1
|
Alfahel L, Rajkovic A, Israelson A. Translational challenges in amyotrophic lateral sclerosis therapy with macrophage migration inhibitory factor. Neural Regen Res 2025; 20:2583-2584. [PMID: 39503423 PMCID: PMC11801292 DOI: 10.4103/nrr.nrr-d-24-00616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 02/08/2025] Open
Affiliation(s)
- Leenor Alfahel
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel; The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Aleksandar Rajkovic
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel; The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Adrian Israelson
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel; The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
2
|
Guo S, Zhao Y, Yuan Y, Liao Y, Jiang X, Wang L, Lu W, Shi J. Progress in the development of macrophage migration inhibitory factor small-molecule inhibitors. Eur J Med Chem 2025; 286:117280. [PMID: 39854942 DOI: 10.1016/j.ejmech.2025.117280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/08/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025]
Abstract
Macrophage migration inhibitory factor (MIF) functions as a critical cytokine regulating inflammatory and immune responses. Extensive research has demonstrated its involvement in the progression of various cancers, autoimmune diseases, and inflammatory disorders, establishing it as a pivotal target for anti-inflammatory and anticancer interventions. Therapeutic strategies aimed at MIF primarily focus on suppressing its activity through small molecule inhibitors and natural compounds. This review synthesizes current knowledge on MIF, encompassing its structural characteristics, enzymatic functions, signaling pathways, and roles in disease pathogenesis. Additionally, it provides an in-depth analysis of recent advancements in MIF inhibitor development, including design methodologies, structure-activity relationships, advanced eutectic analysis techniques, and key experimental findings. The discussion aims to support the development of safer, more effective, and highly selective small molecule inhibitors targeting MIF.
Collapse
Affiliation(s)
- Shujin Guo
- Department of Health Management Center, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yingying Zhao
- Department of Geriatric Medicine, School of Medicine and Life Science, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Yuan
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 611756, China
| | - Yang Liao
- Department of Geriatric Medicine, School of Medicine and Life Science, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuepan Jiang
- Department of Geriatric Medicine, School of Medicine and Life Science, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Wang
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Wei Lu
- Department of Dermatology and Venereology, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Pressley KR, Naseem Y, Nalawade S, Forsthuber TG. The distinct functions of MIF in inflammatory cardiomyopathy. Front Immunol 2025; 16:1544484. [PMID: 40092999 PMCID: PMC11906721 DOI: 10.3389/fimmu.2025.1544484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/10/2025] [Indexed: 03/19/2025] Open
Abstract
The immune system plays a crucial role in cardiac homeostasis and disease, and the innate and adaptive immune systems can be beneficial or detrimental in cardiac injury. The pleiotropic proinflammatory cytokine macrophage migration inhibitory factor (MIF) is involved in the pathogenesis of many human disease conditions, including heart diseases and inflammatory cardiomyopathies. Inflammatory cardiomyopathies are frequently observed after microbial infection but can also be caused by systemic immune-mediated diseases, drugs, and toxic substances. Immune cells and MIF are implicated in many of these conditions and may affect progression of inflammatory cardiomyopathy (ICM) to myocardial remodeling and dilated cardiomyopathy (DCM). The potential for targeting MIF therapeutically in patients with inflammatory diseases is an active area of investigation. Here we review the current literature supporting the role(s) of MIF in ICM and cardiac dysfunction. We posit that future research to further elucidate the underlying functions of MIF in cardiac pathologies is warranted.
Collapse
Affiliation(s)
- Kyle R. Pressley
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, United States
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Yashfa Naseem
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Saisha Nalawade
- Department of Pre-clinical Immunology, Corner Therapeutics, Watertown, MA, United States
| | - Thomas G. Forsthuber
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
4
|
Srivastava A, Nair A, Dawson OCO, Gao R, Liu L, Craig JK, Battaile KP, Harmon EK, Barrett LK, Van Voorhis WC, Subramanian S, Myler PJ, Lovell S, Asojo OA, Darwiche R. Structures of Trichomonas vaginalis macrophage migratory inhibitory factor. Acta Crystallogr F Struct Biol Commun 2024; 80:S2053230X24011105. [PMID: 39601418 PMCID: PMC11614108 DOI: 10.1107/s2053230x24011105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
The unicellular parasitic protozoan Trichomonas vaginalis causes trichomoniasis, the most prevalent nonviral sexually transmitted disease globally. T. vaginalis evades host immune responses by producing homologs of host proteins, including cytokines such as macrophage migration inhibitory factor. T. vaginalis macrophage migration inhibitory factor (TvMIF) helps to facilitate the survival of T. vaginalis during nutritional stress conditions, increases prostate cell proliferation and invasiveness, and induces inflammation-related cellular pathways, thus mimicking the ability of human MIF to increase inflammation and cell proliferation. The production, crystallization and three structures of N-terminally hexahistidine-tagged TvMIF reveal a prototypical MIF trimer with a topology similar to that of human homologs (hMIF-1 and hMIF-2). The N-terminal tag obscures the expected pyruvate-binding site. The similarity of TvMIF to its human homologs can be exploited for structure-based drug discovery.
Collapse
Affiliation(s)
- Aruesha Srivastava
- California Institute of Technology1200 East California BoulevardPasadenaCA91125USA
| | - Aryana Nair
- Reedy High School, 3003 Stonebrook Parkway, Frisco, Texas, USA
| | | | - Raymond Gao
- Grafton High School, 403 Grafton Drive, Yorktown, Virginia, USA
| | - Lijun Liu
- Protein Structure and X-ray Crystallography Laboratory, 2034 Becker Drive, Lawrence, KS66047, USA
- Seattle Structural Genomics Center for Infectious Diseases, Seattle, Washington, USA
| | - Justin K. Craig
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | | | - Elizabeth K. Harmon
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Lynn K. Barrett
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Wesley C. Van Voorhis
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Sandhya Subramanian
- Seattle Structural Genomics Center for Infectious Diseases, Seattle, Washington, USA
- Center for Global Infectious Disease Research, Seattle, Washington, USA
| | - Peter J. Myler
- Seattle Structural Genomics Center for Infectious Diseases, Seattle, Washington, USA
- Center for Global Infectious Disease Research, Seattle, Washington, USA
| | - Scott Lovell
- Protein Structure and X-ray Crystallography Laboratory, 2034 Becker Drive, Lawrence, KS66047, USA
- Seattle Structural Genomics Center for Infectious Diseases, Seattle, Washington, USA
| | | | - Rabih Darwiche
- Department of BiologyUniversity of FribourgChemin du Musée 101700FribourgSwitzerland
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonMA02115USA
- Suliman S. Olayan School of Business, American University of Beirut, PO Box 11-0236, Riad El-Solh, Beirut, Lebanon
| |
Collapse
|
5
|
Kimble AD, Dawson OCO, Liu L, Subramanian S, Cooper A, Battaile K, Craig J, Harmon E, Myler P, Lovell S, Asojo OA. Crystal structure of N-terminally hexahistidine-tagged Onchocerca volvulus macrophage migration inhibitory factor-1. Acta Crystallogr F Struct Biol Commun 2024; 80:S2053230X24010550. [PMID: 39503735 PMCID: PMC11614107 DOI: 10.1107/s2053230x24010550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024] Open
Abstract
Onchocerca volvulus causes blindness, onchocerciasis, skin infections and devastating neurological diseases such as nodding syndrome. New treatments are needed because the currently used drug, ivermectin, is contraindicated in pregnant women and those co-infected with Loa loa. The Seattle Structural Genomics Center for Infectious Disease (SSGCID) produced, crystallized and determined the apo structure of N-terminally hexahistidine-tagged O. volvulus macrophage migration inhibitory factor-1 (His-OvMIF-1). OvMIF-1 is a possible drug target. His-OvMIF-1 has a unique jellyfish-like structure with a prototypical macrophage migration inhibitory factor (MIF) trimer as the `head' and a unique C-terminal `tail'. Deleting the N-terminal tag reveals an OvMIF-1 structure with a larger cavity than that observed in human MIF that can be targeted for drug repurposing and discovery. Removal of the tag will be necessary to determine the actual biological oligomer of OvMIF-1 because size-exclusion chomatographic analysis of His-OvMIF-1 suggests a monomer, while PISA analysis suggests a hexamer stabilized by the unique C-terminal tails.
Collapse
Affiliation(s)
- Amber D. Kimble
- Department of Clinical Laboratory Science, College of Nursing and Allied Health SciencesHoward University801 North Capitol Street, 4th FloorWashingtonDC20002USA
| | | | - Lijun Liu
- Protein Structure and X-ray Crystallography LaboratoryUniversity of Kansas2034 Becker DriveLawrenceKS66047USA
- Seattle Structural Genomics Center for Infectious Diseases, Seattle, Washington, USA
| | - Sandhya Subramanian
- Seattle Structural Genomics Center for Infectious Diseases, Seattle, Washington, USA
- Center for Global Infectious Disease ResearchSeattle Children’s Research Institute307 Westlake Avenue, North Suite 500SeattleWA98109USA
| | - Anne Cooper
- Protein Structure and X-ray Crystallography LaboratoryUniversity of Kansas2034 Becker DriveLawrenceKS66047USA
- Seattle Structural Genomics Center for Infectious Diseases, Seattle, Washington, USA
| | - Kevin Battaile
- NYX, New York Structural Biology Center, Upton, NY11973, USA
| | - Justin Craig
- Seattle Structural Genomics Center for Infectious Diseases, Seattle, Washington, USA
| | - Elizabeth Harmon
- Seattle Structural Genomics Center for Infectious Diseases, Seattle, Washington, USA
| | - Peter Myler
- Seattle Structural Genomics Center for Infectious Diseases, Seattle, Washington, USA
- Center for Global Infectious Disease ResearchSeattle Children’s Research Institute307 Westlake Avenue, North Suite 500SeattleWA98109USA
| | - Scott Lovell
- Seattle Structural Genomics Center for Infectious Diseases, Seattle, Washington, USA
- University of Kansas2034 Becker DriveLawrenceKS66218USA
| | | |
Collapse
|
6
|
Argueta C, Parkins A, Pantouris G. Conformational Flexibility of the C-Terminal Region Influences Distal Active Site Residues Across the Tautomerase Superfamily. Int J Mol Sci 2024; 25:12617. [PMID: 39684328 DOI: 10.3390/ijms252312617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/14/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Consisting of more than 11,000 members distributed over five families, the tautomerase superfamily (TSF) is a large collection of proteins with diverse biological functions. While much attention has been given to individual TSF enzymes, a majority remain structurally and functionally uncharacterized. Given its large size, studying a representative member of each family offers a viable approach for extracting mechanistic insights applicable to the entire superfamily. In this study, cis-3-chloroacrylic acid dehalogenase (cis-CaaD), 5-carboxymethyl-2-hydroxymuconate isomerase (CHMI), malonate semialdehyde decarboxylase (MSAD), and 4-oxalocrotonate tautomerase (4-OT) were referenced against the well-studied macrophage migration inhibitory factor (MIF) and D-dopachrome tautomerase (D-DT) using triplicate 1 μs molecular dynamics (MD) simulations for a total of 18 μs. Through root mean square fluctuation (RMSF) measurements, correlation analyses, and comparisons to previous crystallographic structures, we reveal key mechanistic insights that promote the understanding of the catalytic activities in TSF. Collectively, our findings from these functionally diverse TSF proteins provide key information on allosteric coupling, long-range intra- and inter-subunit communications as well as structure-activity relationships that enable new studies in the superfamily.
Collapse
Affiliation(s)
| | - Andrew Parkins
- Department of Chemistry, University of the Pacific, Stockton, CA 95211, USA
| | - Georgios Pantouris
- Department of Chemistry, University of the Pacific, Stockton, CA 95211, USA
| |
Collapse
|
7
|
Osipyan A, Bulai RG, Wu Z, de Witte J, van der Velde JJH, Kader M, van der Wouden PE, Poelarends GJ, Dekker FJ. The synthesis of 1,2,3-triazoles as binders of D-dopachrome tautomerase (D-DT) for the development of dual-targeting inhibitors. Eur J Med Chem 2024; 276:116665. [PMID: 39013358 DOI: 10.1016/j.ejmech.2024.116665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/28/2024] [Accepted: 07/06/2024] [Indexed: 07/18/2024]
Abstract
Despite recent advances in the treatment of cancer, the issue of therapy resistance remains one of the most significant challenges in the field. In this context, signaling molecules, such as cytokines have emerged as promising targets for drug discovery. Examples of cytokines include macrophage migration inhibitory factor (MIF) and its closely related analogue D-dopachrome tautomerase (D-DT). In this study we aim to develop a new chemical class of D-DT binders and subsequently create a dual-targeted inhibitor that can potentially trigger D-DT degradation via the Proteolysis Targeting Chimera (PROTAC) technology. Here we describe the synthesis of a novel library of 1,2,3-triazoles targeting D-DT. The most potent derivative 19c (IC50 of 0.5 ± 0.04 μM with high selectivity toward D-DT) was attached to a cereblon (CRBN) ligand through aliphatic amides, which were synthesized by a remarkably convenient and effective solvent-free reaction. Enzyme inhibition experiments led to the discovery of the compound 10d, which exhibited moderate inhibitory potency (IC50 of 5.9 ± 0.7 μM), but unfortunately demonstrated no activity in D-DT degradation experiments. In conclusion, this study offers valuable insight into the SAR of D-DT inhibition, paving the way for the development of novel molecules as tools to study D-DT functions in tumor proliferation and, ultimately, new therapeutics for cancer treatment.
