1
|
Zahm AM, Owens WS, Himes SR, Fallon BS, Rondem KE, Gormick AN, Bloom JS, Kosuri S, Chan H, English JG. A massively parallel reporter assay library to screen short synthetic promoters in mammalian cells. Nat Commun 2024; 15:10353. [PMID: 39609378 PMCID: PMC11604768 DOI: 10.1038/s41467-024-54502-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/11/2024] [Indexed: 11/30/2024] Open
Abstract
Cellular responses to stimuli underpin discoveries in drug development, synthetic biology, and general life sciences. We introduce a library comprising 6144 synthetic promoters, each shorter than 250 bp, designed as transcriptional readouts of cellular stimulus responses in massively parallel reporter assay format. This library facilitates precise detection and amplification of transcriptional activity from our promoters, enabling the systematic development of tunable reporters with dynamic ranges of 50-100 fold. Our library proved functional in numerous cell lines and responsive to a variety of stimuli, including metabolites, mitogens, toxins, and pharmaceutical agents, generating robust and scalable reporters effective in screening assays, biomarkers, and synthetic circuits attuned to endogenous cellular activities. Particularly valuable in therapeutic development, our library excels in capturing candidate reporters to signals mediated by drug targets, a feature we illustrate across nine diverse G-protein coupled receptors (GPCRs), critical targets in drug development. We detail how this tool isolates and defines discrete signaling pathways associated with specific GPCRs, elucidating their transcriptional signatures. With its ease of implementation, broad utility, publicly available data, and comprehensive documentation, our library will be beneficial in synthetic biology, cellular engineering, ligand exploration, and drug development.
Collapse
Affiliation(s)
- Adam M Zahm
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | - Samuel R Himes
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Braden S Fallon
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Kathleen E Rondem
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Alexa N Gormick
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Joshua S Bloom
- Octant Inc., Emeryville, CA, USA
- Department of Computational Medicine, University of California, Los Angeles, CA, USA
| | | | | | - Justin G English
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
2
|
Cox JR, Fox A, Lenahan C, Pivnik L, Manion M, Blazeck J. Engineering CREB-activated promoters for adenosine-induced gene expression. Biotechnol J 2024; 19:e2300446. [PMID: 38403442 PMCID: PMC10901447 DOI: 10.1002/biot.202300446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/25/2023] [Accepted: 01/02/2024] [Indexed: 02/27/2024]
Abstract
Accumulation of the ribonucleoside, adenosine (ADO), triggers a cAMP response element binding protein (CREB)-mediated signaling pathway to suppress the function of immune cells in tumors. Here, we describe a collection of CREB-activated promoters that allow for strong and tunable ADO-induced gene expression in human cells. By optimizing number of CREB transcription factor binding sites and altering the core promoter region of CREB-based hybrid promoters, we created synthetic constructs that drive gene expression to higher levels than strong, endogenous mammalian promoters in the presence of ADO. These synthetic promoters are induced up to 47-fold by ADO, with minimal expression in their "off" state. We further determine that our CREB-based promoters are activated by other compounds that act as signaling analogs, and that combinatorial addition of ADO and these compounds has a synergistic impact on gene expression. Surprisingly, we also detail how background ADO degradation caused by the common cell culture media additive, fetal bovine serum (FBS), confounds experiments designed to determine ADO dose-responsiveness. We show that only after long-term heat deactivation of FBS can our synthetic promoters enable gene expression induction at physiologically relevant levels of ADO. Finally, we demonstrate that the strength of a CREB-based promoter is enhanced by incorporating other transcription factor binding sites.
Collapse
Affiliation(s)
- John Robert Cox
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Andrea Fox
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Conor Lenahan
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Liza Pivnik
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Matthew Manion
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - John Blazeck
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Mukherjee S, Sarkar AK, Lahiri A, Sengupta Bandyopadhyay S. Analysis of the interaction of a non-canonical twin half-site of Cyclic AMP-Response Element (CRE) with CRE-binding protein. Biochimie 2023; 211:25-34. [PMID: 36842626 DOI: 10.1016/j.biochi.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/23/2022] [Accepted: 02/17/2023] [Indexed: 02/26/2023]
Abstract
Differential regulation of a gene having either canonical or non-canonical cyclic AMP response element (CRE) in its promoter is primarily accomplished by its interactions with CREB (cAMP-response element binding protein). The present study aims to delineate the mechanism of the CREB-CRE interactions at the Oncostatin-M (osm) promoter by in vitro and in silico approaches. The non-canonical CREosm consists of two half-CREs separated by a short intervening sequence of 9 base pairs. In this study, in vitro binding assays revealed that out of the two CRE half-sites, the right half-CRE was indispensable for binding of CREB, while the left sequence showed weaker binding ability and specificity. Genome-wide modeling and high throughput free energy calculations for the energy-minimized models containing CREB-CREosm revealed that there was no difference in the binding of CREB to the right half of CREosm site when compared to the entire CREosm. These results were in accordance with the in vitro studies, confirming the indispensable role of the right half-CREosm site in stable complex formation with the CREB protein. Additionally, conversion of the right half-CREosm site to a canonical CRE palindrome showed stronger CREB binding, irrespective of the presence or absence of the left CRE sequence. Thus, the present study establishes an interesting insight into the interaction of CREB with a CRE variant located at the far end of a TATA-less promoter of a cytokine-encoding gene, which in turn could be involved in the regulation of transcription under specific conditions.
Collapse
Affiliation(s)
- Srimoyee Mukherjee
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, India
| | - Aditya Kumar Sarkar
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, India
| | - Ansuman Lahiri
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, India
| | - Sumita Sengupta Bandyopadhyay
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, India.
| |
Collapse
|
4
|
Zahm AM, Owens WS, Himes SR, Rondem KE, Fallon BS, Gormick AN, Bloom JS, Kosuri S, Chan H, English JG. Discovery and Validation of Context-Dependent Synthetic Mammalian Promoters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.539703. [PMID: 37214829 PMCID: PMC10197685 DOI: 10.1101/2023.05.11.539703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cellular transcription enables cells to adapt to various stimuli and maintain homeostasis. Transcription factors bind to transcription response elements (TREs) in gene promoters, initiating transcription. Synthetic promoters, derived from natural TREs, can be engineered to control exogenous gene expression using endogenous transcription machinery. This technology has found extensive use in biological research for applications including reporter gene assays, biomarker development, and programming synthetic circuits in living cells. However, a reliable and precise method for selecting minimally-sized synthetic promoters with desired background, amplitude, and stimulation response profiles has been elusive. In this study, we introduce a massively parallel reporter assay library containing 6184 synthetic promoters, each less than 250 bp in length. This comprehensive library allows for rapid identification of promoters with optimal transcriptional output parameters across multiple cell lines and stimuli. We showcase this library's utility to identify promoters activated in unique cell types, and in response to metabolites, mitogens, cellular toxins, and agonism of both aminergic and non-aminergic GPCRs. We further show these promoters can be used in luciferase reporter assays, eliciting 50-100 fold dynamic ranges in response to stimuli. Our platform is effective, easily implemented, and provides a solution for selecting short-length promoters with precise performance for a multitude of applications.
Collapse
Affiliation(s)
- Adam M. Zahm
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | - Samuel R. Himes
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Kathleen E. Rondem
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Braden S. Fallon
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Alexa N. Gormick
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | | | | | - Justin G. English
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
5
|
Chai M, Fan R, Huang Y, Jiang X, Wai MH, Yang Q, Su H, Liu K, Ma S, Chen Z, Wang F, Qin Y, Cai H. GmbZIP152, a Soybean bZIP Transcription Factor, Confers Multiple Biotic and Abiotic Stress Responses in Plant. Int J Mol Sci 2022; 23:ijms231810935. [PMID: 36142886 PMCID: PMC9505269 DOI: 10.3390/ijms231810935] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Soybean is one of the most important food crops in the world. However, with the environmental change in recent years, many environmental factors like drought, salinity, heavy metal, and disease seriously affected the growth and development of soybean, causing substantial economic losses. In this study, we screened a bZIP transcription factor gene, GmbZIP152, which is significantly induced by Sclerotinia sclerotiorum (S. sclerotiorum), phytohormones, salt-, drought-, and heavy metal stresses in soybean. We found that overexpression of GmbZIP152 in Arabidopsis (OE-GmbZIP152) enhances the resistance to S. sclerotiorum and the tolerance of salt, drought, and heavy metal stresses compared to wild-type (WT). The antioxidant enzyme related genes (including AtCAT1, AtSOD, and AtPOD1) and their enzyme activities are induced by S. sclerotiorum, salt, drought, and heavy metal stress in OE-GmbZIP152 compared to WT. Furthermore, we also found that the expression level of biotic- and abiotic-related marker genes (AtLOX6, AtACS6, AtERF1, and AtABI2, etc.) were increased in OE-GmbZIP152 compared to WT under S. sclerotiorum and abiotic stresses. Moreover, we performed a Chromatin immunoprecipitation (ChIP) assay and found that GmbZIP152 could directly bind to promoters of ABA-, JA-, ETH-, and SA-induced biotic- and abiotic-related genes in soybean. Altogether, GmbZIP152 plays an essential role in soybean response to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Mengnan Chai
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rongbin Fan
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Youmei Huang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaohu Jiang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Myat Hnin Wai
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qi Yang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Han Su
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kaichuang Liu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Suzhuo Ma
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhitao Chen
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fengjiao Wang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuan Qin
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
- Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350400, China
- Correspondence: (Y.Q.); (H.C.)
| | - Hanyang Cai
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (Y.Q.); (H.C.)
| |
Collapse
|
6
|
Kozak K, Papierniak-Wygladala A, Palusińska M, Barabasz A, Antosiewicz DM. Regulation and Function of Metal Uptake Transporter NtNRAMP3 in Tobacco. FRONTIERS IN PLANT SCIENCE 2022; 13:867967. [PMID: 35712563 PMCID: PMC9195099 DOI: 10.3389/fpls.2022.867967] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/29/2022] [Indexed: 05/06/2023]
Abstract
Natural resistance-associated macrophage protein (NRAMP) genes encode proteins with low substrate specificity, important for maintaining metal cross homeostasis in the cell. The role of these proteins in tobacco, an important crop plant with wide application in the tobacco industry as well as in phytoremediation of metal-contaminated soils, remains unknown. Here, we identified NtNRAMP3, the closest homologue to NRAMP3 proteins from other plant species, and functionally characterized it. A NtNRAMP3-GFP fusion protein was localized to the plasma membrane in tobacco epidermal cells. Expression of NtNRAMP3 in yeast was able to rescue the growth of Fe and Mn uptake defective Δfet3fet4 and Δsmf1 mutant yeast strains, respectively. Furthermore, NtNRAMP3 expression in wild-type Saccharomyces cerevisiae DY1457 yeast strain increased sensitivity to elevated concentrations of iron (Fe), manganese (Mn), copper (Cu), cobalt (Co), nickel (Ni), and cadmium (Cd). Taken together, these results point to a possible role in the uptake of metals. NtNRAMP3 was expressed in the leaves and to a lesser extent in the roots of tobacco plants. Its expression occurred mainly under control conditions and decreased very sharply in deficiency and excess of the tested metals. GUS-based analysis of the site-specific activity of the NtNRAMP3 promoter showed that it was primarily expressed in the xylem of leaf blades. Overall, our data indicate that the main function of NtNRAMP3 is to maintain cross homeostasis of Fe, Mn, Co, Cu, and Ni (also Cd) in leaves under control conditions by controlling xylem unloading.
