1
|
Pan F, Zhang Q, Zhu H, Li J, Wen Q. Transcriptome and Metabolome Provide Insights into Fruit Ripening of Cherry Tomato ( Solanum lycopersicum var. cerasiforme). PLANTS (BASEL, SWITZERLAND) 2023; 12:3505. [PMID: 37836245 PMCID: PMC10575466 DOI: 10.3390/plants12193505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
Insights into flavor formation during fruit ripening can guide the development of breeding strategies that balance consumer and producer needs. Cherry tomatoes possess a distinctive taste, yet research on quality formation is limited. Here, metabolomic and transcriptomic analyses were conducted on different ripening stages. The results revealed differentially accumulated metabolites during fruit ripening, providing candidate metabolites related to flavor. Interestingly, several key flavor-related metabolites already reached a steady level at the mature green stage. Transcriptomic analysis revealed that the expression levels of the majority of genes tended to stabilize after the pink stage. Enrichment analysis demonstrated that changes in metabolic and biosynthetic pathways were evident throughout the entire process of fruit ripening. Compared to disease resistance and fruit color genes, genes related to flavor and firmness may have a broader impact on the accumulation of metabolites. Furthermore, we discovered the interconversion patterns between glutamic acid and glutamine, as well as the biosynthesis patterns of flavonoids. These findings contribute to our understanding of fruit quality formation mechanisms and support breeding programs aimed at improving fruit quality traits.
Collapse
Affiliation(s)
- Feng Pan
- Fujian Key Laboratory of Vegetable Genetics and Breeding, Crops Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qianrong Zhang
- Fujian Key Laboratory of Vegetable Genetics and Breeding, Crops Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China
| | - Haisheng Zhu
- Fujian Key Laboratory of Vegetable Genetics and Breeding, Crops Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China
| | - Junming Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qingfang Wen
- Fujian Key Laboratory of Vegetable Genetics and Breeding, Crops Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China
| |
Collapse
|
2
|
Vats S, Kumar V, Mandlik R, Patil G, Sonah H, Roy J, Sharma TR, Deshmukh R. Reference Guided De Novo Genome Assembly of Transformation Pliable Solanum lycopersicum cv. Pusa Ruby. Genes (Basel) 2023; 14:570. [PMID: 36980842 PMCID: PMC10047940 DOI: 10.3390/genes14030570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Solanum lycopersicum cv. Pusa Ruby (PR) is a superior tomato cultivar routinely used as a model tomato variety. Here, we report a reference-guided genome assembly for PR, covering 97.6% of the total single-copy genes in the solanales order. The PR genome contains 34,075 genes and 423,288 variants, out of which 127,131 are intragenic and 1232 are of high impact. The assembly was packaged according to PanSol guidelines (N50 = 60,396,827) with the largest scaffold measuring 85 megabases. The similarity of the PR genome assembly to Heinz1706, M82, and Fla.8924 was measured and the results suggest PR has the lowest affinity towards the hybrid Fla.8924. We then analyzed the regeneration efficiency of PR in comparison to another variety, Pusa Early Dwarf (PED). PR was found to have a high regeneration rate (45.51%) and therefore, we performed allele mining for genes associated with regeneration and found that only AGAMOUS-LIKE15 has a null mutation. Further, allele mining for fruit quality-related genes was also executed. The PR genome has an Ovate mutation leading to round fruit shape, causing economically undesirable fruit cracking. This genomic data can be potentially used for large scale crop improvement programs as well as functional annotation studies.
Collapse
Affiliation(s)
- Sanskriti Vats
- National Agri-Food Biotechnology Institute (NABI), Mohali 140306, Punjab, India
- Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Virender Kumar
- National Agri-Food Biotechnology Institute (NABI), Mohali 140306, Punjab, India
- Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Rushil Mandlik
- National Agri-Food Biotechnology Institute (NABI), Mohali 140306, Punjab, India
- Department of Biotechnology, Panjab University, Chandigarh 160014, Punjab, India
| | - Gunvant Patil
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79410, USA
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali 140306, Punjab, India
| | - Joy Roy
- National Agri-Food Biotechnology Institute (NABI), Mohali 140306, Punjab, India
| | - Tilak Raj Sharma
- Department of Crop Science, Indian Council of Agriculture Research (ICAR), Krishi Bhavan, New Delhi 110001, Delhi, India
| | - Rupesh Deshmukh
- Department of Biotechnology, Central University of Haryana, Mahendragarh 123031, Haryana, India
| |
Collapse
|
3
|
Arias D, Arenas-M A, Flores-Ortiz C, Peirano C, Handford M, Stange C. Daucus carota DcPSY2 and DcLCYB1 as Tools for Carotenoid Metabolic Engineering to Improve the Nutritional Value of Fruits. FRONTIERS IN PLANT SCIENCE 2021; 12:677553. [PMID: 34512681 PMCID: PMC8427143 DOI: 10.3389/fpls.2021.677553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
Carotenoids are pigments with important nutritional value in the human diet. As antioxidant molecules, they act as scavengers of free radicals enhancing immunity and preventing cancer and cardiovascular diseases. Moreover, α-carotene and β-carotene, the main carotenoids of carrots (Daucus carota) are precursors of vitamin A, whose deficiency in the diet can trigger night blindness and macular degeneration. With the aim of increasing the carotenoid content in fruit flesh, three key genes of the carotenoid pathway, phytoene synthase (DcPSY2) and lycopene cyclase (DcLCYB1) from carrots, and carotene desaturase (XdCrtI) from the yeast Xanthophyllomyces dendrorhous, were optimized for expression in apple and cloned under the Solanum chilense (tomatillo) polygalacturonase (PG) fruit specific promoter. A biotechnological platform was generated and functionally tested by subcellular localization, and single, double and triple combinations were both stably transformed in tomatoes (Solanum lycopersicum var. Microtom) and transiently transformed in Fuji apple fruit flesh (Malus domestica). We demonstrated the functionality of the S. chilense PG promoter by directing the expression of the transgenes specifically to fruits. Transgenic tomato fruits expressing DcPSY2, DcLCYB1, and DcPSY2-XdCRTI, produced 1.34, 2.0, and 1.99-fold more total carotenoids than wild-type fruits, respectively. Furthermore, transgenic tomatoes expressing DcLCYB1, DcPSY2-XdCRTI, and DcPSY2-XdCRTI-DcLCYB1 exhibited an increment in β-carotene levels of 2.5, 3.0, and 2.57-fold in comparison with wild-type fruits, respectively. Additionally, Fuji apple flesh agroinfiltrated with DcPSY2 and DcLCYB1 constructs showed a significant increase of 2.75 and 3.11-fold in total carotenoids and 5.11 and 5.84-fold in β-carotene, respectively whereas the expression of DcPSY2-XdCRTI and DcPSY2-XdCRTI-DcLCYB1 generated lower, but significant changes in the carotenoid profile of infiltrated apple flesh. The results in apple demonstrate that DcPSY2 and DcLCYB1 are suitable biotechnological genes to increase the carotenoid content in fruits of species with reduced amounts of these pigments.
Collapse
Affiliation(s)
- Daniela Arias
- Centro de Biología Molecular Vegetal, Facultad de Ciencias, Universidad de Chile, Ñuñoa, Chile
| | - Anita Arenas-M
- Laboratorio de Nutrición y Genómica de Plantas, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Carlos Flores-Ortiz
- Centro de Biología Molecular Vegetal, Facultad de Ciencias, Universidad de Chile, Ñuñoa, Chile
| | - Clio Peirano
- Centro de Biología Molecular Vegetal, Facultad de Ciencias, Universidad de Chile, Ñuñoa, Chile
| | - Michael Handford
- Centro de Biología Molecular Vegetal, Facultad de Ciencias, Universidad de Chile, Ñuñoa, Chile
| | - Claudia Stange
- Centro de Biología Molecular Vegetal, Facultad de Ciencias, Universidad de Chile, Ñuñoa, Chile
| |
Collapse
|
4
|
Smirnova OG, Kochetov AV. Choice of the Promoter for Tissue and Developmental Stage-Specific Gene Expression. Methods Mol Biol 2020; 2124:69-106. [PMID: 32277449 DOI: 10.1007/978-1-0716-0356-7_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Transgenic technologies belong to important tools of reverse genetics and biotechnology in plants. Targeted genetic modifications can reveal functions of genes of interest, change metabolic and regulatory pathways, or result in accumulation of valuable proteins or metabolites. However, to be efficient in targeted genetic modification, the chimeric gene construct should be designed properly. In particular, the promoters used to control transgene expression need to be carefully chosen. Most promoters in widely used vectors belong to strong and constitutively expressed variants. However, in many cases transgene expression has to be restricted to certain tissue, stage of development, or response to some internal or external stimuli. In turn, a large variety of tissue-specific promoters have been studied and information on their characteristics may be recovered from the literature. An appropriate promoter may be selected and used in genetic construct to optimize the transgene transcription pattern. We have previously designed the TGP database (TransGene Promoters, http://wwwmgs.bionet.nsc.ru/mgs/dbases/tgp/home.html ) collecting information from the publications in this field. Here we review the wide range of noncanonical tissue-specific and developmentally regulated promoters that might be used for transgene expression control.
Collapse
Affiliation(s)
- Olga G Smirnova
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia.
| | - Alex V Kochetov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
5
|
Osorio S, Carneiro RT, Lytovchenko A, McQuinn R, Sørensen I, Vallarino JG, Giovannoni JJ, Fernie AR, Rose JKC. Genetic and metabolic effects of ripening mutations and vine detachment on tomato fruit quality. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:106-118. [PMID: 31131540 PMCID: PMC6920187 DOI: 10.1111/pbi.13176] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 02/26/2019] [Accepted: 05/20/2019] [Indexed: 05/18/2023]
Abstract
Tomato (Solanum lycopersicum) fruit ripening is regulated co-operatively by the action of ethylene and a hierarchy of transcription factors, including RIPENING INHIBITOR (RIN) and NON-RIPENING (NOR). Mutations in these two genes have been adopted commercially to delay ripening, and accompanying textural deterioration, as a means to prolong shelf life. However, these mutations also affect desirable traits associated with colour and nutritional value, although the extent of this trade-off has not been assessed in detail. Here, we evaluated changes in tomato fruit pericarp primary metabolite and carotenoid pigment profiles, as well as the dynamics of specific associated transcripts, in the rin and nor mutants during late development and postharvest storage, as well of those of the partially ripening delayed fruit ripening (dfd) tomato genotype. These profiles were compared with those of the wild-type tomato cultivars Ailsa Craig (AC) and M82. We also evaluated the metabolic composition of M82 fruit ripened on or off the vine over a similar period. In general, the dfd mutation resulted in prolonged firmness and maintenance of quality traits without compromising key metabolites (sucrose, glucose/fructose and glucose) and sectors of intermediary metabolism, including tricarboxylic acid cycle intermediates. Our analysis also provided insights into the regulation of carotenoid formation and highlighted the importance of the polyamine, putrescine, in extending fruit shelf life. Finally, the metabolic composition analysis of M82 fruit ripened on or off the vine provided insights into the import into fruit of compounds, such as sucrose, during ripening.
