1
|
Bhuiyan P, Zhang W, Chae R, Kim K, St Louis L, Wang Y, Liang G, Wei H. Intranasal dantrolene nanoparticles inhibit inflammatory pyroptosis in 5XFAD mice brains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.625293. [PMID: 39651126 PMCID: PMC11623646 DOI: 10.1101/2024.11.25.625293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Background This study investigates the effects of intranasal dantrolene nanoparticles on inflammation and programmed cell death by pyroptosis in 5XFAD Alzheimer's Disease (AD) mice. Methods 5XFAD and wild type (WT) B6SJLF1/J mice were treated with intranasal dantrolene nanoparticles (5 mg/kg), daily, Monday to Friday, for 12 weeks continuously, starting at 9 months of age. Blood and brain were harvested at 13 months of age, one month after completion of 12 weeks intranasal dantrolene nanoparticle treatment. Blood biomarkers function of liver (Alanine transaminase, ALT), kidney (Creatinine), and thyroid (TSH: Thyroid-stimulating hormone) were measured using ELISA. The changes of whole brain tissue proteins on Ca 2+ release channels on membrane of endoplasmic reticulum (type 2 ryanodine and type 1 InsP3 receptors, RyR-2 and InsP3R-1), lipid peroxidation byproduct malondialdehyde (MDA)-modified proteins, 4-HNE, pyroptosis regulatory proteins (NLR family pyrin domain containing 3 (NLRP3), cleaved caspase-1, full length or N-terminal of Gasdermin D (GSDMD), cytotoxic (IL-1, IL-18, IL-6, TNF-a) and cytoprotective (IL-10) cytokines, astrogliosis (GFAP), microgliosis (IBA-1) and synapse proteins (PSD-95, Synapsin-1) were determined using immunoblotting. Body weights were monitored regularly. Results Intranasal dantrolene nanoparticles significantly inhibited the increase of RyR-2 and InsP3R-1 proteins, MDA-modified proteins, 4-NHE, pyroptosis regulatory proteins (NLRP3, cleaved caspase-1, N-terminal GSDMD), cytotoxic cytokine (IL-1β, IL-18, IL-6, TNF-α), biomarkers for astrogliosis (GFAP) and microgliosis (IBA-1), and the decrease of cytoprotective cytokine (IL-10) and synaptic proteins (PSD-95, synpasin-1). Intranasal dantrolene nanoparticles for 12 weeks did not affect blood biomarkers for function of liver, kidney, and thyroid, not did it change body weight significantly. Conclusion Intranasal dantrolene nanoparticles significantly inhibit the increase of RyR-2 and InsP 3 R-1 Ca 2+ channel receptor proteins, ameliorate activation of the pyroptosis pathway and pathological inflammation, and the associated loss of synapse proteins. Intranasal dantrolene nanoparticles for three months did not affect liver, kidney and thyroid functions or cause other side effects.
Collapse
|
2
|
Jiménez E, Fornés A, Felipe R, Núñez E, Aragón C, López-Corcuera B. Calcium-Dependent Regulation of the Neuronal Glycine Transporter GlyT2 by M2 Muscarinic Acetylcholine Receptors. Neurochem Res 2021; 47:190-203. [PMID: 33765249 DOI: 10.1007/s11064-021-03298-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/23/2021] [Accepted: 03/12/2021] [Indexed: 10/21/2022]
Abstract
The neuronal glycine transporter GlyT2 modulates inhibitory glycinergic neurotransmission and plays a key role in regulating nociceptive signal progression. The cholinergic system acting through muscarinic acetylcholine receptors (mAChRs) also mediates important regulations of nociceptive transmission being the M2 subtype the most abundantly expressed in the spinal cord. Here we studied the effect of M2 mAChRs stimulation on GlyT2 function co-expressed in a heterologous system with negligible levels of muscarinic receptor activity. We found GlyT2 is down-regulated by carbachol in a calcium-dependent manner. Different components involved in cell calcium homeostasis were analysed to establish a role in the mechanism of GlyT2 inhibition. GlyT2 down-regulation by carbachol was increased by thapsigargin and reduced by internal store depletion, although calcium release from endoplasmic reticulum or mitochondria had a minor role on GlyT2 inhibition. Our results are consistent with a GlyT2 sensitivity to intracellular calcium mobilized by M2 mAChRs in the subcortical area of the plasma membrane. A crucial role of the plasma membrane sodium calcium exchanger NCX is proposed.
Collapse
Affiliation(s)
- Esperanza Jiménez
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Amparo Fornés
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049, Madrid, Spain.,Novartis Farmacéutica S.A., Basel, Switzerland
| | - Raquel Felipe
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Enrique Núñez
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049, Madrid, Spain.,IdiPAZ-Hospital Universitario La Paz, Madrid, Spain
| | - Carmen Aragón
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049, Madrid, Spain.,IdiPAZ-Hospital Universitario La Paz, Madrid, Spain
| | - Beatriz López-Corcuera
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049, Madrid, Spain. .,IdiPAZ-Hospital Universitario La Paz, Madrid, Spain.
| |
Collapse
|
3
|
Jiang B, Liang S, Liang G, Wei H. Could dantrolene be explored as a repurposed drug to treat COVID-19 patients by restoring intracellular calcium homeostasis? EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES 2020; 24:10228-10238. [PMID: 33090434 DOI: 10.26355/eurrev_202010_23247] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dantrolene, an FDA approved drug to treat malignant hyperthermia and muscle spasm, has been demonstrated to inhibit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mediated toxicity of host cells. Ryanodine receptor overactivation and associated disruption of intracellular Ca2+ homeostasis play important roles in SARS-CoV-2 infection and replication of host cells. Dantrolene, as an inhibitor of RyRs, is expected to ameliorate these detrimental effects of SARS-CoV-2 in host cells. Additionally, dantrolene has also been shown to inhibit multiple cell or organ damage induced by hypoxia/ischemia, mitochondria damage, oxidative stresses, inflammation, impairment of autophagy and apoptosis, etc., which are often the causes of severity and mortality of COVID-19 patients. We have repurposed that dantrolene has a high potential at treating COVID-19 patients and reducing its morbidity and mortality.
Collapse
Affiliation(s)
- B Jiang
- Department of Anaesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA.
| | | | | | | |
Collapse
|
4
|
Wang Y, Liang G, Liang S, Mund R, Shi Y, Wei H. Dantrolene Ameliorates Impaired Neurogenesis and Synaptogenesis in Induced Pluripotent Stem Cell Lines Derived from Patients with Alzheimer's Disease. Anesthesiology 2020; 132:1062-1079. [PMID: 32149777 PMCID: PMC7160009 DOI: 10.1097/aln.0000000000003224] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Overactivation of ryanodine receptors and the resulting impaired calcium homeostasis contribute to Alzheimer's disease-related pathophysiology. This study hypothesized that exposing neuronal progenitors derived from induced pluripotent stems cells of patients with Alzheimer's disease to dantrolene will increase survival, proliferation, neurogenesis, and synaptogenesis. METHODS Induced pluripotent stem cells obtained from skin fibroblast of healthy subjects and patients with familial and sporadic Alzheimer's disease were used. Biochemical and immunohistochemical methods were applied to determine the effects of dantrolene on the viability, proliferation, differentiation, and calcium dynamics of these cells. RESULTS Dantrolene promoted cell viability and proliferation in these two cell lines. Compared with the control, differentiation into basal forebrain cholinergic neurons significantly decreased by 10.7% (32.9 ± 3.6% vs. 22.2 ± 2.6%, N = 5, P = 0.004) and 9.2% (32.9 ± 3.6% vs. 23.7 ± 3.1%, N = 5, P = 0.017) in cell lines from sporadic and familial Alzheimer's patients, respectively, which were abolished by dantrolene. Synapse density was significantly decreased in cortical neurons generated from stem cells of sporadic Alzheimer's disease by 58.2% (237.0 ± 28.4 vs. 99.0 ± 16.6 arbitrary units, N = 4, P = 0.001) or familial Alzheimer's disease by 52.3% (237.0 ± 28.4 vs.113.0 ± 34.9 vs. arbitrary units, N = 5, P = 0.001), which was inhibited by dantrolene in the familial cell line. Compared with the control, adenosine triphosphate (30 µM) significantly increased higher peak elevation of cytosolic calcium concentrations in the cell line from sporadic Alzheimer's patients (84.1 ± 27.0% vs. 140.4 ± 40.2%, N = 5, P = 0.049), which was abolished by the pretreatment of dantrolene. Dantrolene inhibited the decrease of lysosomal vacuolar-type H-ATPase and the impairment of autophagy activity in these two cell lines from Alzheimer's disease patients. CONCLUSIONS Dantrolene ameliorated the impairment of neurogenesis and synaptogenesis, in association with restoring intracellular Ca homeostasis and physiologic autophagy, cell survival, and proliferation in induced pluripotent stem cells and their derived neurons from sporadic and familial Alzheimer's disease patients.
