1
|
Holendová B, Benáková Š, Křivonosková M, Plecitá-Hlavatá L. Redox Status as a Key Driver of Healthy Pancreatic Beta-Cells. Physiol Res 2024; 73:S139-S152. [PMID: 38647167 PMCID: PMC11412338 DOI: 10.33549/physiolres.935259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Redox status plays a multifaceted role in the intricate physiology and pathology of pancreatic beta-cells, the pivotal regulators of glucose homeostasis through insulin secretion. They are highly responsive to changes in metabolic cues where reactive oxygen species are part of it, all arising from nutritional intake. These molecules not only serve as crucial signaling intermediates for insulin secretion but also participate in the nuanced heterogeneity observed within the beta-cell population. A central aspect of beta-cell redox biology revolves around the localized production of hydrogen peroxide and the activity of NADPH oxidases which are tightly regulated and serve diverse physiological functions. Pancreatic beta-cells possess a remarkable array of antioxidant defense mechanisms although considered relatively modest compared to other cell types, are efficient in preserving redox balance within the cellular milieu. This intrinsic antioxidant machinery operates in concert with redox-sensitive signaling pathways, forming an elaborate redox relay system essential for beta-cell function and adaptation to changing metabolic demands. Perturbations in redox homeostasis can lead to oxidative stress exacerbating insulin secretion defect being a hallmark of type 2 diabetes. Understanding the interplay between redox signaling, oxidative stress, and beta-cell dysfunction is paramount for developing effective therapeutic strategies aimed at preserving beta-cell health and function in individuals with type 2 diabetes. Thus, unraveling the intricate complexities of beta-cell redox biology presents exciting avenues for advancing our understanding and treatment of metabolic disorders.
Collapse
Affiliation(s)
- B Holendová
- Laboratory of Pancreatic Islet Research, Czech Academy of Sciences, Prague 4, Czech Republic.
| | | | | | | |
Collapse
|
2
|
Crawford CK, Beltran A, Castillo D, Matloob MS, Uehara ME, Quilici ML, Cervantes VL, Kol A. Fenofibrate reduces glucose-induced barrier dysfunction in feline enteroids. Sci Rep 2023; 13:22558. [PMID: 38110453 PMCID: PMC10728136 DOI: 10.1038/s41598-023-49874-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023] Open
Abstract
Diabetes mellitus (DM) is a common chronic metabolic disease in humans and household cats that is characterized by persistent hyperglycemia. DM is associated with dysfunction of the intestinal barrier. This barrier is comprised of an epithelial monolayer that contains a network of tight junctions that adjoin cells and regulate paracellular movement of water and solutes. The mechanisms driving DM-associated barrier dysfunction are multifaceted, and the direct effects of hyperglycemia on the epithelium are poorly understood. Preliminary data suggest that fenofibrate, An FDA-approved peroxisome proliferator-activated receptor-alpha (PPARα) agonist drug attenuates intestinal barrier dysfunction in dogs with experimentally-induced DM. We investigated the effects of hyperglycemia-like conditions and fenofibrate treatment on epithelial barrier function using feline intestinal organoids. We hypothesized that glucose treatment directly increases barrier permeability and alters tight junction morphology, and that fenofibrate administration can ameliorate these deleterious effects. We show that hyperglycemia-like conditions directly increase intestinal epithelial permeability, which is mitigated by fenofibrate. Moreover, increased permeability is caused by disruption of tight junctions, as evident by increased junctional tortuosity. Finally, we found that increased junctional tortuosity and barrier permeability in hyperglycemic conditions were associated with increased protein kinase C-α (PKCα) activity, and that fenofibrate treatment restored PKCα activity to baseline levels. We conclude that hyperglycemia directly induces barrier dysfunction by disrupting tight junction structure, a process that is mitigated by fenofibrate. We further propose that counteracting modulation of PKCα activation by increased intracellular glucose levels and fenofibrate is a key candidate regulatory pathway of tight junction structure and epithelial permeability.
Collapse
Affiliation(s)
- Charles K Crawford
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Aeelin Beltran
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Diego Castillo
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Muhammad S Matloob
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Mimoli E Uehara
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Mary L Quilici
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Veronica Lopez Cervantes
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Amir Kol
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA.
| |
Collapse
|
3
|
Wang J, Casimiro-Garcia A, Johnson BG, Duffen J, Cain M, Savary L, Wang S, Nambiar P, Lech M, Zhao S, Xi L, Zhan Y, Olson J, Stejskal JA, Lin H, Zhang B, Martinez RV, Masek-Hammerman K, Schlerman FJ, Dower K. A protein kinase C α and β inhibitor blunts hyperphagia to halt renal function decline and reduces adiposity in a rat model of obesity-driven type 2 diabetes. Sci Rep 2023; 13:16919. [PMID: 37805649 PMCID: PMC10560236 DOI: 10.1038/s41598-023-43759-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 09/28/2023] [Indexed: 10/09/2023] Open
Abstract
Type 2 diabetes (T2D) and its complications can have debilitating, sometimes fatal consequences for afflicted individuals. The disease can be difficult to control, and therapeutic strategies to prevent T2D-induced tissue and organ damage are needed. Here we describe the results of administering a potent and selective inhibitor of Protein Kinase C (PKC) family members PKCα and PKCβ, Cmpd 1, in the ZSF1 obese rat model of hyperphagia-induced, obesity-driven T2D. Although our initial intent was to evaluate the effect of PKCα/β inhibition on renal damage in this model setting, Cmpd 1 unexpectedly caused a marked reduction in the hyperphagic response of ZSF1 obese animals. This halted renal function decline but did so indirectly and indistinguishably from a pair feeding comparator group. However, above and beyond this food intake effect, Cmpd 1 lowered overall animal body weights, reduced liver vacuolation, and reduced inguinal adipose tissue (iWAT) mass, inflammation, and adipocyte size. Taken together, Cmpd 1 had strong effects on multiple disease parameters in this obesity-driven rodent model of T2D. Further evaluation for potential translation of PKCα/β inhibition to T2D and obesity in humans is warranted.
Collapse
Affiliation(s)
- Ju Wang
- Inflammation and Immunology, Pfizer Worldwide Research and Development, Cambridge, MA, USA.
| | | | - Bryce G Johnson
- Inflammation and Immunology, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Jennifer Duffen
- Inflammation and Immunology, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Michael Cain
- Inflammation and Immunology, Pfizer Worldwide Research and Development, Cambridge, MA, USA
- Mediar Therapeutics, Boston, MA, USA
| | - Leigh Savary
- Inflammation and Immunology, Pfizer Worldwide Research and Development, Cambridge, MA, USA
- Instem Life Science Systems Ltd, Mount Ida College, South Hadley, MA, USA
| | - Stephen Wang
- Pharmacokinetics and Drug Metabolism, Pfizer Worldwide Research and Development, Cambridge, MA, USA
- Novartis Gene Therapies, Novartis Institute for Biomedical Research, Cambridge, MA, USA
| | - Prashant Nambiar
- Drug Safety Research and Development, Pfizer Worldwide Research and Development, Cambridge, MA, USA
- Strand Therapeutics, Cambridge, MA, USA
| | - Matthew Lech
- Inflammation and Immunology, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Shanrong Zhao
- Clinical Genetics and Bioinformatics, Pfizer Worldwide Research and Development, Cambridge, MA, USA
- Amunix Pharmaceuticals, San Francisco, CA, USA
| | - Li Xi
- Early Clinical Development, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Yutian Zhan
- Drug Safety Research and Development, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Jennifer Olson
- Drug Safety Research and Development, Pfizer Worldwide Research and Development, Groton, CT, USA
| | - James A Stejskal
- Drug Safety Research and Development, Pfizer Worldwide Research and Development, Groton, CT, USA
- Charles River Laboratories, Shrewsbury, MA, USA
| | - Hank Lin
- Drug Safety Research and Development, Pfizer Worldwide Research and Development, Cambridge, MA, USA
- Sunovion Pharmaceuticals Inc., Marlborough, MA, USA
| | - Baohong Zhang
- Clinical Genetics and Bioinformatics, Pfizer Worldwide Research and Development, Cambridge, MA, USA
- Data Sciences, Biogen, Cambridge, MA, USA
| | - Robert V Martinez
- Inflammation and Immunology, Pfizer Worldwide Research and Development, Cambridge, MA, USA
- Center for Technological Innovation, Pfizer Worldwide Research and Development, San Francisco, CA, USA
| | | | - Franklin J Schlerman
- Inflammation and Immunology, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Ken Dower
- Inflammation and Immunology, Pfizer Worldwide Research and Development, Cambridge, MA, USA.
| |
Collapse
|
4
|
Xu C, Miao H, Chen X, Zhang H. Cellular mechanism of action of forsythiaside for the treatment of diabetic kidney disease. Front Pharmacol 2023; 13:1096536. [PMID: 36712665 PMCID: PMC9880420 DOI: 10.3389/fphar.2022.1096536] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/30/2022] [Indexed: 01/15/2023] Open
Abstract
Background: Diabetic kidney disease (DKD) becomes the leading cause of death for end-stage renal disease, whereas the potential mechanism is unclear and effective therapy is still rare. Our study was designed to investigate the cellular mechanism of Forsythiaside against DKD. Materials and Methods: The targets of Forsythiaside and the DKD-related targets were obtained from databases. The overlapping targets in these two sets were regarded as potential targets for alleviation of DKD by Forsythiaside. The targets of diabetic podocytopathy and tubulopathy were also detected to clarify the mechanism of Forsythiaside ameliorating DKD from the cellular level. Results: Our results explored that PRKCA and RHOA were regarded as key therapeutic targets of Forsythiaside with excellent binding affinity for treating DKD podocytopathy. Enrichment analysis suggested the underlying mechanism was mainly focused on the oxidative stress and mTOR signaling pathway. The alleviated effects of Forsythiaside on the reactive oxidative species accumulation and PRKCA and RHOA proteins upregulation in podocytes were also confirmed. Conclusion: The present study elucidates that Forsythiaside exerts potential treatment against DKD which may act directly RHOA and PRKCA target by suppressing the oxidative stress pathway in podocytes. And Forsythiaside could be regarded as one of the candidate drugs dealing with DKD in future experimental or clinical researches.
Collapse
Affiliation(s)
- Chunmei Xu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Provincial Hospital, Jinan, China,Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, China,*Correspondence: Chunmei Xu, ; Haiqing Zhang,
| | - Huikai Miao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Xiaoxuan Chen
- Shandong Provincial Institute of Dermatology and Venereology, Shandong University, Jinan, China
| | - Haiqing Zhang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Provincial Hospital, Jinan, China,Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, China,*Correspondence: Chunmei Xu, ; Haiqing Zhang,
| |
Collapse
|
5
|
Ji Y, Yang Y, Sun S, Dai Z, Ren F, Wu Z. Insights into diet-associated oxidative pathomechanisms in inflammatory bowel disease and protective effects of functional amino acids. Nutr Rev 2022; 81:95-113. [PMID: 35703919 DOI: 10.1093/nutrit/nuac039] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
There has been a substantial rise in the incidence and prevalence of clinical patients presenting with inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis. Accumulating evidence has corroborated the view that dietary factors (particularly diets with high levels of saturated fat or sugar) are involved in the development and progression of IBD, which is predominately associated with changes in the composition of the gut microbiota and an increase in the generation of reactive oxygen species. Notably, the ecological imbalance of the gut microbiome exacerbates oxidative stress and inflammatory responses, leading to perturbations of the intestinal redox balance and immunity, as well as mucosal integrity. Recent findings have revealed that functional amino acids, including L-glutamine, glycine, L-arginine, L-histidine, L-tryptophan, and hydroxyproline, are effectively implicated in the maintenance of intestinal redox and immune homeostasis. These amino acids and their metabolites have oxygen free-radical scavenging and inflammation-relieving properties, and they participate in modulation of the microbial community and the metabolites in the gut. The principal focus of this article is a review of recent advances in the oxidative pathomechanisms of IBD development and progression in relation to dietary factors, with a particular emphasis on the redox and signal transduction mechanisms of host cells in response to unbalanced diets and enterobacteria. In addition, an update on current understanding of the protective effects of functional amino acids against IBD, together with the underlying mechanisms for this protection, have been provided.
Collapse
Affiliation(s)
- Yun Ji
- are with the State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China.,are with the Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Ying Yang
- are with the State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Shiqiang Sun
- are with the State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Zhaolai Dai
- are with the State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, ChinaChina
| | - Fazheng Ren
- are with the Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Zhenlong Wu
- are with the State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China.,are with the Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Li R, Kato H, Taguchi Y, Deng X, Minagawa E, Nakata T, Umeda M. Glucose Starvation-Caused Oxidative Stress Induces Inflammation and Autophagy in Human Gingival Fibroblasts. Antioxidants (Basel) 2022; 11:antiox11101907. [PMID: 36290630 PMCID: PMC9598069 DOI: 10.3390/antiox11101907] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/14/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Gingival tissue experiences an environment of nutrient shortage, such as low glucose conditions, after periodontal surgery. Our previous studies found that this low glucose condition inhibits normal gingival cell functions. However, the mechanism by which this glucose-deficient environment causes cellular damage to human gingival fibroblasts (HGnFs) remains unclear. This study aimed to investigate the biological effects of ROS induction on HGnFs under low glucose conditions. ROS levels and cellular anti-ROS ability of HGnFs under different glucose concentrations were evaluated by measuring ROS formation and the expression of superoxide dismutase and heme oxygenase 1. Changes in cellular viability were investigated using 5-bromo-2′-deoxyuridine assay and cell survival detection, and the cellular damage was evaluated by the expression of inflammatory cytokines and changes in the expression of autophagy-related protein. ROS formation was then blocked using N-acetyl-L-cysteine (NAC), and the effects of ROS on HGnFs under low glucose conditions were investigated. Low glucose conditions induced ROS accumulation, reduced cellular activity, and induced inflammation and autophagy. After NAC application, the anti-ROS capacity increased, cellular activity improved, and inflammation and autophagy were controlled. This can be effectively controlled by the application of antioxidants such as NAC.