Collapse
Affiliation(s)
- Sonia Osorio
- Max‐Planck‐Institut für Molekulare PflanzenphysiologiePotsdam‐GolmGermany
- Department of Molecular Biology and BiochemistryInstituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”University of Malaga‐Consejo Superior de Investigaciones CientíficasMálagaSpain
| | - Raphael T. Carneiro
- Plant Biology SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
| | - Anna Lytovchenko
- Max‐Planck‐Institut für Molekulare PflanzenphysiologiePotsdam‐GolmGermany
| | - Ryan McQuinn
- Plant Biology SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
- Boyce Thompson Institute for Plant Research and USDA‐ARSRobert W. Holley CenterIthacaNYUSA
| | - Iben Sørensen
- Plant Biology SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
| | - José G. Vallarino
- Max‐Planck‐Institut für Molekulare PflanzenphysiologiePotsdam‐GolmGermany
- Department of Molecular Biology and BiochemistryInstituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”University of Malaga‐Consejo Superior de Investigaciones CientíficasMálagaSpain
| | - James J. Giovannoni
- Plant Biology SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
- Boyce Thompson Institute for Plant Research and USDA‐ARSRobert W. Holley CenterIthacaNYUSA
| | - Alisdair R. Fernie
- Max‐Planck‐Institut für Molekulare PflanzenphysiologiePotsdam‐GolmGermany
| | - Jocelyn K. C. Rose
- Plant Biology SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
| |
Collapse
|
6
|
Liu H, Hao N, Jia Y, Liu X, Ni X, Wang M, Liu W. The ethylene receptor regulates Typha angustifolia leaf aerenchyma morphogenesis and cell fate. PLANTA 2019; 250:381-390. [PMID: 31062160 DOI: 10.1007/s00425-019-03177-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/26/2019] [Indexed: 05/14/2023]
Abstract
Ethylene receptor is crucial for PCD and aerenchyma formation in Typha angustifolia leaves. Not only does it receive and deliver the ethylene signal, but it probably can determine the cell fate during aerenchyma morphogenesis, which is due to the receptor expression quantity. Aquatic plant oxygen delivery relies on aerenchyma, which is formed by a programmed cell death (PCD) procedure. However, cells in the outer edge of the aerenchyma (palisade cells and septum cells) remain intact, and the mechanism is unclear. Here, we offer a hypothesis: cells that have a higher content of ethylene receptors do not undergo PCD. In this study, we investigated the leaf aerenchyma of the aquatic plant Typha angustifolia. Ethephon and pyrazinamide (PZA, an inhibitor of ACC oxidase) were used to confirm that ethylene is an essential hormone for PCD of leaf aerenchyma cells in T. angustifolia. That the ethylene receptor was an indispensable factor in this PCD was confirmed by 1-MCP (an inhibitor of the ethylene receptor) treatment. Although PCD can be avoided by blocking the ethylene receptor, excessive ethylene receptors also protect cells from PCD. TaETR1, TaETR2 and TaEIN4 in the T. angustifolia leaf were detected by immunofluorescence (IF) using polyclonal antibodies. The result showed that the content of ethylene receptors in PCD-unsusceptible cells was 4-14 times higher than that one in PCD-susceptible cells, suggesting that PCD-susceptible cells undergo the PCD programme, while PCD-unsusceptible cells do not due to the content difference in the ethylene receptor in different cells. A higher level of ethylene receptor content makes the cells insensitive to ethylene, thereby avoiding cell death and degradation.
Collapse
Affiliation(s)
- Huidong Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an, 710069, China
| | - Nan Hao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an, 710069, China
| | - Yuhuan Jia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an, 710069, China
| | - Xingqian Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an, 710069, China
| | - Xilu Ni
- State Key Laboratory of Seedling Bioengineering, Ningxia Forestry Institute, Yinchuan, 750004, China
| | - Meng Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an, 710069, China
| | - Wenzhe Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an, 710069, China.
| |
Collapse
|
7
|
Li S, Chen K, Grierson D. A critical evaluation of the role of ethylene and MADS transcription factors in the network controlling fleshy fruit ripening. THE NEW PHYTOLOGIST 2019; 221:1724-1741. [PMID: 30328615 DOI: 10.1111/nph.15545] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/28/2018] [Indexed: 05/18/2023]
Abstract
Contents Summary 1724 I. Introduction 1725 II. Ripening genes 1725 III. The importance of ethylene in controlling ripening 1727 IV. The importance of MADS-RIN in controlling ripening 1729 V. Interactions between components of the ripening regulatory network 1734 VI. Conclusions 1736 Acknowledgements 1738 Author contributions 1738 References 1738 SUMMARY: Understanding the regulation of fleshy fruit ripening is biologically important and provides insights and opportunities for controlling fruit quality, enhancing nutritional value for animals and humans, and improving storage and waste reduction. The ripening regulatory network involves master and downstream transcription factors (TFs) and hormones. Tomato is a model for ripening regulation, which requires ethylene and master TFs including NAC-NOR and the MADS-box protein MADS-RIN. Recent functional characterization showed that the classical RIN-MC gene fusion, previously believed to be a loss-of-function mutation, is an active TF with repressor activity. This, and other evidence, has highlighted the possibility that MADS-RIN itself is not important for ripening initiation but is required for full ripening. In this review, we discuss the diversity of components in the control network, their targets, and how they interact to control initiation and progression of ripening. Both hormones and individual TFs affect the status and activity of other network participants, which changes overall network signaling and ripening outcomes. MADS-RIN, NAC-NOR and ethylene play critical roles but there are still unanswered questions about these and other TFs. Further attention should be paid to relationships between ethylene, MADS-RIN and NACs in ripening control.
Collapse
Affiliation(s)
- Shan Li
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Kunsong Chen
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Don Grierson
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| |
Collapse
|
8
|
Jiang F, Lopez A, Jeon S, de Freitas ST, Yu Q, Wu Z, Labavitch JM, Tian S, Powell ALT, Mitcham E. Disassembly of the fruit cell wall by the ripening-associated polygalacturonase and expansin influences tomato cracking. HORTICULTURE RESEARCH 2019; 6:17. [PMID: 30729007 PMCID: PMC6355925 DOI: 10.1038/s41438-018-0105-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 10/07/2018] [Accepted: 10/14/2018] [Indexed: 05/06/2023]
Abstract
Fruit cracking is an important problem in horticultural crop production. Polygalacturonase (SlPG) and expansin (SlEXP1) proteins cooperatively disassemble the polysaccharide network of tomato fruit cell walls during ripening and thereby, enable softening. A Golden 2-like (GLK2) transcription factor, SlGLK2 regulates unripe fruit chloroplast development and results in elevated soluble solids and carotenoids in ripe fruit. To determine whether SlPG, SlEXP1, or SlGLK2 influence the rate of tomato fruit cracking, the incidence of fruit epidermal cracking was compared between wild-type, Ailsa Craig (WT) and fruit with suppressed SlPG and SlEXP1 expression (pg/exp) or expressing a truncated nonfunctional Slglk2 (glk2). Treating plants with exogenous ABA increases xylemic flow into fruit. Our results showed that ABA treatment of tomato plants greatly increased cracking of fruit from WT and glk2 mutant, but not from pg/exp genotypes. The pg/exp fruit were firmer, had higher total soluble solids, denser cell walls and thicker cuticles than fruit of the other genotypes. Fruit from the ABA treated pg/exp fruit had cell walls with less water-soluble and more ionically and covalently-bound pectins than fruit from the other lines, demonstrating that ripening-related disassembly of the fruit cell wall, but not elimination of SlGLK2, influences cracking. Cracking incidence was significantly correlated with cell wall and wax thickness, and the content of cell wall protopectin and cellulose, but not with Ca2+ content.
Collapse
Affiliation(s)
- Fangling Jiang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- Department of Plant Sciences, University of California, Davis, 95616 USA
| | - Alfonso Lopez
- Department of Plant Sciences, University of California, Davis, 95616 USA
| | - Shinjae Jeon
- Department of Plant Sciences, University of California, Davis, 95616 USA
- Gangwon Agricultural Research and Extension Services, Chuncheon, 200-150 South Korea
| | | | - Qinghui Yu
- Department of Plant Sciences, University of California, Davis, 95616 USA
- Institute of Vegetables, Xinjiang Academy of Agricultural Sciences, 830091 Urumchi, China
| | - Zhen Wu
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - John M. Labavitch
- Department of Plant Sciences, University of California, Davis, 95616 USA
| | - Shengke Tian
- Department of Plant Sciences, University of California, Davis, 95616 USA
- College of Environmental and Resource Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Ann L. T. Powell
- Department of Plant Sciences, University of California, Davis, 95616 USA
| | - Elizabeth Mitcham
- Department of Plant Sciences, University of California, Davis, 95616 USA
| |
Collapse
|
9
|
Biochemical analysis and activity profiling of fruit ripening enzymes in banana cultivars from Kerala. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2017. [DOI: 10.1007/s11694-017-9505-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Giovannoni J, Nguyen C, Ampofo B, Zhong S, Fei Z. The Epigenome and Transcriptional Dynamics of Fruit Ripening. ANNUAL REVIEW OF PLANT BIOLOGY 2017; 68:61-84. [PMID: 28226232 DOI: 10.1146/annurev-arplant-042916-040906] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Fruit has evolved myriad forms that facilitate seed dispersal in varied environmental and ecological contexts. Because fleshy fruits become attractive and nutritious to seed-dispersing animals, the transition from unripe to ripe fruit represents a dramatic shift in survival strategy-from protecting unripe fruit against damaging animals to making it appealing to those same animals once ripened. For optimal fitness, ripening therefore must be tightly controlled and coordinated with seed development. Fruits, like many vegetative tissues of plants that contribute to human diets, are also subject to decay, which is enhanced as a consequence of the ripening transition. As such, ripening control has enormous relevance for both plant biology and food security. Here, we review the complex interactions of hormones and transcription factors during fleshy-fruit ripening, with an emphasis on the recent discovery that epigenome dynamics are a critical and early regulator of the cascade of molecular events that ultimately contribute to fruit maturation and ripening.
Collapse
Affiliation(s)
- James Giovannoni
- Robert W. Holley Center, US Department of Agriculture-Agricultural Research Service, Ithaca, New York 14853;
- Boyce Thompson Institute, Ithaca, New York 14853;
- School of Integrated Plant Sciences, Cornell University, Ithaca, New York 14853; ,
| | - Cuong Nguyen
- School of Integrated Plant Sciences, Cornell University, Ithaca, New York 14853; ,
| | - Betsy Ampofo
- School of Integrated Plant Sciences, Cornell University, Ithaca, New York 14853; ,
| | - Silin Zhong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China;
| | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, New York 14853;
| |
Collapse
|
11
|
Tranbarger TJ, Fooyontphanich K, Roongsattham P, Pizot M, Collin M, Jantasuriyarat C, Suraninpong P, Tragoonrung S, Dussert S, Verdeil JL, Morcillo F. Transcriptome Analysis of Cell Wall and NAC Domain Transcription Factor Genes during Elaeis guineensis Fruit Ripening: Evidence for Widespread Conservation within Monocot and Eudicot Lineages. FRONTIERS IN PLANT SCIENCE 2017; 8:603. [PMID: 28487710 PMCID: PMC5404384 DOI: 10.3389/fpls.2017.00603] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/03/2017] [Indexed: 05/13/2023]
Abstract
The oil palm (Elaeis guineensis), a monocotyledonous species in the family Arecaceae, has an extraordinarily oil rich fleshy mesocarp, and presents an original model to examine the ripening processes and regulation in this particular monocot fruit. Histochemical analysis and cell parameter measurements revealed cell wall and middle lamella expansion and degradation during ripening and in response to ethylene. Cell wall related transcript profiles suggest a transition from synthesis to degradation is under transcriptional control during ripening, in particular a switch from cellulose, hemicellulose, and pectin synthesis to hydrolysis and degradation. The data provide evidence for the transcriptional activation of expansin, polygalacturonase, mannosidase, beta-galactosidase, and xyloglucan endotransglucosylase/hydrolase proteins in the ripening oil palm mesocarp, suggesting widespread conservation of these activities during ripening for monocotyledonous and eudicotyledonous fruit types. Profiling of the most abundant oil palm polygalacturonase (EgPG4) and 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) transcripts during development and in response to ethylene demonstrated both are sensitive markers of ethylene production and inducible gene expression during mesocarp ripening, and provide evidence for a conserved regulatory module between ethylene and cell wall pectin degradation. A comprehensive analysis of NAC transcription factors confirmed at least 10 transcripts from diverse NAC domain clades are expressed in the mesocarp during ripening, four of which are induced by ethylene treatment, with the two most inducible (EgNAC6 and EgNAC7) phylogenetically similar to the tomato NAC-NOR master-ripening regulator. Overall, the results provide evidence that despite the phylogenetic distance of the oil palm within the family Arecaceae from the most extensively studied monocot banana fruit, it appears ripening of divergent monocot and eudicot fruit lineages are regulated by evolutionarily conserved molecular physiological processes.
