1
|
Thompson MD, Chidiac P, Jose PA, Hauser AS, Gorvin CM. Genetic variants of accessory proteins and G proteins in human genetic disease. Crit Rev Clin Lab Sci 2025:1-22. [PMID: 39743506 DOI: 10.1080/10408363.2024.2431853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/14/2024] [Accepted: 11/16/2024] [Indexed: 01/04/2025]
Abstract
We present a series of three articles on the genetics and pharmacogenetics of G protein- coupled receptors (GPCR). In the first article, we discuss genetic variants of the G protein subunits and accessory proteins that are associated with human phenotypes; in the second article, we build upon this to discuss "G protein-coupled receptor (GPCR) gene variants and human genetic disease" and in the third article, we survey "G protein-coupled receptor pharmacogenomics". In the present article, we review the processes of ligand binding, GPCR activation, inactivation, and receptor trafficking to the membrane in the context of human genetic disease resulting from pathogenic variants of accessory proteins and G proteins. Pathogenic variants of the genes encoding G protein α and β subunits are examined in diverse phenotypes. Variants in the genes encoding accessory proteins that modify or organize G protein coupling have been associated with disease; these include the contribution of variants of the regulator of G protein signaling (RGS) to hypertension; the role of variants of activator of G protein signaling type III in phenotypes such as hypoxia; the contribution of variation at the RGS10 gene to short stature and immunological compromise; and the involvement of variants of G protein-coupled receptor kinases (GRKs), such as GRK4, in hypertension. Variation in genes that encode proteins involved in GPCR signaling are outlined in the context of the changes in structure and function that may be associated with human phenotypes.
Collapse
Affiliation(s)
- Miles D Thompson
- Krembil Brain Institute, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Peter Chidiac
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Pedro A Jose
- Division of Renal Diseases & Hypertension, Departments of Medicine and Pharmacology/Physiology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Caroline M Gorvin
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, West Midlands, UK
| |
Collapse
|
2
|
Verma DK, Malhotra H, Woellert T, Calvert PD. Hydrophobic interaction between the TM1 and H8 is essential for rhodopsin trafficking to vertebrate photoreceptor outer segments. J Biol Chem 2023; 299:105412. [PMID: 37918805 PMCID: PMC10687059 DOI: 10.1016/j.jbc.2023.105412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/15/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023] Open
Abstract
A major unsolved question in vertebrate photoreceptor biology is the mechanism of rhodopsin transport to the outer segment. In rhodopsin-like class A G protein-coupled receptors, hydrophobic interactions between C-terminal α-helix 8 (H8), and transmembrane α-helix-1 (TM1) have been shown to be important for transport to the plasma membrane, however whether this interaction is important for rhodopsin transport to ciliary rod outer segments is not known. We examined the crystal structures of vertebrate rhodopsins and class A G protein-coupled receptors and found a conserved network of predicted hydrophobic interactions. In Xenopus rhodopsin (xRho), this interaction corresponds to F313, L317, and L321 in H8 and M57, V61, and L68 in TM1. To evaluate the role of H8-TM1 hydrophobic interactions in rhodopsin transport, we expressed xRho-EGFP where hydrophobic residues were mutated in Xenopus rods and evaluated the efficiency of outer segment enrichment. We found that substituting L317 and M57 with hydrophilic residues had the strongest impact on xRho mislocalization. Substituting hydrophilic amino acids at positions L68, F313, and L321 also had a significant impact. Replacing L317 with M resulted in significant mislocalization, indicating that the hydrophobic interaction between residues 317 and 57 is exquisitely sensitive. The corresponding experiment in bovine rhodopsin expressed in HEK293 cells had a similar effect, showing that the H8-TM1 hydrophobic network is essential for rhodopsin transport in mammalian species. Thus, for the first time, we show that a hydrophobic interaction between H8 and TM1 is critical for efficient rhodopsin transport to the vertebrate photoreceptor ciliary outer segment.
Collapse
Affiliation(s)
- Dipesh Kumar Verma
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Himanshu Malhotra
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Torsten Woellert
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Peter D Calvert
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, USA.
| |
Collapse
|
3
|
Jobin ML, De Smedt-Peyrusse V, Ducrocq F, Baccouch R, Oummadi A, Pedersen MH, Medel-Lacruz B, Angelo MF, Villette S, Van Delft P, Fouillen L, Mongrand S, Selent J, Tolentino-Cortez T, Barreda-Gómez G, Grégoire S, Masson E, Durroux T, Javitch JA, Guixà-González R, Alves ID, Trifilieff P. Impact of membrane lipid polyunsaturation on dopamine D2 receptor ligand binding and signaling. Mol Psychiatry 2023; 28:1960-1969. [PMID: 36604603 DOI: 10.1038/s41380-022-01928-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 12/05/2022] [Accepted: 12/14/2022] [Indexed: 01/07/2023]
Abstract
Increasing evidence supports a relationship between lipid metabolism and mental health. In particular, the biostatus of polyunsaturated fatty acids (PUFAs) correlates with some symptoms of psychiatric disorders, as well as the efficacy of pharmacological treatments. Recent findings highlight a direct association between brain PUFA levels and dopamine transmission, a major neuromodulatory system implicated in the etiology of psychiatric symptoms. However, the mechanisms underlying this relationship are still unknown. Here we demonstrate that membrane enrichment in the n-3 PUFA docosahexaenoic acid (DHA), potentiates ligand binding to the dopamine D2 receptor (D2R), suggesting that DHA acts as an allosteric modulator of this receptor. Molecular dynamics simulations confirm that DHA has a high preference for interaction with the D2R and show that membrane unsaturation selectively enhances the conformational dynamics of the receptor around its second intracellular loop. We find that membrane unsaturation spares G protein activity but potentiates the recruitment of β-arrestin in cells. Furthermore, in vivo n-3 PUFA deficiency blunts the behavioral effects of two D2R ligands, quinpirole and aripiprazole. These results highlight the importance of membrane unsaturation for D2R activity and provide a putative mechanism for the ability of PUFAs to enhance antipsychotic efficacy.
Collapse
Affiliation(s)
- Marie-Lise Jobin
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | | | - Fabien Ducrocq
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | - Rim Baccouch
- Institute of Chemistry & Biology of Membranes & Nanoobjects, CNRS UMR 5248, Université de Bordeaux, Bordeaux INP, 33600, Pessac, France
| | - Asma Oummadi
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | - Maria Hauge Pedersen
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Brian Medel-Lacruz
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM)-Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), 08003, Barcelona, Spain
| | | | - Sandrine Villette
- Institute of Chemistry & Biology of Membranes & Nanoobjects, CNRS UMR 5248, Université de Bordeaux, Bordeaux INP, 33600, Pessac, France
| | - Pierre Van Delft
- Laboratory of Membrane Biogenesis (LBM), Research Mix Unity (UMR) 5200, National Scientific Research Center (CNRS), University of Bordeaux, Bordeaux, France
| | - Laetitia Fouillen
- Laboratory of Membrane Biogenesis (LBM), Research Mix Unity (UMR) 5200, National Scientific Research Center (CNRS), University of Bordeaux, Bordeaux, France
| | - Sébastien Mongrand
- Laboratory of Membrane Biogenesis (LBM), Research Mix Unity (UMR) 5200, National Scientific Research Center (CNRS), University of Bordeaux, Bordeaux, France
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM)-Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), 08003, Barcelona, Spain
| | | | - Gabriel Barreda-Gómez
- Research Department, IMG Pharma Biotech S.L., BIC Bizkaia (612), 48160, Derio, Spain
| | - Stéphane Grégoire
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000, Dijon, France
| | - Elodie Masson
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000, Dijon, France
| | - Thierry Durroux
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Jonathan A Javitch
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
- Department of Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Ramon Guixà-González
- Condensed Matter Theory Group, Paul Scherrer Institute (PSI), 5232, Villigen, PSI, Switzerland.
| | - Isabel D Alves
- Institute of Chemistry & Biology of Membranes & Nanoobjects, CNRS UMR 5248, Université de Bordeaux, Bordeaux INP, 33600, Pessac, France.
| | - Pierre Trifilieff
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France.
| |
Collapse
|
4
|
de Grip WJ, Ganapathy S. Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering. Front Chem 2022; 10:879609. [PMID: 35815212 PMCID: PMC9257189 DOI: 10.3389/fchem.2022.879609] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/16/2022] [Indexed: 01/17/2023] Open
Abstract
The first member and eponym of the rhodopsin family was identified in the 1930s as the visual pigment of the rod photoreceptor cell in the animal retina. It was found to be a membrane protein, owing its photosensitivity to the presence of a covalently bound chromophoric group. This group, derived from vitamin A, was appropriately dubbed retinal. In the 1970s a microbial counterpart of this species was discovered in an archaeon, being a membrane protein also harbouring retinal as a chromophore, and named bacteriorhodopsin. Since their discovery a photogenic panorama unfolded, where up to date new members and subspecies with a variety of light-driven functionality have been added to this family. The animal branch, meanwhile categorized as type-2 rhodopsins, turned out to form a large subclass in the superfamily of G protein-coupled receptors and are essential to multiple elements of light-dependent animal sensory physiology. The microbial branch, the type-1 rhodopsins, largely function as light-driven ion pumps or channels, but also contain sensory-active and enzyme-sustaining subspecies. In this review we will follow the development of this exciting membrane protein panorama in a representative number of highlights and will present a prospect of their extraordinary future potential.
Collapse
Affiliation(s)
- Willem J. de Grip
- Leiden Institute of Chemistry, Department of Biophysical Organic Chemistry, Leiden University, Leiden, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Srividya Ganapathy
- Department of Imaging Physics, Delft University of Technology, Netherlands
| |
Collapse
|
5
|
Patwardhan A, Cheng N, Trejo J. Post-Translational Modifications of G Protein-Coupled Receptors Control Cellular Signaling Dynamics in Space and Time. Pharmacol Rev 2021; 73:120-151. [PMID: 33268549 PMCID: PMC7736832 DOI: 10.1124/pharmrev.120.000082] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are a large family comprising >800 signaling receptors that regulate numerous cellular and physiologic responses. GPCRs have been implicated in numerous diseases and represent the largest class of drug targets. Although advances in GPCR structure and pharmacology have improved drug discovery, the regulation of GPCR function by diverse post-translational modifications (PTMs) has received minimal attention. Over 200 PTMs are known to exist in mammalian cells, yet only a few have been reported for GPCRs. Early studies revealed phosphorylation as a major regulator of GPCR signaling, whereas later reports implicated a function for ubiquitination, glycosylation, and palmitoylation in GPCR biology. Although our knowledge of GPCR phosphorylation is extensive, our knowledge of the modifying enzymes, regulation, and function of other GPCR PTMs is limited. In this review we provide a comprehensive overview of GPCR post-translational modifications with a greater focus on new discoveries. We discuss the subcellular location and regulatory mechanisms that control post-translational modifications of GPCRs. The functional implications of newly discovered GPCR PTMs on receptor folding, biosynthesis, endocytic trafficking, dimerization, compartmentalized signaling, and biased signaling are also provided. Methods to detect and study GPCR PTMs as well as PTM crosstalk are further highlighted. Finally, we conclude with a discussion of the implications of GPCR PTMs in human disease and their importance for drug discovery. SIGNIFICANCE STATEMENT: Post-translational modification of G protein-coupled receptors (GPCRs) controls all aspects of receptor function; however, the detection and study of diverse types of GPCR modifications are limited. A thorough understanding of the role and mechanisms by which diverse post-translational modifications regulate GPCR signaling and trafficking is essential for understanding dysregulated mechanisms in disease and for improving and refining drug development for GPCRs.