Collapse
|
7
|
Ha KB, Sangartit W, Jeong AR, Lee ES, Kim HM, Shim S, Kukongviriyapan U, Kim DK, Lee EY, Chung CH. EW-7197 Attenuates the Progression of Diabetic Nephropathy in db/db Mice through Suppression of Fibrogenesis and Inflammation. Endocrinol Metab (Seoul) 2022; 37:96-111. [PMID: 35255604 PMCID: PMC8901963 DOI: 10.3803/enm.2021.1305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/27/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is characterized by albuminuria and accumulation of extracellular matrix (ECM) in kidney. Transforming growth factor-β (TGF-β) plays a central role in promoting ECM accumulation. We aimed to examine the effects of EW-7197, an inhibitor of TGF-β type 1 receptor kinase (ALK5), in retarding the progression of DN, both in vivo, using a diabetic mouse model (db/db mice), and in vitro, in podocytes and mesangial cells. METHODS In vivo study: 8-week-old db/db mice were orally administered EW-7197 at a dose of 5 or 20 mg/kg/day for 10 weeks. Metabolic parameters and renal function were monitored. Glomerular histomorphology and renal protein expression were evaluated by histochemical staining and Western blot analyses, respectively. In vitro study: DN was induced by high glucose (30 mM) in podocytes and TGF-β (2 ng/mL) in mesangial cells. Cells were treated with EW-7197 (500 nM) for 24 hours and the mechanism associated with the attenuation of DN was investigated. RESULTS Enhanced albuminuria and glomerular morphohistological changes were observed in db/db compared to that of the nondiabetic (db/m) mice. These alterations were associated with the activation of the TGF-β signaling pathway. Treatment with EW-7197 significantly inhibited TGF-β signaling, inflammation, apoptosis, reactive oxygen species, and endoplasmic reticulum stress in diabetic mice and renal cells. CONCLUSION EW-7197 exhibits renoprotective effect in DN. EW-7197 alleviates renal fibrosis and inflammation in diabetes by inhibiting downstream TGF-β signaling, thereby retarding the progression of DN. Our study supports EW-7197 as a therapeutically beneficial compound to treat DN.
Collapse
Affiliation(s)
- Kyung Bong Ha
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju,
Korea
| | - Weerapon Sangartit
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen,
Thailand
- Cardiovascular Research Group, Khon Kaen University, Khon Kaen,
Thailand
| | - Ah Reum Jeong
- Department of Internal Medicine and Institute of Tissue Regeneration, Soonchunhyang University College of Medicine, Cheonan,
Korea
| | - Eun Soo Lee
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju,
Korea
- Institution of Genetic Cohort, Yonsei University Wonju College of Medicine, Wonju,
Korea
| | - Hong Min Kim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju,
Korea
| | - Soyeon Shim
- Department of Pharmacy, Ewha Womans University College of Pharmacy, Seoul,
Korea
| | - Upa Kukongviriyapan
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen,
Thailand
- Cardiovascular Research Group, Khon Kaen University, Khon Kaen,
Thailand
| | - Dae-Kee Kim
- Department of Pharmacy, Ewha Womans University College of Pharmacy, Seoul,
Korea
| | - Eun Young Lee
- Department of Internal Medicine and Institute of Tissue Regeneration, Soonchunhyang University College of Medicine, Cheonan,
Korea
| | - Choon Hee Chung
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju,
Korea
- Institution of Genetic Cohort, Yonsei University Wonju College of Medicine, Wonju,
Korea
| |
Collapse
|
8
|
Palmer TM, Salt IP. Nutrient regulation of inflammatory signalling in obesity and vascular disease. Clin Sci (Lond) 2021; 135:1563-1590. [PMID: 34231841 DOI: 10.1042/cs20190768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/10/2021] [Accepted: 06/28/2021] [Indexed: 11/17/2022]
Abstract
Despite obesity and diabetes markedly increasing the risk of developing cardiovascular diseases, the molecular and cellular mechanisms that underlie this association remain poorly characterised. In the last 20 years it has become apparent that chronic, low-grade inflammation in obese adipose tissue may contribute to the risk of developing insulin resistance and type 2 diabetes. Furthermore, increased vascular pro-inflammatory signalling is a key event in the development of cardiovascular diseases. Overnutrition exacerbates pro-inflammatory signalling in vascular and adipose tissues, with several mechanisms proposed to mediate this. In this article, we review the molecular and cellular mechanisms by which nutrients are proposed to regulate pro-inflammatory signalling in adipose and vascular tissues. In addition, we examine the potential therapeutic opportunities that these mechanisms provide for suppression of inappropriate inflammation in obesity and vascular disease.
Collapse
Affiliation(s)
- Timothy M Palmer
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull HU6 7RX, United Kingdom
| | - Ian P Salt
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
9
|
van de Venter M, Didloff J, Reddy S, Swanepoel B, Govender S, Dambuza NS, Williams S, Koekemoer TC, Venables L. Wild-Type Zebrafish ( Danio rerio) Larvae as a Vertebrate Model for Diabetes and Comorbidities: A Review. Animals (Basel) 2020; 11:E54. [PMID: 33396883 PMCID: PMC7824285 DOI: 10.3390/ani11010054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
Zebrafish have become a popular alternative to higher animals in biomedical and pharmaceutical research. The development of stable mutant lines to model target specific aspects of many diseases, including diabetes, is well reported. However, these mutant lines are much more costly and challenging to maintain than wild-type zebrafish and are simply not an option for many research facilities. As an alternative to address the disadvantages of advanced mutant lines, wild-type larvae may represent a suitable option. In this review, we evaluate organ development in zebrafish larvae and discuss established methods that use wild-type zebrafish larvae up to seven days post fertilization to test for potential drug candidates for diabetes and its commonly associated conditions of oxidative stress and inflammation. This provides an up to date overview of the relevance of wild-type zebrafish larvae as a vertebrate antidiabetic model and confidence as an alternative tool for preclinical studies. We highlight the advantages and disadvantages of established methods and suggest recommendations for future developments to promote the use of zebrafish, specifically larvae, rather than higher animals in the early phase of antidiabetic drug discovery.
Collapse
Affiliation(s)
- Maryna van de Venter
- Department of Biochemistry and Microbiology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; (J.D.); (S.R.); (B.S.); (S.G.); (S.W.); (T.C.K.); (L.V.)
| | - Jenske Didloff
- Department of Biochemistry and Microbiology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; (J.D.); (S.R.); (B.S.); (S.G.); (S.W.); (T.C.K.); (L.V.)
| | - Shanika Reddy
- Department of Biochemistry and Microbiology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; (J.D.); (S.R.); (B.S.); (S.G.); (S.W.); (T.C.K.); (L.V.)
| | - Bresler Swanepoel
- Department of Biochemistry and Microbiology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; (J.D.); (S.R.); (B.S.); (S.G.); (S.W.); (T.C.K.); (L.V.)
| | - Sharlene Govender
- Department of Biochemistry and Microbiology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; (J.D.); (S.R.); (B.S.); (S.G.); (S.W.); (T.C.K.); (L.V.)
| | - Ntokozo Shirley Dambuza
- Department of Pharmacy, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa;
| | - Saralene Williams
- Department of Biochemistry and Microbiology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; (J.D.); (S.R.); (B.S.); (S.G.); (S.W.); (T.C.K.); (L.V.)
| | - Trevor Craig Koekemoer
- Department of Biochemistry and Microbiology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; (J.D.); (S.R.); (B.S.); (S.G.); (S.W.); (T.C.K.); (L.V.)
| | - Luanne Venables
- Department of Biochemistry and Microbiology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; (J.D.); (S.R.); (B.S.); (S.G.); (S.W.); (T.C.K.); (L.V.)
| |
Collapse
|
10
|
Huang Y, Jin L, Yu H, Jiang G, Tam CHT, Jiang S, Zheng C, Jiang F, Zhang R, Zhang H, Chan JCN, Ma RCW, Jia W, Hu C, Liu Z. SNPs in PRKCA-HIF1A-GLUT1 are associated with diabetic kidney disease in a Chinese Han population with type 2 diabetes. Eur J Clin Invest 2020; 50:e13264. [PMID: 32394523 DOI: 10.1111/eci.13264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/14/2020] [Accepted: 05/03/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To explore the relationship between SNPs in PRKCA-HIF1A-GLUT1 and diabetic kidney disease in Chinese Han people. MATERIALS AND METHODS A total of 2552 participants from Shanghai Diabetes Institute Inpatient Database of Shanghai Jiao Tong University Affiliated Sixth People's Hospital were involved in the stage 1 cross-sectional population. A total of 6015 subjects from the Hong Kong Diabetes Register were included for validation. Genotyping of participants was conducted by the MassARRAY Compact Analyzer (Agena Bioscience). The data were analysed by plink, SAS, Haploview. RESULTS We identified variants associated with diabetic kidney disease in stage 1. Rs1681851 (P = .0105, OR = 1.331) in GLUT1 as well as rs2301108 (P = .0085, OR = 1.289) and rs79865957 (P = .0204, OR = 1.263) in HIF1A were significantly associated with diabetic kidney disease. Regarding DKD-related traits, rs1681851 was associated with plasma creatinine levels (P = .0169, β = 4.822) and eGFR (P = .0457, β = -6.956). Moreover, the results showed the interactions between PRKCA-GLUT1 in the occurrence of DKD. We further sought validation of the 17 SNPs in a prospective cohort and found that rs900836 and rs844501 were associated with the percentage change in eGFR slope. We performed a meta-analysis of case-control analysis data from the Hong Kong samples together with the stage 1 data from Shanghai. Rs9894851 showed significant correlation with the serum creatinine level as well as eGFR and no SNP showed association with DKD after meta-analysis. CONCLUSIONS Our results suggest potential association between SNPs in PRKCA-HIF1A-GLUT1 and diabetic kidney disease in Chinese Han people.
Collapse
Affiliation(s)
- Yan Huang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Li Jin
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Hairong Yu
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Jiaotong University affiliated 6th People's Hospital, Shanghai, China
| | - Guozhi Jiang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Claudia H T Tam
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Song Jiang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chunxia Zheng
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Feng Jiang
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Jiaotong University affiliated 6th People's Hospital, Shanghai, China
| | - Rong Zhang
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Jiaotong University affiliated 6th People's Hospital, Shanghai, China
| | - Hong Zhang
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Jiaotong University affiliated 6th People's Hospital, Shanghai, China
| | - Juliana C N Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.,Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,CUHK-SJTU Joint Research Centre in Diabetes Genomics and Precision Medicine, Hong Kong, China
| | - Ronald C W Ma
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.,Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,CUHK-SJTU Joint Research Centre in Diabetes Genomics and Precision Medicine, Hong Kong, China
| | - Weiping Jia
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Jiaotong University affiliated 6th People's Hospital, Shanghai, China
| | - Cheng Hu
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Jiaotong University affiliated 6th People's Hospital, Shanghai, China.,SJTU-CUHK Collaborative Grant, Shanghai, China.,Institute for Metabolic Diseases, Fengxian Central Hospital, The Third School of Clinical Medicine, Southern Medical University, Shanghai, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
11
|
Ho KH, Yang X, Osipovich AB, Cabrera O, Hayashi ML, Magnuson MA, Gu G, Kaverina I. Glucose Regulates Microtubule Disassembly and the Dose of Insulin Secretion via Tau Phosphorylation. Diabetes 2020; 69:1936-1947. [PMID: 32540877 PMCID: PMC7458041 DOI: 10.2337/db19-1186] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 06/07/2020] [Indexed: 12/16/2022]
Abstract
The microtubule cytoskeleton of pancreatic islet β-cells regulates glucose-stimulated insulin secretion (GSIS). We have reported that the microtubule-mediated movement of insulin vesicles away from the plasma membrane limits insulin secretion. High glucose-induced remodeling of microtubule network facilitates robust GSIS. This remodeling involves disassembly of old microtubules and nucleation of new microtubules. Here, we examine the mechanisms whereby glucose stimulation decreases microtubule lifetimes in β-cells. Using real-time imaging of photoconverted microtubules, we demonstrate that high levels of glucose induce rapid microtubule disassembly preferentially in the periphery of individual β-cells, and this process is mediated by the phosphorylation of microtubule-associated protein tau. Specifically, high glucose induces tau hyper-phosphorylation via glucose-responsive kinases GSK3, PKA, PKC, and CDK5. This causes dissociation of tau from and subsequent destabilization of microtubules. Consequently, tau knockdown in mouse islet β-cells facilitates microtubule turnover, causing increased basal insulin secretion, depleting insulin vesicles from the cytoplasm, and impairing GSIS. More importantly, tau knockdown uncouples microtubule destabilization from glucose stimulation. These findings suggest that tau suppresses peripheral microtubules turning over to restrict insulin oversecretion in basal conditions and preserve the insulin pool that can be released following stimulation; high glucose promotes tau phosphorylation to enhance microtubule disassembly to acutely enhance GSIS.
Collapse
Affiliation(s)
- Kung-Hsien Ho
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
- Program of Developmental Biology and Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN
| | - Xiaodun Yang
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
- Program of Developmental Biology and Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN
| | - Anna B Osipovich
- Program of Developmental Biology and Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | | | | | - Mark A Magnuson
- Program of Developmental Biology and Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Guoqiang Gu
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
- Program of Developmental Biology and Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN
| | - Irina Kaverina
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
- Program of Developmental Biology and Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN
| |
Collapse
|
12
|
Abstract
Diabetic retinopathy (DR) is a frequent complication of diabetes mellitus and an increasingly common cause of visual impairment. Blood vessel damage occurs as the disease progresses, leading to ischemia, neovascularization, blood-retina barrier (BRB) failure and eventual blindness. Although detection and treatment strategies have improved considerably over the past years, there is room for a better understanding of the pathophysiology of the diabetic retina. Indeed, it has been increasingly realized that DR is in fact a disease of the retina's neurovascular unit (NVU), the multi-cellular framework underlying functional hyperemia, coupling neuronal computations to blood flow. The accumulating evidence reveals that both neurochemical (synapses) and electrical (gap junctions) means of communications between retinal cells are affected at the onset of hyperglycemia, warranting a global assessment of cellular interactions and their role in DR. This is further supported by the recent data showing down-regulation of connexin 43 gap junctions along the vascular relay from capillary to feeding arteriole as one of the earliest indicators of experimental DR, with rippling consequences to the anatomical and physiological integrity of the retina. Here, recent advancements in our knowledge of mechanisms controlling the retinal neurovascular unit will be assessed, along with their implications for future treatment and diagnosis of DR.
