1
|
Norville K, Skrombolas D, Ferry SL, Kearns N, Frelinger JG. A Protease Activatable Interleukin-2 Fusion Protein Engenders Antitumor Immune Responses by Interferon Gamma-Dependent and Interferon Gamma-Independent Mechanisms. J Interferon Cytokine Res 2022; 42:316-328. [PMID: 35834651 DOI: 10.1089/jir.2022.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cytokines are powerful mediators of immune responses and some, such as interleukin-2 (IL-2), have achieved dramatic responses as cancer immunotherapies. Unfortunately, systemic administration often results in deleterious side effects, prompting exploration of strategies to localize cytokine activity to the tumor microenvironment (TME). To this end, we constructed an IL-2/IL2Ra fusion protein (IL-2FP) with an MMP2/9-specific cleavage site, designed to exploit the dysregulated protease activity in the TME to selectively activate IL-2 in the tumor. To determine if TME protease activity is sufficient to cleave the FP and if FP activity is due to specific cleavage, we created Colon 38 tumor cell lines expressing similar levels of IL-2FPs with either a functional cleavage site [H11(cs-1FP)] or a scrambled, noncleavable sequence [H2(scramFP)]. H11(cs-1FP) tumors demonstrated reduced tumor growth, characterized by regressions not observed in H2(scramFP) tumors. Analysis through qRT-PCR, flow cytometry, and immunohistochemistry indicate robust CD8 responses in the H11(cs-1FP) tumors. Interferon gamma (IFNg) knockout mice revealed that the immune effects of the cleavable FP are mediated through both IFNg-dependent and IFNg-independent mechanisms. Collectively, these data suggest that matrix metalloproteinases (MMPs) in the TME can cleave the IL-2FP specifically, thus enhancing an antitumor response, and provide a rationale for further developing this approach.
Collapse
Affiliation(s)
- Karli Norville
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Denise Skrombolas
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Shannon L Ferry
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Nolan Kearns
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - John G Frelinger
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
2
|
Herrmann H, Cabet E, Chevalier NR, Moosmann J, Schultheis D, Haas J, Schowalter M, Berwanger C, Weyerer V, Agaimy A, Meder B, Müller OJ, Katus HA, Schlötzer-Schrehardt U, Vicart P, Ferreiro A, Dittrich S, Clemen CS, Lilienbaum A, Schröder R. Dual Functional States of R406W-Desmin Assembly Complexes Cause Cardiomyopathy With Severe Intercalated Disc Derangement in Humans and in Knock-In Mice. Circulation 2020; 142:2155-2171. [PMID: 33023321 DOI: 10.1161/circulationaha.120.050218] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Mutations in the human desmin gene cause myopathies and cardiomyopathies. This study aimed to elucidate molecular mechanisms initiated by the heterozygous R406W-desmin mutation in the development of a severe and early-onset cardiac phenotype. METHODS We report an adolescent patient who underwent cardiac transplantation as a result of restrictive cardiomyopathy caused by a heterozygous R406W-desmin mutation. Sections of the explanted heart were analyzed with antibodies specific to 406W-desmin and to intercalated disc proteins. Effects of the R406W mutation on the molecular properties of desmin were addressed by cell transfection and in vitro assembly experiments. To prove the genuine deleterious effect of the mutation on heart tissue, we further generated and analyzed R405W-desmin knock-in mice harboring the orthologous form of the human R406W-desmin. RESULTS Microscopic analysis of the explanted heart revealed desmin aggregates and the absence of desmin filaments at intercalated discs. Structural changes within intercalated discs were revealed by the abnormal organization of desmoplakin, plectin, N-cadherin, and connexin-43. Next-generation sequencing confirmed the DES variant c.1216C>T (p.R406W) as the sole disease-causing mutation. Cell transfection studies disclosed a dual behavior of R406W-desmin with both its integration into the endogenous intermediate filament system and segregation into protein aggregates. In vitro, R406W-desmin formed unusually thick filaments that organized into complex filament aggregates and fibrillar sheets. In contrast, assembly of equimolar mixtures of mutant and wild-type desmin generated chimeric filaments of seemingly normal morphology but with occasional prominent irregularities. Heterozygous and homozygous R405W-desmin knock-in mice develop both a myopathy and a cardiomyopathy. In particular, the main histopathologic results from the patient are recapitulated in the hearts from R405W-desmin knock-in mice of both genotypes. Moreover, whereas heterozygous knock-in mice have a normal life span, homozygous animals die at 3 months of age because of a smooth muscle-related gastrointestinal phenotype. CONCLUSIONS We demonstrate that R406W-desmin provokes its severe cardiotoxic potential by a novel pathomechanism, where the concurrent dual functional states of mutant desmin assembly complexes underlie the uncoupling of desmin filaments from intercalated discs and their structural disorganization.
Collapse
Affiliation(s)
- Harald Herrmann
- Institute of Neuropathology (H.H., D.S., M.S., R.S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany.,Molecular Genetics, German Cancer Research Center, Heidelberg, Germany (H.H.)
| | - Eva Cabet
- Basic and Translational Myology, Unit of Functional and Adaptive Biology (E.C., P.V., A.F., A.L.), University of Paris, France
| | - Nicolas R Chevalier
- Laboratoire Matière et Systèmes Complexes (N.R.C.), University of Paris, France
| | - Julia Moosmann
- Department of Pediatric Cardiology (J.M., S.D.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Dorothea Schultheis
- Institute of Neuropathology (H.H., D.S., M.S., R.S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Jan Haas
- Institute for Cardiomyopathies Heidelberg, Heart Center Heidelberg, University of Heidelberg, Germany (J.H., B.M.)
| | - Mirjam Schowalter
- Institute of Neuropathology (H.H., D.S., M.S., R.S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Carolin Berwanger
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany (C.B., C.S.C.)
| | - Veronika Weyerer
- Institute of Pathology (V.W., A.A.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Abbas Agaimy
- Institute of Pathology (V.W., A.A.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Benjamin Meder
- Institute for Cardiomyopathies Heidelberg, Heart Center Heidelberg, University of Heidelberg, Germany (J.H., B.M.).,Department of Genetics, Stanford University School of Medicine, CA (B.M.)
| | - Oliver J Müller
- Internal Medicine III, University Hospital Schleswig-Holstein and University of Kiel, and German Center for Cardiovascular Research, partner site Hamburg/Kiel/Lübeck, Kiel, Germany (O.J.M.)
| | - Hugo A Katus
- Department of Cardiology, Medical University Hospital Heidelberg, and German Center for Cardiovascular Research, partner site Heidelberg/Mannheim, Heidelberg, Germany (H.A.K.)
| | - Ursula Schlötzer-Schrehardt
- Department of Ophthalmology (U.S.-S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Patrick Vicart
- Basic and Translational Myology, Unit of Functional and Adaptive Biology (E.C., P.V., A.F., A.L.), University of Paris, France
| | - Ana Ferreiro
- Basic and Translational Myology, Unit of Functional and Adaptive Biology (E.C., P.V., A.F., A.L.), University of Paris, France.,Reference Center for Neuromuscular Disorders, Pitié-Salpêtrière Hospital, Assistance publique-Hôpitaux de Paris, France (A.F.)
| | - Sven Dittrich
- Department of Pediatric Cardiology (J.M., S.D.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Christoph S Clemen
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany (C.B., C.S.C.).,Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Medical Faculty, and Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, Germany(C.S.C.)
| | - Alain Lilienbaum
- Basic and Translational Myology, Unit of Functional and Adaptive Biology (E.C., P.V., A.F., A.L.), University of Paris, France
| | - Rolf Schröder
- Institute of Neuropathology (H.H., D.S., M.S., R.S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| |
Collapse
|
3
|
Weber-Adrian D, Kofoed RH, Chan JWY, Silburt J, Noroozian Z, Kügler S, Hynynen K, Aubert I. Strategy to enhance transgene expression in proximity of amyloid plaques in a mouse model of Alzheimer's disease. Theranostics 2019; 9:8127-8137. [PMID: 31754385 PMCID: PMC6857057 DOI: 10.7150/thno.36718] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/29/2019] [Indexed: 12/26/2022] Open
Abstract
Gene therapy can be designed to efficiently counter pathological features characteristic of neurodegenerative disorders. Here, we took advantage of the glial fibrillary acidic protein (GFAP) promoter to preferentially enhance transgene expression near plaques composed of amyloid-beta peptides (Aβ), a hallmark of Alzheimer's disease (AD), in the TgCRND8 mouse model of amyloidosis. Methods: The delivery of intravenously injected recombinant adeno-associated virus mosaic serotype 1/2 (rAAV1/2) to the cortex and hippocampus of TgCRND8 mice was facilitated using transcranial MRI-guided focused ultrasound in combination with microbubbles (MRIgFUS), which transiently and locally increases the permeability of the blood-brain barrier (BBB). rAAV1/2 expression of the reporter green fluorescent protein (GFP) under a GFAP promoter was compared to GFP expression driven by the constitutive human beta actin (HBA) promoter. Results: MRIgFUS targeting the cortex and hippocampus facilitated the entry of rAAV1/2 and GFP expression under the GFAP promoter was localized to GFAP-positive astrocytes. Adjacent to Aβ plaques where GFAP is upregulated, the volume, surface area, and fluorescence intensity of the transgene GFP were greater in rAAV1/2-GFAP-GFP compared to rAAV1/2-HBA-GFP treated animals. In peripheral organs, GFP expression was particularly strong in the liver, irrespective of the promoter. Conclusion: The GFAP promoter enhanced transgene expression in proximity of Aβ plaques in the brain of TgCRND8 mice, and it also resulted in significant expression in the liver. Future gene therapies for neurological disorders could benefit from using a GFAP promoter to regulate transgene expression in response to disease-induced astrocytic reactivity.
Collapse
Affiliation(s)
- Danielle Weber-Adrian
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada
| | - Rikke Hahn Kofoed
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada
| | - Josephine Wing Yee Chan
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Joseph Silburt
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada
| | - Zeinab Noroozian
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada
| | - Sebastian Kügler
- Department of Neurology, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Kullervo Hynynen
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Isabelle Aubert
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada
| |
Collapse
|
4
|
Takeuchi A, Yokoyama S, Nakamori M, Nakamura M, Ojima T, Yamaguchi S, Mitani Y, Shively JE, Yamaue H. Loss of CEACAM1 is associated with poor prognosis and peritoneal dissemination of patients with gastric cancer. Sci Rep 2019; 9:12702. [PMID: 31481751 PMCID: PMC6722051 DOI: 10.1038/s41598-019-49230-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/21/2019] [Indexed: 12/27/2022] Open
Abstract
CEACAM1 is associated with malignant potential of various cancers. The current study aims to clarify the association between carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) expression and malignant potential of gastric cancer and to address whether CEACAM1 cytoplasmic domain isoform balance modulates the properties of gastric cancer cells. Immunohistochemical analyses for CEACAM1 were performed in 235 patients with gastric cancer who underwent surgery. Risk factors for overall survival and peritoneal metastasis were calculated based on CEACAM1 expression in the gastric cancer tissue. Patients with CEACAM1 long (CEACAM1-L) or short (CEACAM1-S) cytoplasmic isoform dominance were compared with patients with null CEACAM1 expression in terms of overall survival. CEACAM1 transfected or knockdown gastric cancer cell line, NUGC3 and MKN7 cells, were examined by invasion assay and three dimensional (3D) culture, in order to clarify whether CEACAM1 modulate invasion, lumen formation and tumor growth of gastric cancer cells. Multivariate analysis demonstrated that gastric cancer without CEACAM1 is an independent prognostic factor and a risk factor for peritoneal dissemination. Patients with CEACAM1-S dominance had better prognosis than those with CEACAM1-L. CEACAM1-4L overexpression induced less invasion, more lumen formation, and less tumor growth of NUGC3 cells. CEACAM1-4S overexpression had less invasion and more lumen formations, but not less tumor growth. Knockdown of CEACAM1 expression had less invasion, but not less lumen formations of MKN7 cells. Loss of CEACAM1 is associated with poor prognosis and peritoneal dissemination of patients with gastric cancer. Expression of CEACAM1 in gastric cancer cells modulates invasiveness, lumen formation, and tumor growth.