Collapse
Affiliation(s)
- Anand Patwardhan
- Department of Pharmacology and the Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California
| | - Norton Cheng
- Department of Pharmacology and the Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California
| | - JoAnn Trejo
- Department of Pharmacology and the Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
6
|
Rodgers J, Peirson SN, Hughes S, Hankins MW. Functional characterisation of naturally occurring mutations in human melanopsin. Cell Mol Life Sci 2018; 75:3609-3624. [PMID: 29700553 PMCID: PMC6133154 DOI: 10.1007/s00018-018-2813-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/06/2018] [Accepted: 04/05/2018] [Indexed: 12/12/2022]
Abstract
Melanopsin is a blue light-sensitive opsin photopigment involved in a range of non-image forming behaviours, including circadian photoentrainment and the pupil light response. Many naturally occurring genetic variants exist within the human melanopsin gene (OPN4), yet it remains unclear how these variants affect melanopsin protein function and downstream physiological responses to light. Here, we have used bioinformatic analysis and in vitro expression systems to determine the functional phenotypes of missense human OPN4 variants. From 1242 human OPN4 variants collated in the NCBI Short Genetic Variation database (dbSNP), we identified 96 that lead to non-synonymous amino acid substitutions. These 96 missense mutations were screened using sequence alignment and comparative approaches to select 16 potentially deleterious variants for functional characterisation using calcium imaging of melanopsin-driven light responses in HEK293T cells. We identify several previously uncharacterised OPN4 mutations with altered functional properties, including attenuated or abolished light responses, as well as variants demonstrating abnormal response kinetics. These data provide valuable insight into the structure-function relationships of human melanopsin, including several key functional residues of the melanopsin protein. The identification of melanopsin variants with significantly altered function may serve to detect individuals with disrupted melanopsin-based light perception, and potentially highlight those at increased risk of sleep disturbance, circadian dysfunction, and visual abnormalities.
Collapse
Affiliation(s)
- Jessica Rodgers
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, Sir William Dunn School of Pathology, University of Oxford, OMPI G, South Parks Road, Oxford, OX1 3RE, UK
| | - Stuart N Peirson
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, Sir William Dunn School of Pathology, University of Oxford, OMPI G, South Parks Road, Oxford, OX1 3RE, UK
| | - Steven Hughes
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, Sir William Dunn School of Pathology, University of Oxford, OMPI G, South Parks Road, Oxford, OX1 3RE, UK.
| | - Mark W Hankins
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, Sir William Dunn School of Pathology, University of Oxford, OMPI G, South Parks Road, Oxford, OX1 3RE, UK.
| |
Collapse
|
7
|
Jiang H, Zhang X, Chen X, Aramsangtienchai P, Tong Z, Lin H. Protein Lipidation: Occurrence, Mechanisms, Biological Functions, and Enabling Technologies. Chem Rev 2018; 118:919-988. [PMID: 29292991 DOI: 10.1021/acs.chemrev.6b00750] [Citation(s) in RCA: 300] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein lipidation, including cysteine prenylation, N-terminal glycine myristoylation, cysteine palmitoylation, and serine and lysine fatty acylation, occurs in many proteins in eukaryotic cells and regulates numerous biological pathways, such as membrane trafficking, protein secretion, signal transduction, and apoptosis. We provide a comprehensive review of protein lipidation, including descriptions of proteins known to be modified and the functions of the modifications, the enzymes that control them, and the tools and technologies developed to study them. We also highlight key questions about protein lipidation that remain to be answered, the challenges associated with answering such questions, and possible solutions to overcome these challenges.
Collapse
Affiliation(s)
- Hong Jiang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Xiaoyu Zhang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Xiao Chen
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Pornpun Aramsangtienchai
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Zhen Tong
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Hening Lin
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| |
Collapse
|
8
|
Russell J, Du Toit EF, Peart JN, Patel HH, Headrick JP. Myocyte membrane and microdomain modifications in diabetes: determinants of ischemic tolerance and cardioprotection. Cardiovasc Diabetol 2017; 16:155. [PMID: 29202762 PMCID: PMC5716308 DOI: 10.1186/s12933-017-0638-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/22/2017] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease, predominantly ischemic heart disease (IHD), is the leading cause of death in diabetes mellitus (DM). In addition to eliciting cardiomyopathy, DM induces a ‘wicked triumvirate’: (i) increasing the risk and incidence of IHD and myocardial ischemia; (ii) decreasing myocardial tolerance to ischemia–reperfusion (I–R) injury; and (iii) inhibiting or eliminating responses to cardioprotective stimuli. Changes in ischemic tolerance and cardioprotective signaling may contribute to substantially higher mortality and morbidity following ischemic insult in DM patients. Among the diverse mechanisms implicated in diabetic impairment of ischemic tolerance and cardioprotection, changes in sarcolemmal makeup may play an overarching role and are considered in detail in the current review. Observations predominantly in animal models reveal DM-dependent changes in membrane lipid composition (cholesterol and triglyceride accumulation, fatty acid saturation vs. reduced desaturation, phospholipid remodeling) that contribute to modulation of caveolar domains, gap junctions and T-tubules. These modifications influence sarcolemmal biophysical properties, receptor and phospholipid signaling, ion channel and transporter functions, contributing to contractile and electrophysiological dysfunction, cardiomyopathy, ischemic intolerance and suppression of protective signaling. A better understanding of these sarcolemmal abnormalities in types I and II DM (T1DM, T2DM) can inform approaches to limiting cardiomyopathy, associated IHD and their consequences. Key knowledge gaps include details of sarcolemmal changes in models of T2DM, temporal patterns of lipid, microdomain and T-tubule changes during disease development, and the precise impacts of these diverse sarcolemmal modifications. Importantly, exercise, dietary, pharmacological and gene approaches have potential for improving sarcolemmal makeup, and thus myocyte function and stress-resistance in this ubiquitous metabolic disorder.
Collapse
Affiliation(s)
- Jake Russell
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Eugene F Du Toit
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Jason N Peart
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Hemal H Patel
- VA San Diego Healthcare System and Department of Anesthesiology, University of California San Diego, San Diego, USA
| | - John P Headrick
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia. .,School of Medical Science, Griffith University, Southport, QLD, 4217, Australia.
| |
Collapse
|
9
|
Badawy SMM, Okada T, Kajimoto T, Ijuin T, Nakamura SI. DHHC5-mediated palmitoylation of S1P receptor subtype 1 determines G-protein coupling. Sci Rep 2017; 7:16552. [PMID: 29185452 PMCID: PMC5707436 DOI: 10.1038/s41598-017-16457-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/13/2017] [Indexed: 01/02/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) is a pleiotropic lipid mediator involved in the regulation of immune cell trafficking and vascular permeability acting mainly through G-protein-coupled S1P receptors (S1PRs). However, mechanism underlying how S1PRs are coupled with G-proteins remains unknown. Here we have uncovered that palmitoylation of a prototypical subtype S1P1R is prerequisite for subsequent inhibitory G-protein (Gi) coupling. We have identified DHHC5 as an enzyme for palmitoylation of S1P1R. Under basal conditions, S1P1R was functionally associated with DHHC5 in the plasma membranes (PM) and was fully palmitoylated, enabling Gi coupling. Upon stimulation, the receptor underwent internalisation leaving DHHC5 in PM, resulting in depalmitoylation of S1P1R. We also revealed that while physiological agonist S1P-induced endocytosed S1P1R readily recycled back to PM, pharmacological FTY720-P-induced endocytosed S1P1R-positive vesicles became associated with DHHC5 in the later phase, persistently transmitting Gi signals there. This indicates that FTY720-P switches off the S1P signal in PM, while switching on its signal continuously inside the cells. We propose that DHHC5-mediated palmitoylation of S1P1R determines Gi coupling and its signalling in a spatio/temporal manner.
Collapse
Affiliation(s)
- Shaymaa Mohamed Mohamed Badawy
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Taro Okada
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Taketoshi Kajimoto
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Takeshi Ijuin
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Shun-Ichi Nakamura
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan.
| |
Collapse
|
10
|
Oddi S, Stepniewski TM, Totaro A, Selent J, Scipioni L, Dufrusine B, Fezza F, Dainese E, Maccarrone M. Palmitoylation of cysteine 415 of CB 1 receptor affects ligand-stimulated internalization and selective interaction with membrane cholesterol and caveolin 1. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:523-532. [PMID: 28215712 DOI: 10.1016/j.bbalip.2017.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 02/02/2017] [Accepted: 02/10/2017] [Indexed: 10/20/2022]
Abstract
We previously demonstrated that CB1 receptor is palmitoylated at cysteine 415, and that such a post-translational modification affects its biological activity. To assess the molecular mechanisms responsible for modulation of CB1 receptor function by S-palmitoylation, in this study biochemical and morphological approaches were paralleled with computational analyses. Molecular dynamics simulations suggested that this acyl chain stabilizes helix 8 as well as the interaction of CB1 receptor with membrane cholesterol. In keeping with these in silico data, experimental results showed that the non-palmitoylated CB1 receptor was unable to interact efficaciously with caveolin 1, independently of its activation state. Moreover, in contrast with the wild-type receptor, the lack of S-palmitoylation in the helix 8 made the mutant CB1 receptor completely irresponsive to agonist-induced effects in terms of both lipid raft partitioning and receptor internalization. Overall, our results support the notion that palmitoylation of cysteine 415 modulates the conformational state of helix 8 and influences the interactions of CB1 receptor with cholesterol and caveolin 1, suggesting that the palmitoyl chain may serve as a functional interface for CB1 receptor localization and function.
