1
|
Shang Z, Li X. Human cytomegalovirus: pathogenesis, prevention, and treatment. MOLECULAR BIOMEDICINE 2024; 5:61. [PMID: 39585514 PMCID: PMC11589059 DOI: 10.1186/s43556-024-00226-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024] Open
Abstract
Human cytomegalovirus (HCMV) infection remains a significant global health challenge, particularly for immunocompromised individuals and newborns. This comprehensive review synthesizes current knowledge on HCMV pathogenesis, prevention, and treatment strategies. We examine the molecular mechanisms of HCMV entry, focusing on the structure and function of key envelope glycoproteins (gB, gH/gL/gO, gH/gL/pUL128-131) and their interactions with cellular receptors such as PDGFRα, NRP2, and THBD. The review explores HCMV's sophisticated immune evasion strategies, including interference with pattern recognition receptor signaling, modulation of antigen presentation, and regulation of NK and T cell responses. We highlight recent advancements in developing neutralizing antibodies, various vaccine strategies (live-attenuated, subunit, vector-based, DNA, and mRNA), antiviral compounds (both virus-targeted and host-targeted), and emerging cellular therapies such as TCR-T cell approaches. By integrating insights from structural biology, immunology, and clinical research, we identify critical knowledge gaps and propose future research directions. This analysis aims to stimulate cross-disciplinary collaborations and accelerate the development of more effective prevention and treatment strategies for HCMV infections, addressing a significant unmet medical need.
Collapse
Affiliation(s)
- Zifang Shang
- Research Experiment Center, Meizhou Academy of Medical Sciences, Meizhou People's Hospital, Meizhou, 514031, Guangdong, China.
- Guangdong Engineering Technological Research Center of Clinical Molecular Diagnosis and Antibody Drugs, Meizhou, 514031, Guangdong, China.
| | - Xin Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| |
Collapse
|
2
|
Malouli D, Taher H, Mansouri M, Iyer RF, Reed J, Papen C, Schell JB, Beechwood T, Martinson T, Morrow D, Hughes CM, Gilbride RM, Randall K, Ford JC, Belica K, Ojha S, Sacha JB, Bimber BN, Hansen SG, Picker LJ, Früh K. Human cytomegalovirus UL18 prevents priming of MHC-E- and MHC-II-restricted CD8 + T cells. Sci Immunol 2024; 9:eadp5216. [PMID: 39392895 DOI: 10.1126/sciimmunol.adp5216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/19/2024] [Indexed: 10/13/2024]
Abstract
Rhesus cytomegalovirus (RhCMV) vectors elicit major histocompatibility complex (MHC)-E-restricted CD8+ T cells that stringently control simian immunodeficiency virus (SIV) in rhesus macaques. These responses require deletion of eight RhCMV chemokine-like open reading frames (ORFs) that are conserved in human cytomegalovirus (HCMV). To determine whether HCMV encodes additional, nonconserved inhibitors of unconventional T cell priming, we inserted 41 HCMV-specific ORFs into a chemokine-deficient strain (68-1 RhCMV). Monitoring of epitope recognition revealed that HCMV UL18 prevented unconventional T cell priming, resulting in MHC-Ia-targeted responses. UL18 is homologous to MHC-I but does not engage T cell receptors and, instead, binds with high affinity to inhibitory leukocyte immunoglobulin-like receptor-1 (LIR-1). UL18 lacking LIR-1 binding no longer interfered with MHC-E-restricted T cell stimulation by RhCMV-infected cells or the induction of unconventionally restricted T cells. Thus, LIR-1 binding needs to be deleted from UL18 of HCMV/HIV vaccines to allow for the induction of protective MHC-E-restricted T cells.