Collapse
Affiliation(s)
- Yong Wang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Anesthesiology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Ge Liang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shuqing Liang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Anesthesiology, the First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Rachel Mund
- Undergraduate Student, College of Art and Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yun Shi
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Anesthesiology, Children’s hospital of Fudan University, Shanghai, 201102, China
| | - Huafeng Wei
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Muehlschlegel S, Carandang R, Hall W, Kini N, Izzy S, Garland B, Ouillette C, van der Bom IMJ, Flood TF, Gounis MJ, Weaver JP, Barton B, Wakhloo AK. Dantrolene for cerebral vasospasm after subarachnoid haemorrhage: a randomised double blind placebo-controlled safety trial. J Neurol Neurosurg Psychiatry 2015; 86:1029-35. [PMID: 25344064 DOI: 10.1136/jnnp-2014-308778] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/30/2014] [Indexed: 01/01/2023]
Abstract
BACKGROUND Dantrolene is neuroprotective in animal models and may attenuate cerebral vasospasm (cVSP) in human aneurysmal subarachnoid haemorrhage (aSAH). We evaluated safety, feasibility and tolerability of intravenous dantrolene (IV-D) in patients with aSAH. METHODS In this single-centre, randomised, double blind, placebo-controlled trial, 31 patients with aSAH were randomised to IV-D 1.25 mg every 6 h for 7 days (n=16) or equiosmolar free water/5% mannitol (placebo; n=15). Primary safety end points were incidence of hyponatraemia (sNa≤132 mmol/L) and liver toxicity (proportion of patients alanine transaminase, aspartate aminotransferase and AlkPhos >5× upper-limit-of-normal). Secondary end points included tolerability, systemic hypotension and intracranial hypertension. Efficacy was explored for clinical/radiological cVSP, delayed cerebral ischaemia (DCI), and 3-month functional outcomes. Quantitative analyses of angiograms and daily transcranial Doppler (TCD) were performed. RESULTS Between IV-D versus placebo, no differences were observed in the primary outcomes (hyponatremia 44% vs 67% (p=0.29); liver toxicity 6% vs 0% (p=1.0)). Three patients in the IV-D versus two in the placebo group had severe adverse events possibly attributable to infusion and reached stop criteria: one IV-D patient developed liver toxicity; two patients in each group developed brain oedema requiring osmotherapy. The majority of adverse events were not related to infusion (17 vs 5 (RR 2.2; 95% CI 0.7 to 6.7; p=0.16) in IV-D vs placebo). No differences in any categorical cVSP outcomes, DCI, 3-month outcomes or quantitative angiogram and TCD analyses were seen in this small safety trial not powered to detect efficacy. CONCLUSIONS In this small trial, IV-D after aSAH was feasible, tolerable and safe. TRIAL REGISTRATION NUMBER http://clinicaltrials.gov NCT01024972.
Collapse
Affiliation(s)
- Susanne Muehlschlegel
- Departments of Neurology (Neurocritical Care), University of Massachusetts Medical School, Worcester, Massachusetts, USA Department of Anesthesia/Critical Care, University of Massachusetts Medical School, Worcester, Massachusetts, USA Department of Surgery, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Raphael Carandang
- Departments of Neurology (Neurocritical Care), University of Massachusetts Medical School, Worcester, Massachusetts, USA Department of Surgery, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Wiley Hall
- Departments of Neurology (Neurocritical Care), University of Massachusetts Medical School, Worcester, Massachusetts, USA Department of Surgery, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Nisha Kini
- Department of Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Saef Izzy
- Departments of Neurology (Neurocritical Care), University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Bridget Garland
- Departments of Neurology (Neurocritical Care), University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Cynthia Ouillette
- Departments of Neurology (Neurocritical Care), University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | - Thomas F Flood
- Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Matthew J Gounis
- Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - John P Weaver
- Department of Neurosurgery, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Bruce Barton
- Department of Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Ajay K Wakhloo
- Departments of Neurology (Neurocritical Care), University of Massachusetts Medical School, Worcester, Massachusetts, USA Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA Department of Neurosurgery, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
6
|
Raiteri L, Raiteri M. Multiple functions of neuronal plasma membrane neurotransmitter transporters. Prog Neurobiol 2015; 134:1-16. [PMID: 26300320 DOI: 10.1016/j.pneurobio.2015.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/09/2015] [Accepted: 08/18/2015] [Indexed: 12/11/2022]
Abstract
Removal from receptors of neurotransmitters just released into synapses is one of the major steps in neurotransmission. Transporters situated on the plasma membrane of nerve endings and glial cells perform the process of neurotransmitter (re)uptake. Because the density of transporters in the membranes can fluctuate, transporters can determine the transmitter concentrations at receptors, thus modulating indirectly the excitability of neighboring neurons. Evidence is accumulating that neurotransmitter transporters can exhibit multiple functions. Being bidirectional, neurotransmitter transporters can mediate transmitter release by working in reverse, most often under pathological conditions that cause ionic gradient dysregulations. Some transporters reverse to release transmitters, like dopamine or serotonin, when activated by 'indirectly acting' substrates, like the amphetamines. Some transporters exhibit as one major function the ability to capture transmitters into nerve terminals that perform insufficient synthesis. Transporter activation can generate conductances that regulate directly neuronal excitability. Synaptic and non-synaptic transporters play different roles. Cytosolic Na(+) elevations accompanying transport can interact with plasmalemmal or/and mitochondrial Na(+)/Ca(2+) exchangers thus generating calcium signals. Finally, neurotransmitter transporters can behave as receptors mediating releasing stimuli able to cause transmitter efflux through multiple mechanisms. Neurotransmitter transporters are therefore likely to play hitherto unknown roles in multiple therapeutic treatments.
Collapse
Affiliation(s)
- Luca Raiteri
- Department of Pharmacy, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy; Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy; National Institute of Neuroscience, Genoa, Italy
| | - Maurizio Raiteri
- Department of Pharmacy, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy; Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy; National Institute of Neuroscience, Genoa, Italy.
| |
Collapse
|
7
|
GABA release provoked by disturbed Na+, K+ and Ca2+ homeostasis in cerebellar nerve endings: Roles of Ca2+ channels, Na+/Ca2+ exchangers and GAT1 transporter reversal. Neurochem Int 2014; 72:1-9. [DOI: 10.1016/j.neuint.2014.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/25/2014] [Accepted: 04/03/2014] [Indexed: 11/15/2022]
|
8
|
Milanese M, Romei C, Usai C, Oliveri M, Raiteri L. A new function for glycine GlyT2 transporters: Stimulation of γ-aminobutyric acid release from cerebellar nerve terminals through GAT1 transporter reversal and Ca2+-dependent anion channels. J Neurosci Res 2013; 92:398-408. [DOI: 10.1002/jnr.23321] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 10/08/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Marco Milanese
- Department of Pharmacy; Pharmacology and Toxicology Section, University of Genoa; Genoa Italy
- Center of Excellence for Biomedical Research; University of Genoa; Genoa Italy
| | - Cristina Romei
- Department of Pharmacy; Pharmacology and Toxicology Section, University of Genoa; Genoa Italy
| | - Cesare Usai
- Institute of Biophysics; National Research Council; Genoa Italy
| | - Martina Oliveri
- Department of Pharmacy; Pharmacology and Toxicology Section, University of Genoa; Genoa Italy
| | - Luca Raiteri
- Department of Pharmacy; Pharmacology and Toxicology Section, University of Genoa; Genoa Italy
- Center of Excellence for Biomedical Research; University of Genoa; Genoa Italy
- National Institute of Neuroscience; Genoa Italy
| |
Collapse
|
9
|
Arne DSc S, Westergaard N. Pathologic consequences in hippocampus of aberrations in the metabolic trafficking between neurons and glial cells necessary for normal glutamate homeostasis. Hippocampus 2013. [DOI: 10.1002/hipo.1993.4500030720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Schousboe Arne DSc
- PharmaBiotec Research Center, the Neurobiology Unit, Department of Biological Sciences, Royal Danish School of Pharmacy, Copenhagen, Denmark
| | - Niels Westergaard
- PharmaBiotec Research Center, the Neurobiology Unit, Department of Biological Sciences, Royal Danish School of Pharmacy, Copenhagen, Denmark
| |
Collapse
|
10
|
Arne Schousboe, Bachevalier J, Braak H, Heinemann U, Nitsch R, Schröder H, Wetmore C. Structural correlates and cellular mechanisms in entorhinal—hippocampal dysfunction. Hippocampus 2013. [DOI: 10.1002/hipo.1993.4500030732] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Arne Schousboe
- PharmaBiotec Research Center, the Neurobiology Unit, Department of Biological Sciences, Royal Danish School of Pharmacy, Copenhagen, Denmark
| | - Jocelyne Bachevalier
- Medical School, Department of Neurobiology and Anatomy, University of Texas, Houston, Texas, U.S.A
| | - Heiko Braak
- Center of Morphology, Goethe‐University, Frankfurt, Germany
| | - Uwe Heinemann
- Institute of Neurophysiology, University of Köln, Köln, Germany
| | - Robert Nitsch
- Institute of Anatomy, University of Köln, Köln, Germany
| | | | - Cynthia Wetmore
- Department of Cell Biology and Neuroanatomy, University of Minnesota, Minneapolis, Minnesota, U.S.A
| |
Collapse
|
11
|
Romei C, Raiteri M, Raiteri L. GABA transporters mediate glycine release from cerebellum nerve endings: Roles of Ca2+channels, mitochondrial Na+/Ca2+ exchangers, vesicular GABA/glycine transporters and anion channels. Neurochem Int 2012; 61:133-40. [DOI: 10.1016/j.neuint.2012.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 04/18/2012] [Accepted: 05/01/2012] [Indexed: 01/03/2023]
|
12
|
Dantrolene is neuroprotective in vitro, but does not affect survival in SOD1(G⁹³A) mice. Neuroscience 2012; 220:26-31. [PMID: 22750242 DOI: 10.1016/j.neuroscience.2012.06.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/18/2012] [Accepted: 06/20/2012] [Indexed: 12/12/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a devastating progressive neurodegenerative disease. One of the proposed disease mechanisms is excitotoxicity, in which excessive cytosolic calcium causes neuronal death. Although most calcium may originate from the extracellular space through activation of calcium-permeable AMPA receptors, we investigated in this study the contribution of endoplasmic reticulum calcium release by blocking the ryanodine receptor (RyR) using dantrolene. In vitro, dantrolene provides a significant protection to motor neurons exposed to a brief excitotoxic insult. However, daily administration of dantrolene to mice overexpressing superoxide dismutase 1 glycine to alanine at position 93 (SOD1(G93A)) does affect neither survival nor the number of motor neurons and ubiquitin aggregates indicating that calcium release through RyRs does not contribute to the selective motor neuron death in this animal model for ALS.
