1
|
Abu Aqel Y, Alnesf A, Aigha II, Islam Z, Kolatkar PR, Teo A, Abdelalim EM. Glucokinase (GCK) in diabetes: from molecular mechanisms to disease pathogenesis. Cell Mol Biol Lett 2024; 29:120. [PMID: 39245718 PMCID: PMC11382428 DOI: 10.1186/s11658-024-00640-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024] Open
Abstract
Glucokinase (GCK), a key enzyme in glucose metabolism, plays a central role in glucose sensing and insulin secretion in pancreatic β-cells, as well as glycogen synthesis in the liver. Mutations in the GCK gene have been associated with various monogenic diabetes (MD) disorders, including permanent neonatal diabetes mellitus (PNDM) and maturity-onset diabetes of the young (MODY), highlighting its importance in maintaining glucose homeostasis. Additionally, GCK gain-of-function mutations lead to a rare congenital form of hyperinsulinism known as hyperinsulinemic hypoglycemia (HH), characterized by increased enzymatic activity and increased glucose sensitivity in pancreatic β-cells. This review offers a comprehensive exploration of the critical role played by the GCK gene in diabetes development, shedding light on its expression patterns, regulatory mechanisms, and diverse forms of associated monogenic disorders. Structural and mechanistic insights into GCK's involvement in glucose metabolism are discussed, emphasizing its significance in insulin secretion and glycogen synthesis. Animal models have provided valuable insights into the physiological consequences of GCK mutations, although challenges remain in accurately recapitulating human disease phenotypes. In addition, the potential of human pluripotent stem cell (hPSC) technology in overcoming current model limitations is discussed, offering a promising avenue for studying GCK-related diseases at the molecular level. Ultimately, a deeper understanding of GCK's multifaceted role in glucose metabolism and its dysregulation in disease states holds implications for developing targeted therapeutic interventions for diabetes and related disorders.
Collapse
Affiliation(s)
- Yasmin Abu Aqel
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Division, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Aldana Alnesf
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Division, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar
| | - Idil I Aigha
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Division, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Zeyaul Islam
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Prasanna R Kolatkar
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Adrian Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Proteos, Singapore, Singapore
- Department of Biochemistry and Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Precision Medicine Translational Research Programme (PM TRP), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Essam M Abdelalim
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Division, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar.
| |
Collapse
|
2
|
Gersing S, Schulze TK, Cagiada M, Stein A, Roth FP, Lindorff-Larsen K, Hartmann-Petersen R. Characterizing glucokinase variant mechanisms using a multiplexed abundance assay. Genome Biol 2024; 25:98. [PMID: 38627865 PMCID: PMC11021015 DOI: 10.1186/s13059-024-03238-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 04/04/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Amino acid substitutions can perturb protein activity in multiple ways. Understanding their mechanistic basis may pinpoint how residues contribute to protein function. Here, we characterize the mechanisms underlying variant effects in human glucokinase (GCK) variants, building on our previous comprehensive study on GCK variant activity. RESULTS Using a yeast growth-based assay, we score the abundance of 95% of GCK missense and nonsense variants. When combining the abundance scores with our previously determined activity scores, we find that 43% of hypoactive variants also decrease cellular protein abundance. The low-abundance variants are enriched in the large domain, while residues in the small domain are tolerant to mutations with respect to abundance. Instead, many variants in the small domain perturb GCK conformational dynamics which are essential for appropriate activity. CONCLUSIONS In this study, we identify residues important for GCK metabolic stability and conformational dynamics. These residues could be targeted to modulate GCK activity, and thereby affect glucose homeostasis.
Collapse
Affiliation(s)
- Sarah Gersing
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen, Denmark.
| | - Thea K Schulze
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen, Denmark
| | - Matteo Cagiada
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen, Denmark
| | - Amelie Stein
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen, Denmark
| | - Frederick P Roth
- Donnelly Centre, University of Toronto, M5S 3E1, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, M5S 1A8, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, M5G 1X5, Toronto, ON, Canada
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, 15213, Pittsburgh, USA
| | - Kresten Lindorff-Larsen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen, Denmark.
| | - Rasmus Hartmann-Petersen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen, Denmark.
| |
Collapse
|
3
|
Sun HY, Lin XY. Genetic perspectives on childhood monogenic diabetes: Diagnosis, management, and future directions. World J Diabetes 2023; 14:1738-1753. [PMID: 38222792 PMCID: PMC10784795 DOI: 10.4239/wjd.v14.i12.1738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/10/2023] [Accepted: 11/14/2023] [Indexed: 12/14/2023] Open
Abstract
Monogenic diabetes is caused by one or even more genetic variations, which may be uncommon yet have a significant influence and cause diabetes at an early age. Monogenic diabetes affects 1 to 5% of children, and early detection and gene-tically focused treatment of neonatal diabetes and maturity-onset diabetes of the young can significantly improve long-term health and well-being. The etiology of monogenic diabetes in childhood is primarily attributed to genetic variations affecting the regulatory genes responsible for beta-cell activity. In rare instances, mutations leading to severe insulin resistance can also result in the development of diabetes. Individuals diagnosed with specific types of monogenic diabetes, which are commonly found, can transition from insulin therapy to sulfonylureas, provided they maintain consistent regulation of their blood glucose levels. Scientists have successfully devised materials and methodologies to distinguish individuals with type 1 or 2 diabetes from those more prone to monogenic diabetes. Genetic screening with appropriate findings and interpretations is essential to establish a prognosis and to guide the choice of therapies and management of these interrelated ailments. This review aims to design a comprehensive literature summarizing genetic insights into monogenetic diabetes in children and adolescents as well as summarizing their diagnosis and mana-gement.
Collapse
Affiliation(s)
- Hong-Yan Sun
- Department of Endocrine and Metabolic Diseases, Yantaishan Hospital, Yantai 264003, Shandong Province, China
| | - Xiao-Yan Lin
- Department of Endocrine and Metabolic Diseases, Yantaishan Hospital, Yantai 264003, Shandong Province, China
| |
Collapse
|
4
|
Gersing S, Schulze TK, Cagiada M, Stein A, Roth FP, Lindorff-Larsen K, Hartmann-Petersen R. Characterizing glucokinase variant mechanisms using a multiplexed abundance assay. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.542036. [PMID: 37292969 PMCID: PMC10245906 DOI: 10.1101/2023.05.24.542036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Amino acid substitutions can perturb protein activity in multiple ways. Understanding their mechanistic basis may pinpoint how residues contribute to protein function. Here, we characterize the mechanisms of human glucokinase (GCK) variants, building on our previous comprehensive study on GCK variant activity. We assayed the abundance of 95% of GCK missense and nonsense variants, and found that 43% of hypoactive variants have a decreased cellular abundance. By combining our abundance scores with predictions of protein thermodynamic stability, we identify residues important for GCK metabolic stability and conformational dynamics. These residues could be targeted to modulate GCK activity, and thereby affect glucose homeostasis.
Collapse
Affiliation(s)
- Sarah Gersing
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Thea K. Schulze
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Matteo Cagiada
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Amelie Stein
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Frederick P. Roth
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, M5G 1X5, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, M5T 3A1, Canada
| | - Kresten Lindorff-Larsen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Rasmus Hartmann-Petersen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| |
Collapse
|
5
|
Jiang Y, Jiang F, Li M, Wu Q, Xu C, Zhang R, Song M, Wang Y, Wang Y, Chen Y, Zhang J, Ge X, Zhu Q, Zhuang L, Yang D, Lu M, Wang F, Jiang M, Liu X, Liu Y, Liu L. Identification and management of GCK-MODY complicating pregnancy in Chinese patients with gestational diabetes. Mol Cell Biochem 2022; 477:1629-1643. [PMID: 35229243 DOI: 10.1007/s11010-022-04374-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
Abstract
Precise differentiation of glucokinase (GCK) monogenic diabetes from gestational diabetes mellitus (GDM) is critical for accurate management of the pregnancy outcome. We screened GCK-MODY complicating pregnancies in Chinese GDM patients, explored the pathogenesis of novel GCK mutations, and evaluated the patients' pregnancy outcome and management. The GCK gene from 411 GDM patients was screened with PCR-direct sequencing and multiplex ligation-dependent probe amplification (MLPA) and 15 GCK mutations were identified. We also retrospectively analyzed a total of 65 pregnancies from 21 GCK-MODY families, wherein 41 were from 15 maternal families and 24 were from six paternal families. Bioinformatic analysis and biochemical functional study were conducted to identify novel GCK mutations. In total, we identified 21 GCK mutations: 15 from the 411 GDM patients and six from 24 fathers. Of th Asp78Asn (GAC → AAC), Met87Arg (ATG → AGG), Leu451Val (CTT → GTT), Leu451Pro (CTG → CCG) and 1019 + 20G > A e mutations, five, i.e., were novel and deleterious, with markedly decreased enzyme activity and thermal stability. The unaffected offspring of GCK mutation-affected mothers were heavier than affected offspring (p < 0.001). Of 21 insulin-treated affected mothers, 10 had maternal hypoglycemia (47.6%) and seven had perinatal complications (33.3%), and the affected offspring of the insulin-treated affected mothers had significantly lower birth weights than that of the 20 diet-control affected mothers (p = 0.031). In this study, the prevalence of GCK-MODY complicating pregnancy in Chinese GDM patients was 3.6% (15/411). The defective GCK may contribute to the hyperglycemia in GCK-MODY. Insulin therapy is not beneficial for GCK-MODY complicating pregnancy and therefore should not be recommended.
Collapse
Affiliation(s)
- Yanyan Jiang
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Fusong Jiang
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Ming Li
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Qingkai Wu
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Shanghai, 200233, China
| | - Chenming Xu
- The Obstetrics & Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Rong Zhang
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Mingqiang Song
- Department of Endocrinology, Weihai Municipal Hospital, No. 70, Heping Road, Weihai, 264200, China
| | - Yanzhong Wang
- School of Population Health and Environmental Science, King's College London, London, UK
| | - Ying Wang
- Department of Pediatrics, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Yating Chen
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Juan Zhang
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
- School of Medicine, Huanghuai University, Zhumadian, 463000, Henan, China
| | - Xiaoxu Ge
- Department of Endocrinology, School of Medicine, Shanghai Tongren Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Qihan Zhu
- Department of Endocrinology, The first affiliated hospital of Wenzhou Medical University, The South of Shangcai Village, Nanbaixiang Town, Ouhai District, Wenzhou, 325000, Zhejiang, China
| | - Langen Zhuang
- Department of Endocrinology, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, China
| | - Di Yang
- Department of Nutritional Sciences and Toxicology, University of California at Berkeley, Berkeley, USA
| | - Ming Lu
- Department of Endocrinology & Metabolism, Putuo Hospital Attached to Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200000, China
| | - Feng Wang
- Department of Nephrology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Meisheng Jiang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Xipeng Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai, 200240, China
| | - Yanjun Liu
- Department of Internal Medicine, Charles R. Drew University, Los Angeles, USA
- David Geffen School of Medicine at University of California, Los Angeles, USA
| | - Limei Liu
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
6
|
Metabolic Phenotypes and Step by Step Evolution of Type 2 Diabetes: A New Paradigm. Biomedicines 2021; 9:biomedicines9070800. [PMID: 34356863 PMCID: PMC8301386 DOI: 10.3390/biomedicines9070800] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 01/18/2023] Open
Abstract
Unlike bolus insulin secretion mechanisms, basal insulin secretion is poorly understood. It is essential to elucidate these mechanisms in non-hyperinsulinaemia healthy persons. This establishes a baseline for investigation into pathologies where these processes are dysregulated, such as in type 2 diabetes (T2DM), cardiovascular disease (CVD), certain cancers and dementias. Chronic hyperinsulinaemia enforces glucose fueling, depleting the NAD+ dependent antioxidant activity that increases mitochondrial reactive oxygen species (mtROS). Consequently, beta-cell mitochondria increase uncoupling protein expression, which decreases the mitochondrial ATP surge generation capacity, impairing bolus mediated insulin exocytosis. Excessive ROS increases the Drp1:Mfn2 ratio, increasing mitochondrial fission, which increases mtROS; endoplasmic reticulum-stress and impaired calcium homeostasis ensues. Healthy individuals in habitual ketosis have significantly lower glucagon and insulin levels than T2DM individuals. As beta-hydroxybutyrate rises, hepatic gluconeogenesis and glycogenolysis supply extra-hepatic glucose needs, and osteocalcin synthesis/release increases. We propose insulin’s primary role is regulating beta-hydroxybutyrate synthesis, while the role of bone regulates glucose uptake sensitivity via osteocalcin. Osteocalcin regulates the alpha-cell glucagon secretory profile via glucagon-like peptide-1 and serotonin, and beta-hydroxybutyrate synthesis via regulating basal insulin levels. Establishing metabolic phenotypes aids in resolving basal insulin secretion regulation, enabling elucidation of the pathological changes that occur and progress into chronic diseases associated with ageing.