Collapse
Affiliation(s)
- Daniel Malouli
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Husam Taher
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Mandana Mansouri
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Ravi F Iyer
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Jason Reed
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Courtney Papen
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - John B Schell
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Teresa Beechwood
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Thomas Martinson
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - David Morrow
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Colette M Hughes
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Roxanne M Gilbride
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Kurt Randall
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Julia C Ford
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Karina Belica
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Sohita Ojha
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Jonah B Sacha
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Benjamin N Bimber
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Scott G Hansen
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Louis J Picker
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Klaus Früh
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| |
Collapse
|
3
|
Abidi MZ, Umbleja T, Overton ET, Burdo T, Flynn JM, Lu MT, Taron J, Schnittman SR, Fitch KV, Zanni MV, Fichtenbaum CJ, Malvestutto C, Aberg JA, Fulda ES, Eckard AR, Manne-Goehler J, Tuan JJ, Ribaudo HJ, Douglas PS, Grinspoon SK, Brown TT, Erlandson KM. Cytomegalovirus IgG is Associated With Physical Function But Not Muscle Density in People With HIV. J Acquir Immune Defic Syndr 2024; 95:470-478. [PMID: 38180893 PMCID: PMC10947880 DOI: 10.1097/qai.0000000000003377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/07/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Cytomegalovirus (CMV) seropositivity is associated with poor outcomes, including physical function impairment, in people without HIV. We examined associations between CMV IgG titer and physical function in virologically suppressed people with HIV (PWH). METHODS REPRIEVE is a double-blind randomized trial evaluating pitavastatin for primary prevention of atherosclerotic cardiovascular disease in PWH. This analysis focused on participants enrolled in a substudy with additional biomarker testing, imaging [coronary CT angiography], and physical function measures at entry. CMV IgG was measured using quantitative enzyme immunoassay, physical function by Short Physical Performance Battery, and muscle density and area by CT. Associations between CMV IgG (risk factor) and outcomes were evaluated using the partial Spearman correlation and linear and log-binomial regression. RESULTS Among 717 participants, 82% male, the median CMV IgG was 2716 (Q1, Q3: 807, 6672) IU/mL, all above the limit of quantification. Among 631 participants with imaging, there was no association between CMV IgG and CT-based muscle density or area, controlling for age (r = -0.03 and r = -0.01, respectively; P ≥ 0.38). Among 161 participants with physical function data, higher CMV IgG was associated with poorer overall modified Short Physical Performance Battery score ( P = 0.02), adjusted for age, nadir CD4, and high-sensitivity C-reactive protein. CONCLUSIONS Higher CMV IgG titer was associated with poorer physical function, not explained by previous immune compromise, inflammation, or muscle density or area. Further mechanistic studies are needed to understand this association and whether CMV-specific therapy can affect physical function in PWH.
Collapse
Affiliation(s)
- Maheen Z. Abidi
- Division of Infectious Diseases, Department of Medicine, University of Colorado, Denver, CO, USA
| | - Triin Umbleja
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Edgar T. Overton
- Division of Infectious Diseases, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Tricia Burdo
- Department of Microbiology, Immunology, and Inflammation and Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Jacqueline M. Flynn
- Department of Microbiology, Immunology, and Inflammation and Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Michael T. Lu
- Cardiovascular Imaging Research Center, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jana Taron
- Cardiovascular Imaging Research Center, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Medical Center – University of Freiburg, Germany
| | - Samuel R. Schnittman
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kathleen V. Fitch
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Markella V. Zanni
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Carl J. Fichtenbaum
- Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Carlos Malvestutto
- Division of Infectious Diseases, Ohio State University Medical Center, Columbus, OH, USA
| | - Judith A. Aberg
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Evelynne S. Fulda
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Allison Ross Eckard
- Departments of Pediatrics and Medicine, Divisions of Infectious Diseases, Medical University of South Carolina, Charleston, SC, USA
| | - Jennifer Manne-Goehler
- Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Jessica J. Tuan
- Division of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Heather J. Ribaudo
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Pamela S. Douglas
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, U.S.A
| | - Steven K. Grinspoon
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Todd T. Brown
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kristine M. Erlandson
- Division of Infectious Diseases, Department of Medicine, University of Colorado, Denver, CO, USA
| |
Collapse
|
4
|
Shapira G, Volkov H, Fabian I, Mohr DW, Bettinotti M, Shomron N, Avery RK, Arav-Boger R. Genomic Markers Associated with Cytomegalovirus DNAemia in Kidney Transplant Recipients. Viruses 2023; 15:2227. [PMID: 38005904 PMCID: PMC10674338 DOI: 10.3390/v15112227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Human cytomegalovirus (CMV) is a major pathogen after solid organ transplantation, leading to high morbidity and mortality. Transplantation from a CMV-seropositive donor to a CMV-seronegative recipient (D+/R-) is associated with high risk of CMV disease. However, that risk is not uniform, suggesting a role for host factors in immune control of CMV. To identify host genetic factors that control CMV DNAemia post transplantation, we performed a whole-exome association study in two cohorts of D+/R- kidney transplant recipients. Quantitative CMV DNA was measured for at least one year following transplantation. Several CMV-protective single-nucleotide polymorphisms (SNPs) were identified in the first cohort (72 patients) but were not reproducible in the second cohort (126 patients). A meta-analysis of both cohorts revealed several SNPs that were significantly associated with protection from CMV DNAemia. The copy number variation of several genes was significantly different between recipients with and without CMV DNAemia. Amongst patients with CMV DNAemia in the second cohort, several variants of interest (p < 5 × 10-5), the most common of which was NLRC5, were associated with peak viral load. We provide new predictive genetic markers for protection of CMV DNAemia. These markers should be validated in larger cohorts.