Collapse
|
13
|
Paul S, Ali A, Katare R. Molecular complexities underlying the vascular complications of diabetes mellitus - A comprehensive review. J Diabetes Complications 2020; 34:107613. [PMID: 32505477 DOI: 10.1016/j.jdiacomp.2020.107613] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/27/2020] [Accepted: 04/18/2020] [Indexed: 12/19/2022]
Abstract
Diabetes is a chronic disease, characterized by hyperglycemia, which refers to the elevated levels of glucose in the blood, due to the inability of the body to produce or use insulin effectively. Chronic hyperglycemia levels lead to macrovascular and microvascular complications. The macrovascular complications consist of peripheral artery disease (PAD), cardiovascular diseases (CVD) and cerebrovascular diseases, while the microvascular complications comprise of diabetic microangiopathy, diabetic nephropathy, diabetic retinopathy and diabetic neuropathy. Vascular endothelial dysfunction plays a crucial role in mediating both macrovascular and microvascular complications under hyperglycemic conditions. In diabetic microvasculature, the intracellular hyperglycemia causes damage to the vascular endothelium through - (i) activation of four biochemical pathways, namely the Polyol pathway, protein kinase C (PKC) pathway, advanced glycation end products (AGE) pathway and hexosamine pathway, all of which commutes glucose and its intermediates leading to overproduction of reactive oxygen species, (ii) dysregulation of growth factors and cytokines, (iii) epigenetic changes which concern the changes in DNA as a response to intracellular changes, and (iv) abnormalities in non-coding RNAs, specifically microRNAs. This review will focus on gaining an understanding of the molecular complexities underlying the vascular complications in diabetes mellitus, to increase our understanding towards the development of new mechanistic therapeutic strategies to prevent or treat diabetes-induced vascular complications.
Collapse
Affiliation(s)
- Shalini Paul
- Department of Physiology, HeartOtago, University of Otago, Dunedin, New Zealand
| | - Azam Ali
- Centre for Bioengineering and Nanomedicine (Dunedin), University of Otago, Dunedin, New Zealand
| | - Rajesh Katare
- Department of Physiology, HeartOtago, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
14
|
Wang K, Zheng X, Pan Z, Yao W, Gao X, Wang X, Ding X. Icariin Prevents Extracellular Matrix Accumulation and Ameliorates Experimental Diabetic Kidney Disease by Inhibiting Oxidative Stress via GPER Mediated p62-Dependent Keap1 Degradation and Nrf2 Activation. Front Cell Dev Biol 2020; 8:559. [PMID: 32766240 PMCID: PMC7379398 DOI: 10.3389/fcell.2020.00559] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/11/2020] [Indexed: 12/14/2022] Open
Abstract
The present study aimed to determine whether icariin could attenuate type 1 diabetic nephropathy (T1DN) induced by streptozotocin (STZ) after 4 weeks or not. Therefore, its therapeutic effect on diabetic kidney disease was investigated in view of reactive oxygen (ROS) and extracellular matrix (ECM) generation in human glomerular mesangial cells under high glucose. To establish the participation and the key role of GPER and Nrf2 in ECM deposition, a combination of G15 (antagonist of GPER) or siGPER and siNrf2 were performed, respectively. The results showed that T1DN can be significantly inhibited by oral icariin, evidenced by improvement of 24 h urinary volume, 24 h proteinuria, microalbuminuria, and histopathological changes of kidney. Icariin decreased the levels of intracellular superoxide anion, impeded the generation of fibronectin and increased the expression and activity of antioxidant enzymes in the human glomerular mesangial cells treated with high glucose. It acted as a GPER activator, increased dissociation of Nrf2/Keap1 complexes, combination of Keap1/p62 complexes, Nrf2 translocation to nuclear, Nrf2/ARE DNA binding activity, and ARE luciferase reporter gene activity in glomerular mesangial cells. The Nrf2 inhibitor ML385 or siNrf2 obviously abolished extracellular matrix (ECM) generation inhibited by icariin. Furthermore, icariin-induced Nrf2 activation was mainly dependent on p62-mediated Keap1 degradation, which functions as an adaptor protein during autophagy. The GPER antagonist G15 and siGPER obviously abolished the above effects by icariin. Taken together, the present study demonstrated that the therapeutic effects of icariin on type 1 diabetic nephropathy in rats via GPER mediated p62-dependent Keap1 degradation and Nrf2 activation.
Collapse
Affiliation(s)
- Kai Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiulan Zheng
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhenzhen Pan
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wenhui Yao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xin Gao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiniao Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xuansheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
15
|
Kovacs-Oller T, Ivanova E, Bianchimano P, Sagdullaev BT. The pericyte connectome: spatial precision of neurovascular coupling is driven by selective connectivity maps of pericytes and endothelial cells and is disrupted in diabetes. Cell Discov 2020; 6:39. [PMID: 32566247 PMCID: PMC7296038 DOI: 10.1038/s41421-020-0180-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/13/2020] [Indexed: 01/01/2023] Open
Abstract
Functional hyperemia, or the matching of blood flow with activity, directs oxygen and nutrients to regionally firing neurons. The mechanisms responsible for this spatial accuracy remain unclear but are critical for brain function and establish the diagnostic resolution of BOLD-fMRI. Here, we described a mosaic of pericytes, the vasomotor capillary cells in the living retina. We then tested whether this net of pericytes and surrounding neuroglia predicted a connectivity map in response to sensory stimuli. Surprisingly, we found that these connections were not only selective across cell types, but also highly asymmetric spatially. First, pericytes connected predominantly to other neighboring pericytes and endothelial cells, and less to arteriolar smooth muscle cells, and not to surrounding neurons or glia. Second, focal, but not global stimulation evoked a directional vasomotor response by strengthening connections along the feeding vascular branch. This activity required local NO signaling and occurred by means of direct coupling via gap junctions. By contrast, bath application of NO or diabetes, a common microvascular pathology, not only weakened the vascular signaling but also abolished its directionality. We conclude that the exclusivity of neurovascular interactions may thus establish spatial accuracy of blood delivery with the precision of the neuronal receptive field size, and is disrupted early in diabetes.
Collapse
Affiliation(s)
- Tamas Kovacs-Oller
- Burke Neurological Institute, White Plains, NY 10605 USA
- Szentagothai Research Centre, University of Pécs, Pécs, H-7624 Hungary
| | - Elena Ivanova
- Burke Neurological Institute, White Plains, NY 10605 USA
| | | | - Botir T. Sagdullaev
- Burke Neurological Institute, White Plains, NY 10605 USA
- Department of Ophthalmology, Weill Cornell Medicine, New York, NY 10065 USA
| |
Collapse
|
16
|
Brain signalling systems: A target for treating type I diabetes mellitus. Brain Res Bull 2019; 152:191-201. [PMID: 31325597 DOI: 10.1016/j.brainresbull.2019.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/08/2019] [Accepted: 07/15/2019] [Indexed: 01/26/2023]
Abstract
From early to later stages of Type I Diabetes Mellitus (TIDM), signalling molecules including brain indolamines and protein kinases are altered significantly, and that has been implicated in the Metabolic Disorders (MD) as well as impairment of retinal, renal, neuronal and cardiovascular systems. Considerable attention has been focused to the effects of diabetes on these signalling systems. However, the exact pathophysiological mechanisms of these signals are not completely understood in TIDM, but it is likely that hyperglycemia, acidosis, and insulin resistance play significant roles. Insulin maintains normal glycemic levels and it acts by binding to its receptor, so that it activates the receptor's tyrosine kinase activity, resulting in phosphorylation of several substrates. Those substrates provide binding/interaction sites for signalling molecules, including serine/threonine kinases and indolamines. For more than two decades, our research has been focused on the mechanisms of protein kinases, CaM Kinase and Serotonin transporter mediated alterations of indolamines in TIDM. In this review, we have also discussed how discrete areas of brain respond to insulin or some of the pharmacological agents that triggers or restores these signalling molecules, and it may be useful for the treatment of specific region wise changes/disorders of diabetic brain.
Collapse
|
17
|
Gordin D, Shah H, Shinjo T, St-Louis R, Qi W, Park K, Paniagua SM, Pober DM, Wu IH, Bahnam V, Brissett MJ, Tinsley LJ, Dreyfuss JM, Pan H, Dong Y, Niewczas MA, Amenta P, Sadowski T, Kannt A, Keenan HA, King GL. Characterization of Glycolytic Enzymes and Pyruvate Kinase M2 in Type 1 and 2 Diabetic Nephropathy. Diabetes Care 2019; 42:1263-1273. [PMID: 31076418 PMCID: PMC6609957 DOI: 10.2337/dc18-2585] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/11/2019] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Elevated glycolytic enzymes in renal glomeruli correlated with preservation of renal function in the Medalist Study, individuals with ≥50 years of type 1 diabetes. Specifically, pyruvate kinase M2 (PKM2) activation protected insulin-deficient diabetic mice from hyperglycemia-induced glomerular pathology. This study aims to extend these findings in a separate cohort of individuals with type 1 and type 2 diabetes and discover new circulatory biomarkers for renal protection through proteomics and metabolomics of Medalists' plasma. We hypothesize that increased glycolytic flux and improved mitochondrial biogenesis will halt the progression of diabetic nephropathy. RESEARCH DESIGN AND METHODS Immunoblots analyzed selected glycolytic and mitochondrial enzymes in postmortem glomeruli of non-Medalists with type 1 diabetes (n = 15), type 2 diabetes (n = 19), and no diabetes (n = 5). Plasma proteomic (SOMAscan) (n = 180) and metabolomic screens (n = 214) of Medalists with and without stage 3b chronic kidney disease (CKD) were conducted and significant markers validated by ELISA. RESULTS Glycolytic (PKM1, PKM2, and ENO1) and mitochondrial (MTCO2) enzymes were significantly elevated in glomeruli of CKD- versus CKD+ individuals with type 2 diabetes. Medalists' plasma PKM2 correlated with estimated glomerular filtration rate (r 2 = 0.077; P = 0.0002). Several glucose and mitochondrial enzymes in circulation were upregulated with corresponding downregulation of toxic metabolites in CKD-protected Medalists. Amyloid precursor protein was also significantly upregulated, tumor necrosis factor receptors downregulated, and both confirmed by ELISA. CONCLUSIONS Elevation of enzymes involved in the metabolism of intracellular free glucose and its metabolites in renal glomeruli is connected to preserving kidney function in both type 1 and type 2 diabetes. The renal profile of elevated glycolytic enzymes and reduced toxic glucose metabolites is reflected in the circulation, supporting their use as biomarkers for endogenous renal protective factors in people with diabetes.
Collapse
Affiliation(s)
- Daniel Gordin
- Joslin Diabetes Center, Boston, MA.,Harvard Medical School, Boston, MA.,Folkhälsan Research Center, University of Helsinki, Helsinki, Finland.,Abdominal Center Nephrology, Helsinki University Hospital, Helsinki, Finland
| | - Hetal Shah
- Joslin Diabetes Center, Boston, MA.,Harvard Medical School, Boston, MA
| | - Takanori Shinjo
- Joslin Diabetes Center, Boston, MA.,Harvard Medical School, Boston, MA
| | - Ronald St-Louis
- Joslin Diabetes Center, Boston, MA.,Harvard Medical School, Boston, MA
| | - Weier Qi
- Joslin Diabetes Center, Boston, MA.,Harvard Medical School, Boston, MA.,Translational Research and Early Clinical Development, Cardiovascular and Metabolic Research, AstraZeneca, Mölndal, Sweden
| | - Kyoungmin Park
- Joslin Diabetes Center, Boston, MA.,Harvard Medical School, Boston, MA
| | | | - David M Pober
- Joslin Diabetes Center, Boston, MA.,Harvard Medical School, Boston, MA
| | | | | | | | | | | | - Hui Pan
- Joslin Diabetes Center, Boston, MA
| | | | - Monika A Niewczas
- Joslin Diabetes Center, Boston, MA.,Harvard Medical School, Boston, MA
| | - Peter Amenta
- Joslin Diabetes Center, Boston, MA.,Harvard Medical School, Boston, MA
| | | | - Aimo Kannt
- Sanofi Deutschland GmbH, Frankfurt am Main, Germany.,Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Hillary A Keenan
- Joslin Diabetes Center, Boston, MA.,Harvard Medical School, Boston, MA.,Sanofi-Genzyme, Cambridge, MA
| | - George L King
- Joslin Diabetes Center, Boston, MA .,Harvard Medical School, Boston, MA
| |
Collapse
|
18
|
Rabbani N, Thornalley PJ. Hexokinase-2 Glycolytic Overload in Diabetes and Ischemia-Reperfusion Injury. Trends Endocrinol Metab 2019; 30:419-431. [PMID: 31221272 DOI: 10.1016/j.tem.2019.04.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/21/2019] [Accepted: 04/25/2019] [Indexed: 01/12/2023]
Abstract
Hexokinase-2 (HK2) was recently found to produce increased metabolic flux through glycolysis in hyperglycemia without concurrent transcriptional or other functional regulation. Rather, stabilization to proteolysis by increased glucose substrate binding produced unscheduled increased glucose metabolism in response to high cytosolic glucose concentration. This produces abnormal increases in glycolytic intermediates or glycolytic overload, driving cell dysfunction and vulnerability to the damaging effects of hyperglycemia in diabetes, explaining tissue-specific pathogenesis. Glycolytic overload is also activated in ischemia-reperfusion injury and cell senescence. A further key feature is HK2 displacement from mitochondria by increased glucose-6-phosphate concentration, inducing mitochondrial dysfunction and oxidative stress. This pathogenic mechanism suggested new targets for therapeutics development that gave promising outcomes in initial clinical evaluation.