Collapse
Affiliation(s)
- Angelina Osipyan
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV, Groningen, the Netherlands
| | - Radu-George Bulai
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV, Groningen, the Netherlands
| | - Zhengyang Wu
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV, Groningen, the Netherlands
| | - Jarno de Witte
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV, Groningen, the Netherlands
| | - Jesse J H van der Velde
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV, Groningen, the Netherlands
| | - Mohammed Kader
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV, Groningen, the Netherlands
| | - Petra E van der Wouden
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV, Groningen, the Netherlands
| | - Gerrit J Poelarends
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV, Groningen, the Netherlands
| | - Frank J Dekker
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV, Groningen, the Netherlands.
| |
Collapse
|
8
|
Khezrian A, Shojaeian A, Khaghani Boroujeni A, Amini R. Therapeutic Opportunities in Breast Cancer by Targeting Macrophage Migration Inhibitory Factor as a Pleiotropic Cytokine. Breast Cancer (Auckl) 2024; 18:11782234241276310. [PMID: 39246383 PMCID: PMC11380135 DOI: 10.1177/11782234241276310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/28/2024] [Indexed: 09/10/2024] Open
Abstract
As a heterogeneous disease, breast cancer (BC) has been characterized by the uncontrolled proliferation of mammary epithelial cells. The tumor microenvironment (TME) also contains inflammatory cells, fibroblasts, the extracellular matrix (ECM), and soluble factors that all promote BC progression. In this sense, the macrophage migration inhibitory factor (MIF), a pleiotropic pro-inflammatory cytokine and an upstream regulator of the immune response, enhances breast tumorigenesis through escalating cancer cell proliferation, survival, angiogenesis, invasion, metastasis, and stemness, which then brings tumorigenic effects by activating key oncogenic signaling pathways and inducing immunosuppression. Against this background, this review was to summarize the current understanding of the MIF pathogenic mechanisms in cancer, particularly BC, and address the central role of this immunoregulatory cytokine in signaling pathways and breast tumorigenesis. Furthermore, different inhibitors, such as small molecules as well as antibodies (Abs) or small interfering RNA (siRNA) and their anti-tumor effects in BC studies were examined. Small molecules and other therapy target MIF. Considering MIF as a promising therapeutic target, further clinical evaluation of MIF-targeted agents in patients with BC was warranted.
Collapse
Affiliation(s)
- Ali Khezrian
- Research Center for Molecular Medicine, Institute of Cancer, Avicenna Health Research Institute (AHRI), Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Shojaeian
- Research Center for Molecular Medicine, Institute of Cancer, Avicenna Health Research Institute (AHRI), Hamadan University of Medical Sciences, Hamadan, Iran
| | - Armin Khaghani Boroujeni
- Skin Disease and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Razieh Amini
- Research Center for Molecular Medicine, Institute of Cancer, Avicenna Health Research Institute (AHRI), Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
9
|
Sajko S, Skeens E, Schinagl A, Ferhat M, Mirkina I, Mayer J, Rossmueller G, Thiele M, Lisi GP. Redox-dependent plasticity of oxMIF facilitates its interaction with CD74 and therapeutic antibodies. Redox Biol 2024; 75:103264. [PMID: 38972295 PMCID: PMC11263951 DOI: 10.1016/j.redox.2024.103264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024] Open
Abstract
MIF is a ubiquitous protein involved in proinflammatory processes, which undergoes an oxidation-driven conformational change to oxidized (ox)MIF. We demonstrate that hypochlorous acid, produced by neutrophil-released myeloperoxidase (MPO) under inflammatory conditions, effectively oxidizes MIF into the oxMIF isoform, which is specifically recognized by the anti-oxMIF therapeutic antibody, ON104. NMR investigation of MIF oxidized by the MPO system revealed increased flexibility throughout the MIF structure, including at several catalytic and allosteric sites. Mass spectrometry of MPO-oxMIF revealed methionines as the primary site of oxidation, whereas Pro2 and Tyr99/100 remained almost unmodified. ELISA, SPR and cell-based assays demonstrated that structural changes caused by MPO-driven oxidation promoted binding of oxMIF to its receptor, CD74, which does not occur with native MIF. These data reveal the environment and modifications that facilitate interactions between MIF and its pro-inflammatory receptor, and a route for therapeutic intervention targeting the oxMIF isoform.
Collapse
Affiliation(s)
- Sara Sajko
- OncoOne Research and Development GmbH, Vienna, Austria
| | - Erin Skeens
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, USA
| | | | - Maroua Ferhat
- OncoOne Research and Development GmbH, Vienna, Austria
| | - Irina Mirkina
- OncoOne Research and Development GmbH, Vienna, Austria
| | - Julia Mayer
- OncoOne Research and Development GmbH, Vienna, Austria
| | | | | | - George P Lisi
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, USA
| |
Collapse
|
10
|
Tanese K, Ogata D. The role of macrophage migration inhibitory factor family and CD74 in the pathogenesis of melanoma. Exp Dermatol 2024; 33:e15122. [PMID: 38884501 DOI: 10.1111/exd.15122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
Melanoma is an aggressive tumour with poor prognosis that arises from the malignant transformation of melanocytes. Over the past few decades, intense research into the pathogenesis of melanoma has led to the development of BRAF and immune checkpoint inhibitors, including antibodies against programmed cell death protein 1 (PD-1) and cytotoxic T lymphocyte-associated protein 4 (CTLA-4), which have shown clinically significant efficacy. However, some tumours do not respond to these therapies initially or become treatment resistant. Most melanoma tissues appear to possess biological characteristics that allow them to evade these treatments, and identifying these characteristics is one of the major challenges facing cancer researchers. One such characteristic that has recently gained attention is the role of macrophage migration inhibitory factor (MIF) and its receptor CD74. This review outlines the cellular and molecular functions of CD74, MIF and their family of proteins. We then review their roles in tumours based on previous reports, highlight their pathological significance in melanoma and discuss their potential as therapeutic targets.
Collapse
Affiliation(s)
- Keiji Tanese
- Department of Dermatology, Toho University School of Medicine, Tokyo, Japan
| | - Dai Ogata
- Department of Dermatologic Oncology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
11
|
Fang T, Liu L, Song D, Huang D. The role of MIF in periodontitis: A potential pathogenic driver, biomarker, and therapeutic target. Oral Dis 2024; 30:921-937. [PMID: 36883414 DOI: 10.1111/odi.14558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/08/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023]
Abstract
OBJECTIVE Periodontitis is an inflammatory disease that involves an imbalance in the oral microbiota, activation of inflammatory and immune responses, and alveolar bone destruction. Macrophage migration inhibitory factor (MIF) is a versatile cytokine involved in several pathological reactions, including inflammatory processes and bone destruction, both of which are characteristics of periodontitis. While the roles of MIF in cancer and other immune diseases have been extensively characterized, its role in periodontitis remains inconclusive. RESULTS In this review, we describe a comprehensive analysis of the potential roles of MIF in periodontitis from the perspective of immune response and bone regulation at the cellular and molecular levels. Moreover, we discuss its potential reliability as a novel diagnostic and therapeutic target for periodontitis. CONCLUSION This review can aid dental researchers and clinicians in understanding the current state of MIF-related pathogenesis, diagnosis, and treatment of periodontitis.
Collapse
Affiliation(s)
- Tongfeng Fang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liu Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dongzhe Song
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dingming Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Stijlemans B, De Baetselier P, Van Molle I, Lecordier L, Hendrickx E, Romão E, Vincke C, Baetens W, Schoonooghe S, Hassanzadeh-Ghassabeh G, Korf H, Wallays M, Pinto Torres JE, Perez-Morga D, Brys L, Campetella O, Leguizamón MS, Claes M, Hendrickx S, Mabille D, Caljon G, Remaut H, Roelants K, Magez S, Van Ginderachter JA, De Trez C. Q586B2 is a crucial virulence factor during the early stages of Trypanosoma brucei infection that is conserved amongst trypanosomatids. Nat Commun 2024; 15:1779. [PMID: 38413606 PMCID: PMC10899635 DOI: 10.1038/s41467-024-46067-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 02/09/2024] [Indexed: 02/29/2024] Open
Abstract
Human African trypanosomiasis or sleeping sickness, caused by the protozoan parasite Trypanosoma brucei, is characterized by the manipulation of the host's immune response to ensure parasite invasion and persistence. Uncovering key molecules that support parasite establishment is a prerequisite to interfere with this process. We identified Q586B2 as a T. brucei protein that induces IL-10 in myeloid cells, which promotes parasite infection invasiveness. Q586B2 is expressed during all T. brucei life stages and is conserved in all Trypanosomatidae. Deleting the Q586B2-encoding Tb927.6.4140 gene in T. brucei results in a decreased peak parasitemia and prolonged survival, without affecting parasite fitness in vitro, yet promoting short stumpy differentiation in vivo. Accordingly, neutralization of Q586B2 with newly generated nanobodies could hamper myeloid-derived IL-10 production and reduce parasitemia. In addition, immunization with Q586B2 delays mortality upon a challenge with various trypanosomes, including Trypanosoma cruzi. Collectively, we uncovered a conserved protein playing an important regulatory role in Trypanosomatid infection establishment.
Collapse
Affiliation(s)
- Benoit Stijlemans
- Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium.
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium.
| | - Patrick De Baetselier
- Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Inge Van Molle
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, Brussels, Belgium
| | - Laurence Lecordier
- Biology of Membrane Transport Laboratory, Université Libre de Bruxelles, Gosselies, Belgium
| | - Erika Hendrickx
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Ema Romão
- VIB Nanobody Core, Vrije Universiteit Brussel, Brussels, Belgium
| | - Cécile Vincke
- Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Wendy Baetens
- Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | | | | | - Hannelie Korf
- Laboratory of Hepatology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Marie Wallays
- Laboratory of Hepatology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Joar E Pinto Torres
- Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - David Perez-Morga
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
- Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles, Gosselies, Belgium
| | - Lea Brys
- Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Oscar Campetella
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín-CONICET, Buenos Aires, Argentina
| | - María S Leguizamón
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín-CONICET, Buenos Aires, Argentina
| | - Mathieu Claes
- Laboratory of Microbiology, Parasitology, and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Sarah Hendrickx
- Laboratory of Microbiology, Parasitology, and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Dorien Mabille
- Laboratory of Microbiology, Parasitology, and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology, and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Han Remaut
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, Brussels, Belgium
| | - Kim Roelants
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Stefan Magez
- Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory of Biomedical Research, Ghent University Global Campus, Incheon, South Korea
| | - Jo A Van Ginderachter
- Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Carl De Trez
- Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
13
|
Zhang H, Zhang X, Li H, Wang B, Chen P, Meng J. The roles of macrophage migration inhibitory factor in retinal diseases. Neural Regen Res 2024; 19:309-315. [PMID: 37488883 PMCID: PMC10503606 DOI: 10.4103/1673-5374.379020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/07/2023] [Accepted: 04/28/2023] [Indexed: 07/26/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF), a multifunctional cytokine, is secreted by various cells and participates in inflammatory reactions, including innate and adaptive immunity. There are some evidences that MIF is involved in many vitreoretinal diseases. For example, MIF can exacerbate many types of uveitis; measurements of MIF levels can be used to monitor the effectiveness of uveitis treatment. MIF also alleviates trauma-induced and glaucoma-induced optic nerve damage. Furthermore, MIF is critical for retinal/choroidal neovascularization, especially complex neovascularization. MIF exacerbates retinal degeneration; thus, anti-MIF therapy may help to mitigate retinal degeneration. MIF protects uveal melanoma from attacks by natural killer cells. The mechanism underlying the effects of MIF in these diseases has been demonstrated: it binds to cluster of differentiation 74, inhibits the c-Jun N-terminal kinase pathway, and triggers mitogen-activated protein kinases, extracellular signal-regulated kinase-1/2, and the phosphoinositide-3-kinase/Akt pathway. MIF also upregulates Toll-like receptor 4 and activates the nuclear factor kappa-B signaling pathway. This review focuses on the structure and function of MIF and its receptors, including the effects of MIF on uveal inflammation, retinal degeneration, optic neuropathy, retinal/choroidal neovascularization, and uveal melanoma.
Collapse
Affiliation(s)
- Hongbing Zhang
- Shaanxi Institute of Ophthalmology, Xi’an, Shaanxi Province, China
- Department of Ophthalmology, First Affiliated Hospital of Northwest University, Xi’an, Shaanxi Province, China
| | - Xianjiao Zhang
- Department of Pathology, First Affiliated Hospital of Northwest University, Xi’an, Shaanxi Province, China
| | - Hongsong Li
- Department of Ophthalmology, First Affiliated Hospital of Northwest University, Xi’an, Shaanxi Province, China
| | - Bing Wang
- Department of Ophthalmology, First Affiliated Hospital of Northwest University, Xi’an, Shaanxi Province, China
| | - Pei Chen
- Department of Ophthalmology, First Affiliated Hospital of Northwest University, Xi’an, Shaanxi Province, China
| | - Jiamin Meng
- Department of Ophthalmology, First Affiliated Hospital of Northwest University, Xi’an, Shaanxi Province, China
| |
Collapse
|
14
|
Rupp A, Bahlmann S, Trimpop N, von Pawel J, Holdenrieder S. Lack of clinical utility of serum macrophage migration inhibitory factor (MIF) for monitoring therapy response and estimating prognosis in advanced lung cancer. Tumour Biol 2024; 46:S341-S353. [PMID: 37545291 DOI: 10.3233/tub-230006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND Lung cancer is a major burden to global health and is still among the most frequent and most lethal malignant diseases. Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine involved in a variety of processes including tumorigenesis, formation of a tumor microenvironment and metastasis. It is therefore a potential prognostic biomarker in malignant diseases. OBJECTIVE In this study, we investigated the applicability of MIF in serum samples as a biomarker in lung cancer. METHODS In a retrospective approach, we analyzed the sera of 79 patients with non-small-cell lung cancer (NSCLC) and 14 patients with small-cell lung cancer (SCLC) before the start of chemotherapy, as well as before the second and third chemotherapy cycle, respectively. Serum MIF levels were measured using a sandwich immunoassay with a sulfo-tag-labelled detection antibody, while pro-gastrin releasing peptide (proGRP) levels were determined with an enzyme-linked immunosorbent assay. RESULTS No difference in serum MIF levels between responders and non-responders to chemotherapy was observed at all time points, while proGRP levels were significantly lower in responders before the second chemotherapy cycle (p = 0.012). No differences in biomarker levels depending on the histopathological classification of NSCLC patients was found. Moreover, in ROC curve analyses MIF was not able to distinguish between responders and non-responders to therapy. proGRP could differentiate between responders and non-responders before the second chemotherapy cycle (p = 0.015) with sensitivities of 43% at 90% and 95% specificity, respectively. Likewise, proGRP yielded significantly longer survival times of patients with low proGRP concentrations before the second chemotherapy cycle (p = 0.015) in Kaplan-Meier analyses, yet MIF showed no significant differences in survival times at all time points. Comparison with the biomarkers CEA and CYFRA 21-1 in the same cohort showed that these established biomarkers clearly performed superior to MIF and proGRP. CONCLUSIONS From the present results, there is no indication that serum MIF may serve as a biomarker in prognosis and monitoring of response to therapy in lung cancer. Limitations of this study include its retrospective design, the inclusion of a larger NSCLC and a smaller SCLC subgroup, the classical chemotherapeutic treatment, the use of a non-diagnostic immunoassay (RUO-test) for MIF measurement and the lack of a validation cohort. Strengths of the study are its highly standardized procedures concerning sample collection, preanalytic treatment, measurements and quality control of the laboratory assays.