Collapse
Affiliation(s)
- Sergio Oddi
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy; European Center for Brain Research (CERC)/Santa Lucia Foundation IRCCS, Rome, Italy.
| | - Tomasz Maciej Stepniewski
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF), Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain; Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Antonio Totaro
- European Center for Brain Research (CERC)/Santa Lucia Foundation IRCCS, Rome, Italy
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF), Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Lucia Scipioni
- European Center for Brain Research (CERC)/Santa Lucia Foundation IRCCS, Rome, Italy; Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Beatrice Dufrusine
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Filomena Fezza
- European Center for Brain Research (CERC)/Santa Lucia Foundation IRCCS, Rome, Italy; Department of Experimental Medicine and Surgery, Tor Vergata University of Rome, Rome, Italy
| | - Enrico Dainese
- European Center for Brain Research (CERC)/Santa Lucia Foundation IRCCS, Rome, Italy; Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Mauro Maccarrone
- European Center for Brain Research (CERC)/Santa Lucia Foundation IRCCS, Rome, Italy; Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy.
| |
Collapse
|
11
|
Ebersole B, Petko J, Woll M, Murakami S, Sokolina K, Wong V, Stagljar I, Lüscher B, Levenson R. Effect of C-Terminal S-Palmitoylation on D2 Dopamine Receptor Trafficking and Stability. PLoS One 2015; 10:e0140661. [PMID: 26535572 PMCID: PMC4633242 DOI: 10.1371/journal.pone.0140661] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 09/29/2015] [Indexed: 01/11/2023] Open
Abstract
We have used bioorthogonal click chemistry (BCC), a sensitive non-isotopic labeling method, to analyze the palmitoylation status of the D2 dopamine receptor (D2R), a G protein-coupled receptor (GPCR) crucial for regulation of processes such as mood, reward, and motor control. By analyzing a series of D2R constructs containing mutations in cysteine residues, we found that palmitoylation of the D2R most likely occurs on the C-terminal cysteine residue (C443) of the polypeptide. D2Rs in which C443 was deleted showed significantly reduced palmitoylation levels, plasma membrane expression, and protein stability compared to wild-type D2Rs. Rather, the C443 deletion mutant appeared to accumulate in the Golgi, indicating that palmitoylation of the D2R is important for cell surface expression of the receptor. Using the full-length D2R as bait in a membrane yeast two-hybrid (MYTH) screen, we identified the palmitoyl acyltransferase (PAT) zDHHC4 as a D2R interacting protein. Co-immunoprecipitation analysis revealed that several other PATs, including zDHHC3 and zDHHC8, also interacted with the D2R and that each of the three PATs was capable of affecting the palmitoylation status of the D2R. Finally, biochemical analyses using D2R mutants and the palmitoylation blocker, 2-bromopalmitate indicate that palmitoylation of the receptor plays a role in stability of the D2R.
Collapse
Affiliation(s)
- Brittany Ebersole
- Department of Pharmacology, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Jessica Petko
- Department of Pharmacology, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Matthew Woll
- Department of Pharmacology, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Shoko Murakami
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Kate Sokolina
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Victoria Wong
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Igor Stagljar
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Bernhard Lüscher
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Molecular Investigation of Neurological Disorders, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Robert Levenson
- Department of Pharmacology, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States of America
| |
Collapse
|
12
|
G protein-coupled receptor accessory proteins and signaling: pharmacogenomic insights. Methods Mol Biol 2014; 1175:121-52. [PMID: 25150869 DOI: 10.1007/978-1-4939-0956-8_7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The identification and characterization of the genes encoding G protein-coupled receptors (GPCRs) and the proteins necessary for the processes of ligand binding, GPCR activation, inactivation, and receptor trafficking to the membrane are discussed in the context of human genetic disease. In addition to functional GPCR variants, the identification of genetic disruptions affecting proteins necessary to GPCR functions have provided insights into the function of these pathways. Gsα and Gβ subunit polymorphisms have been found to result in complex phenotypes. Disruptions in accessory proteins that normally modify or organize heterotrimeric G-protein coupling may also result in disease states. These include the contribution of variants of the regulator of G protein signaling (RGS) protein to hypertension; the role variants of the activator of G protein signaling (AGS) proteins to phenotypes (such as the type III AGS8 variant to hypoxia); the contribution of G protein-coupled receptor kinase (GRK) proteins, such as GRK4, in disorders such as hypertension. The role of accessory proteins in GPCR structure and function is discussed in the context of genetic disorders associated with disruption of the genes that encode them. An understanding of the pharmacogenomics of GPCR and accessory protein signaling provides the basis for examining both GPCR pharmacogenetics and the genetics of monogenic disorders that result from disruption of given receptor systems.
Collapse
|
13
|
|
14
|
Okamoto Y, Bernstein JD, Shikano S. Role of C-terminal membrane-proximal basic residues in cell surface trafficking of HIV coreceptor GPR15 protein. J Biol Chem 2013; 288:9189-99. [PMID: 23430259 DOI: 10.1074/jbc.m112.445817] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell surface density of G protein-coupled receptors (GPCRs) is controlled by dynamic molecular interactions that often involve recognition of the distinct sequence signals on the cargo receptors. We reported previously that the RXR-type dibasic motif in the distal C-terminal tail of an HIV coreceptor GPR15 negatively regulates the cell surface expression by mediating the coatomer protein I complex-dependent retrograde transport to the endoplasmic reticulum (ER). Here we demonstrate that another pair of basic residues (Arg(310)-Arg(311)) in the membrane-proximal region of the C-terminal tail plays a pivotal role in mediating the anterograde trafficking of GPR15. The Ala mutation of the C-terminal membrane-proximal basic residues (MPBRs) (R310/311A) abolished the O-glycosylation and cell surface expression of GPR15. The subcellular fractionation and immunocytochemistry assays indicated that the R310/311A mutant was more localized in the ER but much less in the trans-Golgi when compared with the wild-type GPR15, suggesting the positive role of Arg(310)-Arg(311) in the ER-to-Golgi transport of GPR15. Sequence analysis on human GPCRs showed that the basic residues are frequent in the membrane-proximal region of the C-terminal tail. Similar to GPR15, mutation of the C-terminal MPBRs resulted in a marked reduction of the cell surface expression in multiple different GPCRs. Our results suggest that the C-terminal MPBRs are critically involved in mediating the anterograde trafficking of a broad range of membrane proteins, including GPCRs.
Collapse
Affiliation(s)
- Yukari Okamoto
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | |
Collapse
|
15
|
Salon JA, Lodowski DT, Palczewski K. The significance of G protein-coupled receptor crystallography for drug discovery. Pharmacol Rev 2012; 63:901-37. [PMID: 21969326 DOI: 10.1124/pr.110.003350] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Crucial as molecular sensors for many vital physiological processes, seven-transmembrane domain G protein-coupled receptors (GPCRs) comprise the largest family of proteins targeted by drug discovery. Together with structures of the prototypical GPCR rhodopsin, solved structures of other liganded GPCRs promise to provide insights into the structural basis of the superfamily's biochemical functions and assist in the development of new therapeutic modalities and drugs. One of the greatest technical and theoretical challenges to elucidating and exploiting structure-function relationships in these systems is the emerging concept of GPCR conformational flexibility and its cause-effect relationship for receptor-receptor and receptor-effector interactions. Such conformational changes can be subtle and triggered by relatively small binding energy effects, leading to full or partial efficacy in the activation or inactivation of the receptor system at large. Pharmacological dogma generally dictates that these changes manifest themselves through kinetic modulation of the receptor's G protein partners. Atomic resolution information derived from increasingly available receptor structures provides an entrée to the understanding of these events and practically applying it to drug design. Supported by structure-activity relationship information arising from empirical screening, a unified structural model of GPCR activation/inactivation promises to both accelerate drug discovery in this field and improve our fundamental understanding of structure-based drug design in general. This review discusses fundamental problems that persist in drug design and GPCR structural determination.
Collapse
Affiliation(s)
- John A Salon
- Department of Molecular Structure, Amgen Incorporated, Thousand Oaks, California, USA
| | | | | |
Collapse
|
16
|
Park K, Kim D. Structure-based rebuilding of coevolutionary information reveals functional modules in rhodopsin structure. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:1484-9. [PMID: 22684088 DOI: 10.1016/j.bbapap.2012.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 05/01/2012] [Accepted: 05/31/2012] [Indexed: 10/28/2022]
Abstract
Correlated mutation analysis (CMA) has been used to investigate protein functional sites. However, CMA has suffered from low signal-to-noise ratio caused by meaningless phylogenetic signals or structural constraints. We present a new method, Structure-based Correlated Mutation Analysis (SCMA), which encodes coevolution scores into a protein structure network. A path-based network model is adapted to describe information transfer between residues, and the statistical significance is estimated by network shuffling. This model intrinsically assumes that residues in physical contact have a more reliable coevolution score than distant residues, and that coevolution in distant residues likely arises from a series of contacting and coevolving residues. In addition, coevolutionary coupling is statistically controlled to remove the structural effects. When applied to the rhodopsin structure, the SCMA method identified a much higher percentage of functional residues than the typical coevolution score (61% vs. 22%). In addition, statistically significant residues are used to construct the coevolved residue-residue subnetwork. The network has one highly connected node (retinal bound Lys296), indicating that Lys296 can induce and regulate most other coevolved residues in a variety of locations. The coevolved network consists of a few modular clusters which have distinct functional roles. This article is part of a Special Issue entitled: Computational Methods for Protein Interaction and Structural Prediction.
Collapse
Affiliation(s)
- Keunwan Park
- Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea.
| | | |
Collapse
|
17
|
Oddi S, Dainese E, Sandiford S, Fezza F, Lanuti M, Chiurchiù V, Totaro A, Catanzaro G, Barcaroli D, De Laurenzi V, Centonze D, Mukhopadhyay S, Selent J, Howlett AC, Maccarrone M. Effects of palmitoylation of Cys(415) in helix 8 of the CB(1) cannabinoid receptor on membrane localization and signalling. Br J Pharmacol 2012; 165:2635-51. [PMID: 21895628 PMCID: PMC3423250 DOI: 10.1111/j.1476-5381.2011.01658.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 07/15/2011] [Accepted: 08/05/2011] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE The CB(1) cannabinoid receptor is regulated by its association with membrane microdomains such as lipid rafts. Here, we investigated the role of palmitoylation of the CB(1) receptor by analysing the functional consequences of site-specific mutation of Cys(415) , the likely site of palmitoylation at the end of helix 8, in terms of membrane association, raft targeting and signalling. EXPERIMENTAL APPROACH The palmitoylation state of CB(1) receptors in rat forebrain was assessed by depalmitoylation/repalmitoylation experiments. Cys(415) was replaced with alanine by site-directed mutagenesis. Green fluorescence protein chimeras of both wild-type and mutant receptors were transiently expressed and functionally characterized in SH-SY5Y cells and HEK-293 cells by means of confocal microscopy, cytofluorimetry and competitive binding assays. Confocal fluorescence recovery after photobleaching was used to assess receptor membrane dynamics, whereas signalling activity was assessed by [(35) S]GTPγS, cAMP and co-immunoprecipitation assays. KEY RESULTS Endogenous CB(1) receptors in rat brain were palmitoylated. Mutation of Cys(415) prevented the palmitoylation of the receptor in transfected cells and reduced its recruitment to plasma membrane and lipid rafts; it also increased protein diffusional mobility. The same mutation markedly reduced the functional coupling of CB(1) receptors with G-proteins and adenylyl cyclase, whereas depalmitoylation abolished receptor association with a specific subset of G-proteins. CONCLUSIONS AND IMPLICATIONS CB(1) receptors were post-translationally modified by palmitoylation. Mutation of Cys(415) provides a receptor that is functionally impaired in terms of membrane targeting and signalling. LINKED ARTICLES This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-8. To view Part I of Cannabinoids in Biology and Medicine visit http://dx.doi.org/10.1111/bph.2011.163.issue-7.