Collapse
Affiliation(s)
| | | | | | | | - Danuta Maria Antosiewicz
- Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
7
|
Nagpal G, Chaudhary K, Agrawal P, Raghava GPS. Computer-aided prediction of antigen presenting cell modulators for designing peptide-based vaccine adjuvants. J Transl Med 2018; 16:181. [PMID: 29970096 PMCID: PMC6029051 DOI: 10.1186/s12967-018-1560-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/23/2018] [Indexed: 11/26/2022] Open
Abstract
Background Evidences in literature strongly advocate the potential of immunomodulatory peptides for use as vaccine adjuvants. All the mechanisms of vaccine adjuvants ensuing immunostimulatory effects directly or indirectly stimulate antigen presenting cells (APCs). While numerous methods have been developed in the past for predicting B cell and T-cell epitopes; no method is available for predicting the peptides that can modulate the APCs. Methods We named the peptides that can activate APCs as A-cell epitopes and developed methods for their prediction in this study. A dataset of experimentally validated A-cell epitopes was collected and compiled from various resources. To predict A-cell epitopes, we developed support vector machine-based machine learning models using different sequence-based features. Results A hybrid model developed on a combination of sequence-based features (dipeptide composition and motif occurrence), achieved the highest accuracy of 95.71% with Matthews correlation coefficient (MCC) value of 0.91 on the training dataset. We also evaluated the hybrid models on an independent dataset and achieved a comparable accuracy of 95.00% with MCC 0.90. Conclusion The models developed in this study were implemented in a web-based platform VaxinPAD to predict and design immunomodulatory peptides or A-cell epitopes. This web server available at http://webs.iiitd.edu.in/raghava/vaxinpad/ will facilitate researchers in designing peptide-based vaccine adjuvants. Electronic supplementary material The online version of this article (10.1186/s12967-018-1560-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gandharva Nagpal
- Bioinformatics Centre, Institute of Microbial Technology, Chandigarh, 160036, India
| | - Kumardeep Chaudhary
- Bioinformatics Centre, Institute of Microbial Technology, Chandigarh, 160036, India
| | - Piyush Agrawal
- Bioinformatics Centre, Institute of Microbial Technology, Chandigarh, 160036, India
| | - Gajendra P S Raghava
- Bioinformatics Centre, Institute of Microbial Technology, Chandigarh, 160036, India. .,Centre for Computational Biology, Indraprastha Institute of Information Technology, Okhla Industrial Estate, Phase III, New Delhi, 110020, India.
| |
Collapse
|
8
|
Yang H, Liu J, Dang M, Zhang B, Li H, Meng R, Qu D, Yang Y, Zhao Z. Analysis of β-Galactosidase During Fruit Development and Ripening in Two Different Texture Types of Apple Cultivars. FRONTIERS IN PLANT SCIENCE 2018; 9:539. [PMID: 29740469 PMCID: PMC5928752 DOI: 10.3389/fpls.2018.00539] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 04/06/2018] [Indexed: 05/02/2023]
Abstract
β-galactosidase (β-Gal), one of the cell wall modifying enzymes, plays an important role in fruit ripening and softening. However, its role in apple fruit texture remains unclear. In this study, the role of β-Gal was analyzed in two apple cultivars, 'Fuji' and 'Qinguan,' which are characterized by different fruit texture types, during fruit development and ripening. The firmness and pectin content of the fruits rapidly decreased and were much lower in 'Fuji' than in 'Qinguan' from 105 days after full bloom (DAFB). Transmission electron microscopy showed that the pectin-rich middle lamella was substantially degraded from 105 to 180 DAFB in the two apple cultivars. However, the degradation was more severe in 'Fuji' than in 'Qinguan.' Subcellular localization analysis showed that the Mdβ-Gal1, Mdβ-Gal2, and Mdβ-Gal5 proteins were located in the cell wall. β-Gal activity continuously increased during all fruit developmental stages and was much higher in the mature fruits of 'Fuji' than in those of 'Qinguan,' indicating that pectin was degraded by β-Gal. Consistent with the enzyme activities, expression levels of β-Gal genes (Mdβ-Gal1, Mdβ-Gal2, and Mdβ-Gal5) showed only slight changes from 60 to 105 DAFB but then dramatically increased until fruit ripening, with higher values in 'Fuji' than in 'Qinguan.' Furthermore, we found that activities of deletion derivatives in the Mdβ-Gal2 promoter and transcript level of Mdβ-Gal2 were induced by the treatment with methyl jasmonate (MeJA) and ethylene (ETH) hormones. Two ETH and one MeJA hormone-responsive elements were identified by analyzing the promoter sequence. These results suggest that β-Gals, induced by ETH and MeJA, are involved in different fruit texture types of apple cultivars by influencing the degradation of pectin during the mature fruit stage.
Collapse
Affiliation(s)
- Huijuan Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Junling Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Meile Dang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Bo Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Hongguang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Rui Meng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Dong Qu
- Shaanxi Province Key Laboratory of Bio-Resources, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Yazhou Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Zhengyang Zhao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
- Apple Engineering and Technology Research Center of Shaanxi Province, Northwest A&F University, Yangling, China
| |
Collapse
|
9
|
Yin X, Huang L, Zhang X, Guo C, Wang H, Li Z, Wang X. Expression patterns and promoter characteristics of the Vitis quinquangularis VqSTS36 gene involved in abiotic and biotic stress response. PROTOPLASMA 2017; 254:2247-2261. [PMID: 28470373 DOI: 10.1007/s00709-017-1116-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 04/23/2017] [Indexed: 05/13/2023]
Abstract
Resveratrol is a stilbene compound that is synthesized by plants in response to biotic stress and has been linked to health benefits associated with the consumption of certain foods and food products, such as grapes and wine. The final step in the biosynthesis of resveratrol is catalyzed by the enzyme stilbene synthase (STS). Here, we assessed the expression of two STS genes (VqSTS36 and VpSTS36) from the wild grape species Vitis quinquangularis (accession 'Shang-24'; powdery mildew (PM) resistant) and Vitis pseudoreticulata (accession 'Hunan-1'; PM susceptible) following infection by Uncinula necator (Schw.) Burr, the causal agent of PM disease. Some correlation was observed between the relative levels of STS36 transcript and disease resistance. We also cloned the 5' upstream sequence of both VpSTS36 and VqSTS36 and generated a series of 5' VqSTS36 promoter deletions fused to the GUS reporter gene in order to analyze expression in response to wounding, the application of exogenous stress-associated hormones, and biotic stress in tobacco leaves. The promoter was shown to be induced by the hormone salicylic acid (SA), inoculation with the fungal pathogen Erysiphe cichoracearum, and by wounding. These results suggest that VqSTS36 is regulated by biotic stresses and that it plays an important role in mediating disease resistance in grape.
Collapse
Affiliation(s)
- Xiangjing Yin
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Li Huang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiuming Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chunlei Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hao Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
10
|
Piscitelli A, Tarallo V, Guarino L, Sannia G, Birolo L, Pezzella C. New lipases by mining of Pleurotus ostreatus genome. PLoS One 2017; 12:e0185377. [PMID: 28945798 PMCID: PMC5612753 DOI: 10.1371/journal.pone.0185377] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 09/12/2017] [Indexed: 11/19/2022] Open
Abstract
The analysis of Pleurotus ostreatus genome reveals the presence of automatically annotated 53 lipase and 34 carboxylesterase putative coding-genes. Since no biochemical or physiological data are available so far, a functional approach was applied to identify lipases from P. ostreatus. In the tested growth conditions, four lipases were found expressed, with different patterns depending on the used C source. Two of the four identified proteins (PleoLip241 and PleoLip369), expressed in both analysed conditions, were chosen for further studies, such as an in silico analysis and their molecular characterization. To overcome limits linked to native production, a recombinant expression approach in the yeast Pichia pastoris was applied. Different expression levels were obtained: PleoLip241 reached a maximum activity of 4000 U/L, whereas PleoLip369 reached a maximum activity of 700 U/L. Despite their sequence similarity, these enzymes exhibited different substrate specificity and diverse stability at pH, temperature, and presence of metals, detergents and organic solvents. The obtained data allowed classifying PleoLip241 as belonging to the “true lipase” family. Indeed, by phylogenetic analysis the two proteins fall in different clusters. PleoLip241 was used to remove the hydrophobic layer from wool surface in order to improve its dyeability. The encouraging results obtained with lipase treated wool led to forecast PleoLip241 applicability in this field.
Collapse
Affiliation(s)
- Alessandra Piscitelli
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Napoli, Italy
- * E-mail:
| | - Vincenzo Tarallo
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Lucia Guarino
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Giovanni Sannia
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Leyla Birolo
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Cinzia Pezzella
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Napoli, Italy
| |
Collapse
|
11
|
Liu Z, Shi L, Yang S, Lin Y, Weng Y, Li X, Hussain A, Noman A, He S. Functional and Promoter Analysis of ChiIV3, a Chitinase of Pepper Plant, in Response to Phytophthora capsici Infection. Int J Mol Sci 2017; 18:E1661. [PMID: 28763001 PMCID: PMC5578051 DOI: 10.3390/ijms18081661] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/28/2017] [Accepted: 07/30/2017] [Indexed: 11/16/2022] Open
Abstract
Despite the involvement of many members of the chitinase family in plant immunity, the precise functions of the majority of the members remain poorly understood. Herein, the gene ChiIV3 in Capsicum annuum encoding a chitinase protein containing a chitin binding domain and targeting to the plasma membrane was found to be induced by Phytophthora capsici inoculation (PCI) and applied chitin treatment. Besides its direct inhibitory effect on growth of Phytophthora capsici (P. capsici), ChiIV3 was also found by virus-induced gene silencing (VIGS) and transient overexpression (TOE) in pepper plants to act as a positive regulator of plant cell death and in triggering defense signaling and upregulation of PR (pathogenesis related) genes against PCI. A 5' deletion assay revealed that pChiIV3-712 to -459 bp was found to be sufficient for ChiIV3' response to PCI. Furthermore, a mutation assay indicated that W-box-466 to -461 bp in pChiIV3-712 to -459 bp was noted to be the PCI-responsible element. These results collectively suggest that ChiIV3 acts as a likely antifungal protein and as a receptor for unidentified chitin in planta to trigger cell death and defense signaling against PCI.