Collapse
Affiliation(s)
- Alexander Rupp
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Centre Munich, Munich, Germany
| | - Sophie Bahlmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Nicolai Trimpop
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | | | - Stefan Holdenrieder
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Centre Munich, Munich, Germany
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
15
|
Spiller L, Manjula R, Leissing F, Basquin J, Bourilhon P, Sinitski D, Brandhofer M, Levecque S, Gerra S, Sabelleck B, Zhang L, Feederle R, Flatley A, Hoffmann A, Panstruga R, Bernhagen J, Lolis E. Plant MDL proteins synergize with the cytokine MIF at CXCR2 and CXCR4 receptors in human cells. Sci Signal 2023; 16:eadg2621. [PMID: 37988455 DOI: 10.1126/scisignal.adg2621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 10/27/2023] [Indexed: 11/23/2023]
Abstract
Mammalian macrophage migration inhibitory factor (MIF) and its paralog, D-dopachrome tautomerase, are multifunctional inflammatory cytokines. Plants have orthologous MIF and D-dopachrome tautomerase-like (MDL) proteins that mimic some of the effects of MIF on immune cells in vitro. We explored the structural and functional similarities between the three Arabidopsis thaliana MDLs and MIF. X-ray crystallography of the MDLs revealed high structural similarity between MDL and MIF homotrimers and suggested a potential explanation for the lack of tautomerase activity in the MDLs. MDL1 and MDL2 interacted with each other and with MIF in vitro, in yeast, and in plant leaves and formed hetero-oligomeric complexes with MIF in vitro. The MDLs stimulated signaling through the MIF receptors CXCR2 or CXCR4 and enhanced the responses to MIF in a yeast reporter system, in human neutrophils, and in human lung epithelial cells. Pharmacological inhibitors that disrupted MIF activity or prevented the formation of MIF-MDL hetero-oligomers blocked the observed synergism. These findings demonstrate that MDLs can enhance cellular responses to MIF, which may have functional implications in tissues exposed to MDLs from the diet or environment.
Collapse
Affiliation(s)
- Lukas Spiller
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06510, USA
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität (LMU) München, LMU University Hospital, 81377 Munich, Germany
| | - Ramu Manjula
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Franz Leissing
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52056 Aachen, Germany
| | - Jerome Basquin
- Department of Structural Cell Biology and Crystallization Facility, Max-Planck-Institute for Biochemistry, 82152 Martinsried, Germany
| | - Priscila Bourilhon
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität (LMU) München, LMU University Hospital, 81377 Munich, Germany
| | - Dzmitry Sinitski
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität (LMU) München, LMU University Hospital, 81377 Munich, Germany
| | - Markus Brandhofer
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität (LMU) München, LMU University Hospital, 81377 Munich, Germany
| | - Sophie Levecque
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52056 Aachen, Germany
| | - Simona Gerra
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität (LMU) München, LMU University Hospital, 81377 Munich, Germany
| | - Björn Sabelleck
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52056 Aachen, Germany
| | - Lin Zhang
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität (LMU) München, LMU University Hospital, 81377 Munich, Germany
- Department of Anesthesiology, LMU University Hospital, 81377 Munich, Germany
| | - Regina Feederle
- Monoclonal Antibody Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Andrew Flatley
- Monoclonal Antibody Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
| | - Adrian Hoffmann
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität (LMU) München, LMU University Hospital, 81377 Munich, Germany
- Department of Anesthesiology, LMU University Hospital, 81377 Munich, Germany
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52056 Aachen, Germany
| | - Jürgen Bernhagen
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität (LMU) München, LMU University Hospital, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Elias Lolis
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
16
|
Li W, Xie J, Yang L, Yang Y, Yang L, Li L. 15-deoxy-Δ 12,14-prostaglandin J 2 relieved acute liver injury by inhibiting macrophage migration inhibitory factor expression via PPARγ in hepatocyte. Int Immunopharmacol 2023; 121:110491. [PMID: 37329807 DOI: 10.1016/j.intimp.2023.110491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 06/19/2023]
Abstract
15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) exhibited potential to alleviate liver inflammation in chronic injury but was less studied in acute injury. Acute liver injury was associated with elevated macrophage migration inhibitory factor (MIF) levels in damaged hepatocytes. This study aimed to investigate the regulatory mechanism of hepatocyte-derived MIF by 15d-PGJ2 and its subsequent impact on acute liver injury. In vivo, mouse models were established by carbon tetrachloride (CCl4) intraperitoneal injection, with or without 15d-PGJ2 administration. 15d-PGJ2 treatment reduced the necrotic areas induced by CCl4. In the same mouse model constructed using enhanced green fluorescent protein (EGFP)-labeled bone marrow (BM) chimeric mice, 15d-PGJ2 reduced CCl4 induced BM-derived macrophage (BMM, EGFP+F4/80+) infiltration and inflammatory cytokine expression. Additionally, 15d-PGJ2 down-regulated liver and serum MIF levels; liver MIF expression was positively correlated with BMM percentage and inflammatory cytokine expression. In vitro, 15d-PGJ2 inhibited Mif expression in hepatocytes. In primary hepatocytes, reactive oxygen species inhibitor (NAC) showed no effect on MIF inhibition by 15d-PGJ2; PPARγ inhibitor (GW9662) abolished 15d-PGJ2 suppressed MIF expression and antagonists (troglitazone, ciglitazone) mimicked its function. In Pparg silenced AML12 cells, the suppression of MIF by 15d-PGJ2 was weakened; 15d-PGJ2 promoted PPARγ activation in AML 12 cells and primary hepatocytes. Furthermore, the conditioned medium of recombinant MIF- and lipopolysaccharide-treated AML12 respectively promoted BMM migration and inflammatory cytokine expression. Conditioned medium of 15d-PGJ2- or siMif-treated injured AML12 suppressed these effects. Collectively, 15d-PGJ2 activated PPARγ to suppress MIF expression in injured hepatocytes, reducing BMM infiltration and pro-inflammatory activation, ultimately alleviating acute liver injury.
Collapse
Affiliation(s)
- Weiyang Li
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Jieshi Xie
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Le Yang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Yuanru Yang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Lin Yang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Liying Li
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
17
|
Guan D, Li Y, Cui Y, Zhao H, Dong N, Wang K, Ren D, Song T, Wang X, Jin S, Gao Y, Wang M. 5-HMF attenuates inflammation and demyelination in experimental autoimmune encephalomyelitis mice by inhibiting the MIF-CD74 interaction. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1222-1233. [PMID: 37431183 PMCID: PMC10448060 DOI: 10.3724/abbs.2023105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 02/10/2023] [Indexed: 07/12/2023] Open
Abstract
The neuroprotective role of 5-hydroxymethyl-2-furfural (5-HMF) has been demonstrated in a variety of neurological diseases. The aim of this study is to investigate the effect of 5-HMF on multiple sclerosis (MS). IFN-γ-stimulated murine microglia (BV2 cells) are considered a cell model of MS. With 5-HMF treatment, microglial M1/2 polarization and cytokine levels are detected. The interaction of 5-HMF with migration inhibitory factor (MIF) is predicted using online databases. The experimental autoimmune encephalomyelitis (EAE) mouse model is established, followed by a 5-HMF injection. The results show that 5-HMF facilitates IFN-γ-stimulated microglial M2 polarization and attenuates the inflammatory response. According to the network pharmacology and molecular docking results, 5-HMF has a binding site for MIF. Further results show that blocking MIF activity or silencing CD74 enhances microglial M2 polarization, reduces inflammatory activity, and prevents ERK1/2 phosphorylation. 5-HMF inhibits the MIF-CD74 interaction by binding to MIF, thereby inhibiting microglial M1 polarization and enhancing the anti-inflammatory response. 5-HMF ameliorates EAE, inflammation, and demyelination in vivo. In conclusion, our research indicates that 5-HMF promotes microglial M2 polarization by inhibiting the MIF-CD74 interaction, thereby attenuating inflammation and demyelination in EAE mice.
Collapse
Affiliation(s)
- Dongsheng Guan
- Department of Neurologythe Second Clinical Medical CollegeHenan University of Traditional Chinese MedicineZhengzhou450002China
| | - Yingxia Li
- The College of Basic MedicineHenan University of Traditional Chinese MedicineZhengzhou450046China
| | - Yinglin Cui
- Department of Neurologythe Second Clinical Medical CollegeHenan University of Traditional Chinese MedicineZhengzhou450002China
| | - Huanghong Zhao
- Department of Neurologythe Second Clinical Medical CollegeHenan University of Traditional Chinese MedicineZhengzhou450002China
| | - Ning Dong
- Department of Neurologythe Second Clinical Medical CollegeHenan University of Traditional Chinese MedicineZhengzhou450002China
| | - Kun Wang
- Department of Pharmacythe Second Clinical Medical CollegeHenan University of Traditional Chinese MedicineZhengzhou450002China
| | - Deqi Ren
- Department of Neurologythe Second Clinical Medical CollegeHenan University of Traditional Chinese MedicineZhengzhou450002China
| | - Tiantian Song
- Department of Neurologythe Second Clinical Medical CollegeHenan University of Traditional Chinese MedicineZhengzhou450002China
| | - Xiaojing Wang
- Department of Neurologythe Second Clinical Medical CollegeHenan University of Traditional Chinese MedicineZhengzhou450002China
| | - Shijie Jin
- Department of Neurologythe Second Clinical Medical CollegeHenan University of Traditional Chinese MedicineZhengzhou450002China
| | - Yinghe Gao
- Department of Neurologythe Second Clinical Medical CollegeHenan University of Traditional Chinese MedicineZhengzhou450002China
| | - Mengmeng Wang
- Department of Neurologythe Second Clinical Medical CollegeHenan University of Traditional Chinese MedicineZhengzhou450002China
| |
Collapse
|
18
|
Wang K, Zhou W, Jin X, Shang X, Wu X, Wen L, Li S, Hong Y, Ke J, Xu Y, Yuan H, Hu F. Enhanced brain delivery of hypoxia-sensitive liposomes by hydroxyurea for rescue therapy of hyperacute ischemic stroke. NANOSCALE 2023. [PMID: 37377137 DOI: 10.1039/d3nr01071f] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Ischemic stroke is characterized by high morbidity, disability, and mortality. Unfortunately, the only FDA-approved pharmacological thrombolytic, alteplase, has a narrow therapeutic window of only 4.5 h. Other drugs like neuroprotective agents have not been clinically used because of their low efficacy. To improve the efficacy of neuroprotective agents and the effectiveness of rescue therapies for hyperacute ischemic stroke, we investigated and verified the variation trends of the blood-brain barrier (BBB) permeability and regional cerebral blood flow over 24 h in rats that had ischemic strokes. Hypoperfusion and the biphasic increase of BBB permeability are still the main limiting factors for lesion-specific drug distribution and drug brain penetration. Herein, the nitric oxide donor hydroxyurea (HYD) was reported to downregulate the expression of tight junction proteins and upregulate intracellular nitric oxide content in the brain microvascular endothelial cells subjected to oxygen-glucose deprivation, which was shown to facilitate the transport of liposomes across brain endothelial monolayer in an in vitro model. HYD also increased the BBB permeability and promoted microcirculation in the hyperacute phase of stroke. The neutrophil-like cell-membrane-fusogenic hypoxia-sensitive liposomes exhibited excellent performance in targeting the inflamed brain microvascular endothelial cells, enhancing cell association, and promoting rapid hypoxic-responsive release in the hypoxic microenvironment. Overall, the combined HYD and hypoxia-sensitive liposome dosing regimen effectively decreased the cerebral infarction volume and relieved neurological dysfunction in rats that had ischemic strokes; these therapies were involved in the anti-oxidative stress effect and the neurotrophic effect mediated by macrophage migration inhibitory factor.
Collapse
Affiliation(s)
- Kai Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China.
| | - Wentao Zhou
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China.
| | - Xiangyu Jin
- Department of Pharmacy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Xuwei Shang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China.
| | - Xiaomei Wu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China.
| | - Lijuan Wen
- National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, College of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China
| | - Sufen Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China.
| | - Yiling Hong
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China.
| | - Jia Ke
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China.
| | - Yichong Xu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China.
| | - Hong Yuan
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China.
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
| | - Fuqiang Hu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China.