Collapse
Affiliation(s)
- Sergio Oddi
- Department of Biomedical Sciences, University of TeramoTeramo, Italy
- European Center for Brain Research (CERC)/Santa Lucia Foundation I.R.C.C.S.Rome, Italy
| | - Enrico Dainese
- Department of Biomedical Sciences, University of TeramoTeramo, Italy
- European Center for Brain Research (CERC)/Santa Lucia Foundation I.R.C.C.S.Rome, Italy
| | - Simone Sandiford
- Neuroscience/Drug Abuse Research Program, Biomedical Biotechnology Research Institute, North Carolina Central UniversityDurham, NC, USA
| | - Filomena Fezza
- European Center for Brain Research (CERC)/Santa Lucia Foundation I.R.C.C.S.Rome, Italy
- Department of Experimental Medicine and Biochemical Sciences, University of Rome ‘Tor Vergata’Rome, Italy
| | - Mirko Lanuti
- Department of Biomedical Sciences, University of TeramoTeramo, Italy
- European Center for Brain Research (CERC)/Santa Lucia Foundation I.R.C.C.S.Rome, Italy
| | - Valerio Chiurchiù
- European Center for Brain Research (CERC)/Santa Lucia Foundation I.R.C.C.S.Rome, Italy
| | - Antonio Totaro
- European Center for Brain Research (CERC)/Santa Lucia Foundation I.R.C.C.S.Rome, Italy
| | - Giuseppina Catanzaro
- Department of Biomedical Sciences, University of TeramoTeramo, Italy
- European Center for Brain Research (CERC)/Santa Lucia Foundation I.R.C.C.S.Rome, Italy
| | - Daniela Barcaroli
- Department of Biomedical Sciences, University of Chieti-Pescara ‘G. d'Annunzio’Chieti, Italy
| | - Vincenzo De Laurenzi
- Department of Biomedical Sciences, University of Chieti-Pescara ‘G. d'Annunzio’Chieti, Italy
| | - Diego Centonze
- European Center for Brain Research (CERC)/Santa Lucia Foundation I.R.C.C.S.Rome, Italy
- Department of Neurosciences, University of Rome ‘Tor Vergata’Rome, Italy
| | - Somnath Mukhopadhyay
- Neuroscience/Drug Abuse Research Program, Biomedical Biotechnology Research Institute, North Carolina Central UniversityDurham, NC, USA
| | - Jana Selent
- Research Group of biomedical Informatics (GRIB-IMIM), University of Pompeu Fabra, Barcelona Biomedical Research Park (PRBB)Barcelona, Spain
| | - Allyn C Howlett
- Department of Physiology and Pharmacology, Wake Forest University Health SciencesWinston-Salem, NC, USA
| | - Mauro Maccarrone
- Department of Biomedical Sciences, University of TeramoTeramo, Italy
- European Center for Brain Research (CERC)/Santa Lucia Foundation I.R.C.C.S.Rome, Italy
| |
Collapse
|
18
|
Olausson BES, Grossfield A, Pitman MC, Brown MF, Feller SE, Vogel A. Molecular dynamics simulations reveal specific interactions of post-translational palmitoyl modifications with rhodopsin in membranes. J Am Chem Soc 2012; 134:4324-31. [PMID: 22280374 DOI: 10.1021/ja2108382] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We present a detailed analysis of the behavior of the highly flexible post-translational lipid modifications of rhodopsin from multiple-microsecond all-atom molecular dynamics simulations. Rhodopsin was studied in a realistic membrane environment that includes cholesterol, as well as saturated and polyunsaturated lipids with phosphocholine and phosphoethanolamine headgroups. The simulation reveals striking differences between the palmitoylations at Cys322 and Cys323 as well as between the palmitoyl chains and the neighboring lipids. Notably the palmitoyl group at Cys322 shows considerably greater contact with helix H1 of rhodopsin, yielding frequent chain upturns with longer reorientational correlation times, and relatively low order parameters. While the palmitoylation at Cys323 makes fewer protein contacts and has increased order compared to Cys322, it nevertheless exhibits greater flexibility with smaller order parameters than the stearoyl chains of the surrounding lipids. The dynamical structure of the palmitoylations-as well as their extensive fluctuations-suggests a complex function for the post-translational modifications in rhodopsin and potentially other G protein-coupled receptors, going beyond their role as membrane anchoring elements. Rather, we propose that the palmitoylation at Cys323 has a potential role as a lipid anchor, whereas the palmitoyl-protein interaction observed for Cys322 suggests a more specific interaction that affects the stability of the dark state of rhodopsin.
Collapse
Affiliation(s)
- Bjoern E S Olausson
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, D-06120 Halle/Saale, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Heakal Y, Woll MP, Fox T, Seaton K, Levenson R, Kester M. Neurotensin receptor-1 inducible palmitoylation is required for efficient receptor-mediated mitogenic-signaling within structured membrane microdomains. Cancer Biol Ther 2011; 12:427-35. [PMID: 21725197 DOI: 10.4161/cbt.12.5.15984] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Neurotensin receptor-1 (NTSR-1) is a G-protein coupled receptor (GPCR) that has been recently identified as a mediator of cancer progression. NTSR-1 and its endogenous ligand, neurotensin (NTS), are co-expressed in several breast cancer cell lines and breast cancer tumor samples. Based on our previously published study demonstrating that intact structured membrane microdomains (SMDs) are required for NTSR-1 mitogenic signaling, we hypothesized that regulated receptor palmitoylation is responsible for NTSR-1 localization and signaling within SMDs upon NTS stimulation. Site-directed mutagenesis and pharmacological strategies were utilized to assess NTRS-1 post-translational modifications in an over-expression cell model (HEK293T) as well as a native breast cancer cell model (MDA-MB-231). NTSR-1 palmitoylation was confirmed by multiple chemical and fluororadiographic methodologies. NTSR-1 glycosylation was confirmed by pharmacological (tunicamycin) and chemical (PGNaseF and O-type glycosidase) approaches. Physiological correlates including cell viability (MTS assay), apoptosis (caspase 3/7 assay) and ERK phosphorylation were utilized to assess the consequences of NTRS-1 palmitoylation. The interaction between palmitoylated NTRS-1 and Gαq/11 within SMDS was confirmed with immunopreciptation analysis of detergent-free isolated fractions of caveolin-rich microdomains. We identified dual-palmitoylation at Cys381 and Cys383 of endogenously-expressed NTSR-1 in MDA-MB-231 breast adeno-carcinomas as well as exogenously-expressed NTSR-1 in HEK293T cells (which do not normally express NTSR-1). Pharmacological inhibition of NTSR-1 palmitoylation in MDA-MB-231 cells as well as NTSR-1-expressing HEK293T cells diminished NTS-mediated ERK 1/2 phosphorylation. Additionally, NTSR-1 mutated at Cys381 and Cys383 showed diminished ERK1/2 stimulation and reduced ability to protect HEK293T cells against apoptosis induced by serum starvation. Mechanistically, mutated C381,383S-NTSR-1 showed reduced ability to interact with Gαq/11 and diminished localization to structured membrane microdomains (SMDs), where Gαq/11 preferentially resides. We also demonstrated that only glycosylated isoforms of NTRS-1 localize within SMDs by palmitotylation. Collectively, our data establish palmitoylation as a novel pharmacological target to inhibit NTSR-1 mitogenic signaling in breast cancer cells.
Collapse
Affiliation(s)
- Yasser Heakal
- The Pennsylvania State University College of Medicine, Hershey, PA USA
| | | | | | | | | | | |
Collapse
|
20
|
Downey JD, Sanders CR, Breyer RM. Evidence for the presence of a critical disulfide bond in the mouse EP3γ receptor. Prostaglandins Other Lipid Mediat 2011; 94:53-8. [PMID: 21236356 DOI: 10.1016/j.prostaglandins.2010.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 12/30/2010] [Accepted: 12/30/2010] [Indexed: 11/29/2022]
Abstract
To determine the contribution of cysteines to the function of the mouse E-prostanoid subtype 3 gamma (mEP3γ), we tested a series of cysteine-to-alanine mutants. Two of these mutants, C107A and C184A, showed no agonist-dependent activation in a cell-based reporter assay for mEP3γ, whereas none of the other cysteine-to-alanine mutations disrupted mEP3γ signal transduction. Total cell membranes prepared from HEK293 cells transfected with mEP3γ C107A or C184A had no detectable radioligand binding. Other mutant mEP3γ receptors had radioligand affinities and receptor densities similar to wild-type. Cell-surface ELISA against the N-terminal HA-tag of C107A and C184A demonstrated 40% and 47% reductions respectively in receptor protein expression at the cell surface, and no radioligand binding was detected as assessed by intact cell radioligand binding experiments. These data suggest a key role for C107 and C184 in both receptor structure/stability and function and is consistent with the presence of a conserved disulfide bond between C107 and C184 in mouse EP3 that is required for normal receptor expression and function. Our results also indicate that if a second disulfide bond is present in the native receptor it is non-essential for receptor assembly or function.