Collapse
Affiliation(s)
| | - Kim Fooyontphanich
- Institut de Recherche pour le Développement, IRD, UMR DIADEMontpellier, France
| | | | - Maxime Pizot
- Institut de Recherche pour le Développement, IRD, UMR DIADEMontpellier, France
| | - Myriam Collin
- Institut de Recherche pour le Développement, IRD, UMR DIADEMontpellier, France
| | | | - Potjamarn Suraninpong
- Department of Plant Science, Institute of Agricultural Technology, Walailak UniversityNakhon Si Thammarat, Thailand
| | - Somvong Tragoonrung
- Genome Institute, National Center for Genetic Engineering and BiotechnologyPathumthani, Thailand
| | - Stéphane Dussert
- Institut de Recherche pour le Développement, IRD, UMR DIADEMontpellier, France
| | - Jean-Luc Verdeil
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR AGAPMontpellier, France
| | - Fabienne Morcillo
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR DIADEMontpellier, France
| |
Collapse
|
12
|
Lovisetto A, Baldan B, Pavanello A, Casadoro G. Characterization of an AGAMOUS gene expressed throughout development of the fleshy fruit-like structure produced by Ginkgo biloba around its seeds. BMC Evol Biol 2015; 15:139. [PMID: 26173604 PMCID: PMC4502469 DOI: 10.1186/s12862-015-0418-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 06/15/2015] [Indexed: 11/10/2022] Open
Abstract
Background The involvement of MADS-box genes of the AGAMOUS lineage in the formation of both flowers and fruits has been studied in detail in Angiosperms. AGAMOUS genes are expressed also in the reproductive structures of Gymnosperms, yet the demonstration of their role has been problematic because Gymnosperms are woody plants difficult to manipulate for physiological and genetic studies. Recently, it was shown that in the gymnosperm Ginkgo biloba an AGAMOUS gene was expressed throughout development and ripening of the fleshy fruit-like structures produced by this species around its seeds. Such fleshy structures are evolutionarily very important because they favor the dispersal of seeds through endozoochory. In this work a characterization of the Ginkgo gene was carried out by over-expressing it in tomato. Results In tomato plants ectopically expressing the Ginkgo AGAMOUS gene a macroscopic anomaly was observed only in the flower sepals. While the wild type sepals had a leaf-like appearance, the transgenic ones appeared connately adjoined at their proximal extremity and, concomitant with the development and ripening of the fruit, they became thicker and acquired a yellowish-orange color, thus indicating that they had undergone a homeotic transformation into carpel-like structures. Molecular analyses of several genes associated with either the control of ripening or the ripening syndrome in tomato fruits confirmed that the transgenic sepals behaved like ectopic fruits that could undergo some ripening, although the red color typical of the ripe tomato fruit was never achieved. Conclusions The ectopic expression of the Ginkgo AGAMOUS gene in tomato caused the homeotic transformation of the transgenic sepals into carpel-like structures, and this showed that the gymnosperm gene has a genuine C function. In parallel with the ripening of fruits the related transgenic sepals became fleshy fruit-like structures that also underwent some ripening and such a result indicates that this C function gene might be involved, together with other gens, also in the development of the Ginkgo fruit-like structures. It seems thus strengthened the hypothesis that AGAMOUS MADS-box genes were recruited already in Gymnosperms for the development of the fleshy fruit habit which is evolutionarily so important for the dispersal of seeds. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0418-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alessandro Lovisetto
- Department of Biology, University of Padua, Via G. Colombo, 3, 35131, Padua, Italy.
| | - Barbara Baldan
- Department of Biology, University of Padua, Via G. Colombo, 3, 35131, Padua, Italy.
| | - Anna Pavanello
- Department of Biology, University of Padua, Via G. Colombo, 3, 35131, Padua, Italy.
| | - Giorgio Casadoro
- Department of Biology, University of Padua, Via G. Colombo, 3, 35131, Padua, Italy. .,Botanical Gardens, University of Padua, Via Orto Botanico, 15, 35123, Padua, Italy.
| |
Collapse
|
13
|
Giménez E, Dominguez E, Pineda B, Heredia A, Moreno V, Lozano R, Angosto T. Transcriptional Activity of the MADS Box ARLEQUIN/TOMATO AGAMOUS-LIKE1 Gene Is Required for Cuticle Development of Tomato Fruit. PLANT PHYSIOLOGY 2015; 168:1036-48. [PMID: 26019301 PMCID: PMC4741332 DOI: 10.1104/pp.15.00469] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/27/2015] [Indexed: 05/21/2023]
Abstract
Fruit development and ripening entail key biological and agronomic events, which ensure the appropriate formation and dispersal of seeds and determine productivity and yield quality traits. The MADS box gene Arlequin/tomato Agamous-like1 (hereafter referred to as TAGL1) was reported as a key regulator of tomato (Solanum lycopersicum) reproductive development, mainly involved in flower development, early fruit development, and ripening. It is shown here that silencing of the TAGL1 gene (RNA interference lines) promotes significant changes affecting cuticle development, mainly a reduction of thickness and stiffness, as well as a significant decrease in the content of cuticle components (cutin, waxes, polysaccharides, and phenolic compounds). Accordingly, overexpression of TAGL1 significantly increased the amount of cuticle and most of its components while rendering a mechanically weak cuticle. Expression of the genes involved in cuticle biosynthesis agreed with the biochemical and biomechanical features of cuticles isolated from transgenic fruits; it also indicated that TAGL1 participates in the transcriptional control of cuticle development mediating the biosynthesis of cuticle components. Furthermore, cell morphology and the arrangement of epidermal cell layers, on whose activity cuticle formation depends, were altered when TAGL1 was either silenced or constitutively expressed, indicating that this transcription factor regulates cuticle development, probably through the biosynthetic activity of epidermal cells. Our results also support cuticle development as an integrated event in the fruit expansion and ripening processes that characterize fleshy-fruited species such as tomato.
Collapse
Affiliation(s)
- Estela Giménez
- Centro de Investigación en Biotecnología Agroalimentaria, Universidad de Almería, 04120 Almeria, Spain (E.G., R.L., T.A.);Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, 29750 Algarrobo-Costa, Malaga, Spain (E.D., A.H.); andInstituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain (B.P., V.M.)
| | - Eva Dominguez
- Centro de Investigación en Biotecnología Agroalimentaria, Universidad de Almería, 04120 Almeria, Spain (E.G., R.L., T.A.);Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, 29750 Algarrobo-Costa, Malaga, Spain (E.D., A.H.); andInstituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain (B.P., V.M.)
| | - Benito Pineda
- Centro de Investigación en Biotecnología Agroalimentaria, Universidad de Almería, 04120 Almeria, Spain (E.G., R.L., T.A.);Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, 29750 Algarrobo-Costa, Malaga, Spain (E.D., A.H.); andInstituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain (B.P., V.M.)
| | - Antonio Heredia
- Centro de Investigación en Biotecnología Agroalimentaria, Universidad de Almería, 04120 Almeria, Spain (E.G., R.L., T.A.);Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, 29750 Algarrobo-Costa, Malaga, Spain (E.D., A.H.); andInstituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain (B.P., V.M.)
| | - Vicente Moreno
- Centro de Investigación en Biotecnología Agroalimentaria, Universidad de Almería, 04120 Almeria, Spain (E.G., R.L., T.A.);Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, 29750 Algarrobo-Costa, Malaga, Spain (E.D., A.H.); andInstituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain (B.P., V.M.)
| | - Rafael Lozano
- Centro de Investigación en Biotecnología Agroalimentaria, Universidad de Almería, 04120 Almeria, Spain (E.G., R.L., T.A.);Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, 29750 Algarrobo-Costa, Malaga, Spain (E.D., A.H.); andInstituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain (B.P., V.M.)
| | - Trinidad Angosto
- Centro de Investigación en Biotecnología Agroalimentaria, Universidad de Almería, 04120 Almeria, Spain (E.G., R.L., T.A.);Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, 29750 Algarrobo-Costa, Malaga, Spain (E.D., A.H.); andInstituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain (B.P., V.M.)
| |
Collapse
|
14
|
Purification and characterization of polygalacturonase from ripened fruits of Musa acuminata cultivar from Kerala (Musa acuminata cv. Palayankodan). JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2015. [DOI: 10.1007/s11694-015-9228-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Yauk YK, Ged C, Wang MY, Matich AJ, Tessarotto L, Cooney JM, Chervin C, Atkinson RG. Manipulation of flavour and aroma compound sequestration and release using a glycosyltransferase with specificity for terpene alcohols. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:317-30. [PMID: 25088478 DOI: 10.1111/tpj.12634] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 07/24/2014] [Accepted: 07/29/2014] [Indexed: 05/23/2023]
Abstract
Glycosides are an important potential source of aroma and flavour compounds for release as volatiles in flowers and fruit. The production of glycosides is catalysed by UDP-glycosyltransferases (UGTs) that mediate the transfer of an activated nucleotide sugar to acceptor aglycones. A screen of UGTs expressed in kiwifruit (Actinidia deliciosa) identified the gene AdGT4 which was highly expressed in floral tissues and whose expression increased during fruit ripening. Recombinant AdGT4 enzyme glycosylated a range of terpenes and primary alcohols found as glycosides in ripe kiwifruit. Two of the enzyme's preferred alcohol aglycones, hexanol and (Z)-hex-3-enol, contribute strongly to the 'grassy-green' aroma notes of ripe kiwifruit and other fruit including tomato and olive. Transient over-expression of AdGT4 in tobacco leaves showed that enzyme was able to glycosylate geraniol and octan-3-ol in planta whilst transient expression of an RNAi construct in Actinidia eriantha fruit reduced accumulation of a range of terpene glycosides. Stable over-expression of AdGT4 in transgenic petunia resulted in increased sequestration of hexanol and other alcohols in the flowers. Transgenic tomato fruit stably over-expressing AdGT4 showed changes in both the sequestration and release of a range of alcohols including 3-methylbutanol, hexanol and geraniol. Sequestration occurred at all stages of fruit ripening. Ripe fruit sequestering high levels of glycosides were identified as having a less intense, earthier aroma in a sensory trial. These results demonstrate the importance of UGTs in sequestering key volatile compounds in planta and suggest a future approach to enhancing aromas and flavours in flowers and during fruit ripening.
Collapse
Affiliation(s)
- Yar-Khing Yauk
- The New Zealand Institute for Plant & Food Research Limited (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Ogasawara S, Abe K, Nakajima T. Pepper β-Galactosidase 1 (PBG1) Plays a Significant Role in Fruit Ripening in Bell Pepper (Capsicum annuum). Biosci Biotechnol Biochem 2014; 71:309-22. [PMID: 17284822 DOI: 10.1271/bbb.60179] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
During bell pepper (Capsicum annuum L.) fruit ripening, beta-galactosidase activity increased markedly as compared with other glycosidases. We purified 77.5 kDa exo-1,4-beta-D-galactanase from red bell pepper fruit classified as beta-galactosidase II. A marked decrease in galactose content appeared during fruit ripening, especially in the pectic fraction. The purified enzyme hydrolyzed a considerable amount of galactose residues in this fraction. We isolated bell pepper beta-galactosidase (PBG1) cDNA. This PBG1 protein contained the putative active site, G-G-P-[LIVM]-x-Q-x-E-N-E-[FY], belonging to glycosyl hydrolase family 35. Quantitative RT-PCR revealed that the expression of PBG1 in red fruit was significantly stronger than that from any other tissues. Moreover, expression of PBG1 occurred prior to that of pepper endo-polygalacturonase 1 (PPG1), the major fruit-ripening enzyme. Based on these results, it appears that the hydrolysis of galactose residues in pectic substances is the first event in the ripening process in bell pepper fruit.