Collapse
|
7
|
Jiang F, Yan J, Zhang R, Ma X, Bao Y, Gu Y, Hu C. Functional Characterization of a Novel Heterozygous Mutation in the Glucokinase Gene That Causes MODY2 in Chinese Pedigrees. Front Endocrinol (Lausanne) 2021; 12:803992. [PMID: 34956103 PMCID: PMC8695754 DOI: 10.3389/fendo.2021.803992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/22/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Glucokinase (GCK) plays a central role in glucose regulation. The heterozygous mutations of GCK can cause a monogenic form of diabetes, maturity-onset diabetes of the young (MODY) directly. In our study, we aimed to explore the mechanism of the novel mutation GCK p.Ala259Thr leading to glucokinase deficiency and hyperglycemia. METHODS Thirty early-onset diabetes pedigrees were referred to whole exome sequencing for novel mutations identification. Purified wild-type and mutant GCK proteins were obtained from E.coli systems and then subjected to the kinetic and thermal stability analysis to test the effects on GCK activity. RESULTS One novel missense mutation GCK p.Ala259Thr was identified and co-segregated with diabetes in a Chinese MODY2 pedigree. The kinetic analysis showed that this mutation result in a decreased affinity and catalytic capability for glucose. The thermal stability analysis also indicated that the mutant protein presented dramatically decreased activity at the same temperature. CONCLUSION Our study firstly identified a novel MODY2 mutation p.Ala259Thr in Chinese diabetes pedigrees. The kinetic and thermal stability analysis confirmed that this mutation caused hyperglycemia through severely damaging the enzyme activities and protein stability.
Collapse
Affiliation(s)
- Feng Jiang
- Department of Endocrinology, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jing Yan
- Department of Endocrinology, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Rong Zhang
- Department of Endocrinology, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Xiaojing Ma
- Department of Endocrinology, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yuqian Bao
- Department of Endocrinology, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yujuan Gu
- Department of Endocrinology, Affiliated Hospital of Nantong University, Jiangsu, China
- *Correspondence: Cheng Hu, ; Yujuan Gu,
| | - Cheng Hu
- Department of Endocrinology, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Department of Endocrinology, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai, China
- *Correspondence: Cheng Hu, ; Yujuan Gu,
| |
Collapse
|
8
|
Riddle MC, Philipson LH, Rich SS, Carlsson A, Franks PW, Greeley SAW, Nolan JJ, Pearson ER, Zeitler PS, Hattersley AT. Monogenic Diabetes: From Genetic Insights to Population-Based Precision in Care. Reflections From a Diabetes Care Editors' Expert Forum. Diabetes Care 2020; 43:3117-3128. [PMID: 33560999 PMCID: PMC8162450 DOI: 10.2337/dci20-0065] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Abstract
Individualization of therapy based on a person's specific type of diabetes is one key element of a "precision medicine" approach to diabetes care. However, applying such an approach remains difficult because of barriers such as disease heterogeneity, difficulties in accurately diagnosing different types of diabetes, multiple genetic influences, incomplete understanding of pathophysiology, limitations of current therapies, and environmental, social, and psychological factors. Monogenic diabetes, for which single gene mutations are causal, is the category most suited to a precision approach. The pathophysiological mechanisms of monogenic diabetes are understood better than those of any other form of diabetes. Thus, this category offers the advantage of accurate diagnosis of nonoverlapping etiological subgroups for which specific interventions can be applied. Although representing a small proportion of all diabetes cases, monogenic forms present an opportunity to demonstrate the feasibility of precision medicine strategies. In June 2019, the editors of Diabetes Care convened a panel of experts to discuss this opportunity. This article summarizes the major themes that arose at that forum. It presents an overview of the common causes of monogenic diabetes, describes some challenges in identifying and treating these disorders, and reports experience with various approaches to screening, diagnosis, and management. This article complements a larger American Diabetes Association effort supporting implementation of precision medicine for monogenic diabetes, which could serve as a platform for a broader initiative to apply more precise tactics to treating the more common forms of diabetes.
Collapse
Affiliation(s)
- Matthew C Riddle
- Division of Endocrinology, Diabetes, & Clinical Nutrition, Oregon Health & Science University, Portland, OR
| | - Louis H Philipson
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL.,Kovler Diabetes Center, The University of Chicago, Chicago, IL
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA
| | - Annelie Carlsson
- Department of Clinical Sciences, Lund University/Clinical Research Centre, Skåne University Hospital, Lund, Sweden
| | - Paul W Franks
- Harvard T.H. Chan School of Public Health, Boston, MA.,Lund University Diabetes Center, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Siri Atma W Greeley
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL.,Kovler Diabetes Center, The University of Chicago, Chicago, IL
| | - John J Nolan
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Ewan R Pearson
- Division of Population Health and Genomics, Ninewells Hospital and School of Medicine, University of Dundee, Dundee, Scotland, U.K
| | - Philip S Zeitler
- Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, CO
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| |
Collapse
|
9
|
Goff M, Chen G. Long-term treatment with insulin and retinoic acid increased glucose utilization in L6 muscle cells via glycogenesis. Biochem Cell Biol 2020; 98:683-697. [PMID: 33215509 DOI: 10.1139/bcb-2020-0131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The skeletal muscle regulates glucose homeostasis. Here, the effects of vitamin A metabolites including retinoic acid (RA) alone, and in combination with insulin, on glucose utilization were investigated in rat L6 muscle cells during the differentiation process. L6 cells were treated with differentiation medium containing retinol, retinal, RA, and (or) insulin. The glucose levels and pH values in the medium were measured every 2 days. The expression levels of insulin signaling and glycogen synthesis proteins, as well as glycogen content were determined. Retinal and RA reduced the glucose content and pH levels in the medium of the L6 cells. RA acted synergistically with insulin to reduce glucose and pH levels in the medium. The RA- and insulin-mediated reduction of glucose in the medium only occurred when glucose levels were at or above 15 mmol/L. Insulin-induced phosphorylation of Akt Thr308 was further enhanced by RA treatment through the activation of retinoic acid receptor. RA acted synergistically with insulin to phosphorylate glycogen synthase kinase 3β, and dephosphorylate glycogen synthase (GS), which was associated with increases in the protein and mRNA levels of GS. Increases in glycogen content were induced by insulin, and was further enhanced in the presence of RA. We conclude that activation of the RA signaling pathway enhanced insulin-induced glucose utilization in differentiating L6 cells through increases in glycogenesis.
Collapse
Affiliation(s)
- Matthew Goff
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, USA
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, USA
| | - Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, USA
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, USA
| |
Collapse
|
10
|
Bouldjennet F, Gjesing AP, Azzouz M, Abderrahman SA, El Guecier A, Ali S, Oudjit B, Mennadi-Lacete F, Yargui L, Boudiba A, Chibane A, Touil-Boukoffa C, Hansen T, Raache R. Maturity-Onset Diabetes of the Young Identified Among Algerian Probands with Early-Onset Diabetes. Diabetes Metab Syndr Obes 2020; 13:4829-4837. [PMID: 33324081 PMCID: PMC7733395 DOI: 10.2147/dmso.s269251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/03/2020] [Indexed: 11/29/2022] Open
Abstract
AIM To investigate the prevalence of variants within selected maturity-onset diabetes of the young (MODY)-genes among Algerian patients initially diagnosed with type 1 diabetes (T1D) or type 2 diabetes (T2D), yet presenting with a MODY-like phenotype. METHODS Eight unrelated patients with early-onset diabetes (before 30 years) and six relatives with diabetes were examined by targeted re-sequencing for variants in genes known to be involved in MODY (HNF1A, GCK, HNF4A, HNF1B, INS, ABCC8, KCNJ1). Clinical data for probands were retrieved from hospital records. RESULTS A total of 12 variants were identified, of which three were classified as pathogenic and one as a variant of uncertain clinical significance (VUS). Two of the pathogenic variants were found in GCK (p.Gly261Arg and p.Met210Lys, respectively) in one proband each and the remaining pathogenic variant was found in HNF1B (p.Gly76Cys) in a proband also carrying the VUS in HNF1A (p.Thr156Met). CONCLUSION Variants in known MODY-genes can be the cause of early-onset diabetes in Algerians diagnosed with T1D or T2D among patients presenting with a MODY-like phenotype; thus, genetic screening should be considered.
Collapse
Affiliation(s)
- Faiza Bouldjennet
- Laboratory of Cellular and Molecular Biology, Cytokine and NO Synthase Team, University of Science and Technology, Houari Boumediene (USTHB), Algiers, Algeria
| | - Anette P Gjesing
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Correspondence: Anette P Gjesing; Rachida Raache Email ;
| | - Malha Azzouz
- Diabetology Department of Mustapha Pacha Hospital, Algiers, Algeria
| | | | - Amina El Guecier
- Internal Medicine Department of Djillali Bounaâma Hospital, Algiers, Algeria
| | - Said Ali
- Laboratory of Biochemistry, Mustapha Pacha, Algiers, Algeria
| | - Brahim Oudjit
- Diabetology Department of Mohamed Seghir Nekkache Hospital, Algiers, Algeria
| | | | - Lyèce Yargui
- Laboratory of Biochemistry, Mustapha Pacha, Algiers, Algeria
| | - Aissa Boudiba
- Diabetology Department of Mustapha Pacha Hospital, Algiers, Algeria
| | - Ahcène Chibane
- Internal Medicine Department of Djillali Bounaâma Hospital, Algiers, Algeria
| | - Chafia Touil-Boukoffa
- Laboratory of Cellular and Molecular Biology, Cytokine and NO Synthase Team, University of Science and Technology, Houari Boumediene (USTHB), Algiers, Algeria
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rachida Raache
- Laboratory of Cellular and Molecular Biology, Cytokine and NO Synthase Team, University of Science and Technology, Houari Boumediene (USTHB), Algiers, Algeria
- Correspondence: Anette P Gjesing; Rachida Raache Email ;
| |
Collapse
|
11
|
Cook NL, Pjanic M, Emmerich AG, Rao AS, Hetty S, Knowles JW, Quertermous T, Castillejo-López C, Ingelsson E. CRISPR-Cas9-mediated knockout of SPRY2 in human hepatocytes leads to increased glucose uptake and lipid droplet accumulation. BMC Endocr Disord 2019; 19:115. [PMID: 31664995 PMCID: PMC6820957 DOI: 10.1186/s12902-019-0442-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The prevalence of obesity and its comorbidities, including type 2 diabetes mellitus (T2DM), is dramatically increasing throughout the world; however, the underlying aetiology is incompletely understood. Genome-wide association studies (GWAS) have identified hundreds of genec susceptibility loci for obesity and T2DM, although the causal genes and mechanisms are largely unknown. SPRY2 is a candidate gene identified in GWAS of body fat percentage and T2DM, and has recently been linked to insulin production in pancreatic β-cells. In the present study, we aimed to further understand SPRY2 via functional characterisation in HepG2 cells, an in vitro model of human hepatocytes widely used to investigate T2DM and insulin resistance. METHODS CRISPR-Cas9 genome editing was used to target SPRY2 in HepG2 cells, and the functional consequences of SPRY2 knockout (KO) and overexpression subsequently assessed using glucose uptake and lipid droplet assays, measurement of protein kinase phosphorylation and RNA sequencing. RESULTS The major functional consequence of SPRY2 KO was a significant increase in glucose uptake, along with elevated lipid droplet accumulation. These changes were attenuated, but not reversed, in cells overexpressing SPRY2. Phosphorylation of protein kinases across key signalling pathways (including Akt and mitogen activated protein kinases) was not altered after SPRY2 KO. Transcriptome profiling in SPRY2 KO and mock (control) cells revealed a number of differentially expressed genes related to cholesterol biosynthesis, cell cycle regulation and cellular signalling pathways. Phospholipase A2 group IIA (PLA2G2A) mRNA level was subsequently validated as significantly upregulated following SPRY2 KO, highlighting this as a potential mediator downstream of SPRY2. CONCLUSION These findings suggest a role for SPRY2 in glucose and lipid metabolism in hepatocytes and contribute to clarifying the function of this gene in the context of metabolic diseases.