Collapse
Affiliation(s)
- Zhiqin Liu
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Lanping Shi
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Sheng Yang
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Youquan Lin
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yahong Weng
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xia Li
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Ansar Hussain
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Ali Noman
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Shuilin He
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
12
|
Exploring the Functions of 9-Lipoxygenase (DkLOX3) in Ultrastructural Changes and Hormonal Stress Response during Persimmon Fruit Storage. Int J Mol Sci 2017; 18:ijms18030589. [PMID: 28294971 PMCID: PMC5372605 DOI: 10.3390/ijms18030589] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 02/21/2017] [Accepted: 02/27/2017] [Indexed: 12/28/2022] Open
Abstract
Lipoxygenase (LOX) initiates the hydroperoxidation of polyunsaturated fatty acids and is involved in multiple physiological processes. In this study, investigation of various microscopic techniques showed that the fruit peel cellular microstructure of the two persimmon cultivars differed after 12 days of storage, resulting in fruit weight loss and an increased number and depth of microcracks. Analysis of subcellular localization revealed that greater amounts of DkLOX3-immunolabelled gold particles accumulated in “Fupingjianshi” than in “Ganmaokui” during storage. In addition, the expression of DkLOX3 was positively up-regulated by abscisic acid (ABA), concomitant with the promotion of ethylene synthesis and loss of firmness, and was suppressed by salicylic acid (SA), concomitant with the maintenance of fruit firmness, inhibition of ethylene production and weight loss. In particular, the expression of DkLOX3 differed from the ethylene trajectory after methyl jasmonate (MeJA) treatment. Furthermore, we isolated a 1105 bp 5′ flanking region of DkLOX3 and the activity of promoter deletion derivatives was induced through various hormonal treatments. Promoter sequence cis-regulatory elements were analysed, and two conserved hormone-responsive elements were found to be essential for responsiveness to hormonal stress. Overall, these results will provide us with new clues for exploring the functions of DkLOX3 in fruit ripening and hormonal stress response.
Collapse
|
13
|
Belgacem YH, Borodinsky LN. CREB at the Crossroads of Activity-Dependent Regulation of Nervous System Development and Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1015:19-39. [PMID: 29080019 DOI: 10.1007/978-3-319-62817-2_2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The central nervous system is a highly plastic network of cells that constantly adjusts its functions to environmental stimuli throughout life. Transcription-dependent mechanisms modify neuronal properties to respond to external stimuli regulating numerous developmental functions, such as cell survival and differentiation, and physiological functions such as learning, memory, and circadian rhythmicity. The discovery and cloning of the cyclic adenosine monophosphate (cAMP) responsive element binding protein (CREB) constituted a big step toward deciphering the molecular mechanisms underlying neuronal plasticity. CREB was first discovered in learning and memory studies as a crucial mediator of activity-dependent changes in target gene expression that in turn impose long-lasting modifications of the structure and function of neurons. In this chapter, we review the molecular and signaling mechanisms of neural activity-dependent recruitment of CREB and its cofactors. We discuss the crosstalk between signaling pathways that imprints diverse spatiotemporal patterns of CREB activation allowing for the integration of a wide variety of stimuli.
Collapse
Affiliation(s)
- Yesser H Belgacem
- INMED, Aix-Marseille Univ, INSERM, Marseille, France and Aix-Marseille Université, IMéRA, F-13000, Marseille, France.
| | - Laura N Borodinsky
- Department of Physiology & Membrane Biology and Institute for Pediatric Regenerative Medicine, University of California Davis School of Medicine and Shriners Hospital for Children Northern California, Sacramento, CA, USA
| |
Collapse
|
14
|
Abstract
Regulation of gene expression by extracellular signals is a ubiquitous biological mechanism controlling cell proliferation, differentiation, homeostasis, and adaptation to the environment. This article will focus on one set of issues within the broad topic of regulated gene expression: mechanisms by which neurotransmitters and neural activity regulate genes within the mature nervous system. The regulatory actions of growth factors, cytokines, and other types of extracellular signals are complex matters deserving separate review. This article proceeds from a basic overview of transcriptional regulation to a more specific discussion of the actions of two families of transcriptional regulators, the CREB family and the AP-1 family. These families of proteins are discussed because they play a central role in the regulation of gene expression by neurotransmitters and also because they exemplify many general principles of extracellular signal-regulated gene expression. NEUROSCIENTIST 2:217-224, 1996
Collapse
|
15
|
Liu H, Jin X, Yin X, Jin N, Liu F, Qian W. PKA-CREB Signaling Suppresses Tau Transcription. J Alzheimers Dis 2016; 46:239-48. [PMID: 25720403 DOI: 10.3233/jad-142610] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Accumulated and abnormally hyperphosphorylated tau aggregates into neurofibrillary tangles in the brains of patients with Alzheimer's disease (AD). cAMP response binding protein (CREB), a constitutively expressed nuclear transcription factor, is a critical component of the neuroprotective transcriptional network. Numerous studies have shown that cAMP-dependent protein kinase (PKA)-CREB signaling is down-regulated in AD brain. In the present study, we studied the regulation of tau expression by PKA-CREB signaling. We found that the promoter of human tau gene contains three potential cAMP response element (CRE)-like elements, CRE1, CRE2, and CRE3. Overexpression of CREB or activation of PKA significantly suppressed the expression of tau at mRNA and protein levels. ChIP (Chromatin immunoprecipitation) and EMSA (electrophoretic mobility shift assay) revealed that CREB interacted with these three CRE cis-element and that CRE1, among the three elements, plays the most important role in the suppression of tau expression. Furthermore, upregulation of PKA-CREB signaling suppressed expression of endogenous tau. Collectively, these results suggest that PKA-CREB signaling down-regulates tau expression by reducing tau transcription, which may provide a novel insight into the regulation of tau expression and a molecular mechanism involved in tau pathogenesis in AD.
Collapse
Affiliation(s)
- Huanliang Liu
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, Jiangsu, China.,Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Xiaoxia Jin
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Xiaomin Yin
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, Jiangsu, China.,Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Nana Jin
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China.,Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Fei Liu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China.,Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Wei Qian
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, Jiangsu, China.,Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
16
|
Gao Y, Li Z, Gabrielsen JS, Simcox JA, Lee SH, Jones D, Cooksey B, Stoddard G, Cefalu WT, McClain DA. Adipocyte iron regulates leptin and food intake. J Clin Invest 2015; 125:3681-91. [PMID: 26301810 DOI: 10.1172/jci81860] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/17/2015] [Indexed: 12/17/2022] Open
Abstract
Dietary iron supplementation is associated with increased appetite. Here, we investigated the effect of iron on the hormone leptin, which regulates food intake and energy homeostasis. Serum ferritin was negatively associated with serum leptin in a cohort of patients with metabolic syndrome. Moreover, the same inverse correlation was observed in mice fed a high-iron diet. Adipocyte-specific loss of the iron exporter ferroportin resulted in iron loading and decreased leptin, while decreased levels of hepcidin in a murine hereditary hemochromatosis (HH) model increased adipocyte ferroportin expression, decreased adipocyte iron, and increased leptin. Treatment of 3T3-L1 adipocytes with iron decreased leptin mRNA in a dose-dependent manner. We found that iron negatively regulates leptin transcription via cAMP-responsive element binding protein activation (CREB activation) and identified 2 potential CREB-binding sites in the mouse leptin promoter region. Mutation of both sites completely blocked the effect of iron on promoter activity. ChIP analysis revealed that binding of phosphorylated CREB is enriched at these two sites in iron-treated 3T3-L1 adipocytes compared with untreated cells. Consistent with the changes in leptin, dietary iron content was also directly related to food intake, independently of weight. These findings indicate that levels of dietary iron play an important role in regulation of appetite and metabolism through CREB-dependent modulation of leptin expression.
Collapse
|
17
|
Liu SP, Yu P, Yuan PH, Zhou ZX, Bu QT, Mao XM, Li YQ. Sigma factor WhiGch positively regulates natamycin production in Streptomyces chattanoogensis L10. Appl Microbiol Biotechnol 2015; 99:2715-26. [DOI: 10.1007/s00253-014-6307-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 12/06/2014] [Accepted: 12/09/2014] [Indexed: 12/22/2022]
|
18
|
Li J, Liang D, Li M, Ma F. Light and abiotic stresses regulate the expression of GDP-L-galactose phosphorylase and levels of ascorbic acid in two kiwifruit genotypes via light-responsive and stress-inducible cis-elements in their promoters. PLANTA 2013; 238:535-47. [PMID: 23775440 DOI: 10.1007/s00425-013-1915-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 06/06/2013] [Indexed: 05/03/2023]
Abstract
Ascorbic acid (AsA) plays an essential role in plants by protecting cells against oxidative damage. GDP-L-galactose phosphorylase (GGP) is the first committed gene for AsA synthesis. Our research examined AsA levels, regulation of GGP gene expression, and how these are related to abiotic stresses in two species of Actinidia (kiwifruit). When leaves were subjected to continuous darkness or light, ABA or MeJA, heat, or a hypoxic environment, we found some correlation between the relative levels of GGP mRNA and AsA concentrations. In transformed tobacco plants, activity of the GGP promoter was induced by all of these treatments. However, the degree of inducibility in the two kiwifruit species differed among the GGP promoter deletions. We deduced that the G-box motif, a light-responsive element, may have an important function in regulating GGP transcripts under various light conditions in both A. deliciosa and A. eriantha. Other elements such as ABRE, the CGTCA motif, and HSE might also control the promoter activities of GGP in kiwifruit. Altogether, these data suggest that GGP expression in the two kiwifruit species is regulated by light or abiotic stress via the relative cis-elements in their promoters. Furthermore, GGP has a critical role in modulating AsA concentrations in kiwifruit species under abiotic stresses.