Collapse
|
13
|
Romei C, Di Prisco S, Raiteri M, Raiteri L. Glycine release provoked by disturbed Na+, K+ and Ca2+ homeostasis in cerebellar nerve endings: roles of Ca2+ channels, Na+/Ca2+ exchangers and GlyT2 transporter reversal. J Neurochem 2011; 119:50-63. [DOI: 10.1111/j.1471-4159.2011.07401.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
CPEB4 is a cell survival protein retained in the nucleus upon ischemia or endoplasmic reticulum calcium depletion. Mol Cell Biol 2010; 30:5658-71. [PMID: 20937770 DOI: 10.1128/mcb.00716-10] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The RNA binding protein CPEB (cytoplasmic polyadenylation element binding) regulates cytoplasmic polyadenylation and translation in germ cells and the brain. In neurons, CPEB is detected at postsynaptic sites, as well as in the cell body. The related CPEB3 protein also regulates translation in neurons, albeit probably not through polyadenylation; it, as well as CPEB4, is present in dendrites and the cell body. Here, we show that treatment of neurons with ionotropic glutamate receptor agonists causes CPEB4 to accumulate in the nucleus. All CPEB proteins are nucleus-cytoplasm shuttling proteins that are retained in the nucleus in response to calcium-mediated signaling and alpha-calcium/calmodulin-dependent kinase protein II (CaMKII) activity. CPEB2, -3, and -4 have conserved nuclear export signals that are not present in CPEB. CPEB4 is necessary for cell survival and becomes nuclear in response to focal ischemia in vivo and when cultured neurons are deprived of oxygen and glucose. Further analysis indicates that nuclear accumulation of CPEB4 is controlled by the depletion of calcium from the ER, specifically, through the inositol-1,4,5-triphosphate (IP3) receptor, indicating a communication between these organelles in redistributing proteins between subcellular compartments.
Collapse
|
15
|
Bernal F, Petegnief V, Rodríguez MJ, Ursu G, Pugliese M, Mahy N. Nimodipine inhibits TMB-8 potentiation of AMPA-induced hippocampal neurodegeneration. J Neurosci Res 2009; 87:1240-9. [DOI: 10.1002/jnr.21930] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
16
|
Muehlschlegel S, Sims JR. Dantrolene: mechanisms of neuroprotection and possible clinical applications in the neurointensive care unit. Neurocrit Care 2008; 10:103-15. [PMID: 18696266 DOI: 10.1007/s12028-008-9133-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 07/30/2008] [Indexed: 10/21/2022]
Abstract
Calcium plays a central role in neuronal function and injury. Dantrolene, an inhibitor of the ryanodine receptor, inhibits intracellular calcium release from the sarco-endoplasmic reticulum. We review the available data of dantrolene as a potential neuroprotective agent and briefly summarize its other pharmacologic effects that may have potential applications for patients in the neurointensive care unit (NICU). Areas with the need for continued research are identified.
Collapse
Affiliation(s)
- Susanne Muehlschlegel
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
17
|
Hernández-Fonseca K, Massieu L. Disruption of endoplasmic reticulum calcium stores is involved in neuronal death induced by glycolysis inhibition in cultured hippocampal neurons. J Neurosci Res 2006; 82:196-205. [PMID: 16175570 DOI: 10.1002/jnr.20631] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Disturbances in neuronal calcium homeostasis have been implicated in a variety of neuropathological conditions, including cerebral ischemia, hypoglycemia, and epilepsy, and possibly constitute part of the cell death process associated with chronic neurodegenerative disorders. We investigated if endoplasmic reticulum (ER) calcium stores participate in neuronal death triggered by moderate glycolysis inhibition induced by iodoacetate, an inhibitor of glyceraldehyde-3-phosphate dehydrogenase, in cultured hippocampal neurons. Results show that exposure to iodoacetate leads to a slow partial decrease in cell survival, which is significantly prevented in the absence of Ca(2+) or in the presence of the calcium chelator BAPTA-AM. Treatment with caffeine and a low (1 microM) concentration of ryanodine, which activates the ryanodine receptor (RyR), exacerbates neuronal death, whereas dantrolene and 25 microM ryanodine, which antagonizes RyR, prevents damage. Xestospongin C (XeC), an antagonist of the inositol-3-phosphate (IP(3)) receptor (IP(3)R) also prevents neuronal damage. Inhibitors of the ER calcium ATPase (sarcoendoplasmic reticulum Ca(2+) ATPase; SERCA) have no effect. The decrease in ATP levels induced by iodoacetate is potentiated by caffeine and prevented by dantrolene. Although only a slight increase in glutamate extracellular levels is observed 3.5 hr after iodoacetate exposure, the N-methyl-D-aspartate (NMDA) glutamate receptor antagonist, MK-801, efficiently prevents neuronal damage. Taken together, the data suggest that neuronal death induced during moderate glycolysis inhibition involves calcium influx through NMDA receptors and calcium release from intracellular ER stores. These results might be relevant to the understanding the mechanisms involved in neuronal damage related to aging and chronic neurodegenerative diseases, which have been associated with decreased glucose metabolism.
Collapse
|
18
|
Youn DH, Voitenko N, Gerber G, Park YK, Galik J, Randić M. Altered long-term synaptic plasticity and kainate-induced Ca2+ transients in the substantia gelatinosa neurons in GLUK6-deficient mice. ACTA ACUST UNITED AC 2005; 142:9-18. [PMID: 16219388 DOI: 10.1016/j.molbrainres.2005.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Revised: 08/24/2005] [Accepted: 09/05/2005] [Indexed: 11/22/2022]
Abstract
Functional kainate receptors are expressed in the spinal cord substantia gelatinosa region, and their activation contributes to bi-directional regulation of excitatory synaptic transmission at primary afferent synapses with spinal cord substantia gelatinosa neurons. However, no study has reported a role(s) for kainate receptor subtypes in long-term synaptic plasticity phenomena in this region. Using gene-targeted mice lacking glutamate receptor 5 (GLU(K5)) or GLU(K6) subunit, we here show that GLU(K6) subunit, but not GLU(K5) subunit, is involved in the induction of long-term potentiation of excitatory postsynaptic potentials, evoked by two different protocols: (1) high-frequency primary afferent stimulation (100 Hz, 3 s) and (2) low-frequency spike-timing stimulation (1 Hz, 200 pulses). In addition, GLU(K6) subunit plays an important role in the expression of kainate-induced Ca2+ transients in the substantia gelatinosa. On the other hand, genetic deletion of GLU(K5) or GLU(K6) subunit does not prevent the induction of long-term depression. These results indicate that unique expression of kainate receptors subunits is important in regulating spinal synaptic plasticity and thereby processing of sensory information, including pain.
Collapse
Affiliation(s)
- Dong-Ho Youn
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | | | |
Collapse
|
19
|
Ohashi M, Saito S, Fukaya Y, Tomidokoro A, Araie M, Kashwagi K, Suzuki Y. Ocular distribution after topical instillation and potential neuroprotective effect after intravitreal injection of the calcium channel blocker iganipidine. Curr Eye Res 2005; 30:309-17. [PMID: 16020261 DOI: 10.1080/02713680590927632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE To investigate the effects of iganidipine, a new calcium antagonist on glutamate agonist-induced retinal damage. METHODS Iganidipine was injected with N-methyl-D-aspartate (NMDA) or kainic acid (KA) into the rat vitreous, and the retina was histologically examined. After co-injection with KA, the number of DiI-labeled retinal ganglion cells was also counted. Rabbits received unilateral instillation of 0.03% iganidipine twice daily for 14 days, and the iganidipine level in the posterior retina-choroid was determined by liquid chromatography/mass spectrometry. RESULTS Coadministration of iganidipine had no significant effect on NMDA-induced thinning of the inner plexiform layer but partly suppressed KA-induced thinning at final intravitreous concentrations of 10(-8) M or higher, which was confirmed by counting the ganglion cell number. The iganidipine level in the posterior retina-choroid was approximately 6.2 x 10(-7) M in the instilled eye, which was higher than on the contralateral side by 5.2 x 10(-7) M (p = 0.035). CONCLUSIONS Iganidipine suppressed KA-induced retinal damage in rats. This suppression was achieved with a lower concentration than that resulting from unilateral instillations of iganidipine in the ipsilateral posterior retina-choroid in rabbits.
Collapse
Affiliation(s)
- Masaaki Ohashi
- Eye Clinic, Tokyo Metropolitan Geriatric Medical Center, Tokyo 173-0015, Japan.
| | | | | | | | | | | | | |
Collapse
|
20
|
Wei H, Kang B, Wei W, Liang G, Meng QC, Li Y, Eckenhoff RG. Isoflurane and sevoflurane affect cell survival and BCL-2/BAX ratio differently. Brain Res 2005; 1037:139-47. [PMID: 15777762 DOI: 10.1016/j.brainres.2005.01.009] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Revised: 12/17/2004] [Accepted: 01/01/2005] [Indexed: 11/30/2022]
Abstract
Depletion of calcium from the neuronal endoplasmic reticulum (ER) induces apoptosis. Isoflurane depletes calcium from sarcoplasmic reticulum (SR) of muscle, an analogue of ER in neurons, while sevoflurane maintains or increases SR calcium. We hypothesized that isoflurane, but not sevoflurane, induces apoptosis by depleting the ER calcium. Rat PC12 pheochromocytoma cells and primary cortical neurons were treated with equipotent doses of isoflurane and sevoflurane. Isoflurane, but not sevoflurane, at equipotent doses induced cell damage determined by both LDH release and MTT reduction assays, dose and time dependently, in both types of cells. Isoflurane at 2.4% for 24 h induced cytotoxicity in both cell types, which was characterized by nuclear condensation and fragmentation and activation of caspases 3 and 9. Isoflurane cytotoxicity was suppressed by dantrolene, a ryanodine receptor antagonist that inhibits abnormal calcium release from the ER. Isoflurane decreased the Bcl-2/Bax ratio by as much as 36% (P < 0.05). However, sevoflurane did not cause neuronal damage by apoptosis nor did it decrease the Bcl-2/Bax ratio. These results suggest that isoflurane and sevoflurane differentially affect the Bcl-2/Bax ratio and cell survival. At equipotent concentrations, isoflurane, but not sevoflurane, induces cytotoxicity in both PC12 cells and primary cortical neurons and decreases the Bcl-2/Bax ratio.