Collapse
Affiliation(s)
- Naomi L Cook
- Molecular Epidemiology and Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Milos Pjanic
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Andrew G Emmerich
- Molecular Systems Biology, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Abhiram S Rao
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Susanne Hetty
- Molecular Epidemiology and Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Joshua W Knowles
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Thomas Quertermous
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Casimiro Castillejo-López
- Molecular Epidemiology and Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Erik Ingelsson
- Molecular Epidemiology and Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA.
| |
Collapse
|
12
|
Glotov OS, Serebryakova EA, Turkunova ME, Efimova OA, Glotov AS, Barbitoff YA, Nasykhova YA, Predeus AV, Polev DE, Fedyakov MA, Polyakova IV, Ivashchenko TE, Shved NY, Shabanova ES, Tiselko AV, Romanova OV, Sarana AM, Pendina AA, Scherbak SG, Musina EV, Petrovskaia-Kaminskaia AV, Lonishin LR, Ditkovskaya LV, Zhelenina LА, Tyrtova LV, Berseneva OS, Skitchenko RK, Suspitsin EN, Bashnina EB, Baranov VS. Whole‑exome sequencing in Russian children with non‑type 1 diabetes mellitus reveals a wide spectrum of genetic variants in MODY‑related and unrelated genes. Mol Med Rep 2019; 20:4905-4914. [PMID: 31638168 PMCID: PMC6854535 DOI: 10.3892/mmr.2019.10751] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022] Open
Abstract
The present study reports on the frequency and the spectrum of genetic variants causative of monogenic diabetes in Russian children with non-type 1 diabetes mellitus. The present study included 60 unrelated Russian children with non-type 1 diabetes mellitus diagnosed before the age of 18 years. Genetic variants were screened using whole-exome sequencing (WES) in a panel of 35 genes causative of maturity onset diabetes of the young (MODY) and transient or permanent neonatal diabetes. Verification of the WES results was performed using PCR-direct sequencing. A total of 38 genetic variants were identified in 33 out of 60 patients (55%). The majority of patients (27/33, 81.8%) had variants in MODY-related genes: GCK (n=19), HNF1A (n=2), PAX4 (n=1), ABCC8 (n=1), KCNJ11 (n=1), GCK+HNF1A (n=1), GCK+BLK (n=1) and GCK+BLK+WFS1 (n=1). A total of 6 patients (6/33, 18.2%) had variants in MODY-unrelated genes: GATA6 (n=1), WFS1 (n=3), EIF2AK3 (n=1) and SLC19A2 (n=1). A total of 15 out of 38 variants were novel, including GCK, HNF1A, BLK, WFS1, EIF2AK3 and SLC19A2. To summarize, the present study demonstrates a high frequency and a wide spectrum of genetic variants causative of monogenic diabetes in Russian children with non-type 1 diabetes mellitus. The spectrum includes previously known and novel variants in MODY-related and unrelated genes, with multiple variants in a number of patients. The prevalence of GCK variants indicates that diagnostics of monogenic diabetes in Russian children may begin with testing for MODY2. However, the remaining variants are present at low frequencies in 9 different genes, altogether amounting to ~50% of the cases and highlighting the efficiency of using WES in non-GCK-MODY cases.
Collapse
Affiliation(s)
- Oleg S Glotov
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia
| | - Elena A Serebryakova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia
| | - Mariia E Turkunova
- St. Petersburg State Pediatric Medical University, 194100 St. Petersburg, Russia
| | - Olga A Efimova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia
| | - Andrey S Glotov
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia
| | | | - Yulia A Nasykhova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia
| | | | - Dmitrii E Polev
- St. Petersburg State University, 199034 St. Petersburg, Russia
| | | | | | - Tatyana E Ivashchenko
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia
| | - Natalia Y Shved
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia
| | - Elena S Shabanova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia
| | - Alena V Tiselko
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia
| | - Olga V Romanova
- City Hospital Number 40, Sestroretsk, 197706 St. Petersburg, Russia
| | - Andrey M Sarana
- St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anna A Pendina
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia
| | | | - Ekaterina V Musina
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia
| | | | | | - Liliya V Ditkovskaya
- St. Petersburg State Pediatric Medical University, 194100 St. Petersburg, Russia
| | - Liudmila А Zhelenina
- St. Petersburg State Pediatric Medical University, 194100 St. Petersburg, Russia
| | - Ludmila V Tyrtova
- St. Petersburg State Pediatric Medical University, 194100 St. Petersburg, Russia
| | - Olga S Berseneva
- St. Petersburg State Pediatric Medical University, 194100 St. Petersburg, Russia
| | | | - Evgenii N Suspitsin
- St. Petersburg State Pediatric Medical University, 194100 St. Petersburg, Russia
| | - Elena B Bashnina
- North‑Western State Medical University Named After I.I. Mechnikov, 191015 St. Petersburg, Russia
| | - Vladislav S Baranov
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia
| |
Collapse
|
13
|
Wang Z, Diao C, Liu Y, Li M, Zheng J, Zhang Q, Yu M, Zhang H, Ping F, Li M, Xiao X. Identification and functional analysis of GCK gene mutations in 12 Chinese families with hyperglycemia. J Diabetes Investig 2019; 10:963-971. [PMID: 30592380 PMCID: PMC6626954 DOI: 10.1111/jdi.13001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 12/22/2018] [Accepted: 12/26/2018] [Indexed: 01/07/2023] Open
Abstract
AIMS/INTRODUCTION To investigate the clinical and genetic characteristics of Chinese patients with a phenotype consistent with maturity-onset diabetes of the young type 2 and explore the pathogenic mechanism of their hyperglycemia. MATERIALS AND METHODS We studied 12 probands and their extended families referred to our center for screening mutations in the glucokinase gene (GCK). Clinical data were collected and genetic analysis was carried out. The recombinant wild-type and mutant glucokinase were generated in Escherichia coli. The kinetic parameters and thermal stability of the enzymes were determined in vitro. RESULTS In the 12 families, 11 GCK mutations (R43C, T168A, K169N, R191W, Y215X, E221K, M235T, R250H, W257X, G261R and A379E) and one variant of uncertain significance (R275H) were identified. R191W was detected in two unrelated families. Of the 11 GCK mutations, three mutations (c.507G>C, K169N; c.645C>A, Y215X; c.771G>A, W257X; NM_000162.3, NP_000153.1) are novel. Basic kinetics analysis explained the pathogenicity of the five mutants (R43C, K169N, R191W, E221K and A379E), which showed reduced enzyme activity with relative activity indexes between ~0.001 and 0.5 compared with the wild-type (1.0). In addition, the thermal stabilities of these five mutants were also decreased to varying degrees. However, for R250H and R275H, there was no significant difference in the enzyme activity and thermal stability between the mutants and the wild type. CONCLUSIONS We have identified 11 GCK mutations and one variant of uncertain significance in 12 Chinese families with hyperglycemia. For five GCK mutations (R43C, K169N, R191W, E221K and A379E), the changes in enzyme kinetics and thermostability might be the pathogenic mechanisms by which mutations cause hyperglycemia.
Collapse
Affiliation(s)
- Zhixin Wang
- Key Laboratory of EndocrinologyTranslational Medicine CenterMinistry of HealthDepartment of EndocrinologyPeking Union Medical College HospitalDiabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- Present address:
Department of EndocrinologyBeijing Jishuitan HospitalBeijingChina
| | - Chengming Diao
- Key Laboratory of EndocrinologyTranslational Medicine CenterMinistry of HealthDepartment of EndocrinologyPeking Union Medical College HospitalDiabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Yijing Liu
- Key Laboratory of EndocrinologyTranslational Medicine CenterMinistry of HealthDepartment of EndocrinologyPeking Union Medical College HospitalDiabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Mingmin Li
- Key Laboratory of EndocrinologyTranslational Medicine CenterMinistry of HealthDepartment of EndocrinologyPeking Union Medical College HospitalDiabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Jia Zheng
- Key Laboratory of EndocrinologyTranslational Medicine CenterMinistry of HealthDepartment of EndocrinologyPeking Union Medical College HospitalDiabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Qian Zhang
- Key Laboratory of EndocrinologyTranslational Medicine CenterMinistry of HealthDepartment of EndocrinologyPeking Union Medical College HospitalDiabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Miao Yu
- Key Laboratory of EndocrinologyTranslational Medicine CenterMinistry of HealthDepartment of EndocrinologyPeking Union Medical College HospitalDiabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Huabing Zhang
- Key Laboratory of EndocrinologyTranslational Medicine CenterMinistry of HealthDepartment of EndocrinologyPeking Union Medical College HospitalDiabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Fan Ping
- Key Laboratory of EndocrinologyTranslational Medicine CenterMinistry of HealthDepartment of EndocrinologyPeking Union Medical College HospitalDiabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Ming Li
- Key Laboratory of EndocrinologyTranslational Medicine CenterMinistry of HealthDepartment of EndocrinologyPeking Union Medical College HospitalDiabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Xinhua Xiao
- Key Laboratory of EndocrinologyTranslational Medicine CenterMinistry of HealthDepartment of EndocrinologyPeking Union Medical College HospitalDiabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| |
Collapse
|
14
|
Lin DC, Huang CY, Ting WH, Lo FS, Lin CL, Yang HW, Chang TY, Lin CH, Tzeng YW, Yang WS, Juang YL, Lee YJ. Mutations in glucokinase and other genes detected in neonatal and type 1B diabetes patient using whole exome sequencing may lead to disease-causing changes in protein activity. Biochim Biophys Acta Mol Basis Dis 2018; 1865:428-433. [PMID: 30465894 DOI: 10.1016/j.bbadis.2018.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/02/2018] [Accepted: 11/16/2018] [Indexed: 12/22/2022]
Abstract
Monogenic diabetes is caused by mutations that reduce β-cell function. While Sanger sequencing is the standard method used to detect mutated genes. Next-generation sequencing techniques, such as whole exome sequencing (WES), can be used to find multiple gene mutations in one assay. We used WES to detect genetic mutations in both permanent neonatal (PND) and type 1B diabetes (T1BD). A total of five PND and nine T1BD patients were enrolled in this study. WES variants were assessed using VarioWatch, excluding those identified previously. Sanger sequencing was used to confirm the mutations, and their pathogenicity was established via the literature or bioinformatic/functional analysis. The PND and T1BD patients were diagnosed at 0.1-0.5 and 0.8-2.7 years of age, respectively. Diabetic ketoacidosis was present at diagnosis in 60% of PND patients and 44.4% of T1BD patients. We found five novel mutations in five different genes. Notably, patient 602 had a novel homozygous missense mutation c.1295C > A (T432 K) in the glucokinase (GCK) gene. Compared to the wild-type recombinant protein, the mutant protein had significantly lower enzymatic activity (2.5%, p = 0.0002) and Vmax (1.23 ± 0.019 vs. 0.33 ± 0.016, respectively; p = 0.005). WES is a robust technique that can be used to unravel the etiologies of genetically heterogeneous forms of diabetes. Homozygous inactivating mutations of the GCK gene may have a significant role in PND pathogenesis.
Collapse
Affiliation(s)
- Dao-Chen Lin
- Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei City 11217, Taiwan; Department of Radiology, Taipei Veterans General Hospital, Taipei City 11217, Taiwan; Institute of Biomedical Sciences, Mackay Medical College, New Taipei City 25245, Taiwan
| | - Chi-Yu Huang
- Department of Pediatric Endocrinology, Mackay Children's Hospital, Taipei City 10449, Taiwan; Mackay Junior College of Medicine, Nursing, and Management, Taipei City 11260, Taiwan; Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
| | - Wei-Hsin Ting
- Department of Pediatric Endocrinology, Mackay Children's Hospital, Taipei City 10449, Taiwan; Mackay Junior College of Medicine, Nursing, and Management, Taipei City 11260, Taiwan; Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
| | - Fu-Sung Lo
- Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan City 33305, Taiwan; College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Chiung-Ling Lin
- Department of Medical Research, Mackay Memorial Hospital, Tamsui Branch, New Taipei City 25160, Taiwan
| | - Horng-Woei Yang
- Department of Medical Research, Mackay Memorial Hospital, Tamsui Branch, New Taipei City 25160, Taiwan
| | - Tzu-Yang Chang
- Department of Medical Research, Mackay Memorial Hospital, Tamsui Branch, New Taipei City 25160, Taiwan
| | - Chao-Hsu Lin
- Department of Pediatrics, Mackay Memorial Hospital, Hsinchu Branch, Hsinchu City 30071, Taiwan
| | - Yao-Wei Tzeng
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City 25245, Taiwan
| | - Wan-Syuan Yang
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City 25245, Taiwan
| | - Yue-Li Juang
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City 25245, Taiwan.
| | - Yann-Jinn Lee
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City 25245, Taiwan; Department of Pediatric Endocrinology, Mackay Children's Hospital, Taipei City 10449, Taiwan; Department of Medical Research, Mackay Memorial Hospital, Tamsui Branch, New Taipei City 25160, Taiwan; Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan.
| |
Collapse
|
15
|
Raimondi D, Orlando G, Tabaro F, Lenaerts T, Rooman M, Moreau Y, Vranken WF. Large-scale in-silico statistical mutagenesis analysis sheds light on the deleteriousness landscape of the human proteome. Sci Rep 2018; 8:16980. [PMID: 30451933 PMCID: PMC6242909 DOI: 10.1038/s41598-018-34959-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/26/2018] [Indexed: 12/18/2022] Open
Abstract
Next generation sequencing technologies are providing increasing amounts of sequencing data, paving the way for improvements in clinical genetics and precision medicine. The interpretation of the observed genomic variants in the light of their phenotypic effects is thus emerging as a crucial task to solve in order to advance our understanding of how exomic variants affect proteins and how the proteins' functional changes affect human health. Since the experimental evaluation of the effects of every observed variant is unfeasible, Bioinformatics methods are being developed to address this challenge in-silico, by predicting the impact of millions of variants, thus providing insight into the deleteriousness landscape of entire proteomes. Here we show the feasibility of this approach by using the recently developed DEOGEN2 variant-effect predictor to perform the largest in-silico mutagenesis scan to date. We computed the deleteriousness score of 170 million variants over 15000 human proteins and we analysed the results, investigating how the predicted deleteriousness landscape of the proteins relates to known functionally and structurally relevant protein regions and biophysical properties. Moreover, we qualitatively validated our results by comparing them with two mutagenesis studies targeting two specific proteins, showing the consistency of DEOGEN2 predictions with respect to experimental data.