Collapse
Affiliation(s)
- Akihiro Takeuchi
- Second Department of Surgery, School of Medicine, Wakayama Medical University, Wakayama, 641-8510, Japan
| | - Shozo Yokoyama
- Second Department of Surgery, School of Medicine, Wakayama Medical University, Wakayama, 641-8510, Japan.
| | - Mikihito Nakamori
- Second Department of Surgery, School of Medicine, Wakayama Medical University, Wakayama, 641-8510, Japan
| | - Masaki Nakamura
- Second Department of Surgery, School of Medicine, Wakayama Medical University, Wakayama, 641-8510, Japan
| | - Toshiyasu Ojima
- Second Department of Surgery, School of Medicine, Wakayama Medical University, Wakayama, 641-8510, Japan
| | - Shunsuke Yamaguchi
- Second Department of Surgery, School of Medicine, Wakayama Medical University, Wakayama, 641-8510, Japan
| | - Yasuyuki Mitani
- Second Department of Surgery, School of Medicine, Wakayama Medical University, Wakayama, 641-8510, Japan
| | - John E Shively
- Department of Molecular Imaging & Therapy, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Hiroki Yamaue
- Second Department of Surgery, School of Medicine, Wakayama Medical University, Wakayama, 641-8510, Japan
| |
Collapse
|
5
|
Yan J, Gao Q, Cui Z, Yang G, Long Y. Molecular characterization of the giant freshwater prawn ( Macrobrachium rosenbergii) beta-actin gene promoter. PeerJ 2018; 6:e5701. [PMID: 30386688 PMCID: PMC6202971 DOI: 10.7717/peerj.5701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/06/2018] [Indexed: 12/30/2022] Open
Abstract
Constitutive promoters are important tools for gene function studies and transgenesis. The Beta-actin (actb1) gene promoter has been isolated from many species but remains to be cloned from the giant freshwater prawn (Macrobrachium rosenbergii). In this study, we cloned and characterized the Mractb1 gene promoter. Two alternative promoters were identified for the Mractb1 gene, which direct the generation of two transcripts with different 5′ untranslated regions. Three CpG islands were predicted in the upstream sequence, which are intimately related to transcription initiation and promoter activity. In addition to the CCAAT-box and the CArG-box, molecular dissection of the flanking sequence revealed the existence of one negative and two positive elements in the upstream region and the first intron. Finally, the Mractb1 promoter demonstrated comparative activity to the carp (Cyprinus carpio) actb1 promoter. Our investigations provide a valuable genetic tool for gene function studies and shed light on the regulation of the Mractb1 gene.
Collapse
Affiliation(s)
- Junjun Yan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Qiang Gao
- Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Zongbin Cui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | | | - Yong Long
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
6
|
Yamaguchi S, Yokoyama S, Ueno M, Hayami S, Mitani Y, Takeuchi A, Shively JE, Yamaue H. CEACAM1 is associated with recurrence after hepatectomy for colorectal liver metastasis. J Surg Res 2017; 220:353-362. [PMID: 29180203 DOI: 10.1016/j.jss.2017.07.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/18/2017] [Accepted: 07/21/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is re-expressed at the invasion front of colorectal cancer. CEACAM1 expression at metastatic sites remains to be investigated. The current study aims to clarify the association between CEACAM1 expression and recurrence after hepatectomy of colorectal liver metastasis and to address whether CEACAM1 induces tumor-initiating properties needed for growth at metastatic sites. METHODS Immunohistochemical analyses for CEACAM1 were performed in 67 patients with liver metastasis of colorectal cancer who had undergone curative hepatectomy. The risk factors for postoperative recurrence were calculated based on a CEACAM1 cytoplasmic domain isoform at the primary tumor invasion front. To investigate the effects of CEACAM1 cytoplasmic isoforms on HT29 and HCT116 colorectal cancer cells, Western blotting for CD44 and CD133, flow cytometry for ALDH1 activity, and soft-agar colony formation assay were performed. RESULTS CEACAM1 long (CEACAM1-L) and short (CEACAM1-S) cytoplasmic domain isoforms are strongly expressed on cancer cells in the liver metastases. Enhanced CEACAM1-S expression in the state of CEACAM1-L dominance at the primary tumor invasion front was an independent factor for colorectal cancer recurrence after curative hepatectomy. CEACAM1-4S-transfected HT29 and HCT116 cells had significantly higher CD44 expression and ALDH1 activity and increased the growth in anchorage-independent condition. CONCLUSIONS High expression of CEACAM1-S at the primary lesion invasion front is associated with recurrence and prognosis of patients with colorectal liver metastasis after curative hepatectomy. The expression of CEACAM1-4S enhances the tumor-initiating property of colorectal cancer cells.
Collapse
Affiliation(s)
- Shunsuke Yamaguchi
- Second Department of Surgery, Wakayama Medical University, School of Medicine, Wakayama, Japan
| | - Shozo Yokoyama
- Second Department of Surgery, Wakayama Medical University, School of Medicine, Wakayama, Japan.
| | - Masaki Ueno
- Second Department of Surgery, Wakayama Medical University, School of Medicine, Wakayama, Japan
| | - Shinya Hayami
- Second Department of Surgery, Wakayama Medical University, School of Medicine, Wakayama, Japan
| | - Yasuyuki Mitani
- Second Department of Surgery, Wakayama Medical University, School of Medicine, Wakayama, Japan
| | - Akihiro Takeuchi
- Second Department of Surgery, Wakayama Medical University, School of Medicine, Wakayama, Japan
| | - John E Shively
- Department of Molecular Immunology, Beckman Research Institute of the City of Hope, Duarte, California
| | - Hiroki Yamaue
- Second Department of Surgery, Wakayama Medical University, School of Medicine, Wakayama, Japan
| |
Collapse
|
7
|
Pizza FX, Martin RA, Springer EM, Leffler MS, Woelmer BR, Recker IJ, Leaman DW. Intercellular adhesion molecule-1 augments myoblast adhesion and fusion through homophilic trans-interactions. Sci Rep 2017; 7:5094. [PMID: 28698658 PMCID: PMC5506053 DOI: 10.1038/s41598-017-05283-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/25/2017] [Indexed: 01/01/2023] Open
Abstract
The overall objective of the study was to identify mechanisms through which intercellular adhesion molecule-1 (ICAM-1) augments the adhesive and fusogenic properties of myogenic cells. Hypotheses were tested using cultured myoblasts and fibroblasts, which do not constitutively express ICAM-1, and myoblasts and fibroblasts forced to express full length ICAM-1 or a truncated form lacking the cytoplasmic domain of ICAM-1. ICAM-1 mediated myoblast adhesion and fusion were quantified using novel assays and cell mixing experiments. We report that ICAM-1 augments myoblast adhesion to myoblasts and myotubes through homophilic trans-interactions. Such adhesive interactions enhanced levels of active Rac in adherent and fusing myoblasts, as well as triggered lamellipodia, spreading, and fusion of myoblasts through the signaling function of the cytoplasmic domain of ICAM-1. Rac inhibition negated ICAM-1 mediated lamellipodia, spreading, and fusion of myoblasts. The fusogenic property of ICAM-1-ICAM-1 interactions was restricted to myogenic cells, as forced expression of ICAM-1 by fibroblasts did not augment their fusion to ICAM-1+ myoblasts/myotubes. We conclude that ICAM-1 augments myoblast adhesion and fusion through its ability to self-associate and initiate Rac-mediated remodeling of the actin cytoskeleton.
Collapse
Affiliation(s)
- Francis X Pizza
- School of Exercise and Rehabilitation Sciences, University of Toledo, Toledo, Ohio, USA.
| | - Ryan A Martin
- School of Exercise and Rehabilitation Sciences, University of Toledo, Toledo, Ohio, USA
| | - Evan M Springer
- School of Exercise and Rehabilitation Sciences, University of Toledo, Toledo, Ohio, USA
| | - Maxwell S Leffler
- School of Exercise and Rehabilitation Sciences, University of Toledo, Toledo, Ohio, USA
| | - Bryce R Woelmer
- School of Exercise and Rehabilitation Sciences, University of Toledo, Toledo, Ohio, USA
| | - Isaac J Recker
- School of Exercise and Rehabilitation Sciences, University of Toledo, Toledo, Ohio, USA
| | - Douglas W Leaman
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA.,Wright State University, 4035 Colonel Glenn Hwy., Suite 300, Beavercreek, OH, 45431, USA
| |
Collapse
|
8
|
Desouza-Armstrong M, Gunning PW, Stehn JR. Tumor suppressor tropomyosin Tpm2.1 regulates sensitivity to apoptosis beyond anoikis characterized by changes in the levels of intrinsic apoptosis proteins. Cytoskeleton (Hoboken) 2017; 74:233-248. [PMID: 28378936 DOI: 10.1002/cm.21367] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/03/2017] [Accepted: 03/28/2017] [Indexed: 01/15/2023]
Abstract
The actin cytoskeleton is a polymer system that acts both as a sensor and mediator of apoptosis. Tropomyosins (Tpm) are a family of actin binding proteins that form co-polymers with actin and diversify actin filament function. Previous studies have shown that elevated expression of the tropomyosin isoform Tpm2.1 sensitized cells to apoptosis induced by cell detachment (anoikis) via an unknown mechanism. It is not yet known whether Tpm2.1 or other tropomyosin isoforms regulate sensitivity to apoptosis beyond anoikis. In this study, rat neuroepithelial cells overexpressing specific tropomyosin isoforms (Tpm1.7, Tpm2.1, Tpm3.1, and Tpm4.2) were screened for sensitivity to different classes of apoptotic stimuli, including both cytoskeletal and non-cytoskeletal targeting compounds. Results showed that elevated expression of tropomyosins in general inhibited apoptosis sensitivity to different stimuli. However, Tpm2.1 overexpression consistently enhanced sensitivity to anoikis as well as apoptosis induced by the actin targeting drug jasplakinolide (JASP). In contrast the cancer-associated isoform Tpm3.1 inhibited the induction of apoptosis by a range of agents. Treatment of Tpm2.1 overexpressing cells with JASP was accompanied by enhanced sensitivity to mitochondrial depolarization, a hallmark of intrinsic apoptosis. Moreover, Tpm2.1 overexpressing cells showed elevated levels of the apoptosis proteins Bak (proapoptotic), Mcl-1 (prosurvival), Bcl-2 (prosurvival) and phosphorylated p53 (Ser392). Finally, JASP treatment of Tpm2.1 cells caused significantly reduced Mcl-1, Bcl-2 and p53 (Ser392) levels relative to control cells. We therefore propose that Tpm2.1 regulates sensitivity to apoptosis beyond the scope of anoikis by modulating the expression of key intrinsic apoptosis proteins which primes the cell for death.
Collapse
Affiliation(s)
- Melissa Desouza-Armstrong
- Department of Anatomy, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Peter W Gunning
- Department of Anatomy, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Justine R Stehn
- Department of Anatomy, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia.,Novogen Ltd. Hornsby, Sydney, New South Wales, 2077, Australia
| |
Collapse
|
9
|
James W. Towards Gene-Inhibition Therapy: A Review of Progress and Prospects in the Field of Antiviral Antisense Nucleic Acids and Ribozymes. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/095632029100200401] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Antisense RNA and its derivatives may provide the basis for highly selective gene inhibition therapies of virus infections. In this review, I concentrate on advances made in the study of antisense RNA and ribozymes during the last five years and their implications for the development of such therapies. It appears that antisense RNAs synthesized at realistic levels within the cell can be much more effective inhibitors than originally supposed. Looking at those experiments that enable comparisons to be made, it seems that inhibitory antisense RNAs are not those that are complementary to particular sites within mRNAs but those that are able to make stable duplexes with their targets, perhaps by virtue of their secondary structure and length. The inclusion of ribozyme sequences within antisense RNAs confers RNA-cleaving activity upon them in vitro and possibly in cells, thereby offering the possibility of markedly increasing their therapeutic potential. The varieties of natural ribozyme and their adaptation as artificial catalysts are reviewed. The implications of these developments for antiviral therapy are discussed.