Collapse
Affiliation(s)
- Jason D Downey
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.
| | | | | |
Collapse
|
21
|
|
22
|
Abstract
S-palmitoylation is a conserved feature in many G protein-coupled receptors (GPCRs) involved in a broad array of signaling processes. The prototypical GPCR, rhodopsin, is S-palmitoylated on two adjacent C-terminal Cys residues at its cytoplasmic surface. Surprisingly, absence of palmitoylation has only a modest effect on in vitro or in vivo signaling. Here, we report that palmitoylation-deficient (Palm(-/-)) mice carrying two Cys to Thr and Ser mutations in the opsin gene displayed profound light-induced retinal degeneration that first involved rod and then cone cells. After brief bright light exposure, their retinas exhibited two types of deposits containing nucleic acid and invasive phagocytic macrophages. When Palm(-/-) mice were crossed with Lrat(-/-) mice lacking lecithin:retinol acyl transferase to eliminate retinoid binding to opsin and thereby rendering the eye insensitive to light, rapid retinal degeneration occurred even in 3- to 4-week-old animals. This rapid degeneration suggests that nonpalmitoylated rod opsin is unstable. Treatment of 2-week-old Palm(-/-)Lrat(-/-) mice with an artificial chromophore precursor prevented this retinopathy. In contrast, elimination of signaling to G protein in Palm(-/-)Gnat1(-/-) mice had no effect, indicating that instability of unpalmitoylated opsin lacking chromophore rather than aberrant signal transduction resulted in retinal pathology. Together, these observations provide evidence for a structural role of rhodopsin S-palmitoylation that may apply to other GPCRs as well.
Collapse
|
23
|
Zhao H, Ru B, Teeling EC, Faulkes CG, Zhang S, Rossiter SJ. Rhodopsin molecular evolution in mammals inhabiting low light environments. PLoS One 2009; 4:e8326. [PMID: 20016835 PMCID: PMC2790605 DOI: 10.1371/journal.pone.0008326] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Accepted: 11/25/2009] [Indexed: 11/21/2022] Open
Abstract
The ecological radiation of mammals to inhabit a variety of light environments is largely attributed to adaptive changes in their visual systems. Visual capabilities are conferred by anatomical features of the eyes as well as the combination and properties of their constituent light sensitive pigments. To test whether evolutionary switches to different niches characterized by dim-light conditions coincided with molecular adaptation of the rod pigment rhodopsin, we sequenced the rhodopsin gene in twenty-two mammals including several bats and subterranean mole-rats. We compared these to thirty-seven published mammal rhodopsin sequences, from species with divergent visual ecologies, including nocturnal, diurnal and aquatic groups. All taxa possessed an intact functional rhodopsin; however, phylogenetic tree reconstruction recovered a gene tree in which rodents were not monophyletic, and also in which echolocating bats formed a monophyletic group. These conflicts with the species tree appear to stem from accelerated evolution in these groups, both of which inhabit low light environments. Selection tests confirmed divergent selection pressures in the clades of subterranean rodents and bats, as well as in marine mammals that live in turbid conditions. We also found evidence of divergent selection pressures among groups of bats with different sensory modalities based on vision and echolocation. Sliding window analyses suggest most changes occur in transmembrane domains, particularly obvious within the pinnipeds; however, we found no obvious pattern between photopic niche and predicted spectral sensitivity based on known critical amino acids. This study indicates that the independent evolution of rhodopsin vision in ecologically specialised groups of mammals has involved molecular evolution at the sequence level, though such changes might not mediate spectral sensitivity directly.
Collapse
Affiliation(s)
- Huabin Zhao
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Binghua Ru
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Emma C. Teeling
- UCD School of Biology and Environmental Science and UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - Christopher G. Faulkes
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Shuyi Zhang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Stephen J. Rossiter
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
24
|
Ohno Y, Ito A, Ogata R, Hiraga Y, Igarashi Y, Kihara A. Palmitoylation of the sphingosine 1-phosphate receptor S1P1is involved in its signaling functions and internalization. Genes Cells 2009; 14:911-23. [DOI: 10.1111/j.1365-2443.2009.01319.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
25
|
Zhao H, Xu D, Zhou Y, Flanders J, Zhang S. Evolution of opsin genes reveals a functional role of vision in the echolocating little brown bat (Myotis lucifugus). BIOCHEM SYST ECOL 2009. [DOI: 10.1016/j.bse.2009.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Park PSH, Sapra KT, Jastrzebska B, Maeda T, Maeda A, Pulawski W, Kono M, Lem J, Crouch RK, Filipek S, Müller DJ, Palczewski K. Modulation of molecular interactions and function by rhodopsin palmitylation. Biochemistry 2009; 48:4294-304. [PMID: 19348429 DOI: 10.1021/bi900417b] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rhodopsin is palmitylated at two cysteine residues in its carboxyl terminal region. We have looked at the effects of palmitylation on the molecular interactions formed by rhodopsin using single-molecule force spectroscopy and the function of rhodopsin using both in vitro and in vivo approaches. A knockin mouse model expressing palmitate-deficient rhodopsin was used for live animal in vivo studies and to obtain native tissue samples for in vitro assays. We specifically looked at the effects of palmitylation on the chromophore-binding pocket, interactions of rhodopsin with transducin, and molecular interactions stabilizing the receptor structure. The structure of rhodopsin is largely unperturbed by the absence of palmitate linkage. The binding pocket for the chromophore 11-cis-retinal is minimally altered as palmitate-deficient rhodopsin exhibited the same absorbance spectrum as wild-type rhodopsin. Similarly, the rate of release of all-trans-retinal after light activation was the same both in the presence and absence of palmitylation. Significant differences were observed in the rate of transducin activation by rhodopsin and in the force required to unfold the last stable structural segment in rhodopsin at its carboxyl terminal end. A 1.3-fold reduction in the rate of transducin activation by rhodopsin was observed in the absence of palmitylation. Single-molecule force spectroscopy revealed a 2.1-fold reduction in the normalized force required to unfold the carboxyl terminal end of rhodopsin. The absence of palmitylation in rhodopsin therefore destabilizes the molecular interactions formed in the carboxyl terminal end of the receptor, which appears to hinder the activation of transducin by light-activated rhodopsin.
Collapse
Affiliation(s)
- Paul S-H Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Greaves J, Prescott GR, Gorleku OA, Chamberlain LH. The fat controller: roles of palmitoylation in intracellular protein trafficking and targeting to membrane microdomains (Review). Mol Membr Biol 2008; 26:67-79. [PMID: 19115144 DOI: 10.1080/09687680802620351] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The attachment of palmitic acid to the amino acid cysteine via thioester linkage (S-palmitoylation) is a common post-translational modification of eukaryotic proteins. In this review, we discuss the role of palmitoylation as a versatile protein sorting signal, regulating protein trafficking between distinct intracellular compartments and the micro-localization of proteins within membranes.
Collapse
Affiliation(s)
- Jennifer Greaves
- The Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | | | | | | |
Collapse
|
28
|
Jackson W, Ablonczy Z, Crouch RK. Quantitation of the effect of hydroxylamine on rhodopsin palmitylation. Photochem Photobiol 2008; 84:949-55. [PMID: 18399918 DOI: 10.1111/j.1751-1097.2008.00334.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rhodopsin (the photosensitive rod visual pigment) has been a model for photobiologic studies of the opsins as well as a structural model for G-protein-coupled receptors. The two palmitate groups attached to cysteines 322 and 323 are thought to serve as membrane anchors for the rhodopsin C-terminus, but the absence of the palmitates does not alter membrane localization. However, removal of the palmitates affects rhodopsin function. Therefore, it is important to quantitate the stability of rhodopsin palmitates to hydroxylamine, which is a widely utilized reagent in biochemical preparations of the apoprotein. We have developed a mass spectrometric method to quantitate the resulting opsin palmitylation. Our data show that both of the bovine rhodopsin palmitates are labile to hydroxylamine, with significant depalmitylation occurring at concentrations of >or=100 mM, with an EC(50) of 220 mM L(-1). The palmitate at position 322 is the more stable to hydroxylamine. Samples prepared in the presence of >50 mM should therefore be considered to be at least partially depalmitylated and the results interpreted accordingly.
Collapse
Affiliation(s)
- Wesley Jackson
- Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA
| | | | | |
Collapse
|
29
|
Thompson MD, Cole DEC, Jose PA. Pharmacogenomics of G protein-coupled receptor signaling: insights from health and disease. Methods Mol Biol 2008; 448:77-107. [PMID: 18370232 DOI: 10.1007/978-1-59745-205-2_6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The identification and characterization of the processes of G protein-coupled receptor (GPCR) activation and inactivation have refined not only the study of the GPCRs but also the genomics of many accessory proteins necessary for these processes. This has accelerated progress in understanding the fundamental mechanisms involved in GPCR structure and function, including receptor transport to the membrane, ligand binding, activation and inactivation by GRK-mediated (and other) phosphorylation. The catalog of G(s)alpha and Gbeta subunit polymorphisms that result in complex phenotypes has complemented the effort to catalog the GPCRs and their variants. The study of the genomics of GPCR accessory proteins has also provided insight into pathways of disease, such as the contributions of regulator of G protein signaling (RGS) protein to hypertension and activator of G protein signaling (AGS) proteins to the response to hypoxia. In the case of the G protein-coupled receptor kinases (GRKs), identified originally in the retinal tissues that converge on rhodopsin, proteins such as GRK4 have been identified that have been subsequently associated with hypertension. Here, we review the structure and function of GPCR and associated proteins in the context of the gene families that encode them and the genetic disorders associated with their altered function. An understanding of the pharmacogenomics of GPCR signaling provides the basis for examining the GPCRs disrupted in monogenic disease and the pharmacogenetics of a given receptor system.
Collapse
Affiliation(s)
- Miles D Thompson
- Department of Laboratory Medicine and Pathobiology, Banting Institute, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
30
|
Yokoyama S, Tada T, Yamato T. Modulation of the absorption maximum of rhodopsin by amino acids in the C-terminus. Photochem Photobiol 2007; 83:236-41. [PMID: 16922606 PMCID: PMC2572076 DOI: 10.1562/2006-06-19-ra-939] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vision begins when light is absorbed by visual pigments. It is commonly believed that the absorption spectra of visual pigments are modulated by interactions between the retinal and amino acids within or near 4.5 angstroms of the retinal in the transmembrane (TM) segments. However, this dogma has not been rigorously tested. In this study, we show that the retinal-opsin interactions extend well beyond the retinal binding pocket. We found that, although it is positioned outside of TM segments, the C-terminus of the rhodopsin in the rockfish longspine thornyhead (Sebastolobus altivelis) modulates its lambda(max) by interacting mainly with the last TM segment. Our results illustrate how amino acids in the C-terminus are likely to interact with the retinal. We anticipate our analyses to be a starting point for viewing the spectral tuning of visual pigments as interactions between the retinal and key amino acids that are distributed throughout the entire pigment.