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
| |
Collapse
|
19
|
Parkins A, Sandin SI, Knittel J, Franz AH, Ren J, de Alba E, Pantouris G. Underrepresented Impurities in 4-Hydroxyphenylpyruvate Affect the Catalytic Activity of Multiple Enzymes. Anal Chem 2023; 95:4957-4965. [PMID: 36877482 DOI: 10.1021/acs.analchem.2c04969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is a key immunostimulatory protein with regulatory properties in several disorders, including inflammation and cancer. All the reported inhibitors that target the biological activities of MIF have been discovered by testing against its keto/enol tautomerase activity. While the natural substrate is still unknown, model MIF substrates are used for kinetic experiments. The most extensively used model substrate is 4-hydroxyphenyl pyruvate (4-HPP), a naturally occurring intermediate of tyrosine metabolism. Here, we examine the impact of 4-HPP impurities in the precise and reproducible determination of MIF kinetic data. To provide unbiased evaluation, we utilized 4-HPP powders from five different manufacturers. Biochemical and biophysical analyses showed that the enzymatic activity of MIF is highly influenced by underrepresented impurities found in 4-HPP. Besides providing inconsistent turnover results, the 4-HPP impurities also influence the accurate calculation of ISO-1's inhibition constant, an MIF inhibitor that is broadly used for in vitro and in vivo studies. The macromolecular NMR data show that 4-HPP samples from different manufacturers result in differential chemical shift perturbations of amino acids in MIF's active site. Our MIF-based conclusions were independently evaluated and confirmed by 4-hydroxyphenylpyruvate dioxygenase (HPPD) and D-dopachrome tautomerase (D-DT); two additional enzymes that utilize 4-HPP as a substrate. Collectively, these results explain inconsistencies in previously reported inhibition values, highlight the effect of impurities on the accurate determination of kinetic parameters, and serve as a tool for designing error-free in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Andrew Parkins
- Department of Chemistry, University of the Pacific, Stockton, California 95211, United States
| | - Suzanne I Sandin
- Department of Bioengineering, University of California, Merced, California 95343, United States
- Chemistry and Biochemistry Graduate Program, University of California, Merced, California 95343, United States
| | - Jonathon Knittel
- Department of Chemistry, University of the Pacific, Stockton, California 95211, United States
| | - Andreas H Franz
- Department of Chemistry, University of the Pacific, Stockton, California 95211, United States
| | - Jianhua Ren
- Department of Chemistry, University of the Pacific, Stockton, California 95211, United States
| | - Eva de Alba
- Department of Bioengineering, University of California, Merced, California 95343, United States
| | - Georgios Pantouris
- Department of Chemistry, University of the Pacific, Stockton, California 95211, United States
| |
Collapse
|
20
|
Parkins A, Das P, Prahaladan V, Rangel VM, Xue L, Sankaran B, Bhandari V, Pantouris G. 2,5-Pyridinedicarboxylic acid is a bioactive and highly selective inhibitor of D-dopachrome tautomerase. Structure 2023; 31:355-367.e4. [PMID: 36805127 DOI: 10.1016/j.str.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/05/2023] [Accepted: 01/24/2023] [Indexed: 02/19/2023]
Abstract
Macrophage migration inhibitory factor (MIF) and D-dopachrome tautomerase (D-DT) are two pleotropic cytokines, which are coexpressed in various cell types to activate the cell surface receptor CD74. Via the MIF/CD74 and D-DT/CD74 axes, the two proteins exhibit either beneficial or deleterious effect on human diseases. In this study, we report the identification of 2,5-pyridinedicarboxylic acid (a.k.a. 1) that effectively blocks the D-DT-induced activation of CD74 and demonstrates an impressive 79-fold selectivity for D-DT over MIF. Crystallographic characterization of D-DT-1 elucidates the binding features of 1 and reveals previously unrecognized differences between the MIF and D-DT active sites that explain the ligand's functional selectivity. The commercial availability, low cost, and high selectivity make 1 the ideal tool for studying the pathophysiological functionality of D-DT in disease models. At the same time, our comprehensive biochemical, computational, and crystallographic analyses serve as a guide for generating highly potent and selective D-DT inhibitors.
Collapse
Affiliation(s)
- Andrew Parkins
- Department of Chemistry, University of the Pacific, Stockton, CA 95211, USA
| | - Pragnya Das
- Division of Neonatology, Department of Pediatrics, The Children's Regional Hospital at Cooper, Camden, NJ 08103, USA
| | - Varsha Prahaladan
- Division of Neonatology, Department of Pediatrics, The Children's Regional Hospital at Cooper, Camden, NJ 08103, USA
| | - Vanessa M Rangel
- Department of Chemistry, University of the Pacific, Stockton, CA 95211, USA
| | - Liang Xue
- Department of Chemistry, University of the Pacific, Stockton, CA 95211, USA
| | - Banumathi Sankaran
- Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, 1 Cyclotron Road, Lawrence Berkeley Nat. Lab, Berkeley, CA 94720, USA
| | - Vineet Bhandari
- Division of Neonatology, Department of Pediatrics, The Children's Regional Hospital at Cooper, Camden, NJ 08103, USA
| | - Georgios Pantouris
- Department of Chemistry, University of the Pacific, Stockton, CA 95211, USA.
| |
Collapse
|
21
|
Zhao J, Wang X, Li Q, Lu C, Li S. The relevance of serum macrophage migratory inhibitory factor and cognitive dysfunction in patients with cerebral small vascular disease. Front Aging Neurosci 2023; 15:1083818. [PMID: 36824264 PMCID: PMC9941340 DOI: 10.3389/fnagi.2023.1083818] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/18/2023] [Indexed: 02/10/2023] Open
Abstract
Cerebral small vascular disease (CSVD) is a common type of cerebrovascular disease, and an important cause of vascular cognitive impairment (VCI) and stroke. The disease burden is expected to increase further as a result of population aging, an ongoing high prevalence of risk factors (e.g., hypertension), and inadequate management. Due to the poor understanding of pathophysiology in CSVD, there is no effective preventive or therapeutic approach for CSVD. Macrophage migration inhibitory factor (MIF) is a multifunctional cytokine that is related to the occurrence and development of vascular dysfunction diseases. Therefore, MIF may contribute to the pathogenesis of CSVD and VCI. Here, reviewed MIF participation in chronic cerebral ischemia-hypoperfusion and neurodegeneration pathology, including new evidence for CSVD, and its potential role in protection against VCI.
Collapse
Affiliation(s)
- Jianhua Zhao
- Henan Joint International Research Laboratory of Neurorestoratology for Senile Dementia, Henan Key Laboratory of Neurorestoratology, Department of Neurology, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China,*Correspondence: Jianhua Zhao,
| | - Xiaoting Wang
- Henan Joint International Research Laboratory of Neurorestoratology for Senile Dementia, Henan Key Laboratory of Neurorestoratology, Department of Neurology, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Qiong Li
- Henan Joint International Research Laboratory of Neurorestoratology for Senile Dementia, Henan Key Laboratory of Neurorestoratology, Department of Neurology, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Chengbiao Lu
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China
| | - Shaomin Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
22
|
Macrophage Migration Inhibitory Factor in Major Depressive Disorder: A Multilevel Pilot Study. Int J Mol Sci 2022; 23:ijms232415460. [PMID: 36555097 PMCID: PMC9779321 DOI: 10.3390/ijms232415460] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a controversially discussed inflammatory marker in major depressive disorder (MDD). While some studies show an association of high MIF protein levels with depression, animal models have yielded conflicting results. Thus, it remains elusive as to whether MIF plays an anti- or pro-depressive role. Therefore, we aimed to examine the potential of MIF at the genetic, expression and protein levels as a risk factor and biomarker to diagnose, monitor, or predict the course of MDD. Patients with a current major depressive episode (n = 66 with, and n = 63 without, prior medication) and remitted patients (n = 39) were compared with healthy controls (n = 61). Currently depressed patients provided a second blood sample after three weeks of therapy. Depression severity was assessed by self-evaluation and clinician rating scales. We genotyped for three MIF polymorphisms and analyzed peripheral MIF expression and serum levels. The absence of minor allele homozygous individuals in the large group of 96 female patients compared with 10-16% in female controls suggests a protective effect for MDD, which was not observed in the male group. There were no significant group differences of protein and expression levels, however, both showed predictive potential for the course of depression severity in some subgroups. While MIF protein levels, but not MIF expression, decreased during treatment, they were not associated with changes in depression severity. This project is the first to investigate three biological levels of MIF in depression. The data hint toward a genetic effect in women, but do not provide robust evidence for the utility of MIF as a biomarker for the diagnosis or monitoring of MDD. The observed predictive potential requires further analysis, emphasizing future attention to confounding factors such as sex and premedication.
Collapse
|
23
|
Zan C, Yang B, Brandhofer M, El Bounkari O, Bernhagen J. D-dopachrome tautomerase in cardiovascular and inflammatory diseases-A new kid on the block or just another MIF? FASEB J 2022; 36:e22601. [PMID: 36269019 DOI: 10.1096/fj.202201213r] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/11/2022]
Abstract
Macrophage migration inhibitory factor (MIF) as well as its more recently described structural homolog D-dopachrome tautomerase (D-DT), now also termed MIF-2, are atypical cytokines and chemokines with key roles in host immunity. They also have an important pathogenic role in acute and chronic inflammatory conditions, cardiovascular diseases, lung diseases, adipose tissue inflammation, and cancer. Although our mechanistic understanding of MIF-2 is relatively limited compared to the extensive body of evidence available for MIF, emerging data suggests that MIF-2 is not only a functional phenocopy of MIF, but may have differential or even oppositional activities, depending on the disease and context. In this review, we summarize and discuss the similarities and differences between MIF and MIF-2, with a focus on their structures, receptors, signaling pathways, and their roles in diseases. While mainly covering the roles of the MIF homologs in cardiovascular, inflammatory, autoimmune, and metabolic diseases, we also discuss their involvement in cancer, sepsis, and chronic obstructive lung disease (COPD). A particular emphasis is laid upon potential mechanistic explanations for synergistic or cooperative activities of the MIF homologs in cancer, myocardial diseases, and COPD as opposed to emerging disparate or antagonistic activities in adipose tissue inflammation, metabolic diseases, and atherosclerosis. Lastly, we discuss potential future opportunities of jointly targeting MIF and MIF-2 in certain diseases, whereas precision targeting of only one homolog might be preferable in other conditions. Together, this article provides an update of the mechanisms and future therapeutic avenues of human MIF proteins with a focus on their emerging, surprisingly disparate activities, suggesting that MIF-2 displays a variety of activities that are distinct from those of MIF.
Collapse
Affiliation(s)
- Chunfang Zan
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Bishan Yang
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Markus Brandhofer
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Omar El Bounkari
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Jürgen Bernhagen
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig-Maximilian-University (LMU), Munich, Germany.,Deutsches Zentrum für Herz-Kreislauferkrankungen (DZHK), Munich Heart Alliance, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
24
|
Brandhofer M, Hoffmann A, Blanchet X, Siminkovitch E, Rohlfing AK, El Bounkari O, Nestele JA, Bild A, Kontos C, Hille K, Rohde V, Fröhlich A, Golemi J, Gokce O, Krammer C, Scheiermann P, Tsilimparis N, Sachs N, Kempf WE, Maegdefessel L, Otabil MK, Megens RTA, Ippel H, Koenen RR, Luo J, Engelmann B, Mayo KH, Gawaz M, Kapurniotu A, Weber C, von Hundelshausen P, Bernhagen J. Heterocomplexes between the atypical chemokine MIF and the CXC-motif chemokine CXCL4L1 regulate inflammation and thrombus formation. Cell Mol Life Sci 2022; 79:512. [PMID: 36094626 PMCID: PMC9468113 DOI: 10.1007/s00018-022-04539-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/31/2022] [Accepted: 08/22/2022] [Indexed: 12/03/2022]
Abstract
To fulfil its orchestration of immune cell trafficking, a network of chemokines and receptors developed that capitalizes on specificity, redundancy, and functional selectivity. The discovery of heteromeric interactions in the chemokine interactome has expanded the complexity within this network. Moreover, some inflammatory mediators, not structurally linked to classical chemokines, bind to chemokine receptors and behave as atypical chemokines (ACKs). We identified macrophage migration inhibitory factor (MIF) as an ACK that binds to chemokine receptors CXCR2 and CXCR4 to promote atherogenic leukocyte recruitment. Here, we hypothesized that chemokine–chemokine interactions extend to ACKs and that MIF forms heterocomplexes with classical chemokines. We tested this hypothesis by using an unbiased chemokine protein array. Platelet chemokine CXCL4L1 (but not its variant CXCL4 or the CXCR2/CXCR4 ligands CXCL8 or CXCL12) was identified as a candidate interactor. MIF/CXCL4L1 complexation was verified by co-immunoprecipitation, surface plasmon-resonance analysis, and microscale thermophoresis, also establishing high-affinity binding. We next determined whether heterocomplex formation modulates inflammatory/atherogenic activities of MIF. Complex formation was observed to inhibit MIF-elicited T-cell chemotaxis as assessed by transwell migration assay and in a 3D-matrix-based live cell-imaging set-up. Heterocomplexation also blocked MIF-triggered migration of microglia in cortical cultures in situ, as well as MIF-mediated monocyte adhesion on aortic endothelial cell monolayers under flow stress conditions. Of note, CXCL4L1 blocked binding of Alexa-MIF to a soluble surrogate of CXCR4 and co-incubation with CXCL4L1 attenuated MIF responses in HEK293-CXCR4 transfectants, indicating that complex formation interferes with MIF/CXCR4 pathways. Because MIF and CXCL4L1 are platelet-derived products, we finally tested their role in platelet activation. Multi-photon microscopy, FLIM-FRET, and proximity-ligation assay visualized heterocomplexes in platelet aggregates and in clinical human thrombus sections obtained from peripheral artery disease (PAD) in patients undergoing thrombectomy. Moreover, heterocomplexes inhibited MIF-stimulated thrombus formation under flow and skewed the lamellipodia phenotype of adhering platelets. Our study establishes a novel molecular interaction that adds to the complexity of the chemokine interactome and chemokine/receptor-network. MIF/CXCL4L1, or more generally, ACK/CXC-motif chemokine heterocomplexes may be target structures that can be exploited to modulate inflammation and thrombosis.