Collapse
Affiliation(s)
- W. James
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, U.K
| |
Collapse
|
10
|
West DB, Engelhard EK, Adkisson M, Nava AJ, Kirov JV, Cipollone A, Willis B, Rapp J, de Jong PJ, Lloyd KC. Transcriptome Analysis of Targeted Mouse Mutations Reveals the Topography of Local Changes in Gene Expression. PLoS Genet 2016; 12:e1005691. [PMID: 26839965 PMCID: PMC4739719 DOI: 10.1371/journal.pgen.1005691] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 10/30/2015] [Indexed: 01/21/2023] Open
Abstract
The unintended consequences of gene targeting in mouse models have not been thoroughly studied and a more systematic analysis is needed to understand the frequency and characteristics of off-target effects. Using RNA-seq, we evaluated targeted and neighboring gene expression in tissues from 44 homozygous mutants compared with C57BL/6N control mice. Two allele types were evaluated: 15 targeted trap mutations (TRAP); and 29 deletion alleles (DEL), usually a deletion between the translational start and the 3' UTR. Both targeting strategies insert a bacterial beta-galactosidase reporter (LacZ) and a neomycin resistance selection cassette. Evaluating transcription of genes in +/- 500 kb of flanking DNA around the targeted gene, we found up-regulated genes more frequently around DEL compared with TRAP alleles, however the frequency of alleles with local down-regulated genes flanking DEL and TRAP targets was similar. Down-regulated genes around both DEL and TRAP targets were found at a higher frequency than expected from a genome-wide survey. However, only around DEL targets were up-regulated genes found with a significantly higher frequency compared with genome-wide sampling. Transcriptome analysis confirms targeting in 97% of DEL alleles, but in only 47% of TRAP alleles probably due to non-functional splice variants, and some splicing around the gene trap. Local effects on gene expression are likely due to a number of factors including compensatory regulation, loss or disruption of intragenic regulatory elements, the exogenous promoter in the neo selection cassette, removal of insulating DNA in the DEL mutants, and local silencing due to disruption of normal chromatin organization or presence of exogenous DNA. An understanding of local position effects is important for understanding and interpreting any phenotype attributed to targeted gene mutations, or to spontaneous indels.
Collapse
Affiliation(s)
- David B. West
- Children’s Hospital Oakland Research Institute (CHORI), Oakland, California, United States of America
- * E-mail:
| | - Eric K. Engelhard
- Mouse Biology Program, University of California, Davis, California, United States of America
| | - Michael Adkisson
- Children’s Hospital Oakland Research Institute (CHORI), Oakland, California, United States of America
| | - A. J. Nava
- Children’s Hospital Oakland Research Institute (CHORI), Oakland, California, United States of America
| | - Julia V. Kirov
- Children’s Hospital Oakland Research Institute (CHORI), Oakland, California, United States of America
| | - Andreanna Cipollone
- Mouse Biology Program, University of California, Davis, California, United States of America
| | - Brandon Willis
- Mouse Biology Program, University of California, Davis, California, United States of America
| | - Jared Rapp
- Mouse Biology Program, University of California, Davis, California, United States of America
| | - Pieter J. de Jong
- Children’s Hospital Oakland Research Institute (CHORI), Oakland, California, United States of America
| | - Kent C. Lloyd
- Mouse Biology Program, University of California, Davis, California, United States of America
| |
Collapse
|
11
|
Mizuguchi M, Sasaki Y, Hara T, Higuchi M, Tanaka Y, Funato N, Tanaka N, Fujii M, Nakamura M. Induction of Cell Death in Growing Human T-Cells and Cell Survival in Resting Cells in Response to the Human T-Cell Leukemia Virus Type 1 Tax. PLoS One 2016; 11:e0148217. [PMID: 26829041 PMCID: PMC4734616 DOI: 10.1371/journal.pone.0148217] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/14/2016] [Indexed: 12/21/2022] Open
Abstract
Tax1 encoded by the human T-cell leukemia virus type 1 (HTLV-1) has been believed to dysregulate the expression of cellular genes involved in cell survival and mortality, leading to the development of adult T-cell leukemia (ATL). The function of Tax1 in ATL development however is still controversial, primarily because Tax1 induces cell cycle progression and apoptosis. To systemically understand cell growth phase-dependent induction of cell survival or cell death by Tax1, we established a single experimental system using an interleukin 2 (IL-2)-dependent human T-cell line Kit 225 that can be forced into resting phase by IL-2 deprivation. Introduction of Tax1 and HTLV-2 Tax (Tax2B) decreased mitochondrial activity alongside apoptosis in growing cells but not in resting cells. Cell cycle profile analysis indicated that Tax1 and Tax2B were likely to perturb the S phase in growing cells. Studies with Tax1 mutants and siRNA for NF-κB/RelA revealed that Tax1-mediated cell growth inhibition and apoptosis in growing Kit 225 cells depend on RelA. Interestingly, inactivation of the non-canonical NF-κB and p38 MAPK pathways relieved Tax1-mediated apoptosis, suggesting that the Tax1-NF-κB-p38 MAPK axis may be associated with apoptosis in growing cells. Inflammatory mediators such as CCL3 and CCL4, which are involved in oncogene-induced senescence (OIS), were induced by Tax1 and Tax2B in growing cells. In contrast, RelA silencing in resting cells reduced mitochondrial activity, indicating that NF-κB/RelA is also critical for Tax1-mediated cell survival. These findings suggest that Tax1-mediated cell survival and death depend on the cell growth phase. Both effects of Tax1 may be implicated in the long latency of HTLV-1 infection.
Collapse
Affiliation(s)
- Mariko Mizuguchi
- Human Gene Sciences Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuka Sasaki
- Human Gene Sciences Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshifumi Hara
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masaya Higuchi
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yuetsu Tanaka
- Department of Immunology, Graduate School and Faculty of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Noriko Funato
- Human Gene Sciences Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nobuyuki Tanaka
- Division of Cancer Biology and Therapeutics, Miyagi Cancer Center Research Institute, Miyagi, Japan
| | - Masahiro Fujii
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masataka Nakamura
- Human Gene Sciences Center, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
12
|
Ambrose J, Livitz M, Wessels D, Kuhl S, Lusche DF, Scherer A, Voss E, Soll DR. Mediated coalescence: a possible mechanism for tumor cellular heterogeneity. Am J Cancer Res 2015; 5:3485-504. [PMID: 26807328 PMCID: PMC4697694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 09/18/2015] [Indexed: 06/05/2023] Open
Abstract
Recently, we demonstrated that tumorigenic cell lines and fresh tumor cells seeded in a 3D Matrigel model, first grow as clonal islands (primary aggregates), then coalesce through the formation and contraction of cellular cables. Non-tumorigenic cell lines and cells from normal tissue form clonal islands, but do not form cables or coalesce. Here we show that as little as 5% tumorigenic cells will actively mediate coalescence between primary aggregates of majority non-tumorigenic or non-cancerous cells, by forming cellular cables between them. We suggest that this newly discovered, specialized characteristic of tumorigenic cells may explain, at least in part, why tumors contain primarily non-tumorigenic cells.
Collapse
Affiliation(s)
- Joseph Ambrose
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa Iowa City, Iowa 52242, USA
| | - Michelle Livitz
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa Iowa City, Iowa 52242, USA
| | - Deborah Wessels
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa Iowa City, Iowa 52242, USA
| | - Spencer Kuhl
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa Iowa City, Iowa 52242, USA
| | - Daniel F Lusche
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa Iowa City, Iowa 52242, USA
| | - Amanda Scherer
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa Iowa City, Iowa 52242, USA
| | - Edward Voss
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa Iowa City, Iowa 52242, USA
| | - David R Soll
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa Iowa City, Iowa 52242, USA
| |
Collapse
|
13
|
Java A, Liszewski MK, Hourcade DE, Zhang F, Atkinson JP. Role of complement receptor 1 (CR1; CD35) on epithelial cells: A model for understanding complement-mediated damage in the kidney. Mol Immunol 2015; 67:584-95. [PMID: 26260209 DOI: 10.1016/j.molimm.2015.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/07/2015] [Accepted: 07/16/2015] [Indexed: 12/27/2022]
Abstract
The regulators of complement activation gene cluster encodes a group of proteins that have evolved to control the amplification of complement at the critical step of C3 activation. Complement receptor 1 (CR1) is the most versatile of these inhibitors with both receptor and regulatory functions. While expressed on most peripheral blood cells, the only epithelial site of expression in the kidney is by the podocyte. Its expression by this cell population has aroused considerable speculation as to its biologic function in view of many complement-mediated renal diseases. The goal of this investigation was to assess the role of CR1 on epithelial cells. To this end, we utilized a Chinese hamster ovary cell model system. Among our findings, CR1 reduced C3b deposition by ∼ 80% during classical pathway activation; however, it was an even more potent regulator (>95% reduction in C3b deposition) of the alternative pathway. This inhibition was primarily mediated by decay accelerating activity. The deposited C4b and C3b were progressively cleaved with a t½ of ∼ 30 min to C4d and C3d, respectively, by CR1-dependent cofactor activity. CR1 functioned intrinsically (i.e, worked only on the cell on which it was expressed). Moreover, CR1 efficiently and stably bound but didn't internalize C4b/C3b opsonized immune complexes. Our studies underscore the potential importance of CR1 on an epithelial cell population as both an intrinsic complement regulator and an immune adherence receptor. These results provide a framework for understanding how loss of CR1 expression on podocytes may contribute to complement-mediated damage in the kidney.
Collapse
Affiliation(s)
- Anuja Java
- Washington University School of Medicine, Department of Internal Medicine, Division of Nephrology, 660 South Euclid Avenue, St. Louis, MO 63110 USA.
| | - M Kathryn Liszewski
- Department of Internal Medicine, Division of Rheumatology, 660 South Euclid Avenue, St. Louis, MO 63110 USA.
| | - Dennis E Hourcade
- Department of Internal Medicine, Division of Rheumatology, 660 South Euclid Avenue, St. Louis, MO 63110 USA.
| | - Fan Zhang
- Department of Internal Medicine, Division of Rheumatology, 660 South Euclid Avenue, St. Louis, MO 63110 USA.
| | - John P Atkinson
- Department of Internal Medicine, Division of Rheumatology, 660 South Euclid Avenue, St. Louis, MO 63110 USA.
| |
Collapse
|
14
|
Tanaka Y, Mizuguchi M, Takahashi Y, Fujii H, Tanaka R, Fukushima T, Tomoyose T, Ansari AA, Nakamura M. Human T-cell leukemia virus type-I Tax induces the expression of CD83 on T cells. Retrovirology 2015; 12:56. [PMID: 26129803 PMCID: PMC4487981 DOI: 10.1186/s12977-015-0185-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/21/2015] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND CD83, a cell surface glycoprotein that is stably expressed on mature dendritic cells, can be transiently induced on other hematopoietic cell lineages upon cell activation. In contrast to the membrane form of CD83, soluble CD83 appears to be immunosuppressive. In an analysis of the phenotype of leukemic CD4(+) T cells from patients with adult T-cell leukemia (ATL), we found that a number of primary CD4(+) T cells became positive for cell surface CD83 after short-term culture, and that most of these CD83(+) CD4(+) T cells were positive for human T-cell leukemia virus type-I (HTLV-I) Tax (Tax1). We hypothesized that Tax1 is involved in the induction of CD83. RESULT We found that CD83 was expressed selectively on Tax1-expressing human CD4(+) T cells in short-term cultured peripheral blood mononuclear cells (PBMCs) isolated from HTLV-I(+) donors, including ATL patients and HTLV-I carriers. HTLV-I-infected T cell lines expressing Tax1 also expressed cell surface CD83 and released soluble CD83. CD83 can be expressed in the JPX-9 cell line by cadmium-mediated Tax1 induction and in Jurkat cells or PBMCs by Tax1 introduction via infection with a recombinant adenovirus carrying the Tax1 gene. The CD83 promoter was activated by Tax1 in an NF-κB-dependent manner. Based on a previous report showing soluble CD83-mediated prostaglandin E2 (PGE2) production from human monocytes in vitro, we tested if PGE2 affected HTLV-I propagation, and found that PGE2 strongly stimulated expression of Tax1 and viral structural molecules. CONCLUSIONS Our results suggest that HTLV-I induces CD83 expression on T cells via Tax1 -mediated NF-κB activation, which may promote HTLV-I infection in vivo.