Collapse
Affiliation(s)
- Satoshi Ogasawara
- Graduate School of Agricultural Sciences, Tohoku University, Sendai, Japan.
| | | | | |
Collapse
|
17
|
Gayathri T, Nair AS. Isolation, purification and characterisation of polygalacturonase from ripened banana ( Musa acuminatacv. Kadali). Int J Food Sci Technol 2014. [DOI: 10.1111/ijfs.12319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Thulasy Gayathri
- Department of Botany; University of Kerala; Kariavattom Thiruvanathapuram 695581 Kerala India
| | - Ashalatha S. Nair
- Department of Botany; University of Kerala; Kariavattom Thiruvanathapuram 695581 Kerala India
| |
Collapse
|
18
|
Li M, Zhang Y, Zhang Z, Ji X, Zhang R, Liu D, Gao L, Zhang J, Wang B, Wu Y, Wu S, Chen X, Feng S, Chen X. Hypersensitive ethylene signaling and ZMdPG1 expression lead to fruit softening and dehiscence. PLoS One 2013; 8:e58745. [PMID: 23527016 PMCID: PMC3604122 DOI: 10.1371/journal.pone.0058745] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 02/05/2013] [Indexed: 11/18/2022] Open
Abstract
‘Taishanzaoxia’ fruit rapid softening and dehiscence during ripening stage and this process is very sensitive to endogenous ethylene. In this study, we cloned five ethylene signal transcription factors (ZMdEIL1, ZMdEIL2, ZMdEIL3, ZMdERF1 and ZMdERF2) and one functional gene, ZMdPG1, encoding polygalacturonase that could loose the cell connection which associated with fruit firmness decrease and fruit dehiscence to illustrate the reasons for this specific fruit phenotypic and physiological changes. Expression analysis showed that ZMdERF1 and ZMdEIL2 transcription were more abundant in ‘Taishanzaoxia’ softening fruit and dehiscent fruit and their expression was inhibited by an ethylene inhibitor 1-methylcyclopropene. Therefore, ZMdERF1 and ZMdEIL2 expression were responses to endogenous ethylene and associated with fruit softening and dehiscence. ZMdPG1 expression was induced when fruit softening and dehiscence but this induction can be blocked by 1-MCP, indicating that ZMdPG1 was essential for fruit softening and dehiscence and its expression was mediated by the endogenously occurred ethylene. ZMdPG1 overexpression in Arabidopsis led to silique early dehiscence while suppressing ZMdPG1 expression by antisense ZMdPG1 prevented silique naturally opening. The result also suggested that ZMdPG1 related with the connection between cells that contributed to fruit softening and dehiscence. ZMdERF1 was more closely related with ethylene signaling but it was not directly regulated the ZMdPG1, which might be regulated by the synergic pattern of ethylene transcription factors because of both the ZMdERF1 and ZMdERF2 could interact with ZMdEIL2.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yanmin Zhang
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Zongying Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xiaohao Ji
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China
| | - Rui Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China
| | - Daliang Liu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China
| | - Liping Gao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China
| | - Jing Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China
| | - Biao Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yusen Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China
| | - Shujing Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xiaoliu Chen
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China
| | - Shouqian Feng
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xuesen Chen
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China
- * E-mail:
| |
Collapse
|
19
|
Roongsattham P, Morcillo F, Jantasuriyarat C, Pizot M, Moussu S, Jayaweera D, Collin M, Gonzalez-Carranza ZH, Amblard P, Tregear JW, Tragoonrung S, Verdeil JL, Tranbarger TJ. Temporal and spatial expression of polygalacturonase gene family members reveals divergent regulation during fleshy fruit ripening and abscission in the monocot species oil palm. BMC PLANT BIOLOGY 2012; 12:150. [PMID: 22920238 PMCID: PMC3546427 DOI: 10.1186/1471-2229-12-150] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 07/26/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND Cell separation that occurs during fleshy fruit abscission and dry fruit dehiscence facilitates seed dispersal, the final stage of plant reproductive development. While our understanding of the evolutionary context of cell separation is limited mainly to the eudicot model systems tomato and Arabidopsis, less is known about the mechanisms underlying fruit abscission in crop species, monocots in particular. The polygalacturonase (PG) multigene family encodes enzymes involved in the depolymerisation of pectin homogalacturonan within the primary cell wall and middle lamella. PG activity is commonly found in the separation layers during organ abscission and dehiscence, however, little is known about how this gene family has diverged since the separation of monocot and eudicots and the consequence of this divergence on the abscission process. RESULTS The objective of the current study was to identify PGs responsible for the high activity previously observed in the abscission zone (AZ) during fruit shedding of the tropical monocot oil palm, and to analyze PG gene expression during oil palm fruit ripening and abscission. We identified 14 transcripts that encode PGs, all of which are expressed in the base of the oil palm fruit. The accumulation of five PG transcripts increase, four decrease and five do not change during ethylene treatments that induce cell separation. One PG transcript (EgPG4) is the most highly induced in the fruit base, with a 700-5000 fold increase during the ethylene treatment. In situ hybridization experiments indicate that the EgPG4 transcript increases preferentially in the AZ cell layers in the base of the fruit in response to ethylene prior to cell separation. CONCLUSIONS The expression pattern of EgPG4 is consistent with the temporal and spatial requirements for cell separation to occur during oil palm fruit shedding. The sequence diversity of PGs and the complexity of their expression in the oil palm fruit tissues contrast with data from tomato, suggesting functional divergence underlying the ripening and abscission processes has occurred between these two fruit species. Furthermore, phylogenetic analysis of EgPG4 with PGs from other species suggests some conservation, but also diversification has occurred between monocots and eudicots, in particular between dry and fleshy fruit species.
Collapse
Affiliation(s)
- Peerapat Roongsattham
- Institut de Recherche pour le Développement, IRD Centre de Montpellier, IRD/CIRAD Palm Development Group, DIADE 911 avenue agropolis BP 64501, 34394, Montpellier cedex 5, France
| | - Fabienne Morcillo
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, CIRAD, UMR DIADE, Montpellier, F-34398, France
| | - Chatchawan Jantasuriyarat
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkhen Campus, 50 Phahonyothin Road, Jatujak, Thailand
| | - Maxime Pizot
- Institut de Recherche pour le Développement, IRD Centre de Montpellier, IRD/CIRAD Palm Development Group, DIADE 911 avenue agropolis BP 64501, 34394, Montpellier cedex 5, France
| | - Steven Moussu
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, CIRAD, UMR DIADE, Montpellier, F-34398, France
| | - Dasuni Jayaweera
- Division, Loughborough, The University of Nottingham, Sutton Bonington Campus, School of Biosciences, Plant Science, Leicestershire, LE12 5RD, United Kingdom
| | - Myriam Collin
- Institut de Recherche pour le Développement, IRD Centre de Montpellier, IRD/CIRAD Palm Development Group, DIADE 911 avenue agropolis BP 64501, 34394, Montpellier cedex 5, France
| | - Zinnia H Gonzalez-Carranza
- Division, Loughborough, The University of Nottingham, Sutton Bonington Campus, School of Biosciences, Plant Science, Leicestershire, LE12 5RD, United Kingdom
| | | | - James W Tregear
- Institut de Recherche pour le Développement, IRD Centre de Montpellier, IRD/CIRAD Palm Development Group, DIADE 911 avenue agropolis BP 64501, 34394, Montpellier cedex 5, France
| | - Somvong Tragoonrung
- Genome Institute, National Center for Genetic Engineering and Biotechnology, BIOTEC, 113 Thailand Science Park, Phahonyothin Road, Klong 1, Klong Luang, Pathumthani, 12120, Thailand
| | - Jean-Luc Verdeil
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement CIRAD, UMR AGAP, MRI-PHIV, Montpellier, F-34398, France
| | - Timothy J Tranbarger
- Institut de Recherche pour le Développement, IRD Centre de Montpellier, IRD/CIRAD Palm Development Group, DIADE 911 avenue agropolis BP 64501, 34394, Montpellier cedex 5, France
| |
Collapse
|
20
|
Nonis A, Vezzaro A, Ruperti B. Evaluation of RNA extraction methods and identification of putative reference genes for real-time quantitative polymerase chain reaction expression studies on olive (Olea europaea L.) fruits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:6855-6865. [PMID: 22703380 DOI: 10.1021/jf300419w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Genome wide transcriptomic surveys together with targeted molecular studies are uncovering an ever increasing number of differentially expressed genes in relation to agriculturally relevant processes in olive (Olea europaea L). These data need to be supported by quantitative approaches enabling the precise estimation of transcript abundance. qPCR being the most widely adopted technique for mRNA quantification, preliminary work needs to be done to set up robust methods for extraction of fully functional RNA and for the identification of the best reference genes to obtain reliable quantification of transcripts. In this work, we have assessed different methods for their suitability for RNA extraction from olive fruits and leaves and we have evaluated thirteen potential candidate reference genes on 21 RNA samples belonging to fruit developmental/ripening series and to leaves subjected to wounding. By using two different algorithms, GAPDH2 and PP2A1 were identified as the best reference genes for olive fruit development and ripening, and their effectiveness for normalization of expression of two ripening marker genes was demonstrated.
Collapse
Affiliation(s)
- Alberto Nonis
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | | | | |
Collapse
|
21
|
Control of ethylene synthesis and ripening by sense and antisense genes in transgenic plants. ACTA ACUST UNITED AC 2011. [DOI: 10.1017/s0269727000005510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SynopsisRipening of tomato and other fruits involves changes in quality attributes that make them attractive to consumers. These alterations are brought about by the coordinated expression of specific genes. Ethylene, synthesised by cells of climacteric fruit at the onset of ripening, stimulates the expression of genes required for ripening to occur. Experiments with transgenic plants have shown that a 5′ flanking region from the fruit polygalacturonase (PG) gene directs the ripening-specific expression of foreign genes in tomato. Antisense genes have also been used to down-regulate expression of the PG gene, causing a reduction in pectin degradation during ripening. This reduction in PG has beneficial effects on fruit storage life and processing characteristics. Antisense technology has also been used to assign functions to previously unknown genes. This has led to the identification of the gene for ethylene forming enzyme (EFE) which catalyses the terminal step in ethylene synthesis. Detached fruit from tomato plants in which EFE is inhibited by antisense genes produce much less ethylene and ripening is greatly slowed. The rate of ripening can be restored by adding ethylene externally. These results raise the possibility of manipulating ripening of many fruits and also of controlling processes such as abscission and senescence of leaves and flowers.
Collapse
|
22
|
Sheehy RE, Kramer M, Hiatt WR. Reduction of polygalacturonase activity in tomato fruit by antisense RNA. Proc Natl Acad Sci U S A 2010; 85:8805-9. [PMID: 16593997 PMCID: PMC282595 DOI: 10.1073/pnas.85.23.8805] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polygalacturonase [PG; poly(1,4-alpha-D-galacturonide) glycanhydrolase; EC 3.2.1.15] is expressed in tomato only during the ripening stage of fruit development. PG becomes abundant during ripening and has a major role in cell wall degradation and fruit softening. Tomato plants were transformed to produce antisense RNA from a gene construct containing the cauliflower mosaic virus 35S promoter and a full-length PG cDNA in reverse orientation. The construct was integrated into the tomato genome by Agrobacterium-mediated transformation. The constitutive synthesis of PG antisense RNA in transgenic plants resulted in a substantial reduction in the levels of PG mRNA and enzymatic activity in ripening fruit. The steady-state levels of PG antisense RNA in green fruit of transgenic plants were lower than the levels of PG mRNA normally attained during ripening. However, analysis of transcription in isolated nuclei demonstrated that the antisense RNA construct was transcribed at a higher rate than the tomato PG gene(s). Analysis of fruit from transgenic plants demonstrated a reduction in PG mRNA and enzymatic activity of 70-90%. The reduction in PG activity did not prevent the accumulation of the red pigment lycopene.
Collapse
Affiliation(s)
- R E Sheehy
- Calgene, Inc., 1920 Fifth Street, Davis, CA 95616
| | | | | |
Collapse
|
23
|
Tadiello A, Pavanello A, Zanin D, Caporali E, Colombo L, Rotino GL, Trainotti L, Casadoro G. A PLENA-like gene of peach is involved in carpel formation and subsequent transformation into a fleshy fruit. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:651-61. [PMID: 19264761 PMCID: PMC2651465 DOI: 10.1093/jxb/ern313] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 11/11/2008] [Accepted: 11/12/2008] [Indexed: 05/18/2023]
Abstract
MADS-box genes have been shown to play a role in the formation of fruits, both in Arabidopsis and in tomato. In peach, two C-class MADS-box genes have been isolated. Both of them are expressed during flower and mesocarp development. Here a detailed analysis of a gene that belongs to the PLENA subfamily of MADS-box genes is shown. The expression of this PLENA-like gene (PpPLENA) increases during fruit ripening, and its ectopic expression in tomato plants causes the transformation of sepals into carpel-like structures that become fleshy and ripen like real fruits. Interestingly, the transgenic berries constitutively expressing the PpPLENA gene show an accelerated ripening, as judged by the expression of genes that are important for tomato fruit ripening. It is suggested that PpPLENA might interfere with the endogenous activity of TAGL1, thereby activating the fruit ripening pathway earlier compared with wild-type tomato plants.