Collapse
Affiliation(s)
- Naila Rabbani
- Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital, Coventry CV2 2DX, UK
| | - Paul J Thornalley
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 34110, Doha, Qatar.
| |
Collapse
|
19
|
Alves MT, Ortiz MMO, Dos Reis GVOP, Dusse LMS, Carvalho MDG, Fernandes AP, Gomes KB. The dual effect of C-peptide on cellular activation and atherosclerosis: Protective or not? Diabetes Metab Res Rev 2019; 35:e3071. [PMID: 30160822 DOI: 10.1002/dmrr.3071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/14/2018] [Accepted: 08/21/2018] [Indexed: 12/12/2022]
Abstract
C-peptide is a cleavage product of proinsulin that acts on different type of cells, such as blood and endothelial cells. C-peptide biological effects may be different in type 1 and type 2 diabetes. Besides, there are further evidence for a functional interaction between C-peptide and insulin. In this way, C-peptide has ambiguous effects, acting as an antithrombotic or thrombotic molecule, depending on the physiological environment and disease conditions. Moreover, C-peptide regulates interaction of leucocytes, erythrocytes, and platelets with the endothelium. The beneficial effects include stimulation of nitric oxide production with its subsequent release by platelets and endothelium, the interaction with erythrocytes leading to the generation of adenosine triphosphate, and inhibition of atherogenic cytokine release. The undesirable action of C-peptide includes the chemotaxis of monocytes, lymphocytes, and smooth muscle cells. Also, C-peptide was related with increased lipid deposits and elevated smooth muscle cells proliferation in the vessel wall, contributing to atherosclerosis. Purpose of this review is to explore these dual roles of C-peptide on the blood, contributing at one side to haemostasis and the other to atherosclerotic process.
Collapse
Affiliation(s)
- Michelle Teodoro Alves
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mylena Maira Oliveira Ortiz
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Luci Maria Sant'Ana Dusse
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maria das Graças Carvalho
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Paula Fernandes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Karina Braga Gomes
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
20
|
Liu G, Chen L, Cai Q, Wu H, Chen Z, Zhang X, Lu P. Streptozotocin‑induced diabetic mice exhibit reduced experimental choroidal neovascularization but not corneal neovascularization. Mol Med Rep 2018; 18:4388-4398. [PMID: 30221697 PMCID: PMC6172380 DOI: 10.3892/mmr.2018.9445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/17/2018] [Indexed: 01/29/2023] Open
Abstract
The present study aimed to investigate the effects of diabetes mellitus (DM) on the generation of experimental corneal neovascularization (CrNV) and choroidal neovascularization (ChNV). Diabetes was induced in mice by intraperitoneal injection of streptozotocin (STZ). Experimental CrNV and ChNV were induced by alkali injury and laser photocoagulation, respectively. CrNV and ChNV were compared between the STZ‑induced diabetic mice and control mice two weeks after injury. Relative expression of angiogenic factors was quantified by reverse transcription‑quantitative polymerase chain reaction, and progenitor cell or macrophage accumulation in the early phase following injury was examined by flow cytometric analysis. Compared with the alkali‑injured normal mice, the alkali‑injured diabetic mice (STZ‑induced) exhibited no significant difference in CrNV occurrence, whereas the laser‑injured diabetic mice exhibited significantly reduced levels of ChNV compared with those of the laser‑injured control animals. The laser‑induced intrachoroidal mRNA expression levels of angiogenic factors, including vascular endothelial growth factor, hypoxia‑induced factor‑1α, chemokine (C‑C motif) ligand 3, and stromal cell‑derived factor‑1α, were reduced in the laser‑injured diabetic mice when compared with laser‑injured control mice. Furthermore, the laser‑induced intrachoroidal infiltration of c‑Kit+ progenitor cells was impaired in the laser‑injured diabetic mice compared with the laser‑injured control mice. Overall, diabetes did not exert a significant effect on the generation of experimental CrNV. However, diabetes reduced laser‑induced ChNV through downregulation of intrachoroidal progenitor cell infiltration and angiogenic factor expression.
Collapse
Affiliation(s)
- Gaoqin Liu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Lei Chen
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Qinhua Cai
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Hongya Wu
- Jiangsu Key Laboratory of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Zhigang Chen
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xueguang Zhang
- Jiangsu Key Laboratory of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Peirong Lu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
21
|
Koyuncu BU, Karaca M, Sari F, Sari R. Is Skin Tag Associated with Diabetic Macro and Microangiopathy? J Natl Med Assoc 2018; 110:574-578. [PMID: 30129497 DOI: 10.1016/j.jnma.2018.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 01/23/2018] [Accepted: 03/14/2018] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Although skin tag is associated with diabetes mellitus, no data in the literature show that the presence of skin tag is associated with diabetic macro and microangiopathy. The purpose of this study was to investigate the frequency of hypertension, dyslipidemia, obesity, macro and micro angiopathy in type 2 diabetic patients with and without skin tag. MATERIAL AND METHODS We evaluated 99 (40 female and 59 male) type 2 diabetic patients. All patients were evaluated for blood pressure, body mass index, lipids, HbA1c, macroangiopathy (peripheral vascular disease, cerebrovascular disease and coronary heart disease), microangiopathy (neuropathy, nephropathy, retinopathy) and skin tag. RESULTS Age, HbA1c and body mass index were 65.0 ± 14.2 years, 8.1 ± 2.0% and 30.5 ± 6.4 kg/m2, respectively. The frequency of skin tags 53.5%, dyslipidemia 68.7%, hypertension 69.7%, obesity 39.4%, macroangiopathy 61.6% (peripheral vascular disease 12.1%, cerebrovascular disease 16.2%, and coronary heart disease 49.5%), microangiopathy 63.6% (neuropathy 21.2%, nephropathy 38.4%, retinopathy 38.4%) were detected. Higher body mass index (p = 0.04) and frequency of obesity (p = 0.03) were detected in patients with skin tag than without skin tag. Age (p = 0.8), gender (p = 0.6), HbA1c (p = 0.4) and the presence of dyslipidemia (p = 0.4), hypertension (p = 0.6), macroangiopathy (p = 0.2), and microangiopathy (p = 0.9) were not different in patients with and without skin tag. CONCLUSION We conclude that presence of skin tag is merely related to obesity and may not be strongly associated with macro- and microangiopathy in type 2 diabetic individuals. Further studies with large patient population are required to elucidate the association between the presence of skin tag and diabetic angiopathy.
Collapse
Affiliation(s)
- Birsen Unsal Koyuncu
- Akdeniz University, School of Medicine, Division of Endocrinology and Metabolism, Antalya, Turkey
| | - Mustafa Karaca
- Akdeniz University, School of Medicine, Division of Endocrinology and Metabolism, Antalya, Turkey
| | - Funda Sari
- Antalya Research and Education Hospital, Division of Nephrology, Antalya, Turkey
| | - Ramazan Sari
- Akdeniz University, School of Medicine, Division of Endocrinology and Metabolism, Antalya, Turkey.
| |
Collapse
|
22
|
Lu H, Bogdanovic E, Yu Z, Cho C, Liu L, Ho K, Guo J, Yeung LSN, Lehmann R, Hundal HS, Giacca A, Fantus IG. Combined Hyperglycemia- and Hyperinsulinemia-Induced Insulin Resistance in Adipocytes Is Associated With Dual Signaling Defects Mediated by PKC-ζ. Endocrinology 2018; 159:1658-1677. [PMID: 29370351 PMCID: PMC5939637 DOI: 10.1210/en.2017-00312] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 01/03/2018] [Indexed: 12/27/2022]
Abstract
A hyperglycemic and hyperinsulinemic environment characteristic of type 2 diabetes causes insulin resistance. In adipocytes, defects in both insulin sensitivity and maximum response of glucose transport have been demonstrated. To investigate the molecular mechanisms, freshly isolated rat adipocytes were incubated in control (5.6 mM glucose, no insulin) and high glucose (20 mM)/high insulin (100 nM) (HG/HI) for 18 hours to induce insulin resistance. Insulin-resistant adipocytes manifested decreased sensitivity of glucose uptake associated with defects in insulin receptor substrate (IRS)-1 Tyr phosphorylation, association of p85 subunit of phosphatidylinositol-3-kinase, Akt Ser473 and Thr308 phosphorylation, accompanied by impaired glucose transporter 4 translocation. In contrast, protein kinase C (PKC)-ζ activity was augmented by chronic HG/HI. Inhibition of PKC-ζ with a specific cell-permeable peptide reversed the signaling defects and insulin sensitivity of glucose uptake. Transfection of dominant-negative, kinase-inactive PKC-ζ blocked insulin resistance, whereas constitutively active PKC-ζ recapitulated the defects. The HG/HI incubation was associated with stimulation of IRS-1 Ser318 and Akt Thr34 phosphorylation, targets of PKC-ζ. Transfection of IRS-1 S318A and Akt T34A each partially corrected insulin signaling, whereas combined transfection of both completely normalized insulin signaling. In vivo hyperglycemia/hyperinsulinemia in rats for 48 hours similarly resulted in activation of PKC-ζ and increased phosphorylation of IRS-1 Ser318 and Akt Thr34. These data indicate that impairment of insulin signaling by chronic HG/HI is mediated by dual defects at IRS-1 and Akt mediated by PKC-ζ.
Collapse
Affiliation(s)
- Huogen Lu
- Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Elena Bogdanovic
- Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Zhiwen Yu
- Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Charles Cho
- Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Lijiang Liu
- Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Karen Ho
- Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - June Guo
- Department of Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Lucy S N Yeung
- Department of Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Reiner Lehmann
- Department of Internal Medicine IV, Endocrinology, Metabolism, Pathobiochemistry and Clinical Chemistry, University Hospital Tuebingen, Tuebingen, Germany
| | - Harinder S Hundal
- Division of Molecular Physiology Unit, Faculty of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Adria Giacca
- Department of Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - I George Fantus
- Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
- Correspondence: I. George Fantus, MD, Departments of Medicine and Physiology, Mount Sinai Hospital, Joseph and Wolfe Lebovic Building, 60 Murray Street, 5th Floor, Room 5028, Toronto, Ontario M5T 3L9, Canada. E-mail:
| |
Collapse
|
23
|
Qi W, Keenan HA, Li Q, Ishikado A, Kannt A, Sadowski T, Yorek MA, Wu IH, Lockhart S, Coppey LJ, Pfenninger A, Liew CW, Qiang G, Burkart AM, Hastings S, Pober D, Cahill C, Niewczas MA, Israelsen WJ, Tinsley L, Stillman IE, Amenta PS, Feener EP, Vander Heiden MG, Stanton RC, King GL. Pyruvate kinase M2 activation may protect against the progression of diabetic glomerular pathology and mitochondrial dysfunction. Nat Med 2017; 23:753-762. [PMID: 28436957 DOI: 10.1038/nm.4328] [Citation(s) in RCA: 324] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 03/23/2017] [Indexed: 12/12/2022]
Abstract
Diabetic nephropathy (DN) is a major cause of end-stage renal disease, and therapeutic options for preventing its progression are limited. To identify novel therapeutic strategies, we studied protective factors for DN using proteomics on glomeruli from individuals with extreme duration of diabetes (ł50 years) without DN and those with histologic signs of DN. Enzymes in the glycolytic, sorbitol, methylglyoxal and mitochondrial pathways were elevated in individuals without DN. In particular, pyruvate kinase M2 (PKM2) expression and activity were upregulated. Mechanistically, we showed that hyperglycemia and diabetes decreased PKM2 tetramer formation and activity by sulfenylation in mouse glomeruli and cultured podocytes. Pkm-knockdown immortalized mouse podocytes had higher levels of toxic glucose metabolites, mitochondrial dysfunction and apoptosis. Podocyte-specific Pkm2-knockout (KO) mice with diabetes developed worse albuminuria and glomerular pathology. Conversely, we found that pharmacological activation of PKM2 by a small-molecule PKM2 activator, TEPP-46, reversed hyperglycemia-induced elevation in toxic glucose metabolites and mitochondrial dysfunction, partially by increasing glycolytic flux and PGC-1α mRNA in cultured podocytes. In intervention studies using DBA2/J and Nos3 (eNos) KO mouse models of diabetes, TEPP-46 treatment reversed metabolic abnormalities, mitochondrial dysfunction and kidney pathology. Thus, PKM2 activation may protect against DN by increasing glucose metabolic flux, inhibiting the production of toxic glucose metabolites and inducing mitochondrial biogenesis to restore mitochondrial function.
Collapse
Affiliation(s)
- Weier Qi
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Hillary A Keenan
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Qian Li
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Atsushi Ishikado
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Aimo Kannt
- Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany
| | | | - Mark A Yorek
- Veterans Affairs Medical Center, Iowa City, Iowa, USA
| | - I-Hsien Wu
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | - Chong Wee Liew
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Guifen Qiang
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, USA.,State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing, China
| | - Alison M Burkart
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Stephanie Hastings
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - David Pober
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher Cahill
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Monika A Niewczas
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - William J Israelsen
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Liane Tinsley
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Isaac E Stillman
- Beth Israel Deaconess Medical Center, Division of Anatomic Pathology, Boston, Massachusetts, USA
| | - Peter S Amenta
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Edward P Feener
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Robert C Stanton
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - George L King
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Hien TT, Turczyńska KM, Dahan D, Ekman M, Grossi M, Sjögren J, Nilsson J, Braun T, Boettger T, Garcia-Vaz E, Stenkula K, Swärd K, Gomez MF, Albinsson S. Elevated Glucose Levels Promote Contractile and Cytoskeletal Gene Expression in Vascular Smooth Muscle via Rho/Protein Kinase C and Actin Polymerization. J Biol Chem 2016; 291:3552-68. [PMID: 26683376 PMCID: PMC4751395 DOI: 10.1074/jbc.m115.654384] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 12/17/2015] [Indexed: 12/22/2022] Open
Abstract
Both type 1 and type 2 diabetes are associated with increased risk of cardiovascular disease. This is in part attributed to the effects of hyperglycemia on vascular endothelial and smooth muscle cells, but the underlying mechanisms are not fully understood. In diabetic animal models, hyperglycemia results in hypercontractility of vascular smooth muscle possibly due to increased activation of Rho-kinase. The aim of the present study was to investigate the regulation of contractile smooth muscle markers by glucose and to determine the signaling pathways that are activated by hyperglycemia in smooth muscle cells. Microarray, quantitative PCR, and Western blot analyses revealed that both mRNA and protein expression of contractile smooth muscle markers were increased in isolated smooth muscle cells cultured under high compared with low glucose conditions. This effect was also observed in hyperglycemic Akita mice and in diabetic patients. Elevated glucose activated the protein kinase C and Rho/Rho-kinase signaling pathways and stimulated actin polymerization. Glucose-induced expression of contractile smooth muscle markers in cultured cells could be partially or completely repressed by inhibitors of advanced glycation end products, L-type calcium channels, protein kinase C, Rho-kinase, actin polymerization, and myocardin-related transcription factors. Furthermore, genetic ablation of the miR-143/145 cluster prevented the effects of glucose on smooth muscle marker expression. In conclusion, these data demonstrate a possible link between hyperglycemia and vascular disease states associated with smooth muscle contractility.