Collapse
Affiliation(s)
- Juan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | | | | | | |
Collapse
|
19
|
Jin N, Qian W, Yin X, Zhang L, Iqbal K, Grundke-Iqbal I, Gong CX, Liu F. CREB regulates the expression of neuronal glucose transporter 3: a possible mechanism related to impaired brain glucose uptake in Alzheimer's disease. Nucleic Acids Res 2013; 41:3240-56. [PMID: 23341039 PMCID: PMC3597642 DOI: 10.1093/nar/gks1227] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Impaired brain glucose uptake and metabolism precede the appearance of clinical symptoms in Alzheimer disease (AD). Neuronal glucose transporter 3 (GLUT3) is decreased in AD brain and correlates with tau pathology. However, what leads to the decreased GLUT3 is yet unknown. In this study, we found that the promoter of human GLUT3 contains three potential cAMP response element (CRE)-like elements, CRE1, CRE2 and CRE3. Overexpression of CRE-binding protein (CREB) or activation of cAMP-dependent protein kinase significantly increased GLUT3 expression. CREB bound to the CREs and promoted luciferase expression driven by human GLUT3-promoter. Among the CREs, CRE2 and CRE3 were required for the promotion of GLUT3 expression. Full-length CREB was decreased and truncation of CREB was increased in AD brain. This truncation was correlated with calpain I activation in human brain. Further study demonstrated that calpain I proteolysed CREB at Gln28–Ala29 and generated a 41-kDa truncated CREB, which had less activity to promote GLUT3 expression. Importantly, human brain GLUT3 was correlated with full-length CREB positively and with activation of calpain I negatively. These findings suggest that overactivation of calpain I caused by calcium overload proteolyses CREB, resulting in a reduction of GLUT3 expression and consequently impairing glucose uptake and metabolism in AD brain.
Collapse
Affiliation(s)
- Nana Jin
- Jiangsu Key Laboratory of Neuroregeneration, Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Clenbuterol upregulates histone demethylase JHDM2a via the β2-adrenoceptor/cAMP/PKA/p-CREB signaling pathway. Cell Signal 2012; 24:2297-306. [PMID: 22820505 DOI: 10.1016/j.cellsig.2012.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 06/20/2012] [Accepted: 07/16/2012] [Indexed: 01/19/2023]
Abstract
BACKGROUND β(2)-Adrenergic receptor (β(2)-AR) signaling activated by the agonist clenbuterol is important in the metabolism of muscle and adipose cells. Additionally, the significant role of histone demethylase JHDM2a in regulating metabolic gene expression was also recently demonstrated in Jhdm2a(-/-) mice. To elucidate the molecular mechanism involved in clenbuterol-induced adipocyte reduction from an epigenetic perspective, this study focused on cAMP-responsive element binding protein (CREB) to determine whether JHDM2a is regulated by the β(2)-AR/cAMP/protein kinase A (PKA) signaling pathway. RESULTS In porcine tissues treated with clenbuterol, JHDM2a expression was upregulated, and in porcine cells, expression of exogenous CREB led to increased JHDM2a expression. In addition, changes in JHDM2a expression were coincident with variations in the phosphorylation of CREB and p-CREB/CBP interaction in porcine and human cells treated with drugs known to modify the β(2)-AR/cAMP/PKA pathway. Finally, binding assays demonstrated that CREB regulated JHDM2a by binding directly to the CRE site nearest to the transcription start site. CONCLUSION Our results reveal that clenbuterol activates the β(2)-AR signaling pathway upstream of JHDM2a and that CREB acts as an intermediate link regulated by cAMP-PKA to induce activity of the JHDM2a promoter. These findings suggest that clenbuterol decreases adipose cell size and increases muscle fiber size in porcine tissues by virtue of JHDM2a-mediated demethylation, which regulates downstream metabolic and related genes.
Collapse
|
21
|
Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel reporter assay. Nat Biotechnol 2012; 30:271-7. [PMID: 22371084 PMCID: PMC3297981 DOI: 10.1038/nbt.2137] [Citation(s) in RCA: 510] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 01/20/2012] [Indexed: 01/22/2023]
Abstract
Learning to read and write the transcriptional regulatory code is of central importance to progress in genetic analysis and engineering. Here we describe a massively parallel reporter assay (MPRA) that facilitates the systematic dissection of transcriptional regulatory elements. In MPRA, microarray-synthesized DNA regulatory elements and unique sequence tags are cloned into plasmids to generate a library of reporter constructs. These constructs are transfected into cells and tag expression is assayed by high-throughput sequencing. We apply MPRA to compare >27,000 variants of two inducible enhancers in human cells: a synthetic cAMP-regulated enhancer and the virus-inducible interferon-β enhancer. We first show that the resulting data define accurate maps of functional transcription factor binding sites in both enhancers at single-nucleotide resolution. We then use the data to train quantitative sequence-activity models (QSAMs) of the two enhancers. We show that QSAMs from two cellular states can be combined to design enhancer variants that optimize potentially conflicting objectives, such as maximizing induced activity while minimizing basal activity.
Collapse
|
22
|
Lim B, Ju H, Kim M, Kang C. Increased genetic susceptibility to intestinal-type gastric cancer is associated with increased activity of the RUNX3 distal promoter. Cancer 2011; 117:5161-71. [PMID: 21523770 DOI: 10.1002/cncr.26161] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 02/24/2011] [Accepted: 03/10/2011] [Indexed: 01/17/2023]
Abstract
BACKGROUND The runt-related transcription factor RUNX3 plays essential roles in various types of tumors, including gastric cancer. Epigenetic changes in the methylation of the RUNX3 proximal promoter, but not common genetic changes in RUNX3, have been associated with both changes in the gene expression and development of the cancer. METHODS A case-control association study was conducted by genotyping 865 unrelated Korean subjects. Subsequent functional studies were performed to reveal functional implication of genetic association. RESULTS Several single-nucleotide polymorphisms (SNPs) in RUNX3 were significantly associated with susceptibility to intestinal-type gastric cancer (.0028 ≤ P ≤ .022) but not diffuse-type gastric cancer (.70 ≤ P ≤ .96). The risk-associated, minor variant of an intestinal-type gastric cancer-associated SNP in the RUNX3 distal promoter (rs7528484) significantly increased promoter activity in a CREB1-dependent manner. The distal promoter-derived, 33 kDa isoform of RUNX3 increased the activity of transcription factor nuclear factor kappa B (NF-κB), which had been activated by Helicobacter pylori infection, a risk factor for intestinal-type gastric cancer, and the expression of the interleukin-1β gene (IL1B), an NF-κB target genetically and functionally associated with gastric cancer. In contrast, the proximal promoter-derived, 44 kDa isoform of RUNX3 decreased both NF-κB activity and IL1B expression. CONCLUSIONS In addition to epigenetic changes in the RUNX3 proximal promoter, genetic changes in the distal promoter may be associated with susceptibility to intestinal-type gastric cancer by increasing promoter activity. Functionally, 2 RUNX3 isoforms may contribute differentially to intestinal-type gastric cancer susceptibility, at least in part through regulating NF-κB activity and IL1B expression.
Collapse
Affiliation(s)
- Byungho Lim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | | | | | | |
Collapse
|
23
|
Regulation of the NRSF/REST gene by methylation and CREB affects the cellular phenotype of small-cell lung cancer. Oncogene 2010; 29:5828-38. [PMID: 20697351 DOI: 10.1038/onc.2010.321] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The neuron-restrictive silencer factor/RE1-silencing transcription factor (NRSF/REST) is a negative regulator of gene expression restricting the expression of neuronal genes to the nervous system. NRSF/REST is highly expressed in non-neuronal tissues like the lung. In previous work, we identified small-cell lung cancer (SCLC) cell lines with no detectable NRSF/REST expression that, as a consequence, expressed neuronal markers like L1-cell adhesion molecule (L1-CAM) and neural cell adhesion molecule (NCAM). The loss of NRSF/REST expression was linked to malignant progression; however, its mechanistic role remained elusive. Here, we show that NRSF/REST itself, rather than one of its regulated genes, acts like a classic tumour suppressor, being in part regulated by methylation. In SCLCs, NRSF/REST is positively regulated by CREB, with an NRSF/REST promoter fragment showing cell type specificity. Downstream, NRSF/REST directly regulates AKT2, in which NRSF/REST loss leads to an epidermal growth factor-mediated de-regulation of AKT-Serine473 phosphorylation, important for cellular proliferation and survival. Assaying anchorage-independent growth, we observed that with reduced NRSF/REST expression, proliferation was significantly enhanced, whereas NRSF/REST rescue decreased the potential of cells to grow anchorage independently. Our observations support the fact that NRSF/REST may act as an important modulator of malignant progression in SCLC.
Collapse
|
24
|
Li G, Shi Y, Huang H, Zhang Y, Wu K, Luo J, Sun Y, Lu J, Benovic JL, Zhou N. Internalization of the human nicotinic acid receptor GPR109A is regulated by G(i), GRK2, and arrestin3. J Biol Chem 2010; 285:22605-18. [PMID: 20460384 DOI: 10.1074/jbc.m109.087213] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nicotinic acid (niacin) has been widely used as a favorable lipid-lowering drug for several decades, and the orphan G protein-coupled receptor GPR109A has been identified to be a receptor for niacin. Mechanistic investigations have shown that as a G(i)-coupled receptor, GPR109A inhibits adenylate cyclase activity upon niacin activation, thereby inhibiting free fatty acid liberation. However, the underlying molecular mechanisms that regulate signaling and internalization of GPR109A remain largely unknown. To further characterize GPR109A internalization, we made a construct to express GPR109A fused with enhanced green fluorescent protein (EGFP) at its carboxyl-terminal end. In stable GPR109A-EGFP-expressing HEK-293 cells, GPR109A-EGFP was mainly localized at the plasma membrane and was rapidly internalized in a dose- and time-dependent manner upon agonist stimulation. GPR109A internalization was completely blocked by hypertonic sucrose, indicating that GPR109A internalizes via the clathrin-coated pit pathway. Further investigation demonstrated that internalized GPR109A was recycled to the cell surface after the removal of agonist, and recycling of the internalized receptors was not blocked by treatment with acidotropic agents, NH(4)Cl and monensin. Pertussis toxin pretreatment not only inhibited forskolin-induced cAMP accumulation and intracellular Ca(2+) mobilization; it also significantly attenuated agonist-promoted GPR109A internalization. Moreover, RNA interference experiments showed that knockdown of GRK2 (G protein-coupled receptor kinase 2) and arrestin3 expression significantly impaired receptor internalization. Taken together, these results indicate that the agonist-induced internalization of GPR109A receptors is regulated by GRK2 and arrestin3 in a pertussis toxin-sensitive manner and that internalized receptor recycling is independent of endosomal acidification.