Collapse
Affiliation(s)
- Yuetsu Tanaka
- Department of Immunology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa, 903-0215, Japan.
| | - Mariko Mizuguchi
- Human Gene Sciences Center, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan.
| | - Yoshiaki Takahashi
- Department of Immunology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa, 903-0215, Japan.
| | - Hideki Fujii
- Department of Immunology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa, 903-0215, Japan.
| | - Reiko Tanaka
- Department of Immunology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa, 903-0215, Japan.
| | - Takuya Fukushima
- Laboratory of Hematoimmunology, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan.
| | - Takeaki Tomoyose
- Division of Endocrinology, Diabetes and Metabolism, Haematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan.
| | - Aftab A Ansari
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA.
| | - Masataka Nakamura
- Human Gene Sciences Center, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
15
|
Jalilian I, Heu C, Cheng H, Freittag H, Desouza M, Stehn JR, Bryce NS, Whan RM, Hardeman EC, Fath T, Schevzov G, Gunning PW. Cell elasticity is regulated by the tropomyosin isoform composition of the actin cytoskeleton. PLoS One 2015; 10:e0126214. [PMID: 25978408 PMCID: PMC4433179 DOI: 10.1371/journal.pone.0126214] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 03/31/2015] [Indexed: 02/07/2023] Open
Abstract
The actin cytoskeleton is the primary polymer system within cells responsible for regulating cellular stiffness. While various actin binding proteins regulate the organization and dynamics of the actin cytoskeleton, the proteins responsible for regulating the mechanical properties of cells are still not fully understood. In the present study, we have addressed the significance of the actin associated protein, tropomyosin (Tpm), in influencing the mechanical properties of cells. Tpms belong to a multi-gene family that form a co-polymer with actin filaments and differentially regulate actin filament stability, function and organization. Tpm isoform expression is highly regulated and together with the ability to sort to specific intracellular sites, result in the generation of distinct Tpm isoform-containing actin filament populations. Nanomechanical measurements conducted with an Atomic Force Microscope using indentation in Peak Force Tapping in indentation/ramping mode, demonstrated that Tpm impacts on cell stiffness and the observed effect occurred in a Tpm isoform-specific manner. Quantitative analysis of the cellular filamentous actin (F-actin) pool conducted both biochemically and with the use of a linear detection algorithm to evaluate actin structures revealed that an altered F-actin pool does not absolutely predict changes in cell stiffness. Inhibition of non-muscle myosin II revealed that intracellular tension generated by myosin II is required for the observed increase in cell stiffness. Lastly, we show that the observed increase in cell stiffness is partially recapitulated in vivo as detected in epididymal fat pads isolated from a Tpm3.1 transgenic mouse line. Together these data are consistent with a role for Tpm in regulating cell stiffness via the generation of specific populations of Tpm isoform-containing actin filaments.
Collapse
Affiliation(s)
- Iman Jalilian
- Oncology Research Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Celine Heu
- Oncology Research Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
- Biomedical Imaging facility, UNSW Australia, Sydney, NSW 2052, Australia
| | - Hong Cheng
- Neurodegeneration and Repair Unit, School of Medical Sciences, UNSW Australia, Sydney NSW 2052, Australia
| | - Hannah Freittag
- Neurodegeneration and Repair Unit, School of Medical Sciences, UNSW Australia, Sydney NSW 2052, Australia
| | - Melissa Desouza
- Oncology Research Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Justine R. Stehn
- Oncology Research Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Nicole S. Bryce
- Oncology Research Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Renee M. Whan
- Biomedical Imaging facility, UNSW Australia, Sydney, NSW 2052, Australia
| | - Edna C. Hardeman
- Neuromuscular and Regenerative Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Thomas Fath
- Neurodegeneration and Repair Unit, School of Medical Sciences, UNSW Australia, Sydney NSW 2052, Australia
| | - Galina Schevzov
- Oncology Research Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Peter W. Gunning
- Oncology Research Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| |
Collapse
|
16
|
Yamamoto N, Yokoyama S, Ieda J, Mitani Y, Yamaguchi S, Takifuji K, Hotta T, Matsuda K, Watanabe T, Shively JE, Yamaue H. CEACAM1 and hollow spheroid formation modulate the chemosensitivity of colorectal cancer to 5-fluorouracil. Cancer Chemother Pharmacol 2014; 75:421-30. [DOI: 10.1007/s00280-014-2662-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 12/22/2014] [Indexed: 01/18/2023]
|
17
|
Gilbert R, Guilbault C, Gagnon D, Bernier A, Bourget L, Elahi SM, Kamen A, Massie B. Establishment and validation of new complementing cells for production of E1-deleted adenovirus vectors in serum-free suspension culture. J Virol Methods 2014; 208:177-88. [DOI: 10.1016/j.jviromet.2014.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/12/2014] [Accepted: 08/15/2014] [Indexed: 11/17/2022]
|
18
|
García-González D, Murcia-Belmonte V, Esteban PF, Ortega F, Díaz D, Sánchez-Vera I, Lebrón-Galán R, Escobar-Castañondo L, Martínez-Millán L, Weruaga E, García-Verdugo JM, Berninger B, de Castro F. Anosmin-1 over-expression increases adult neurogenesis in the subventricular zone and neuroblast migration to the olfactory bulb. Brain Struct Funct 2014; 221:239-60. [PMID: 25300351 DOI: 10.1007/s00429-014-0904-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 09/23/2014] [Indexed: 12/30/2022]
Abstract
New subventricular zone (SVZ)-derived neuroblasts that migrate via the rostral migratory stream are continuously added to the olfactory bulb (OB) of the adult rodent brain. Anosmin-1 (A1) is an extracellular matrix protein that binds to FGF receptor 1 (FGFR1) to exert its biological effects. When mutated as in Kallmann syndrome patients, A1 is associated with severe OB morphogenesis defects leading to anosmia and hypogonadotropic hypogonadism. Here, we show that A1 over-expression in adult mice strongly increases proliferation in the SVZ, mainly with symmetrical divisions, and produces substantial morphological changes in the normal SVZ architecture, where we also report the presence of FGFR1 in almost all SVZ cells. Interestingly, for the first time we show FGFR1 expression in the basal body of primary cilia in neural progenitor cells. Additionally, we have found that A1 over-expression also enhances neuroblast motility, mainly through FGFR1 activity. Together, these changes lead to a selective increase in several GABAergic interneuron populations in different OB layers. These specific alterations in the OB would be sufficient to disrupt the normal processing of sensory information and consequently alter olfactory memory. In summary, this work shows that FGFR1-mediated A1 activity plays a crucial role in the continuous remodelling of the adult OB.
Collapse
Affiliation(s)
- Diego García-González
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Toledo, Spain.
- Clinical Neurobiology, German Center for Cancer Research (DKFZ), Heidelberg, Germany.
| | - Verónica Murcia-Belmonte
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Toledo, Spain
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain
| | - Pedro F Esteban
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Toledo, Spain
| | - Felipe Ortega
- University Medical Center Johannes Gutenberg, University of Mainz, Mainz, Germany
| | - David Díaz
- Instituto de Neurociencias de Castilla y León-INCyL, Universidad de Salamanca, Salamanca, Spain
| | - Irene Sánchez-Vera
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles, Universidad de Valencia, CIBERNED, Valencia, Spain
- Unidad mixta de Esclerosis múltiple y neurorregeneración, IIS Hospital La Fe, Valencia, Spain
| | - Rafael Lebrón-Galán
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Toledo, Spain
| | | | - Luis Martínez-Millán
- Departmento de Neurosciencias, Facultad de Medicina, Universidad del País Vasco, Leioa, Spain
| | - Eduardo Weruaga
- Instituto de Neurociencias de Castilla y León-INCyL, Universidad de Salamanca, Salamanca, Spain
| | - José Manuel García-Verdugo
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles, Universidad de Valencia, CIBERNED, Valencia, Spain
| | - Benedikt Berninger
- University Medical Center Johannes Gutenberg, University of Mainz, Mainz, Germany
| | - Fernando de Castro
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Toledo, Spain.
| |
Collapse
|
19
|
Intercellular adhesion molecule-1 expression by skeletal muscle cells augments myogenesis. Exp Cell Res 2014; 331:292-308. [PMID: 25281303 DOI: 10.1016/j.yexcr.2014.09.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/16/2014] [Accepted: 09/23/2014] [Indexed: 02/04/2023]
Abstract
We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast-myoblast adhesion, myotube formation, myonuclear number, myotube alignment, myotube-myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube-myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle.
Collapse
|
20
|
Damdindorj L, Karnan S, Ota A, Hossain E, Konishi Y, Hosokawa Y, Konishi H. A comparative analysis of constitutive promoters located in adeno-associated viral vectors. PLoS One 2014; 9:e106472. [PMID: 25170953 PMCID: PMC4149579 DOI: 10.1371/journal.pone.0106472] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/07/2014] [Indexed: 11/18/2022] Open
Abstract
The properties of constitutive promoters within adeno-associated viral (AAV) vectors have not yet been fully characterized. In this study, AAV vectors, in which enhanced GFP expression was directed by one of the six constitutive promoters (human β-actin, human elongation factor-1α, chicken β-actin combined with cytomegalovirus early enhancer, cytomegalovirus (CMV), simian virus 40, and herpes simplex virus thymidine kinase), were constructed and introduced into the HCT116, DLD-1, HT-1080, and MCF-10A cell lines. Quantification of GFP signals in infected cells demonstrated that the CMV promoter produced the highest GFP expression in the six promoters and maintained relatively high GFP expression for up to eight weeks after infection of HCT116, DLD-1, and HT-1080. Exogenous human CDKN2A gene expression was also introduced into DLD-1 and MCF-10A in a similar pattern by using AAV vectors bearing the human β-actin and the CMV promoters. The six constitutive promoters were subsequently placed upstream of the neomycin resistance gene within AAV vectors, and HCT116, DLD-1, and HT-1080 were infected with the resulting vectors. Of the six promoters, the CMV promoter produced the largest number of G418-resistant colonies in all three cell lines. Because AAV vectors have been frequently used as a platform to construct targeting vectors that permit gene editing in human cell lines, we lastly infected the three cell lines with AAV-based targeting vectors against the human PIGA gene in which one of the six promoters regulate the neomycin resistance gene. This assay revealed that the CMV promoter led to the lowest PIGA gene targeting efficiency in the investigated promoters. These results provide a clue to the identification of constitutive promoters suitable to express exogenous genes with AAV vectors, as well as those helpful to conduct efficient gene targeting using AAV-based targeting vectors in human cell lines.
Collapse
Affiliation(s)
- Lkhagvasuren Damdindorj
- Department of Biochemistry, Aichi Medical University School of Medicine Nagakute, Aichi, Japan
| | - Sivasundaram Karnan
- Department of Biochemistry, Aichi Medical University School of Medicine Nagakute, Aichi, Japan
| | - Akinobu Ota
- Department of Biochemistry, Aichi Medical University School of Medicine Nagakute, Aichi, Japan
| | - Ekhtear Hossain
- Department of Biochemistry, Aichi Medical University School of Medicine Nagakute, Aichi, Japan
| | - Yuko Konishi
- Department of Biochemistry, Aichi Medical University School of Medicine Nagakute, Aichi, Japan
| | - Yoshitaka Hosokawa
- Department of Biochemistry, Aichi Medical University School of Medicine Nagakute, Aichi, Japan
| | - Hiroyuki Konishi
- Department of Biochemistry, Aichi Medical University School of Medicine Nagakute, Aichi, Japan
- * E-mail:
| |
Collapse
|
21
|
Ma J, Ward CC, Jungreis I, Slavoff SA, Schwaid AG, Neveu J, Budnik BA, Kellis M, Saghatelian A. Discovery of human sORF-encoded polypeptides (SEPs) in cell lines and tissue. J Proteome Res 2014; 13:1757-65. [PMID: 24490786 PMCID: PMC3993966 DOI: 10.1021/pr401280w] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The existence of nonannotated protein-coding human short open reading frames (sORFs) has been revealed through the direct detection of their sORF-encoded polypeptide (SEP) products. The discovery of novel SEPs increases the size of the genome and the proteome and provides insights into the molecular biology of mammalian cells, such as the prevalent usage of non-AUG start codons. Through modifications of the existing SEP-discovery workflow, we discover an additional 195 SEPs in K562 cells and extend this methodology to identify novel human SEPs in additional cell lines and human tissue for a final tally of 237 new SEPs. These results continue to expand the human genome and proteome and demonstrate that SEPs are a ubiquitous class of nonannotated polypeptides that require further investigation.