Collapse
MESH Headings
- Actin Cytoskeleton/metabolism
- Actin Cytoskeleton/pathology
- Aged
- Animals
- Atherosclerosis/enzymology
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Cells, Cultured
- Contractile Proteins/agonists
- Contractile Proteins/genetics
- Contractile Proteins/metabolism
- Cytoskeletal Proteins/agonists
- Cytoskeletal Proteins/genetics
- Cytoskeletal Proteins/metabolism
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 2/complications
- Diabetic Angiopathies/enzymology
- Diabetic Angiopathies/metabolism
- Diabetic Angiopathies/pathology
- Gene Expression Regulation
- Humans
- Male
- Mice, Knockout
- Mice, Mutant Strains
- MicroRNAs/metabolism
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Protein Kinase C/chemistry
- Protein Kinase C/metabolism
- Signal Transduction
- rho GTP-Binding Proteins/agonists
- rho GTP-Binding Proteins/metabolism
- rho-Associated Kinases/chemistry
- rho-Associated Kinases/metabolism
Collapse
Affiliation(s)
- Tran Thi Hien
- From the Departments of Experimental Medical Sciences and
| | | | - Diana Dahan
- From the Departments of Experimental Medical Sciences and
| | - Mari Ekman
- From the Departments of Experimental Medical Sciences and
| | - Mario Grossi
- From the Departments of Experimental Medical Sciences and
| | - Johan Sjögren
- Clinical Sciences, Lund University, BMC D12, SE-221 84 Lund, Sweden and
| | - Johan Nilsson
- Clinical Sciences, Lund University, BMC D12, SE-221 84 Lund, Sweden and
| | - Thomas Braun
- the Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany, and
| | - Thomas Boettger
- the Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany, and
| | - Eliana Garcia-Vaz
- the Department of Clinical Sciences in Malmö, Lund University, 205 02 Malmö, Sweden
| | - Karin Stenkula
- From the Departments of Experimental Medical Sciences and
| | - Karl Swärd
- From the Departments of Experimental Medical Sciences and
| | - Maria F Gomez
- the Department of Clinical Sciences in Malmö, Lund University, 205 02 Malmö, Sweden
| | | |
Collapse
|
25
|
Jackson R, Brennan S, Fielding P, Sims MW, Challiss RAJ, Adlam D, Squire IB, Rainbow RD. Distinct and complementary roles for α and β isoenzymes of PKC in mediating vasoconstrictor responses to acutely elevated glucose. Br J Pharmacol 2016; 173:870-87. [PMID: 26660275 DOI: 10.1111/bph.13399] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 11/23/2015] [Accepted: 11/30/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE We investigated the hypothesis that elevated glucose increases contractile responses in vascular smooth muscle and that this enhanced constriction occurs due to the glucose-induced PKC-dependent inhibition of voltage-gated potassium channels. EXPERIMENTAL APPROACH Patch-clamp electrophysiology in rat isolated mesenteric arterial myocytes was performed to investigate the glucose-induced inhibition of voltage-gated potassium (Kv ) current. To determine the effects of glucose in whole vessel, wire myography was performed in rat mesenteric, porcine coronary and human internal mammary arteries. KEY RESULTS Glucose-induced inhibition of Kv was PKC-dependent and could be pharmacologically dissected using PKC isoenzyme-specific inhibitors to reveal a PKCβ-dependent component of Kv inhibition dominating between 0 and 10 mM glucose with an additional PKCα-dependent component becoming evident at concentrations greater than 10 mM. These findings were supported using wire myography in all artery types used, where contractile responses to vessel depolarization and vasoconstrictors were enhanced by increasing bathing glucose concentration, again with evidence for distinct and complementary PKCα/PKCβ-mediated components. CONCLUSIONS AND IMPLICATIONS Our results provide compelling evidence that glucose-induced PKCα/PKCβ-mediated inhibition of Kv current in vascular smooth muscle causes an enhanced constrictor response. Inhibition of Kv current causes a significant depolarization of vascular myocytes leading to marked vasoconstriction. The PKC dependence of this enhanced constrictor response may present a potential therapeutic target for improving microvascular perfusion following percutaneous coronary intervention after myocardial infarction in hyperglycaemic patients.
Collapse
Affiliation(s)
- Robert Jackson
- Department of Cardiovascular Sciences, University of Leicester, Glenfield General Hospital, Leicester, UK
| | - Sean Brennan
- Department of Cardiovascular Sciences, University of Leicester, Glenfield General Hospital, Leicester, UK
| | - Peter Fielding
- Department of Cardiovascular Sciences, University of Leicester, Glenfield General Hospital, Leicester, UK
| | - Mark W Sims
- Department of Cardiovascular Sciences, University of Leicester, Glenfield General Hospital, Leicester, UK
| | - R A John Challiss
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - David Adlam
- Department of Cardiovascular Sciences, University of Leicester, Glenfield General Hospital, Leicester, UK
| | - Iain B Squire
- Department of Cardiovascular Sciences, University of Leicester, Glenfield General Hospital, Leicester, UK
| | - Richard D Rainbow
- Department of Cardiovascular Sciences, University of Leicester, Glenfield General Hospital, Leicester, UK
| |
Collapse
|
26
|
Saad MI, Abdelkhalek TM, Saleh MM, Kamel MA, Youssef M, Tawfik SH, Dominguez H. Insights into the molecular mechanisms of diabetes-induced endothelial dysfunction: focus on oxidative stress and endothelial progenitor cells. Endocrine 2015; 50:537-67. [PMID: 26271514 DOI: 10.1007/s12020-015-0709-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/25/2015] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus is a heterogeneous, multifactorial, chronic disease characterized by hyperglycemia owing to insulin insufficiency and insulin resistance (IR). Recent epidemiological studies showed that the diabetes epidemic affects 382 million people worldwide in 2013, and this figure is expected to be 600 million people by 2035. Diabetes is associated with microvascular and macrovascular complications resulting in accelerated endothelial dysfunction (ED), atherosclerosis, and cardiovascular disease (CVD). Unfortunately, the complex pathophysiology of diabetic cardiovascular damage is not fully understood. Therefore, there is a clear need to better understand the molecular pathophysiology of ED in diabetes, and consequently, better treatment options and novel efficacious therapies could be identified. In the light of recent extensive research, we re-investigate the association between diabetes-associated metabolic disturbances (IR, subclinical inflammation, dyslipidemia, hyperglycemia, dysregulated production of adipokines, defective incretin and gut hormones production/action, and oxidative stress) and ED, focusing on oxidative stress and endothelial progenitor cells (EPCs). In addition, we re-emphasize that oxidative stress is the final common pathway that transduces signals from other conditions-either directly or indirectly-leading to ED and CVD.
Collapse
Affiliation(s)
- Mohamed I Saad
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt.
- Hudson Institute of Medical Research, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia.
| | - Taha M Abdelkhalek
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Moustafa M Saleh
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Maher A Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mina Youssef
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Shady H Tawfik
- Department of Molecular Medicine, University of Padova, Padua, Italy
| | - Helena Dominguez
- Department of Biomedical Sciences, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
27
|
Yang J, Zhang J. Influence of protein kinase C (PKC) on the prognosis of diabetic nephropathy patients. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:14925-14931. [PMID: 26823823 PMCID: PMC4713609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 08/21/2015] [Indexed: 06/05/2023]
Abstract
AIMS To investigate the association between protein kinase C (PKC) and the prognosis of patients with diabetic nephropathy (DN). METHODS 92 patients with DN who had received treatments with angiotensin converting enzyme inhibitor (ACEI) or angiotensin-receptor blockade (ARB) were collected. The clinicopathologic characteristics were recorded and a 4-year follow-up with the final result of impaired renal functions (eGFR < 40 mL/min) was conducted. The expression of PKC was detected by immunohistochemical assay. Kaplan-Meier and Cox regression analysis were performed to estimate the effects of PKC on DN prognosis. RESULTS According to immunohistochemical analysis, there were 54 cases with positive expression of PKC (positive rate 58.7%). Meanwhile, during the follow-up, the urine protein, mean serum creatinine and eGFR in patients with positive PKC were all higher than those in negative expression group (P < 0.05). The expression of PKC was influenced by age (P < 0.001), course of disease (P < 0.001), blood pressure (P = 0.002), blood glucose (P < 0.001), HbA1c (P = 0.002), renal functions of patients before (P = 0.011) and after (P = 0.041) the biopsy. Besides, the Kaplan-Meier curve revealed that patients with positive PKC expression had shorter survival time than those with negative PKC expression (P < 0.001). Cox regression analysis indicated that HbA1c (P = 0.009), renal functions of patients after the biopsy (P = 0.002) and PKC (P = 0.028) were important factors in the prognosis of DN and they might be independent prognostic markers. CONCLUSION The expression of PKC is relatively higher in DN patients than in healthy controls. And PKC may be a valuable prognostic marker for patients with DN.
Collapse
Affiliation(s)
- Jie Yang
- Second Department of Endocrinology, Tai An Central Hospital Shandong Province, China
| | - Jian Zhang
- Second Department of Endocrinology, Tai An Central Hospital Shandong Province, China
| |
Collapse
|
28
|
Penn TJ, Wood ME, Soanes DM, Csukai M, Corran AJ, Talbot NJ. Protein kinase C is essential for viability of the rice blast fungus Magnaporthe oryzae. Mol Microbiol 2015; 98:403-19. [PMID: 26192090 PMCID: PMC4791171 DOI: 10.1111/mmi.13132] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2015] [Indexed: 12/19/2022]
Abstract
Protein kinase C constitutes a family of serine–threonine kinases found in all eukaryotes and implicated in a wide range of cellular functions, including regulation of cell growth, cellular differentiation and immunity. Here, we present three independent lines of evidence which indicate that protein kinase C is essential for viability of Magnaporthe oryzae. First, all attempts to generate a target deletion of PKC1, the single copy protein kinase C‐encoding gene, proved unsuccessful. Secondly, conditional gene silencing of PKC1 by RNA interference led to severely reduced growth of the fungus, which was reversed by targeted deletion of the Dicer2‐encoding gene, MDL2. Finally, selective kinase inhibition of protein kinase C by targeted allelic replacement with an analogue‐sensitive PKC1AS allele led to specific loss of fungal viability in the presence of the PP1 inhibitor. Global transcriptional profiling following selective PKC inhibition identified significant changes in gene expression associated with cell wall re‐modelling, autophagy, signal transduction and secondary metabolism. When considered together, these results suggest protein kinase C is essential for growth and development of M. oryzae with extensive downstream targets in addition to the cell integrity pathway. Targeting protein kinase C signalling may therefore prove an effective means of controlling rice blast disease.
Collapse
Affiliation(s)
- Tina J Penn
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | - Mark E Wood
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | - Darren M Soanes
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | - Michael Csukai
- Biological Sciences, Syngenta, Jeallott's Hill International Research Centre, Bracknell, RG42 6EY, UK
| | - Andrew John Corran
- Biological Sciences, Syngenta, Jeallott's Hill International Research Centre, Bracknell, RG42 6EY, UK
| | - Nicholas J Talbot
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| |
Collapse
|
29
|
Yamagishi SI, Fukami K, Matsui T. Crosstalk between advanced glycation end products (AGEs)-receptor RAGE axis and dipeptidyl peptidase-4-incretin system in diabetic vascular complications. Cardiovasc Diabetol 2015; 14:2. [PMID: 25582643 PMCID: PMC4298871 DOI: 10.1186/s12933-015-0176-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 01/05/2015] [Indexed: 12/15/2022] Open
Abstract
Advanced glycation end products (AGEs) consist of heterogenous group of macroprotein derivatives, which are formed by non-enzymatic reaction between reducing sugars and amino groups of proteins, lipids and nucleic acids, and whose process has progressed at an accelerated rate under diabetes. Non-enzymatic glycation and cross-linking of protein alter its structural integrity and function, contributing to the aging of macromolecules. Furthermore, engagement of receptor for AGEs (RAGE) with AGEs elicits oxidative stress generation and subsequently evokes proliferative, inflammatory, and fibrotic reactions in a variety of cells. Indeed, accumulating evidence has suggested the active involvement of accumulation of AGEs in diabetes-associated disorders such as diabetic microangiopathy, atherosclerotic cardiovascular diseases, Alzheimer's disease and osteoporosis. Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are incretins, gut hormones secreted from the intestine in response to food intake, both of which augment glucose-induced insulin release, suppress glucagon secretion, and slow gastric emptying. Since GLP-1 and GIP are rapidly degraded and inactivated by dipeptidyl peptidase-4 (DPP-4), inhibition of DPP-4 and/or DPP-4-resistant GLP-1 analogues have been proposed as a potential target for the treatment of diabetes. Recently, DPP-4 has been shown to cleave multiple peptides, and blockade of DPP-4 could exert diverse biological actions in GLP-1- or GIP-independent manner. This article summarizes the crosstalk between AGEs-RAGE axis and DPP-4-incretin system in the development and progression of diabetes-associated disorders and its therapeutic intervention, especially focusing on diabetic vascular complications.