Collapse
Affiliation(s)
- Huafeng Wei
- Department of Anesthesia, 305 John Morgan Building, 3620 Hamilton Walk, University of Pennsylvania Health System, Philadelphia, PA 19104-4283, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Nencioni ALA, Lebrun I, Dorce VAC. Dantrolene protects hippocampal cells from damage induced by TsTX, an alpha-scorpion toxin from Tityus serrulatus. Toxicon 2004; 44:179-83. [PMID: 15246767 DOI: 10.1016/j.toxicon.2004.05.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Accepted: 05/11/2004] [Indexed: 11/22/2022]
Abstract
We examined the effects of dantrolene, an inhibitor of intracellular calcium release, on alterations associated with the intrahippocampal injection of the TsTX scorpion toxin. Male Wistar rats (230-250 g) were injected with Ringer solution (1 microl; n = 6); TsTX toxin (1 microg/microl; n = 8); and dantrolene (10.0 mg/kg) plus TsTX toxin (1 microg/microl; n = 6). After injection, electroencephalographic (EEG) recordings and observation of animals behaviour were performed continuously for 4 h. One week later, animals were submitted to histopathological analysis. TsTX caused electrographic seizure expressed by moderate or intense discharges and neuronal loss in hippocampal areas in all injected animals (n = 8). Dantrolene reduced the effect of TsTX. Thus, 67% of rats (four out of six) treated with toxin and dantrolene had electrographic convulsions, but only for 30 min after injection and none of them presented neuronal damage. Dantrolene or Ringer had no effects on the EEG.
Collapse
Affiliation(s)
- Ana Leonor A Nencioni
- Laboratory of Pharmacology, Butantan Institute, Av. Dr. Vital Brasil, 1500, 05503-900 São Paulo, SP, Brazil
| | | | | |
Collapse
|
22
|
Poulsen CF, Simeone TA, Maar TE, Smith-Swintosky V, White HS, Schousboe A. Modulation by topiramate of AMPA and kainate mediated calcium influx in cultured cerebral cortical, hippocampal and cerebellar neurons. Neurochem Res 2004; 29:275-82. [PMID: 14992287 DOI: 10.1023/b:nere.0000010456.92887.3b] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The effect of the antiepileptic drug topiramate on Ca2+ uptake through (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionate (AMPA) and kainate (KA) receptors was investigated in different cell culture systems consisting of neurons from the cerebral cortex, hippocampus, and cerebellum. Ca2+ influx was assayed using a fluorescent Ca2+ chelator to monitor changes in the intracellular Ca2+ concentration or cobalt staining to assess the effect of topiramate on Ca2+-permeable AMPA/KA receptors. In all types of neuronal cultures studied, AMPA and KA were found to elicit an influx of Ca2+ in a subset of the neuronal population. Topiramate, at concentrations of 30 and 100 microM, inhibited Ca2+ influx by up to 60%. Modulation of AMPA and KA-evoked Ca2+ influx may contribute to both the antiepileptic and neuroprotective properties of topiramate.
Collapse
Affiliation(s)
- Claus F Poulsen
- Department of Pharmacology, The Danish University of Pharmaceutical Sciences, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
23
|
Yue H, Uzui H, Shimizu H, Nakano A, Mitsuke Y, Ueda T, Lee JD. Different Effects of Calcium Channel Blockers on Matrix Metalloproteinase-2 Expression in Cultured Rat Cardiac Fibroblasts. J Cardiovasc Pharmacol 2004; 44:223-30. [PMID: 15243304 DOI: 10.1097/00005344-200408000-00012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The cardiac effects of calcium channel blockers (CCBs) related to cardiac remodeling are inconsistent. Matrix metalloproteinases (MMPs) contribute to tissue remodeling. Cardiac fibroblasts play an important role in the regulation of collagen degradation by MMPs. Using gelatin zymography, Western blotting, Griess reagent, and a calcium kit-fluo 3, we investigated the effects of nifedipine, verapamil, diltiazem, and amlodipine on MMP-2 expression and further elucidate the mechanisms in cultured rat cardiac fibroblasts. Nifedipine increased and amlodipine decreased the expression of MMP-2; however, neither verapamil nor diltiazem altered MMP-2 expression. Nifedipine also increased nitrite production, and this increase was blunted by a nitric oxide (NO) synthases inhibitor (L-NAME). Nifedipine-induced MMP-2 expression was also blunted by L-NAME. An NO donor (sodium nitroprusside) induced MMP-2 expression. Data indicated that nifedipine might increase MMP-2 expression through a possible NO-dependent pathway. Amlodipine had no influence on nitrite production. The amlodipine-induced decrease of MMP-2 expression was abolished by two protein tyrosine kinase inhibitors, genistein and herbimycin A, indicating that amlodipine might decrease MMP-2 expression through a possible protein tyrosine kinase pathway. None of the four CCBs could alter the fluoscence intensity of fluo 3, indicating that the effects of CCBs on MMP-2 expression were independent of the variation in intracellular C2+ concentration. Our findings revealed that different CCBs exerted different effects on MMP-2 expression in cardiac fibroblasts.
Collapse
Affiliation(s)
- Hong Yue
- First Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Park E, Velumian AA, Fehlings MG. The Role of Excitotoxicity in Secondary Mechanisms of Spinal Cord Injury: A Review with an Emphasis on the Implications for White Matter Degeneration. J Neurotrauma 2004; 21:754-74. [PMID: 15253803 DOI: 10.1089/0897715041269641] [Citation(s) in RCA: 396] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Following an initial impact after spinal cord injury (SCI), there is a cascade of downstream events termed 'secondary injury', which culminate in progressive degenerative events in the spinal cord. These secondary injury mechanisms include, but are not limited to, ischemia, inflammation, free radical-induced cell death, glutamate excitotoxicity, cytoskeletal degradation and induction of extrinsic and intrinsic apoptotic pathways. There is emerging evidence that glutamate excitotoxicity plays a key role not only in neuronal cell death but also in delayed posttraumatic spinal cord white matter degeneration. Importantly however, the differences in cellular composition and expression of specific types of glutamate receptors in grey versus white matter require a compartmentalized approach to understand the mechanisms of secondary injury after SCI. This review examines mechanisms of secondary white matter injury with particular emphasis on glutamate excitotoxicity and the potential link of this mechanism to apoptosis. Recent studies have provided new insights into the mechanisms of glutamate release and its potential targets, as well as the downstream pathways associated with glutamate receptor activation in specific types of cells. Evidence from molecular and functional expression of glutamatergic AMPA receptors in white matter glia (and possibly axons), the protective effects of AMPA/kainate antagonists in posttraumatic white matter axonal function, and the vulnerability of oligodendrocytes to excitotoxic cell death suggest that glutamate excitotoxicity is associated with oligodendrocyte apoptosis. The latter mechanism appears key to glutamatergic white matter degeneration after SCI and may represent an attractive therapeutic target.
Collapse
Affiliation(s)
- Eugene Park
- Division of Neurosurgery and Institute of Medical Science, University of Toronto, and Division of Cell and Molecular Biology, Toronto Western Research Institute, Toronto Western Hospital, University Health Network, Ontario, Canada
| | | | | |
Collapse
|
25
|
Petegnief V, Ursu G, Bernal F, Mahy N. Nimodipine and TMB-8 potentiate the AMPA-induced lesion in the basal ganglia. Neurochem Int 2004; 44:287-91. [PMID: 14602092 DOI: 10.1016/s0197-0186(03)00136-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Acute injection of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) into the rat globus pallidus leads to calcium precipitation, neuronal death and gliosis. In order to determine whether L-type calcium channels and/or release of Ca(2+) from intracellular stores contribute to the effects of AMPA, nimodipine and 8-(N,N-diethylamino) octyl-3,4,5-trimethoxybenzoate hydrochloride (TMB-8) were administered in combination with AMPA. Nimodipine, but not TMB-8, tended to exacerbate the calcification process initiated by AMPA; the AMPA/nimodipine/TMB-8 combination produced much more calcium deposition than AMPA (+62%, P<0.05). AMPA alone induced a slight but not significant astroglial reaction. Nimodipine slightly enhanced the astroglial reaction triggered by AMPA, whereas TMB-8 doubled it (P<0.001 versus AMPA). These data suggest that blockade of L-type calcium channels by nimodipine enhances calcium imbalance triggered by AMPA, and the calcium release from the endoplasmic reticulum does not participate in the AMPA-induced calcification.
Collapse
Affiliation(s)
- Valérie Petegnief
- Unitat de Bioquimica, Facultat de Medicina, Universitat de Barcelona, IDIBAPS, Barcelona, Spain.
| | | | | | | |
Collapse
|
26
|
Frandsen A, Schousboe A. AMPA receptor-mediated neurotoxicity: role of Ca2+ and desensitization. Neurochem Res 2003; 28:1495-9. [PMID: 14570394 DOI: 10.1023/a:1025666207754] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Glutamate-induced neurodegeneration is the result of excessive stimulation of the different subtypes of glutamate receptors. With regard to the AMPA ((RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionate) receptors it has been clear from numerous studies that in addition to the Ca2+ permeability of the receptor complexes, their desensitization properties may play a determining role in the neurodegeneration mediated by this subtype of the glutamate receptors. Recent studies have revealed important amino acid residues in the AMPA receptor subunits that control the desensitization kinetics and that may constitute important targets for drugs that may alter the desensitization of the AMPA receptor complexes.