Collapse
Affiliation(s)
- Guo Li
- Institute of Biochemistry, College of Life Science, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
We have taken a synthetic biology approach to the generation and screening of transcription factor binding sites for activity in human cells. All possible 10-mer DNA sequences were printed on microarrays as 100-mers containing 10 repeats of the same sequence in tandem, yielding an oligonucleotide library of 52,429 unique sequences. This library of potential enhancers was introduced into a retroviral vector and screened in multiple cell lines for the ability to activate GFP transcription from a minimal CMV promoter. With this method, we isolated 100 bp synthetic enhancer elements that were as potent at activating transcription as the WT CMV immediate early enhancer. The activity of the recovered elements was strongly dependent on the cell line in which they were recovered. None of the elements were capable of achieving the same levels of transcriptional enhancement across all tested cell lines as the CMV enhancer. A second screen, for enhancers capable of synergizing with the elements from the original screen, yielded compound enhancers that were capable of twofold greater enhancement activity than the CMV enhancer, with higher levels of activity than the original synthetic enhancer across multiple cell lines. These findings suggest that the 10-mer synthetic enhancer space is sufficiently rich to allow the creation of synthetic promoters of all strengths in most, if not all, cell types.
Collapse
|
26
|
Nam BH, Kim YO, Kong HJ, Kim WJ, Lee SJ, Choi TJ. Identification and characterization of the prepro-vasoactive intestinal peptide gene from the teleost Paralichthys olivaceus. Vet Immunol Immunopathol 2009; 127:249-58. [DOI: 10.1016/j.vetimm.2008.10.320] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 10/09/2008] [Accepted: 10/16/2008] [Indexed: 11/30/2022]
|
27
|
Oh JM, Kim SH, Lee YI, Seo M, Kim SY, Song YS, Kim WH, Juhnn YS. Human papillomavirus E5 protein induces expression of the EP4 subtype of prostaglandin E2 receptor in cyclic AMP response element-dependent pathways in cervical cancer cells. Carcinogenesis 2008; 30:141-9. [PMID: 18849297 DOI: 10.1093/carcin/bgn236] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Human papillomavirus (HPV) is the major cause of uterine cervical cancer, but the role of the HPV E5 in carcinogenesis is not clearly understood. Prostaglandins are known to contribute to carcinogenesis of cervical cancer, and we therefore investigated the effect of HPV16 E5 on the expression of prostaglandin E2 (PGE2) receptors and underlying mechanisms. Stable expression of the E5 induced expression of the EP4 subtype of PGE2 receptors in C33A cervical cancer cells, and transfection of E5 small interfering RNA (siRNA) decreased it. EP4 protein expression was increased in human cervical cancer tissues, and EP4 mediated E5-induced increase in anchorage-independent colony formation and vascular endothelial growth factor expression. E5 induced cyclooxygenase-2 (COX-2) expression, and COX-2 increased PGE2 secretion and EP4 expression. The induction of EP4 by PGE2 and E5 was inhibited by an EP4 antagonist, inhibitors of cyclic adenosine monophosphate-dependent protein kinase or phosphatidylinositol 3-kinase, and a cyclic adenosine monophosphate response element (CRE) decoy. E5 increased the luciferase expression controlled by a variant CRE of the EP4 promoter, and it also increased the binding of cyclic adenosine monophosphate response element binding protein (CREB) to oligonucleotides containing this CRE. We conclude that the HPV16 E5 protein induces EP4 receptor protein in cervical cancer cells and that this induction involves epidermal growth factor receptor, COX-2, PGE2, EP2 and EP4, protein kinase A, CREB and CRE.
Collapse
Affiliation(s)
- Jung-Min Oh
- Interdisciplinary Graduate Program in Tumor Biology, Cancer Research Institute, Seoul National University College of Medicine, Jongno-Gu, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Takemori H, Kajimura J, Okamoto M. TORC-SIK cascade regulates CREB activity through the basic leucine zipper domain. FEBS J 2007; 274:3202-9. [PMID: 17565599 DOI: 10.1111/j.1742-4658.2007.05889.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The transcription factor cAMP response element-binding protein (CREB) plays important roles in gene expression induced by cAMP signaling and is believed to be activated when its Ser133 is phosphorylated. However, the discovery of Ser133-independent activation by the activation of transducer of regulated CREB activity coactivators (TORC) and repression by salt inducible kinase cascades suggests that Ser133-independent regulation of CREB is also important. The activation and repression are mediated by the basic leucine zipper domain of CREB. In this review, we focus on the basic leucine zipper domain in the regulation of transcriptional activity of CREB and describe the functions of TORC and salt inducible kinase.
Collapse
Affiliation(s)
- Hiroshi Takemori
- Laboratory of Cell Signaling and Metabolism, National Institute of Biomedical Innovation, Ibaraki, Osaka, Japan.
| | | | | |
Collapse
|
29
|
Corazza S, Scarabottolo L, Lohmer S, Liberati C. An innovative cell-based assay for the detection of modulators of soluble guanylate cyclase. Assay Drug Dev Technol 2006; 4:165-73. [PMID: 16712420 DOI: 10.1089/adt.2006.4.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Guanylate cyclase (GC) catalyzes the biosynthesis of cyclic guanosine 3',5'- monophosphate (cGMP) from GTP. GC exists in two isoenzyme forms: soluble and membrane-bound. The soluble GC (sGC) is a heterodimer composed of an alpha and a beta subunit, and it contains heme as a prosthetic group. The most important physiological activator of sGC is nitric oxide, which activates the enzyme upon binding to the heme moiety. By producing the second messenger cGMP, which regulates various effector systems such as phosphodiesterases, ion channels, and protein kinases, sGC plays an important role in different physiological processes, thus representing a very attractive pharmacological target. In fact, the pathogenesis of several diseases, especially those of the cardiovascular system, has been linked to inappropriate regulation of sGC. In order to find new modulators for this important enzyme, an innovative cell-based assay has been developed and optimized for the use in high-throughput screening. This luminescent assay, which is suitable for both 96- and 384-well plate formats, has been achieved by stably expressing the alpha and beta subunits of a mutated form of sGC in Chinese hamster ovary cells. The mutated form synthesizes cyclic adenosine 3',5'-monophosphate instead of cGMP, allowing the detection of enzymatic activity by a reporter gene approach. We demonstrated that this cell line responds to compounds typically used in the field of sGC research and that it represents an innovative and robust assay to screen for sGC modulators with high efficiency and high sensitivity by means of standard luminescence readers.
Collapse
|
30
|
Gao Y, Deng K, Hou J, Bryson JB, Barco A, Nikulina E, Spencer T, Mellado W, Kandel ER, Filbin MT. Activated CREB is sufficient to overcome inhibitors in myelin and promote spinal axon regeneration in vivo. Neuron 2005; 44:609-21. [PMID: 15541310 DOI: 10.1016/j.neuron.2004.10.030] [Citation(s) in RCA: 274] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2003] [Revised: 06/07/2004] [Accepted: 10/14/2004] [Indexed: 10/25/2022]
Abstract
Inhibitors in myelin play a major role in preventing spontaneous axonal regeneration after CNS injury. Elevation of cAMP overcomes this inhibition, in a transcription-dependent manner, through the upregulation of Arginase I (Arg I) and increased synthesis of polyamines. Here, we show that the cAMP effect requires activation of the transcription factor cAMP response element binding protein (CREB) to overcome myelin inhibitors; a dominant-negative CREB abolishes the effect, and neurons expressing a constitutively active form of CREB are not inhibited. Activation of CREB is also required for cAMP to upregulate Arg I, and the ability of constitutively active CREB to overcome inhibition is blocked by an inhibitor of polyamine synthesis. Finally, expression of constitutively active CREB in DRG neurons is sufficient to promote regeneration of subsequently lesioned dorsal column axons. These results indicate that CREB plays a central role in overcoming myelin inhibitors and so encourages regeneration in vivo.
Collapse
Affiliation(s)
- Ying Gao
- Biology Department, Hunter College, City University of New York, 695 Park Avenue, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kreibich AS, Blendy JA. The Role of cAMP Response Element–Binding Proteins in Mediating Stress‐Induced Vulnerability to Drug Abuse. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2005; 65:147-78. [PMID: 16140056 DOI: 10.1016/s0074-7742(04)65006-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Arati Sadalge Kreibich
- Department of Pharmacology, Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
32
|
Gabellini N. Transcriptional regulation by cAMP and Ca2+ links the Na+/Ca2+ exchanger 3 to memory and sensory pathways. Mol Neurobiol 2004; 30:91-116. [PMID: 15247490 DOI: 10.1385/mn:30:1:091] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The signaling cascades triggered by neurotrophins such as BDNF and by several neurotransmitters and hormones lead to the rapid induction of gene transcription by increasing the intracellular concentration of cAMP and Ca2+. This review examines the mechanisms by which these second messengers control transcriptional initiation at CRE promoters via transcription factor CREB, as well as at DRE sites via transcriptional repressor DREAM. The regulation of the SLC8A3 gene encoding the Na+/Ca2+ exchanger 3 (NCX3) is taken as an example to illustrate both mechanisms since it includes a CRE site in the promoter and several DRE sites in the exon 1 sequence. The upregulation of the NCX3 by Ca2+ signals may be specifically required to establish the Ca2+ balance that regulates several physiological and pathological processes in neurons. The regulatory features and the expression pattern of SLC8A3 gene suggest that NCX3 activity could be crucial in neuronal functions such as memory formation and sensory processing.