Collapse
Affiliation(s)
- Markus Brandhofer
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Adrian Hoffmann
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany.,Department of Anesthesiology, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
| | - Xavier Blanchet
- Institute for Cardiovascular Prevention (IPEK), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Pettenkofer Straße 8a/9, 80336, Munich, Germany
| | - Elena Siminkovitch
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Anne-Katrin Rohlfing
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Omar El Bounkari
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Jeremy A Nestele
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Alexander Bild
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Christos Kontos
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technische Universität München (TUM), 85354, Freising, Germany
| | - Kathleen Hille
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technische Universität München (TUM), 85354, Freising, Germany
| | - Vanessa Rohde
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Adrian Fröhlich
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Jona Golemi
- Systems Neuroscience Group, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
| | - Ozgun Gokce
- Systems Neuroscience Group, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany
| | - Christine Krammer
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Patrick Scheiermann
- Department of Anesthesiology, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
| | - Nikolaos Tsilimparis
- Department of Vascular Surgery, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
| | - Nadja Sachs
- Department for Vascular and Endovascular Surgery, Klinikum Rechts Der Isar, Technische Universität München (TUM), 81675, Munich, Germany.,Munich Heart Alliance, 80802, Munich, Germany
| | - Wolfgang E Kempf
- Department for Vascular and Endovascular Surgery, Klinikum Rechts Der Isar, Technische Universität München (TUM), 81675, Munich, Germany
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Klinikum Rechts Der Isar, Technische Universität München (TUM), 81675, Munich, Germany.,Munich Heart Alliance, 80802, Munich, Germany
| | - Michael K Otabil
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Remco T A Megens
- Institute for Cardiovascular Prevention (IPEK), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Pettenkofer Straße 8a/9, 80336, Munich, Germany.,Munich Heart Alliance, 80802, Munich, Germany.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Hans Ippel
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Rory R Koenen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Junfu Luo
- Vascular Biology and Pathology, Institute of Laboratory Medicine, Ludwig-Maximilians-Universität, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
| | - Bernd Engelmann
- Vascular Biology and Pathology, Institute of Laboratory Medicine, Ludwig-Maximilians-Universität, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
| | - Kevin H Mayo
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER, Maastricht, The Netherlands.,Department of Biochemistry, Molecular Biology and Biophysics, Health Sciences Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Meinrad Gawaz
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Aphrodite Kapurniotu
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technische Universität München (TUM), 85354, Freising, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Pettenkofer Straße 8a/9, 80336, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany.,Munich Heart Alliance, 80802, Munich, Germany.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Philipp von Hundelshausen
- Institute for Cardiovascular Prevention (IPEK), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Pettenkofer Straße 8a/9, 80336, Munich, Germany. .,Munich Heart Alliance, 80802, Munich, Germany.
| | - Jürgen Bernhagen
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany. .,Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany. .,Munich Heart Alliance, 80802, Munich, Germany.
| |
Collapse
|
25
|
Huang S, Qiu Y, Ma Z, Su Z, Hong W, Zuo H, Wu X, Yang Y. A secreted MIF homologue from Trichinella spiralis binds to and interacts with host monocytes. Acta Trop 2022; 234:106615. [PMID: 35901919 DOI: 10.1016/j.actatropica.2022.106615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/17/2022] [Accepted: 07/23/2022] [Indexed: 11/24/2022]
Abstract
Trichinella spiralis is a very successful parasite capable of surviving in many mammal hosts and residing in muscle tissues for long periods, indicating that it must have some effective strategies to escape from or guard against the host immune attack. The functions of MIF have been studied in other parasites and demonstrated to function as a virulence factor aiding in their survival by modulating the host immune response. However, the functions of Trichinella spiralis MIF (TsMIF) have not been addressed. Here, we successfully obtained the purified recombinant TsMIF and anti-TsMIF serum. Our results showed that TsMIF was expressed in all the Trichinella spiralis developmental stages, especially highly expressed in the muscle larvae (ML) and mainly located in stichocytes, midgut, cuticle, muscle cells of ML and around intrauterine embryos of female adults. We also observed TsMIF could be secreted from ML and bind to host monocytes. Next, our data demonstrated that TsMIF not only stimulated the phosphorylation of ERK1/2 and cell proliferation by binding to the host cell surface receptor CD74, but also interacted with a host intracellular protein, Jab1, which is a coactivator of AP-1 transcription. We concluded the secreted TsMIF plays an important role in the interaction between Trichinella spiralis and its host and could be a potential drug or vaccine target molecule against Trichinella spiralis infection.
Collapse
Affiliation(s)
- Shuaiqin Huang
- Department of Parasitology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yun Qiu
- Department of Biology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhenrong Ma
- Department of Parasitology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Zhiming Su
- Department of Biology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Wenbin Hong
- Department of Biology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Heng Zuo
- Department of Biology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Xiang Wu
- Department of Parasitology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yurong Yang
- Department of Biology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China.
| |
Collapse
|
26
|
Brandhofer M, Bernhagen J. Cytokine aerobics: Oxidation controls cytokine dynamics and function. Structure 2022; 30:787-790. [PMID: 35660241 DOI: 10.1016/j.str.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this issue of Structure, Skeens et al. provide insights into the structure and dynamics of an oxidized form of the atypical cytokine macrophage migration-inhibitory factor (MIF). The study unveils a surprising conformational susceptibility of MIF to ambient redox alterations and identifies redox-sensitive residues and latent allostery sites with functional relevance.
Collapse
Affiliation(s)
- Markus Brandhofer
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU), 81377 Munich, Germany
| | - Jürgen Bernhagen
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU), 81377 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany; Munich Heart Alliance, 80802 Munich, Germany.
| |
Collapse
|
27
|
Panstruga R, Donnelly SC, Bernhagen J. A Cross-Kingdom View on the Immunomodulatory Role of MIF/D-DT Proteins in Mammalian and Plant Pseudomonas Infections. Immunology 2022; 166:287-298. [PMID: 35416298 DOI: 10.1111/imm.13480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/04/2022] [Accepted: 03/09/2022] [Indexed: 11/26/2022] Open
Abstract
Gram-negative Pseudomonas bacteria are largely harmless saprotrophs, but some species can be potent pathogens of both plants and mammals. Macrophage migration inhibitory factor (MIF) and its homolog D-dopachrome tautomerase (D-DT, also referred to as MIF-2) are multifunctional proteins that in addition to their intracellular functions also serve as extracellular signaling molecules (cytokines) in orchestrating mammalian immune responses. It recently emerged that plants also possess MIF-like proteins, termed MIF/D-DT-like (MDL) proteins. We here provide a comparative cross-kingdom view on the immunomodulatory role of MIF and MDL proteins during Pseudomonas infections in mammals and plants. Although in both kingdoms the lack of MIF/MDL proteins is associated with a reduction in bacterial load and disease symptoms, the underlying molecular principles seem to be different. We provide a perspective for future research activities to unravel additional commonalities and differences in the MIF/MDL-mediated adjustment of antibacterial immune activities.
Collapse
Affiliation(s)
- Ralph Panstruga
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany
| | - Seamas C Donnelly
- Department of Medicine, Tallaght University Hospital & Trinity College Dublin, Dublin, Ireland
| | - Jürgen Bernhagen
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilian-University (LMU) Munich, Munich, Germany
| |
Collapse
|
28
|
Skeens E, Gadzuk-Shea M, Shah D, Bhandari V, Schweppe DK, Berlow RB, Lisi GP. Redox-dependent structure and dynamics of macrophage migration inhibitory factor reveal sites of latent allostery. Structure 2022; 30:840-850.e6. [PMID: 35381187 DOI: 10.1016/j.str.2022.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/20/2022] [Accepted: 03/09/2022] [Indexed: 01/01/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is a multifunctional immunoregulatory protein that is a key player in the innate immune response. Given its overexpression at sites of inflammation and in diseases marked by increasingly oxidative environments, a comprehensive understanding of how cellular redox conditions impact the structure and function of MIF is necessary. We used NMR spectroscopy and mass spectrometry to investigate biophysical signatures of MIF under varied solution redox conditions. Our results indicate that the MIF structure is modified and becomes increasingly dynamic in an oxidative environment, which may be a means to alter the MIF conformation and functional response in a redox-dependent manner. We identified latent allosteric sites within MIF through mutational analysis of redox-sensitive residues, revealing that a loss of redox-responsive residues attenuates CD74 receptor activation. Leveraging sites of redox sensitivity as targets for structure-based drug design therefore reveals an avenue to modulate MIF function in its "disease state."
Collapse
Affiliation(s)
- Erin Skeens
- Department of Molecular Biology, Cell Biology, & Biochemistry, Brown University, Providence, RI 02903, USA
| | - Meagan Gadzuk-Shea
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Dilip Shah
- Section of Neonatology, Department of Pediatrics, Cooper University Hospital, Camden, NJ 08103, USA
| | - Vineet Bhandari
- Section of Neonatology, Department of Pediatrics, Cooper University Hospital, Camden, NJ 08103, USA
| | - Devin K Schweppe
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Rebecca B Berlow
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - George P Lisi
- Department of Molecular Biology, Cell Biology, & Biochemistry, Brown University, Providence, RI 02903, USA.
| |
Collapse
|
29
|
Nematode Orthologs of Macrophage Migration Inhibitory Factor (MIF) as Modulators of the Host Immune Response and Potential Therapeutic Targets. Pathogens 2022; 11:pathogens11020258. [PMID: 35215200 PMCID: PMC8877345 DOI: 10.3390/pathogens11020258] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Abstract
One of the adaptations of nematodes, which allows long-term survival in the host, is the production of proteins with immunomodulatory properties. The parasites secrete numerous homologs of human immune mediators, such as macrophage migration inhibitory factor (MIF), which is a substantial regulator of the inflammatory immune response. Homologs of mammalian MIF have been recognized in many species of nematode parasites, but their role has not been fully understood. The application of molecular biology and genetic engineering methods, including the production of recombinant proteins, has enabled better characterization of their structure and properties. This review provides insight into the current state of knowledge on MIF homologs produced by nematodes, as well as their structure, enzymatic activity, tissue expression pattern, impact on the host immune system, and potential use in the treatment of parasitic, inflammatory, and autoimmune diseases.
Collapse
|
30
|
Skeens E, Pantouris G, Shah D, Manjula R, Ombrello MJ, Maluf NK, Bhandari V, Lisi GP, Lolis EJ. A Cysteine Variant at an Allosteric Site Alters MIF Dynamics and Biological Function in Homo- and Heterotrimeric Assemblies. Front Mol Biosci 2022; 9:783669. [PMID: 35252348 PMCID: PMC8893199 DOI: 10.3389/fmolb.2022.783669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/12/2022] [Indexed: 11/15/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is an inflammatory protein with various non-overlapping functions. It is not only conserved in mammals, but it is found in parasites, fish, and plants. Human MIF is a homotrimer with an enzymatic cavity between two subunits with Pro1 as a catalytic base, activates the receptors CD74, CXCR2, and CXCR4, has functional interactions in the cytosol, and is reported to be a nuclease. There is a solvent channel down its 3-fold axis with a recently identified gating residue as an allosteric site important for regulating, to different extents, the enzymatic activity and CD74 binding and signaling. In this study we explore the consequence of converting the allosteric residue Tyr99 to cysteine (Y99C) and characterize its crystallographic structure, NMR dynamics, stability, CD74 function, and enzymatic activity. In addition to the homotrimeric variant, we develop strategies for expressing and purifying a heterotrimeric variant consisting of mixed wild type and Y99C for characterization of the allosteric site to provide more insight.
Collapse
Affiliation(s)
- Erin Skeens
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Georgios Pantouris
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
- Department of Chemistry, University of the Pacific, Stockton, CA, United States
| | - Dilip Shah
- Section of Neonatology, Department of Pediatrics, Cooper University Hospital, Camden, NJ, United States
| | - Ramu Manjula
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
| | - Michael J. Ombrello
- Translational Genetics and Genomic Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, United States
| | | | - Vineet Bhandari
- Section of Neonatology, Department of Pediatrics, Cooper University Hospital, Camden, NJ, United States
| | - George P. Lisi
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
- *Correspondence: George P. Lisi, ; Elias J. Lolis,
| | - Elias J. Lolis
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
- *Correspondence: George P. Lisi, ; Elias J. Lolis,
| |
Collapse
|
31
|
Song S, Xiao Z, Dekker FJ, Poelarends GJ, Melgert BN. Macrophage migration inhibitory factor family proteins are multitasking cytokines in tissue injury. Cell Mol Life Sci 2022; 79:105. [PMID: 35091838 PMCID: PMC8799543 DOI: 10.1007/s00018-021-04038-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 02/06/2023]
Abstract
The family of macrophage migration inhibitory factor (MIF) proteins in humans consist of MIF, its functional homolog D-dopachrome tautomerase (D-DT, also known as MIF-2) and the relatively unknown protein named DDT-like (DDTL). MIF is a pleiotropic cytokine with multiple properties in tissue homeostasis and pathology. MIF was initially found to associate with inflammatory responses and therefore established a reputation as a pro-inflammatory cytokine. However, increasing evidence demonstrates that MIF influences many different intra- and extracellular molecular processes important for the maintenance of cellular homeostasis, such as promotion of cellular survival, antioxidant signaling, and wound repair. In contrast, studies on D-DT are scarce and on DDTL almost nonexistent and their functions remain to be further investigated as it is yet unclear how similar they are compared to MIF. Importantly, the many and sometimes opposing functions of MIF suggest that targeting MIF therapeutically should be considered carefully, taking into account timing and severity of tissue injury. In this review, we focus on the latest discoveries regarding the role of MIF family members in tissue injury, inflammation and repair, and highlight the possibilities of interventions with therapeutics targeting or mimicking MIF family proteins.
Collapse
|
32
|
Garai J, Krekó M, Őrfi L, Jakus PB, Rumbus Z, Kéringer P, Garami A, Vámos E, Kovács D, Bagóné Vántus V, Radnai B, Lóránd T. Tetralone derivatives are MIF tautomerase inhibitors and attenuate macrophage activation and amplify the hypothermic response in endotoxemic mice. J Enzyme Inhib Med Chem 2021; 36:1357-1369. [PMID: 34225560 PMCID: PMC8266241 DOI: 10.1080/14756366.2021.1916010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 10/30/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine playing crucial role in immunity. MIF exerts a unique tautomerase enzymatic activity that has relevance concerning its multiple functions and its small molecule inhibitors have been proven to block its pro-inflammatory effects. Here we demonstrate that some of the E-2-arylmethylene-1-tetralones and their heteroanalogues efficiently bind to MIF's active site and inhibit MIF tautomeric (enolase, ketolase activity) functions. A small set of the synthesised derivatives, namely compounds (4), (23), (24), (26) and (32), reduced inflammatory macrophage activation. Two of the selected compounds (24) and (26), however, markedly inhibited ROS and nitrite production, NF-κB activation, TNF-α, IL-6 and CCL-2 cytokine expression. Pre-treatment of mice with compound (24) exaggerated the hypothermic response to high dose of bacterial endotoxin. Our experiments suggest that tetralones and their derivatives inhibit MIF's tautomeric functions and regulate macrophage activation and thermal changes in severe forms of systemic inflammation.