Collapse
Affiliation(s)
- Guy Shapira
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; (G.S.)
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hadas Volkov
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; (G.S.)
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv 69978, Israel
| | - Itai Fabian
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; (G.S.)
| | - David W. Mohr
- Johns Hopkins Genetic Resources Core Facility, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Maria Bettinotti
- Immunogenetics Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| | - Noam Shomron
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; (G.S.)
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv 69978, Israel
| | - Robin K. Avery
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| | - Ravit Arav-Boger
- Department of Pediatrics, Division of Infectious Diseases, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
5
|
Marandu TF, Dombek M, Gutknecht M, Griessl M, Riça IG, Vlková B, Macáková K, Panagioti E, Griffith A, Lederer J, Yaffe M, Shankar S, Otterbein L, Itagaki K, Hauser CJ, Cook CH. Cytomegalovirus durably primes neutrophil oxidative burst. J Leukoc Biol 2023; 114:459-474. [PMID: 37566762 DOI: 10.1093/jleuko/qiad091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/01/2023] [Accepted: 06/20/2023] [Indexed: 08/13/2023] Open
Abstract
Cytomegalovirus (CMV) is a ubiquitous herpes virus that infects most humans, thereafter persisting lifelong in tissues of the host. It is a known pathogen in immunosuppressed patients, but its impact on immunocompetent hosts remains less understood. Recent data have shown that CMV leaves a significant and long-lasting imprint in host immunity that may confer some protection against subsequent bacterial infection. Such innate immune activation may come at a cost, however, with potential to cause immunopathology. Neutrophils are central to many models of immunopathology, and while acute CMV infection is known to influence neutrophil biology, the impact of chronic CMV infection on neutrophil function remains unreported. Using our murine model of CMV infection and latency, we show that chronic CMV causes persistent enhancement of neutrophil oxidative burst well after resolution of acute infection. Moreover, this in vivo priming of marrow neutrophils is associated with enhanced formyl peptide receptor expression, and ultimately constitutive c-Jun N-terminal kinase phosphorylation and enhanced CD14 expression in/on circulating neutrophils. Finally, we show that neutrophil priming is dependent on viral load, suggesting that naturally infected human hosts will show variability in CMV-related neutrophil priming. Altogether, these findings represent a previously unrecognized and potentially important impact of chronic CMV infection on neutrophil responsiveness in immunocompetent hosts.
Collapse
Affiliation(s)
- Thomas F Marandu
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis St., Boston, MA 02215, United States
- Department of Microbiology & Immunology, Mbeya College of Health and Allied Sciences, Hospital Hill Rd, University of Dar es Salaam, Mbeya 53107, Tanzania
| | - Michael Dombek
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis St., Boston, MA 02215, United States
| | - Michael Gutknecht
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis St., Boston, MA 02215, United States
| | - Marion Griessl
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis St., Boston, MA 02215, United States
| | - Ingred Goretti Riça
- Department of Biology and Biological Engineering, and Center for Precision Cancer Medicine, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St, Cambridge, MA 02139, United States
| | - Barbora Vlková
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis St., Boston, MA 02215, United States
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 4 Sasinkova St, Bratislava 811 08, Slovakia
| | - Kristína Macáková
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis St., Boston, MA 02215, United States
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 4 Sasinkova St, Bratislava 811 08, Slovakia
| | - Eleni Panagioti
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis St., Boston, MA 02215, United States
| | - Alec Griffith
- Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St., Boston, MA 02215, United States
| | - James Lederer
- Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St., Boston, MA 02215, United States
| | - Michael Yaffe
