
- Behavioral Neuroscience Laboratory, Department of Psychology, University of South Carolina, Columbia, SC, USA
| | - Shane N Berger
- Department of Chemistry, University of South Carolina, Columbia, SC, USA
| | - Steven B Harrod
- Behavioral Neuroscience Laboratory, Department of Psychology, University of South Carolina, Columbia, SC, USA
| | - Charles F Mactutus
- Behavioral Neuroscience Laboratory, Department of Psychology, University of South Carolina, Columbia, SC, USA
| | - Parastoo Hashemi
- Department of Chemistry, University of South Carolina, Columbia, SC, USA
| | - Rosemarie M Booze
- Behavioral Neuroscience Laboratory, Department of Psychology, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
45
|
Davies S, Ballesteros-Merino C, Allen NA, Porch MW, Pruitt ME, Christensen KH, Rosenberg MJ, Savage DD. Impact of moderate prenatal alcohol exposure on histaminergic neurons, histidine decarboxylase levels and histamine H 2 receptors in adult rat offspring. Alcohol 2019; 76:47-57. [PMID: 30557779 DOI: 10.1016/j.alcohol.2018.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 10/28/2022]
Abstract
We have reported that moderate prenatal alcohol exposure (PAE) elevates histamine H3 receptor-mediated inhibition of glutamatergic neurotransmission in dentate gyrus (DG), and that the H3 receptor antagonist ABT-239 ameliorates PAE-induced deficits in DG long-term potentiation. Here, we investigated whether PAE alters other markers of histaminergic neurotransmission. Long-Evans rat dams voluntarily consumed either a 0% or a 5% ethanol solution 4 h each day throughout gestation. Young adult female offspring from each prenatal treatment group were used in histidine decarboxylase (HDC) immunohistochemical studies of histamine neuron number in ventral hypothalamus, quantitative Western blotting studies of HDC expression in multiple brain regions, radiohistochemical studies of H2 receptor density in multiple brain regions, and in biochemical studies of H2 receptor-effector coupling in dentate gyrus. Rat dams consumed a mean of 1.90 g of ethanol/kg/day during pregnancy. This level of consumption did not affect maternal weight gain, offspring birth weight, or litter size. PAE did not affect the number of HDC-positive neurons in ventral hypothalamus. However, HDC expression was reduced in frontal cortex, dentate gyrus, and cerebellum of PAE rats compared to controls. Specific [125I]-iodoaminopotentidine binding to H2 receptors was not altered in any of the brain regions measured, nor was basal or H2 receptor agonist-stimulated cAMP accumulation in DG altered in PAE rats compared to controls. These results suggest that not all markers of histaminergic neurotransmission are altered by PAE. However, the observation that HDC levels were reduced in the same brain regions where elevated H3 receptor-effector coupling was observed previously raises the question of whether a cause-effect relationship exists between HDC expression and H3 receptor function in affected brain regions of PAE rats. This relationship, along with the question of why these effects occur in some, but not all brain regions, requires more-detailed investigation.
Collapse
|
46
|
Panula P. Histamine, histamine H 3 receptor, and alcohol use disorder. Br J Pharmacol 2019; 177:634-641. [PMID: 30801695 DOI: 10.1111/bph.14634] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/20/2018] [Accepted: 02/11/2019] [Indexed: 12/29/2022] Open
Abstract
Alcohol use disorder is associated with several mental, physical, and social problems. Its treatment is difficult and often requires a combination of pharmacological and behavioural therapy. The brain histaminergic system, one of the wake-active systems that controls whole-brain activity, operates through three neuronal GPCRs. The histamine H3 receptor (Hrh3), which is expressed in many brain areas involved in alcohol drinking and alcohol reward, can be targeted with a number of drugs developed initially for cognitive disorders and/or disorders related to sleep, wakefulness, and alertness. In all rodent alcohol drinking models tested so far, H3 receptor antagonists have reduced alcohol drinking and alcohol-induced place preference and cue-induced alcohol reinstatement. Several H3 receptor antagonists tested and found to be safe for humans could be subjected to clinical tests to treat alcohol use disorder. Preference should be given to short-acting drugs to avoid the sleep problems associated with the wake-maintaining effects of the drugs. LINKED ARTICLES: This article is part of a themed section on New Uses for 21st Century. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.3/issuetoc.