Collapse
Affiliation(s)
- Daniele Raimondi
- Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, La Plaine Campus, Triomflaan, 1050, Brussels, Belgium
- ESAT-STADIUS, KU Leuven, Kasteelpark Arenberg 10, 3001, Leuven, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Gabriele Orlando
- Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, La Plaine Campus, Triomflaan, 1050, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Francesco Tabaro
- Institute of Biosciences and Medical Technology, Arvo Ylpőn katu 34, 33520, Tampere, Finland
| | - Tom Lenaerts
- Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, La Plaine Campus, Triomflaan, 1050, Brussels, Belgium
- Machine Learning Group, ULB, La Plaine Campus, 1050, Brussels, Belgium
| | - Marianne Rooman
- Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, La Plaine Campus, Triomflaan, 1050, Brussels, Belgium
- Department of BioModeling, BioInformatics & BioProcesses, Université Libre de Bruxelles, 1050, Brussels, Belgium
| | - Yves Moreau
- ESAT-STADIUS, KU Leuven, Kasteelpark Arenberg 10, 3001, Leuven, Belgium
- Imec, 3001, Leuven, Belgium
| | - Wim F Vranken
- Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, La Plaine Campus, Triomflaan, 1050, Brussels, Belgium.
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
| |
Collapse
|
16
|
Sanzhaeva U, Xu X, Guggilapu P, Tseytlin M, Khramtsov VV, Driesschaert B. Imaging of Enzyme Activity by Electron Paramagnetic Resonance: Concept and Experiment Using a Paramagnetic Substrate of Alkaline Phosphatase. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Urikhan Sanzhaeva
- In vivo Multifunctional Magnetic Resonance (IMMR) Center, Robert C. Byrd Health Sciences Center; West Virginia University; Morgantown, West Virginia 26506 USA
- Department of Biochemistry; West Virginia University; School of Medicine; Morgantown WV 26506 USA
| | - Xuan Xu
- In vivo Multifunctional Magnetic Resonance (IMMR) Center, Robert C. Byrd Health Sciences Center; West Virginia University; Morgantown, West Virginia 26506 USA
- Lane Department of Computer Science and Electrical Engineering; West Virginia University; Morgantown WV 26505 USA
| | - Priyaankadevi Guggilapu
- In vivo Multifunctional Magnetic Resonance (IMMR) Center, Robert C. Byrd Health Sciences Center; West Virginia University; Morgantown, West Virginia 26506 USA
| | - Mark Tseytlin
- In vivo Multifunctional Magnetic Resonance (IMMR) Center, Robert C. Byrd Health Sciences Center; West Virginia University; Morgantown, West Virginia 26506 USA
- Department of Biochemistry; West Virginia University; School of Medicine; Morgantown WV 26506 USA
| | - Valery V. Khramtsov
- In vivo Multifunctional Magnetic Resonance (IMMR) Center, Robert C. Byrd Health Sciences Center; West Virginia University; Morgantown, West Virginia 26506 USA
- Department of Biochemistry; West Virginia University; School of Medicine; Morgantown WV 26506 USA
| | - Benoit Driesschaert
- In vivo Multifunctional Magnetic Resonance (IMMR) Center, Robert C. Byrd Health Sciences Center; West Virginia University; Morgantown, West Virginia 26506 USA
- Department of Biochemistry; West Virginia University; School of Medicine; Morgantown WV 26506 USA
- Current address: Department of Pharmaceutical Sciences; West Virginia University; School of Pharmacy; Morgantown WV 26506 USA
| |
Collapse
|
17
|
Sanzhaeva U, Xu X, Guggilapu P, Tseytlin M, Khramtsov VV, Driesschaert B. Imaging of Enzyme Activity by Electron Paramagnetic Resonance: Concept and Experiment Using a Paramagnetic Substrate of Alkaline Phosphatase. Angew Chem Int Ed Engl 2018; 57:11701-11705. [PMID: 30003653 PMCID: PMC6327950 DOI: 10.1002/anie.201806851] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Indexed: 12/18/2022]
Abstract
Enzyme activities are well established biomarkers of many pathologies. Imaging enzyme activity directly in vivo may help to gain insight into the pathogenesis of various diseases but remains extremely challenging. In this communication, we report the use of EPR imaging (EPRI) in combination with a specially designed paramagnetic enzymatic substrate to map alkaline phosphatase activity with a high selectivity, thereby demonstrating the potential of EPRI to map enzyme activity.
Collapse
Affiliation(s)
- Urikhan Sanzhaeva
- In vivo Multifunctional Magnetic Resonance (IMMR) Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West, Virginia, 26506, USA
- Department of Biochemistry, West Virginia University, School of Medicine, Morgantown, WV, 26506, USA
| | - Xuan Xu
- In vivo Multifunctional Magnetic Resonance (IMMR) Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West, Virginia, 26506, USA
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV, 26505, USA
| | - Priyaankadevi Guggilapu
- In vivo Multifunctional Magnetic Resonance (IMMR) Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West, Virginia, 26506, USA
| | - Mark Tseytlin
- In vivo Multifunctional Magnetic Resonance (IMMR) Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West, Virginia, 26506, USA
- Department of Biochemistry, West Virginia University, School of Medicine, Morgantown, WV, 26506, USA
| | - Valery V Khramtsov
- In vivo Multifunctional Magnetic Resonance (IMMR) Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West, Virginia, 26506, USA
- Department of Biochemistry, West Virginia University, School of Medicine, Morgantown, WV, 26506, USA
| | - Benoit Driesschaert
- In vivo Multifunctional Magnetic Resonance (IMMR) Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West, Virginia, 26506, USA
- Department of Biochemistry, West Virginia University, School of Medicine, Morgantown, WV, 26506, USA
- Current address: Department of Pharmaceutical Sciences, West Virginia University, School of Pharmacy, Morgantown, WV, 26506, USA
| |
Collapse
|
18
|
Gutierrez-Nogués A, García-Herrero CM, Oriola J, Vincent O, Navas MA. Functional characterization of MODY2 mutations in the nuclear export signal of glucokinase. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2385-2394. [PMID: 29704611 DOI: 10.1016/j.bbadis.2018.04.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/23/2018] [Accepted: 04/23/2018] [Indexed: 11/17/2022]
Abstract
Glucokinase (GCK) plays a key role in glucose homeostasis. Heterozygous inactivating mutations in the GCK gene cause the familial, mild fasting hyperglycaemia named MODY2. Besides its particular kinetic characteristics, glucokinase is regulated by subcellular compartmentation in hepatocytes. Glucokinase regulatory protein (GKRP) binds to GCK, leading to enzyme inhibition and import into the nucleus at fasting. When glucose concentration increases, GCK-GKRP dissociates and GCK is exported to the cytosol due to a nuclear export signal (NES). With the aim to characterize the GCK-NES, we have functionally analysed nine MODY2 mutations located within the NES sequence. Recombinant GCK mutants showed reduced catalytic activity and, in most cases, protein instability. Most of the mutants interact normally with GKRP, although mutations L306R and L309P impair GCK nuclear import in cotransfected cells. We demonstrated that GCK-NES function depends on exportin 1. We further showed that none of the mutations fully inactivate the NES, with the exception of mutation L304P, which likely destabilizes its α-helicoidal structure. Finally, we found that residue Glu300 negatively modulates the NES activity, whereas other residues have the opposite effect, thus suggesting that some of the NES spacer residues contribute to the low affinity of the NES for exportin 1, which is required for its proper functioning. In conclusion, our results have provided functional and structural insights regarding the GCK-NES and contributed to a better knowledge of the molecular mechanisms involved in the nucleo-cytoplasmic shuttling of glucokinase. Impairment of this regulatory mechanism by some MODY2 mutations might contribute to the hyperglycaemia in the patients.
Collapse
Affiliation(s)
- Angel Gutierrez-Nogués
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Carmen-María García-Herrero
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Josep Oriola
- Servicio de Bioquímica y Genética Molecular, Hospital Clínic, Departamento de Ciencias Fisiológicas I, Facultad de Medicina, Universidad de Barcelona, Barcelona, Spain
| | - Olivier Vincent
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - María-Angeles Navas
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), www.ciberdem.net, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.
| |
Collapse
|
19
|
Johansson BB, Irgens HU, Molnes J, Sztromwasser P, Aukrust I, Juliusson PB, Søvik O, Levy S, Skrivarhaug T, Joner G, Molven A, Johansson S, Njølstad PR. Targeted next-generation sequencing reveals MODY in up to 6.5% of antibody-negative diabetes cases listed in the Norwegian Childhood Diabetes Registry. Diabetologia 2017; 60:625-635. [PMID: 27913849 DOI: 10.1007/s00125-016-4167-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/09/2016] [Indexed: 12/18/2022]
Abstract
AIMS/HYPOTHESIS MODY can be wrongly diagnosed as type 1 diabetes in children. We aimed to find the prevalence of MODY in a nationwide population-based registry of childhood diabetes. METHODS Using next-generation sequencing, we screened the HNF1A, HNF4A, HNF1B, GCK and INS genes in all 469 children (12.1%) negative for both GAD and IA-2 autoantibodies and 469 antibody-positive matched controls selected from the Norwegian Childhood Diabetes Registry (3882 children). Variants were classified using clinical diagnostic criteria for pathogenicity ranging from class 1 (neutral) to class 5 (pathogenic). RESULTS We identified 58 rare exonic and splice variants in cases and controls. Among antibody-negative patients, 6.5% had genetic variants of classes 3-5 (vs 2.4% in controls; p = 0.002). For the stricter classification (classes 4 and 5), the corresponding number was 4.1% (vs 0.2% in controls; p = 1.6 × 10-5). HNF1A showed the strongest enrichment of class 3-5 variants, with 3.9% among antibody-negative patients (vs 0.4% in controls; p = 0.0002). Antibody-negative carriers of variants in class 3 had a similar phenotype to those carrying variants in classes 4 and 5. CONCLUSIONS/INTERPRETATION This is the first study screening for MODY in all antibody-negative children in a nationwide population-based registry. Our results suggest that the prevalence of MODY in antibody-negative childhood diabetes may reach 6.5%. One-third of these MODY cases had not been recognised by clinicians. Since a precise diagnosis is important for treatment and genetic counselling, molecular screening of all antibody-negative children should be considered in routine diagnostics.
Collapse
Affiliation(s)
- Bente B Johansson
- K. G. Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020, Bergen, Norway
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Henrik U Irgens
- K. G. Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020, Bergen, Norway
- Department of Paediatrics, Haukeland University Hospital, Bergen, Norway
| | - Janne Molnes
- K. G. Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020, Bergen, Norway
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Paweł Sztromwasser
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ingvild Aukrust
- K. G. Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020, Bergen, Norway
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Petur B Juliusson
- Department of Paediatrics, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Oddmund Søvik
- K. G. Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020, Bergen, Norway
- Department of Paediatrics, Haukeland University Hospital, Bergen, Norway
| | - Shawn Levy
- Hudson Alpha Institute for Biotechnology, Huntsville, AL, USA
| | - Torild Skrivarhaug
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Geir Joner
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Health and Society, University of Oslo, Oslo, Norway
| | - Anders Molven
- K. G. Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020, Bergen, Norway
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Stefan Johansson
- K. G. Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020, Bergen, Norway
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Pål R Njølstad
- K. G. Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020, Bergen, Norway.