Collapse
Affiliation(s)
- Jiao Ma
- Department of Chemistry and Chemical Biology, Harvard University , 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kiriyama S, Yokoyama S, Ueno M, Hayami S, Ieda J, Yamamoto N, Yamaguchi S, Mitani Y, Nakamura Y, Tani M, Mishra L, Shively JE, Yamaue H. CEACAM1 long cytoplasmic domain isoform is associated with invasion and recurrence of hepatocellular carcinoma. Ann Surg Oncol 2014; 21 Suppl 4:S505-14. [PMID: 24390710 DOI: 10.1245/s10434-013-3460-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Indexed: 11/18/2022]
Abstract
BACKGROUND The two isoforms of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), 1 with a long cytoplasmic domain (CEACAM1-L) and 1 with a short (CEACAM1-S), are involved in different signaling pathways. β2-spectrin (β2SP) is an adaptor protein that plays critical roles in the proper control of Smad access to activate receptors involved in regulation of TGF-β signaling. In this study, we examined the association between CEACAM1 isoform balance and hepatocellular carcinoma (HCC) malignant potential and investigated the possibility of a molecular interaction between CEACAM1 and β2SP. METHODS Immunohistochemical analysis was carried out with CEACAM1-L or CEACAM1-S antibodies on 154 HCC tissues to correlate with the factors of malignancy. Invasion assay was performed for the effect of CEACAM1 expression on HCC cell lines. Moreover, immunohistochemical analysis and immunoprecipitation analysis were performed to investigate the association between CEACAM1 isoform balance and β2SP. RESULTS In immunohistochemical analysis, CEACAM1-L expression dominance was a risk factor for HCC recurrence (p = 0.04) and was significantly associated with a shorter survival compared with CEACAM1-S expression dominance. Invasion assay indicated that CEACAM1-4L-transfected HLF and PLC/PRF/5 cells showed significantly increased invasion (p < 0.0001) and CEACAM1-4S-transfected HLF cells showed significantly decreased invasion. Immunohistochemical analysis of β2SP suggested that the HCCs with CEACAM1-L-dominant expression were more strongly stained with β2SP than the HCCs with CEACAM1-S-dominant expression (p = 0.013), and coprecipitation assays indicated that CEACAM1-L could bind to β2SP. CONCLUSIONS CEACAM1-L may enhance the HCC invasiveness through an interaction with β2SP and subsequent effects on TGF-β signaling.
Collapse
Affiliation(s)
- Shigehisa Kiriyama
- Second Department of Surgery, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Miura Y, Kataoka H, Joh T, Tada T, Asai K, Nakanishi M, Okada N, Okada H. Susceptibility to Killer T Cells of Gastric Cancer Cells Enhanced by Mitomycin-C Involves Induction of ATBF1 and Activation of p21 (Waf1/Cip1) Promoter. Microbiol Immunol 2013; 48:137-45. [PMID: 14978340 DOI: 10.1111/j.1348-0421.2004.tb03491.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alpha-fetoprotein (AFP) expression is observed in embryonic tissues and, the expression of this protein is absent in normal adult tissues. The re-elevation of serum AFP strongly suggests generation of a malignant tumor in an adult. We demonstrated here that AFP-producing gastric cancer (AFP-gastric cancer) could be treated by a combination therapy with a low dose of Mitomycin-C (MMC) and lymphokineactivated killer T (LAK-T) cells. Treatment with MMC of AFP-gastric cancer cells enhanced their susceptibility to LAK-T cells and induced ATBF1 gene expression. We revealed here a novel signal pathway for regulation of the cell cycle of AFP-gastric cancer cells through ATBF1, which enhances the promoter activity of the p21 (Waf1/Cip1) gene. Immunoprecipitation revealed the direct interaction between ATBF1 and p53. Overexpressed ATBF1 stimulated p21 (Waf1/Cip1) promoter activity up to 4-fold compared with basal activity. The expression level of ATBF1 mRNA was doubled by MMC (0.05 microg/ml) treatment. The MMC treatment and ATBF1 overexpression synergistically activated the p21 (Waf1/Cip1) promoter activity in a dose-dependent manner up to 7-fold compared with basal activity.
Collapse
Affiliation(s)
- Yutaka Miura
- Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Failure in activation of the canonical NF-κB pathway by human T-cell leukemia virus type 1 Tax in non-hematopoietic cell lines. Virology 2013; 443:226-35. [DOI: 10.1016/j.virol.2013.04.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 02/25/2013] [Accepted: 04/29/2013] [Indexed: 11/22/2022]
|
25
|
Chamling X, Seo S, Bugge K, Searby C, Guo DF, Drack AV, Rahmouni K, Sheffield VC. Ectopic expression of human BBS4 can rescue Bardet-Biedl syndrome phenotypes in Bbs4 null mice. PLoS One 2013; 8:e59101. [PMID: 23554981 PMCID: PMC3598656 DOI: 10.1371/journal.pone.0059101] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 02/11/2013] [Indexed: 11/18/2022] Open
Abstract
Bardet-Biedl syndrome (BBS) is a genetically heterogeneous autosomal recessive disorder characterized by obesity, retinal degeneration, polydactyly, hypogenitalism and renal defects. Recent findings have associated the etiology of the disease with cilia, and BBS proteins have been implicated in trafficking various ciliary cargo proteins. To date, 17 different genes have been reported for BBS among which BBS1 is the most common cause of the disease followed by BBS10, and BBS4. A murine model of Bbs4 is known to phenocopy most of the human BBS phenotypes, and it is being used as a BBS disease model. To better understand the in vivo localization, cellular function, and interaction of BBS4 with other proteins, we generated a transgenic BBS4 mouse expressing the human BBS4 gene under control of the beta actin promoter. The transgene is expressed in various tissues including brain, eye, testis, heart, kidney, and adipose tissue. These mice were further bred to express the transgene in Bbs4 null mice, and their phenotype was characterized. Here we report that despite tissue specific variable expression of the transgene, human BBS4 was able to complement the deficiency of Bbs4 and rescue all the BBS phenotypes in the Bbs4 null mice. These results provide an encouraging prospective for gene therapy for BBS related phenotypes and potentially for other ciliopathies.
Collapse
Affiliation(s)
- Xitiz Chamling
- Department of Pediatrics, University of Iowa Interdisciplinary Program of Genetics, Iowa City, Iowa, United States of America
| | - Seongjin Seo
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Kevin Bugge
- Department of Pediatrics, University of Iowa Interdisciplinary Program of Genetics, Iowa City, Iowa, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Charles Searby
- Department of Pediatrics, University of Iowa Interdisciplinary Program of Genetics, Iowa City, Iowa, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Deng F. Guo
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Arlene V. Drack
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Kamal Rahmouni
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Val C. Sheffield
- Department of Pediatrics, University of Iowa Interdisciplinary Program of Genetics, Iowa City, Iowa, United States of America
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| |
Collapse
|
26
|
Assessment of the long-term transcriptional activity of a 550-bp-long human β-actin promoter region. Plasmid 2012; 68:195-200. [PMID: 22846724 DOI: 10.1016/j.plasmid.2012.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 07/18/2012] [Indexed: 01/25/2023]
Abstract
β-actin (ACTB) is one of the genes expressed most abundantly and ubiquitously in human non-muscular tissues. Here, we investigated the long-term activity of a 550-bp-long human ACTB promoter region in human cells in comparison with other commonly used constitutive promoters. We first constructed plasmid vectors expressing enhanced green fluorescent protein (GFP) driven by one of the 5 promoters, human ACTB, human elongation factor-1α (EF1α), cytomegalovirus early enhancer/chicken β-actin (CAG), cytomegalovirus (CMV), and herpes simplex virus thymidine kinase, and transfected them into multiple human somatic cell lines. Stable transfectants were maintained for 45 days, and GFP signals from the cells were quantified by fluorescence flow cytometry. GFP signals driven by the human ACTB and the CMV promoters were also compared over time for up to 60 days following transfection. We observed robust, prolonged transcriptional activity with the human ACTB promoter that is comparable to the human EF1α and the CAG promoters and significantly more stable than the CMV promoter.
Collapse
|
27
|
Tamura K, Yokoyama S, Ieda J, Takifuji K, Hotta T, Matsuda K, Oku Y, Watanabe T, Nasu T, Kiriyama S, Yamamoto N, Nakamura Y, Shively JE, Yamaue H. Hollow spheroids beyond the invasive margin indicate the malignant potential of colorectal cancer. BMJ Open 2011; 1:e000179. [PMID: 22021784 PMCID: PMC3191579 DOI: 10.1136/bmjopen-2011-000179] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Objective Tumour budding formed by histologically undifferentiated cancer cells beyond the border of the tumour margin is associated with lymph node metastasis. However, hollow tumour nests, a possible histologically advanced phenotype of tumour budding, have not been discussed. We examined whether hollow spheroids exist beyond the border of the invasive margin and are associated with metastasis and prognosis. Moreover, we suggest that carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) isoform balance is associated with hollow spheroid formation. Methods Immunohistochemical analyses with CEACAM1 and M30 as an apoptosis marker were performed to examine the importance of hollow spheroid CEACAM1 expression and central cell apoptosis in hollow spheroid formation. The correlations between the presence of hollow spheroids beyond the invasive margin and the clinicopathological characteristics of 314 patients with colorectal cancer were retrospectively evaluated. A 3D culture with colorectal cancer cells transfected with CEACAM1 cDNA or shRNA was used to determine whether CEACAM1 isoform balance controls colorectal hollow spheroid formation. Results Hollow spheroid formation accompanying central cell apoptosis was confirmed by M30 staining and serial section with CEACAM1 staining. Of the 314 patients, 96 (30.4%) were classified as having hollow spheroids. The presence of hollow spheroids is an independent risk factor for metastases and shorter survival. In 3D culture, CEACAM1 isoform balance modulated hollow spheroid formation of colorectal cancer cells. Conclusions Hollow spheroid formation beyond the border of the tumour margin in colorectal cancer is more important than tumour budding for the prediction of malignant potential.
Collapse
Affiliation(s)
- Koichi Tamura
- Second Department of Surgery, Wakayama Medical University, School of Medicine, Wakayama, Japan
| | - Shozo Yokoyama
- Second Department of Surgery, Wakayama Medical University, School of Medicine, Wakayama, Japan
| | - Junji Ieda
- Second Department of Surgery, Wakayama Medical University, School of Medicine, Wakayama, Japan
| | - Katsunari Takifuji
- Second Department of Surgery, Wakayama Medical University, School of Medicine, Wakayama, Japan
| | - Tsukasa Hotta
- Second Department of Surgery, Wakayama Medical University, School of Medicine, Wakayama, Japan
| | - Kenji Matsuda
- Second Department of Surgery, Wakayama Medical University, School of Medicine, Wakayama, Japan
| | - Yoshimasa Oku
- Second Department of Surgery, Wakayama Medical University, School of Medicine, Wakayama, Japan
| | - Takashi Watanabe
- Second Department of Surgery, Wakayama Medical University, School of Medicine, Wakayama, Japan
| | - Toru Nasu
- Second Department of Surgery, Wakayama Medical University, School of Medicine, Wakayama, Japan
| | - Shigehisa Kiriyama
- Second Department of Surgery, Wakayama Medical University, School of Medicine, Wakayama, Japan
| | - Naoyuki Yamamoto
- Second Department of Surgery, Wakayama Medical University, School of Medicine, Wakayama, Japan
| | - Yasushi Nakamura
- Department of Clinical Laboratory Medicine, Wakayama Medical University, School of Medicine, Wakayama, Japan
| | - John E Shively
- Department of Immunology, Beckman Research Institute at City of Hope, Duarte, California, USA
| | - Hiroki Yamaue
- Second Department of Surgery, Wakayama Medical University, School of Medicine, Wakayama, Japan
| |
Collapse
|
28
|
Ieda J, Yokoyama S, Tamura K, Takifuji K, Hotta T, Matsuda K, Oku Y, Nasu T, Kiriyama S, Yamamoto N, Nakamura Y, Shively JE, Yamaue H. Re-expression of CEACAM1 long cytoplasmic domain isoform is associated with invasion and migration of colorectal cancer. Int J Cancer 2011; 129:1351-61. [DOI: 10.1002/ijc.26072] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 02/15/2011] [Indexed: 11/10/2022]
|
29
|
Purcell SH, Aerni-Flessner LB, Willcockson AR, Diggs-Andrews KA, Fisher SJ, Moley KH. Improved insulin sensitivity by GLUT12 overexpression in mice. Diabetes 2011; 60:1478-82. [PMID: 21441439 PMCID: PMC3292321 DOI: 10.2337/db11-0033] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Evidence suggests that insulin-sensitive glucose transporters (GLUTs) other than GLUT4 may exist. To investigate whether GLUT12 may represent another insulin-sensitive GLUT, transgenic (TG) mice that overexpress GLUT12 were characterized. RESEARCH DESIGN AND METHODS TG mice that overexpressed GLUT12 under a β-actin promoter were generated. Glucose metabolism in TG and wild-type control mice was compared using glucose and insulin tolerance tests and hyperinsulinemic-euglycemic clamps. In addition, basal and insulin-stimulated glucose clearance rates into insulin-sensitive peripheral tissues were measured using [(3)H]-2-deoxy-D-glucose. RESULTS GLUT12 was overexpressed by 40-75% in TG compared with wild-type mice in insulin-sensitive tissues with no change in GLUT4 content. Body weight and fasting blood glucose did not differ between wild-type and TG mice; however, insulin concentrations were reduced in TG mice. Enhanced oral glucose tolerance was noted in TG mice by a reduced blood glucose excursion compared with wild-type mice (P < 0.05). Enhanced insulin sensitivity was noted by a greater decrease in blood glucose in TG mice during insulin tolerance testing. Hyperinsulinemic-euglycemic clamps confirmed enhanced insulin sensitivity in GLUT12-overexpressing mice (P < 0.01). Tissues of TG mice exhibited normal basal glucose clearance rates; however, under insulin-stimulated conditions, glucose clearance was significantly increased (P < 0.01) in tissues of TG mice. CONCLUSIONS Increased expression of GLUT12 results in improved whole-body insulin sensitivity mediated by an increased glucose clearance rate in insulin-responsive tissues under insulin-stimulated, but not basal, conditions. These findings provide evidence that GLUT12 represents a novel, second insulin-sensitive GLUT.