Collapse
Affiliation(s)
- Alice Tadiello
- Dipartimento di Biologia, Università di Padova, 35131 Padova, Italy
| | - Anna Pavanello
- Dipartimento di Biologia, Università di Padova, 35131 Padova, Italy
| | - Dario Zanin
- Dipartimento di Biologia, Università di Padova, 35131 Padova, Italy
| | | | - Lucia Colombo
- Dipartimento di Biologia, Università di Milano, 20133 Milano, Italy
| | - Giuseppe L. Rotino
- CRA-ORL–Research Unit for Vegetable Crops, 26836 Montanaso Lombardo (LO), Italy
| | - Livio Trainotti
- Dipartimento di Biologia, Università di Padova, 35131 Padova, Italy
| | - Giorgio Casadoro
- Dipartimento di Biologia, Università di Padova, 35131 Padova, Italy
| |
Collapse
|
24
|
Ogawa M, Kay P, Wilson S, Swain SM. ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE1 (ADPG1), ADPG2, and QUARTET2 are Polygalacturonases required for cell separation during reproductive development in Arabidopsis. THE PLANT CELL 2009; 21:216-33. [PMID: 19168715 PMCID: PMC2648098 DOI: 10.1105/tpc.108.063768] [Citation(s) in RCA: 266] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2008] [Revised: 12/21/2008] [Accepted: 01/06/2009] [Indexed: 05/08/2023]
Abstract
Cell separation is thought to involve degradation of pectin by several hydrolytic enzymes, particularly polygalacturonase (PG). Here, we characterize an activation tagging line with reduced growth and male sterility caused by increased expression of a PG encoded by QUARTET2 (QRT2). QRT2 is essential for pollen grain separation and is part of a small family of three closely related endo-PGs in the Arabidopsis thaliana proteome, including ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE1 (ADPG1) and ADPG2. Functional assays and complementation experiments confirm that ADPG1, ADPG2, and QRT2 are PGs. Genetic analysis demonstrates that ADPG1 and ADPG2 are essential for silique dehiscence. In addition, ADPG2 and QRT2 contribute to floral organ abscission, while all three genes contribute to anther dehiscence. Expression analysis is consistent with the observed mutant phenotypes. INDEHISCENT (IND) encodes a putative basic helix-loop-helix required for silique dehiscence, and we demonstrate that the closely related HECATE3 (HEC3) gene is required for normal seed abscission and show that IND and HEC3 are required for normal expression of ADPG1 in the silique dehiscence zone and seed abscission zone, respectively. We also show that jasmonic acid and ethylene act together with abscisic acid to regulate floral organ abscission, in part by promoting QRT2 expression. These results demonstrate that multiple cell separation events, including both abscission and dehiscence, require closely related PG genes.
Collapse
Affiliation(s)
- Mikihiro Ogawa
- CSIRO Plant Industry, Private Mail bag, Merbein, Victoria 3505, Australia
| | | | | | | |
Collapse
|
25
|
Bennett AB, Labavitch JM. Ethylene and ripening-regulated expression and function of fruit cell wall modifying proteins. PLANT SCIENCE 2008; 175:130-136. [PMID: 0 DOI: 10.1016/j.plantsci.2008.03.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
26
|
Deytieux-Belleau C, Vallet A, Donèche B, Geny L. Pectin methylesterase and polygalacturonase in the developing grape skin. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:638-646. [PMID: 18513987 DOI: 10.1016/j.plaphy.2008.04.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Indexed: 05/02/2023]
Abstract
Ripening of grape (Vitis vinifera L.) berry immediately precedes harvesting and the evolution of the skin tissue is important as it contains the key compounds for wine quality. Grape softening is thought to result from extensive cell wall modifications that occur during ripening. These modifications result from the activity of different cell wall-modifying enzymes. Two of the most significant pectin-degrading enzymes are pectin methylesterase (EC 3.1.1.11) and polygalacturonase (EC 3.2.1.15). In this work, the activities of both enzymes were monitored in skin tissue throughout berry development. Pectin methylesterase activity was present before the onset of veraison and increased during skin maturation. No polygalacturonase activity could be detected. The accumulation of mRNA encoding a pectin methylesterase and two polygalacturonase isoforms was examined using RT-PCR. Transcripts for pectin methylesterase were present in all stages analyzed with a maximal accumulation at the end of color change. Accumulation of VvPG1 transcript was closely correlated with berry softening, and expression of this gene was markedly increased during the color change. VvPG2 mRNA accumulation began before veraison and was low during skin ripening. A phylogenic analysis showed that this gene is classified in a different group than VvPG1. These findings suggest that both genes are associated with different mechanisms during skin development. VvPG1, in particular, is most likely to play a role in skin softening and VvPG2 in triggering the ripening process.
Collapse
Affiliation(s)
- Christelle Deytieux-Belleau
- UMR 1219 Œnologie, Université V. Ségalen Bordeaux 2, INRA, ISVV, 351, Cours de la Libération, 33405 Talence Cedex, France
| | | | | | | |
Collapse
|
27
|
Manenoi A, Paull RE. Papaya fruit softening, endoxylanase gene expression, protein and activity. PHYSIOLOGIA PLANTARUM 2007; 131:470-80. [PMID: 18251885 DOI: 10.1111/j.1399-3054.2007.00967.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Papaya (Carica papaya L.) cell wall matrix polysaccharides are modified as the fruit starts to soften during ripening and an endoxylanase is expressed that may play a role in the softening process. Endoxylanase gene expression, protein amount and activity were determined in papaya cultivars that differ in softening pattern and in one cultivar where softening was modified by the ethylene receptor inhibitor 1-methylcyclopropene (1-MCP). Antibodies to the endoxylanase catalytic domain were used to determine protein accumulation. The three papaya varieties used in the study, 'Line 8', 'Sunset', and 'Line 4-16', differed in softening pattern, respiration rate, ethylene production and showed similar parallel relationships during ripening and softening in endoxylanase expression, protein level and activity. When fruit of the three papaya varieties showed the respiratory climacteric and started to soften, the level of endoxylanase gene expression increased and this increase was related to the amount of endoxylanase protein at 32 kDa and its activity. Fruit when treated at less than 10% skin yellow stage with 1-MCP showed a significant delay in the respiratory climacteric and softening, and reduced ethylene production, and when ripe was firmer and had a 'rubbery' texture. The 1-MCP-treated fruit that had the 'rubbery' texture showed suppressed endoxylanase gene expression, protein and enzymatic activity. Little or no delay occurred between endoxylanase gene expression and the appearance of activity during posttranslational processing from 65 to 32 kDa. The close relationship between endoxylanase gene expression, protein accumulation and activity in different varieties and the failure of the 1-MCP-treated fruit to fully soften, supported de novo synthesis of endoxylanase, rapid posttranslation processing and a role in papaya fruit softening.
Collapse
Affiliation(s)
- Ashariya Manenoi
- Department of Tropical Plant and Soil Sciences, University of Hawaii at Manoa, HI, USA
| | | |
Collapse
|
28
|
Bai Y, Lindhout P. Domestication and breeding of tomatoes: what have we gained and what can we gain in the future? ANNALS OF BOTANY 2007; 100:1085-94. [PMID: 17717024 PMCID: PMC2759208 DOI: 10.1093/aob/mcm150] [Citation(s) in RCA: 208] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND It has been shown that a large variation is present and exploitable from wild Solanum species but most of it is still untapped. Considering the thousands of Solanum accessions in different gene banks and probably even more that are still untouched in the Andes, it is a challenge to exploit the diversity of tomato. What have we gained from tomato domestication and breeding and what can we gain in the future? SCOPE This review summarizes progress on tomato domestication and breeding and current efforts in tomato genome research. Also, it points out potential challenges in exploiting tomato biodiversity and depicts future perspectives in tomato breeding with the emerging knowledge from tomato-omics. CONCLUSIONS From first domestication to modern breeding, the tomato has been continually subjected to human selection for a wide array of applications in both science and commerce. Current efforts in tomato breeding are focused on discovering and exploiting genes for the most important traits in tomato germplasm. In the future, breeders will design cultivars by a process named 'breeding by design' based on the combination of science and technologies from the genomic era as well as their practical skills.
Collapse
Affiliation(s)
- Yuling Bai
- Laboratory of Plant Breeding, Wageningen University, PO Box 386, 6700 AJ Wageningen, The Netherlands.
| | | |
Collapse
|
29
|
ZHUANG JP, SU J, CHEN WX. Molecular Cloning and Characterization of Fruit Softening Related Gene β-Mannanase from Banana Fruit. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/s1671-2927(06)60050-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Real MD, Company P, García-Agustín P, Bennett AB, González-Bosch C. Characterization of tomato endo-beta-1,4-glucanase Cel1 protein in fruit during ripening and after fungal infection. PLANTA 2004; 220:80-86. [PMID: 15243740 DOI: 10.1007/s00425-004-1321-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Accepted: 06/04/2004] [Indexed: 05/24/2023]
Abstract
The tomato (Lycopersicon esculentum Mill.) endo-beta-1,4-glucanase (EGase) Cel1 protein was characterized in fruit using specific antibodies. Two polypeptides ranging between 51 and 52 kDa were detected in the pericarp, and polypeptides ranging between 49 and 51 kDa were detected in locules. The polypeptides recognized by Cel1 antiserum in fruit are within the size range predicted for Cel1 protein and could be derived from heterogeneous glycosylation. Cel1 protein accumulation was examined throughout fruit ripening. Cel1 protein appears in the pericarp at the stage in which many ripening-related changes start, and remains present throughout fruit ripening. In locules, Cel1 protein is already present at the onset of fruit ripening and remains constant during fruit ripening. This pattern of expression supports a possible role for this EGase in the softening of pericarp tissue and in the liquefaction of locules that takes place during ripening. The accumulation of Cel1 protein was also analyzed after fungal infection. Cel1 protein and mRNA levels are down-regulated in pericarp after Botrytis cinerea infection but are not affected in locular tissue. The same behavior was observed when fruits were infected with Penicillium expansum, another fungal pathogen. Cel1 protein and mRNA levels do not respond to wounding. These results support the idea that the tomato Cel1 EGase responds to pathogen infection and supports a relationship between EGases, plant defense responses and fruit ripening.
Collapse
Affiliation(s)
- Maria Dolores Real
- Departamento de Genética, Universidad de Valencia, Dr. Moliner 50, Burjassot, 46100 Valencia, Spain
| | | | | | | | | |
Collapse
|
31
|
Davuluri GR, van Tuinen A, Mustilli AC, Manfredonia A, Newman R, Burgess D, Brummell DA, King SR, Palys J, Uhlig J, Pennings HMJ, Bowler C. Manipulation of DET1 expression in tomato results in photomorphogenic phenotypes caused by post-transcriptional gene silencing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 40:344-54. [PMID: 15469492 PMCID: PMC3855349 DOI: 10.1111/j.1365-313x.2004.02218.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The tomato HIGH PIGMENT-2 gene encodes an orthologue of the Arabidopsis nuclear protein DE-ETIOLATED 1 (DET1). From genetic analyses it has been proposed that DET1 is a negative regulator of light signal transduction, and recent results indicate that it may control light-regulated gene expression at the level of chromatin remodelling. To gain further understanding about the function of DET1 during plant development, we generated a range of overexpression constructs and introduced them into tomato. Unexpectedly, we only observed phenotypes characteristic of DET1 inactivation, i.e. hyper-responsiveness to light. Molecular analysis indicated in all cases that these phenotypes were a result of suppression of endogenous DET1 expression, due to post-transcriptional gene silencing. DET1 silencing was often lethal when it occurred at relatively early stages of plant development, whereas light hyper-responsive phenotypes were obtained when silencing occurred later on. The appearance of phenotypes correlated with the generation of siRNAs but not DNA hypermethylation, and was most efficient when using constructs with mutations in the DET1 coding sequence or with constructs containing only the 3'-terminal portion of the gene. These results indicate an important function for DET1 throughout plant development and demonstrate that silencing of DET1 in fruits results in increased carotenoids, which may have biotechnological potential.