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis St., Boston, MA 02215, United States
- Department of Biology and Biological Engineering, and Center for Precision Cancer Medicine, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St, Cambridge, MA 02139, United States
| | - Sidharth Shankar
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis St., Boston, MA 02215, United States
| | - Leo Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis St., Boston, MA 02215, United States
| | - Kiyoshi Itagaki
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis St., Boston, MA 02215, United States
| | - Carl J Hauser
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis St., Boston, MA 02215, United States
| | - Charles H Cook
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis St., Boston, MA 02215, United States
| |
Collapse
|
6
|
Zeng J, Cao D, Yang S, Jaijyan DK, Liu X, Wu S, Cruz-Cosme R, Tang Q, Zhu H. Insights into the Transcriptome of Human Cytomegalovirus: A Comprehensive Review. Viruses 2023; 15:1703. [PMID: 37632045 PMCID: PMC10458407 DOI: 10.3390/v15081703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a widespread pathogen that poses significant risks to immunocompromised individuals. Its genome spans over 230 kbp and potentially encodes over 200 open-reading frames. The HCMV transcriptome consists of various types of RNAs, including messenger RNAs (mRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs), with emerging insights into their biological functions. HCMV mRNAs are involved in crucial viral processes, such as viral replication, transcription, and translation regulation, as well as immune modulation and other effects on host cells. Additionally, four lncRNAs (RNA1.2, RNA2.7, RNA4.9, and RNA5.0) have been identified in HCMV, which play important roles in lytic replication like bypassing acute antiviral responses, promoting cell movement and viral spread, and maintaining HCMV latency. CircRNAs have gained attention for their important and diverse biological functions, including association with different diseases, acting as microRNA sponges, regulating parental gene expression, and serving as translation templates. Remarkably, HCMV encodes miRNAs which play critical roles in silencing human genes and other functions. This review gives an overview of human cytomegalovirus and current research on the HCMV transcriptome during lytic and latent infection.
Collapse
Affiliation(s)
- Janine Zeng
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Di Cao
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Shaomin Yang
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Dabbu Kumar Jaijyan
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Xiaolian Liu
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Songbin Wu
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Ruth Cruz-Cosme
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Hua Zhu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| |
Collapse
|
7
|
Zhang S, Ding J, Zhang Y, Liu S, Yang J, Yin T. Regulation and Function of Chemokines at the Maternal–Fetal Interface. Front Cell Dev Biol 2022; 10:826053. [PMID: 35938162 PMCID: PMC9354654 DOI: 10.3389/fcell.2022.826053] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/22/2022] [Indexed: 11/28/2022] Open
Abstract
Successful pregnancy requires the maternal immune system to tolerate the semi-allogeneic embryo. A good trophoblast function is also essential for successful embryo implantation and subsequent placental development. Chemokines are initially described in recruiting leukocytes. There are rich chemokines and chemokine receptor system at the maternal–fetal interface. Numerous studies have reported that they not only regulate trophoblast biological behaviors but also participate in the decidual immune response. At the same time, the chemokine system builds an important communication network between fetally derived trophoblast cells and maternally derived decidual cells. However, abnormal functions of chemokines or chemokine receptors are involved in a series of pregnancy complications. As growing evidence points to the roles of chemokines in pregnancy, there is a great need to summarize the available data on this topic. This review aimed to describe the recent research progress on the regulation and function of the main chemokines in pregnancy at the maternal–fetal interface. In addition, we also discussed the potential relationship between chemokines and pregnancy complications.