Collapse
Affiliation(s)
- Scott H. Purcell
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, Missouri
| | - Lauren B. Aerni-Flessner
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, Missouri
| | - Alexandra R. Willcockson
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, Missouri
| | - Kelly A. Diggs-Andrews
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Simon J. Fisher
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Kelle H. Moley
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, Missouri
- Corresponding author: Kelle H. Moley,
| |
Collapse
|
30
|
Xiao X, Li M, Wang K, Qin Q, Chen X. Characterization of large yellow croaker (Pseudosciaena crocea) β-actin promoter supports β-actin gene as an internal control for gene expression modulation and its potential application in transgenic studies in fish. FISH & SHELLFISH IMMUNOLOGY 2011; 30:1072-1079. [PMID: 21316460 DOI: 10.1016/j.fsi.2011.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 01/31/2011] [Accepted: 02/06/2011] [Indexed: 05/30/2023]
Abstract
As a housekeeping gene, β-actin is one of the most commonly used reference gene and its promoter is widely used in transgenic studies in mammals and fish. In this study, we used genomic walker technology to clone the β-actin gene (Lycβ-actin) promoter sequence from large yellow croaker, an economically important marine fish in China. The Lycβ-actin promoter region spans 3350 nucleotides (nt) and contains several transcription factor binding sites and a conserved enhancer motif (ATGGTAATAA) in the first intron. A promoter activity assay showed that this promoter region can drive enhanced green fluorescent protein (EGFP) gene expression in the fish cell line, EPC. Luciferase activity analysis demonstrated that the activity of the Lycβ-actin promoter is not affected by poly(I:C) or lipopolysaccharide (LPS) stimulation. Absolute real-time PCR analysis of various tissues revealed that Lycβ-actin expression levels are not significantly altered by poly(I:C) or inactivated trivalent bacterial vaccine (P > 0.05). These results suggest that β-actin can be used as a suitable internal control for gene expression modulation in response to immune stimulations in large yellow croaker. In vivo transgenic experiments showed that the Lycβ-actin promoter region can drive efficient EGFP expression in large yellow croaker fries or fertilized zebrafish eggs, supporting its potential application in transgenic studies in fish.
Collapse
Affiliation(s)
- Xiaoqiang Xiao
- School of Life Sciences, Zhongshan University, Guangzhou 510275, PR China
| | | | | | | | | |
Collapse
|
31
|
Choi T, Ferris ST, Matsumoto N, Poursine-Laurent J, Yokoyama WM. Ly49-dependent NK cell licensing and effector inhibition involve the same interaction site on MHC ligands. THE JOURNAL OF IMMUNOLOGY 2011; 186:3911-7. [PMID: 21335486 DOI: 10.4049/jimmunol.1004168] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NK cells become functionally competent to be triggered by their activation receptors through the interaction of NK cell inhibitory receptors with their cognate self-MHC ligands, an MHC-dependent educational process termed "licensing." For example, Ly49A(+) NK cells become licensed by the interaction of the Ly49A inhibitory receptor with its MHC class I ligand, H2D(d), whereas Ly49C(+) NK cells are licensed by H2K(b). Structural studies indicate that the Ly49A inhibitory receptor may interact with two sites, termed site 1 and site 2, on its H2D(d) ligand. Site 2 encompasses the α1/α2/α3 domains of the H2D(d) H chain and β(2)-microglobulin (β2m) and is the functional binding site for Ly49A in effector inhibition. Ly49C functionally interacts with a similar site in H2K(b). However, it is currently unknown whether this same site is involved in Ly49A- or Ly49C-dependent licensing. In this study, we produced transgenic C57BL/6 mice expressing wild-type or site 2 mutant H2D(d) molecules and studied whether Ly49A(+) NK cells are licensed. We also investigated Ly49A- and Ly49C-dependent NK licensing in murine β2m-deficient mice that are transgenic for human β2m, which has species-specific amino acid substitutions in β2m. Our data from these transgenic mice indicate that site 2 on self-MHC is critical for Ly49A- and Ly49C-dependent NK cell licensing. Thus, NK cell licensing through Ly49 involves specific interactions with its MHC ligand that are similar to those involved in effector inhibition.
Collapse
Affiliation(s)
- Taewoong Choi
- Rheumatology Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
32
|
Hwang-Verslues WW, Chang PH, Wei PC, Yang CY, Huang CK, Kuo WH, Shew JY, Chang KJ, Lee EYHP, Lee WH. miR-495 is upregulated by E12/E47 in breast cancer stem cells, and promotes oncogenesis and hypoxia resistance via downregulation of E-cadherin and REDD1. Oncogene 2011; 30:2463-74. [PMID: 21258409 DOI: 10.1038/onc.2010.618] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are involved in tumorigenecity by regulating specific oncogenes and tumor suppressor genes, and their roles in breast cancer stem cells (BCSCs) are becoming apparent. Distinct from the CD44(+)/CD24(-/low) sub-population, we have isolated a novel PROCR(+)/ESA(+) BCSC sub-population. To explore miRNA-regulatory mechanisms in this sub-population, we performed miRNA expression profiling and found miR-495 as the most highly upegulated miRNA in PROCR(+)/ESA(+) cells. Coincidently, high upregulation of miR-495 was also found in CD44(+)/CD24(-/low) BCSCs, reflecting its potential importance in maintaining common BCSC properties. Ectopic expression of miR-495 in breast cancer cells promoted their colony formation in vitro and tumorigenesis in mice. miR-495 directly suppressed E-cadherin expression to promote cell invasion and inhibited REDD1 expression to enhance cell proliferation in hypoxia through post-transcriptional mechanism. miR-495 expression was directly modulated by transcription factor E12/E47, which itself is highly expressed in BCSCs. These findings reveal a novel regulatory pathway centered on miR-495 that contributes to BCSC properties and hypoxia resistance.
Collapse
|
33
|
Hu Q, Fu H, Song H, Ren T, Li L, Ye L, Liu T, Dong S. Low-level lead exposure attenuates the expression of three major isoforms of neural cell adhesion molecule. Neurotoxicology 2010; 32:255-60. [PMID: 21182862 DOI: 10.1016/j.neuro.2010.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 12/10/2010] [Accepted: 12/11/2010] [Indexed: 10/18/2022]
Abstract
Toxic lead (Pb) exposure poses serious risks to human health, especially to children at developmental stages, even at low exposure levels. Neural cell adhesion molecule (NCAM) is considered to be a potential early target in the neurotoxicity of Pb due to its role in cell adhesion, neuronal migration, synaptic plasticity, and learning and memory. However, the effect of low-level Pb exposure on the specific expression of NCAM isoforms has not been reported. In the present study, we found that Pb could concentration-dependently (1-100 nM) inhibit the expression of three major NCAM isoforms (NCAM-180, -140, and -120) in primary cultured hippocampal neurons. Furthermore, it was verified that levels of all three major isoforms of NCAM were reduced by Pb exposure in human embryonic kidney (HEK)-293 cells transiently transfected with NCAM-120, -140, or -180 isoform cDNA constructs. In addition, low-level Pb exposure delayed the neurite outgrowth and reduced the survival rate of cultured hippocampal neurons at different time-points. Together, our results demonstrate that developmental low-level Pb exposure can attenuate the expression of all three major NCAM isoforms, which may contribute to the observed Pb-mediated neurotoxicity.
Collapse
Affiliation(s)
- Qiansheng Hu
- Department of Preventive Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Wang Y, Heilig K, Saunders T, Minto A, Deb DK, Chang A, Brosius F, Monteiro C, Heilig CW. Transgenic overexpression of GLUT1 in mouse glomeruli produces renal disease resembling diabetic glomerulosclerosis. Am J Physiol Renal Physiol 2010; 299:F99-F111. [PMID: 20375117 DOI: 10.1152/ajprenal.00466.2009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous work identified an important role for hyperglycemia in diabetic nephropathy (The Diabetes Control and Complications Trial Research Group. N Engl J Med 329: 977-986, 1993; UK Prospective Diabetes Study Group. Lancet 352: 837-853, 1998), and increased glomerular GLUT1 has been implicated. However, the roles of GLUT1 and intracellular glucose have not been determined. Here, we developed transgenic GLUT1-overexpressing mice (GT1S) to characterize the roles of GLUT1 and intracellular glucose in the development of glomerular disease without diabetes. GLUT1 was overexpressed in glomerular mesangial cells (MC) of C57BL6 mice, a line relatively resistant to diabetic nephropathy. Blood pressure, blood glucose, glomerular morphometry, matrix proteins, cell signaling, transcription factors, and selected growth factors were examined. Kidneys of GT1S mice overexpressed GLUT1 in glomerular MCs and small vessels, rather than renal tubules. GT1S mice were neither diabetic nor hypertensive. Glomerular GLUT1, glucose uptake, mean capillary diameter, and mean glomerular volume were all increased in the GT1S mice. Moderately severe glomerulosclerosis (GS) was established by 26 wk of age in GT1S mice, with increased glomerular type IV collagen and fibronectin. Modest increases in glomerular basement membrane thickness and albuminuria were detected with podocyte foot processes largely preserved, in the absence of podocyte GLUT1 overexpression. Activation of glomerular PKC, along with increased transforming growth factor-beta1, VEGFR1, VEGFR2, and VEGF were all detected in glomeruli of GT1S mice, likely contributing to GS. The transcription factor NF-kappaB was also activated. Overexpression of glomerular GLUT1, mimicking the diabetic GLUT1 response, produced numerous features typical of diabetic glomerular disease, without diabetes or hypertension. This suggested GLUT1 may play an important role in the development of diabetic GS.
Collapse
Affiliation(s)
- Youli Wang
- Department of Medicine and Pathology, University of Chicago, Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Mizuguchi M, Asao H, Hara T, Higuchi M, Fujii M, Nakamura M. Transcriptional activation of the interleukin-21 gene and its receptor gene by human T-cell leukemia virus type 1 Tax in human T-cells. J Biol Chem 2009; 284:25501-11. [PMID: 19617351 DOI: 10.1074/jbc.m109.010959] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
At the incipient stages of the development of adult T-cell leukemia, T-cells infected with human T-cell leukemia virus type 1 (HTLV-1) suffer disregulation in cell growth caused by aberrant expression of host genes by the HTLV-1 transactivator protein Tax (Tax1). Tax1-mediated growth promotion is thought to result from, at least in part, up-regulation of genes for growth factors and their receptors that induce T-cell growth. In the present study, we demonstrate that Tax1 transactivates the interleukin-21 (IL-21) and its receptor (IL-21R) genes in human T-cells. Introduction of Tax1 via recombinant adenoviruses induced expression of endogenous IL-21 and IL-21R. Isolated promoters of the IL-21 and IL-21R genes were activated by Tax1 in reporter assays, which further revealed that there were at least two Tax1-responsive elements in either the IL-21 promoter or the IL-21R promoter. Chromatin immunoprecipitation assay and gel mobility shift assay exhibited that the IL-21 promoter elements bound transcription factors AP-1 and NF-kappaB, and the IL-21R promoter elements were associated with AP-1 and interferon regulatory factor. Collectively, Tax1-dependent activation of these transcriptional factors presumably contributes to expression of the IL-21 gene and its receptor gene. The related virus HTLV-2 with Tax2 similar to Tax1 is known not to be pathogenic. Tax2 exhibited little, if any, or no induction of the IL-21 transcription in CD4+ T-cells, in contrast to Tax1. The study suggests insights into cytokine-dependent aberrant growth of HTLV-1-infected T-cells and the molecular basis of different pathogenicity between HTLV-1 and HTLV-2.