Collapse
Affiliation(s)
- Ganga Rao Davuluri
- Laboratory of Molecular Plant Biology, Stazione Zoologica, Villa Comunale, I-80121 Naples, Italy
| | - Ageeth van Tuinen
- Laboratory of Molecular Plant Biology, Stazione Zoologica, Villa Comunale, I-80121 Naples, Italy
| | - Anna Chiara Mustilli
- Laboratory of Molecular Plant Biology, Stazione Zoologica, Villa Comunale, I-80121 Naples, Italy
| | - Alessandro Manfredonia
- Laboratory of Molecular Plant Biology, Stazione Zoologica, Villa Comunale, I-80121 Naples, Italy
| | - Robert Newman
- DNA Plant Technology, 6701 San Pablo Avenue, Oakland, CA 94608, USA
| | - Diane Burgess
- DNA Plant Technology, 6701 San Pablo Avenue, Oakland, CA 94608, USA
| | | | - Stephen R. King
- Seminis Vegetable Seeds, Inc., 37437 State Highway 16, Woodland, CA 95695, USA
| | - Joe Palys
- Seminis Vegetable Seeds, Inc., 37437 State Highway 16, Woodland, CA 95695, USA
| | - John Uhlig
- Seminis Vegetable Seeds, Inc., 37437 State Highway 16, Woodland, CA 95695, USA
| | - Henk M. J. Pennings
- Seminis Vegetable Seeds, Inc., 37437 State Highway 16, Woodland, CA 95695, USA
| | - Chris Bowler
- Laboratory of Molecular Plant Biology, Stazione Zoologica, Villa Comunale, I-80121 Naples, Italy
- CNRS/ENS FRE2433, Organismes Photosynthétiques et Environnement, Département de Biologie, Ecole Normale Supérieure, 46 Rue d'Ulm, 75230 Paris Cedex 05, France
| |
Collapse
|
32
|
Chen G, Alexander L, Grierson D. Constitutive expression of EIL-like transcription factor partially restores ripening in the ethylene-insensitive Nr tomato mutant. JOURNAL OF EXPERIMENTAL BOTANY 2004; 55:1491-7. [PMID: 15181103 DOI: 10.1093/jxb/erh168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Climacteric fruit ripening is regulated by the phytohormone ethylene. ETHYLENE-INSENSITIVE3 (EIN3) is a transcription factor that functions downstream from the ethylene receptors in the Arabidopsis ethylene signal transduction pathway. Three homologues of the Arabidopsis EIN3 gene have been identified in tomato, Lycopersicon esculentum, EIN3-like or LeEIL, LeEIL1, LeEIL2, and LeEIL3. These transcription factors have been proposed to be functionally redundant positive regulators of multiple ethylene responses. In order to test the role of such factors in the ethylene signal transduction pathway during ripening, EIL1 fused to green fluorescent protein (GFP) has been over-expressed in the ethylene-insensitive non-ripening Nr mutant of tomato. Increased levels of LeEIL1 compensated for the normally reduced levels of LeEIL1 in the Nr mutant, and transgenic Nr plants that exhibited high-level constitutive expression of LeEIL1GFP phenotypically resembled wild-type plants, the fruit ripened and the leaves exhibited epinasty, unlike Nr plants. The EIL1GFP fusion protein was located in the cell nuclei of ripe tomato fruit. The mRNA profile of these plants showed that the expression of certain ethylene-dependent ripening genes was up-regulated, including polygalacturonase and TOMLOX B. However, not all ripening genes and ethylene responses, such as seedling triple response, were restored. These results demonstrate that expressing candidate genes in the Nr ethylene-insensitive background is a valuable general approach for testing the role of putative downstream components in the ethylene-signalling pathway.
Collapse
Affiliation(s)
- Guoping Chen
- Genetic Engineering Research Centre, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | | | | |
Collapse
|
33
|
Brummell DA, Balint-Kurti PJ, Harpster MH, Palys JM, Oeller PW, Gutterson N. Inverted repeat of a heterologous 3'-untranslated region for high-efficiency, high-throughput gene silencing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 33:793-800. [PMID: 12609050 DOI: 10.1046/j.1365-313x.2003.01659.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This report describes a method for the easy generation of inverted repeat constructs for the silencing of genes of unknown sequence which is applicable to high-throughput studies. This improved procedure for high-efficiency gene silencing is specific for a target gene, but does not require inverted repeat DNA of the target gene in the construct. The method employs an inverted repeat of the 3'-untranslated region (3'-UTR) of a heterologous gene, and has been demonstrated using the 3'-UTR region of the nopaline synthase (nos) gene from Agrobacterium tumefaciens, which is often used as the 3'-UTR for transgene constructs. In a population of independent tomato primary transformants harboring a stably integrated polygalacturonase (PG) transgene driven by a constitutive promoter and linked to an inverted repeat of the nos 3'-UTR, 51 of 56 primary transformants (91% of the population) showed highly effective post-transcriptional silencing of the PG gene, with PG mRNA abundance in ripe fruit reduced by 98% or more. The method was also effective in Arabidopsis, where two different, relatively uncharacterized plant transcription factors were also targeted effectively. This method has the advantage of ease and rapidity in preparation of the constructs, since a gene of interest can be inserted into a binary vector already containing the promoter and the inverted nos domain in a single-cloning step, and does not require any knowledge of the DNA sequence. The approach is suitable for high-throughput gene silencing studies, where it is necessary to investigate the function of hundreds to thousands of uncharacterized genes.
Collapse
Affiliation(s)
- David A Brummell
- DNA Plant Technology, 6701 San Pablo Avenue, Oakland, CA 94608, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Rao GU, Paran I. Polygalacturonase: a candidate gene for the soft flesh and deciduous fruit mutation in Capsicum. PLANT MOLECULAR BIOLOGY 2003; 51:135-141. [PMID: 12602897 DOI: 10.1023/a:1020771906524] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The soft flesh and deciduous fruit of pepper (Capsicum spp.) originated from the wild C. frutescens BG 2816 accession is a complete dominant trait controlled by the S gene. We constructed an F2 population from a cross of BG 2816 (SS) and the bell-type C. annuum cultivar Maor (ss) and determined that S cosegregated with the tomato fruit-specific endo-polygalacturonase (PG) gene. The soft flesh and deciduous fruit phenotypes were observed together in all F2 individuals, indicating a pleiotropic effect of PG on the two traits. We mapped S to pepper chromosome 10 in the region corresponding to that in which PG was previously mapped in tomato. Northern, RT-PCR and western analyses and enzyme activity assays, collectively, indicated that PG is not detected in green, breaker or red fruits of Maor, nor in green fruits of BG 2816. Accumulation of PG mRNA and protein was detected in the fruits of BG 2816, and it increased during ripening from breaker to red stages. The sequence analysis of partial PG cDNA isolated from BG 2816 revealed high homology (87% identity) with the tomato PG. The resemblance of the soft flesh and deciduous fruit phenotypes to PG-associated phenotypes in other fruit crops, the complete linkage between S and PG, and the greater expression of PG in the fruits of BG 2816 than in those of Maor, all strongly indicate that PG is a candidate gene for S.
Collapse
Affiliation(s)
- G U Rao
- Department of Plant Genetics and Breeding, Agricultural Research Organization, The Volcani Center, P.O. Box 6, Bet Dagan, 50250, Israel
| | | |
Collapse
|
35
|
Atkinson RG, Schröder R, Hallett IC, Cohen D, MacRae EA. Overexpression of polygalacturonase in transgenic apple trees leads to a range of novel phenotypes involving changes in cell adhesion. PLANT PHYSIOLOGY 2002; 129:122-33. [PMID: 12011344 PMCID: PMC155877 DOI: 10.1104/pp.010986] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2001] [Revised: 12/19/2001] [Accepted: 02/08/2002] [Indexed: 05/17/2023]
Abstract
Polygalacturonases (PGs) cleave runs of unesterified GalUA that form homogalacturonan regions along the backbone of pectin. Homogalacturonan-rich pectin is commonly found in the middle lamella region of the wall where two adjacent cells abut and its integrity is important for cell adhesion. Transgenic apple (Malus domestica Borkh. cv Royal Gala) trees were produced that contained additional copies of a fruit-specific apple PG gene under a constitutive promoter. In contrast to previous studies in transgenic tobacco (Nicotiana tabacum) where PG overexpression had no effect on the plant (K.W. Osteryoung, K. Toenjes, B. Hall, V. Winkler, A.B. Bennett [1990] Plant Cell 2: 1239-1248), PG overexpression in transgenic apple led to a range of novel phenotypes. These phenotypes included silvery colored leaves and premature leaf shedding due to reduced cell adhesion in leaf abscission zones. Mature leaves had malformed and malfunctioning stomata that perturbed water relations and contributed to a brittle leaf phenotype. Chemical and ultrastructural analyses were used to relate the phenotypic changes to pectin changes in the leaf cell walls. The modification of apple trees by a single PG gene has offered a new and unexpected perspective on the role of pectin and cell wall adhesion in leaf morphology and stomatal development.
Collapse
Affiliation(s)
- Ross G Atkinson
- The Horticulture and Food Research Institute of New Zealand, Mount Albert Research Centre, Private Bag 92 169, Auckland, New Zealand
| | | | | | | | | |
Collapse
|
36
|
Brummell DA, Harpster MH. Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. PLANT MOLECULAR BIOLOGY 2001; 47:311-340. [PMID: 11554479 DOI: 10.1023/a:1010656104304] [Citation(s) in RCA: 487] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Excessive softening is the main factor limiting fruit shelf life and storage. Transgenic plants modified in the expression of cell wall modifying proteins have been used to investigate the role of particular activities in fruit softening during ripening, and in the manufacture of processed fruit products. Transgenic experiments show that polygalacturonase (PG) activity is largely responsible for pectin depolymerization and solubilization, but that PG-mediated pectin depolymerization requires pectin to be de-methyl-esterified by pectin methylesterase (PME), and that the PG beta-subunit protein plays a role in limiting pectin solubilization. Suppression of PG activity only slightly reduces fruit softening (but extends fruit shelf life), suppression of PME activity does not affect firmness during normal ripening, and suppression of beta-subunit protein accumulation increases softening. All these pectin-modifying proteins affect the integrity of the middle lamella, which controls cell-to-cell adhesion and thus influences fruit texture. Diminished accumulation of either PG or PME activity considerably increases the viscosity of tomato juice or paste, which is correlated with reduced polyuronide depolymerization during processing. In contrast, suppression of beta-galactosidase activity early in ripening significantly reduces fruit softening, suggesting that the removal of pectic galactan side-chains is an important factor in the cell wall changes leading to ripening-related firmness loss. Suppression or overexpression of endo-(1-->4)beta-D-glucanase activity has no detectable effect on fruit softening or the depolymerization of matrix glycans, and neither the substrate nor the function for this enzyme has been determined. The role of xyloglucan endotransglycosylase activity in softening is also obscure, and the activity responsible for xyloglucan depolymerization during ripening, a major contributor to softening, has not yet been identified. However, ripening-related expansin protein abundance is directly correlated with fruit softening and has additional indirect effects on pectin depolymerization, showing that this protein is intimately involved in the softening process. Transgenic work has shown that the cell wall changes leading to fruit softening and textural changes are complex, and involve the coordinated and interdependent activities of a range of cell wall-modifying proteins. It is suggested that the cell wall changes caused early in ripening by the activities of some enzymes, notably beta-galactosidase and ripening-related expansin, may restrict or control the activities of other ripening-related enzymes necessary for the fruit softening process.
Collapse
|
37
|
Brummell DA, Harpster MH. Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. PLANT MOLECULAR BIOLOGY 2001. [PMID: 11554479 DOI: 10.1007/978-94-010-0668-2-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Excessive softening is the main factor limiting fruit shelf life and storage. Transgenic plants modified in the expression of cell wall modifying proteins have been used to investigate the role of particular activities in fruit softening during ripening, and in the manufacture of processed fruit products. Transgenic experiments show that polygalacturonase (PG) activity is largely responsible for pectin depolymerization and solubilization, but that PG-mediated pectin depolymerization requires pectin to be de-methyl-esterified by pectin methylesterase (PME), and that the PG beta-subunit protein plays a role in limiting pectin solubilization. Suppression of PG activity only slightly reduces fruit softening (but extends fruit shelf life), suppression of PME activity does not affect firmness during normal ripening, and suppression of beta-subunit protein accumulation increases softening. All these pectin-modifying proteins affect the integrity of the middle lamella, which controls cell-to-cell adhesion and thus influences fruit texture. Diminished accumulation of either PG or PME activity considerably increases the viscosity of tomato juice or paste, which is correlated with reduced polyuronide depolymerization during processing. In contrast, suppression of beta-galactosidase activity early in ripening significantly reduces fruit softening, suggesting that the removal of pectic galactan side-chains is an important factor in the cell wall changes leading to ripening-related firmness loss. Suppression or overexpression of endo-(1-->4)beta-D-glucanase activity has no detectable effect on fruit softening or the depolymerization of matrix glycans, and neither the substrate nor the function for this enzyme has been determined. The role of xyloglucan endotransglycosylase activity in softening is also obscure, and the activity responsible for xyloglucan depolymerization during ripening, a major contributor to softening, has not yet been identified. However, ripening-related expansin protein abundance is directly correlated with fruit softening and has additional indirect effects on pectin depolymerization, showing that this protein is intimately involved in the softening process. Transgenic work has shown that the cell wall changes leading to fruit softening and textural changes are complex, and involve the coordinated and interdependent activities of a range of cell wall-modifying proteins. It is suggested that the cell wall changes caused early in ripening by the activities of some enzymes, notably beta-galactosidase and ripening-related expansin, may restrict or control the activities of other ripening-related enzymes necessary for the fruit softening process.