Collapse
Affiliation(s)
- Shozo Yokoyama
- Department of Biology, Emory University, Atlanta, GA, USA.
| | | | | |
Collapse
|
31
|
Escribá PV, Wedegaertner PB, Goñi FM, Vögler O. Lipid–protein interactions in GPCR-associated signaling. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:836-52. [PMID: 17067547 DOI: 10.1016/j.bbamem.2006.09.001] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 09/05/2006] [Accepted: 09/06/2006] [Indexed: 10/24/2022]
Abstract
Signal transduction via G-protein-coupled receptors (GPCRs) is a fundamental pathway through which the functions of an individual cell can be integrated within the demands of a multicellular organism. Since this family of receptors first discovered, the proteins that constitute this signaling cascade and their interactions with one another have been studied intensely. In parallel, the pivotal role of lipids in the correct and efficient propagation of extracellular signals has attracted ever increasing attention. This is not surprising given that most of the signal transduction machinery is membrane-associated and therefore lipid-related. Hence, lipid-protein interactions exert a considerable influence on the activity of these proteins. This review focuses on the post-translational lipid modifications of GPCRs and G proteins (palmitoylation, myristoylation, and isoprenylation) and their significance for membrane binding, trafficking and signaling. Moreover, we address how the particular biophysical properties of different membrane structures may regulate the localization of these proteins and the potential functional consequences of this phenomenon in signal transduction. Finally, the interactions that occur between membrane lipids and GPCR effector enzymes such as PLC and PKC are also considered.
Collapse
Affiliation(s)
- Pablo V Escribá
- Laboratory of Molecular and Cellular Biomedicine, Institut Universitari d'Investigació en Ciències de la Salut, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain.
| | | | | | | |
Collapse
|
32
|
Ablonczy Z, Kono M, Knapp DR, Crouch RK. Palmitylation of cone opsins. Vision Res 2006; 46:4493-501. [PMID: 16989884 PMCID: PMC2025682 DOI: 10.1016/j.visres.2006.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 08/10/2006] [Accepted: 08/10/2006] [Indexed: 10/24/2022]
Abstract
Palmitylation is a widespread modification in G-protein-coupled receptors and often a dynamic process. In rhodopsins, palmitylation is static on C322/C323. Red/green (M/LWS) cone opsins have no cysteines at corresponding positions and no palmitylation. Blue (SWS2) cone opsins have a single corresponding cysteine and mass spectrometric analysis showed partial palmitylation of salamander SWS2 cone opsin. Ultraviolet (SWS1) cone opsins have one corresponding cysteine, but only unpalmitylated opsin was observed for mouse and salamander. The results show that the static palmitylation found on rhodopsin is not found on cone opsins and suggest the possibility of an unidentified role for opsin palmitylation in cones.
Collapse
Affiliation(s)
- Zsolt Ablonczy
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | |
Collapse
|
33
|
Petäjä-Repo UE, Hogue M, Leskelä TT, Markkanen PMH, Tuusa JT, Bouvier M. Distinct subcellular localization for constitutive and agonist-modulated palmitoylation of the human delta opioid receptor. J Biol Chem 2006; 281:15780-9. [PMID: 16595649 DOI: 10.1074/jbc.m602267200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein palmitoylation is a reversible lipid modification that plays important roles for many proteins involved in signal transduction, but relatively little is known about the regulation of this modification and the cellular location where it occurs. We demonstrate that the human delta opioid receptor is palmitoylated at two distinct cellular locations in human embryonic kidney 293 cells and undergoes dynamic regulation at one of these sites. Although palmitoylation could be readily observed for the mature receptor (Mr 55,000), [3H]palmitate incorporation into the receptor precursor (Mr 45,000) could be detected only following transport blockade with brefeldin A, nocodazole, and monensin, indicating that the modification occurs initially during or shortly after export from the endoplasmic reticulum. Blocking of palmitoylation with 2-bromopalmitate inhibited receptor cell surface expression, indicating that it is needed for efficient intracellular transport. However, cell surface biotinylation experiments showed that receptors can also be palmitoylated once they have reached the plasma membrane. At this location, palmitoylation is regulated in a receptor activation-dependent manner, as was indicated by the opioid agonist-promoted increase in the turnover of receptor-bound palmitate. This agonist-mediated effect did not require receptor-G protein coupling and occurred at the cell surface without the need for internalization or recycling. The activation-dependent modulation of receptor palmitoylation may thus contribute to the regulation of receptor function at the plasma membrane.
Collapse
Affiliation(s)
- Ulla E Petäjä-Repo
- Biocenter Oulu and Department of Anatomy and Cell Biology, University of Oulu, FI-90014, Oulu, Finland.
| | | | | | | | | | | |
Collapse
|
34
|
Thompson MD, Burnham WM, Cole DEC. The G protein-coupled receptors: pharmacogenetics and disease. Crit Rev Clin Lab Sci 2005; 42:311-92. [PMID: 16281738 DOI: 10.1080/10408360591001895] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Genetic variation in G-protein coupled receptors (GPCRs) is associated with a wide spectrum of disease phenotypes and predispositions that are of special significance because they are the targets of therapeutic agents. Each variant provides an opportunity to understand receptor function that complements a plethora of available in vitro data elucidating the pharmacology of the GPCRs. For example, discrete portions of the proximal tail of the dopamine D1 receptor have been discovered, in vitro, that may be involved in desensitization, recycling and trafficking. Similar in vitro strategies have been used to elucidate naturally occurring GPCR mutations. Inactive, over-active or constitutively active receptors have been identified by changes in ligand binding, G-protein coupling, receptor desensitization and receptor recycling. Selected examples reviewed include those disorders resulting from mutations in rhodopsin, thyrotropin, luteinizing hormone, vasopressin and angiotensin receptors. By comparison, the recurrent pharmacogenetic variants are more likely to result in an altered predisposition to complex disease in the population. These common variants may affect receptor sequence without intrinsic phenotype change or spontaneous induction of disease and yet result in significant alteration in drug efficacy. These pharmacogenetic phenomena will be reviewed with respect to a limited sampling of GPCR systems including the orexin/hypocretin system, the beta2 adrenergic receptors, the cysteinyl leukotriene receptors and the calcium-sensing receptor. These developments will be discussed with respect to strategies for drug discovery that take into account the potential for the development of drugs targeted at mutated and wild-type proteins.
Collapse
Affiliation(s)
- Miles D Thompson
- Department of Laboratory Medicine and Pathobiology, Banting Institute, University of Toronto, ON, Canada.
| | | | | |
Collapse
|
35
|
Fay JF, Dunham TD, Farrens DL. Cysteine residues in the human cannabinoid receptor: only C257 and C264 are required for a functional receptor, and steric bulk at C386 impairs antagonist SR141716A binding. Biochemistry 2005; 44:8757-69. [PMID: 15952782 DOI: 10.1021/bi0472651] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The human neuronal cannabinoid receptor (CB1) is a G-protein-coupled receptor (GPCR) triggered by the psychoactive ingredients in marijuana, as well as endogenous cannabinoids produced in the brain. As with most GPCRs, the mechanism of CB1 activation is poorly understood. In this work, we have assessed the role of cysteine residues in CB1 ligand binding and activation, and demonstrate a method for mapping key determinants in CB1 structure and function. Through mutational analysis, we find that only two cysteines, C257 and C264, are required for high-level expression and receptor function. In addition, through cysteine reactivity studies, we find that a cysteine in transmembrane helix seven, C386 (C7.42), is reactive toward methanethiosulfonate (MTS) sulfhydryl labeling agents, and is thus solvent accessible. Interestingly, steric bulk introduced at this site, either through MTS labeling or by mutation, inhibits binding of the antagonist drug SR141716A (also known as Rimonabant or Accomplia), but does not affect the binding of the agonist CP55940. Our subsequent modeling studies suggest this effect is caused by steric clash of the modified C386 residue with the piperidine ring of SR141716A and/or disruption of an aromatic microdomain in the binding pocket. On the basis of these results, we hypothesize that bound SR141716A inhibits the ability of transmembrane helix 6 to move during formation of the functionally active receptor state.
Collapse
Affiliation(s)
- Jonathan F Fay
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239-3098, USA
| | | | | |
Collapse
|
36
|
Wang Z, Wen XH, Ablonczy Z, Crouch RK, Makino CL, Lem J. Enhanced shutoff of phototransduction in transgenic mice expressing palmitoylation-deficient rhodopsin. J Biol Chem 2005; 280:24293-300. [PMID: 15851469 PMCID: PMC2247473 DOI: 10.1074/jbc.m502588200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Palmitoylation is a reversible, post-translational modification observed in a number of G-protein-coupled receptors. To gain a better understanding of its role in visual transduction, we produced transgenic knock-in mice that expressed a palmitoylation-deficient rhodopsin (Palm(-/-)). The mutant rhodopsin was expressed at wild-type levels and showed normal cellular localization to rod outer segments, indicating that neither rhodopsin stability nor its intracellular trafficking were compromised. But Palm(-/-) rods had briefer flash responses and reduced sensitivity to flashes and to steps of light. Upon exposure to light, rhodopsin became phosphorylated at a faster rate in mutant than in wild-type retinas. Since quench of rhodopsin begins with its phosphorylation, these results suggest that palmitoylation may modulate rod photoreceptor sensitivity by permitting rhodopsin to remain active for a longer period.