Collapse
Affiliation(s)
- János Garai
- Department of Pathophysiology, Institute for Translational Medicine, University of Pécs, Medical School, Pécs, Hungary
| | - Marcell Krekó
- Department of Pharmaceutical Chemistry, Semmelweis University, Budapest, Hungary
| | - László Őrfi
- Department of Pharmaceutical Chemistry, Semmelweis University, Budapest, Hungary
| | - Péter Balázs Jakus
- Department of Biochemistry and Medical Chemistry, University of Pécs, Medical School, Pécs, Hungary
| | - Zoltán Rumbus
- Department of Thermophysiology, Institute for Translational Medicine, University of Pécs, Medical School, Pécs, Hungary
| | - Patrik Kéringer
- Department of Thermophysiology, Institute for Translational Medicine, University of Pécs, Medical School, Pécs, Hungary
| | - András Garami
- Department of Thermophysiology, Institute for Translational Medicine, University of Pécs, Medical School, Pécs, Hungary
| | - Eszter Vámos
- Department of Biochemistry and Medical Chemistry, University of Pécs, Medical School, Pécs, Hungary
| | - Dominika Kovács
- Department of Biochemistry and Medical Chemistry, University of Pécs, Medical School, Pécs, Hungary
| | - Viola Bagóné Vántus
- Department of Biochemistry and Medical Chemistry, University of Pécs, Medical School, Pécs, Hungary
| | - Balázs Radnai
- Department of Biochemistry and Medical Chemistry, University of Pécs, Medical School, Pécs, Hungary
| | - Tamás Lóránd
- Department of Biochemistry and Medical Chemistry, University of Pécs, Medical School, Pécs, Hungary
| |
Collapse
|
33
|
Repurposing Old Drugs as Novel Inhibitors of Human MIF from Structural and Functional Analysis. Bioorg Med Chem Lett 2021; 55:128445. [PMID: 34758374 DOI: 10.1016/j.bmcl.2021.128445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 11/24/2022]
Abstract
Human macrophage migration inhibitory factor (MIF) is an important pro-inflammatory cytokine that plays multiple pleiotropic functions. It is considered as a promising therapeutic target for the infectious, autoimmune, and cardiovascular diseases and cancers. The development of MIF inhibitors has not been translated into clinical success despite decades of research. Given the time and cost of developing new drugs, existing drugs with clarified safety and pharmacokinetics are explored for their potential as novel MIF inhibitors. This study identified five known drugs that could inhibit MIF's tautomerase activity and MIF-mediated cell chemotaxis in RAW264.7 cells. It was found that compounds D2 (histamine), D5 (metaraminol), and D8 (nebivolol) exhibited micromolar-range inhibition potency close to the positive control ISO-1. Kinetics and the mechanism for inhibition were subsequently determined. Moreover, the detailed inhibitor-binding patterns were investigated by X-ray crystallography, computational molecular docking, and structure-based analysis. Therefore, this study elucidates the molecular mechanism of repurposed drugs acting on MIF and provides a structural foundation for lead optimization to promote the clinical development of MIF-targeted drugs.
Collapse
|
34
|
Parkins A, Skeens E, McCallum CM, Lisi GP, Pantouris G. The N-terminus of MIF regulates the dynamic profile of residues involved in CD74 activation. Biophys J 2021; 120:3893-3900. [PMID: 34437846 DOI: 10.1016/j.bpj.2021.08.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/03/2021] [Accepted: 08/19/2021] [Indexed: 11/18/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is an immunomodulatory protein with a pathogenic activity in various inflammatory disorders, autoimmune diseases, and cancer. The majority of MIF-triggered pathological conditions are associated with activation of the cell surface receptor CD74. In the absence of small molecule antagonists that directly target CD74, MIF variants and MIF-ligand complexes have served as modulators of CD74 activity. These molecules have been reported to have either antagonistic or agonistic effects against the receptor, although the mechanistic parameters that distinguish the two groups are largely unknown. Through molecular dynamics simulations and NMR experiments, we explored the relationship between MIF's catalytically active N-terminus and the surface residues important for the activation of CD74. We found that the two sites are connected via backbone dynamics that are propagated to the CD74 activation surface of MIF, from the β2 and β4 strands. Our results also provide mechanistic evidence that explain the functional characteristics of MIF variants, serving as CD74 agonists or antagonists. Such findings are of high importance for understanding the MIF-induced activation of CD74 as well as for the development of highly potent CD74 therapeutics.
Collapse
Affiliation(s)
- Andrew Parkins
- Department of Chemistry, University of the Pacific, Stockton, California
| | - Erin Skeens
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, Rhode Island
| | - C Michael McCallum
- Department of Chemistry, University of the Pacific, Stockton, California
| | - George P Lisi
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, Rhode Island.
| | - Georgios Pantouris
- Department of Chemistry, University of the Pacific, Stockton, California.
| |
Collapse
|
35
|
Yang L, Guo D, Fan C. Identification and Structure-Activity Relationships of Dietary Flavonoids as Human Macrophage Migration Inhibitory Factor (MIF) Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10138-10150. [PMID: 34459191 DOI: 10.1021/acs.jafc.1c03367] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dietary flavonoids are known to have anti-inflammatory and anticancer effects, but their influences on human macrophage migration inhibitory factor (MIF), a vital proinflammatory cytokine recognized as a therapeutic target for infectious diseases and cancers, have been rarely reported. Here, we identified 24 dietary flavonoids that could inhibit the tautomerase activity of MIF, five of which exerted IC50 values lower than the positive control ISO-1 in the micromolar range: morin (IC50 = 11.01 ± 0.45 μM) and amentoflavone (IC50 = 13.32 ± 0.64 μM) exhibited the most potent efficacy followed by apigenin (IC50 = 42.74 ± 4.20 μM), naringin (IC50 = 51.38 ± 2.12 μM), and fisetin (IC50 = 51.99 ± 0.63 μM). X-ray crystallography, molecular docking, and cellular experiments were utilized to illustrate the molecular binding details and structure-activity relationships. Scaffold modifications of flavonoids significantly influenced the potency. What stands out for morin is the unique 2'-OH substitution. In addition, amentoflavone situated at the MIF trimer pore may impact MIF-CD74 signaling. The results also showed that flavonoids could suppress cell chemotaxis and nitric oxide production in RAW264.7 cells. Our results elucidate the molecular mechanism of flavonoids acting on MIF and shed light on developing lead compounds against MIF-involved diseases.
Collapse
Affiliation(s)
- Liu Yang
- School of Basic Medical Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Deyin Guo
- School of Basic Medical Sciences, Wuhan University, Wuhan 430072, P. R. China
- Center for Infection & Immunity Study (CIIS), School of Medicine, Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Chengpeng Fan
- School of Basic Medical Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
36
|
Xiao Z, Song S, Chen D, van Merkerk R, van der Wouden PE, Cool RH, Quax WJ, Poelarends GJ, Melgert BN, Dekker FJ. Proteolysis Targeting Chimera (PROTAC) for Macrophage Migration Inhibitory Factor (MIF) Has Anti-Proliferative Activity in Lung Cancer Cells. Angew Chem Int Ed Engl 2021; 60:17514-17521. [PMID: 34018657 PMCID: PMC8362126 DOI: 10.1002/anie.202101864] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/19/2021] [Indexed: 12/13/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is involved in protein-protein interactions that play key roles in inflammation and cancer. Current strategies to develop small molecule modulators of MIF functions are mainly restricted to the MIF tautomerase active site. Here, we use this site to develop proteolysis targeting chimera (PROTAC) in order to eliminate MIF from its protein-protein interaction network. We report the first potent MIF-directed PROTAC, denoted MD13, which induced almost complete MIF degradation at low micromolar concentrations with a DC50 around 100 nM in A549 cells. MD13 suppresses the proliferation of A549 cells, which can be explained by deactivation of the MAPK pathway and subsequent induction of cell cycle arrest at the G2/M phase. MD13 also exhibits antiproliferative effect in a 3D tumor spheroid model. In conclusion, we describe the first MIF-directed PROTAC (MD13) as a research tool, which also demonstrates the potential of PROTACs in cancer therapy.
Collapse
Affiliation(s)
- Zhangping Xiao
- Department Chemical and Pharmaceutical BiologyGroningen Research Institute of Pharmacy (GRIP)University of GroningenAntonius Deusinglaan 19713AVGroningenThe Netherlands
| | - Shanshan Song
- Department Chemical and Pharmaceutical BiologyGroningen Research Institute of Pharmacy (GRIP)University of GroningenAntonius Deusinglaan 19713AVGroningenThe Netherlands
- Molecular PharmacologyGroningen Research Institute of Pharmacy (GRIP)University of GroningenAntonius Deusinglaan 19713AVGroningenThe Netherlands
| | - Deng Chen
- Department Chemical and Pharmaceutical BiologyGroningen Research Institute of Pharmacy (GRIP)University of GroningenAntonius Deusinglaan 19713AVGroningenThe Netherlands
| | | | - Petra E. van der Wouden
- Department Chemical and Pharmaceutical BiologyGroningen Research Institute of Pharmacy (GRIP)University of GroningenAntonius Deusinglaan 19713AVGroningenThe Netherlands
| | - Robbert H. Cool
- Department Chemical and Pharmaceutical BiologyGroningen Research Institute of Pharmacy (GRIP)University of GroningenAntonius Deusinglaan 19713AVGroningenThe Netherlands
| | - Wim J. Quax
- Department Chemical and Pharmaceutical BiologyGroningen Research Institute of Pharmacy (GRIP)University of GroningenAntonius Deusinglaan 19713AVGroningenThe Netherlands
| | - Gerrit J. Poelarends
- Department Chemical and Pharmaceutical BiologyGroningen Research Institute of Pharmacy (GRIP)University of GroningenAntonius Deusinglaan 19713AVGroningenThe Netherlands
| | - Barbro N. Melgert
- Molecular PharmacologyGroningen Research Institute of Pharmacy (GRIP)University of GroningenAntonius Deusinglaan 19713AVGroningenThe Netherlands
- University Medical Center GroningenGroningen Research Institute of Asthma and COPDUniversity of GroningenHanzeplein 19713 GZGroningenThe Netherlands
| | - Frank J. Dekker
- Department Chemical and Pharmaceutical BiologyGroningen Research Institute of Pharmacy (GRIP)University of GroningenAntonius Deusinglaan 19713AVGroningenThe Netherlands
| |
Collapse
|
37
|
Xiao Z, Song S, Chen D, Merkerk R, Wouden PE, Cool RH, Quax WJ, Poelarends GJ, Melgert BN, Dekker FJ. Proteolysis Targeting Chimera (PROTAC) for Macrophage Migration Inhibitory Factor (MIF) Has Anti‐Proliferative Activity in Lung Cancer Cells. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zhangping Xiao
- Department Chemical and Pharmaceutical Biology Groningen Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Shanshan Song
- Department Chemical and Pharmaceutical Biology Groningen Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
- Molecular Pharmacology Groningen Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Deng Chen
- Department Chemical and Pharmaceutical Biology Groningen Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | | | - Petra E. Wouden
- Department Chemical and Pharmaceutical Biology Groningen Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Robbert H. Cool
- Department Chemical and Pharmaceutical Biology Groningen Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Wim J. Quax
- Department Chemical and Pharmaceutical Biology Groningen Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Gerrit J. Poelarends
- Department Chemical and Pharmaceutical Biology Groningen Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Barbro N. Melgert
- Molecular Pharmacology Groningen Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
- University Medical Center Groningen Groningen Research Institute of Asthma and COPD University of Groningen Hanzeplein 1 9713 GZ Groningen The Netherlands
| | - Frank J. Dekker
- Department Chemical and Pharmaceutical Biology Groningen Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| |
Collapse
|
38
|
Ji H, Zhang Y, Chen C, Li H, He B, Yang T, Sun C, Hao H, Zhang X, Wang Y, Zhou Y, Zhu Z, Hu Y, Li A, Guo A, Wang Y. D-dopachrome tautomerase activates COX2/PGE 2 pathway of astrocytes to mediate inflammation following spinal cord injury. J Neuroinflammation 2021; 18:130. [PMID: 34116703 PMCID: PMC8196514 DOI: 10.1186/s12974-021-02186-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/28/2021] [Indexed: 12/02/2022] Open
Abstract
Background Astrocytes are the predominant glial cell type in the central nervous system (CNS) that can secrete various cytokines and chemokines mediating neuropathology in response to danger signals. D-dopachrome tautomerase (D-DT), a newly described cytokine and a close homolog of macrophage migration inhibitory factor (MIF) protein, has been revealed to share an overlapping function with MIF in some ways. However, its cellular distribution pattern and mediated astrocyte neuropathological function in the CNS remain unclear. Methods A contusion model of the rat spinal cord was established. The protein levels of D-DT and PGE2 synthesis-related proteinase were assayed by Western blot and immunohistochemistry. Primary astrocytes were stimulated by different concentrations of D-DT in the presence or absence of various inhibitors to examine relevant signal pathways. The post-injury locomotor functions were assessed using the Basso, Beattie, and Bresnahan (BBB) locomotor scale. Results D-DT was inducibly expressed within astrocytes and neurons, rather than in microglia following spinal cord contusion. D-DT was able to activate the COX2/PGE2 signal pathway of astrocytes through CD74 receptor, and the intracellular activation of mitogen-activated protein kinases (MAPKs) was involved in the regulation of D-DT action. The selective inhibitor of D-DT was efficient in attenuating D-DT-induced astrocyte production of PGE2 following spinal cord injury, which contributed to the improvement of locomotor functions. Conclusion Collectively, these data reveal a novel inflammatory activator of astrocytes following spinal cord injury, which might be beneficial for the development of anti-inflammation drug in neuropathological CNS. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02186-z.