- Department of Paediatrics, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
20
|
Emelyanov AO, Sechko E, Koksharova E, Sklyanik I, Kuraeva T, Mayorov A, Peterkova V, Dedov I. A glucokinase gene mutation in a young boy with diabetes mellitus, hyperinsulinemia, and insulin resistance. Int Med Case Rep J 2017; 10:77-80. [PMID: 28331372 PMCID: PMC5348075 DOI: 10.2147/imcrj.s125103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We report the case of a 12-year-old boy with a glucokinase (GCK) mutation, and diabetes with hyperinsulinemia and insulin resistance. For 4 years, the patient intermittently received insulin medications Actrapid HM and Protaphane HM (total dose 5 U/day), with glycated hemoglobin (HbA1c) levels of 6.6%–7.0%. After extensive screening the patient was found to carry a heterozygous mutation (p.E256K) in GCK (MIM #138079, reference sequence NM_000162.3). Insulin therapy was replaced by metformin at 1,700 mg/day. One year later, his HbA1c level was 6.9%, postprandial glycemia at 120 min of oral glucose tolerance test was 15.4 mmol/L, hyperinsulinemia had increased to 508.9 mU/L, homeostasis model assessment index was 114.2 and the Matsuda index was 0.15. Insulin resistance was confirmed by a hyperinsulinemic euglycemic clamp test – M-index was 2.85 mg/kg/min. This observation is a rare case of one of the clinical variants of diabetes, which should be taken into account by a vigilant endocrinologist due to the need for nonstandard diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
| | - Elena Sechko
- Endocrinology Research Centre, Moscow, Russian Federation
| | | | - Igor Sklyanik
- Endocrinology Research Centre, Moscow, Russian Federation
| | - Tamara Kuraeva
- Endocrinology Research Centre, Moscow, Russian Federation; I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Alexander Mayorov
- Endocrinology Research Centre, Moscow, Russian Federation; I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Valentina Peterkova
- Endocrinology Research Centre, Moscow, Russian Federation; I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Ivan Dedov
- Endocrinology Research Centre, Moscow, Russian Federation
| |
Collapse
|
21
|
Lopez AP, de Dios A, Chiesa I, Perez MS, Frechtel GD. Analysis of mutations in the glucokinase gene in people clinically characterized as MODY2 without a family history of diabetes. Diabetes Res Clin Pract 2016; 118:38-43. [PMID: 27289208 DOI: 10.1016/j.diabres.2016.04.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 03/08/2016] [Accepted: 04/21/2016] [Indexed: 11/25/2022]
Abstract
BACKGROUND Maturity-onset diabetes of the young 2 (MODY2) is a form of diabetes that is clinically characterized by early age at onset and mild hyperglycemia, and has a low risk of late complications. It is often underdiagnosed due to its mild symptoms. To date, over 600 different GCK/MODY2 mutations have been reported. Despite only a few de novo mutations having been described, recent studies have reported the detection of a higher frequency of this kind of mutation. Therefore, de novo mutations could be more frequent than previously described. Even though common recommendations regarding the diagnosis of monogenic diabetes include the existence of a strong family history of diabetes, here we describe the study of mutations in two families with a symptomatic individual with clear clinical features of MODY2 but without any family history of diabetes. METHODS Genetic diagnosis in a group of participants with MODY2 characteristics was carried out by direct sequencing of coding regions of the GCK gene and analysis of mutations found using bioinformatics tools. RESULTS We found two de novo mutations, one of them novel, constituting 14.29% of all the participants who were phenotyped as MODY2. CONCLUSIONS The number of mutations in GCK/MODY2 or even other MODY-related genes is undoubtedly underestimated, as accepted criteria for performing genetic tests include family history of the pathology. These cases illustrate the value of analyzing the GCK gene in patients with clinical features of MODY2, even in the absence of family history of the condition as it is essential for establishing the correct treatment.
Collapse
Affiliation(s)
- Ariel Pablo Lopez
- Genetics Division, 4to piso sala 5, Hospital de Clinicas "José de San Martín", Universidad de Buenos Aires, Buenos Aires CP 1120, Argentina.
| | - Alejandro de Dios
- Genetics Division, 4to piso sala 5, Hospital de Clinicas "José de San Martín", Universidad de Buenos Aires, Buenos Aires CP 1120, Argentina.
| | - Ignacio Chiesa
- Manlab Laboratory, M. T. de Alvear 2263, Buenos Aires CP 1122, Argentina.
| | - Maria Silvia Perez
- Manlab Laboratory, M. T. de Alvear 2263, Buenos Aires CP 1122, Argentina.
| | - Gustavo Daniel Frechtel
- Genetics Division, 4to piso sala 5, Hospital de Clinicas "José de San Martín", Universidad de Buenos Aires, Buenos Aires CP 1120, Argentina.
| |
Collapse
|
22
|
Brouwers MCGJ, Jacobs C, Bast A, Stehouwer CDA, Schaper NC. Modulation of Glucokinase Regulatory Protein: A Double-Edged Sword? Trends Mol Med 2016; 21:583-594. [PMID: 26432016 DOI: 10.1016/j.molmed.2015.08.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/16/2015] [Accepted: 08/12/2015] [Indexed: 12/30/2022]
Abstract
The continuous search for drugs targeting type 2 diabetes mellitus (T2DM) has led to the identification of small molecules that disrupt the binding between glucokinase and glucokinase regulatory protein (GKRP). Although mice studies are encouraging, it will take years before these disruptors can be introduced to T2DM patients. Recently, genome-wide association studies (GWASs) have shown that variants in the gene encoding GKRP protect against T2DM and kidney disease but predispose to gout, nonalcoholic fatty liver disease, and dyslipidemia. These genetic data, together with previous experience with systemic and hepatospecific glucokinase activators, provide insight into the anticipated efficacy and safety of small-molecule disruptors in humans. Interestingly, they suggest that the opposite--enhanced GKRP-glucokinase binding--could be beneficial in selected patients.
Collapse
Affiliation(s)
- Martijn C G J Brouwers
- Department of Internal Medicine, Division of Endocrinology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands.
| | - Chantal Jacobs
- Department of Internal Medicine, Division of Endocrinology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| | - Aalt Bast
- Department of Toxicology, Faculty of Health Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Coen D A Stehouwer
- General Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| | - Nicolaas C Schaper
- Department of Internal Medicine, Division of Endocrinology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
23
|
Affiliation(s)
- Michael A Nauck
- Division of Diabetology, St. Josef-Hospital (Ruhr-University Bochum), Gudrunstr. 56, D-44791, Bochum, Germany.
| |
Collapse
|
24
|
Bennett JT, Vasta V, Zhang M, Narayanan J, Gerrits P, Hahn SH. Molecular genetic testing of patients with monogenic diabetes and hyperinsulinism. Mol Genet Metab 2015; 114:451-8. [PMID: 25555642 PMCID: PMC7852340 DOI: 10.1016/j.ymgme.2014.12.304] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 12/13/2014] [Accepted: 12/13/2014] [Indexed: 02/06/2023]
Abstract
Genetic sequencing has become a critical part of the diagnosis of certain forms of pancreatic beta cell dysfunction. Despite great advances in the speed and cost of DNA sequencing, determining the pathogenicity of variants remains a challenge, and requires sharing of sequence and phenotypic data between laboratories. We reviewed all diabetes and hyperinsulinism-associated molecular testing done at the Seattle Children's Molecular Genetics Laboratory from 2009 to 2013. 331 probands were referred to us for molecular genetic sequencing for Neonatal Diabetes (NDM), Maturity-Onset Diabetes of the Young (MODY), or Congenital Hyperinsulinism (CHI) during this period. Reportable variants were identified in 115 (35%) patients with 91 variants in one of 6 genes: HNF1A, GCK, HNF4A, ABCC8, KCNJ11, or INS. In addition to identifying 23 novel variants, we identified unusual mechanisms of inheritance, including mosaic and digenic MODY presentations. Re-analysis of all reported variants using more recently available databases led to a change in variant interpretation from the original report in 30% of cases. These results represent a resource for molecular testing of monogenic forms of diabetes and hyperinsulinism, providing a mutation spectrum for these disorders in a large North American cohort. In addition, they highlight the importance of periodic review of molecular testing results.
Collapse
Affiliation(s)
- James T Bennett
- Department of Pediatrics, University of Washington School of Medicine, Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Valeria Vasta
- Department of Pediatrics, University of Washington School of Medicine, Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Min Zhang
- Department of Pediatrics, University of Washington School of Medicine, Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Jaya Narayanan
- Department of Pediatrics, University of Washington School of Medicine, Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Peter Gerrits
- Department of Pediatric Endocrinology, Beaumont Children's Hospital, Royal Oak, MI 48073, USA
| | - Si Houn Hahn
- Department of Pediatrics, University of Washington School of Medicine, Seattle Children's Hospital, Seattle, WA 98105, USA.
| |
Collapse
|
25
|
Siddiqui K, Musambil M, Nazir N. Maturity onset diabetes of the young (MODY)--history, first case reports and recent advances. Gene 2014; 555:66-71. [PMID: 25281821 DOI: 10.1016/j.gene.2014.09.062] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/26/2014] [Accepted: 09/29/2014] [Indexed: 12/16/2022]
Abstract
The world is seemingly facing a global increase in people suffering from diabetes especially in developing countries. The worldwide occurrence of diabetes for all age groups in year 2000 was estimated to be 2.8% and this number is most certainly expected to rise to 4.4% by 2030. Maturity-onset of diabetes of the young, or MODY, is a form of monogenic diabetes that is caused by mutations occurring in a number of different genes. Mutations in different genes tend to cause a slightly different variant of diabetes. MODY is typically diagnosed during late childhood, adolescence, or early adulthood and is usually observed to develop in adults during their late 50's. One of the main drawbacks in its diagnosis is that many people with MODY are misdiagnosed as having type 1 or type 2 diabetes. However, a molecular and genetic diagnosis can result in a better treatment and could also help in identifying other family members with MODY. This article explores the historical prospect and the genetic background of MODY, a brief summary of the first case reported and the significant factors that differentiate it from type 1 and type 2 diabetes.
Collapse
Affiliation(s)
- Khalid Siddiqui
- Strategic Center for Diabetes Research, King Saud University, Riyadh, Saudi Arabia.
| | - Mohthash Musambil
- Center for Biomedical Research, MES Medical College and Hospital, Kerala, India.
| | - Nyla Nazir
- Strategic Center for Diabetes Research, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
26
|
Yellapu N, Mahto MK, Valasani KR, Sarma P, Matcha B. Mutations in exons 10 and 11 of human glucokinase result in conformational variations in the active site of the structure contributing to poor substrate binding – explains hyperglycemia in type 2 diabetic patients. J Biomol Struct Dyn 2014; 33:820-33. [DOI: 10.1080/07391102.2014.913989] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Nandakumar Yellapu
- Division of Animal Biotechnology, Department of Zoology, Sri Venkateswara University, Tirupati, Andhrapradesh 517502, India
- Biomedical Informatics Center, Vector Control Research Center, Indian Council of Medical Research, Pondicherry, 605006 India
| | - Manoj Kumar Mahto
- Division of Animal Biotechnology, Department of Zoology, Sri Venkateswara University, Tirupati, Andhrapradesh 517502, India
| | - Koteswara Rao Valasani
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, 66047 USA
| | - P.V.G.K. Sarma
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhrapradesh, 517507 India
| | - Bhaskar Matcha
- Division of Animal Biotechnology, Department of Zoology, Sri Venkateswara University, Tirupati, Andhrapradesh 517502, India
| |
Collapse
|
27
|
Yellapu NK, Valasani KR, Pasupuleti SK, Gopal S, Potukuchi Venkata Gurunadha Krishna S, Matcha B. Identification and analysis of novel R308K mutation in glucokinase of type 2 diabetic patient and its kinetic correlation. Biotechnol Appl Biochem 2014; 61:572-81. [PMID: 24447076 DOI: 10.1002/bab.1209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 01/14/2014] [Indexed: 11/09/2022]
Abstract
Glucokinase (GK) plays a critical role in glucose homeostasis and the mutations in GK gene result in pathogenic complications known as Maturity Onset Diabetes of the Young 2, an autosomal dominant form of diabetic condition. In the present study, GK was purified from human liver tissue and the pure enzyme showed single band in SDS-PAGE with a molecular weight of 50 kDa. The kinetics of pure GK showed enzyme activity of 0.423±0.02 µM glucose-6-phosphate (G6P)/mL/Min and Km value of 6.66±0.02 µM. These values were compared in the liver biopsy of a clinically proven type 2 diabetic patient, where GK kinetics showed decreased enzyme activity of 0.16±0.025 µM G6P/mL/Min and increased Km of 23±0.9 µM, indicating the hyperglycemic condition in the patient. The genetic analysis of 10th exon of GK gene from this patient showed a R308K mutation. To substantiate these results, comparative molecular dynamics and docking studies were carried out where a higher docking score (-10.218 kcal/mol) was observed in the mutated GK than wild-type GK structure (-12.593 kcal/mol) indicating affinity variations for glucose. During the simulation process, glucose was expelled out from the mutant conformation but not from wild-type GK, making glucose unavailable for phosphorylation. Therefore, these results conclusively explain hyperglycemic condition in this patient.