Collapse
Affiliation(s)
- Sainan Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Jinli Ding
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Su Liu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
- *Correspondence: Su Liu, ; Jing Yang, ; Tailang Yin,
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
- *Correspondence: Su Liu, ; Jing Yang, ; Tailang Yin,
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
- *Correspondence: Su Liu, ; Jing Yang, ; Tailang Yin,
| |
Collapse
|
8
|
Berg C, Wedemeyer MJ, Melynis M, Schlimgen RR, Hansen LH, Våbenø J, Peterson FC, Volkman BF, Rosenkilde MM, Lüttichau HR. The non-ELR CXC chemokine encoded by human cytomegalovirus UL146 genotype 5 contains a C-terminal β-hairpin and induces neutrophil migration as a selective CXCR2 agonist. PLoS Pathog 2022; 18:e1010355. [PMID: 35271688 PMCID: PMC8939814 DOI: 10.1371/journal.ppat.1010355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 03/22/2022] [Accepted: 02/09/2022] [Indexed: 11/19/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a major pathogen in immunocompromised patients. The UL146 gene exists as 14 diverse genotypes among clinical isolates, which encode 14 different CXC chemokines. One genotype (vCXCL1GT1) is a known agonist for CXCR1 and CXCR2, while two others (vCXCL1GT5 and vCXCL1GT6) lack the ELR motif considered crucial for CXCR1 and CXCR2 binding, thus suggesting another receptor targeting profile. To determine the receptor target for vCXCL1GT5, the chemokine was probed in a G protein signaling assay on all 18 classical human chemokine receptors, where CXCR2 was the only receptor being activated. In addition, vCXCL1GT5 recruited β-arrestin in a BRET-based assay and induced migration in a chemotaxis assay through CXCR2, but not CXCR1. In contrast, vCXCL1GT1 stimulated G protein signaling, recruited β-arrestin and induced migration through both CXCR1 and CXCR2. Both vCXCL1GT1 and vCXCL1GT5 induced equally potent and efficacious migration of neutrophils, and ELR vCXCL1GT4 and non-ELR vCXCL1GT6 activated only CXCR2. In contrast to most human chemokines, the 14 UL146 genotypes have remarkably long C-termini. Comparative modeling using Rosetta showed that each genotype could adopt the classic chemokine core structure, and predicted that the extended C-terminal tail of several genotypes (including vCXCL1GT1, vCXCL1GT4, vCXCL1GT5, and vCXCL1GT6) forms a novel β-hairpin not found in human chemokines. Secondary NMR shift and TALOS+ analysis of vCXCL1GT1 supported the existence of two stable β-strands. C-terminal deletion of vCXCL1GT1 resulted in a non-functional protein and in a shift to solvent exposure for tryptophan residues likely due to destabilization of the chemokine fold. The results demonstrate that non-ELR chemokines can activate CXCR2 and suggest that the UL146 chemokines have unique C-terminal structures that stabilize the chemokine fold. Increased knowledge of the structure and interaction partners of the chemokine variants encoded by UL146 is key to understanding why circulating HCMV strains sustain 14 stable genotypes. Human cytomegalovirus (HCMV) is a prevalent herpesvirus infecting an estimated 60% of the human population worldwide. It is commonly transmitted during early childhood and leads to life-long latency, where viral reactivation can cause severe complications in case of host immune suppression. Furthermore, HCMV is the leading cause of congenital infections. Circulating HCMV strains exhibit great genetic diversity unusual for DNA viruses. One of its most diverse genes is UL146, which encodes a chemokine that facilitates viral dissemination by exploiting the human immune system through mimicry of key immunity components. In this study, we investigate how the diversity of UL146 affects its signaling and structural properties to understand why its genetic diversity is maintained across human populations. We find that certain genotypes that lack key structural domains present in the human homologs nonetheless exert similar functions in the virus-host relationship. Furthermore, many of the UL146 genotypes contain novel structural elements critical for correct protein folding and with the potential to provide HCMV with additional immune modulatory and evasive features. Together, our data highlight a considerable degree of host-adaptation by HCMV and propose novel structural interactions with implications for the virus-host interplay.
Collapse
Affiliation(s)
- Christian Berg
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
- Unit for Infectious Diseases, Department of Medicine, Herlev-Gentofte Hospital, University of Copenhagen, Herlev, Denmark
| | - Michael J. Wedemeyer
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Motiejus Melynis
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Roman R. Schlimgen
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Lasse H. Hansen
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Jon Våbenø
- Helgeland Hospital Trust, Sandnessjøen, Norway
| | - Francis C. Peterson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Brian F. Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Mette M. Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
- * E-mail: (MMR); (HRL)
| | - Hans R. Lüttichau
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
- Unit for Infectious Diseases, Department of Medicine, Herlev-Gentofte Hospital, University of Copenhagen, Herlev, Denmark
- * E-mail: (MMR); (HRL)
| |
Collapse
|
9
|
Xu J, Liu X, Zhang X, Marshall B, Dong Z, Smith SB, Espinosa-Heidmann DG, Zhang M. Retinal and Choroidal Pathologies in Aged BALB/c Mice Following Systemic Neonatal Murine Cytomegalovirus Infection. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1787-1804. [PMID: 34197777 PMCID: PMC8485058 DOI: 10.1016/j.ajpath.2021.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 11/30/2022]
Abstract
Although pathologies associated with acute virus infections have been extensively studied, the effects of long-term latent virus infections are less well understood. Human cytomegalovirus, which infects 50% to 80% of humans, is usually acquired during early life and persists in a latent state for the lifetime. The purpose of this study was to determine whether systemic murine cytomegalovirus (MCMV) infection acquired early in life disseminates to and becomes latent in the eye and if ocular MCMV can trigger in situ inflammation and occurrence of ocular pathology. This study found that neonatal infection of BALB/c mice with MCMV resulted in dissemination of virus to the eye, where it localized principally to choroidal endothelia and pericytes and less frequently to the retinal pigment epithelium (RPE) cells. MCMV underwent ocular latency, which was associated with expression of multiple virus genes and from which MCMV could be reactivated by immunosuppression. Latent ocular infection was associated with significant up-regulation of several inflammatory/angiogenic factors. Retinal and choroidal pathologies developed in a progressive manner, with deposits appearing at both basal and apical aspects of the RPE, RPE/choroidal atrophy, photoreceptor degeneration, and neovascularization. The pathologies induced by long-term ocular MCMV latency share features of previously described human ocular diseases, such as age-related macular degeneration.