Collapse
Affiliation(s)
- Huiyuan Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, People's Republic of China.,Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China
| | - Yuxin Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, People's Republic of China.,Department of Rehabilitation Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Huangpu District, Shanghai, 200011, People's Republic of China
| | - Chen Chen
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China
| | - Hui Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, People's Republic of China
| | - Bingqiang He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, People's Republic of China
| | - Ting Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, People's Republic of China
| | - Chunshuai Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, People's Republic of China
| | - Huifei Hao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, People's Republic of China
| | - Xingyuan Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, People's Republic of China
| | - Yingjie Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, People's Republic of China
| | - Yue Zhou
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China
| | - Zhenjie Zhu
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China
| | - Yuming Hu
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China
| | - Aihong Li
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China
| | - Aisong Guo
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China.
| | - Yongjun Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, People's Republic of China.
| |
Collapse
|
39
|
Gruner K, Leissing F, Sinitski D, Thieron H, Axstmann C, Baumgarten K, Reinstädler A, Winkler P, Altmann M, Flatley A, Jaouannet M, Zienkiewicz K, Feussner I, Keller H, Coustau C, Falter-Braun P, Feederle R, Bernhagen J, Panstruga R. Chemokine-like MDL proteins modulate flowering time and innate immunity in plants. J Biol Chem 2021; 296:100611. [PMID: 33798552 PMCID: PMC8122116 DOI: 10.1016/j.jbc.2021.100611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/18/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022] Open
Abstract
Human macrophage migration inhibitory factor (MIF) is an atypical chemokine implicated in intercellular signaling and innate immunity. MIF orthologs (MIF/D-DT-like proteins, MDLs) are present throughout the plant kingdom, but remain experimentally unexplored in these organisms. Here, we provide an in planta characterization and functional analysis of the three-member gene/protein MDL family in Arabidopsis thaliana. Subcellular localization experiments indicated a nucleo-cytoplasmic distribution of MDL1 and MDL2, while MDL3 is localized to peroxisomes. Protein–protein interaction assays revealed the in vivo formation of MDL1, MDL2, and MDL3 homo-oligomers, as well as the formation of MDL1-MDL2 hetero-oligomers. Functionally, Arabidopsismdl mutants exhibited a delayed transition from vegetative to reproductive growth (flowering) under long-day conditions, but not in a short-day environment. In addition, mdl mutants were more resistant to colonization by the bacterial pathogen Pseudomonas syringae pv. maculicola. The latter phenotype was compromised by the additional mutation of SALICYLIC ACID INDUCTION DEFICIENT 2 (SID2), a gene implicated in the defense-induced biosynthesis of the key signaling molecule salicylic acid. However, the enhanced antibacterial immunity was not associated with any constitutive or pathogen-induced alterations in the levels of characteristic phytohormones or defense-associated metabolites. Interestingly, bacterial infection triggered relocalization and accumulation of MDL1 and MDL2 at the peripheral lobes of leaf epidermal cells. Collectively, our data indicate redundant functionality and a complex interplay between the three chemokine-like Arabidopsis MDL proteins in the regulation of both developmental and immune-related processes. These insights expand the comparative cross-kingdom analysis of MIF/MDL signaling in human and plant systems.
Collapse
Affiliation(s)
- Katrin Gruner
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany
| | - Franz Leissing
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany
| | - Dzmitry Sinitski
- Ludwig-Maximilians-University (LMU), LMU University Hospital, Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Munich, Germany
| | - Hannah Thieron
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany
| | - Christian Axstmann
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany
| | - Kira Baumgarten
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany
| | - Anja Reinstädler
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany
| | - Pascal Winkler
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany
| | - Melina Altmann
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Network Biology (INET), Munich-Neuherberg, Germany
| | - Andrew Flatley
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute for Diabetes and Obesity, Monoclonal Antibody Core Facility, Munich-Neuherberg, Germany
| | - Maëlle Jaouannet
- Institut Sophia Agrobiotech, Université Côte d'Azur, INRAE, CNRS, Sophia Antipolis, France
| | - Krzysztof Zienkiewicz
- University of Goettingen, Albrecht von Haller Institute and Goettingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, Goettingen, Germany; University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Service Unit for Metabolomics and Lipidomics, Goettingen, Germany
| | - Ivo Feussner
- University of Goettingen, Albrecht von Haller Institute and Goettingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, Goettingen, Germany; University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Service Unit for Metabolomics and Lipidomics, Goettingen, Germany
| | - Harald Keller
- Institut Sophia Agrobiotech, Université Côte d'Azur, INRAE, CNRS, Sophia Antipolis, France
| | - Christine Coustau
- Institut Sophia Agrobiotech, Université Côte d'Azur, INRAE, CNRS, Sophia Antipolis, France
| | - Pascal Falter-Braun
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Network Biology (INET), Munich-Neuherberg, Germany; Ludwig-Maximilians-Universität (LMU), Faculty of Biology, Chair of Microbe-Host Interactions, Planegg-Martinsried, Germany
| | - Regina Feederle
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute for Diabetes and Obesity, Monoclonal Antibody Core Facility, Munich-Neuherberg, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Jürgen Bernhagen
- Ludwig-Maximilians-University (LMU), LMU University Hospital, Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Ralph Panstruga
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany.
| |
Collapse
|
40
|
Krammer C, Kontos C, Dewor M, Hille K, Dalla Volta B, El Bounkari O, Taş K, Sinitski D, Brandhofer M, Megens RTA, Weber C, Schultz JR, Bernhagen J, Kapurniotu A. A MIF-Derived Cyclopeptide that Inhibits MIF Binding and Atherogenic Signaling via the Chemokine Receptor CXCR2. Chembiochem 2021; 22:1012-1019. [PMID: 33125165 PMCID: PMC8049018 DOI: 10.1002/cbic.202000574] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/14/2020] [Indexed: 12/31/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is an inflammatory cytokine and atypical chemokine with a key role in inflammatory diseases including atherosclerosis. Key atherogenic functions of MIF are mediated by noncognate interaction with the chemokine receptor CXCR2. The MIF N-like loop comprising the sequence 47-56 is an important structural determinant of the MIF/CXCR2 interface and MIF(47-56) blocks atherogenic MIF activities. However, the mechanism and critical structure-activity information within this sequence have remained elusive. Here, we show that MIF(47-56) directly binds to CXCR2 to compete with MIF receptor activation. By using alanine scanning, essential and dispensable residues were identified. Moreover, MIF(cyclo10), a designed cyclized variant of MIF(47-56), inhibited key inflammatory and atherogenic MIF activities in vitro and in vivo/ex vivo, and exhibited strongly improved resistance to proteolytic degradation in human plasma in vitro, thus suggesting that it could serve as a promising basis for MIF-derived anti-atherosclerotic peptides.
Collapse
Affiliation(s)
- Christine Krammer
- Division of Vascular BiologyInstitute for Stroke and Dementia Research (ISD)LMU KlinikumLudwig-Maximilians-Universität (LMU)Feodor-Lynen-Straße 1781377MunichGermany
| | - Christos Kontos
- Division of Peptide BiochemistryTUM School of Life SciencesTechnische Universität München (TUM)Emil-Erlenmeyer-Forum 585354FreisingGermany
| | - Manfred Dewor
- Institute of Biochemistry and Molecular Cell BiologyUniversity HospitalRWTH Aachen UniversityPauwelsstrasse 3052074AachenGermany
| | - Kathleen Hille
- Division of Peptide BiochemistryTUM School of Life SciencesTechnische Universität München (TUM)Emil-Erlenmeyer-Forum 585354FreisingGermany
| | - Beatrice Dalla Volta
- Division of Peptide BiochemistryTUM School of Life SciencesTechnische Universität München (TUM)Emil-Erlenmeyer-Forum 585354FreisingGermany
| | - Omar El Bounkari
- Division of Vascular BiologyInstitute for Stroke and Dementia Research (ISD)LMU KlinikumLudwig-Maximilians-Universität (LMU)Feodor-Lynen-Straße 1781377MunichGermany
- Institute of Biochemistry and Molecular Cell BiologyUniversity HospitalRWTH Aachen UniversityPauwelsstrasse 3052074AachenGermany
| | - Karin Taş
- Division of Peptide BiochemistryTUM School of Life SciencesTechnische Universität München (TUM)Emil-Erlenmeyer-Forum 585354FreisingGermany
| | - Dzmitry Sinitski
- Division of Vascular BiologyInstitute for Stroke and Dementia Research (ISD)LMU KlinikumLudwig-Maximilians-Universität (LMU)Feodor-Lynen-Straße 1781377MunichGermany
| | - Markus Brandhofer
- Division of Vascular BiologyInstitute for Stroke and Dementia Research (ISD)LMU KlinikumLudwig-Maximilians-Universität (LMU)Feodor-Lynen-Straße 1781377MunichGermany
| | - Remco T. A. Megens
- Institute for Cardiovascular PreventionLMU KlinikumLudwig-Maximilians-Universität (LMU)Pettenkoferstrasse 8a and 980336MunichGermany
- Cardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityUniversiteitssingel 506229Maastricht (TheNetherlands
| | - Christian Weber
- Institute for Cardiovascular PreventionLMU KlinikumLudwig-Maximilians-Universität (LMU)Pettenkoferstrasse 8a and 980336MunichGermany
- Munich Cluster for Systems Neurology (SyNergy)Feodor-Lynen-Straße 1781377MunichGermany
- Munich Heart AllianceBiedersteiner Straße 2980802MunichGermany
- Cardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityUniversiteitssingel 506229Maastricht (TheNetherlands
| | - Joshua R. Schultz
- Carolus Therapeutics, Inc.5626 Oberlin Drive92121San DiegoCAUSA
- Present address: Moderna Therapeutics, Inc.200 Technology SquareCambridgeMA02139USA
| | - Jürgen Bernhagen
- Division of Vascular BiologyInstitute for Stroke and Dementia Research (ISD)LMU KlinikumLudwig-Maximilians-Universität (LMU)Feodor-Lynen-Straße 1781377MunichGermany
- Institute of Biochemistry and Molecular Cell BiologyUniversity HospitalRWTH Aachen UniversityPauwelsstrasse 3052074AachenGermany
- Munich Cluster for Systems Neurology (SyNergy)Feodor-Lynen-Straße 1781377MunichGermany
- Munich Heart AllianceBiedersteiner Straße 2980802MunichGermany
| | - Aphrodite Kapurniotu
- Division of Peptide BiochemistryTUM School of Life SciencesTechnische Universität München (TUM)Emil-Erlenmeyer-Forum 585354FreisingGermany
| |
Collapse
|
41
|
Wen Y, Cai W, Yang J, Fu X, Putha L, Xia Q, Windsor JA, Phillips AR, Tyndall JDA, Du D, Liu T, Huang W. Targeting Macrophage Migration Inhibitory Factor in Acute Pancreatitis and Pancreatic Cancer. Front Pharmacol 2021; 12:638950. [PMID: 33776775 PMCID: PMC7992011 DOI: 10.3389/fphar.2021.638950] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/29/2021] [Indexed: 02/05/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine implicated in the pathogenesis of inflammation and cancer. It is produced by various cells and circulating MIF has been identified as a biomarker for a range of diseases. Extracellular MIF mainly binds to the cluster of differentiation 74 (CD74)/CD44 to activate downstream signaling pathways. These in turn activate immune responses, enhance inflammation and can promote cancer cell proliferation and invasion. Extracellular MIF also binds to the C-X-C chemokine receptors cooperating with or without CD74 to activate chemokine response. Intracellular MIF is involved in Toll-like receptor and inflammasome-mediated inflammatory response. Pharmacological inhibition of MIF has been shown to hold great promise in treating inflammatory diseases and cancer, including small molecule MIF inhibitors targeting the tautomerase active site of MIF and antibodies that neutralize MIF. In the current review, we discuss the role of MIF signaling pathways in inflammation and cancer and summarize the recent advances of the role of MIF in experimental and clinical exocrine pancreatic diseases. We expect to provide insights into clinical translation of MIF antagonism as a strategy for treating acute pancreatitis and pancreatic cancer.
Collapse
Affiliation(s)
- Yongjian Wen
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital of Sichuan University, Chengdu, China.,Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Wenhao Cai
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital of Sichuan University, Chengdu, China.,Liverpool Pancreatitis Research Group, Liverpool University Hospitals NHS Foundation Trust and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Jingyu Yang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital of Sichuan University, Chengdu, China
| | - Xianghui Fu
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Lohitha Putha
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Qing Xia
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital of Sichuan University, Chengdu, China
| | - John A Windsor
- Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Anthony R Phillips
- Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | - Dan Du
- West China-Washington Mitochondria and Metabolism Center, West China Hospital, Sichuan University, Chengdu, China
| | - Tingting Liu
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital of Sichuan University, Chengdu, China
| | - Wei Huang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital of Sichuan University, Chengdu, China.,Liverpool Pancreatitis Research Group, Liverpool University Hospitals NHS Foundation Trust and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
42
|
Fukushima K, Furuya M, Kamimura T, Takimoto-Kamimura M. Structure of macrophage migration inhibitory factor in complex with methotrexate. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2021; 77:293-299. [PMID: 33645533 DOI: 10.1107/s2059798321000474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 01/13/2021] [Indexed: 11/11/2022]
Abstract
Methotrexate (MTX) is an anticancer and anti-rheumatoid arthritis drug that is considered to block nucleotide synthesis and the cell cycle mainly by inhibiting the activity of dihydrofolate reductase (DHFR). Using affinity-matrix technology and X-ray analysis, the present study shows that MTX also interacts with macrophage migration inhibitory factor (MIF). Fragment molecular-orbital calculations quantified the interaction between MTX and MIF based on the structure of the complex and revealed the amino acids that are effective in the interaction of MTX and MIF. It should be possible to design new small-molecule compounds that have strong inhibitory activity towards both MIF and DHFR by structure-based drug discovery.
Collapse
Affiliation(s)
- Kei Fukushima
- Pharmaceutical Discovery Research Laboratories, Teijin Institute for Bio-Medical Research, 4-3-2 Asahigaoka, Hino-shi, Tokyo 191-8512, Japan
| | - Minoru Furuya
- Pharmaceutical Discovery Research Laboratories, Teijin Institute for Bio-Medical Research, 4-3-2 Asahigaoka, Hino-shi, Tokyo 191-8512, Japan
| | - Takashi Kamimura
- Veritas In Silico Inc., 1-11-1 Nishigotanda, Shinagawa, Tokyo 141-0031, Japan
| | - Midori Takimoto-Kamimura
- Pharmaceutical Discovery Research Laboratories, Teijin Institute for Bio-Medical Research, 4-3-2 Asahigaoka, Hino-shi, Tokyo 191-8512, Japan
| |
Collapse
|
43
|
Schindler L, Zwissler L, Krammer C, Hendgen-Cotta U, Rassaf T, Hampton MB, Dickerhof N, Bernhagen J. Macrophage migration inhibitory factor inhibits neutrophil apoptosis by inducing cytokine release from mononuclear cells. J Leukoc Biol 2021; 110:893-905. [PMID: 33565160 DOI: 10.1002/jlb.3a0420-242rrr] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 12/22/2022] Open
Abstract
The chemokine-like inflammatory cytokine macrophage migration inhibitory factor (MIF) is a pivotal driver of acute and chronic inflammatory conditions, cardiovascular disease, autoimmunity, and cancer. MIF modulates the early inflammatory response through various mechanisms, including regulation of neutrophil recruitment and fate, but the mechanisms and the role of the more recently described MIF homolog MIF-2 (D-dopachrome tautomerase; D-DT) are incompletely understood. Here, we show that both MIF and MIF-2/D-DT inhibit neutrophil apoptosis. This is not a direct effect, but involves the activation of mononuclear cells, which secrete CXCL8 and other prosurvival mediators to promote neutrophil survival. Individually, CXCL8 and MIF (or MIF-2) did not significantly inhibit neutrophil apoptosis, but in combination they elicited a synergistic response, promoting neutrophil survival even in the absence of mononuclear cells. The use of receptor-specific inhibitors provided evidence for a causal role of the noncognate MIF receptor CXCR2 expressed on both monocytes and neutrophils in MIF-mediated neutrophil survival. We suggest that the ability to inhibit neutrophil apoptosis contributes to the proinflammatory role ascribed to MIF, and propose that blocking the interaction between MIF and CXCR2 could be an important anti-inflammatory strategy in the early inflammatory response.