Collapse
Affiliation(s)
- Sho-ichi Yamagishi
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan.
| | - Kei Fukami
- Department of Medicine, Kurume University School of Medicine, Kurume, 830-0011, Japan.
| | - Takanori Matsui
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan.
| |
Collapse
|
30
|
Thallas-Bonke V, Jha JC, Gray SP, Barit D, Haller H, Schmidt HHHW, Coughlan MT, Cooper ME, Forbes JM, Jandeleit-Dahm KAM. Nox-4 deletion reduces oxidative stress and injury by PKC-α-associated mechanisms in diabetic nephropathy. Physiol Rep 2014; 2:2/11/e12192. [PMID: 25367693 PMCID: PMC4255803 DOI: 10.14814/phy2.12192] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Current treatments for diabetic nephropathy (DN) only result in slowing its progression, thus highlighting a need to identify novel targets. Increased production of reactive oxygen species (ROS) is considered a key downstream pathway of end-organ injury with increasing data implicating both mitochondrial and cytosolic sources of ROS. The enzyme, NADPH oxidase, generates ROS in the kidney and has been implicated in the activation of protein kinase C (PKC), in the pathogenesis of DN, but the link between PKC and Nox-derived ROS has not been evaluated in detail in vivo. In this study, global deletion of a NADPH-oxidase isoform, Nox4, was examined in mice with streptozotocin-induced diabetes (C57Bl6/J) in order to evaluate the effects of Nox4 deletion, not only on renal structure and function but also on the PKC pathway and downstream events. Nox4 deletion attenuated diabetes-associated increases in albuminuria, glomerulosclerosis, and extracellular matrix accumulation. Lack of Nox4 resulted in a decrease in diabetes-induced renal cortical ROS derived from the mitochondria and the cytosol, urinary isoprostanes, and PKC activity. Immunostaining of renal cortex revealed that major isoforms of PKC, PKC-α and PKC-β1, were increased with diabetes and normalized by Nox4 deletion. Downregulation of the PKC pathway was observed in tandem with reduced expression of vascular endothelial growth factor (VEGF), transforming growth factor (TGF)-β1 and restoration of the podocyte slit pore protein nephrin. This study suggests that deletion of Nox4 may alleviate renal injury via PKC-dependent mechanisms, further strengthening the view that Nox4 is a suitable target for renoprotection in diabetes.
Collapse
Affiliation(s)
- Vicki Thallas-Bonke
- Diabetes Complications Division, Baker IDI Heart & Diabetes Institute, JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Melbourne, Victoria, Australia Department of Medicine, Austin and Northern Clinical Schools, University of Melbourne, Melbourne, Victoria, Australia
| | - Jay C Jha
- Diabetes Complications Division, Baker IDI Heart & Diabetes Institute, JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Melbourne, Victoria, Australia Department of Medicine, Central Clinical School, Monash University, AMREP Precinct, Melbourne, Victoria, Australia
| | - Stephen P Gray
- Diabetes Complications Division, Baker IDI Heart & Diabetes Institute, JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Melbourne, Victoria, Australia
| | - David Barit
- Diabetes Complications Division, Baker IDI Heart & Diabetes Institute, JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Melbourne, Victoria, Australia
| | - Hermann Haller
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Harald H H W Schmidt
- Pharmacology, Faculty of Health, Medicine & Life Sciences, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Melinda T Coughlan
- Diabetes Complications Division, Baker IDI Heart & Diabetes Institute, JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Melbourne, Victoria, Australia Department of Medicine, Central Clinical School, Monash University, AMREP Precinct, Melbourne, Victoria, Australia Department of Epidemiology & Preventive Medicine, Monash University, AMREP Precinct, Melbourne, Victoria, Australia
| | - Mark E Cooper
- Diabetes Complications Division, Baker IDI Heart & Diabetes Institute, JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Melbourne, Victoria, Australia Department of Medicine, Central Clinical School, Monash University, AMREP Precinct, Melbourne, Victoria, Australia
| | - Josephine M Forbes
- Diabetes Complications Division, Baker IDI Heart & Diabetes Institute, JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Melbourne, Victoria, Australia Department of Medicine, Central Clinical School, Monash University, AMREP Precinct, Melbourne, Victoria, Australia Mater Medical Research Institute, School of Medicine, University of Queensland, South Brisbane, Queensland, Australia
| | - Karin A M Jandeleit-Dahm
- Diabetes Complications Division, Baker IDI Heart & Diabetes Institute, JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Melbourne, Victoria, Australia Department of Medicine, Central Clinical School, Monash University, AMREP Precinct, Melbourne, Victoria, Australia
| |
Collapse
|
31
|
Wang F, Guo X, Shen X, Kream RM, Mantione KJ, Stefano GB. Vascular dysfunction associated with type 2 diabetes and Alzheimer's disease: a potential etiological linkage. Med Sci Monit Basic Res 2014; 20:118-29. [PMID: 25082505 PMCID: PMC4138067 DOI: 10.12659/msmbr.891278] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The endothelium performs a crucial role in maintaining vascular integrity leading to whole organ metabolic homeostasis. Endothelial dysfunction represents a key etiological factor leading to moderate to severe vasculopathies observed in both Type 2 diabetic and Alzheimer’s Disease (AD) patients. Accordingly, evidence-based epidemiological factors support a compelling hypothesis stating that metabolic rundown encountered in Type 2 diabetes engenders severe cerebral vascular insufficiencies that are causally linked to long term neural degenerative processes in AD. Of mechanistic importance, Type 2 diabetes engenders an immunologically mediated chronic pro-inflammatory state involving interactive deleterious effects of leukocyte-derived cytokines and endothelial-derived chemotactic agents leading to vascular and whole organ dysfunction. The long term negative consequences of vascular pro-inflammatory processes on the integrity of CNS basal forebrain neuronal populations mediating complex cognitive functions establish a striking temporal comorbidity of AD with Type 2 diabetes. Extensive biomedical evidence supports the pivotal multi-functional role of constitutive nitric oxide (NO) production and release as a critical vasodilatory, anti-inflammatory, and anti-oxidant, mechanism within the vascular endothelium. Within this context, we currently review the functional contributions of dysregulated endothelial NO expression to the etiology and persistence of Type 2 diabetes-related and co morbid AD-related vasculopathies. Additionally, we provide up-to-date perspectives on critical areas of AD research with special reference to common NO-related etiological factors linking Type 2 diabetes to the pathogenesis of AD.
Collapse
Affiliation(s)
- Fuzhou Wang
- Department of Anesthesiology and Critical Care Medicine, Nanjing Maternit and Child Health Care Hospital, Nanjing Medical University, Nanjing, China (mainland)
| | - Xirong Guo
- Institutes of Pediatrics, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, China (mainland)
| | - Xiaofeng Shen
- Department of Anesthesiology and Critical Care Medicine, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, China (mainland)
| | - Richard M Kream
- Neuroscience Research Institute, State University of New York - College at Old Westbury, Old Westbury, USA
| | - Kirk J Mantione
- Neuroscience Research Institute, State University of New York - College at Old Westbury, Old Westbury, USA
| | - George B Stefano
- Neuroscience Research Institute, State University of New York - College at Old Westbury, Old Westbury, USA
| |
Collapse
|
32
|
Oxidative stress and metabolic pathologies: from an adipocentric point of view. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:908539. [PMID: 25143800 PMCID: PMC4131099 DOI: 10.1155/2014/908539] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 05/20/2014] [Accepted: 06/26/2014] [Indexed: 02/07/2023]
Abstract
Oxidative stress plays a pathological role in the development of various diseases including diabetes, atherosclerosis, or cancer. Systemic oxidative stress results from an imbalance between oxidants derivatives production and antioxidants defenses. Reactive oxygen species (ROS) are generally considered to be detrimental for health. However, evidences have been provided that they can act as second messengers in adaptative responses to stress. Obesity represents a major risk factor for deleterious associated pathologies such as type 2 diabetes, liver, and coronary heart diseases. Many evidences regarding obesity-induced oxidative stress accumulated over the past few years based on established correlations of biomarkers or end-products of free-radical-mediated oxidative stress with body mass index. The hypothesis that oxidative stress plays a significant role in the development of metabolic disorders, especially insulin-resistance state, is supported by several studies where treatments reducing ROS production reverse metabolic alterations, notably through improvement of insulin sensitivity, hyperlipidemia, or hepatic steatosis. In this review, we will develop the mechanistic links between oxidative stress generated by adipose tissue in the context of obesity and its impact on metabolic complications development. We will also attempt to discuss potential therapeutic approaches targeting obesity-associated oxidative stress in order to prevent associated-metabolic complications.
Collapse
|
33
|
High mobility group box 1 (HMGB1) mediates high-glucose-induced calcification in vascular smooth muscle cells of saphenous veins. Inflammation 2014; 36:1592-604. [PMID: 23928875 DOI: 10.1007/s10753-013-9704-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Diabetes accelerates saphenous vein grafts calcification after years of coronary artery bypass grafting (CABG) surgery. Vascular smooth muscle cells (VSMC) undergoing a phenotypic switch to osteoblast-like cells play a key role in this process. The receptor for advanced glycation and products (RAGE) and toll-like receptors (TLRs) are all involved in various cardiovascular calcification processes. Therefore, the role of their common ligand, high mobility group box 1 (HMGB1), in high-glucose-induced calcification in VSMC of saphenous vein was investigated. In this study, VSMC were cultured from saphenous vein of patients arranged for CABG. We first demonstrated high-glucose-induced HMGB1 translocation from nucleus to cytosol, and this translocation was induced through a NADPH oxidase and PKC-dependent pathway. We next found high glucose also increased TLR2, TLR4, and RAGE expression. Then, we revealed downregulating HMGB1 expression abolished high-glucose-induced calcification accompanied by NFκB inactivation and low expression of bone morphogenetic protein-2 (BMP-2). We further demonstrated NFκB activation was necessary in high-glucose-induced BMP-2 expression and calcification. Finally, by using a chromatin immunoprecipitation assay, we demonstrated NFκB transcriptional regulation of BMP-2 promoter was induced by NFκB binding to its κB element on the BMP-2 promoter. Our findings thus suggest HMGB1 plays an important role in mediating the calcification process induced by high glucose through NFκB activation and BMP-2 expression in VSMC of saphenous vein.
Collapse
|
34
|
Teshima Y, Takahashi N, Nishio S, Saito S, Kondo H, Fukui A, Aoki K, Yufu K, Nakagawa M, Saikawa T. Production of reactive oxygen species in the diabetic heart. Roles of mitochondria and NADPH oxidase. Circ J 2013; 78:300-6. [PMID: 24334638 DOI: 10.1253/circj.cj-13-1187] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Reactive oxygen species (ROS) are the main facilitators of cardiovascular complications in diabetes mellitus (DM), and the ROS level is increased in cultured cells exposed to high glucose concentrations or in diabetic animal models. Emerging evidence shows that mitochondria and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase are dominant mechanisms of ROS production in the diabetic heart. Hyperpolarization of the mitochondrial inner membrane potentials and impaired mitochondrial function promote ROS production in the mitochondria of the diabetic heart. Uncoupling proteins are upregulated and may reduce the ROS level by depolarizing the mitochondrial inner membrane potential. NADPH oxidase is another major site of ROS production and its contribution to DM-induced ROS increase has been elucidated not only in vascular smooth muscle cells and endothelial cells, but also in cardiomyocytes. Protein kinase C, angiotensin II, and advanced glycation endproducts (AGEs)/receptor for AGEs can activate NADPH oxidase. Increased intracellular calcium level mediated via the Na(+)-H(+) exchanger and subsequent activation of Ca(2+)/calmodulin-dependent protein kinase II may also activate NADPH oxidase. This review presents the current understanding of the mechanisms of ROS production, focusing especially on the roles of mitochondria and NADPH oxidase.
Collapse
Affiliation(s)
- Yasushi Teshima
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Sinha A, Vyavahare NR. High-glucose levels and elastin degradation products accelerate osteogenesis in vascular smooth muscle cells. Diab Vasc Dis Res 2013; 10:410-9. [PMID: 23754846 PMCID: PMC5403374 DOI: 10.1177/1479164113485101] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Diabetes mellitus (DM) is a chronic disease in which the body either does not use or produce the glucose metabolising hormone insulin efficiently. Calcification of elastin in the arteries of diabetics is a major predictor of cardiovascular diseases. It has been previously shown that elastin degradation products work synergistically with transforming growth factor-beta 1 (TGF-β1) to induce osteogenesis in vascular smooth muscle cells. In this study, we tested the hypothesis that high concentration of glucose coupled with elastin degradation products and TGF-β1 (a cytokine commonly associated with diabetes) will cause a greater degree of osteogenesis compared to normal vascular cells. Thus, the goal of this study was to analyse the effects of high concentration of glucose, elastin peptides and TGF-β1 on bone-specific markers like alkaline phosphatase (ALP), osteocalcin (OCN) and runt-related transcription factor 2 (RUNX2). We demonstrated using relative gene expression and specific protein assays that elastin degradation products in the presence of high glucose cause the increase in expression of the specific elastin-laminin receptor-1 (ELR-1) and activin receptor-like kinase-5 (ALK-5) present on the surface of the vascular cells, in turn leading to overexpression of typical osteogenic markers like ALP, OCN and RUNX2. Conversely, blocking of ELR-1 and ALK-5 strongly suppressed the expression of the osteogenic proteins. In conclusion, our results indicate that glucose plays an important role in amplifying the osteogenesis induced by elastin peptides and TGF-β1, possibly by activating the ELR-1 and ALK-5 signalling pathways.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Elastin/pharmacology
- Glucose/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Osteogenesis/drug effects
- Protein Serine-Threonine Kinases
- Rats
- Receptor, Transforming Growth Factor-beta Type I
- Receptors, Transforming Growth Factor beta
- Signal Transduction/drug effects
- Transforming Growth Factor beta1/metabolism
Collapse
Affiliation(s)
- Aditi Sinha
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | | |
Collapse
|
36
|
WANG FABIN, HUANG DONG, ZHU WEI, LI SHUAI, YAN MEILING, WEI MENG, LI JINGBO. Selective inhibition of PKCβ2 preserves cardiac function after myocardial infarction and is associated with improved angiogenesis of ischemic myocardium in diabetic rats. Int J Mol Med 2013; 32:1037-46. [DOI: 10.3892/ijmm.2013.1477] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/21/2013] [Indexed: 11/05/2022] Open
|
37
|
Kemeny SF, Cicalese S, Figueroa DS, Clyne AM. Glycated collagen and altered glucose increase endothelial cell adhesion strength. J Cell Physiol 2013; 228:1727-36. [PMID: 23280505 DOI: 10.1002/jcp.24313] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 12/10/2012] [Indexed: 01/08/2023]
Abstract
Cell adhesion strength is important to cell survival, proliferation, migration, and mechanotransduction, yet changes in endothelial cell adhesion strength have not yet been examined in diseases such as diabetes with high rates of cardiovascular complications. We therefore investigated porcine aortic endothelial cell adhesion strength on native and glycated collagen-coated substrates and in low, normal, and high glucose culture using a spinning disc apparatus. Adhesion strength increased by 30 dynes/cm(2) in cells on glycated collagen as compared to native collagen. Attachment studies revealed that cells use higher adhesion strength αv β3 integrins to bind to glycated collagen instead of the typical α2 β1 integrins used to bind to native collagen. Similarly, endothelial cells cultured in low and high glucose had 15 dynes/cm(2) higher adhesion strength than cells in normal glucose after 2 days. Increased adhesion strength was due to elevated VEGF release and intracellular PKC in low and high glucose cells, respectively. Thus glucose increased endothelial cell adhesion strength via different underlying mechanisms. These adhesion strength changes could contribute to diabetic vascular disease, including accelerated atherosclerosis and disordered angiogenesis.