Collapse
|
38
|
Srivastava MK, Dwivedi UN. Delayed ripening of banana fruit by salicylic acid. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2000; 158:87-96. [PMID: 10996248 DOI: 10.1016/s0168-9452(00)00304-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Salicylic acid treatment has been found to delay the ripening of banana fruits (Musa acuminata). Fruit softening, pulp:peel ratio, reducing sugar content, invertase and respiration rate have been found to decrease in salicylic acid treated fruits as compared with control ones. The activities of major cell wall degrading enzymes, viz. cellulase, polygalacturonase and xylanase were found to be decreased in presence of salicylic acid. The major enzymatic antioxidants namely, catalase and peroxidase, were also found to be decreased in presence of salicylic acid during banana fruit ripening.
Collapse
Affiliation(s)
- MK Srivastava
- Department of Biochemistry, Lucknow University, 226 007, Lucknow, India
| | | |
Collapse
|
39
|
Hong SB, Sexton R, Tucker ML. Analysis of gene promoters for two tomato polygalacturonases expressed in abscission zones and the stigma. PLANT PHYSIOLOGY 2000; 123:869-81. [PMID: 10889236 PMCID: PMC59050 DOI: 10.1104/pp.123.3.869] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/1999] [Accepted: 03/13/2000] [Indexed: 05/19/2023]
Abstract
The tomato (Lycopersicon esculentum cv Ailsa Craig) polygalacturonase genes TAPG1 (LYCes;Pga1;2) and TAPG4 (LYCes;Pga1;5) are abundantly expressed in both abscission zones and the pistils of mature flowers. To further investigate the spatial and temporal expression patterns for these genes, the TAPG gene promoters were ligated to beta-glucuronidase (GUS) reporter genes and transformed into tomato. GUS expression with both constructs was similar and entirely consistent with the expression patterns of the native gene transcripts. GUS activity was observed in the weakening abscission zones of the leaf petiole, flower and fruit pedicel, flower corolla, and fruit calyx. In leaf petiole and flower pedicel zones this activity was enhanced by ethylene and inhibited by indole-3-acetic acid. On induction of abscission with ethylene, GUS accumulation was much earlier in TAPG4:GUS than in TAPG1:GUS transformants. Moreover, TAPG4:GUS staining appeared to predominate in the vascular bundles relative to surrounding cortex cells whereas TAPG1:GUS was more evenly distributed across the separation layer. Like the native genes, GUS was also expressed in the stigma. Activity was not apparent in pistils until the flowers had opened and was confined to the stigma and style immediately proximal to it. A minimal promoter construct consisting of a 247-bp 5'-upstream element from TAPG1 was found to be sufficient to direct GUS expression in both abscission zones and the stigma.
Collapse
Affiliation(s)
- S B Hong
- Soybean and Alfalfa Research Laboratory, United States Department of Agriculture-Agricultural Research Service, Building 006, Beltsville Agricultural Research Center-West, 10300 Baltimore Avenue, Beltsville, Maryland 20705, USA
| | | | | |
Collapse
|
40
|
Wang ZY, MacRae EA, Wright MA, Bolitho KM, Ross GS, Atkinson RG. Polygalacturonase gene expression in kiwifruit: relationship to fruit softening and ethylene production. PLANT MOLECULAR BIOLOGY 2000; 42:317-328. [PMID: 10794531 DOI: 10.1023/a:1006309529922] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In kiwifruit, much of the softening process occurs prior to the respiratory climacteric and production of ethylene. This fruit therefore represents an excellent model system for dissecting the process of softening in the absence of endogenous ethylene production. We have characterized the expression of three polygalacturonase (PG) cDNA clones (CkPGA, B and C) isolated from fruit of Actinidia chinensis. Expression of CkPGA and B was detected by northern analysis only in fruit producing endogenous ethylene, and by RT-PCR in other tissues including flower buds, petals at anthesis, and senescent petals. CkPGA promoter fragments of 1296, 860 and 467 bp fused to the beta-glucuronidase (uidA) reporter gene directed fruit-specific gene expression during the climacteric in transgenic tomato. CkPGC gene expression was observed in softening fruit, and reached maximum levels (50-fold higher than for CkPGA and B) as fruit passed through the climacteric. However, expression of this gene was also readily detected during fruit development and in fruit harvested prior to the onset of softening. Using RT-PCR, expression of CkPGC was also detected at low levels in root tips and in senescent petals. These results suggest that PG expression is required not only during periods of cell wall degeneration, but also during periods of cell wall turnover and expansion.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Blotting, Northern
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- DNA, Plant/genetics
- Ethylenes/biosynthesis
- Fruit/enzymology
- Fruit/genetics
- Fruit/growth & development
- Gene Dosage
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Glucuronidase/genetics
- Glucuronidase/metabolism
- Solanum lycopersicum/genetics
- Molecular Sequence Data
- Plants, Genetically Modified/genetics
- Polygalacturonase/genetics
- Promoter Regions, Genetic/genetics
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Tissue Distribution
Collapse
Affiliation(s)
- Z Y Wang
- HortResearch, Mt Albert Research Centre, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
41
|
Brummell DA, Harpster MH, Civello PM, Palys JM, Bennett AB, Dunsmuir P. Modification of expansin protein abundance in tomato fruit alters softening and cell wall polymer metabolism during ripening. THE PLANT CELL 1999; 11:2203-16. [PMID: 10559444 PMCID: PMC144123 DOI: 10.1105/tpc.11.11.2203] [Citation(s) in RCA: 231] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The role of the ripening-specific expansin Exp1 protein in fruit softening and cell wall metabolism was investigated by suppression and overexpression of Exp1 in transgenic tomato plants. Fruit in which Exp1 protein accumulation was suppressed to 3% that of wild-type levels were firmer than controls throughout ripening. Suppression of Exp1 protein also substantially inhibited polyuronide depolymerization late in ripening but did not prevent the breakdown of structurally important hemicelluloses, a major contributor to softening. In contrast, fruit overexpressing high levels of recombinant Exp1 protein were much softer than controls, even in mature green fruit before ripening commenced. This softening was correlated with the precocious and extensive depolymerization of structural hemicelluloses, whereas polyuronide depolymerization was not altered. These data are consistent with there being at least three components to fruit softening and textural changes. One component is a relaxation of the wall directly mediated by Exp1, which indirectly limits part of a second component due to polyuronide depolymerization late in ripening, perhaps by controlling access of a pectinase to its substrate. The third component is caused by depolymerization of hemicelluloses, which occurs independently of or requires only very small amounts of Exp1 protein.
Collapse
Affiliation(s)
- DA Brummell
- DNA Plant Technology, 6701 San Pablo Avenue, Oakland, California 94608-1239, USA
| | | | | | | | | | | |
Collapse
|
42
|
Brummell DA, Harpster MH, Civello PM, Palys JM, Bennett AB, Dunsmuir P. Modification of expansin protein abundance in tomato fruit alters softening and cell wall polymer metabolism during ripening. THE PLANT CELL 1999; 11:2203-2216. [PMID: 10559444 DOI: 10.2307/3871019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The role of the ripening-specific expansin Exp1 protein in fruit softening and cell wall metabolism was investigated by suppression and overexpression of Exp1 in transgenic tomato plants. Fruit in which Exp1 protein accumulation was suppressed to 3% that of wild-type levels were firmer than controls throughout ripening. Suppression of Exp1 protein also substantially inhibited polyuronide depolymerization late in ripening but did not prevent the breakdown of structurally important hemicelluloses, a major contributor to softening. In contrast, fruit overexpressing high levels of recombinant Exp1 protein were much softer than controls, even in mature green fruit before ripening commenced. This softening was correlated with the precocious and extensive depolymerization of structural hemicelluloses, whereas polyuronide depolymerization was not altered. These data are consistent with there being at least three components to fruit softening and textural changes. One component is a relaxation of the wall directly mediated by Exp1, which indirectly limits part of a second component due to polyuronide depolymerization late in ripening, perhaps by controlling access of a pectinase to its substrate. The third component is caused by depolymerization of hemicelluloses, which occurs independently of or requires only very small amounts of Exp1 protein.
Collapse
Affiliation(s)
- DA Brummell
- DNA Plant Technology, 6701 San Pablo Avenue, Oakland, California 94608-1239, USA
| | | | | | | | | | | |
Collapse
|
43
|
Mahalingam R, Wang G, Knap HT. Polygalacturonase and polygalacturonase inhibitor protein: gene isolation and transcription in Glycine max-Heterodera glycines interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1999; 12:490-8. [PMID: 10356800 DOI: 10.1094/mpmi.1999.12.6.490] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The cell wall acts as the first line of defense during pathogen invasion. Polygalacturonases (PGs) are a class of cell-wall-modifying enzymes with precise temporal and organ-specific expression. A 350-bp fragment with high homology to PGs was identified by differential display (DD) analysis of soybean cyst nematode (SCN) race 3 resistant PI 437654 and susceptible cultivar Essex. The fragment was strongly expressed in Essex, 2 days after inoculation (DAI). Complete coding sequences of two PG cDNAs, PG1 and PG2, were isolated by 3' and 5' rapid amplification of cDNA ends polymerase chain reaction (RACE PCR). PI 437654 and Essex had identical PG1 and PG2 sequences. A transversion from A to C created a PstI restriction site in the PG2 cDNA that was used to distinguish the two PG cDNAs by cleaved amplified polymorphic sequence (CAPS) analysis. A cDNA encoding a polygalacturonase-inhibitor protein (PGIP) that is 89% identical to the Phaseolus vulgaris PGIP was isolated from soybean roots by reverse transcription (RT)-PCR. Steady-state levels of PG and PGIP were investigated by RNA gel blot analysis in roots 1 to 5 DAI and in hypocotyls and leaves. Differences in the constitutive levels of PG mRNAs were observed in roots of different soybean genotypes. Steady-state levels of PG mRNAs were enhanced during compatible interactions with SCN and reduced in incompatible interactions and in mechanically wounded roots. Enhanced PGIP transcription was observed in response to mechanical wounding in both PI 437654 and Essex, but only in compatible interactions with SCN, suggesting uncoupling of PGIP functions in developmental and stress cues. Constitutive expression in incompatible interactions shows PGIP is not a factor in SCN resistance. Thus, the up-regulation of endogenous PG transcription in soybean roots early after SCN infection could facilitate successful parasitism by SCN.
Collapse
Affiliation(s)
- R Mahalingam
- Genetics Program, Clemson University, SC 29634, USA
| | | | | |
Collapse
|
44
|
Atkinson RG, Bolitho KM, Wright MA, Iturriagagoitia-Bueno T, Reid SJ, Ross GS. Apple ACC-oxidase and polygalacturonase: ripening-specific gene expression and promoter analysis in transgenic tomato. PLANT MOLECULAR BIOLOGY 1998; 38:449-60. [PMID: 9747852 DOI: 10.1023/a:1006065926397] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Levels of 1-aminocyclopropane-1-carboxylate (ACC) oxidase and polygalacturonase (PG) mRNAs were characterized during ripening of Royal Gala, Braeburn and Granny Smith apples. Both ACC-oxidase and PG mRNAs were up-regulated in ripening fruit of all three cultivars. Expression in Royal Gala was detected earlier than in Braeburn and Granny Smith, relative to internal ethylene concentration. Genomic clones corresponding to the ACC-oxidase and PG mRNAs expressed in ripe apple fruit were isolated and ca. 2 kb of each promoter was sequenced. The start point of transcription in each gene was mapped by primer extension, and sequences homologous to elements in other ethylene-responsive or PG promoters were identified. The fruit specificity of the apple ACC-oxidase and PG promoters was investigated in transgenic tomato plants using a nested set of promoter fragments fused to the beta-glucuronidase (gusA) reporter gene. For the ACC-oxidase gene, 450 bp of 5' promoter sequence was sufficient to drive GUS expression, although this expression was not specific to ripening fruit. Larger fragments of 1966 and 1159 bp showed both fruit and ripening specificity. For the PG gene, promoter fragments of 1460 and 532 bp conferred ripening-specific expression in transgenic tomato fruit. However GUS expression was down-regulated by 2356 bp of promoter, suggesting the presence of a negative regulatory element between positions -1460 and -2356.