Collapse
Affiliation(s)
- Mariko Mizuguchi
- Human Gene Sciences Center, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Burt JM, Nelson TK, Simon AM, Fang JS. Connexin 37 profoundly slows cell cycle progression in rat insulinoma cells. Am J Physiol Cell Physiol 2008; 295:C1103-12. [PMID: 18753315 PMCID: PMC2584977 DOI: 10.1152/ajpcell.299.2008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2008] [Accepted: 08/23/2008] [Indexed: 12/19/2022]
Abstract
In addition to providing a pathway for intercellular communication, the gap junction-forming proteins, connexins, can serve a growth-suppressive function that is both connexin and cell-type specific. To assess its potential growth-suppressive function, we stably introduced connexin 37 (Cx37) into connexin-deficient, tumorigenic rat insulinoma (Rin) cells under the control of an inducible promoter. Proliferation of these iRin37 cells, when induced to express Cx37, was profoundly slowed: cell cycle time increased from 2 to 9 days. Proliferation and cell cycle time of Rin cells expressing Cx40 or Cx43 did not differ from Cx-deficient Rin cells. Cx37 suppressed Rin cell proliferation irrespective of cell density at the time of induced expression and without causing apoptosis. All phases of the cell cycle were prolonged by Cx37 expression, and progression through the G(1)/S checkpoint was delayed, resulting in accumulation of cells at this point. Serum deprivation augmented the effect of Cx37 to accumulate cells in late G(1). Cx43 expression also affected cell cycle progression of Rin cells, but its effects were opposite to Cx37, with decreases in G(1) and increases in S-phase cells. These effects of Cx43 were also augmented by serum deprivation. Cx-deficient Rin cells were unaffected by serum deprivation. Our results indicate that Cx37 expression suppresses cell proliferation by significantly increasing cell cycle time by extending all phases of the cell cycle and accumulating cells at the G(1)/S checkpoint.
Collapse
Affiliation(s)
- Janis M Burt
- Dept. of Physiology, P. O. Box 245051, Univ. of Arizona, Tucson, AZ 85724, USA.
| | | | | | | |
Collapse
|
37
|
Ji A, Shu S, Li M, Bao X, Zou H, Zhang Z. Expression of recombinant rat Neurotrophin-3 in Chinese hamster ovary cells. SCIENCE IN CHINA. SERIES C, LIFE SCIENCES 2008; 42:655-62. [PMID: 18726489 DOI: 10.1007/bf02881584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/1999] [Indexed: 11/29/2022]
Abstract
The CHO cell line stably producing recombinant rat NT-3 was established. The insertion of rNT-3 cDNA into transferred cell gonome was analyzed with Southern blot. The expressed protein was identified by Dot ELISA (enzyme-linked immunosorbent assay) and Western blot. Western blot showed a clear specific band of about 14 ku for NT-3. The mean level of rNT-3 in four NT-3cDNA/CHO cell lines was about 2 100 ng/10(6) cells/48 h determined by EIA. The conditioned-medium (CM) of NT-3cDNA/CHO cells could promote the fiber outgrowth of the dissociated dorsal root ganglion of 8-day-old chick embryos, which shows a dose-response relationship. A half-maximal concentration of the biological activity (EC50) of the recombinant protein was approximately 16.7 ng/mL. The MoAb 3W3 of NT-3 could neutralize the biological activity of the rNT-3.
Collapse
Affiliation(s)
- A Ji
- Zhujiang Hospital, The First Military Medical University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
38
|
Osterloh A, Veit A, Gessner A, Fleischer B, Breloer M. Hsp60-mediated T cell stimulation is independent of TLR4 and IL-12. Int Immunol 2008; 20:433-43. [DOI: 10.1093/intimm/dxn003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
39
|
Malik G, Nagy N, Ho YS, Maulik N, Das DK. RETRACTED: Role of glutaredoxin-1 in cardioprotection: An insight with Glrx1 transgenic and knockout animals. J Mol Cell Cardiol 2008; 44:261-9. [DOI: 10.1016/j.yjmcc.2007.08.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 08/20/2007] [Accepted: 08/28/2007] [Indexed: 10/22/2022]
|
40
|
Roner MR, Steele BG. Features of the mammalian orthoreovirus 3 Dearing l1 single-stranded RNA that direct packaging and serotype restriction. J Gen Virol 2008; 88:3401-3412. [PMID: 18024910 DOI: 10.1099/vir.0.83209-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A series of recombinant mammalian orthoreoviruses (mammalian orthoreovirus 3 Dearing, MRV-3De) were generated that express an MRV-3De lambda3-CAT fusion protein. Individual viruses contain L1CAT double-stranded (ds) RNAs that range in length from a minimum of 1020 bp to 4616 bp. The engineered dsRNAs were generated from in vitro-transcribed single-stranded (ss) RNAs and incorporated into infectious virus particles by using reverse genetics. In addition to defining the sequences required for these ssRNAs to be 'identified' as l1 ssRNAs, the individual nucleotides in these regions that 'mark' each ssRNA as originating from mammalian orthoreovirus 1 Lang (MRV-1La), mammalian orthoreovirus 2 D5/Jones (MRV-2Jo) or MRV-3De have been identified. A C at position 81 in the MRV-1La 5' 129 nt sequence was able to be replaced with a U, as normally present in MRV-3De; this toggled the activity of the MRV-1La ssRNA to that of an MRV-3De 5' l1. RNA secondary-structure predictions for the 5' 129 nt of both the biologically active MRV-3De l1 ssRNA and the U81-MRV-3De-restored MRV-1La 5' ssRNA predicted a common structure.
Collapse
Affiliation(s)
- Michael R Roner
- Department of Biology, The University of Texas Arlington, Arlington, TX 76019, USA
| | - Bradley G Steele
- Department of Biology, The University of Texas Arlington, Arlington, TX 76019, USA
| |
Collapse
|
41
|
Alexopoulou AN, Couchman JR, Whiteford JR. The CMV early enhancer/chicken beta actin (CAG) promoter can be used to drive transgene expression during the differentiation of murine embryonic stem cells into vascular progenitors. BMC Cell Biol 2008; 9:2. [PMID: 18190688 PMCID: PMC2254385 DOI: 10.1186/1471-2121-9-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Accepted: 01/11/2008] [Indexed: 11/13/2022] Open
Abstract
Background Mouse embryonic stem cells cultured in vitro have the ability to differentiate into cells of the three germ layers as well as germ cells. The differentiation mimics early developmental events, including vasculogenesis and early angiogenesis and several differentiation systems are being used to identify factors that are important during the formation of the vascular system. Embryonic stem cells are difficult to transfect, while downregulation of promoter activity upon selection of stable transfectants has been reported, rendering the study of proteins by overexpression difficult. Results CCE mouse embryonic stem cells were differentiated on collagen type IV for 4–5 days, Flk1+ mesodermal cells were sorted and replated either on collagen type IV in the presence of VEGFA to give rise to endothelial cells and smooth muscle cells or in collagen type I gels for the formation of vascular tubes. The activity of the CMV and β-actin promoters was downregulated during selection of stable transfectants and during differentiation to the Flk1 stage, while the CMV immediate enhancer/β-actin promoter in the pCAGIPuro-GFP vector led to 100% of stably transfected undifferentiated and differentiated cells expressing GFP. To further test this system we expressed syndecan-2 and -4 in these cells and demonstrated high levels of transgene expression in both undifferentiated cells and cells differentiated to the Flk1 stage. Conclusion Vectors containing the CAG promoter offer a valuable tool for the long term expression of transgenes during stem cell differentiation towards mesoderm, while the CMV and β-actin promoters lead to very poor transgene expression during this process.
Collapse
Affiliation(s)
- Annika N Alexopoulou
- National Heart and Lung Institute, Sir Alexander Fleming Building, Faculty of Medicine, Imperial College London SW7 2AZ, UK.
| | | | | |
Collapse
|
42
|
Povlsen GK, Berezin V, Bock E. Neural cell adhesion molecule-180-mediated homophilic binding induces epidermal growth factor receptor (EGFR) down-regulation and uncouples the inhibitory function of EGFR in neurite outgrowth. J Neurochem 2007; 104:624-39. [PMID: 17995934 DOI: 10.1111/j.1471-4159.2007.05033.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The neural cell adhesion molecule (NCAM) plays important roles in neuronal development, regeneration, and synaptic plasticity. NCAM homophilic binding mediates cell adhesion and induces intracellular signals, in which the fibroblast growth factor receptor plays a prominent role. Recent studies on axon guidance in Drosophila suggest that NCAM also regulates the epidermal growth factor receptor (EGFR) (Molecular and Cellular Neuroscience, 28, 2005, 141). A possible interaction between NCAM and EGFR in mammalian cells has not been investigated. The present study demonstrates for the first time a functional interaction between NCAM and EGFR in mammalian cells and investigates the molecular mechanisms underlying this interaction. First, NCAM and EGFR are shown to play opposite roles in neurite outgrowth regulation in cerebellar granular neurons. The data presented indicate that negative regulation of EGFR is one of the mechanisms underlying the neuritogenic effect of NCAM. Second, it is demonstrated that expression of the NCAM-180 isoform induces EGFR down-regulation in transfected cells and promotes EGFR down-regulation induced by EGF stimulation. It is demonstrated that the mechanism underlying this NCAM-180-induced EGFR down-regulation involves increased EGFR ubiquitination and lysosomal EGFR degradation. Furthermore, NCAM-180-mediated EGFR down-regulation requires NCAM homophilic binding and interactions of the cytoplasmic domain of NCAM-180 with intracellular interaction partners, but does not require NCAM-mediated fibroblast growth factor receptor activation.
Collapse
|
43
|
Lockyer HM, Tran E, Nelson BH. STAT5 Is Essential for Akt/p70S6 Kinase Activity during IL-2-Induced Lymphocyte Proliferation. THE JOURNAL OF IMMUNOLOGY 2007; 179:5301-8. [PMID: 17911616 DOI: 10.4049/jimmunol.179.8.5301] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-2R activates two distinct signaling pathways mediated by the adaptor protein Shc and the transcription factor STAT5. Prior mutagenesis studies of the IL-2R have indicated that the Shc and STAT5 pathways are redundant in the ability to induce lymphocyte proliferation. Yet paradoxically, T cells from STAT5-deficient mice fail to proliferate in response to IL-2, suggesting that the Shc pathway is unable to promote mitogenesis in the genetic absence of STAT5. Here we show in the murine lymphocyte cell line Ba/F3 that low levels of STAT5 activity are essential for Shc signaling. In the absence of STAT5 activity, Shc was unable to sustain activation of the Akt/p70S6 kinase pathway or promote lymphocyte proliferation and viability. Restoring STAT5 activity via a heterologous receptor rescued Shc-induced Akt/p70S6 kinase activity and cell proliferation with kinetics consistent with a transcriptional mechanism. Thus, STAT5 appears to regulate the expression of one or more unidentified components of the Akt pathway. Our results not only explain the severe proliferative defect in STAT5-deficient T cells but also provide mechanistic insight into the oncogenic properties of STAT5 in various leukemias and lymphomas.