Collapse
Affiliation(s)
- Aase Frandsen
- Department of Pharmacology, The Danish University of Pharmaceutical Sciences, Universitetsparken 2, DK-2100, Copenhagen, Denmark
| | | |
Collapse
|
27
|
Abstract
BACKGROUND Based on empirical experience, hypothermia has long been known to be a potent putative neuroprotectant. Recent insights into the mechanisms of central ischemia and reperfusion suggest reasons why hypothermia may be an ideal modality for extending the time window for thrombolytic stroke therapy. REVIEW SUMMARY Hypothermia protects brain tissue from the effects of ischemia in multiple ways. It retards energy depletion, reduces intracellular acidosis, and lessens the ischemic overdose of excitatory neurotransmitters. This attenuates the influx of intracellular calcium, the herald of subsequent neuronal death. Additionally, hypothermia suppresses synthesis of oxygen free radicals involved in secondary damage associated with reperfusion. It also suppresses the mechanisms related to blood-brain barrier degeneration and post-ischemic remodeling. Animal and human data show that deep hypothermia is primarily protective and is used in several cardiothoracic and neurosurgical applications, and that mild hypothermia enhances recovery after focal and global ischemic brain injuries. Preliminary data on hypothermia in human stroke also show promising potential. Current methods of instituting hypothermia, including patient selection, temperature and timing, cooling methods, and complications are reviewed in detail. CONCLUSIONS Neuroprotection conferred by mild to moderate hypothermia is likely to undergo phase III clinical trials in various clinical settings. Novel technology promises a broad application even outside intensive care settings. Preliminary studies suggest that mild to moderate hypothermia is a useful adjunct to thrombolytic therapy for stroke. Timing, degree, and duration rules are being developed and methods of cooling further perfected to optimize the safety and efficacy of this promising approach.
Collapse
Affiliation(s)
- Maxim D Hammer
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
28
|
Paschen W. Mechanisms of neuronal cell death: diverse roles of calcium in the various subcellular compartments. Cell Calcium 2003; 34:305-10. [PMID: 12909077 DOI: 10.1016/s0143-4160(03)00138-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Wulf Paschen
- Department of Experimental Neurology, Max-Planck-Institute for Neurological Research, Cologne, Germany.
| |
Collapse
|
29
|
Paschen W. Endoplasmic reticulum: a primary target in various acute disorders and degenerative diseases of the brain. Cell Calcium 2003; 34:365-83. [PMID: 12909082 DOI: 10.1016/s0143-4160(03)00139-8] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Changes in neuronal calcium activity in the various subcellular compartments have divergent effects on affected cells. In the cytoplasm and mitochondria, where calcium activity is normally low, a prolonged excessive rise in free calcium levels is believed to be toxic, in the endoplasmic reticulum (ER), in contrast, calcium activity is relatively high and severe stress is caused by a depletion of ER calcium stores. Besides its role in cellular calcium signaling, the ER is the site where membrane and secretory proteins are folded and processed. These calcium-dependent processes are fundamental to normal cell functioning. Under conditions of ER dysfunction unfolded proteins accumulate in the ER lumen, a signal responsible for activation of the unfolded protein response (UPR) and the ER-associated degradation (ERAD). UPR is characterized by activation of two ER-resident kinases, PKR-like ER kinase (PERK) and IRE1. PERK induces phosphorylation of the eukaryotic initiation factor (eIF2alpha), resulting in a shut-down of translation at the initiation step. This stress response is needed to block new synthesis of proteins that cannot be correctly folded, and thus to protect cells from the effect of unfolded proteins which tend to form toxic aggregates. IRE1, on the other hand, is turned after activation into an endonuclease that cuts out a sequence of 26 bases from the coding region of xbp1 mRNA. Processed xbp1 mRNA is translated into the respective protein, an active transcription factor specific for ER stress genes such as grp78. In acute disorders and degenerative diseases, the ER calcium pool is a primary target of toxic metabolites or intermediates, such as oxygen free radicals, produced during the pathological process. Affected neurons need to activate the entire UPR to cope with the severe form of stress induced by ER dysfunction. This stress response is however hindered under conditions where protein synthesis is suppressed to such an extent that processed xbp1 mRNA is not translated into the processed XBP1 protein (XBP1(proc)). Furthermore, activation of ERAD is important for the degradation of unfolded proteins through the ubiquitin/proteasomal pathway, which is impaired in acute disorders and degenerative diseases, resulting in further ER stress. ER functioning is thus impaired in two different ways: first by the direct action of toxic intermediates, produced in the course of the pathological process, hindering vital ER reactions, and second by the inability of cells to fully activate UPR and ERAD, leaving them unable to withstand the severe form of stress induced by ER dysfunction.
Collapse
Affiliation(s)
- Wulf Paschen
- Department of Experimental Neurology, Max-Planck-Institute for Neurological Research, 50931 Koeln, Germany.
| |
Collapse
|
30
|
Bak LK, Schousboe A, Waagepetersen HS. Characterization of depolarization-coupled release of glutamate from cultured mouse cerebellar granule cells using DL-threo-beta-benzyloxyaspartate (DL-TBOA) to distinguish between the vesicular and cytoplasmic pools. Neurochem Int 2003; 43:417-24. [PMID: 12742087 DOI: 10.1016/s0197-0186(03)00030-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Release of preloaded [3H]D-aspartate in response to depolarization induced by N-methyl-D-aspartate (NMDA) or the endogenous agonist glutamate was characterized using cultured glutamatergic cerebellar granule neurons. Release from the vesicular and the cytoplasmic glutamate pools, respectively, was distinguished employing the competitive, non-transportable glutamate transport inhibitor DL-threo-beta-benzyloxyaspartate (DL-TBOA). NMDA (300 microM)-induced release was enhanced (50%) by a simultaneous elevation of the extracellular potassium concentration to 15 mM, which lifts the voltage-dependent magnesium block of the NMDA receptors. This NMDA/K(+)-induced release was not sensitive to DL-TBOA (100 microM) but was inhibited by 75% in the presence of the unspecific calcium channel antagonist La(3+) (100 microM). Glutamate (100 microM) induced a large fractional release of the preloaded [3H]D-aspartate and in the presence of DL-TBOA the release was reduced by approximately 50%. In contrast, release evoked by 25 microM glutamate was not inhibited by DL-TBOA. These results indicate that the release elicited by 100 microM glutamate is comprised of a significant glutamate transporter-mediated component in addition to the vesicular release while the NMDA/K(+)-induced release is vesicular in nature. It is likely that the high glutamate concentration (100 microM) may facilitate heteroexchange of the preloaded [3H]D-aspartate.
Collapse
Affiliation(s)
- Lasse K Bak
- Department of Pharmacology, The Royal Danish School of Pharmacy, 2 Universitetsparken, DK-2100 Copenhagen, Denmark
| | | | | |
Collapse
|
31
|
Abstract
Homer proteins physically link metabotropic glutamate receptors with IP3 receptors located at the endoplasmic reticulum (ER) and thereby modulate receptor-activated calcium signaling. Homer 1a, the short form of constitutively expressed homer 1 proteins, exerts dominant negative activity with respect to homer 1 proteins by interfering with the formation of multiprotein complexes. Homer 1a is an immediate early gene, the expression of which is activated by various stimuli including glutamate receptor activation. The mechanisms underlying activation of homer 1a expression are however, not fully understood. Here, we show that homer 1a expression is induced in neuronal cell cultures under experimental conditions associated with ER dysfunction. Increased homer 1a mRNA levels were found in 2 sets of cultures: in those exposed to thapsigargin, a specific inhibitor of ER Ca2+-ATPase, after a transient depletion of ER calcium stores through exposure to calcium-free medium supplemented with EGTA, and in those exposed to a proteasome inhibitor known to induce ER dysfunction. Thus, homer 1a expression may be activated by impairment of ER functioning just as it is by glutamate receptor activation.
Collapse
Affiliation(s)
- Wulf Paschen
- Department of Experimental Neurology, Max-Planck-Institute for Neurological Research, Gleuelerstrasse 50, 50931 Köln, Germany.
| | | |
Collapse
|
32
|
Makarewicz D, Ziemińska E, Łazarewicz JW. Dantrolene inhibits NMDA-induced 45Ca uptake in cultured cerebellar granule neurons. Neurochem Int 2003; 43:273-8. [PMID: 12742069 DOI: 10.1016/s0197-0186(03)00012-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dantrolene is an inhibitor of a skeletal muscle subtype of ryanodine receptors that stabilizes intracellular calcium concentrations and exerts neuroprotective effects in neurons submitted to excitotoxic challenges. The mechanisms of dantrolene-induced neuroprotection are not clear. In this study, using a model of cultured rat cerebellar granule neurons, we demonstrated that dantrolene inhibits NMDA-evoked 45Ca uptake, indicating that this drug may inhibit the activity of NMDA receptor channels. Primary neuronal cultures were incubated for 10 min in Mg(2+)-free ionic medium with NMDA and 45Ca in the presence of different concentrations of dantrolene, then radioactivity in neurons was measured by liquid scintillation spectroscopy. The results demonstrated that dantrolene, applied at micromolar concentrations, inhibits NMDA-evoked 45Ca uptake in neurons in a dose-dependent manner. DMSO, a vehicle to dantrolene, in concentrations used in this study had no effect on NMDA-evoked 45Ca uptake. These results, indicating that dantrolene inhibits activation of the NMDA receptors, might at least partially explain the mechanisms of a dantrolene-evoked protection of neurons against excitotoxicity mediated by agonists of NMDA receptors.