Collapse
Affiliation(s)
- Lisa Schindler
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany.,Department of Pathology and Biomedical Science, Centre for Free Radical Research, University of Otago, Christchurch, New Zealand
| | - Leon Zwissler
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Christine Krammer
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Ulrike Hendgen-Cotta
- Department of Cardiology and Angiology, University Hospital Essen, Westdeutsches Herz- und Gefäßzentrum, Essen, Germany
| | - Tienush Rassaf
- Department of Cardiology and Angiology, University Hospital Essen, Westdeutsches Herz- und Gefäßzentrum, Essen, Germany
| | - Mark B Hampton
- Department of Pathology and Biomedical Science, Centre for Free Radical Research, University of Otago, Christchurch, New Zealand
| | - Nina Dickerhof
- Department of Pathology and Biomedical Science, Centre for Free Radical Research, University of Otago, Christchurch, New Zealand
| | - Jürgen Bernhagen
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,German Center for Cardiovascular Diseases (DZHK), Munich Heart Alliance (MHA), Munich, Germany
| |
Collapse
|
44
|
Juárez-Avelar I, Rodríguez T, García-García AP, Rodríguez-Sosa M. Macrophage migration inhibitory factor (MIF): Its role in the genesis and progression of colorectal cancer. IMMUNOTHERAPY IN RESISTANT CANCER: FROM THE LAB BENCH WORK TO ITS CLINICAL PERSPECTIVES 2021:173-193. [DOI: 10.1016/b978-0-12-822028-3.00012-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
45
|
Jovanović Krivokuća M, Stefanoska I, Vilotić A, Ćujić D, Vrzić Petronijević S, Vićovac L. Macrophage migration inhibitory factor modulates cytokine expression in the trophoblast cell line HTR-8/SVneo. Reprod Fertil Dev 2020; 32:RD20138. [PMID: 33323165 DOI: 10.1071/rd20138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/26/2020] [Indexed: 02/24/2024] Open
Abstract
Extravillous trophoblasts are specific placental cells that invade the uterine stroma and spiral arteries modifying and adjusting them to pregnancy. Many pregnancy pathologies are associated with impairment of this process, including preeclampsia and intrauterine growth restriction, among others. Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine that is abundant at the fetomaternal interface. Previous results from our group showed that MIF participates in trophoblast invasion and modulates the expression of molecules known to mediate stromal and endovascular trophoblast invasion. In this study we investigated the possibility that MIF could act as a regulator of cytokines known to modulate trophoblast invasion using the normal extravillous trophoblast-derived cell line HTR-8/SVneo. Expression of trophoblast MIF was attenuated by MIF mRNA-specific small interfering RNAs. Cytokine expression was assessed at the mRNA and protein levels using real-time quantitative polymerase chain reaction and flow cytometry respectively. Knockdown of MIF led to a significant decrease in mRNA for IL-1β (IL1B) and IL-8 (CXCL8) and interleukin (IL)-8 protein. The addition of recombinant human MIF to cell culture medium increased IL-6 after 24h treatment and IL-6 and IL-8 after 72h treatment. Cell viability was not affected by MIF silencing or rhMIF treatment. The results of this study imply that at least some of the effects of MIF on trophoblast invasion could be mediated through autocrine or paracrine modulation of trophoblast cytokine production.
Collapse
|
46
|
The cytokine MIF controls daily rhythms of symbiont nutrition in an animal-bacterial association. Proc Natl Acad Sci U S A 2020; 117:27578-27586. [PMID: 33067391 DOI: 10.1073/pnas.2016864117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The recent recognition that many symbioses exhibit daily rhythms has encouraged research into the partner dialogue that drives these biological oscillations. Here we characterized the pivotal role of the versatile cytokine macrophage migration inhibitory factor (MIF) in regulating a metabolic rhythm in the model light-organ symbiosis between Euprymna scolopes and Vibrio fischeri As the juvenile host matures, it develops complex daily rhythms characterized by profound changes in the association, from gene expression to behavior. One such rhythm is a diurnal shift in symbiont metabolism triggered by the periodic provision of a specific nutrient by the mature host: each night the symbionts catabolize chitin released from hemocytes (phagocytic immune cells) that traffic into the light-organ crypts, where the population of V. fischeri cells resides. Nocturnal migration of these macrophage-like cells, together with identification of an E. scolopes MIF (EsMIF) in the light-organ transcriptome, led us to ask whether EsMIF might be the gatekeeper controlling the periodic movement of the hemocytes. Western blots, ELISAs, and confocal immunocytochemistry showed EsMIF was at highest abundance in the light organ. Its concentration there was lowest at night, when hemocytes entered the crypts. EsMIF inhibited migration of isolated hemocytes, whereas exported bacterial products, including peptidoglycan derivatives and secreted chitin catabolites, induced migration. These results provide evidence that the nocturnal decrease in EsMIF concentration permits the hemocytes to be drawn into the crypts, delivering chitin. This nutritional function for a cytokine offers the basis for the diurnal rhythms underlying a dynamic symbiotic conversation.
Collapse
|
47
|
Xiao Z, Chen D, Song S, van der Vlag R, van der Wouden PE, van Merkerk R, Cool RH, Hirsch AKH, Melgert BN, Quax WJ, Poelarends GJ, Dekker FJ. 7-Hydroxycoumarins Are Affinity-Based Fluorescent Probes for Competitive Binding Studies of Macrophage Migration Inhibitory Factor. J Med Chem 2020; 63:11920-11933. [PMID: 32940040 PMCID: PMC7586407 DOI: 10.1021/acs.jmedchem.0c01160] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Macrophage
migration inhibitory factor (MIF) is a cytokine with
key roles in inflammation and cancer, which qualifies it as a potential
drug target. Apart from its cytokine activity, MIF also harbors enzyme
activity for keto–enol tautomerization. MIF enzymatic activity
has been used for identification of MIF binding molecules that also
interfere with its biological activity. However, MIF tautomerase activity
assays are troubled by irregularities, thus creating a need for alternative
methods. In this study, we identified a 7-hydroxycoumarin fluorophore
with high affinity for the MIF tautomerase active site (Ki = 18 ± 1 nM) that binds with concomitant quenching
of its fluorescence. This property enabled development of a novel
competition-based assay format to quantify MIF binding. We also demonstrated
that the 7-hydroxycoumarin fluorophore interfered with the MIF–CD74
interaction and inhibited proliferation of A549 cells. Thus, we provide
a high-affinity MIF binder as a novel tool to advance MIF-oriented
research.
Collapse
Affiliation(s)
- Zhangping Xiao
- Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Deng Chen
- Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Shanshan Song
- Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.,Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Ramon van der Vlag
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Petra E van der Wouden
- Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Ronald van Merkerk
- Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Robbert H Cool
- Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Anna K H Hirsch
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.,Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1, 66123 Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Barbro N Melgert
- Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.,Groningen Research Institute of Asthma and COPD, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Wim J Quax
- Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Gerrit J Poelarends
- Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Frank J Dekker
- Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
48
|
Structural and functional insights into macrophage migration inhibitory factor from Oncomelania hupensis, the intermediate host of Schistosoma japonicum. Biochem J 2020; 477:2133-2151. [PMID: 32484230 DOI: 10.1042/bcj20200068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/26/2020] [Accepted: 06/02/2020] [Indexed: 11/17/2022]
Abstract
Oncomelania hupensis is the unique intermediate host of Schistosoma japonicum. As an irreplaceable prerequisite in the transmission and prevalence of schistosomiasis japonica, an in-depth study of this obligate host-parasite interaction can provide glimpse into the molecular events in the competition between schistosome infectivity and snail immune resistance. In previous studies, we identified a macrophage migration inhibitory factor (MIF) from O. hupensis (OhMIF), and showed that it was involved in the snail host immune response to the parasite S. japonicum. Here, we determined the crystal structure of OhMIF and revealed that there were distinct structural differences between the mammalian and O. hupensis MIFs. Noticeably, there was a projecting and structured C-terminus in OhMIF, which not only regulated the MIF's thermostability but was also critical in the activation of its tautomerase activity. Comparative studies between OhMIF and human MIF (hMIF) by analyzing the tautomerase activity, oxidoreductase activity, thermostability, interaction with the receptor CD74 and activation of the ERK signaling pathway demonstrated the functional differences between hMIF and OhMIF. Our data shed a species-specific light on structural, functional, and immunological characteristics of OhMIF and enrich the knowledge on the MIF family.
Collapse
|
49
|
Alban TJ, Bayik D, Otvos B, Rabljenovic A, Leng L, Jia-Shiun L, Roversi G, Lauko A, Momin AA, Mohammadi AM, Peereboom DM, Ahluwalia MS, Matsuda K, Yun K, Bucala R, Vogelbaum MA, Lathia JD. Glioblastoma Myeloid-Derived Suppressor Cell Subsets Express Differential Macrophage Migration Inhibitory Factor Receptor Profiles That Can Be Targeted to Reduce Immune Suppression. Front Immunol 2020; 11:1191. [PMID: 32625208 PMCID: PMC7315581 DOI: 10.3389/fimmu.2020.01191] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/13/2020] [Indexed: 12/20/2022] Open
Abstract
The application of tumor immunotherapy to glioblastoma (GBM) is limited by an unprecedented degree of immune suppression due to factors that include high numbers of immune suppressive myeloid cells, the blood brain barrier, and T cell sequestration to the bone marrow. We previously identified an increase in immune suppressive myeloid-derived suppressor cells (MDSCs) in GBM patients, which correlated with poor prognosis and was dependent on macrophage migration inhibitory factor (MIF). Here we examine the MIF signaling axis in detail in murine MDSC models, GBM-educated MDSCs and human GBM. We found that the monocytic subset of MDSCs (M-MDSCs) expressed high levels of the MIF cognate receptor CD74 and was localized in the tumor microenvironment. In contrast, granulocytic MDSCs (G-MDSCs) expressed high levels of the MIF non-cognate receptor CXCR2 and showed minimal accumulation in the tumor microenvironment. Furthermore, targeting M-MDSCs with Ibudilast, a brain penetrant MIF-CD74 interaction inhibitor, reduced MDSC function and enhanced CD8 T cell activity in the tumor microenvironment. These findings demonstrate the MDSC subsets differentially express MIF receptors and may be leveraged for specific MDSC targeting.
Collapse
Affiliation(s)
- Tyler J. Alban
- Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| | - Defne Bayik
- Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| | - Balint Otvos
- Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, United States
- Cleveland Clinic, Department of Neurosurgery, Cleveland Clinic, Cleveland, OH, United States
| | - Anja Rabljenovic
- Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, United States
| | - Lin Leng
- Departments of Medicine, Pathology, and Epidemiology & Public Health, Yale Cancer Center, Yale School of Medicine, New Haven, CT, United States
| | - Leu Jia-Shiun
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, United States
| | - Gustavo Roversi
- Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, United States
| | - Adam Lauko
- Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, United States
| | - Arbaz A. Momin
- Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, United States
| | - Alireza M. Mohammadi
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, United States
| | - David M. Peereboom
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, United States
| | - Manmeet S. Ahluwalia
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, United States
| | | | - Kyuson Yun
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, United States
- Department of Neurosurgery, Weill Cornell Medical College, New York, NY, United States
| | - Richard Bucala
- Departments of Medicine, Pathology, and Epidemiology & Public Health, Yale Cancer Center, Yale School of Medicine, New Haven, CT, United States
| | | | - Justin D. Lathia
- Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
50
|
Pantouris G, Khurana L, Ma A, Skeens E, Reiss K, Batista VS, Lisi GP, Lolis EJ. Regulation of MIF Enzymatic Activity by an Allosteric Site at the Central Solvent Channel. Cell Chem Biol 2020; 27:740-750.e5. [PMID: 32433911 DOI: 10.1016/j.chembiol.2020.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/18/2020] [Accepted: 04/30/2020] [Indexed: 12/18/2022]
Abstract
In proteins with multiple functions, such as macrophage migration inhibitory factor (MIF), the study of its intramolecular dynamic network can offer a unique opportunity to understand how a single protein is able to carry out several nonoverlapping functions. A dynamic mechanism that controls the MIF-induced activation of CD74 was recently discovered. In this study, the regulation of tautomerase activity was explored. The catalytic base Pro1 is found to form dynamic communications with the same allosteric node that regulates CD74 activation. Signal transmission between the allosteric and catalytic sites take place through intramolecular aromatic interactions and a hydrogen bond network that involves residues and water molecules of the MIF solvent channel. Once thought to be a consequence of trimerization, a regulatory function for the solvent channel is now defined. These results provide mechanistic insights into the regulation of catalytic activity and the role of solvent channel water molecules in MIF catalysis.
Collapse
Affiliation(s)
- Georgios Pantouris
- Department of Chemistry, University of the Pacific, Stockton, CA 95211, USA.
| | - Leepakshi Khurana
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Anthony Ma
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Erin Skeens
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02903, USA
| | - Krystle Reiss
- Department of Chemistry, Yale University, New Haven, CT 06510, USA
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, CT 06510, USA
| | - George P Lisi
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02903, USA.
| | - Elias J Lolis
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06510, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|