Collapse
Affiliation(s)
- Nadia Gabellini
- Department of Biological Chemistry, University of Padova, Padova, Italy.
| |
Collapse
|
33
|
Lo HW, Ali-Osman F. Cyclic AMP mediated GSTP1 gene activation in tumor cells involves the interaction of activated CREB-1 with the GSTP1 CRE: a novel mechanism of cellular GSTP1 gene regulation. J Cell Biochem 2003; 87:103-16. [PMID: 12210727 DOI: 10.1002/jcb.10275] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The human GSTP1 gene is frequently over-expressed in many human cancers and the expression increases with tumor progression and is associated with a more aggressive biology, poor patient survival, and resistance to therapy. The molecular regulation of the human GSTP1 gene during malignancy is, however, still not well understood. Recently, we reported the presence of a cAMP response element (CRE) in the 5'-region of the human GSTP1 gene, raising the possibility that the cAMP signaling pathway, frequently aberrant in human cancers, may play an important role in the transcriptional activation of the GSTP1 gene in human tumors. In this study, we report that the GSTP1 gene is an early cAMP response gene. Treatment of cells of the human lung carcinoma cell line, Calu-6, with 25 microM forskolin to activate the cAMP pathway resulted in a rapid and significant (sevenfold after 30 min) increase in GSTP1 gene transcripts, which peaked at 12-fold after 4 h. The forskolin-activated GSTP1 transcription in Calu-6 cells was suppressed dose-dependently by a 2-h pre-treatment with 0.1, 1.0, and 10 microM of the adenylate cyclase inhibitor, 2', 5'-dideoxyadenosine. Western blot analysis showed a rapid, fivefold increase, in GSTP1 protein levels after treatment with 25 microM forskolin, with a peak at 2 h post-treatment. The levels of phosphorylated CRE (Ser133) binding protein-1 (CREB-1) increased rapidly, sevenfold at 30 min, and reached 10-fold at 4 h following forskolin treatment. Intracellular cAMP levels also increased rapidly reaching 12-fold at 30 min. Gel mobility shift and supershift assays and DNase/footprinting analyses demonstrated that CREB-1 bZIP and CREB-containing nuclear extracts recognized the GSTP1 CRE with high affinity and specificity. Binding of CREB-1 bZIP to the GSTP1 CRE was abolished when the GSTP1 CRE sequence 5'-CGTCA-3', was mutated at the core nucleotides. Finally, transfection studies using luciferase plasmid constructs showed the GSTP1 CRE to be required for the cAMP-activated gene expression. Together, these findings describe a novel cAMP- and CREB-1-mediated mechanism of transcriptional regulation of the GSTP1 gene and suggest that this may be an important mechanism underlying the increased GSTP1 expression observed in tumors with an aberrant cAMP signaling pathway and in normal cells under conditions of stress, associated with increased intracellular cAMP.
Collapse
Affiliation(s)
- Hui-Wen Lo
- Section of Molecular Therapeutics, Department of Neurosurgery, Brain Tumor Center, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | |
Collapse
|
34
|
Conkright MD, Guzmán E, Flechner L, Su AI, Hogenesch JB, Montminy M. Genome-wide analysis of CREB target genes reveals a core promoter requirement for cAMP responsiveness. Mol Cell 2003; 11:1101-8. [PMID: 12718894 DOI: 10.1016/s1097-2765(03)00134-5] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have employed a hidden Markov model (HMM) based on known cAMP responsive elements to search for putative CREB target genes. The best scoring sites were positionally conserved between mouse and human orthologs, suggesting that this parameter can be used to enrich for true CREB targets. Target validation experiments revealed a core promoter requirement for transcriptional induction via CREB; TATA-less promoters were unresponsive to cAMP compared to TATA-containing genes, despite comparable binding of CREB to both sets of genes in vivo. Indeed, insertion of a TATA box motif rescued cAMP responsiveness on a TATA-less promoter. These results illustrate a mechanism by which subsets of target genes for a transcription factor are differentially regulated depending on core promoter configuration.
Collapse
|
35
|
Wardle FC, Wainstock DH, Sive HL. Cement gland-specific activation of the Xag1 promoter is regulated by co-operation of putative Ets and ATF/CREB transcription factors. Development 2002; 129:4387-97. [PMID: 12223398 DOI: 10.1242/dev.129.19.4387] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The cement gland marks the extreme anterior ectoderm of the Xenopus embryo, and is determined through the overlap of several positional domains. In order to understand how these positional cues activate cement gland differentiation, the promoter of Xag1, a marker of cement gland differentiation, was analyzed. Previous studies have shown that Xag1 expression can be activated by the anterior-specific transcription factor Otx2, but that this activation is indirect. 102 bp of upstream genomic Xag1 sequence restricts reporter gene expression specifically to the cement gland. Within this region, putative binding sites for Ets and ATF/CREB transcription factors are both necessary and sufficient to drive cement gland-specific expression, and cooperate to do so. Furthermore, while the putative ATF/CREB factor is activated by Otx2, a factor acting through the putative Ets-binding site is not. These results suggest that Ets-like and ATF/CREB-like family members play a role in regulating Xag1 expression in the cement gland, through integration of Otx2 dependent and independent pathways.
Collapse
Affiliation(s)
- Fiona C Wardle
- Whitehead Institute for Biomedical Research, and Massachusetts Institute of Technology, Nine Cambridge Center, Cambridge, MA 02142, USA
| | | | | |
Collapse
|
36
|
Wu J, Fang L, Lin Q, Willis WD. The role of nitric oxide in the phosphorylation of cyclic adenosine monophosphate—responsive element-binding protein in the spinal cord after intradermal injection of capsaicin. THE JOURNAL OF PAIN 2002; 3:190-8. [PMID: 14622772 DOI: 10.1054/jpai.2002.123653] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We investigated the involvement of nitric oxide (NO) in the phosphorylation of cyclic adenosine monophosphate-responsive element-binding protein (CREB) in the spinal cord of rats during central sensitization after intradermal capsaicin injection. CREB and phosphorylated CREB (p-CREB) were measured by immunoblotting. The level of p-CREB increased by 20 minutes, peaked between 20 and 60 minutes after capsaicin injection, and started to decrease after 150 minutes. CREB itself did not show an obvious change after capsaicin injection. The p-CREB expression on the ipsilateral side of the spinal dorsal horn, but not on the contralateral side, increased significantly after capsaicin injection. The increase in p-CREB induced by capsaicin injection was partially blocked by pretreatment with N(G)-nitro-L-arginine methyl ester (L-NAME), an NO synthase inhibitor, administered through a microdialysis fiber placed across the spinal cord. D-NAME, an inactive form of L-NAME, had no effect. CREB phosphorylation, not the level of CREB, was induced within 20 minutes by microdialysis administration of SIN-1, an NO donor. These results indicate that CREB phosphorylation in the spinal cord results from both endogenous and exogenous NO release and that p-CREB may play a role in central sensitization or in longer-term changes in gene expression induced by strong peripheral noxious stimulation.
Collapse
Affiliation(s)
- Jing Wu
- Department of Anatomy and Neurosciences, Marine Biomedical Institute, University of Texas Medical Branch, Galveston, 77555, USA
| | | | | | | |
Collapse
|
37
|
Rousset S, del Mar Gonzalez-Barroso M, Gelly C, Pecqueur C, Bouillaud F, Ricquier D, Cassard-Doulcier AM. A new polymorphic site located in the human UCP1 gene controls the in vitro binding of CREB-like factor. Int J Obes (Lond) 2002; 26:735-8. [PMID: 12032762 DOI: 10.1038/sj.ijo.0801973] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2001] [Revised: 11/29/2001] [Accepted: 11/30/2001] [Indexed: 11/09/2022]
Abstract
Uncoupling protein 1 (UCP1) is uniquely expressed in brown adipose tissue (BAT) and generates heat by uncoupling respiration from ATP synthesis. A defect in BAT thermogenesis has been described in different models of rodent obesity. In humans, the implication of BAT in energy expenditure is still under discussion. A BclI polymorphism associated with fat gain over time has been described in the upstream region of the human UCP1 (hUCP1) gene. In this study, a new polymorphic site linked to the BclI site is described which results in a C to A point mutation, 89 bp downstream of the BclI site, ie at position -3737 bp. This site is located in the recently analysed regulatory region of the hUCP1 gene. The mutation disrupts a consensus site for the binding of ATF/CREB transcription factor family and inhibits the factor binding in vitro. However, transient transfection of a rodent brown adipocyte cell line shows that the isoproterenol (ISO) stimulation of the hUCP1 gene transcription is not significantly affected by this mutation. However, we postulate that the C/A substitution, in human, may contribute to a minor defect in the regulation of hUCP1 transcription and that would explain fat gain over time.
Collapse
Affiliation(s)
- S Rousset
- Centre de Recherches sur l'Endocrinologie Moléculaire et le Développement, CNRS, Meudon, France
| | | | | | | | | | | | | |
Collapse
|
38
|
Kitamura K, Kangawa K, Eto T. Adrenomedullin and PAMP: discovery, structures, and cardiovascular functions. Microsc Res Tech 2002; 57:3-13. [PMID: 11921351 DOI: 10.1002/jemt.10052] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We discovered adrenomedullin (AM) from human pheochromocytoma tissue by monitoring the elevating activity of intracellular cyclic AMP (cAMP) in rat platelets in 1993. Since the discovery of AM, it has attracted intense interest from cardiovascular researchers because AM elicits multiple biological activities, including a potent and powerful hypotensive activity caused by dilatation of resistance vessels. AM is biosynthesized and secreted from tissues, including cardiovascular organs. In addition to AM, "proadrenomedullin N-terminal 20 peptide (PAMP)," another biologically active peptide, was found to be processed from the AM precursor. Plasma AM levels are increased in various cardiovascular and renal diseases. AM, therefore, seems to function as a novel system that controls circulation and body fluid, and may be involved in pathophysiological changes in cardiovascular diseases. Therefore, in this review we will focus on the structure of AM and its gene, distribution, receptor, and the physiological and pathological roles of AM in cardiovascular disease.
Collapse
Affiliation(s)
- Kazuo Kitamura
- First Department of Internal Medicine, Miyazaki Medical College, Kiyotake, Miyazaki, Japan.
| | | | | |
Collapse
|
39
|
Eto T. A review of the biological properties and clinical implications of adrenomedullin and proadrenomedullin N-terminal 20 peptide (PAMP), hypotensive and vasodilating peptides. Peptides 2001; 22:1693-711. [PMID: 11754955 DOI: 10.1016/s0196-9781(01)00513-7] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adrenomedullin (AM), identified from pheochromocytoma and having 52 amino acids, elicits a long-lasting vasodilatation and diuresis. AM is mainly mediated by the intracellular adenylate cyclase coupled with cyclic adenosine monophosphate (cAMP) and nitric oxide (NO) -cyclic guanosine monophosphate (cGMP) pathway through its specific receptor. The calcitonin receptor-like receptor (CLCR) and receptor-activity modifying protein (RAMP) 2 or RAMP3 models have been proposed as the candidate receptor. AM is produced mainly in cardiovascular tissues in response to stimuli such as shear stress and stretch, hormonal factors and cytokines. Recently established AM knockout mice lines revealed that AM is essential for development of vitelline vessels of embryo. Plasma AM levels elevate in cardiovascular diseases such as heart failure, hypertension and septic shock, where AM may play protective roles through its characteristic biological activities. Human AM gene delivery improves hypertension, renal function, cardiac hypertrophy and nephrosclerosis in the hypertensive rats. AM decreases cardiac preload and afterload and improves cardiac contractility and diuresis in patients with heart failure and hypertension. Advances in gene engineering and receptor studies may contribute to further understandings of biological implication and therapeutic availability of AM.