Collapse
Affiliation(s)
- Dorota Makarewicz
- Department of Neurochemistry, Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland
| | | | | |
Collapse
|
33
|
Linford NJ, Dorsa DM. 17beta-Estradiol and the phytoestrogen genistein attenuate neuronal apoptosis induced by the endoplasmic reticulum calcium-ATPase inhibitor thapsigargin. Steroids 2002; 67:1029-40. [PMID: 12441188 DOI: 10.1016/s0039-128x(02)00062-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Estrogenic compounds have been shown to protect neurons from a variety of toxic stimuli in vitro and in vivo and depletion of estrogen at menopause has been associated with increased risk of neurodegenerative diseases. Genistein is an isoflavone soy derivative that binds to estrogen receptors with selective estrogen receptor modulator (SERM) properties. Recent FDA recommendations of soy intake for cholesterol reduction have prompted investigation into the potentially estrogenic role of dietary soy phytochemicals in the brain. In this study, we have shown that 50nM genistein significantly reduces neuronal apoptosis in an estrogen receptor-dependent manner. The importance of apoptosis in the brain has been recognized with regard to organization of the developing brain as well as degeneration in response to disease or stroke; however, the effects of estrogenic compounds on neuronal apoptosis have not been thoroughly examined. We developed a model of apoptotic toxicity in primary cortical neurons by using the endoplasmic reticulum (ER) calcium-ATPase inhibitor, thapsigargin, to test potential anti-apoptotic effects of 17beta-estradiol and genistein. Estrogen receptor beta, but not estrogen receptor alpha, was detected in our primary neuron cultures. Thapsigargin-induced apoptosis was confirmed by loss of mitochondrial function, DNA laddering, nuclear condensation and fragmentation, and caspase activation. Both 17beta-estradiol and genistein reduced the number of apoptotic neurons and reduced the number of neurons containing active caspase-3. This effect was blocked by co-addition of ICI 182780. Our results demonstrate that genistein and 17beta-estradiol have comparable anti-apoptotic properties in primary cortical neurons and that these properties are mediated through estrogen receptors.
Collapse
Affiliation(s)
- Nancy J Linford
- Department of Pathology, University of Washington, Box 357705, Seattle, WA 98195, USA
| | | |
Collapse
|
34
|
Attucci S, Clodfelter GV, Thibault O, Staton J, Moroni F, Landfield PW, Porter NM. Group I metabotropic glutamate receptor inhibition selectively blocks a prolonged Ca(2+) elevation associated with age-dependent excitotoxicity. Neuroscience 2002; 112:183-94. [PMID: 12044483 DOI: 10.1016/s0306-4522(02)00002-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
It has been recognized for some years that a prolonged Ca(2+) elevation that is predictive of impending cell death develops in cultured neurons following excitotoxic insult. In addition, neurons exhibit enhanced sensitivity to excitotoxic insult with increasing age in culture. However, little is known about the processes that selectively regulate the post-insult Ca(2+) elevation and therefore, it remains unclear whether it is associated specifically with age-dependent toxicity.Here, we tested the hypothesis that a group I metabotropic glutamate receptor antagonist selectively modulates the prolonged Ca(2+) elevation in direct association with its protective effects against excitotoxicity. Rat hippocampal cultures of two ages (8-9 and 21-28 days in vitro) were exposed to a 5-min glutamate insult (400 microM in younger and 10 microM in older cultures) sufficient to kill >50% of the neurons, and were treated with vehicle or the specific group I metabotropic glutamate receptor antagonist 1-aminoindan-1,5-dicarboxylic acid (AIDA; 1 mM), throughout and following the insult. Neuronal survival was quantified 24 h after insult. In parallel studies, neurons of similar age in culture were imaged ratiometrically with a confocal microscope during and for 60 min after the glutamate insult. A large post-insult Ca(2+) elevation was present in older but not most younger neurons. The N-methyl-D-aspartate receptor antagonist, MK-801, blocked the Ca(2+) elevation both during and following the insult. In contrast, AIDA blocked only the post-insult prolonged Ca(2+) elevation in older neurons. Moreover, AIDA was neuroprotective in older but not younger cultures. From these results we suggest that the post-insult Ca(2+) elevation is regulated differently from the Ca(2+) elevation during glutamate insult and is modulated by group I metabotropic glutamate receptors. Further, the prolonged Ca(2+) elevation appears to be directly linked to an age-dependent component of vulnerability.
Collapse
Affiliation(s)
- S Attucci
- Departimento di Farmacologia, Università di Firenze, 50139 Florence, Italy
| | | | | | | | | | | | | |
Collapse
|
35
|
Treiman M. Regulation of the endoplasmic reticulum calcium storage during the unfolded protein response--significance in tissue ischemia? Trends Cardiovasc Med 2002; 12:57-62. [PMID: 11852251 DOI: 10.1016/s1050-1738(01)00147-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Endoplasmic reticulum (ER) is an organelle intimately involved in control of cell activities through Ca(2+) signaling, as well as in post-translational protein folding and maturation. Ca(2+) storage within the ER is required for both of these functions. Several of the ER-resident proteins essential for the protein folding pathway require Ca(2+) binding for their activity. A number of factors, including Ca(2+) depletion, may interfere with the folding pathway within the ER, with a potential for cell injury through an accumulation of malfolded protein aggregates. The Unfolded Protein Response involves a transcriptional upregulation of a number of the ER-resident folding helper proteins and becomes triggered when the folding pathway is blocked. To be effective, these upregulated proteins require a sufficient supply of Ca(2+) cofactor within the ER lumen. In tissue ischemia, where the availablity of this cofactor may be compromised, the newly described ability of the cell to boost the ER Ca(2+)-loading capacity by upregulating the ER Ca(2+) pump may be of particular importance for limiting cell injury and promoting survival. The novel focus on the pathophysiological significance of ER Ca(2+)depletion extends the scope of disturbed Ca(2+) homeostasis following ischemia beyond the consequences of the cytosolic calcium overload.
Collapse
Affiliation(s)
- Marek Treiman
- Department of Medical Physiology, Division of Renal and Cardiovascular Physiology, University of Copenhagen, The Panum Institute, Copenhagen, Denmark.
| |
Collapse
|
36
|
Paschen W, Frandsen A. Endoplasmic reticulum dysfunction--a common denominator for cell injury in acute and degenerative diseases of the brain? J Neurochem 2001; 79:719-25. [PMID: 11723164 DOI: 10.1046/j.1471-4159.2001.00623.x] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Various physiological, biochemical and molecular biological disturbances have been put forward as mediators of neuronal cell injury in acute and chronic pathological states of the brain such as ischemia, epileptic seizures and Alzheimer's or Parkinson's disease. These include over-activation of glutamate receptors, a rise in cytoplasmic calcium activity and mitochondrial dysfunction. The possible involvement of the endoplasmic reticulum (ER) dysfunction in this process has been largely neglected until recently, although the ER plays a central role in important cell functions. Not only is the ER involved in the control of cellular calcium homeostasis, it is also the subcellular compartment in which the folding and processing of membrane and secretory proteins takes place. The fact that blocking of these processes is sufficient to cause cell damage indicates that they are crucial for normal cell functioning. This review presents evidence that ER function is disturbed in many acute and chronic diseases of the brain. The complex processes taken place in this subcellular compartment are however, affected in different ways in various disorders; whereas the ER-associated degradation of misfolded proteins is affected in Parkinson's disease, it is the unfolded protein response which is down-regulated in Alzheimer's disease and the ER calcium homeostasis that is disturbed in ischemia. Studying the consequences of the observed deteriorations of ER function and identifying the mechanisms causing ER dysfunction in these pathological states of the brain will help to elucidate whether neurodegeneration is indeed caused by these disturbances, and will help to facilitate the search for drugs capable of blocking the pathological process directly at an early stage.
Collapse
Affiliation(s)
- W Paschen
- Department of Experimental Neurology, Max-Planck-Institute for Neurological Research, Cologne, Germany.
| | | |
Collapse
|
37
|
Jensen JB, Lund TM, Timmermann DB, Schousboe A, Pickering DS. Role of GluR2 expression in AMPA-induced toxicity in cultured murine cerebral cortical neurons. J Neurosci Res 2001; 65:267-77. [PMID: 11494361 DOI: 10.1002/jnr.1150] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA-R)-mediated neurotoxicity was studied in relation to subunit expression and the presence of Ca(2+)-permeable receptor channels. AMPA-mediated toxicity had two components: 1) a direct AMPA-R-mediated component, which was not due to Ca(2+) influx through voltage-gated Ca(2+) channels, reversal of the Na(+)/Ca(2+) exchanger or release of calcium from dantrolene-sensitive intracellular Ca(2+) stores, and 2) a minor, indirect component involving activation of NMDA receptor channels, because of glutamate release and removal of the Mg(2+) block of the NMDA receptor on AMPA-R stimulation. The involvement of Ca(2+) influx through AMPA-R was also examined. The number of neurons possessing Ca(2+)-permeable AMPA-R increased during culture development, concurrently with an increasing susceptibility for AMPA-induced toxicity during development. GluR2(R) levels also increased during development, and channel blockers of Ca(2+)-permeable AMPA-R lacking the GluR2(R) subunit (spermine and philanthotoxin) failed to prevent neurotoxicity or increases in [Ca(2+)](i). Thus, the direct AMPA-R-mediated toxicity may be explained by initiation of cell death by Ca(2+) fluxing through AMPA-R containing GluR2(R). The components of direct AMPA-R-mediated toxicity are proposed to be 1) toxicity mediated by GluR2(R)-lacking AMPA-R and 2) toxicity mediated by low-Ca(2+)-permeability AMPA-R containing GluR2(R).