Collapse
Affiliation(s)
- Pertti Panula
- Department of Anatomy and Neuroscience Center, University of Helsinki, Helsinki, Finland
| |
Collapse
|
47
|
Pittenger C. The histidine decarboxylase model of tic pathophysiology: a new focus on the histamine H 3 receptor. Br J Pharmacol 2019; 177:570-579. [PMID: 30714121 DOI: 10.1111/bph.14606] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/12/2018] [Accepted: 01/07/2019] [Indexed: 12/16/2022] Open
Abstract
Histamine dysregulation was implicated as a rare cause of Tourette syndrome and other tic disorders a decade ago by a landmark genetic study in a high density family pedigree, which implicated a hypomorphic mutation in the histidine decarboxylase (Hdc) gene as a rare but high penetrance genetic cause. Studies in Hdc knockout (KO) mice have confirmed that this mutation causes tic-relevant behavioural and neurochemical abnormalities that parallel what is seen in patients and thus validate the KO as a potentially informative model of tic pathophysiology. Recent studies have focused on the potential role of the histamine H3 receptor in this model, and by association in tic disorders and related neuropsychiatric conditions. The H3 receptor is up-regulated in the striatum in Hdc KO mice. As the H3 receptor has constitutive activity in the absence of ligand, this receptor up-regulation may have significant cellular effects despite the absence of neurotransmitter histamine in these mice. Activation in vivo of H3 receptors in wild type mice regulates signalling in striatal medium spiny neurons (MSNs) that interacts non-linearly with dopamine receptor signalling. Baseline signalling alterations in MSNs in Hdc KO mice resemble those seen after H3 receptor agonist treatment in wild type animals. H3 receptor agonist treatment in the KOs further accentuates most of these signalling abnormalities and produces behavioural stereotypy. Together, these data suggest the intriguing hypothesis that constitutive signalling by up-regulated H3 receptors explains many of the molecular and behavioural abnormalities seen in these animals. LINKED ARTICLES: This article is part of a themed section on New Uses for 21st Century. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.3/issuetoc.
Collapse
|
48
|
Gagic M, Jamroz E, Krizkova S, Milosavljevic V, Kopel P, Adam V. Current Trends in Detection of Histamine in Food and Beverages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:773-783. [PMID: 30585064 DOI: 10.1021/acs.jafc.8b05515] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Histamine is a heterocyclic amine formed by decarboxylation of the amino acid l-histidine. It is involved in the local regulation of physiological processes but also can occur exogenously in the food supply. Histamine is toxic at high intakes; therefore, determination of the histamine level in food is an important aspect of food safety. This article will review the current understanding of physiological functions of endogenous and ingested histamine with a particular focus placed on existing and emerging technologies for histamine quantification in food. Methods reported in this article are sequentially arranged and provide a brief overview of analytical methods reported, including those based on nanotechnologies.