Collapse
Affiliation(s)
- Jinxian Xu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia; James and Jean Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Xinglou Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia; James and Jean Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Xinyan Zhang
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia; James and Jean Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Brendan Marshall
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia; Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| | - Sylvia B Smith
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia; James and Jean Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, Georgia; Department of Ophthamology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Diego G Espinosa-Heidmann
- James and Jean Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, Georgia; Department of Ophthamology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Ming Zhang
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia; James and Jean Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, Georgia.
| |
Collapse
|
10
|
Saurav S, Tanwar J, Ahuja K, Motiani RK. Dysregulation of host cell calcium signaling during viral infections: Emerging paradigm with high clinical relevance. Mol Aspects Med 2021; 81:101004. [PMID: 34304899 PMCID: PMC8299155 DOI: 10.1016/j.mam.2021.101004] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/18/2021] [Accepted: 07/16/2021] [Indexed: 12/22/2022]
Abstract
Viral infections are one of the leading causes of human illness. Viruses take over host cell signaling cascades for their replication and infection. Calcium (Ca2+) is a versatile and ubiquitous second messenger that modulates plethora of cellular functions. In last two decades, a critical role of host cell Ca2+ signaling in modulating viral infections has emerged. Furthermore, recent literature clearly implicates a vital role for the organellar Ca2+ dynamics (influx and efflux across organelles) in regulating virus entry, replication and severity of the infection. Therefore, it is not surprising that a number of viral infections including current SARS-CoV-2 driven COVID-19 pandemic are associated with dysregulated Ca2+ homeostasis. The focus of this review is to first discuss the role of host cell Ca2+ signaling in viral entry, replication and egress. We further deliberate on emerging literature demonstrating hijacking of the host cell Ca2+ dynamics by viruses. In particular, a variety of viruses including SARS-CoV-2 modulate lysosomal and cytosolic Ca2+ signaling for host cell entry and replication. Moreover, we delve into the recent studies, which have demonstrated the potential of several FDA-approved drugs targeting Ca2+ handling machinery in inhibiting viral infections. Importantly, we discuss the prospective of targeting intracellular Ca2+ signaling for better management and treatment of viral pathogenesis including COVID-19. Finally, we highlight the key outstanding questions in the field that demand critical and timely attention.
Collapse
Affiliation(s)
- Suman Saurav
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India
| | - Jyoti Tanwar
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi-110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Kriti Ahuja
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India
| | - Rajender K Motiani
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India.