Collapse
Affiliation(s)
- Nanda Kumar Yellapu
- Division of Animal Biotechnology, Department of Zoology, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | | | | | | | | | | |
Collapse
|
28
|
Guan HP, Chen G. Factors affecting insulin-regulated hepatic gene expression. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 121:165-215. [PMID: 24373238 DOI: 10.1016/b978-0-12-800101-1.00006-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Obesity has become a major concern of public health. A common feature of obesity and related metabolic disorders such as noninsulin-dependent diabetes mellitus is insulin resistance, wherein a given amount of insulin produces less than normal physiological responses. Insulin controls hepatic glucose and fatty acid metabolism, at least in part, via the regulation of gene expression. When the liver is insulin-sensitive, insulin can stimulate the expression of genes for fatty acid synthesis and suppress those for gluconeogenesis. When the liver becomes insulin-resistant, the insulin-mediated suppression of gluconeogenic gene expression is lost, whereas the induction of fatty acid synthetic gene expression remains intact. In the past two decades, the mechanisms of insulin-regulated hepatic gene expression have been studied extensively and many components of insulin signal transduction pathways have been identified. Factors that alter these pathways, and the insulin-regulated hepatic gene expression, have been revealed and the underlying mechanisms have been proposed. This chapter summarizes the recent progresses in our understanding of the effects of dietary factors, drugs, bioactive compounds, hormones, and cytokines on insulin-regulated hepatic gene expression. Given the large amount of information and progresses regarding the roles of insulin, this chapter focuses on findings in the liver and hepatocytes and not those described for other tissues and cells. Typical insulin-regulated hepatic genes, such as insulin-induced glucokinase and sterol regulatory element-binding protein-1c and insulin-suppressed cytosolic phosphoenolpyruvate carboxyl kinase and insulin-like growth factor-binding protein 1, are used as examples to discuss the mechanisms such as insulin regulatory element-mediated transcriptional regulation. We also propose the potential mechanisms by which these factors affect insulin-regulated hepatic gene expression and discuss potential future directions of the area of research.
Collapse
Affiliation(s)
- Hong-Ping Guan
- Department of Diabetes, Merck Research Laboratories, Kenilworth, New Jersey, USA
| | - Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, USA
| |
Collapse
|
29
|
Szlyk B, Braun CR, Ljubicic S, Patton E, Bird GH, Osundiji MA, Matschinsky FM, Walensky LD, Danial NN. A phospho-BAD BH3 helix activates glucokinase by a mechanism distinct from that of allosteric activators. Nat Struct Mol Biol 2013; 21:36-42. [PMID: 24317490 DOI: 10.1038/nsmb.2717] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 10/15/2013] [Indexed: 01/10/2023]
Abstract
Glucokinase (GK) is a glucose-phosphorylating enzyme that regulates insulin release and hepatic metabolism, and its loss of function is implicated in diabetes pathogenesis. GK activators (GKAs) are attractive therapeutics in diabetes; however, clinical data indicate that their benefits can be offset by hypoglycemia, owing to marked allosteric enhancement of the enzyme's glucose affinity. We show that a phosphomimetic of the BCL-2 homology 3 (BH3) α-helix derived from human BAD, a GK-binding partner, increases the enzyme catalytic rate without dramatically changing glucose affinity, thus providing a new mechanism for pharmacologic activation of GK. Remarkably, BAD BH3 phosphomimetic mediates these effects by engaging a new region near the enzyme's active site. This interaction increases insulin secretion in human islets and restores the function of naturally occurring human GK mutants at the active site. Thus, BAD phosphomimetics may serve as a new class of GKAs.
Collapse
Affiliation(s)
- Benjamin Szlyk
- 1] Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. [2]
| | - Craig R Braun
- 1] Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. [2]
| | - Sanda Ljubicic
- 1] Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. [2] Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Elaura Patton
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Gregory H Bird
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Mayowa A Osundiji
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Franz M Matschinsky
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Loren D Walensky
- 1] Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. [2] Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA. [3] Department of Pediatric Oncology, Children's Hospital, Boston, Massachusetts, USA
| | - Nika N Danial
- 1] Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. [2] Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
30
|
Chen G. Roles of Vitamin A Metabolism in the Development of Hepatic Insulin Resistance. ISRN HEPATOLOGY 2013; 2013:534972. [PMID: 27335827 PMCID: PMC4890907 DOI: 10.1155/2013/534972] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/18/2013] [Indexed: 02/07/2023]
Abstract
The increase in the number of people with obesity- and noninsulin-dependent diabetes mellitus has become a major public health concern. Insulin resistance is a common feature closely associated with human obesity and diabetes. Insulin regulates metabolism, at least in part, via the control of the expression of the hepatic genes involved in glucose and fatty acid metabolism. Insulin resistance is always associated with profound changes of the expression of hepatic genes for glucose and lipid metabolism. As an essential micronutrient, vitamin A (VA) is needed in a variety of physiological functions. The active metablite of VA, retinoic acid (RA), regulates the expression of genes through the activation of transcription factors bound to the RA-responsive elements in the promoters of RA-targeted genes. Recently, retinoids have been proposed to play roles in glucose and lipid metabolism and energy homeostasis. This paper summarizes the recent progresses in our understanding of VA metabolism in the liver and of the potential transcription factors mediating RA responses. These transcription factors are the retinoic acid receptor, the retinoid X receptor, the hepatocyte nuclear factor 4α, the chicken ovalbumin upstream promoter-transcription factor II, and the peroxisome proliferator-activated receptor β/δ. This paper also summarizes the effects of VA status and RA treatments on the glucose and lipid metabolism in vivo and the effects of retinoid treatments on the expression of insulin-regulated genes involved in the glucose and fatty acid metabolism in the primary hepatocytes. I discuss the roles of RA production in the development of insulin resistance in hepatocytes and proposes a mechanism by which RA production may contribute to hepatic insulin resistance. Given the large amount of information and progresses regarding the physiological functions of VA, this paper mainly focuses on the findings in the liver and hepatocytes and only mentions the relative findings in other tissues and cells.
Collapse
Affiliation(s)
- Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, USA
| |
Collapse
|
31
|
Hua H, Shang L, Martinez H, Freeby M, Gallagher MP, Ludwig T, Deng L, Greenberg E, Leduc C, Chung WK, Goland R, Leibel RL, Egli D. iPSC-derived β cells model diabetes due to glucokinase deficiency. J Clin Invest 2013; 123:3146-53. [PMID: 23778137 DOI: 10.1172/jci67638] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 04/16/2013] [Indexed: 12/30/2022] Open
Abstract
Diabetes is a disorder characterized by loss of β cell mass and/or β cell function, leading to deficiency of insulin relative to metabolic need. To determine whether stem cell-derived β cells recapitulate molecular-physiological phenotypes of a diabetic subject, we generated induced pluripotent stem cells (iPSCs) from subjects with maturity-onset diabetes of the young type 2 (MODY2), which is characterized by heterozygous loss of function of the gene encoding glucokinase (GCK). These stem cells differentiated into β cells with efficiency comparable to that of controls and expressed markers of mature β cells, including urocortin-3 and zinc transporter 8, upon transplantation into mice. While insulin secretion in response to arginine or other secretagogues was identical to that in cells from healthy controls, GCK mutant β cells required higher glucose levels to stimulate insulin secretion. Importantly, this glucose-specific phenotype was fully reverted upon gene sequence correction by homologous recombination. Our results demonstrate that iPSC-derived β cells reflect β cell-autonomous phenotypes of MODY2 subjects, providing a platform for mechanistic analysis of specific genotypes on β cell function.
Collapse
Affiliation(s)
- Haiqing Hua
- The New York Stem Cell Foundation Laboratory, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Structural Variations of Human Glucokinase Glu256Lys in MODY2 Condition Using Molecular Dynamics Study. BIOTECHNOLOGY RESEARCH INTERNATIONAL 2013; 2013:264793. [PMID: 23476789 PMCID: PMC3586473 DOI: 10.1155/2013/264793] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 12/13/2012] [Indexed: 11/18/2022]
Abstract
Glucokinase (GK) is the predominant hexokinase that acts as glucose sensor and catalyses the formation of Glucose-6-phosphate. The mutations in GK gene influence the affinity for glucose and lead to altered glucose levels in blood causing maturity onset diabetes of the young type 2 (MODY2) condition, which is one of the prominent reasons of type 2 diabetic condition. In view of the importance of mutated GK resulting in hyperglycemic condition, in the present study, molecular dynamics simulations were carried out in intact and 256 E-K mutated GK structures and their energy values and conformational variations were correlated. Energy variations were observed in mutated GK (3500 Kcal/mol) structure with respect to intact GK (5000 Kcal/mol), and it showed increased γ-turns, decreased β-turns, and more helix-helix interactions that affected substrate binding region where its volume increased from 1089.152 Å2 to 1246.353 Å2. Molecular docking study revealed variation in docking scores (intact = −12.199 and mutated = −8.383) and binding mode of glucose in the active site of mutated GK where the involvement of A53, S54, K56, K256, D262 and Q286 has resulted in poor glucose binding which probably explains the loss of catalytic activity and the consequent prevailing of high glucose levels in MODY2 condition.
Collapse
|
33
|
Frechtel GD, López AP, Rodríguez M, Cerrone GE, Targovnik HM. A Novel Mutation in Exon 5 of the Glucokinase Gene in an Argentinian Family with Maturity Onset Diabetes of the Young. ACTA ACUST UNITED AC 2012; 7:129-31. [PMID: 14580233 DOI: 10.1007/bf03260029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Maturity onset diabetes of the young (MODY) is caused by mutations in at least six different genes, including the glucokinase gene (MODY 2) and genes encoding the tissue-specific transcription factors (MODY 1 and MODY 3-6). To determine the presence of mutations in MODY 2 in four members of a family who have the clinical characteristics of MODY, we performed polymerase chain reaction and single strand conformation polymorphism screening, followed by DNA sequencing. We found a novel mutation which consisted of the deletion of a cytosine in the position 2 of the exon 5 codon 168. This mutation produced a frame shift which determines a stop codon at position 203 in exon 6. The identification of a mutation in glucokinase gene and transcription factor genes in patients with early-onset diabetes confirms the diagnosis of MODY and has important implications for clinical management.
Collapse
Affiliation(s)
- Gustavo Daniel Frechtel
- Laboratory of Molecular Biology, Department of Genetic and Molecular Biology, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
34
|
Capuano M, Garcia-Herrero CM, Tinto N, Carluccio C, Capobianco V, Coto I, Cola A, Iafusco D, Franzese A, Zagari A, Navas MA, Sacchetti L. Glucokinase (GCK) mutations and their characterization in MODY2 children of southern Italy. PLoS One 2012; 7:e38906. [PMID: 22761713 PMCID: PMC3385652 DOI: 10.1371/journal.pone.0038906] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 05/14/2012] [Indexed: 01/24/2023] Open
Abstract
Type 2 Maturity Onset Diabetes of the Young (MODY2) is a monogenic autosomal disease characterized by a primary defect in insulin secretion and hyperglycemia. It results from GCK gene mutations that impair enzyme activity. Between 2006 and 2010, we investigated GCK mutations in 66 diabetic children from southern Italy with suspected MODY2. Denaturing High Performance Liquid Chromatography (DHPLC) and sequence analysis revealed 19 GCK mutations in 28 children, six of which were novel: p.Glu40Asp, p.Val154Leu, p.Arg447Glyfs, p.Lys458_Cys461del, p.Glu395_Arg397del and c.580-2A>T. We evaluated the effect of these 19 mutations using bioinformatic tools such as Polymorphism Phenotyping (Polyphen), Sorting Intolerant From Tolerant (SIFT) and in silico modelling. We also conducted a functional study to evaluate the pathogenic significance of seven mutations that are among the most severe mutations found in our population, and have never been characterized: p.Glu70Asp, p.His137Asp, p.Phe150Tyr, p.Val154Leu, p.Gly162Asp, p.Arg303Trp and p.Arg392Ser. These seven mutations, by altering one or more kinetic parameters, reduced enzyme catalytic activity by >40%. All mutations except p.Glu70Asp displayed thermal-instability, indeed >50% of enzyme activity was lost at 50°C/30 min. Thus, these seven mutations play a pathogenic role in MODY2 insurgence. In conclusion, this report revealed six novel GCK mutations and sheds some light on the structure-function relationship of human GCK mutations and MODY2.