Collapse
Affiliation(s)
- Steven Frank Kemeny
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
38
|
Kemeny SF, Figueroa DS, Clyne AM. Hypo- and hyperglycemia impair endothelial cell actin alignment and nitric oxide synthase activation in response to shear stress. PLoS One 2013; 8:e66176. [PMID: 23776627 PMCID: PMC3680428 DOI: 10.1371/journal.pone.0066176] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 05/07/2013] [Indexed: 12/25/2022] Open
Abstract
Uncontrolled blood glucose in people with diabetes correlates with endothelial cell dysfunction, which contributes to accelerated atherosclerosis and subsequent myocardial infarction, stroke, and peripheral vascular disease. In vitro, both low and high glucose induce endothelial cell dysfunction; however the effect of altered glucose on endothelial cell fluid flow response has not been studied. This is critical to understanding diabetic cardiovascular disease, since endothelial cell cytoskeletal alignment and nitric oxide release in response to shear stress from flowing blood are atheroprotective. In this study, porcine aortic endothelial cells were cultured in 1, 5.55, and 33 mM D-glucose medium (low, normal, and high glucose) and exposed to 20 dynes/cm2 shear stress for up to 24 hours in a parallel plate flow chamber. Actin alignment and endothelial nitric oxide synthase phosphorylation increased with shear stress for cells in normal glucose, but not cells in low and high glucose. Both low and high glucose elevated protein kinase C (PKC) levels; however PKC blockade only restored actin alignment in high glucose cells. Cells in low glucose instead released vascular endothelial growth factor (VEGF), which translocated β-catenin away from the cell membrane and disabled the mechanosensory complex. Blocking VEGF in low glucose restored cell actin alignment in response to shear stress. These data suggest that low and high glucose alter endothelial cell alignment and nitric oxide production in response to shear stress through different mechanisms.
Collapse
Affiliation(s)
- Steven Frank Kemeny
- Mechanical Engineering and Mechanics, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Dannielle Solomon Figueroa
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Alisa Morss Clyne
- Mechanical Engineering and Mechanics, Drexel University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
39
|
Li WA, Moore-Langston S, Chakraborty T, Rafols JA, Conti AC, Ding Y. Hyperglycemia in stroke and possible treatments. Neurol Res 2013; 35:479-91. [PMID: 23622737 DOI: 10.1179/1743132813y.0000000209] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hyperglycemia affects approximately one-third of acute ischemic stroke patients and is associated with poor clinical outcomes. In experimental and clinical stroke studies, hyperglycemia has been shown to be detrimental to the penumbral tissue for several reasons. First, hyperglycemia exacerbates both calcium imbalance and the accumulation of reactive oxygen species (ROS) in neurons, leading to increased apoptosis. Second, hyperglycemia fuels anaerobic energy production, causing lactic acidosis, which further stresses neurons in the penumbral regions. Third, hyperglycemia decreases blood perfusion after ischemic stroke by lowering the availability of nitric oxide (NO), which is a crucial mediator of vasodilation. Lastly, hyperglycemia intensifies the inflammatory response after stroke, causing edema, and hemorrhage through disruption of the blood brain barrier and degradation of white matter, which leads to a worsening of functional outcomes. Many neuroprotective treatments addressing hyperglycemia in stroke have been implemented in the past decade. Early clinical use of insulin provided mixed results due to insufficiently controlled glucose levels and heterogeneity of patient population. Recently, however, the latest Stroke Hyperglycemia Insulin Network Effort trial has addressed the shortcomings of insulin therapy. While glucagon-like protein-1 administration, hyperbaric oxygen preconditioning, and ethanol therapy appear promising, these treatments remain in their infancy and more research is needed to better understand the mechanisms underlying hyperglycemia-induced injuries. Elucidation of these mechanistic pathways could lead to the development of rational treatments that reduce hyperglycemia-associated injuries and improve functional outcomes for ischemic stroke patients.
Collapse
Affiliation(s)
- William A Li
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | | | | | | | | | | |
Collapse
|
40
|
Menne J, Shushakova N, Bartels J, Kiyan Y, Laudeley R, Haller H, Park JK, Meier M. Dual inhibition of classical protein kinase C-α and protein kinase C-β isoforms protects against experimental murine diabetic nephropathy. Diabetes 2013; 62:1167-74. [PMID: 23434935 PMCID: PMC3609593 DOI: 10.2337/db12-0534] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Activation of protein kinase C (PKC) has been implicated in the pathogenesis of diabetic nephropathy with proteinuria and peritubular extracellular matrix production. We have previously shown that the PKC isoforms α and β mediate different cellular effects. PKC-β contributes to hyperglycemia-induced renal matrix production, whereby PKC-α is involved in the development of albuminuria. We further tested this hypothesis by deletion of both isoforms and used a PKC inhibitor. We analyzed the phenotype of nondiabetic and streptozotocin (STZ)-induced diabetic homozygous PKC-α/β double-knockout mice (PKC-α/β(-/-)). After 8 weeks of diabetes mellitus, the high-glucose-induced renal and glomerular hypertrophy as well as transforming growth factor-β1) and extracellular matrix production were diminished in the PKC-α/β(-/-) mice compared with wild-type controls. Urinary albumin/creatinine ratio also was significantly reduced, however, it was not completely abolished in diabetic PKC-α/β(-/-) mice. Treatment with CGP41252, which inhibits PKC-α and PKC-β, is able to prevent the development of albuminuria and to reduce existing albuminuria in type 1 (STZ model) or type 2 (db/db model) diabetic mice. These results support our hypothesis that PKC-α and PKC-β contribute to the pathogenesis of diabetic nephropathy, and that dual inhibition of the classical PKC isoforms is a suitable therapeutic strategy in the prevention and treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Jan Menne
- Clinic for Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
- Phenos GmbH, Hannover, Germany
- Corresponding authors: Jan Menne, , and Hermann Haller,
| | - Nelli Shushakova
- Clinic for Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
- Phenos GmbH, Hannover, Germany
| | - Janina Bartels
- Clinic for Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Yulia Kiyan
- Clinic for Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Robert Laudeley
- Clinic for Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Hermann Haller
- Clinic for Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
- Corresponding authors: Jan Menne, , and Hermann Haller,
| | - Joon-Keun Park
- Clinic for Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Matthias Meier
- Clinic for Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| |
Collapse
|
41
|
Abstract
It is increasingly apparent that not only is a cure for the current worldwide diabetes epidemic required, but also for its major complications, affecting both small and large blood vessels. These complications occur in the majority of individuals with both type 1 and type 2 diabetes. Among the most prevalent microvascular complications are kidney disease, blindness, and amputations, with current therapies only slowing disease progression. Impaired kidney function, exhibited as a reduced glomerular filtration rate, is also a major risk factor for macrovascular complications, such as heart attacks and strokes. There have been a large number of new therapies tested in clinical trials for diabetic complications, with, in general, rather disappointing results. Indeed, it remains to be fully defined as to which pathways in diabetic complications are essentially protective rather than pathological, in terms of their effects on the underlying disease process. Furthermore, seemingly independent pathways are also showing significant interactions with each other to exacerbate pathology. Interestingly, some of these pathways may not only play key roles in complications but also in the development of diabetes per se. This review aims to comprehensively discuss the well validated, as well as putative mechanisms involved in the development of diabetic complications. In addition, new fields of research, which warrant further investigation as potential therapeutic targets of the future, will be highlighted.
Collapse
Affiliation(s)
- Josephine M Forbes
- Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | | |
Collapse
|
42
|
Tsai TL, Manner PA, Li WJ. Regulation of mesenchymal stem cell chondrogenesis by glucose through protein kinase C/transforming growth factor signaling. Osteoarthritis Cartilage 2013; 21:368-76. [PMID: 23151458 DOI: 10.1016/j.joca.2012.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 10/19/2012] [Accepted: 11/05/2012] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Effective induction of human mesenchymal stem cell (hMSC) differentiation for regenerative medicine applications remains a great challenge. While much research has studied hMSC activity during differentiation, it is unclear whether pre-differentiation culture can modulate differentiation capacity. We investigate the effect of glucose concentration in pre-differentiation/expansion culture on modulating chondrogenic capacity of hMSCs, and explore the underlying molecular mechanism. DESIGN The extent of chondrogenesis of hMSCs previously cultured with different concentrations of glucose was evaluated. Transforming growth factor-beta (TGF-β) signaling molecules and protein kinase C (PKC) were analyzed to identify the role of these molecules in the regulation of glucose on chondrogenesis. In addition, hMSCs in high-glucose expansion culture were treated with the PKC inhibitor to modulate the activity of PKC and TGF-β signaling molecules. RESULTS High-glucose maintained hMSCs were less chondrogenic than low-glucose maintained cells upon receiving differentiation signals. Interestingly, we found that high-glucose culture increased the phosphorylation of PKC and expression of type II TGF-β receptor (TGFβRII) in pre-differentiation hMSCs. However, low-glucose maintained hMSCs became more responsive to chondrogenic induction with increased PKC activation and TGFβRII expression than high-glucose maintained hMSCs during differentiation. Inhibiting the PKC activity of high-glucose maintained hMSCs during expansion culture upregulated the TGFβRII expression of chondrogenic cell pellets, and enhanced chondrogenesis. CONCLUSION Our findings demonstrate the effect of glucose concentration on regulating the chondrogenic capability of pre-differentiation hMSCs, and provide insight into the mechanism of how glucose concentration regulates PKC and TGF-β signaling molecules to prime pre-differentiation hMSCs for subsequent chondrogenesis.
Collapse
Affiliation(s)
- T-L Tsai
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | | | | |
Collapse
|
43
|
Tahara A, Tsukada J, Tomura Y, Yatsu T, Shibasaki M. Downregulation of vasopressin V1A receptors and activation of mitogen-activated protein kinase in rat mesangial cells cultured under high-glucose conditions. Clin Exp Pharmacol Physiol 2013; 39:438-46. [PMID: 22352691 DOI: 10.1111/j.1440-1681.2012.05693.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
SUMMARY In the present study we examined the effects of high extracellular glucose concentrations on vasopressin (AVP) V(1A) receptor kinetics and signal transduction in cultured rat mesangial cells. Scatchard analysis of [(3) H]-AVP binding to mesangial cell plasma membranes showed that although high glucose (30 mmol/L) decreased V(1A) receptor numbers relative to cells cultured in normal glucose (10 mmol/L), receptor affinity was not affected. This V(1A) receptor downregulation was associated with an attenuated increase in AVP-stimulated cytosolic free calcium concentrations ([Ca(2+) ](i) ). In addition, high glucose increased both the basal and AVP-stimulated activity of the classic mitogen-activated protein kinase, namely extracellular signal-regulated kinase (ERK). Furthermore, high glucose induced activation of protein kinase C (PKC) in mesangial cells that could be inhibited by coincubation with the PKC inhibitor staurosporine (10 nmol/L). Staurosporine also markedly attenuated the high glucose-induced downregulation of V(1A) receptors on mesangial cells and blocked the depressed [Ca(2+) ](i) response and increased ERK activity induced by AVP. The results indicate that high extracellular glucose downregulates V(1A) receptors on rat mesangial cells and modulates their signal transduction properties via PKC activation.