Collapse
Affiliation(s)
- Heather M Lockyer
- British Columbia Cancer Agency, Trev and Joyce Deeley Research Centre, Victoria, Canada
| | | | | |
Collapse
|
44
|
Duquerroy S, Stura EA, Bressanelli S, Fabiane SM, Vaney MC, Beale D, Hamon M, Casali P, Rey FA, Sutton BJ, Taussig MJ. Crystal structure of a human autoimmune complex between IgM rheumatoid factor RF61 and IgG1 Fc reveals a novel epitope and evidence for affinity maturation. J Mol Biol 2007; 368:1321-31. [PMID: 17395205 PMCID: PMC4625532 DOI: 10.1016/j.jmb.2007.02.085] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 02/19/2007] [Accepted: 02/21/2007] [Indexed: 01/07/2023]
Abstract
Rheumatoid factors (RF) are autoantibodies that recognize epitopes in the Fc region of immunoglobulin (Ig) G and that correlate with the clinical severity of rheumatoid arthritis (RA). Here we report the X-ray crystallographic structure, at 3 A resolution, of a complex between the Fc region of human IgG1 and the Fab fragment of a monoclonal IgM RF (RF61), derived from an RA patient and with a relatively high affinity for IgG Fc. In the complex, two Fab fragments bind to each Fc at epitopes close to the C terminus, and each epitope comprises residues from both Cgamma3 domains. A central role in the unusually hydrophilic epitope is played by the side-chain of Arg355, accounting for the subclass specificity of RF61, which recognizes IgG1,-2, and -3 in preference to IgG4, in which the corresponding residue is Gln355. Compared with a previously determined complex of a lower affinity RF (RF-AN) bound to IgG4 Fc, in which only residues at the very edge of the antibody combining site were involved in binding, the epitope bound by RF61 is centered in classic fashion on the axis of the V(H):V(L) beta-barrel. The complementarity determining region-H3 loop plays a key role, forming a pocket in which Arg355 is bound by two salt-bridges. The antibody contacts also involve two somatically mutated V(H) residues, reinforcing the suggestion of a process of antigen-driven maturation and selection for IgG Fc during the generation of this RF autoantibody.
Collapse
Affiliation(s)
- Stephane Duquerroy
- Virologie Moléculaire et Structurale, CNRS UMR 2472-INRA UMR 1157, 91198 Gif-sur-Yvette, France
- Unité de Virologie Structurale and URA 3015 CNRS, Département de Virologie, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France
- Université Paris-Sud, Orsay Cedex, F-91405, France
| | - Enrico A. Stura
- Département d'Ingénierie et d'Études des Protéines, CEA de Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Stéphane Bressanelli
- Virologie Moléculaire et Structurale, CNRS UMR 2472-INRA UMR 1157, 91198 Gif-sur-Yvette, France
| | - Stella M. Fabiane
- The Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Marie C. Vaney
- Virologie Moléculaire et Structurale, CNRS UMR 2472-INRA UMR 1157, 91198 Gif-sur-Yvette, France
| | - Dennis Beale
- Technology Research Group, The Babraham Institute, Cambridge CB2 4AT, UK
| | - Maureen Hamon
- Technology Research Group, The Babraham Institute, Cambridge CB2 4AT, UK
| | - Paolo Casali
- Center for Immunology, School of Biological Sciences and School of Medicine, University of California, Irvine, CA 92657, USA
| | - Felix A. Rey
- Virologie Moléculaire et Structurale, CNRS UMR 2472-INRA UMR 1157, 91198 Gif-sur-Yvette, France
- Unité de Virologie Structurale and URA 3015 CNRS, Département de Virologie, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Brian J. Sutton
- The Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
- corresponding author:
| | - Michael J. Taussig
- Technology Research Group, The Babraham Institute, Cambridge CB2 4AT, UK
| |
Collapse
|
45
|
Chen CJ, Kirshner J, Sherman MA, Hu W, Nguyen T, Shively JE. Mutation Analysis of the Short Cytoplasmic Domain of the Cell-Cell Adhesion Molecule CEACAM1 Identifies Residues That Orchestrate Actin Binding and Lumen Formation. J Biol Chem 2007; 282:5749-60. [PMID: 17192268 DOI: 10.1074/jbc.m610903200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
CEACAM1-4S (carcinoembryonic antigen cell adhesion molecule 1, with 4 ectodomains and a short, 12-14 amino acid cytoplasmic domain) mediates lumen formation via an apoptotic and cytoskeletal reorganization mechanism when mammary epithelial cells are grown in a three-dimensional model of mammary morphogenesis. We show by quantitative yeast two-hybrid, BIAcore, NMR HSQC and STD, and confocal analyses that amino acids phenylalanine (Phe(454)) and lysine (Lys(456)) are key residues that interact with actin orchestrating the cytoskeletal reorganization. A CEACAM1 membrane model based on vitamin D-binding protein that predicts an interaction of Phe(454) at subdomain 3 of actin was supported by inhibition of binding of actin to vitamin D-binding protein by the cytoplasmic domain peptide. We also show that residues Thr(457) and/or Ser(459) are phosphorylated in CEACAM1-transfected cells grown in three-dimensional culture and that mutation analysis of these residues (T457A/S459A) or F454A blocks lumen formation. These studies demonstrate that a short cytoplasmic domain membrane receptor can directly mediate substantial intracellular signaling.
Collapse
Affiliation(s)
- Charng-Jui Chen
- Divisions of Immunology, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | | | | | | | | | | |
Collapse
|
46
|
Bagher P, Jiao J, Owen Smith C, Cota CD, Gunn TM. Characterization of Mahogunin Ring Finger-1 expression in mice. ACTA ACUST UNITED AC 2007; 19:635-43. [PMID: 17083490 DOI: 10.1111/j.1600-0749.2006.00340.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mutations in mouse Mahogunin Ring Finger-1 (Mgrn1) were first recognized for their effect on agouti-mediated pigment-type switching. Mgrn1 null mutants are completely black and develop spongiform degeneration of the brain. Mgrn1 hypomorphs have dark fur but do not develop neurodegeneration. We characterized a new Mgrn1 hypomorphic allele caused by a gene-trap insertion. Mice homozygous for this mutation are slightly darker than non-mutant animals. They show reduced overall expression of Mgrn1 and two of the four normal Mgrn1 isoforms are replaced by beta-GEO fusion proteins that differ from the normal proteins at their carboxy termini. To investigate the role of different Mgrn1 isoforms in pigment-type switching, we used quantitative relative reverse transcriptase polymerase chain reaction to examine their expression in the skin of Mgrn1 mutant and control mice. Most Mgrn1 mutants produce little or no normal Mgrn1 in the skin. Mgrn1 null mutant mice overexpressing isoform I or III, which are normally absent or weakly expressed in adult skin, had normal agouti-banded hairs. Our results indicate that reduced levels of MGRN1 cause the pigmentation phenotypes of Mgrn1 mutant mice and that there are no significant differences in the function of the four MGRN1 isoforms in pigment-type switching.
Collapse
Affiliation(s)
- Pooneh Bagher
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | | | | | | | | |
Collapse
|
47
|
Osterloh A, Kalinke U, Weiss S, Fleischer B, Breloer M. Synergistic and differential modulation of immune responses by Hsp60 and lipopolysaccharide. J Biol Chem 2006; 282:4669-4680. [PMID: 17164250 DOI: 10.1074/jbc.m608666200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of professional antigen-presenting cells (APC) is a crucial step in the initiation of an efficient immune response. In this study we show that Hsp60 mediates immune stimulation by different mechanisms, dependent and independent of lipopolysaccharide (LPS). We have demonstrated earlier that both, Hsp60 and LPS, increase antigen-specific interferon (IFN) gamma release in T cells. Here we show that in contrast to LPS Hsp60 induces IFNalpha production in professional APC. Neutralization of IFNalpha as well as the absence of functional IFNalphabeta receptor on APC and T cells interfered with Hsp60-mediated IFNgamma secretion in antigen-dependent T cell activation, strongly suggesting that IFNalpha represents one factor contributing to Hsp60-specific immune stimulation. On the other hand, we show that Hsp60 bound to the cell surface of APC colocalizes with the LPS co-receptor CD14 and LPS binding sites. Hsp60 specifically binds bacterial LPS and both molecules synergistically enhanced IL-12p40 production in APC and IFNgamma release in antigen-dependent T cell activation. This effect was Hsp60-specific and dependent on LPS-binding by Hsp60. Furthermore, we show that Hsp60 exclusively binds to macrophages and DC but not to T or B lymphocytes and that both, T cell stimulation by Hsp60 as well as Hsp60/LPS complexes, strictly depends on the presence of professional APC and is not mediated by B cells. Taken together, our data support an extension of the concept of Hsp60 as an endogenous danger signal: besides its function as a classical danger signal indicating unplanned tissue destruction to the innate immune system, in the incident of bacterial infection extracellular Hsp60 may bind LPS and facilitate microbe recognition by lowering the threshold of pathogen-associated molecular pattern (PAMP) detection and enhancing Toll-like receptor (TLR) signaling.
Collapse
Affiliation(s)
- Anke Osterloh
- Department of Immunology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany.
| | - Ulrich Kalinke
- Department of Immunology, Paul Ehrlich Institute, 63225 Langen, Germany, and the
| | - Siegfried Weiss
- Department of Molecular Immunology, HZI, Helmholtz Center for Infection Research, 38124 Braunschweig, Germany
| | - Bernhard Fleischer
- Department of Immunology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Minka Breloer
- Department of Immunology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| |
Collapse
|
48
|
Inesi G, Lewis D, Nikic D, Hussain A, Kirtley ME. Long-range intramolecular linked functions in the calcium transport ATPase. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 65:185-215. [PMID: 1533299 DOI: 10.1002/9780470123119.ch5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- G Inesi
- Department of Biological Chemistry, School of Medicine, University of Maryland, Baltimore, Maryland
| | | | | | | | | |
Collapse
|
49
|
Liszewski MK, Leung MK, Schraml B, Goodship TH, Atkinson JP. Modeling how CD46 deficiency predisposes to atypical hemolytic uremic syndrome. Mol Immunol 2006; 44:1559-68. [PMID: 17027083 PMCID: PMC1828070 DOI: 10.1016/j.molimm.2006.08.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 08/17/2006] [Accepted: 08/22/2006] [Indexed: 12/27/2022]
Abstract
Mutations in complement regulatory proteins predispose to the development of aHUS. Approximately 50% of patients bear a mutation in one of three complement control proteins, factor H, factor I, or membrane cofactor protein (MCP; CD46). Another membrane regulator that is closely related to MCP, decay accelerating factor (DAF; CD55) thus far has shown no association with aHUS and continues to be investigated. The goal of this study was to compare the regulatory profile of MCP and DAF and to assess how alterations in MCP predispose to complement dysregulation. We employed a model system of complement activation on Chinese hamster ovary (CHO) cell transfectants. The four regularly expressed isoforms of MCP and DAF inhibited C3b deposition by the alternative pathway. DAF, but not MCP, inhibited the classical pathway. Most patients with MCP-aHUS are heterozygous and express only 25-50% of the wild-type protein. We, therefore, analyzed the effect of reduced levels of wild-type MCP and found that cells with lowered expression levels were less efficient in inhibiting alternative pathway activation. Further, a dysfunctional MCP mutant, expressed at normal levels and identified in five patients with aHUS (S206P), failed to protect against C3b amplification on CHO cells, even if expression levels were increased 10-fold. Our results add new information relative to the necessity for appropriate expression levels of MCP and further implicate the alternative pathway in disease processes such as aHUS.
Collapse
Affiliation(s)
- M. Kathryn Liszewski
- Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8045, St. Louis, MO 63110 USA
| | - Marilyn K. Leung
- Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8045, St. Louis, MO 63110 USA
| | - Barbara Schraml
- Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8045, St. Louis, MO 63110 USA
| | | | - John P. Atkinson
- Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8045, St. Louis, MO 63110 USA
- *Corresponding author. Tel.: 314-362-8391; fax 314-362-1366; e-mail address:
| |
Collapse
|
50
|
Localizing the reovirus packaging signals using an engineered m1 and s2 ssRNA. Virology 2006; 358:89-97. [PMID: 16987539 DOI: 10.1016/j.virol.2006.08.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 06/21/2006] [Accepted: 08/14/2006] [Indexed: 11/21/2022]
Abstract
Using in vitro engineered and transcribed reovirus m1 and s2 ssRNAs, we demonstrate that the nucleotides used to identify these ssRNAs are localized to the 5' and not the 3' termini. To demonstrate this, we used our previously reported S2-CAT reovirus and we report the creation of an engineered M1-CAT reovirus. The M1 gene of this virus retains 124 nucleotides from the wild type M1 gene preceding the CAT gene and 172 nucleotides from the wild type gene following the CAT gene. The engineered M1-CAT ssRNA is 1048 nucleotides in length, much shorter than the wild type M1 at 2304 nucleotides. We have used a set of chimeric s2.m1 ssRNAs to localize the packaging signals within these RNAs. By packaging signals we mean that the presence of these signals in engineered ssRNAs results in these ssRNAs being replicated to dsRNA and packaged into progeny virus. An engineered ssRNA with a 5' sequence identical with the wild type s2 ssRNA, supported by a 3' sequence from either the m1 or s2 ssRNA, is incorporated into a virus as an S2 dsRNA. Likewise, an ssRNA with an m1 5' end is incorporated as an M1 dsRNA.
Collapse
|