Collapse
Affiliation(s)
- Marina Capuano
- Department of Biochemistry and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
- Centro di Ingegneria Genetica (CEINGE) Advanced Biotechnology, s. c. a r. l., Naples, Italy
| | - Carmen Maria Garcia-Herrero
- Department of Biochemistry and Molecular Biology III, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Nadia Tinto
- Department of Biochemistry and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
- Centro di Ingegneria Genetica (CEINGE) Advanced Biotechnology, s. c. a r. l., Naples, Italy
| | - Carla Carluccio
- Centro di Ingegneria Genetica (CEINGE) Advanced Biotechnology, s. c. a r. l., Naples, Italy
- Department of Biological Science, University of Naples “Federico II”, Naples, Italy
| | - Valentina Capobianco
- Fondazione SDN-IRCSS (Istituto di Diagnostica Nucleare-Istituto di Ricerca e Cura a Carattere Scientifico), Naples, Italy
| | - Iolanda Coto
- Department of Biochemistry and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
- Centro di Ingegneria Genetica (CEINGE) Advanced Biotechnology, s. c. a r. l., Naples, Italy
| | - Arturo Cola
- Department of Biochemistry and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
- Centro di Ingegneria Genetica (CEINGE) Advanced Biotechnology, s. c. a r. l., Naples, Italy
| | - Dario Iafusco
- Department of Pediatrics, Second University of Naples, Naples, Italy
| | - Adriana Franzese
- Department of Pediatrics, University of Naples “Federico II”, Naples, Italy
| | - Adriana Zagari
- Centro di Ingegneria Genetica (CEINGE) Advanced Biotechnology, s. c. a r. l., Naples, Italy
- Department of Biological Science, University of Naples “Federico II”, Naples, Italy
| | - Maria Angeles Navas
- Department of Biochemistry and Molecular Biology III, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Lucia Sacchetti
- Department of Biochemistry and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
- Centro di Ingegneria Genetica (CEINGE) Advanced Biotechnology, s. c. a r. l., Naples, Italy
| |
Collapse
|
35
|
Klupa T, Solecka I, Nowak N, Szopa M, Kiec-Wilk B, Skupien J, Trybul I, Matejko B, Mlynarski W, Malecki MT. The influence of dietary carbohydrate content on glycaemia in patients with glucokinase maturity-onset diabetes of the young. J Int Med Res 2012; 39:2296-301. [PMID: 22289546 DOI: 10.1177/147323001103900627] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mutations in the glucokinase (GCK) gene result in maturity-onset diabetes of the young (MODY). Pharmacotherapy is not effective in GCK MODY. Thus, nutritional intervention seems to be the only therapeutic option. This study evaluated the effect of the quantity of dietary carbohydrate on glucose levels in 10 GCK mutation carriers: seven with MODY and three with prediabetes. All patients were exposed to high-carbohydrate diets for 2 days and then switched to low-carbohydrate diets (60% versus 25% of the daily calorie intake) for another 2 days, after a 1-day washout. Glucose levels were assessed by continuous blood glucose monitoring. In patients with GCK MODY on high-carbohydrate diets, glucose levels were significantly higher, and more hyperglycaemic episodes occurred, compared with patients on low-carbohydrate diets. This short-term observational study suggested that diets with a modestly limited carbohydrate content may improve glycaemic control in patients with GCK MODY.
Collapse
Affiliation(s)
- T Klupa
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland; Krakow University Hospital, Krakow, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Larion M, Miller BG. Homotropic allosteric regulation in monomeric mammalian glucokinase. Arch Biochem Biophys 2012; 519:103-11. [PMID: 22107947 PMCID: PMC3294010 DOI: 10.1016/j.abb.2011.11.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 11/03/2011] [Accepted: 11/04/2011] [Indexed: 11/30/2022]
Abstract
Glucokinase catalyzes the ATP-dependent phosphorylation of glucose, a chemical transformation that represents the rate-limiting step of glycolytic metabolism in the liver and pancreas. Glucokinase is a central regulator of glucose homeostasis as evidenced by its association with two disease states, maturity onset diabetes of the young (MODY) and persistent hyperinsulinemia of infancy (PHHI). Mammalian glucokinase is subject to homotropic allosteric regulation by glucose-the steady-state velocity of glucose-6-phosphate production is not hyperbolic, but instead displays a sigmoidal response to increasing glucose concentrations. The positive cooperativity displayed by glucokinase is intriguing since the enzyme functions as a monomer under physiological conditions and contains only a single binding site for glucose. Despite the existence of several models of kinetic cooperativity in monomeric enzymes, a consensus has yet to be reached regarding the mechanism of allosteric regulation in glucokinase. Experimental evidence collected over the last 45 years by a number of investigators supports a link between cooperativity and slow conformational reorganizations of the glucokinase scaffold. In this review, we summarize advances in our understanding of glucokinase allosteric regulation resulting from recent X-ray crystallographic, pre-equilibrium kinetic and high-resolution nuclear magnetic resonance investigations. We conclude with a brief discussion of unanswered questions regarding the mechanistic basis of kinetic cooperativity in mammalian glucokinase.
Collapse
Affiliation(s)
- Mioara Larion
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | | |
Collapse
|
37
|
Coppieters KT, Wiberg A, Amirian N, Kay TW, von Herrath MG. Persistent glucose transporter expression on pancreatic beta cells from longstanding type 1 diabetic individuals. Diabetes Metab Res Rev 2011; 27:746-54. [PMID: 22069254 PMCID: PMC5706467 DOI: 10.1002/dmrr.1246] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Recent reports have established the notion that many patients with longstanding type 1 diabetes (T1D) possess a remnant population of insulin-producing beta cells. It remains questionable, however, whether these surviving cells can physiologically sense and respond to glucose stimuli. METHODS Frozen pancreatic sections from non-diabetic donors (n=8), type 2 diabetic patients (n=4), islet autoantibody-positive non-diabetic patients (n=3), type 1 diabetic patients (n=10) and one case of gestational diabetes were obtained via the network for Pancreatic Organ Donors. All longstanding T1D samples were selected based on the detection of insulin-producing beta cells in the pancreas by immunohistochemistry. RNA was isolated from all sections followed by cDNA preparation and quantitative real-time polymerase chain reaction for insulin, glucose transporter 1 (GLUT1), GLUT2 and GLUT3. Finally, immunofluorescent staining was performed on consecutive sections for all four of these markers and a comparison was made between the expression of GLUT2 in humans versus NOD mice. RESULTS In contrast to islets from the most widely used T1D model, the NOD mouse, human islets predominantly express GLUT1 and, to a much lesser extent, GLUT3 on their surface instead of GLUT2. Relative expression levels of these receptors do not significantly change in the context of the various (pre-)diabetic conditions studied. Moreover, in both species preservation of GLUT expression was observed even under conditions of substantial leucocyte infiltration or decades of T1D duration. CONCLUSIONS These data suggest that despite being subjected to multiple years of physiological stress, the remaining beta-cell population in longstanding T1D patients retains a capacity to sense glucose via its GLUTs.
Collapse
Affiliation(s)
- Ken T. Coppieters
- Type 1 Diabetes Center, The La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Anna Wiberg
- Type 1 Diabetes Center, The La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Natalie Amirian
- Type 1 Diabetes Center, The La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Thomas W. Kay
- Department of Immunology and Diabetes, St Vincent’s Institute, 41 Victoria Parade, Fitzroy, Melbourne, VIC 3065, Australia
| | - Matthias G. von Herrath
- Type 1 Diabetes Center, The La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
- Correspondence to: Matthias G. von Herrath, Type 1 Diabetes Center, The La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA,
| |
Collapse
|
38
|
Wu ZL. Phosphatase-coupled universal kinase assay and kinetics for first-order-rate coupling reaction. PLoS One 2011; 6:e23172. [PMID: 21853082 PMCID: PMC3154929 DOI: 10.1371/journal.pone.0023172] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 07/11/2011] [Indexed: 11/18/2022] Open
Abstract
Kinases use adenosine-5′-triphosphate (ATP) as the donor substrate and generate adenosine-5′-diphosphate (ADP) as a product. An ADP-based phosphatase-coupled kinase assay is described here. In this assay, CD39L2, a nucleotidase, is added into a kinase reaction to hydrolyze ADP to AMP and phosphate. The phosphate is subsequently detected using malachite green phosphate-detection reagents. As ADP hydrolysis by CD39L2 displays a first-order rate constant, relatively simple equations are derived to calculate the coupling rate and the lagging time of the coupling reaction, allowing one to obtain kinase kinetic parameters without the completion of the coupling reaction. ATP inhibition of CD39L2-catalyzed ADP hydrolysis is also determined for correction of the kinetic data. As examples, human glucokinase, P. chrysogenum APS kinase and human ERK1, kinases specific for sugar, nucleotide and protein respectively, are assayed. To assess the compatibility of the method for high-throughput assays, Z′ factors >0.5 are also obtained for the three kinases.
Collapse
Affiliation(s)
- Zhengliang L Wu
- R&D Systems Inc., Minneapolis, Minnesota, United States of America.
| |
Collapse
|
39
|
Cappelli A, Silvestri S, Tumini S, Carinci S, Cipriano P, Massi L, Staffolani P, Pianese L. A new de novo mutation in the GCK gene causing MODY2. Diabetes Res Clin Pract 2011; 93:e41-3. [PMID: 21514682 DOI: 10.1016/j.diabres.2011.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 04/04/2011] [Indexed: 11/15/2022]
Abstract
Analysis of glucokinase (GCK) gene in a 15-year-old male identified a new frameshift mutation in exon 4 caused by a heterozygous guanine deletion at position 382 (c.382delG, p.E128Xfs). No mutation was detected in the parents. Polymorphic markers' study excluded false paternity indicating that c.382delG is a novel de novo mutation.
Collapse
Affiliation(s)
- Alessia Cappelli
- Scuola di Bioscienze e Biotecnologie, Università degli studi di Camerino, Italy
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Bennett K, James C, Mutair A, Al-Shaikh H, Sinani A, Hussain K. Four novel cases of permanent neonatal diabetes mellitus caused by homozygous mutations in the glucokinase gene. Pediatr Diabetes 2011; 12:192-6. [PMID: 21518409 DOI: 10.1111/j.1399-5448.2010.00683.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Permanent neonatal diabetes mellitus (PNDM) caused by homozygous mutations in the glucokinase gene (GCK) is rare and only eight homozygous GCK mutations have been reported so far. Heterozygous GCK mutations cause maturity-onset diabetes of the young (MODY). We report four patients with growth retardation from two separate families (with three siblings in one family and one patient in another family) presenting with persistent hyperglycaemia within the first two days of life. We found one homozygous non-sense mutation (Q98X) in GCK in three siblings from one family and a homozygous missense GCK mutation (G261R) in one patient from another family. Both mutations have been identified previously in GCK-MODY in the heterozygous state. However, this is the first study to report the homozygous forms of these mutations in PNDM. We report four novel cases of PNDM caused by homozygous GCK mutations, including a non-sense mutation in exon 3 (Q98X) and a missense mutation in exon 7 (G261R).
Collapse
Affiliation(s)
- Kate Bennett
- Institute of Child Health, University College London, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | | | | | | | | | | |
Collapse
|
41
|
Bonfig W, Hermanns S, Warncke K, Eder G, Engelsberger I, Burdach S, Ziegler AG, Lohse P. GCK-MODY (MODY 2) Caused by a Novel p.Phe330Ser Mutation. ISRN PEDIATRICS 2011; 2011:676549. [PMID: 22389783 PMCID: PMC3263572 DOI: 10.5402/2011/676549] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 03/13/2011] [Indexed: 11/23/2022]
Abstract
Maturity onset diabetes of the young (MODY) is a monogenic form of diabetes inherited as an autosomal dominant trait. The second most common cause is GCK-MODY due to heterozygous mutations in the GCK gene which impair the glucokinase function through different mechanisms such as enzymatic activity, protein stability, and increased interaction with its receptor. The enzyme normally acts as a glucose sensor in the pancreatic beta cell and regulates insulin secretion. We report here a three-generation nonobese family diagnosed with diabetes. All affected family members presented with mild hyperglycemia and mostly slightly elevated hemoglobin A1c values. Genetic testing revealed a novel heterozygous T → C exchange in exon 8 of the GCK gene which resulted in a phenylalanine330 TTC → serine (TCC)/p.Phe330Ser/F330S substitution.
Collapse
Affiliation(s)
- Walter Bonfig
- Division of Pediatric Endocrinology, Department of Pediatrics, Technische Universität München Kölner Platz 1, 80804 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Bazalová Z, Rypácková B, Broz J, Brunerová L, Polák J, Rusavý Z, Treslová L, Andel M. Three novel mutations in MODY and its phenotype in three different Czech families. Diabetes Res Clin Pract 2010; 88:132-8. [PMID: 20132997 DOI: 10.1016/j.diabres.2010.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 12/19/2009] [Accepted: 01/04/2010] [Indexed: 11/24/2022]
Abstract
AIMS/HYPOTHESIS MODY (Maturity Onset Diabetes of the Young) is an autosomal dominant inherited type of diabetes with significant genetic heterogeneity. New mutations causing MODY are still being found. A genetically confirmed diagnosis of MODY allows application of individualized treatment based on the underlying concrete genetic dysfunction. Detection of novel MODY mutations helps provide a more complete picture of the possible MODY genotypes. MATERIALS AND METHODS We tested 43 adult Czech patients with clinical characteristics of MODY, using direct sequencing of HNF1A (hepatocyte nuclear factor 1-alpha), HNF4A (hepatocyte nuclear factor 4-alpha) and GCK (glucokinase) genes. RESULTS In three Czech families we identified three novel mutations we believe causing MODY-two missense mutations in HNF1A [F268L (c.802T>C) and P291S (c.871C>T)] and one frame shift mutation in GCK V244fsdelG (c.729delG). Some of the novel HNF1A mutation carriers were successfully transferred from insulin to gliclazide, while some of the novel GCK mutation carriers had a good clinical response when switched from insulin or oral antidiabetic drugs to diet. CONCLUSION We describe three novel MODY mutations in three Czech families. The identification of MODY mutations had a meaningful impact on therapy on the mutation carriers.