Collapse
MESH Headings
- Amino Acid Oxidoreductases/genetics
- Base Sequence
- Chromosome Mapping
- Cloning, Molecular
- DNA Primers/genetics
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Genes, Plant
- Genes, Reporter
- Glucuronidase/genetics
- Solanum lycopersicum/enzymology
- Solanum lycopersicum/genetics
- Solanum lycopersicum/growth & development
- Molecular Sequence Data
- Plants, Genetically Modified
- Polygalacturonase/genetics
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Rosales/enzymology
- Rosales/genetics
- Rosales/growth & development
Collapse
Affiliation(s)
- R G Atkinson
- Horticultural Research Institute of New Zealand, Mt Albert Research Centre, Auckland
| | | | | | | | | | | |
Collapse
|
45
|
Hadfield KA, Rose JK, Yaver DS, Berka RM, Bennett AB. Polygalacturonase gene expression in ripe melon fruit supports a role for polygalacturonase in ripening-associated pectin disassembly. PLANT PHYSIOLOGY 1998; 117:363-73. [PMID: 9625689 PMCID: PMC34956 DOI: 10.1104/pp.117.2.363] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/1997] [Accepted: 01/01/1998] [Indexed: 05/18/2023]
Abstract
Ripening-associated pectin disassembly in melon is characterized by a decrease in molecular mass and an increase in the solubilization of polyuronide, modifications that in other fruit have been attributed to the activity of polygalacturonase (PG). Although it has been reported that PG activity is absent during melon fruit ripening, a mechanism for PG-independent pectin disassembly has not been positively identified. Here we provide evidence that pectin disassembly in melon (Cucumis melo) may be PG mediated. Three melon cDNA clones with significant homology to other cloned PGs were isolated from the rapidly ripening cultivar Charentais (C. melo cv Reticulatus F1 Alpha) and were expressed at high levels during fruit ripening. The expression pattern correlated temporally with an increase in pectin-degrading activity and a decrease in the molecular mass of cell wall pectins, suggesting that these genes encode functional PGs. MPG1 and MPG2 were closely related to peach fruit and tomato abscission zone PGs, and MPG3 was closely related to tomato fruit PG. MPG1, the most abundant melon PG mRNA, was expressed in Aspergillus oryzae. The culture filtrate exponentially decreased the viscosity of a pectin solution and catalyzed the linear release of reducing groups, suggesting that MPG1 encodes an endo-PG with the potential to depolymerize melon fruit cell wall pectin. Because MPG1 belongs to a group of PGs divergent from the well-characterized tomato fruit PG, this supports the involvement of a second class of PGs in fruit ripening-associated pectin disassembly.
Collapse
Affiliation(s)
- K A Hadfield
- Department of Vegetable Crops, University of California, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
46
|
Sitrit Y, Bennett AB. Regulation of tomato fruit polygalacturonase mRNA accumulation by ethylene: A Re-examination. PLANT PHYSIOLOGY 1998; 116:1145-50. [PMID: 9501147 PMCID: PMC35084 DOI: 10.1104/pp.116.3.1145] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/1997] [Accepted: 11/24/1997] [Indexed: 05/18/2023]
Abstract
Polygalacturonase (PG) is the major enzyme responsible for pectin disassembly in ripening fruit. Despite extensive research on the factors regulating PG gene expression in fruit, there is conflicting evidence regarding the role of ethylene in mediating its expression. Transgenic tomato (Lycopersicon esculentum) fruits in which endogenous ethylene production was suppressed by the expression of an antisense 1-aminocyclopropane-1-carboxylic acid (ACC) synthase gene were used to re-examine the role of ethylene in regulating the accumulation of PG mRNA, enzyme activity, and protein during fruit ripening. Treatment of transgenic antisense ACC synthase mature green fruit with ethylene at concentrations as low as 0.1 to 1 L/L for 24 h induced PG mRNA accumulation, and this accumulation was higher at concentrations of ethylene up to 100 L/L. Neither PG enzyme activity nor PG protein accumulated during this 24-h period of ethylene treatment, indicating that translation lags at least 24 h behind the accumulation of PG mRNA, even at high ethylene concentrations. When examined at concentrations of 10 L/L, PG mRNA accumulated within 6 h of ethylene treatment, indicating that the PG gene responds rapidly to ethylene. Treatment of transgenic tomato fruit with a low level of ethylene (0.1 L/L) for up to 6 d induced levels of PG mRNA, enzyme activity, and protein after 6 d, which were comparable to levels observed in ripening wild-type fruit. A similar level of internal ethylene (0.15 L/L) was measured in transgenic antisense ACC synthase fruit that were held for 28 d after harvest. In these fruit PG mRNA, enzyme activity, and protein were detected. Collectively, these results suggest that PG mRNA accumulation is ethylene regulated, and that the low threshold levels of ethylene required to promote PG mRNA accumulation may be exceeded, even in transgenic antisense ACC synthase tomato fruit.
Collapse
Affiliation(s)
- Y Sitrit
- Mann Laboratory, Department of Vegetable Crops, University of California, Davis, California 95616, USA
| | | |
Collapse
|
47
|
Rose JK, Lee HH, Bennett AB. Expression of a divergent expansin gene is fruit-specific and ripening-regulated. Proc Natl Acad Sci U S A 1997; 94:5955-60. [PMID: 9159182 PMCID: PMC20888 DOI: 10.1073/pnas.94.11.5955] [Citation(s) in RCA: 181] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Expansins are proteins that induce extension in isolated plant cell walls in vitro and have been proposed to disrupt noncovalent interactions between hemicellulose and cellulose microfibrils. Because the plant primary cell wall acts as a constraint to cell enlargement, this process may be integral to plant cell expansion, and studies of expansins have focused on their role in growth. We report the identification of an expansin (LeExp1) from tomato that exhibits high levels of mRNA abundance and is specifically expressed in ripening fruit, a developmental period when growth has ceased but when selective disassembly of cell wall components is pronounced. cDNAs closely related to LeExp1 were also identified in ripening melons and strawberries, suggesting that they are a common feature of fruit undergoing rapid softening. Furthermore, the sequence of LeExp1 and its homologs from other ripening fruit define a subclass of expansin genes. Expression of LeExp1 is regulated by ethylene, a hormone known to coordinate and induce ripening in many species. LeExp1 is differentially expressed in the ripening-impaired tomato mutants Nr, rin, and nor, and mRNA abundance appears to be influenced directly by ethylene and by a developmentally modulated transduction pathway. The identification of a ripening-regulated expansin gene in tomato and other fruit suggests that, in addition to their role in facilitating the expansion of plant cells, expansins may also contribute to cell wall disassembly in nongrowing tissues, possibly by enhancing the accessibility of noncovalently bound polymers to endogenous enzymic action.
Collapse
Affiliation(s)
- J K Rose
- Mann Laboratory, Department of Vegetable Crops, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
48
|
Kanayama Y, Dai N, Granot D, Petreikov M, Schaffer A, Bennett AB. Divergent fructokinase genes are differentially expressed in tomato. PLANT PHYSIOLOGY 1997; 113:1379-84. [PMID: 9112782 PMCID: PMC158261 DOI: 10.1104/pp.113.4.1379] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Two cDNA clones (Frk1 and Frk2) encoding fructokinase (EC 2.7.1.4) were isolated from tomato (Lycopersicon esculentum). The Frk2 cDNA encoded a deduced protein of 328 amino acids that was more than 90% identical with a previously characterized potato (Solanum tuberosum) fructokinase. In contrast, the Frk1 cDNA encoded a deduced protein of 347 amino acids that shared only 55% amino acid identity with Frk2. Both deduced proteins possessed and ATP-binding motif and putative substrate recognition site sequences identified in bacterial fructokinases. The Frk1 cDNA was expressed in a mutant yeast (Saccharomyces cerevisiae) line, which lacks the ability to phosphorylate glucose and fructose and is unable to grow on glucose or fructose. Mutant cells expressing Frk1 were complemented to grow on fructose but not glucose, indicating that Frk1 phosphorylates fructose but not glucose, and this activity was verified in extracts of transformed yeast. The mRNA corresponding to Frk2 accumulated to high levels in young, developing tomato fruit, whereas the Frk1 mRNA accumulated to higher levels late in fruit development. The results indicate that fructokinase in tomato is encoded by two divergent genes, which exhibit a differential pattern of expression during fruit development.
Collapse
Affiliation(s)
- Y Kanayama
- Mann Laboratory, Department of Vegetable Crops, University of California, Davis 95616, USA
| | | | | | | | | | | |
Collapse
|
49
|
Santino CG, Stanford GL, Conner TW. Developmental and transgenic analysis of two tomato fruit enhanced genes. PLANT MOLECULAR BIOLOGY 1997; 33:405-16. [PMID: 9049262 DOI: 10.1023/a:1005738910743] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Tomato fruit development is characterized by distinct developmental stages: fruit set, periods of rapid cell division and cell expansion, and the period where processes associated with ripening are dominant. During each of these stages, different aspects of cellular metabolism are favored. Accompanying these developmental changes are dramatic differences in gene expression, with a subset of genes being expressed early and a subset being expressed later in development. We have isolated and characterized several sequences from tomato that are expressed primarily in immature green fruit. Two of these genes (Tfm7 and Tfm5) have been characterized more extensively and their sequence indicates that they encode proteins corresponding to a proline-rich protein (PRP) and a glycine-rich protein (GRP). RNA blot analysis indicates that the transcripts from these genes are present at the earliest stages of fruit development, and continue to be expressed throughout the growth period of the fruit. Expression analysis during development indicates that the gene encoding the PRP may be down-regulated by ethylene. As a means to understanding the functional significance and the transcriptional contribution of these tissue-limited proteins during development, we constructed promoter-reporter gene fusions to identify which cell types express each of these sequences. GUS protein produced in transgenic plants by both promoter-reporter gene constructs was detected in most tissues of the fruit including the pericarp, columella, and placental tissues of young immature fruit through the mature green stage. However, only one of the promoter sequences conferred expression in the fruit locular tissue.
Collapse
Affiliation(s)
- C G Santino
- Ceregen, Monsanto Company, St. Louis, MO 63167, USA
| | | | | |
Collapse
|
50
|
Abstract
Pectin is an important polysaccharide with applications in foods, pharmaceuticals, and a number of other industries. Its importance in the food sector lies in its ability to form gel in the presence of Ca2+ ions or a solute at low pH. Although the exact mechanism of gel formation is not clear, significant progress has been made in this direction. Depending on the pectin, coordinate bonding with Ca2+ ions or hydrogen bonding and hydrophobic interactions are involved in gel formation. In low-methoxyl pectin, gelation results from ionic linkage via calcium bridges between two carboxyl groups belonging to two different chains in close contact with each other. In high-methoxyl pectin, the cross-linking of pectin molecules involves a combination of hydrogen bonds and hydrophobic interactions between the molecules. A number of factors--pH, presence of other solutes, molecular size, degree of methoxylation, number and arrangement of side chains, and charge density on the molecule--influence the gelation of pectin. In the food industry, pectin is used in jams, jellies, frozen foods, and more recently in low-calorie foods as a fat and/or sugar replacer. In the pharmaceutical industry, it is used to reduce blood cholesterol levels and gastrointestinal disorders. Other applications of pectin include use in edible films, paper substitute, foams and plasticizers, etc. In addition to pectolytic degradation, pectins are susceptible to heat degradation during processing, and the degradation is influenced by the nature of the ions and salts present in the system. Although present in the cell walls of most plants apple pomace and orange peel are the two major sources of commercial pectin due to the poor gelling behavior of pectin from other sources. This paper briefly describes the structure, chemistry of gelation, interactions, and industrial applications soft pectin.
Collapse
Affiliation(s)
- B R Thakur
- Department of Food Science, Purdue University, West Lafayette, IN 47906, USA
| | | | | |
Collapse
|