Collapse
Affiliation(s)
- Atsuo Tahara
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Japan.
| | | | | | | | | |
Collapse
|
44
|
Bhattacharjee PS, Huq TS, Potter V, Young A, Davenport IR, Graves R, Mandal TK, Clement C, McFerrin HE, Muniruzzaman S, Ireland SK, Hill JM. High-glucose-induced endothelial cell injury is inhibited by a Peptide derived from human apolipoprotein E. PLoS One 2012; 7:e52152. [PMID: 23284911 PMCID: PMC3526597 DOI: 10.1371/journal.pone.0052152] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 11/08/2012] [Indexed: 11/17/2022] Open
Abstract
Although the importance of human apolipoprotein E (apoE) in vascular diseases has clearly been established, most of the research on apoE has focused on its role in cholesterol metabolism. In view of the observation that apoE and its functional domains impact extracellular matrix (ECM) remodeling, we hypothesized that apoE could also confer protection against ECM degradation by mechanisms independent of its role in cholesterol and lipoprotein transport. The ECM degrading enzyme, heparanase, is secreted by cells as pro-heparanase that is internalized through low-density lipoprotein (LDL) receptor-related protein-1 (LRP-1) to become enzymatically active. Both apoE and pro-heparanase bind the LRP-1. We further hypothesized that an apoE mimetic peptide (apoEdp) would inhibit the production of active heparanase by blocking LRP-1-mediated uptake of pro-heparanase and thereby decrease degradation of the ECM. To test this hypothesis, we induced the expression of heparanase by incubating human retinal endothelial cells (hRECs) with high glucose (30 mM) for 72 hours. We found that elevated expression of heparanase by high glucose was associated with increased shedding of heparan sulfate (ΔHS) and the tight junction protein occludin. Treatment of hRECs with 100 µM apoEdp in the presence of high glucose significantly reduced the expression of heparanase, shedding of ΔHS, and loss of occludin as detected by Western blot analysis. Either eye drop treatment of 1% apoEdp topically 4 times a day for 14 consecutive days or intraperitoneal injection (40 mg/kg) of apoEdp daily for 14 consecutive days in an in vivo mouse model of streptozotocin-induced diabetes inhibited the loss of tight junction proteins occludin and zona occludin- 1 (ZO-1). These findings imply a functional relationship between apoE and endothelial cell matrix because the deregulation of these molecules can be inhibited by a short peptide derived from the receptor-binding region of apoE. Thus, strategies targeting ECM-degrading enzymes could be therapeutically beneficial for treating diabetic retinopathy.
Collapse
|
45
|
Kim YS, Jung DH, Sohn E, Kim J, Kim JS. Glycoxidised LDL induced the upregulation of Axl receptor tyrosine kinase and its ligand in mouse mesangial cells. PLoS One 2012; 7:e50297. [PMID: 23226259 PMCID: PMC3511478 DOI: 10.1371/journal.pone.0050297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 10/17/2012] [Indexed: 12/21/2022] Open
Abstract
Aim/Hypothesis Low-density lipoprotein (LDL) is subjected to glycoxidation in diabetes, and a novel signalling mechanism by which glycoxidised LDL functions in glomerular mesangial cells remains to be ascertained. Methods We performed gene expression analysis in mouse glomerular mesangial cells treated with LDL modified by glycation and oxidation (GO-LDL, 100 µg/ml) for 48 h by using DNA microarray analysis and quantitative real-time PCR. We examined the GO-LDL-specific changes in gene and protein expression in mesangial cells and glomeruli of type 2 diabetic Zucker diabetic fatty (ZDF) rats. Results By microarray profiling, we noted that GO-LDL treatment increased Axl receptor tyrosine kinase (Axl) mRNA expression (∼2.5-fold, p<0.05) compared with normal LDL (N-LDL) treatment in mesangial cells. Treatment with GO-LDL also increased the protein levels of Axl and its ligand Gas6 as measured by Western blotting. These increases were inhibited by neutralising Axl receptor-specific antibody. Silencing Gas6 by siRNA inhibited GO-LDL-induced Axl expression in mesangial cells. Axl and Gas6 protein were also increased in cells cultured in high glucose (30 mM) or methylglyoxal (200 µM). Gas6 treatment increased the expression and secretion of TGF-β1 protein, a key regulator of extracellular matrix expression in the glomeruli of diabetic kidneys. Immunohistochemical analyses of glomeruli from 20-week-old ZDF rats exhibited increased Axl protein expression. Rottlerin, a selective PKC-δ inhibitor, completely blocked Gas6-induced TGF-β1 expression. Conclusions/Interpretation These data suggest that LDL modified by glycoxidation may mediate Axl/Gas6 pathway activation, and this mechanism may play a significant role in the pathogenesis of diabetic nephropathy.
Collapse
Affiliation(s)
- Young Sook Kim
- Korean Medicine-Based Herbal Drug Research Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine (KIOM), Daejeon, Republic of Korea
| | - Dong Ho Jung
- Korean Medicine-Based Herbal Drug Research Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine (KIOM), Daejeon, Republic of Korea
| | - Eunjin Sohn
- Korean Medicine-Based Herbal Drug Research Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine (KIOM), Daejeon, Republic of Korea
| | - Junghyun Kim
- Korean Medicine-Based Herbal Drug Research Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine (KIOM), Daejeon, Republic of Korea
| | - Jin Sook Kim
- Korean Medicine-Based Herbal Drug Research Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine (KIOM), Daejeon, Republic of Korea
- * E-mail:
| |
Collapse
|
46
|
Shen J, Shen S, Das UN, Xu G. Effect of essential fatty acids on glucose-induced cytotoxicity to retinal vascular endothelial cells. Lipids Health Dis 2012; 11:90. [PMID: 22781401 PMCID: PMC3475048 DOI: 10.1186/1476-511x-11-90] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Accepted: 06/25/2012] [Indexed: 01/10/2023] Open
Abstract
Background Diabetic retinopathy is a major complication of dysregulated hyperglycemia. Retinal vascular endothelial cell dysfunction is an early event in the pathogenesis of diabetic retinopathy. Studies showed that hyperglycemia-induced excess proliferation of retinal vascular endothelial cells can be abrogated by docosahexaenoic acid (DHA, 22:6 ω-3) and eicosapentaenoic acid (EPA, 20:5 ω-3). The influence of dietary omega-3 PUFA on brain zinc metabolism has been previously implied. Zn2+ is essential for the activity of Δ6 desaturase as a co-factor that, in turn, converts essential fatty acids to their respective long chain metabolites. Whether essential fatty acids (EFAs) α-linolenic acid and linoleic acid have similar beneficial effect remains poorly understood. Methods RF/6A cells were treated with different concentrations of high glucose, α-linolenic acid and linoleic acid and Zn2+. The alterations in mitochondrial succinate dehydrogenase enzyme activity, cell membrane fluidity, reactive oxygen species generation, SOD enzyme and vascular endothelial growth factor (VEGF) secretion were evaluated. Results Studies showed that hyperglycemia-induced excess proliferation of retinal vascular endothelial cells can be abrogated by both linoleic acid (LA) and α-linolenic acid (ALA), while the saturated fatty acid, palmitic acid was ineffective. A dose–response study with ALA showed that the activity of the mitochondrial succinate dehydrogenase enzyme was suppressed at all concentrations of glucose tested to a significant degree. High glucose enhanced fluorescence polarization and microviscocity reverted to normal by treatment with Zn2+ and ALA. ALA was more potent that Zn2+. Increased level of high glucose caused slightly increased ROS generation that correlated with corresponding decrease in SOD activity. ALA suppressed ROS generation to a significant degree in a dose dependent fashion and raised SOD activity significantly. ALA suppressed high-glucose-induced VEGF secretion by RF/6A cells. Conclusions These results suggest that EFAs such as ALA and LA may have beneficial action in the prevention of high glucose-induced cellular damage.
Collapse
Affiliation(s)
- Junhui Shen
- Laboratory of Clinical Visual Science, Tongji Eye institute, Tongji University School of Medicine, Shanghai, China
| | | | | | | |
Collapse
|
47
|
Wang H, Jiang YW, Zhang WJ, Xu SQ, Liu HL, Yang WY, Lou JN. Differential activations of PKC/PKA related to microvasculopathy in diabetic GK rats. Am J Physiol Endocrinol Metab 2012; 302:E173-82. [PMID: 21989030 DOI: 10.1152/ajpendo.00184.2011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Microvasculopathy is the most serious and predictable threat to the health of diabetic patients, which often results in end-stage renal disease, blindness, and limb amputations. Up to the present, the underlying mechanisms have remained elusive. Here, it was found that the differential activations of PKC/PKA were involved in diabetic microvasculopathy in diabetic GK rats. By real-time PCR, Western blot, immunohistochemistry, and enzyme activity assay, upregulation of PKC was prominent in kidney but was not significant in liver and brain. The expression and activity of PKA were lowered in kidney but comparable in brain and liver during diabetic nephropathy. Furthermore, the generation of reactive oxygen species, production of nitric oxide, and expression of inducible nitric oxide synthase induced by advanced glycation end products were inhibited by PKCβ inhibitor LY-333531 or a PKA agonist in rat glomerular microvascular endothelial cells. Finally, albuminuria was significantly lowered by a PKA agonist and boosted by a PKA antagonist. It suggested that the differential activations of PKC/PKA related to microvasculopathy in diabetes and that activation of PKA may protect the diabetic microvasculature.
Collapse
Affiliation(s)
- Hui Wang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
48
|
Ün İ, Kurt AH, Büyükafşar K. Hyperosmolar glucose induces vasoconstriction through Rho/Rho-kinase pathway in the rat aorta. Fundam Clin Pharmacol 2011; 27:244-51. [DOI: 10.1111/j.1472-8206.2011.01014.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
49
|
Cabou C, Vachoux C, Campistron G, Drucker DJ, Burcelin R. Brain GLP-1 signaling regulates femoral artery blood flow and insulin sensitivity through hypothalamic PKC-δ. Diabetes 2011; 60:2245-56. [PMID: 21810595 PMCID: PMC3161335 DOI: 10.2337/db11-0464] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Glucagon-like peptide 1 (GLP-1) is a gut-brain hormone that regulates food intake, energy metabolism, and cardiovascular functions. In the brain, through a currently unknown molecular mechanism, it simultaneously reduces femoral artery blood flow and muscle glucose uptake. By analogy to pancreatic β-cells where GLP-1 activates protein kinase C (PKC) to stimulate insulin secretion, we postulated that PKC enzymes would be molecular targets of brain GLP-1 signaling that regulate metabolic and vascular function. RESEARCH DESIGN AND METHODS We used both genetic and pharmacological approaches to investigate the role of PKC isoforms in brain GLP-1 signaling in the conscious, free-moving mouse simultaneous with metabolic and vascular measurements. RESULTS In normal wild-type (WT) mouse brain, the GLP-1 receptor (GLP-1R) agonist exendin-4 selectively promotes translocation of PKC-δ (but not -βII, -α, or -ε) to the plasma membrane. This translocation is blocked in Glp1r(-/-) mice and in WT mice infused in the brain with exendin-9, an antagonist of the GLP-1R. This mechanism coordinates both blood flow in the femoral artery and whole-body insulin sensitivity. Consequently, in hyperglycemic, high-fat diet-fed diabetic mice, hypothalamic PKC-δ activity was increased and its pharmacological inhibition improved both insulin-sensitive metabolic and vascular phenotypes. CONCLUSIONS Our studies show that brain GLP-1 signaling activates hypothalamic glucose-dependent PKC-δ to regulate femoral artery blood flow and insulin sensitivity. This mechanism is attenuated during the development of experimental hyperglycemia and may contribute to the pathophysiology of type 2 diabetes.
Collapse
Affiliation(s)
- Cendrine Cabou
- INSERM U1048, Institute of Metabolic and Cardiovascular Diseases, Rangueil, Université Paul-Sabatier, Toulouse, France
- Faculty of Pharmacy, Chemin des Maraîchers, Toulouse, France
| | - Christelle Vachoux
- INSERM U1048, Institute of Metabolic and Cardiovascular Diseases, Rangueil, Université Paul-Sabatier, Toulouse, France
- Faculty of Pharmacy, Chemin des Maraîchers, Toulouse, France
| | - Gérard Campistron
- INSERM U1048, Institute of Metabolic and Cardiovascular Diseases, Rangueil, Université Paul-Sabatier, Toulouse, France
- Faculty of Pharmacy, Chemin des Maraîchers, Toulouse, France
| | - Daniel J. Drucker
- Department of Medicine, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Rémy Burcelin
- INSERM U1048, Institute of Metabolic and Cardiovascular Diseases, Rangueil, Université Paul-Sabatier, Toulouse, France
- Corresponding author: Rémy Burcelin,
| |
Collapse
|
50
|
Cipolla MJ, Huang Q, Sweet JG. Inhibition of protein kinase Cβ reverses increased blood-brain barrier permeability during hyperglycemic stroke and prevents edema formation in vivo. Stroke 2011; 42:3252-7. [PMID: 21852606 DOI: 10.1161/strokeaha.111.623991] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND PURPOSE We investigated the effect of circulating factors and protein kinase Cβ on blood-brain barrier permeability and edema during hyperglycemic stroke. METHODS Male Wistar rats that were hyperglycemic by streptozotocin (50 mg/kg) for 5 to 6 days underwent middle cerebral artery occlusion (MCAO) for 2 hours with 2 hours of reperfusion. Blood-brain barrier permeability was measured in middle cerebral arteries that were ischemic (MCAO) or nonischemic (CTL) and perfused with plasma (20% in buffer) from MCAO or CTL animals. A separate set of MCAO vessels was perfused with the protein kinase Cβ inhibitor CGP53353 (0.5 μmol/L) and permeability measured. Lastly, hyperglycemic rats were treated intravenously with CGP53353 (10 or 100 μg/kg or vehicle 15 minutes before reperfusion and edema formation measured by wet:dry weights (n=6/group). RESULTS MCAO vessels had increased permeability compared with controls regardless of the plasma perfusate. Permeability (water flux, μm(3)×10(8)) of CTL vessel/CTL plasma (n=8), CTL vessel/MCAO plasma (n=7), MCAO vessel/CTL plasma (n=6), and MCAO vessel/MCAO plasma (n=6) was 0.98±0.11, 1.13±0.07, 1.36±0.02, and 1.34±0.06; P<0.01). Inhibition of protein kinase Cβ in MCAO vessels (n=6) reversed the increase in permeability (0.92±0.1; P<0.01). In vivo, hyperglycemia increased edema versus normoglycemia after MCAO (water content=78.84%±0.11% versus 81.38%±0.21%; P<0.01). Inhibition of protein kinase Cβ with 10 or 100 μg/kg CGP53353 during reperfusion prevented the increased edema in hyperglycemic animals (water content=79.54%±0.56% and 79.99%±0.43%; P<0.01 versus vehicle). CONCLUSIONS These results suggest that the pronounced vasogenic edema that occurs during hyperglycemic stroke is mediated in large part by activation of protein kinase Cβ.
Collapse
Affiliation(s)
- Marilyn J Cipolla
- Department of Neurology, University of Vermont College of Medicine, Burlington, VT 05405, USA.
| | | | | |
Collapse
|