Collapse
Affiliation(s)
- Z Bazalová
- 3rd Faculty of Medicine of Charles University, Centre of Research for Diabetes, Endocrinological Diseases and Clinical Nutrition, Ruská 87, 100 00 Prague 10, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Osbak KK, Colclough K, Saint-Martin C, Beer NL, Bellanné-Chantelot C, Ellard S, Gloyn AL. Update on mutations in glucokinase (GCK), which cause maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemic hypoglycemia. Hum Mutat 2010; 30:1512-26. [PMID: 19790256 DOI: 10.1002/humu.21110] [Citation(s) in RCA: 339] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glucokinase is a key regulatory enzyme in the pancreatic beta-cell. It plays a crucial role in the regulation of insulin secretion and has been termed the glucose sensor in pancreatic beta-cells. Given its central role in the regulation of insulin release it is understandable that mutations in the gene encoding glucokinase (GCK) can cause both hyper- and hypoglycemia. Heterozygous inactivating mutations in GCK cause maturity-onset diabetes of the young (MODY) subtype glucokinase (GCK), characterized by mild fasting hyperglycemia, which is present at birth but often only detected later in life during screening for other purposes. Homozygous inactivating GCK mutations result in a more severe phenotype presenting at birth as permanent neonatal diabetes mellitus (PNDM). A growing number of heterozygous activating GCK mutations that cause hypoglycemia have also been reported. A total of 620 mutations in the GCK gene have been described in a total of 1,441 families. There are no common mutations, and the mutations are distributed throughout the gene. The majority of activating mutations cluster in a discrete region of the protein termed the allosteric activator site. The identification of a GCK mutation in patients with both hyper- and hypoglycemia has implications for the clinical course and clinical management of their disorder.
Collapse
Affiliation(s)
- Kara K Osbak
- Diabetes Research Laboratories, Oxford Centre for Diabetes Endocrinology & Metabolism, University of Oxford, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Lys169 of human glucokinase is a determinant for glucose phosphorylation: implication for the atomic mechanism of glucokinase catalysis. PLoS One 2009; 4:e6304. [PMID: 19617908 PMCID: PMC2706991 DOI: 10.1371/journal.pone.0006304] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 06/04/2009] [Indexed: 12/03/2022] Open
Abstract
Glucokinase (GK), a glucose sensor, maintains plasma glucose homeostasis via phosphorylation of glucose and is a potential therapeutic target for treating maturity-onset diabetes of the young (MODY) and persistent hyperinsulinemic hypoglycemia of infancy (PHHI). To characterize the catalytic mechanism of glucose phosphorylation by GK, we combined molecular modeling, molecular dynamics (MD) simulations, quantum mechanics/molecular mechanics (QM/MM) calculations, experimental mutagenesis and enzymatic kinetic analysis on both wild-type and mutated GK. Our three-dimensional (3D) model of the GK-Mg2+-ATP-glucose (GMAG) complex, is in agreement with a large number of mutagenesis data, and elucidates atomic information of the catalytic site in GK for glucose phosphorylation. A 10-ns MD simulation of the GMAG complex revealed that Lys169 plays a dominant role in glucose phosphorylation. This prediction was verified by experimental mutagenesis of GK (K169A) and enzymatic kinetic analyses of glucose phosphorylation. QM/MM calculations were further used to study the role of Lys169 in the catalytic mechanism of the glucose phosphorylation and we found that Lys169 enhances the binding of GK with both ATP and glucose by serving as a bridge between ATP and glucose. More importantly, Lys169 directly participates in the glucose phosphorylation as a general acid catalyst. Our findings provide mechanistic details of glucose phorphorylation catalyzed by GK, and are important for understanding the pathogenic mechanism of MODY.
Collapse
|
46
|
Estalella I, Rica I, Perez de Nanclares G, Bilbao JR, Vazquez JA, San Pedro JI, Busturia MA, Castaño L. Mutations in GCK and HNF-1alpha explain the majority of cases with clinical diagnosis of MODY in Spain. Clin Endocrinol (Oxf) 2007; 67:538-46. [PMID: 17573900 DOI: 10.1111/j.1365-2265.2007.02921.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The aim of this study was to group patients with MODY (maturity-onset diabetes of the young) according to the genetic alterations underlying the disease and to investigate their clinical characteristics. PATIENTS AND METHODS Molecular analysis of GCK (MODY2), HNF-1alpha (MODY3), HNF-4alpha (MODY1) and HNF-1beta (MODY5) genes was performed by DNA sequencing in 95 unrelated index probands (47M/48F; mean age 9.9 +/- 5.2 years) with clinical diagnosis of MODY. After classification into MODY subtypes according to the genetic alterations, clinical characteristics were compared between the groups. RESULTS Seventy-six families were shown to carry mutations in GCK (34 of them previously unreported), eight families presented HNF-1alpha mutations, and a large genomic rearrangement in HNF-1beta was found in a family. No alteration was found in HNF-4alpha. Thus, relative frequencies in the group studied were 80% MODY2, 8.5% MODY3 and 1% MODY5. Comparison of clinical parameters according to genetic status showed significant differences between MODY2 and MODY3 patients in age at diagnosis (9.4 +/- 5.4 years vs. 12.7 +/- 4.6 years), diagnosis (impaired glucose tolerance vs. diabetes), diagnostic test used (OGTT vs. fasting glucose), treatment (diet and exercise vs. insulin/oral antidiabetic agents) and birth weight (2.96 +/- 0.44 kg vs. 3.40 +/- 0.67 kg). CONCLUSION Almost 90% of the MODY cases in the group studied are explained by mutations in the major genes GCK (MODY2) and HNF-1alpha(MODY3), although differences in the relative prevalence of each form could be partly due to patient referral bias (paediatric vs. adult). In general, patients with MODY2 were diagnosed at an earlier age in life than MODY3 patients and had a milder form of diabetes. Moreover, the majority of patients with MODY2 mutations were treated with diet whereas half of MODY3 patients received pharmacological treatment.
Collapse
Affiliation(s)
- Itziar Estalella
- Endocrinology and Diabetes Research Group, Hospital de Cruces, Barakaldo, Basque Country, Spain
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Oliver PL, Bitoun E, Davies KE. Comparative genetic analysis: the utility of mouse genetic systems for studying human monogenic disease. Mamm Genome 2007; 18:412-24. [PMID: 17514509 PMCID: PMC1998876 DOI: 10.1007/s00335-007-9014-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 03/19/2007] [Accepted: 03/22/2007] [Indexed: 12/23/2022]
Abstract
One of the long-term goals of mutagenesis programs in the mouse has been to generate mutant lines to facilitate the functional study of every mammalian gene. With a combination of complementary genetic approaches and advances in technology, this aim is slowly becoming a reality. One of the most important features of this strategy is the ability to identify and compare a number of mutations in the same gene, an allelic series. With the advent of gene-driven screening of mutant archives, the search for a specific series of interest is now a practical option. This review focuses on the analysis of multiple mutations from chemical mutagenesis projects in a wide variety of genes and the valuable functional information that has been obtained from these studies. Although gene knockouts and transgenics will continue to be an important resource to ascertain gene function, with a significant proportion of human diseases caused by point mutations, identifying an allelic series is becoming an equally efficient route to generating clinically relevant and functionally important mouse models.
Collapse
Affiliation(s)
- Peter L. Oliver
- Department of Physiology, Anatomy and Genetics, MRC Functional Genetics Unit, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
| | - Emmanuelle Bitoun
- Department of Physiology, Anatomy and Genetics, MRC Functional Genetics Unit, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
| | - Kay E. Davies
- Department of Physiology, Anatomy and Genetics, MRC Functional Genetics Unit, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
| |
Collapse
|
48
|
Kaput J, Dawson K. Complexity of type 2 diabetes mellitus data sets emerging from nutrigenomic research: a case for dimensionality reduction? Mutat Res 2007; 622:19-32. [PMID: 17559889 PMCID: PMC1994901 DOI: 10.1016/j.mrfmmm.2007.02.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Accepted: 02/13/2007] [Indexed: 02/07/2023]
Abstract
Nutrigenomics promises personalized nutrition and an improvement in preventing, delaying, and reducing the symptoms of chronic diseases such as diabetes. Nutritional genomics is the study of how foods affect the expression of genetic information in an individual and how an individual's genetic makeup affects the metabolism and response to nutrients and other bioactive components in food. The path to those promises has significant challenges, from experimental designs that include analysis of genetic heterogeneity to the complexities of food and environmental factors. One of the more significant complications in developing the knowledge base and potential applications is how to analyze high-dimensional datasets of genetic, nutrient, metabolomic (clinical), and other variables influencing health and disease processes. Type 2 diabetes mellitus (T2DM) is used as an illustration of the challenges in studying complex phenotypes with nutrigenomics concepts and approaches.
Collapse
Affiliation(s)
- Jim Kaput
- Center of Excellence in Nutritional Genomics, University of California at Davis, Davis, CA 95616, USA.
| | | |
Collapse
|
49
|
García-Herrero CM, Galán M, Vincent O, Flández B, Gargallo M, Delgado-Alvarez E, Blázquez E, Navas MA. Functional analysis of human glucokinase gene mutations causing MODY2: exploring the regulatory mechanisms of glucokinase activity. Diabetologia 2007; 50:325-33. [PMID: 17186219 DOI: 10.1007/s00125-006-0542-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Accepted: 10/21/2006] [Indexed: 11/26/2022]
Abstract
AIMS/HYPOTHESIS Glucokinase (GCK) acts as a glucose sensor in the pancreatic beta cell and regulates insulin secretion. In the gene encoding GCK the heterozygous mutations that result in enzyme inactivation cause MODY2. Functional studies of naturally occurring GCK mutations associated with hyperglycaemia provide further insight into the biochemical basis of glucose sensor regulation. MATERIALS AND METHODS Identification of GCK mutations in selected MODY patients was performed by single-strand conformation polymorphism and direct sequencing. The kinetic parameters and thermal stability of recombinant mutant human GCK were determined, and in pull-down assays the effect of these mutations on the association of GCK with glucokinase (hexokinase 4) regulator (GCKR, also known as glucokinase regulatory protein [GKRP]) and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB1, also known as PFK2) was tested. RESULTS We identified three novel GCK mutations: the insertion of an asparagine residue at position 161 (inserN161) and two missense mutations (M235V and R308W). We also identified a fourth mutation (R397L) reported in a previous work. Functional characterisation of these mutations revealed that insertion of asparagine residue N161 fully inactivates GCK, whereas the M235V and R308W mutations only partially impair enzymatic activity. In contrast, GCK kinetics was almost unaffected by the R397L mutation. Although none of these mutations affected the interaction of GCK with PFKFB1, we found that the R308W mutation caused protein instability and increased the strength of interaction with GCKR. CONCLUSIONS/INTERPRETATION Our results show that different MODY2 mutations impair GCK function through different mechanisms such as enzymatic activity, protein stability and increased interaction with GCKR, helping further elucidate the regulation of GCK activity.
Collapse
Affiliation(s)
- C M García-Herrero
- Department of Biochemistry and Molecular Biology III, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Application of nutrigenomic concepts to Type 2 diabetes mellitus. Nutr Metab Cardiovasc Dis 2007; 17:89-103. [PMID: 17276047 DOI: 10.1016/j.numecd.2006.11.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 11/27/2006] [Accepted: 11/28/2006] [Indexed: 12/13/2022]
Abstract
The genetic makeup that individuals inherit from their ancestors is responsible for variation in responses to food and susceptibility to chronic diseases such as Type 2 diabetes mellitus (T2DM). Common variations in gene sequences, such as single nucleotide polymorphisms, produce differences in complex traits such as height or weight potential, food metabolism, food-gene interactions, and disease susceptibilities. Nutritional genomics, or nutrigenomics, is the study of how foods affect the expression of genetic information in an individual and how an individual's genetic makeup affects the metabolism and response to nutrients and other bioactive components in food. Since both diet and genes alter one's health and susceptibility to disease, identifying genes that are regulated by diet and that cause or contribute to chronic diseases could result in the development of diagnostic tools, individualized intervention, and eventually strategies for maintaining health. Translating this research through clinical studies promises contributions to the development of personalized medicine that includes nutritional as well as drug interventions. Reviewed here are the key nutrigenomic concepts that help explain aspects of the development and complexity of T2DM.
Collapse
|