Collapse
Affiliation(s)
- Zhongyan Wang
- Molecular Cardiology Research Institute, Tufts-New England Medical Center, Boston, Massachusetts 02111
| | - Xiao-Hong Wen
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114
| | - Zsolt Ablonczy
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Rosalie K. Crouch
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Clint L. Makino
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114
| | - Janis Lem
- Molecular Cardiology Research Institute, Tufts-New England Medical Center, Boston, Massachusetts 02111
- Department of Ophthalmology, Program in Genetics, Tufts Center for Vision Research, Tufts University School of Medicine, Boston, Massachusetts 02111
- To whom correspondence should be addressed: Tufts-New England Medical Center, 750 Washington St., Box 5045, Boston, MA 02111. Tel.: 617-636-5045; Fax: 617-636-8362; E-mail:
| |
Collapse
|
37
|
Møller LN, Stidsen CE, Hartmann B, Holst JJ. Somatostatin receptors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2003; 1616:1-84. [PMID: 14507421 DOI: 10.1016/s0005-2736(03)00235-9] [Citation(s) in RCA: 266] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In 1972, Brazeau et al. isolated somatostatin (somatotropin release-inhibiting factor, SRIF), a cyclic polypeptide with two biologically active isoforms (SRIF-14 and SRIF-28). This event prompted the successful quest for SRIF receptors. Then, nearly a quarter of a century later, it was announced that a neuropeptide, to be named cortistatin (CST), had been cloned, bearing strong resemblance to SRIF. Evidence of special CST receptors never emerged, however. CST rather competed with both SRIF isoforms for specific receptor binding. And binding to the known subtypes with affinities in the nanomolar range, it has therefore been acknowledged to be a third endogenous ligand at SRIF receptors. This review goes through mechanisms of signal transduction, pharmacology, and anatomical distribution of SRIF receptors. Structurally, SRIF receptors belong to the superfamily of G protein-coupled (GPC) receptors, sharing the characteristic seven-transmembrane-segment (STMS) topography. Years of intensive research have resulted in cloning of five receptor subtypes (sst(1)-sst(5)), one of which is represented by two splice variants (sst(2A) and sst(2B)). The individual subtypes, functionally coupled to the effectors of signal transduction, are differentially expressed throughout the mammalian organism, with corresponding differences in physiological impact. It is evident that receptor function, from a physiological point of view, cannot simply be reduced to the accumulated operations of individual receptors. Far from being isolated functional units, receptors co-operate. The total receptor apparatus of individual cell types is composed of different-ligand receptors (e.g. SRIF and non-SRIF receptors) and co-expressed receptor subtypes (e.g. sst(2) and sst(5) receptors) in characteristic proportions. In other words, levels of individual receptor subtypes are highly cell-specific and vary with the co-expression of different-ligand receptors. However, the question is how to quantify the relative contributions of individual receptor subtypes to the integration of transduced signals, ultimately the result of collective receptor activity. The generation of knock-out (KO) mice, intended as a means to define the contributions made by individual receptor subtypes, necessarily marks but an approximation. Furthermore, we must now take into account the stunning complexity of receptor co-operation indicated by the observation of receptor homo- and heterodimerisation, let alone oligomerisation. Theoretically, this phenomenon adds a novel series of functional megareceptors/super-receptors, with varied pharmacological profiles, to the catalogue of monomeric receptor subtypes isolated and cloned in the past. SRIF analogues include both peptides and non-peptides, receptor agonists and antagonists. Relatively long half lives, as compared to those of the endogenous ligands, have been paramount from the outset. Motivated by theoretical puzzles or the shortcomings of present-day diagnostics and therapy, investigators have also aimed to produce subtype-selective analogues. Several have become available.
Collapse
Affiliation(s)
- Lars Neisig Møller
- Department of Medical Physiology, The Panum Institute, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | | | | | | |
Collapse
|
38
|
Charest PG, Bouvier M. Palmitoylation of the V2 vasopressin receptor carboxyl tail enhances beta-arrestin recruitment leading to efficient receptor endocytosis and ERK1/2 activation. J Biol Chem 2003; 278:41541-51. [PMID: 12900404 DOI: 10.1074/jbc.m306589200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A large number of G protein-coupled receptors are palmitoylated on cysteine residues located in their carboxyl tail, but the general role of this post-translational modification remains poorly understood. Here we show that preventing palmitoylation of the V2 vasopressin receptor, by site-directed mutagenesis of cysteines 341 and 342, significantly delayed and decreased both agonist-promoted receptor endocytosis and mitogen-activated protein kinase activation. Pharmacological blockade of receptor endocytosis is without effect on the vasopressin-stimulated mitogen-activated protein kinase activity, excluding the possibility that the reduced kinase activation mediated by the palmitoylation-less mutant could result from altered receptor endocytosis. In contrast, two dominant negative mutants of beta-arrestin which inhibit receptor endocytosis also attenuated vasopressin-stimulated mitogen-activated protein kinase activity, suggesting that the scaffolding protein, beta-arrestin, represents the common link among receptor palmitoylation, endocytosis, and kinase activation. Coimmunoprecipitation and bioluminescence resonance energy transfer experiments confirmed that inhibiting receptor palmitoylation considerably reduced the vasopressin-stimulated recruitment of beta-arrestin to the receptor. Interestingly, the changes in beta-arrestin recruitment kinetics were similar to those observed for vasopressin-stimulated receptor endocytosis and mitogen-activated protein kinase activation. Taken together the results indicate that palmitoylation enhances the recruitment of beta-arrestin to the activated V2 vasopressin receptor thus facilitating processes requiring the scaffolding action of beta-arrestin.
Collapse
Affiliation(s)
- Pascale G Charest
- Department of Biochemistry and Groupe de Recherche sur le Système Nerveux Autonome, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | | |
Collapse
|
39
|
Krebs A, Edwards PC, Villa C, Li J, Schertler GFX. The three-dimensional structure of bovine rhodopsin determined by electron cryomicroscopy. J Biol Chem 2003; 278:50217-25. [PMID: 14514682 DOI: 10.1074/jbc.m307995200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
G-protein-coupled receptors are integral membrane proteins that respond to environmental signals and initiate signal transduction pathways, which activate cellular processes. Rhodopsin, a well known member of the G-protein-coupled receptor family, is located in the disk membranes of the rod outer segment, where it is responsible for the visualization of dim light. Rhodopsin is the most extensively studied G-protein-coupled receptor, and knowledge about its structure serves as a template for other related receptors. We have gained detailed structural knowledge from the crystal structure (1), which was solved by x-ray crystallography in 2000 using three-dimensional crystals. Here we report a three-dimensional density map of bovine rhodopsin determined by electron cryomicroscopy of two-dimensional crystals with p22(1)2(1) symmetry. The usage of relatively small and disordered crystals made the process of structure determination challenging. Special attention was paid to the extraction of amplitudes and phases, since usable raw data were limited to a maximum tilt of 45 degrees. In the refinement process, an improved unbending procedure was applied. This led to a final resolution of 5.5 A in the membrane plane and approximately 13 A perpendicular to it, making our electron density map the most accurate map of a G-protein-coupled receptor currently available by electron microscopy. Most important is the information we gain about the center of the membrane plane and the orientation of the molecule relative to the bilayer. This information cannot be retrieved from the three-dimensional crystals. In our electron density map, all seven transmembrane helices were identified, and their arrangement is in agreement with the arrangement known from the crystal structure (1). In the retinal binding pocket, a density peak adjacent to helix 3 suggests the position of the beta-ionine ring of the chromophore, and in its vicinity several of the bigger amino acids can be identified.
Collapse
Affiliation(s)
- Angelika Krebs
- Medical Research Council, Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom.
| | | | | | | | | |
Collapse
|
40
|
Janz JM, Fay JF, Farrens DL. Stability of dark state rhodopsin is mediated by a conserved ion pair in intradiscal loop E-2. J Biol Chem 2003; 278:16982-91. [PMID: 12547830 DOI: 10.1074/jbc.m210567200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The rhodopsin crystal structure reveals that intradiscal loop E-2 covers the 11-cis-retinal, creating a "retinal plug." Recently, we noticed the ends of loop E-2 are linked by an ion pair between residues Arg-177 and Asp-190, near the highly conserved disulfide bond. This ion pair appears biologically significant; it is conserved in almost all vertebrate opsins and may occur in other G-protein-coupled receptors. We report here that the Arg-177/Asp-190 ion pair is critical for the folding and stability of dark state rhodopsin. We find ion pair mutants that regenerate with retinal are functionally and spectrally wild-type-like yet thermally unstable in their dark state because of rapid hydrolysis of the retinal Schiff base linkage. Surprisingly, Arrhenius analysis indicates that the activation energies for the hydrolysis process are similar between the ion pair mutants and wild-type rhodopsin. Furthermore, the ion pair mutants do not show increased reactivity toward hydroxylamine, suggesting that their instability is not caused by an increased exposure to bulk solvent. Our results indicate that the loop E-2 ion pair is important for rhodopsin stability and thus suggest that retinitis pigmentosa observed in patients with Asp-190 mutations may in part be the result of thermally unstable rhodopsin proteins.
Collapse
Affiliation(s)
- Jay M Janz
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97201, USA
| | | | | |
Collapse
|
41
|
Qanbar R, Bouvier M. Role of palmitoylation/depalmitoylation reactions in G-protein-coupled receptor function. Pharmacol Ther 2003; 97:1-33. [PMID: 12493533 DOI: 10.1016/s0163-7258(02)00300-5] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
G-protein-coupled receptors (GPCRs) constitute one of the largest protein families in the human genome. They are subject to numerous post-translational modifications, including palmitoylation. This review highlights the dynamic nature of palmitoylation and its role in GPCR expression and function. The palmitoylation of other proteins involved in GPCR signaling, such as G-proteins, regulators of G-protein signaling, and G-protein-coupled receptor kinases, is also discussed.
Collapse
Affiliation(s)
- Riad Qanbar
- Département de Biochimie, Université de Montréal, C.P. 6128 Succursale Centre-Ville, 2900 Edouard Montpetit, Montreál, Quebec, Canada H3C 3J7
| | | |
Collapse
|
42
|
Abstract
Rhodopsin is a retinal photoreceptor protein of bipartite structure consisting of the transmembrane protein opsin and a light-sensitive chromophore 11-cis-retinal, linked to opsin via a protonated Schiff base. Studies on rhodopsin have unveiled many structural and functional features that are common to a large and pharmacologically important group of proteins from the G protein-coupled receptor (GPCR) superfamily, of which rhodopsin is the best-studied member. In this work, we focus on structural features of rhodopsin as revealed by many biochemical and structural investigations. In particular, the high-resolution structure of bovine rhodopsin provides a template for understanding how GPCRs work. We describe the sensitivity and complexity of rhodopsin that lead to its important role in vision.
Collapse
Affiliation(s)
- Sławomir Filipek
- Department of Chemistry, University of Warsaw, 1 Pasteur St, PL-02093 Warsaw, Poland
| | - Ronald E. Stenkamp
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
- Department of Biomolecular Structure Center, University of Washington, Seattle, Washington 98195
| | - David C. Teller
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
- Department of Biomolecular Structure Center, University of Washington, Seattle, Washington 98195
| | - Krzysztof Palczewski
- Department of Ophthalmology, University of Washington, Seattle, Washington 98195
- Department of Chemistry, University of Washington, Seattle, Washington 98195
- Department of Pharmacology, University of Washington, Seattle, Washington 98195 e-mail:
| |
Collapse
|
43
|
Price RR, Morris DP, Biswas G, Smith MP, Schwinn DA. Acute agonist-mediated desensitization of the human alpha 1a-adrenergic receptor is primarily independent of carboxyl terminus regulation: implications for regulation of alpha 1aAR splice variants. J Biol Chem 2002; 277:9570-9. [PMID: 11781325 DOI: 10.1074/jbc.m111762200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite important roles in myocardial hypertrophy and benign prostatic hyperplasia, little is known about acute effects of agonist stimulation on alpha(1a)-adrenergic receptor (alpha(1a)AR) signaling and function. Regulatory mechanisms are likely complex since 12 distinct human alpha(1a)AR carboxyl-terminal splice variants have been isolated. After determining the predominance of the alpha(1a-1)AR isoform in human heart and prostate, we stably expressed an epitope-tagged alpha(1a-1)AR cDNA in rat-1 fibroblasts and subsequently examined regulation of signaling, phosphorylation, and internalization of the receptor. Human alpha(1a)AR-mediated inositol phosphate signaling is acutely desensitized in response to both agonist and phorbol 12-myristate 13-acetate (PMA) exposure. Concurrent with desensitization, alpha(1a)ARs in (32)P(i)-labeled cells are rapidly phosphorylated in response to both NE and PMA stimulation. Despite the ability of PKC to desensitize alpha(1a)ARs when directly activated with PMA, inhibitors of PKC have no effect on agonist-mediated desensitization. In contrast, involvement of GRK kinases is suggested by the ability of GRK2 to desensitize alpha(1a)ARs. Internalization of cell surface alpha(1a)ARs also occurs in response to agonist stimulation (but not PKC activation), but is initiated more slowly than receptor desensitization. Significantly, deletion of the alpha(1a)AR carboxyl terminus has no effect on receptor internalization or either agonist-induced or GRK-mediated receptor desensitization. Because mechanisms underlying acute agonist-mediated regulation of human alpha(1a)ARs are primarily independent of the carboxyl terminus, they may be common to all functional alpha(1a)AR isoforms.