Collapse
Affiliation(s)
- Milica Gagic
- Department of Chemistry and Biochemistry, Faculty of AgriSciences , Mendel University in Brno , Zemedelska 1 , CZ-613 00 Brno , Czech Republic
- Central European Institute of Technology , Brno University of Technology , Purkynova 123 , CZ-612 00 Brno , Czech Republic
| | - Ewelina Jamroz
- Institute of Chemistry , University of Agriculture in Cracow , Balicka Street 122 , PL-30-149 Cracow , Poland
| | - Sona Krizkova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences , Mendel University in Brno , Zemedelska 1 , CZ-613 00 Brno , Czech Republic
- Central European Institute of Technology , Brno University of Technology , Purkynova 123 , CZ-612 00 Brno , Czech Republic
| | - Vedran Milosavljevic
- Department of Chemistry and Biochemistry, Faculty of AgriSciences , Mendel University in Brno , Zemedelska 1 , CZ-613 00 Brno , Czech Republic
- Central European Institute of Technology , Brno University of Technology , Purkynova 123 , CZ-612 00 Brno , Czech Republic
| | - Pavel Kopel
- Department of Chemistry and Biochemistry, Faculty of AgriSciences , Mendel University in Brno , Zemedelska 1 , CZ-613 00 Brno , Czech Republic
- Central European Institute of Technology , Brno University of Technology , Purkynova 123 , CZ-612 00 Brno , Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of AgriSciences , Mendel University in Brno , Zemedelska 1 , CZ-613 00 Brno , Czech Republic
- Central European Institute of Technology , Brno University of Technology , Purkynova 123 , CZ-612 00 Brno , Czech Republic
| |
Collapse
|
49
|
Tiligada E, Ennis M. Histamine pharmacology: from Sir Henry Dale to the 21st century. Br J Pharmacol 2018; 177:469-489. [PMID: 30341770 DOI: 10.1111/bph.14524] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/30/2018] [Accepted: 10/08/2018] [Indexed: 12/28/2022] Open
Abstract
Histamine has been one of the most studied substances in medicine, playing a major role in diverse (patho)physiological processes. It elicits its multifaceted modulatory functions by activating four types of GPCRs, designated as H1-4 . Despite the heterogeneity and the complexity of histamine receptor pharmacology, many discoveries over the past 100 years resulted in the development of H1 antihistamines and H2 -targeting 'blockbuster' therapeutics for the management of allergies and gastrointestinal disorders respectively. Recently, a first-in-class H3 inverse agonist was approved for the treatment of narcolepsy, whereas H4 antagonists are under clinical evaluation for their potential therapeutic exploitation in immune-related diseases. This review critically presents the past successes and drawbacks in histamine research, complemented by the modern conceptual innovations in molecular and receptor pharmacology. It targets both young and experienced researchers in an ongoing effort to stimulate novel insights for the dissection of the translational potential of histamine pharmacology. LINKED ARTICLES: This article is part of a themed section on New Uses for 21st Century. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.3/issuetoc.
Collapse
Affiliation(s)
- Ekaterini Tiligada
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Madeleine Ennis
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| |
Collapse
|
50
|
Jirakittayakorn N, Wongsawat Y. A Novel Insight of Effects of a 3-Hz Binaural Beat on Sleep Stages During Sleep. Front Hum Neurosci 2018; 12:387. [PMID: 30319382 PMCID: PMC6165862 DOI: 10.3389/fnhum.2018.00387] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 09/06/2018] [Indexed: 01/06/2023] Open
Abstract
The dichotic presentation of two almost equivalent pure tones with slightly different frequencies leads to virtual beat perception by the brain. In this phenomenon, the so-called binaural beat has a frequency equaling the difference of the frequencies of the two pure tones. The binaural beat can entrain neural activities to synchronize with the beat frequency and induce behavioral states related to the neural activities. This study aimed to investigate the effect of a 3-Hz binaural beat on sleep stages, which is considered a behavioral state. Twenty-four participants were allocated to experimental and control groups. The experimental period was three consecutive nights consisting of an adaptation night, a baseline night, and an experimental night. Participants in both groups underwent the same procedures, but only the experimental group was exposed to the 3-Hz binaural beat on the experimental night. The stimulus was initiated when the first epoch of the N2 sleep stage was detected and stopped when the first epoch of the N3 sleep stage detected. For the control group, a silent sham stimulus was used. However, the participants were blinded to their stimulus group. The results showed that the N3 duration of the experimental group was longer than that of the control group, and the N2 duration of the experimental group was shorter than that of the control group. Moreover, the N3 latency of the experimental group was shorter.
Collapse
Affiliation(s)
- Nantawachara Jirakittayakorn
- Brain Computer Interface Laboratory, Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Salaya, Thailand
| | - Yodchanan Wongsawat
- Brain Computer Interface Laboratory, Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Salaya, Thailand
| |
Collapse
|