Collapse
Affiliation(s)
- J B Jensen
- The Royal Danish School of Pharmacy, NeuroScience PharmaBiotech Research Center, Department of Pharmacology, 2 Universitetsparken, DK-2100 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
38
|
Ischemia-Induced Ionic Mechanisms of Injury in the Developing Brain. Brain Inj 2001. [DOI: 10.1007/978-1-4615-1721-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
Paschen W. Dependence of vital cell function on endoplasmic reticulum calcium levels: implications for the mechanisms underlying neuronal cell injury in different pathological states. Cell Calcium 2001; 29:1-11. [PMID: 11133351 DOI: 10.1054/ceca.2000.0162] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The endoplasmic reticulum (ER) is a subcellular compartment playing a pivotal role in the control of vital calcium-related cell functions, including calcium storage and signalling. In addition, newly synthesized membrane and secretory proteins are folded and processed in the ER, reactions which are strictly calcium dependent. The ER calcium activity is therefore high, being several orders of magnitude above that of the cytoplasm. Depletion of ER calcium stores causes an accumulation of unfolded proteins in the ER lumen, a pathological situation which induces the activation of two highly conserved stress responses, the ER overload response (EOR) and the unfolded protein response (UPR). EOR triggers activation of the transcription factor NF kappa B, which, in turn, activates the expression of target genes. UPR triggers two downstream processes: it activates the expression of genes coding for ER-resident stress proteins, and it causes a suppression of the initiation of protein synthesis. A similar stress response is activated in pathological states of the brain including cerebral ischaemia, implying common underlying mechanisms. Depending on the extent and duration of the disturbance, an isolated impairment of ER function is sufficient to induce cell injury. In this review, evidence is presented that ER function is indeed disturbed in various diseases of the brain, including acute pathological states (e.g. cerebral ischaemia) and degenerative diseases (e.g. Alzheimer's disease). A body of evidence suggests that disturbances of ER function could be a global pathomechanism underlying neuronal cell injury in various acute and chronic disorders of the central nervous system. If that is true, restoration of ER function or attenuation of secondary disturbances induced by ER dysfunction could present a highly promising new avenue for pharmacological intervention to minimize neuronal cell injury in different pathological states of the brain.
Collapse
Affiliation(s)
- W Paschen
- Department of Experimental Neurology, Max-Planck-Institute for Neurological Research, Cologne, Germany.
| |
Collapse
|
40
|
Abstract
It is widely believed that calcium plays a primary role in the development of neuronal cell injury in different pathological states of the brain. Disturbances of calcium homeostasis may be induced in three different subcellular compartments, the cytoplasm, mitochondria or the endoplasmic reticulum (ER). The traditional calcium hypothesis holds that neuronal cell injury is induced by a marked increase in cytoplasmic calcium activity during stress (e.g., cerebral ischemia). Recently, this hypothesis has been modified, taking into account that under different experimental conditions the extent of cell injury does not correlate closely with calcium load or total calcium influx into the cell, and that neuronal cell injury has been found to be associated with both increases and decreases of cytoplasmic calcium activity. The mitochondrial calcium hypothesis is based on the observation that after a severe form of stress there is a massive influx of calcium ions into mitochondria, which may lead to production of free radicals, opening of the mitochondrial permeability transition (MPT) pore and disturbances of energy metabolism. However, it has still to be established whether drugs such as cyclosporin A are neuroprotective through their effect on MPT or through the blocking of processes upstream of MPT. The ER calcium hypothesis arose from the observation that ER calcium stores are depleted after severe forms of stress, and that the response of cells to disturbances of ER calcium homeostasis (activation of the expression of genes coding for ER resident stress proteins and suppression of the initiation of protein synthesis) resembles their response to a severe form of stress (e.g., transient ischemia) implying common underlying mechanisms. Elucidating the exact mechanisms of calcium toxicity and identifying the subcellular compartment playing the most important role in this pathological process will help to evaluate strategies for specific therapeutic intervention.
Collapse
Affiliation(s)
- W Paschen
- Department of Experimental Neurology, Max-Planck-Institute for Neurological Research, Köln, Germany.
| |
Collapse
|
41
|
Manion MK, Su Z, Villain M, Blalock JE. A new type of Ca
2+
channel blocker that targets Ca
2+
sensors and prevents Ca
2+
‐mediated apoptosis. FASEB J 2000. [DOI: 10.1096/fasebj.14.10.1297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Michael K. Manion
- University of Alabama at BirminghamDepartment of Physiology and Biophysics Birmingham Alabama 35294 USA
| | - Zhengchang Su
- University of Alabama at BirminghamDepartment of Physiology and Biophysics Birmingham Alabama 35294 USA
| | - Matteo Villain
- University of Alabama at BirminghamDepartment of Physiology and Biophysics Birmingham Alabama 35294 USA
| | - J. Edwin Blalock
- University of Alabama at BirminghamDepartment of Physiology and Biophysics Birmingham Alabama 35294 USA
| |
Collapse
|
42
|
Wei H, Leeds P, Chen RW, Wei W, Leng Y, Bredesen DE, Chuang DM. Neuronal apoptosis induced by pharmacological concentrations of 3-hydroxykynurenine: characterization and protection by dantrolene and Bcl-2 overexpression. J Neurochem 2000; 75:81-90. [PMID: 10854250 DOI: 10.1046/j.1471-4159.2000.0750081.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have studied neurotoxicity induced by pharmacological concentrations of 3-hydroxykynurenine (3-HK), an endogenous toxin implicated in certain neurodegenerative diseases, in cerebellar granule cells, PC12 pheochromocytoma cells, and GT1-7 hypothalamic neurosecretory cells. In all three cell types, the toxicity was induced in a dose-dependent manner by 3-HK at high micromolar concentrations and had features characteristic of apoptosis, including chromatin condensation and internucleosomal DNA cleavage. In cerebellar granule cells, the 3-HK neurotoxicity was unaffected by xanthine oxidase inhibitors but markedly potentiated by superoxide dismutase and its hemelike mimetic, MnTBAP [manganese(III) tetrakis(benzoic acid)porphyrin chloride]. Catalase blocked 3-HK neurotoxicity in the absence and presence of superoxide dismutase or MnTBAP. The formation of H(2)O(2) was demonstrated in PC12 and GT1-7 cells treated with 3-HK, by measuring the increase in the fluorescent product, 2',7'-dichlorofluorescein. In both PC12 and cerebellar granule cells, inhibitors of the neutral amino acid transporter that mediates the uptake of 3-HK failed to block 3-HK toxicity. However, their toxicity was slightly potentiated by the iron chelator, deferoxamine. Taken together, our results suggest that neurotoxicity induced by pharmacological concentrations of 3-HK in these cell types is mediated primarily by H(2)O(2), which is formed most likely by auto-oxidation of 3-HK in extracellular compartments. 3-HK-induced death of PC12 and GT1-7 cells was protected by dantrolene, an inhibitor of calcium release from the endoplasmic reticulum. The protection by dantrolene was associated with a marked increase in the protein level of Bcl-2, a prominent antiapoptotic gene product. Moreover, overexpression of Bcl-2 in GT1-7 cells elicited by gene transfection suppressed 3-HK toxicity. Thus, dantrolene may elicit its neuroprotective effects by mechanisms involving up-regulation of the level and function of Bcl-2 protein.
Collapse
Affiliation(s)
- H Wei
- Section on Molecular Neurobiology, Biological Psychiatry Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Direct current-generated magnetic fields (2-3 mT, 20-min exposure) exerted biphasic effects on the population spike recorded from hippocampal slices. The initial decrease in the potential, observed during exposure of the slices to magnetic fields was followed by a recovery/amplification phase, which began after terminating the magnetic field action. During that phase the population spike exceeded the amplitude observed before application of the magnetic fields. The pattern of magnetic fields influence was not affected either by (+)-5-methyl-10,11-dihydro-5H-dibenzo (a,d) cyclohepten-5, 10-imine maleate (MK801), or by D,L,-2amino-5phosphonovalerate (APV), a noncompetitive and competitive NMDA receptor antagonist, respectively. The rising phase of the potential, however, was eliminated by dantrolene, an inhibitor of intracellular Ca(2 +) channels. This suggests that intracellular calcium channels participate in the mechanism of the influence of the direct current magnetic fields on the function of the hippocampal tissue.
Collapse
Affiliation(s)
- A Wieraszko
- CSI/IBR Center for Developmental Neuroscience and Developmental Disabilities, and Department of Biology, College of Staten Island/CUNY, Staten Island, New York 10314, USA.
| |
Collapse
|
44
|
Bonanno G, Sala R, Cancedda L, Cavazzani P, Cossu M, Raiteri M. Release of dopamine from human neocortex nerve terminals evoked by different stimuli involving extra- and intraterminal calcium. Br J Pharmacol 2000; 129:1780-6. [PMID: 10780986 PMCID: PMC1572008 DOI: 10.1038/sj.bjp.0703251] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The release of [(3)H]-dopamine ([(3)H]-DA) from human neocortex nerve terminals was studied in synaptosomes prepared from brain specimens removed in neurosurgery and exposed during superfusion to different releasing stimuli. Treatment with 15 mM KCl, 100 microM 4-aminopyridine, 1 microM ionomycin or 30 mM caffeine elicited almost identical overflows of tritium. Removal of external Ca(2+) ions abolished the overflow evoked by K(+) or ionomycin and largely prevented that caused by 4-aminopyridine; the overflow evoked by caffeine was completely independent of external Ca(2+). Exposure of synaptosomes to 25 microM of the broad spectrum calcium channel blocker CdCl(2) strongly inhibited the 4-aminopyridine-induced tritium overflow while that evoked by ionomycin remained unaffected. The Ca(2+) chelator, 1,2-bis-(2-aminophenoxy)ethane-N,N,N',N' tetraacetic acid (BAPTA), reduced significantly the K(+)- and the caffeine-induced tritium overflow. The effect of caffeine was attenuated by exposure to the ryanodine receptor blocker dantrolene or when the membrane-impermeant inositol trisphosphate receptor antagonist, heparin, was entrapped into synaptosomes; the combined treatment with dantrolene and heparin abolished the release elicited by caffeine. Tetanus toxin, entrapped into human neocortex synaptosomes to avoid prolonged incubation, inhibited in a concentration-dependent manner the K(+)- or the 4-aminopyridine-evoked tritium overflow; in contrast, the release stimulated by ionomycin and by caffeine were both totally insensitive to the same concentrations of tetanus toxin. Western blot analysis showed about 50% reduction of the content of the vesicular protein, synaptobrevin, in synaptosomes poisoned with tetanus toxin. In conclusion, the release of dopamine from human neocortex nerve terminals can be triggered by Ca(2+) ions originating from various sources. It seems that stimuli not leading to activation of voltage-sensitive Ca(2+) channels elicit Ca(2+)-dependent, probably exocytotic, release that is insensitive to tetanus toxin.