Collapse
Affiliation(s)
- R Reyn Price
- Department of Pharmacology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
44
|
Davies A, Gowen BE, Krebs AM, Schertler GF, Saibil HR. Three-dimensional structure of an invertebrate rhodopsin and basis for ordered alignment in the photoreceptor membrane. J Mol Biol 2001; 314:455-63. [PMID: 11846559 DOI: 10.1006/jmbi.2001.5167] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Invertebrate rhodopsins activate a G-protein signalling pathway in microvillar photoreceptors. In contrast to the transducin-cyclic GMP phosphodiesterase pathway found in vertebrate rods and cones, visual transduction in cephalopod (squid, octopus, cuttlefish) invertebrates is signalled via Gq and phospholipase C. Squid rhodopsin contains the conserved residues of the G-protein coupled receptor (GPCR) family, but has only 35% identity with mammalian rhodopsins. Unlike vertebrate rhodopsins, cephalopod rhodopsin is arranged in an ordered lattice in the photoreceptor membranes. This organization confers sensitivity to the plane of polarized light and also provides the optimal orientation of the linear retinal chromophores in the cylindrical microvillar membranes for light capture. Two-dimensional crystals of squid rhodopsin show a rectilinear arrangement that is likely to be related to the alignment of rhodopsins in vivo.Here, we present a three-dimensional structure of squid rhodopsin determined by cryo-electron microscopy of two-dimensional crystals. Docking the atomic structure of bovine rhodopsin into the squid density map shows that the helix packing and extracellular plug structure are conserved. In addition, there are two novel structural features revealed by our map. The linear lattice contact appears to be made by the transverse C-terminal helix lying on the cytoplasmic surface of the membrane. Also at the cytoplasmic surface, additional density may correspond to a helix 5-6 loop insertion found in most GPCRs relative to vertebrate rhodopsins. The similarity supports the conservation in structure of rhodopsins (and other G-protein-coupled receptors) from phylogenetically distant organisms. The map provides the first indication of the structural basis for rhodopsin alignment in the microvillar membrane.
Collapse
Affiliation(s)
- A Davies
- Crystallography Department, Birkbeck College, Malet Street, London, WC1E 7HX, UK
| | | | | | | | | |
Collapse
|
45
|
Young JE, Albert AD. Rhodopsin palmitoylation in bovine rod outer segment disk membranes of different age/spatial location. Exp Eye Res 2001; 73:735-7. [PMID: 11747373 DOI: 10.1006/exer.2001.1081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Percherancier Y, Planchenault T, Valenzuela-Fernandez A, Virelizier JL, Arenzana-Seisdedos F, Bachelerie F. Palmitoylation-dependent control of degradation, life span, and membrane expression of the CCR5 receptor. J Biol Chem 2001; 276:31936-44. [PMID: 11390405 DOI: 10.1074/jbc.m104013200] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have shown that the chemokine and HIV receptor CCR5 is palmitoylated on a cluster of cysteine residues located at the boundary between the seventh transmembrane region and the cytoplasmic tail. Single or combined substitutions of the three cysteines (Cys-321, Cys-323, and Cys-324) or incubation of wild-type CCR5-transfected cells with the palmitic acid analog 2-bromopalmitate prevented palmitoylation of the receptor. Moreover, failure of CCR5 to be palmitoylated resulted in both accumulation in intracellular stores and a profound decrease of membrane expression of the receptor. Upon metabolic labeling, kinetic experiments showed that the half-life of palmitoylation-deficient CCR5 is profoundly decreased. Bafilomycin A1, but not a specific proteasome inhibitor, prevented early degradation of palmitoylation-deficient CCR5 and promoted its accumulation in lysosomal compartments. Although membrane expression of the CCR5 mutant was diminished, the molecules reaching the membrane were still able to interact efficiently with the chemokine ligand MIP1 beta and remained able to function as HIV co-receptors. Thus we conclude that palmitoylation controls CCR5 expression through regulation of the life span of this receptor.
Collapse
Affiliation(s)
- Y Percherancier
- Institut Pasteur, Unité d'Immunologie Virale, 25-28 rue du Dr. Roux, 75724 Paris, cedex 15, France
| | | | | | | | | | | |
Collapse
|
47
|
Teller DC, Okada T, Behnke CA, Palczewski K, Stenkamp RE. Advances in determination of a high-resolution three-dimensional structure of rhodopsin, a model of G-protein-coupled receptors (GPCRs). Biochemistry 2001; 40:7761-72. [PMID: 11425302 PMCID: PMC1698954 DOI: 10.1021/bi0155091] [Citation(s) in RCA: 513] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- D C Teller
- Department of Ophthalmology, and Biological Structure and Biomolecular Structure Center, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | | | |
Collapse
|
48
|
McBee JK, Palczewski K, Baehr W, Pepperberg DR. Confronting complexity: the interlink of phototransduction and retinoid metabolism in the vertebrate retina. Prog Retin Eye Res 2001; 20:469-529. [PMID: 11390257 DOI: 10.1016/s1350-9462(01)00002-7] [Citation(s) in RCA: 259] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Absorption of light by rhodopsin or cone pigments in photoreceptors triggers photoisomerization of their universal chromophore, 11-cis-retinal, to all-trans-retinal. This photoreaction is the initial step in phototransduction that ultimately leads to the sensation of vision. Currently, a great deal of effort is directed toward elucidating mechanisms that return photoreceptors to the dark-adapted state, and processes that restore rhodopsin and counterbalance the bleaching of rhodopsin. Most notably, enzymatic isomerization of all-trans-retinal to 11-cis-retinal, called the visual cycle (or more properly the retinoid cycle), is required for regeneration of these visual pigments. Regeneration begins in rods and cones when all-trans-retinal is reduced to all-trans-retinol. The process continues in adjacent retinal pigment epithelial cells (RPE), where a complex set of reactions converts all-trans-retinol to 11-cis-retinal. Although remarkable progress has been made over the past decade in understanding the phototransduction cascade, our understanding of the retinoid cycle remains rudimentary. The aim of this review is to summarize recent developments in our current understanding of the retinoid cycle at the molecular level, and to examine the relevance of these reactions to phototransduction.
Collapse
Affiliation(s)
- J K McBee
- Department of Ophthalmology, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
49
|
Tam BM, Moritz OL, Hurd LB, Papermaster DS. Identification of an outer segment targeting signal in the COOH terminus of rhodopsin using transgenic Xenopus laevis. J Cell Biol 2000; 151:1369-80. [PMID: 11134067 PMCID: PMC2150681 DOI: 10.1083/jcb.151.7.1369] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2000] [Accepted: 11/08/2000] [Indexed: 01/22/2023] Open
Abstract
Mislocalization of the photopigment rhodopsin may be involved in the pathology of certain inherited retinal degenerative diseases. Here, we have elucidated rhodopsin's targeting signal which is responsible for its polarized distribution to the rod outer segment (ROS). Various green fluorescent protein (GFP)/rhodopsin COOH-terminal fusion proteins were expressed specifically in the major red rod photoreceptors of transgenic Xenopus laevis under the control of the Xenopus opsin promoter. The fusion proteins were targeted to membranes via lipid modifications (palmitoylation and myristoylation) as opposed to membrane spanning domains. Membrane association was found to be necessary but not sufficient for efficient ROS localization. A GFP fusion protein containing only the cytoplasmic COOH-terminal 44 amino acids of Xenopus rhodopsin localized exclusively to ROS membranes. Chimeras between rhodopsin and alpha adrenergic receptor COOH-terminal sequences further refined rhodopsin's ROS localization signal to its distal eight amino acids. Mutations/deletions of this region resulted in partial delocalization of the fusion proteins to rod inner segment (RIS) membranes. The targeting and transport of endogenous wild-type rhodopsin was unaffected by the presence of mislocalized GFP fusion proteins.
Collapse
Affiliation(s)
- B M Tam
- Program in Neuroscience, Department of Pharmacology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA.
| | | | | | | |
Collapse
|
50
|
Webel R, Menon I, O'Tousa JE, Colley NJ. Role of asparagine-linked oligosaccharides in rhodopsin maturation and association with its molecular chaperone, NinaA. J Biol Chem 2000; 275:24752-9. [PMID: 10811808 DOI: 10.1074/jbc.m002668200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many proteins require N-linked glycosylation for conformational maturation and interaction with their molecular chaperones. In Drosophila, rhodopsin (Rh1), the most abundant rhodopsin, is glycosylated in the endoplasmic reticulum (ER) and requires its molecular chaperone, NinaA, for exit from the ER and transport through the secretory pathway. Studies of vertebrate rhodopsins have generated several conflicting proposals regarding the role of glycosylation in rhodopsin maturation. We investigated the role of Rh1 glycosylation and Rh1/NinaA interactions under in vivo conditions by analyzing transgenic flies expressing Rh1 with isoleucine substitutions at each of the two consensus sites for N-linked glycosylation (N20I and N196I). We show that Asn(20) is the sole site for glycosylation. The Rh1(N20I) protein is retained within the secretory pathway, causing an accumulation of ER cisternae and dilation of the Golgi complex. NinaA associates with nonglycosylated Rh1(N20I); therefore, retention of nonglycosylated rhodopsin within the ER is not due to the lack of Rh1(N20I)/NinaA interaction. We further show that Rh1(N20I) interferes with wild type Rh1 maturation and triggers a dominant form of retinal degeneration. We conclude that during maturation Rh1 is present in protein complexes containing NinaA and that Rh1 glycosylation is required for transport of the complexes through the secretory pathway. Failure of this transport process leads to retinal degeneration.
Collapse
Affiliation(s)
- R Webel
- Department of Ophthalmology & Visual Science and the Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|