Collapse
Affiliation(s)
- T Eto
- The First Department of Internal Medicine, Miyazaki Medical College, 5200 Kihara, Kiyotake, 889-1692, Miyazaki, Japan.
| |
Collapse
|
40
|
Arg3.1/Arc mRNA induction by Ca2+ and cAMP requires protein kinase A and mitogen-activated protein kinase/extracellular regulated kinase activation. J Neurosci 2001. [PMID: 11466419 DOI: 10.1523/jneurosci.21-15-05484.2001] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Long-term potentiation (LTP) is a cellular model for persistent synaptic plasticity in the mammalian brain. Like several forms of memory, long-lasting LTP requires cAMP-mediated activation of protein kinase A (PKA) and is dependent on gene transcription. Consequently, activity-dependent genes such as c-fos that contain cAMP response elements (CREs) in their 5' regulatory region have been studied intensely. More recently, arg3.1/arc became of interest, because after synaptic stimulation, arg3.1/arc mRNA is rapidly induced and distributed to dendritic processes and may be locally translated there to facilitate synapse-specific modifications. However, to date nothing is known about the signaling mechanisms involved in the induction of this gene. Here we report that arg3.1/arc is robustly induced with LTP stimulation even at intensities that are not sufficient to activate c-fos expression. Unlike c-fos, the 5' regulatory region of arg3.1/arc does not contain a CRE consensus sequence and arg3.1/arc is unresponsive to cAMP in NIH3T3 and Neuro2a cells. However, in PC12 cells and primary cultures of hippocampal neurons, arg3.1/arc can be induced by cAMP and calcium. This induction requires the activity of PKA and mitogen-activated protein kinase, suggesting a neuron-specific pathway for the activation of arg3.1/arc expression.
Collapse
|
41
|
Chen A, Laskar-Levy O, Ben-Aroya N, Koch Y. Transcriptional regulation of the human GnRH II gene is mediated by a putative cAMP response element. Endocrinology 2001; 142:3483-92. [PMID: 11459794 DOI: 10.1210/endo.142.8.8302] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human neuronal medulloblastoma cells (TE-671) were recently demonstrated to express the two forms of GnRH (GnRH-I and GnRH-II). We have used this cell line as a model system to demonstrate regulation of the human GnRH-II gene by cAMP. RT-PCR and Southern hybridization demonstrated that GnRH-II mRNA is strongly up-regulated ( approximately 6-fold) by (Bu)(2)cAMP. The concentration of GnRH-II that was released into the medium of TE-671 cells treated with the cAMP analog was significantly higher than that of the untreated cells. TE-671 cells that were stimulated by (Bu)(2)cAMP demonstrated morphological changes and strong immunoreactive GnRH-II staining in part of the cell population. After screening of the GnRH-II promoter sequence, we identified a putative cAMP response element consensus site. The GnRH-I and GnRH-II promoters were isolated by PCR using human genomic DNA and cloned into the luciferase reporter plasmid. By measuring the basal activity of the promoters that were transfected to TE-671 cells, we found a much stronger basal activity of the GnRH-II promoter compared with that of GnRH-I. Treatment of transfected TE-671 cells with (Bu)(2)cAMP resulted in a strong activation of the GnRH-II promoter compared with a modest activation of the GnRH-I promoter. To determine the functionality of this putative cAMP response element site, we mutated this site. TE-671 cells that were transfected with cAMP response element mutant constructs demonstrated a diminished basal activity of the GnRH-II promoter. Treatment of the transfected cells with the cAMP analog demonstrated a decrease to 0.03% of the activity of the mutated promoter compared with that of the wild type. These results clearly demonstrate the importance of the putative cAMP response element site for the basal activity as well as for induction of the GnRH-II promoter by cAMP.
Collapse
Affiliation(s)
- A Chen
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
42
|
Mayr B, Montminy M. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol 2001; 2:599-609. [PMID: 11483993 DOI: 10.1038/35085068] [Citation(s) in RCA: 2000] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The transcription factor CREB -- for 'cyclic AMP response element-binding protein' -- functions in glucose homeostasis, growth-factor-dependent cell survival, and has been implicated in learning and memory. CREB is phosphorylated in response to various signals, but how is specificity achieved in these signalling pathways?
Collapse
MESH Headings
- Activating Transcription Factor 1
- Alternative Splicing
- Animals
- Binding Sites
- Cyclic AMP/physiology
- Cyclic AMP Response Element Modulator
- Cyclic AMP Response Element-Binding Protein/chemistry
- Cyclic AMP Response Element-Binding Protein/genetics
- Cyclic AMP Response Element-Binding Protein/physiology
- Cyclic AMP-Dependent Protein Kinases/physiology
- DNA Methylation
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Gene Expression Regulation/physiology
- Gene Products, tax/physiology
- Growth Substances/physiology
- Human T-lymphotropic virus 1/genetics
- Leucine Zippers
- Macromolecular Substances
- Mice
- Mice, Knockout
- Mice, Transgenic
- Models, Genetic
- Models, Molecular
- Multigene Family
- Nuclear Proteins/physiology
- Phosphorylation
- Protein Conformation
- Protein Processing, Post-Translational
- Regulatory Sequences, Nucleic Acid
- Repressor Proteins
- Second Messenger Systems/physiology
- Stress, Physiological/genetics
- Stress, Physiological/metabolism
- Trans-Activators/physiology
- Transcription Factors/physiology
- Transcription, Genetic
Collapse
Affiliation(s)
- B Mayr
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|
43
|
Waltereit R, Dammermann B, Wulff P, Scafidi J, Staubli U, Kauselmann G, Bundman M, Kuhl D. Arg3.1/Arc mRNA induction by Ca2+ and cAMP requires protein kinase A and mitogen-activated protein kinase/extracellular regulated kinase activation. J Neurosci 2001; 21:5484-93. [PMID: 11466419 PMCID: PMC6762636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023] Open
Abstract
Long-term potentiation (LTP) is a cellular model for persistent synaptic plasticity in the mammalian brain. Like several forms of memory, long-lasting LTP requires cAMP-mediated activation of protein kinase A (PKA) and is dependent on gene transcription. Consequently, activity-dependent genes such as c-fos that contain cAMP response elements (CREs) in their 5' regulatory region have been studied intensely. More recently, arg3.1/arc became of interest, because after synaptic stimulation, arg3.1/arc mRNA is rapidly induced and distributed to dendritic processes and may be locally translated there to facilitate synapse-specific modifications. However, to date nothing is known about the signaling mechanisms involved in the induction of this gene. Here we report that arg3.1/arc is robustly induced with LTP stimulation even at intensities that are not sufficient to activate c-fos expression. Unlike c-fos, the 5' regulatory region of arg3.1/arc does not contain a CRE consensus sequence and arg3.1/arc is unresponsive to cAMP in NIH3T3 and Neuro2a cells. However, in PC12 cells and primary cultures of hippocampal neurons, arg3.1/arc can be induced by cAMP and calcium. This induction requires the activity of PKA and mitogen-activated protein kinase, suggesting a neuron-specific pathway for the activation of arg3.1/arc expression.
Collapse
Affiliation(s)
- R Waltereit
- Institut fuer Neurale Signalverarbeitung, Zentrum für Molekulare Neurobiologie Hamburg, 20246 Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Liu D, Krajniak K, Chun D, Sena M, Casillas R, Lelièvre V, Nguyen T, Bravo D, Colburn S, Waschek JA. VIP gene transcription is regulated by far upstream enhancer and repressor elements. Biochem Biophys Res Commun 2001; 284:211-8. [PMID: 11374892 DOI: 10.1006/bbrc.2001.4948] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
SK-N-SH human neuroblastoma subclones differ widely in basal and second messenger induction of the gene encoding the neuropeptide vasoactive intestinal peptide (VIP). These differences were recapitulated by a chimeric gene which consisted of 5.2 kb of the human VIP gene 5' flanking sequence fused to a reporter. Subsequent gene deletion experiments revealed several regulatory regions on the gene, including a 645-bp sequence located approximately 4.0 upstream from the transcription start site. Here we examined this upstream region in detail. Inhibitory sequences were found to be present on each end of the 645-bp fragment. When removed, basal transcription increased more than 50-fold. Subsequent deletion/mutation analysis showed that the 213-bp fragment contained at least two enhancer elements. One of these was localized to an AT-rich 42-bp sequence shown by others to bind Oct proteins in neuroblastoma cells, while the other corresponded to a composite AP-1/ets element. In addition to these enhancers, a 28-bp sequence on the 213-bp fragment with no apparent homology to known silencers inhibited transcription. The studies provide molecular details of a complex regulatory region on the VIP gene that is likely to be used to finely tune the level of gene transcription in vivo.
Collapse
Affiliation(s)
- D Liu
- Department of Psychiatry and Mental Retardation Research Center, University of California at Los Angeles, 760 Westwood Plaza, Room 68-225 NPI, Los Angeles, California, 90024-1759
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Georg B, Fahrenkrug J. Pituitary adelylate cyclase-activating peptide is an activator of vasoactive intestinal polypeptide gene transcription in human neuroblastoma cells. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 79:67-76. [PMID: 10925144 DOI: 10.1016/s0169-328x(00)00101-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In many ganglia, the neuropeptide pituitary adenylate cyclase-activating peptide (PACAP) innervates nerve cell bodies containing the homologous neuropeptide vasoactive intestinal polypeptide (VIP). We therefore investigated whether PACAP affected the VIP gene expression and elucidated the molecular mechanisms using the human neuroblastoma cell line NB-1. A concentration dependent induction of the VIP mRNA level was found upon PACAP stimulation. Five nM PACAP mediated transient elevation of the VIP mRNA being evident after 2 h, the maximal 65-fold induction was reached after 6-8 h and hereafter the level decreased rapidly. In cell extracts, the concentration of immunoreactive VIP was elevated four-fold upon PACAP stimulation for 8 h, and it remained elevated during the next 40 h. In conditioned medium, a stable 20-fold VIP increase was seen after 8-24 h. Experiments with the translational inhibitor cycloheximide showed a direct effect of PACAP on the VIP mRNA level, and nuclear run-on assays revealed a three- to four-fold enhancement of the VIP gene transcription rate after PACAP stimulation. The VIP mRNA induction was abolished by transcriptional inhibition with the actinomycin D, and PACAP did not seem to mediate any changes in the VIP mRNA half-life. However, the VIP mRNA level seemed very stable during the transcriptional cessation. Reporter gene constructs were used to evaluate involvement of the VIP CRE site in the PACAP mediated induction of the VIP gene transcription. Mutation of the CRE site did not abolish the induction suggesting it to be of minor if any importance for the induction. In conclusion, the PACAP mediated induction of the VIP gene expression suggests that PACAP released from nerve terminals could influence the function of VIP'ergic neurons in target tissues.