Collapse
Affiliation(s)
- Giambattista Bonanno
- Dipartimento di Medicina Sperimentale, Sezione di Farmacologia e Tossicologia, Università di Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Roberta Sala
- Dipartimento di Medicina Sperimentale, Sezione di Farmacologia e Tossicologia, Università di Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Laura Cancedda
- Dipartimento di Medicina Sperimentale, Sezione di Farmacologia e Tossicologia, Università di Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Paolo Cavazzani
- Divisione di Neurochirurgia, Ospedali Galliera, Via A. Volta 8, 16128 Genova, Italy
| | - Massimo Cossu
- Clinica Neurochirurgica, Università di Genova, Ospedale S. Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Maurizio Raiteri
- Dipartimento di Medicina Sperimentale, Sezione di Farmacologia e Tossicologia, Università di Genova, Viale Cembrano 4, 16148 Genova, Italy
- Author for correspondence:
| |
Collapse
|
45
|
Doutheil J, Althausen S, Treiman M, Paschen W. Effect of nitric oxide on endoplasmic reticulum calcium homeostasis, protein synthesis and energy metabolism. Cell Calcium 2000; 27:107-15. [PMID: 10756977 DOI: 10.1054/ceca.1999.0099] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
It has been suggested that nitric oxide (NO) may contribute to ischemia-induced cell injury. However, the mechanisms underlying NO toxicity have not yet been fully elucidated. In the present study, we investigated the effect of NO on the level of endoplasmic reticulum (ER) calcium stores, on ER Ca2+ pump activity, on protein synthesis, on concentrations of high-energy phosphates, and on gadd153 mRNA levels. Primary neuronal cells were exposed to the NO-donor (+/-)-S-Nitroso-N-acetylpenicillamine (SNAP) for 1 h, 2 h, 6 h or 24 h. The level of ER calcium stores was evaluated by measuring the increase in cytoplasmic calcium activity induced by exposing cells to thapsigargin, an irreversible inhibitor of ER Ca(2+)-ATPase; the activity of ER Ca(2+)-ATPase was determined by measuring a phosphorylated intermediate; SNAP-induced changes in gadd153 expression were evaluated by quantitative PCR; SNAP-induced changes in protein synthesis were investigated by measuring the incorporation of L-[4,5-3H]leucine into proteins, and changes in the levels of ATP, ADP, AMP were measured by HPLC. Exposing cells to SNAP for 1 h to 2 h induced a marked depletion of ER calcium stores through an inhibition of ER Ca(2+)-ATPase (to 58% of control), and a concentration-dependent suppression of protein synthesis which was reversed in the presence of hemoglobin, suggesting NO-related effects. ATP levels and adenylate energy charge were significantly decreased only when cells were exposed to the highest SNAP concentration for 6 h or 24 h, excluding significant effects of NO on the energy state of cells in the acute state, i.e. when ER calcium stores were already completely depleted and protein synthesis severely suppressed. In light of the regulatory role of ER calcium homeostasis in the control of protein synthesis, the results imply that the suppression of protein synthesis resulted from NO-induced inhibition of ER Ca(2+)-ATPase and depletion of ER calcium stores, and that NO-induced disturbances of energy metabolism are secondary to the effect of NO on ER calcium homeostasis. It is, therefore, concluded that ER calcium stores are a primary target of NO-toxicity.
Collapse
Affiliation(s)
- J Doutheil
- Department of Experimental Neurology, Max-Planck-Institute for Neurological Research, Cologne, Germany
| | | | | | | |
Collapse
|
46
|
Paschen W, Doutheil J. Disturbance of endoplasmic reticulum functions: a key mechanism underlying cell damage? ACTA NEUROCHIRURGICA. SUPPLEMENT 1999; 73:1-5. [PMID: 10494334 DOI: 10.1007/978-3-7091-6391-7_1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The endoplasmic reticulum (ER) plays a pivotal role in the folding and processing of newly synthesized proteins, reactions which are strictly calcium-dependent. Depletion of ER calcium pools activates a stress response (suppression of global protein synthesis and activation of stress gene expression) which is almost identical to that induced by transient ischemia or other forms of severe cellular stress, implying common underlying mechanisms. We conclude that disturbance of the ER functions may be involved in stress-induced cell injury. In our view, ER calcium homeostasis plays an important role in maintaining the physiological state in cells balanced between the extremes of growth arrest and cell death on the one hand, and uncontrolled proliferation on the other.
Collapse
Affiliation(s)
- W Paschen
- Department of Experimental Neurology, Max-Planck-Institute for Neurological Research, Köln, Germany
| | | |
Collapse
|
47
|
Nyitrai G, Kovács I, Szárics É, Skuban N, Juhász G, Kardos J. Role of intracellular Ca2+ stores shaping normal activity in brain. J Neurosci Res 1999. [DOI: 10.1002/(sici)1097-4547(19990915)57:6<906::aid-jnr16>3.0.co;2-p] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Kato BM, Rubel EW. Glutamate regulates IP3-type and CICR stores in the avian cochlear nucleus. J Neurophysiol 1999; 81:1587-96. [PMID: 10200194 DOI: 10.1152/jn.1999.81.4.1587] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurons of the avian cochlear nucleus, nucleus magnocellularis (NM), are activated by glutamate released from auditory nerve terminals. If this stimulation is removed, the intracellular calcium ion concentration ([Ca2+]i) of NM neurons rises and rapid atrophic changes ensue. We have been investigating mechanisms that regulate [Ca2+]i in these neurons based on the hypothesis that loss of Ca2+ homeostasis causes the cascade of cellular changes that results in neuronal atrophy and death. In the present study, video-enhanced fluorometry was used to monitor changes in [Ca2+]i stimulated by agents that mobilize Ca2+ from intracellular stores and to study the modulation of these responses by glutamate. Homobromoibotenic acid (HBI) was used to stimulate inositol trisphosphate (IP3)-sensitive stores, and caffeine was used to mobilize Ca2+ from Ca2+-induced Ca2+ release (CICR) stores. We provide data indicating that Ca2+ responses attributable to IP3- and CICR-sensitive stores are inhibited by glutamate, acting via a metabotropic glutamate receptor (mGluR). We also show that activation of C-kinase by a phorbol ester will reduce HBI-stimulated calcium responses. Although the protein kinase A accumulator, Sp-cAMPs, did not have an effect on HBI-induced responses. CICR-stimulated responses were not consistently attenuated by either the phorbol ester or the Sp-cAMPs. We have previously shown that glutamate attenuates voltage-dependent changes in [Ca2+]i. Coupled with the present findings, this suggests that in these neurons mGluRs serve to limit fluctuations in intracellular Ca2+ rather than increase [Ca2+]i. This system may play a role in protecting highly active neurons from calcium toxicity resulting in apoptosis.
Collapse
Affiliation(s)
- B M Kato
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | | |
Collapse
|
49
|
Reynolds IJ. Intracellular calcium and magnesium: critical determinants of excitotoxicity? PROGRESS IN BRAIN RESEARCH 1999; 116:225-43. [PMID: 9932380 DOI: 10.1016/s0079-6123(08)60440-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- I J Reynolds
- Department of Pharmacology, University of Pittsburgh, PA 15261-0001, USA
| |
Collapse
|
50
|
Kalisch BE, Jhamandas K, Beninger RJ, Boegman RJ. Modulation of quinolinic acid-induced depletion of striatal NADPH diaphorase and enkephalinergic neurons by inhibition of nitric oxide synthase. Brain Res 1999; 817:151-62. [PMID: 9889356 DOI: 10.1016/s0006-8993(98)01254-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The present study was designed to examine the role of nitric oxide (NO) in quinolinic acid (QUIN)-induced depletion of rat striatal nicotinamide adenine dinucleotide phosphate (NADPH) diaphorase and enkephalinergic neurons. Intrastriatal injection of QUIN produced a dose-dependent decrease in NADPH diaphorase and enkephalin positive cells, with cell loss being evident following the injection of 6 and 18 nmol QUIN, respectively. To evaluate the role of NO in QUIN-induced toxicity, animals were pretreated with the non-specific nitric oxide synthase (NOS) inhibitor, Nomega-nitro-l-arginine (l-NAME) or the selective neuronal NOS inhibitor, 7-nitro indazole (7-NI). l-NAME (2x250 mg/kg, i.p. 8 h apart) maximally inhibited striatal NOS activity by 85%, while 7-NI (50 mg/kg, i.p.) maximally inhibited striatal NOS activity by 60%. Pretreatment with l-NAME or 7-NI potentiated the loss of NADPH diaphorase neurons resulting from intrastriatal injection of low doses of QUIN (18 nmol). Neither NOS inhibitor had any effect on the loss of striatal NADPH diaphorase neurons induced by a higher dose of QUIN (24 nmol). In contrast, 7-NI partially prevented the QUIN (18 and 24 nmol)-induced loss of enkephalinergic neurons, while l-NAME had no effect. These results indicate that NO formation may play a role in QUIN-induced loss of enkephalinergic neurons, but not in the loss of NADPH diaphorase neurons.
Collapse
Affiliation(s)
- B E Kalisch
- Departments of Pharmacology and Toxicology, Queen's University, Kingston, Ontario, Canada
| | | | | | | |
Collapse
|