| |
Collapse
|
11
|
The frequency of cytomegalovirus non-ELR UL146 genotypes in neonates with congenital CMV disease is comparable to strains in the background population. BMC Infect Dis 2021; 21:386. [PMID: 33902487 PMCID: PMC8077815 DOI: 10.1186/s12879-021-06076-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 04/15/2021] [Indexed: 11/21/2022] Open
Abstract
Background Congenital cytomegalovirus disease (cCMV) is common and can be fatal or cause severe sequelae. Circulating strains of cytomegalovirus carry a high number of variable or disrupted genes. One of these is UL146, a highly diverse gene with 14 distinct genotypes encoding a CXC-chemokine involved in viral dissemination. UL146 genotypes 5 and 6 lack the conserved ELR motif, potentially affecting strain virulence. Here, we investigate whether UL146 genotypes 5 and 6 were associated with congenital CMV infection. Methods Viral DNA was extracted and UL146 sequenced from 116 neonatal dried blood spots (DBS) stored in the Danish National Biobank since 1982 and linked to registered cCMV cases through a personal identifier. These sequences were compared to UL146 control sequences obtained from CMV DNA extracted from 83 urine samples from children with suspected bacterial urinary tract infections. Results Three non-ELR UL146 genotypes (5 and 6) were observed among the cases (2.6%) and two were observed among the controls (2.4%; P > 0.99). Additionally, no significant association with cCMV was found for the other 12 genotypes in a post-hoc analysis, although genotype 8 showed a tendency to be more frequent among cases with 12 observations against three (P = 0.10). All fourteen genotypes were found to have little intra-genotype variation. Viral load, gender, and sample age were not found to be associated with any particular UL146 genotype. Conclusions No particular UL146 genotype was associated with cCMV in this nationwide retrospective case-control study. Associations between CMV disease and disrupted or polymorph CMV genes among immunosuppressed people living with HIV/AIDS and transplant recipients should be investigated in future studies. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06076-w.
Collapse
|
12
|
Tecchio C, Cassatella MA. Uncovering the multifaceted roles played by neutrophils in allogeneic hematopoietic stem cell transplantation. Cell Mol Immunol 2021; 18:905-918. [PMID: 33203938 PMCID: PMC8115169 DOI: 10.1038/s41423-020-00581-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (alloHSCT) is a life-saving procedure used for the treatment of selected hematological malignancies, inborn errors of metabolism, and bone marrow failures. The role of neutrophils in alloHSCT has been traditionally evaluated only in the context of their ability to act as a first line of defense against infection. However, recent evidence has highlighted neutrophils as key effectors of innate and adaptive immune responses through a wide array of newly discovered functions. Accordingly, neutrophils are emerging as highly versatile cells that are able to acquire different, often opposite, functional capacities depending on the microenvironment and their differentiation status. Herein, we review the current knowledge on the multiple functions that neutrophils exhibit through the different stages of alloHSCT, from the hematopoietic stem cell (HSC) mobilization in the donor to the immunological reconstitution that occurs in the recipient following HSC infusion. We also discuss the influence exerted on neutrophils by the immunosuppressive drugs delivered in the course of alloHSCT as part of graft-versus-host disease (GVHD) prophylaxis. Finally, the potential involvement of neutrophils in alloHSCT-related complications, such as transplant-associated thrombotic microangiopathy (TA-TMA), acute and chronic GVHD, and cytomegalovirus (CMV) reactivation, is also discussed. Based on the data reviewed herein, the role played by neutrophils in alloHSCT is far greater than a simple antimicrobial role. However, much remains to be investigated in terms of the potential functions that neutrophils might exert during a highly complex procedure such as alloHSCT.
Collapse
Affiliation(s)
- Cristina Tecchio
- Department of Medicine, Section of Hematology and Bone Marrow Transplant Unit, University of Verona, Verona, Italy.
| | | |
Collapse
|
13
|
Qian Z, Fan H, Chen X, Tao Y. The predictive value of interleukin-8 in the development of cytomegalovirus retinitis in HIV-negative patients. Ophthalmic Res 2020; 65:287-292. [PMID: 33326958 DOI: 10.1159/000513791] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/15/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION To evaluate the value of interleukin (IL)-8 in the development and management of cytomegalovirus retinitis (CMVR) in HIV-negative patients. INTRODUCTION To evaluate the value of interleukin (IL)-8 in the development and management of cytomegalovirus retinitis (CMVR) in HIV-negative patients. METHODS A retrospective case series from January 2014 to May 2018 was conducted. Forty patients (40 eyes) received intravitreal injection of ganciclovir (IVG). The aqueous levels of the cytomegalovirus (CMV) DNA and IL-8 in each follow-up visit were tested. The initial and final best corrected visual acuity (BCVA), the course of treatment, the recurrence rate, and the occurrence of complications were recorded and analyzed. RESULTS The aqueous value of IL-8 was significantly correlated with the aqueous level of the CMV DNA during treatment but was not associated with the BCVA or the number of IVG. No recurrence occurred in the condition in which a low aqueous IL-8 level was set as the endpoint of the treatment. CONCLUSION In HIV-negative patients with CMVR, IL-8 was closely associated with CMV DNA concentration in the aqueous humor. The real-time aqueous level of IL-8 could be used as one of the evidences of disease recovery.