Collapse
Affiliation(s)
- B Georg
- Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen, Denmark.
| | | |
Collapse
|
46
|
Symes AJ, Pitts RL, Conover J, Kos K, Coulombe J. Synergy of activin and ciliary neurotrophic factor signaling pathways in the induction of vasoactive intestinal peptide gene expression. Mol Endocrinol 2000; 14:429-39. [PMID: 10707960 DOI: 10.1210/mend.14.3.0429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Activin, a member of the transforming growth factor-beta superfamily, can regulate neuropeptide gene expression in the nervous system and in neuroblastoma cells. Among the neuropeptide genes whose expression can be regulated by activin is the gene encoding the neuropeptide vasoactive intestinal peptide (VIP). To investigate the molecular mechanisms by which activin regulates neuronal gene expression, we have examined activin's regulation of VIP gene expression in NBFL neuroblastoma cells. We report here that NBFL cells respond to activin by increasing expression of VIP mRNA. Activin regulates VIP gene transcription in NBFL cells through a 180-bp element in the VIP promoter that was previously characterized to be necessary and sufficient to mediate the induction of VIP by the neuropoietic cytokines and termed the cytokine response element (CyRE). We find that the VIP CyRE is necessary and sufficient to mediate the transcriptional response to activin. In addition, ciliary neurotrophic factor (CNTF), a neuropoietic cytokine, synergizes with activin to increase VIP mRNA expression and transcription through the VIP CyRE. Mutations in either the Stat (signal transducer and activator of transcription) or AP-1 sites within the CyRE that reduce the response to CNTF, also reduce the response to activin. However, mutating both the Stat and AP-1 sites within the wild-type CyRE, while reducing the separate responses to either activin or CNTF, eliminates the synergy between them. These data suggest that activin and CNTF, two factors that appear to signal though distinct pathways, activate VIP gene transcription through a common transcriptional element, the VIP CyRE.
Collapse
Affiliation(s)
- A J Symes
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA.
| | | | | | | | | |
Collapse
|
47
|
Fitzgerald LR, Mannan IJ, Dytko GM, Wu HL, Nambi P. Measurement of responses from Gi-, Gs-, or Gq-coupled receptors by a multiple response element/cAMP response element-directed reporter assay. Anal Biochem 1999; 275:54-61. [PMID: 10542109 DOI: 10.1006/abio.1999.4295] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have established a rapid, sensitive, high-throughput assay that requires one assay condition to detect agonist effects from Gi-, Gs-, and Gq-coupled receptors. We utilized a vector containing a promoter with three multiple response elements, the vasoactive intestinal peptide promoter and a cAMP response element controlling the transcription of the luciferase gene. An adrenergic agonist, para-aminoclonidine, inhibited forskolin-stimulated luciferase expression when cells were cotransfected with the Gi-coupled alpha(2)-C adrenergic receptor and the MRE/CRE reporter vector. Further, we demonstrate that gastrin-releasing peptide, which activates a Gq-coupled GRP receptor, isoproterenol, which activates a Gs-coupled beta-adrenergic receptor, calcium ionophores, and phorbol 12-myristate 13-acetate, a stimulator of protein kinase C, can mediate increases in luciferase expression in the presence of forskolin but not in its absence. The effect at Gi-coupled receptor activation correlates with the phosphorylation of the CRE binding protein (CREB); however, the mechanisms mediating the responses to Gq- and Gs-coupled receptors are more complex. We demonstrate that this assay is useful for pharmacological analysis of both agonists and antagonists and has the potential to associate orphan G-protein-coupled receptors with their corresponding ligands.
Collapse
Affiliation(s)
- L R Fitzgerald
- Department of Renal Pharmacology, SmithKline Beecham Pharmaceuticals, 709 Swedeland Road, King of Prussia, Pennsylvania 19406, USA
| | | | | | | | | |
Collapse
|
48
|
Platzer C, Fritsch E, Elsner T, Lehmann MH, Volk HD, Prösch S. Cyclic adenosine monophosphate-responsive elements are involved in the transcriptional activation of the human IL-10 gene in monocytic cells. Eur J Immunol 1999; 29:3098-104. [PMID: 10540320 DOI: 10.1002/(sici)1521-4141(199910)29:10<3098::aid-immu3098>3.0.co;2-h] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
IL-10 plays an important role in the regulation of immune responses. We and others have demonstrated recently that cyclic adenosine monophosphate (cAMP)-elevating substances up-regulate monocytic IL-10 expression in vitro and in vivo. Computer analysis of the IL-10 promoter/enhancer region localized four putative cAMP-responsive elements (CRE1- 4) with homology to the CRE consensus motif. In electrophoretic mobility shift assays CRE1 and CRE4 bound protein complexes consisting of transcription factors CREB-1 and ATF-1, while CRE3 bound only marginal amounts of CREB-1/ATF-1 in combination with unknown protein(s). CRE2 showed no protein binding activity. In vitro mutation of CRE1 and CRE4 reduced the level of cAMP-stimulated transactivation in reporter gene assays in comparison to the wild-type promoter by 20 % and 50 %, respectively, while mutation of CRE3 had no effect. The main action of CRE4 on cAMP-dependent stimulation is probably based on its adjacent localization to the TATA box and its sequence comprising a perfect half site. Experiments with double and triple mutants and with deleted promoter fragments indicated the participation of additional elements beside the CRE motifs in the cAMP-dependent stimulation. Our data suggest that intracellular cAMP may directly affect expression of the immunoregulatory cytokine IL-10 in monocytic cells via activation of the eukaryotic transcription factors CREB-1 and ATF-1 and their binding to CRE1 and CRE4 in the upstream enhancer of the IL-10 promoter.
Collapse
Affiliation(s)
- C Platzer
- Institute of Anatomy Anatomy II, Medical School, Friedrich Schiller University Jena, Jena, Germany.
| | | | | | | | | | | |
Collapse
|
49
|
Sekkali B, Belayew A, Bortolussi M, Martial JA, Muller M. Pit-1 mediates cell-specific and cAMP-induced transcription of the tilapia GH gene. Mol Cell Endocrinol 1999; 152:111-23. [PMID: 10432229 DOI: 10.1016/s0303-7207(99)00053-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Expression of the tilapia growth hormone (tiGH) gene is pituitary-specific and controlled by intracellular cAMP levels. DNaseI protection experiments allowed us to identify four Pit-1 binding sites in the tiGH - 465/ + 19 region. Deletion and mutagenesis analysis revealed that the - 131/+ 19 region, containing two Pit-1 sites, or four copies of the most proximal site tiGHF1 fused to the heterologous Tk promoter, confer high level expression in rat pituitary cells and direct transcription in non-pituitary cells only after expression of rat Pit-1. We show that a tilapia pituitary factor specifically binds to site tiGHF1 and obtained a partial cDNA sequence coding for tilapia Pit-1. The cAMP stimulation is mediated by the proximal (- 131/- 31) promoter region. It is Pit-1-dependent and requires the tiGHF1 site. In addition, four copies of this site confer cAMP inducibility to the Tk promoter in GC cells.
Collapse
Affiliation(s)
- B Sekkali
- Laboratoire de Biologie Moléculaire et de Génie Génétique, Université de Liège, Institut de Chimie B6, Sart-Tilman, Belgium
| | | | | | | | | |
Collapse
|
50
|
Ardati A, Goetschy V, Gottowick J, Henriot S, Valdenaire O, Deuschle U, Kilpatrick GJ. Human CRF2 alpha and beta splice variants: pharmacological characterization using radioligand binding and a luciferase gene expression assay. Neuropharmacology 1999; 38:441-8. [PMID: 10219982 DOI: 10.1016/s0028-3908(98)00201-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Corticotropin releasing factor (CRF) receptors belong to the super-family of G protein-coupled receptors. These receptors are classified into two subtypes (CRF1 and CRF2). Both receptors are positively coupled to adenylyl cyclase but they have a distinct pharmacology and distribution in brain. Two isoforms belonging to the CRF2 subtype receptors, CRF2alpha and CRF2beta, have been identified in rat and man. The neuropeptides CRF and urocortin mediate their actions through this CRF G protein-coupled receptor family. In this report, we describe the pharmacological characterization of the recently identified hCRF2, receptor. We have used radioligand binding with [125I]-tyr0-sauvagine and a gene expression assay in which the firefly luciferase gene expression is under the control of cAMP responsive elements. Association kinetics of [125I]-tyr0-sauvagine binding to the hCRF2beta receptor were monophasic while dissociation kinetics were biphasic, in agreement with the kinetics results obtained with the hCRF2alpha receptor. Saturation binding analysis revealed two affinity states in HEK 293 cells with binding parameters in accord with those determined kinetically and with parameters obtained with the hCRF2alpha receptor. A non-hydrolysable GTP analog, Gpp(NH)p, reduced the high affinity binding of [125I]-tyr0-sauvagine to both hCRF2 receptor isoforms in a similar manner. The rank order of potency of CRF agonist peptides in competition experiments was identical for both hCRF2 isoforms (urocortin > sauvagine > urotensin 1 > r/hCRF > alpha-helical CRF(9-41) > oCRF). Similarly, agonist potency was similar for the two isoforms when studied using the luciferase gene reporter system. The peptide antagonist alpha-helical CRF(9-41) exhibited a non-competitive antagonism of urocortin-stimulated luciferase expression with both hCRF2 receptor isoforms. Taken together, these results indicate that the pharmacological profiles of the CRF2 splice variants are identical. This indicates that the region of the N-terminus that varies between the receptors is probably not important in the binding of peptide CRF receptor ligands or functional activation of the receptor.
Collapse
Affiliation(s)
- A Ardati
- Rhone-Poulenc Rorer, Cardiovascular Biology, Collegeville, PA 19426, USA
| | | | | | | | | | | | | |
Collapse
|