Collapse
Affiliation(s)
| | - Hua Fan
- Shanghai Aier Eye Hospital, Shanghai, China
| | - Xu Chen
- Shanghai Aier Eye Hospital, Shanghai, China
- Aier School of Ophthalmology, Central South University, Changsha, China
| | - Yong Tao
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Jones IKA, Haese NN, Gatault P, Streblow ZJ, Andoh TF, Denton M, Streblow CE, Bonin K, Kreklywich CN, Burg JM, Orloff SL, Streblow DN. Rat Cytomegalovirus Virion-Associated Proteins R131 and R129 Are Necessary for Infection of Macrophages and Dendritic Cells. Pathogens 2020; 9:E963. [PMID: 33228102 PMCID: PMC7699341 DOI: 10.3390/pathogens9110963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/05/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022] Open
Abstract
Cytomegalovirus (CMV) establishes persistent, latent infection in hosts, causing diseases in immunocompromised patients, transplant recipients, and neonates. CMV infection modifies the host chemokine axis by modulating chemokine and chemokine receptor expression and by encoding putative chemokine and chemokine receptor homologues. The viral proteins have roles in cellular signaling, migration, and transformation, as well as viral dissemination, tropism, latency and reactivation. Herein, we review the contribution of CMV-encoded chemokines and chemokine receptors to these processes, and further elucidate the viral tropism role of rat CMV (RCMV) R129 and R131. These homologues of the human CMV (HCMV)-encoded chemokines UL128 and UL130 are of particular interest because of their dual role as chemokines and members of the pentameric entry complex, which is required for entry into cell types that are essential for viral transmission and dissemination. The contributions of UL128 and UL130 to acceleration of solid organ transplant chronic rejection are poorly understood, and are in need of an effective in vivo model system to elucidate the phenomenon. We demonstrated similar molecular entry requirements for R129 and R131 in the rat cells, as observed for HCMV, and provided evidence that R129 and R131 are part of the viral entry complex required for entry into macrophages, dendritic cells, and bone marrow cells.
Collapse
Affiliation(s)
- Iris K. A. Jones
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, OR 97239, USA; (I.K.A.J.); (N.N.H.); (Z.J.S.); (T.F.A.); (M.D.); (C.E.S.); (K.B.); (C.N.K.)
| | - Nicole N. Haese
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, OR 97239, USA; (I.K.A.J.); (N.N.H.); (Z.J.S.); (T.F.A.); (M.D.); (C.E.S.); (K.B.); (C.N.K.)
| | - Philippe Gatault
- Renal Transplant Unit, 10 Boulevard Tonnellé, University Hospital of Tours, 37032 Tours, France;
| | - Zachary J. Streblow
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, OR 97239, USA; (I.K.A.J.); (N.N.H.); (Z.J.S.); (T.F.A.); (M.D.); (C.E.S.); (K.B.); (C.N.K.)
| | - Takeshi F. Andoh
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, OR 97239, USA; (I.K.A.J.); (N.N.H.); (Z.J.S.); (T.F.A.); (M.D.); (C.E.S.); (K.B.); (C.N.K.)
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA; (J.M.B.); (S.L.O.)
| | - Michael Denton
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, OR 97239, USA; (I.K.A.J.); (N.N.H.); (Z.J.S.); (T.F.A.); (M.D.); (C.E.S.); (K.B.); (C.N.K.)
| | - Cassilyn E. Streblow
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, OR 97239, USA; (I.K.A.J.); (N.N.H.); (Z.J.S.); (T.F.A.); (M.D.); (C.E.S.); (K.B.); (C.N.K.)
| | - Kiley Bonin
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, OR 97239, USA; (I.K.A.J.); (N.N.H.); (Z.J.S.); (T.F.A.); (M.D.); (C.E.S.); (K.B.); (C.N.K.)
| | - Craig N. Kreklywich
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, OR 97239, USA; (I.K.A.J.); (N.N.H.); (Z.J.S.); (T.F.A.); (M.D.); (C.E.S.); (K.B.); (C.N.K.)
| | - Jennifer M. Burg
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA; (J.M.B.); (S.L.O.)
| | - Susan L. Orloff
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA; (J.M.B.); (S.L.O.)
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Daniel N. Streblow
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, OR 97239, USA; (I.K.A.J.); (N.N.H.); (Z.J.S.); (T.F.A.); (M.D.); (C.E.S.); (K.B.); (C.N.K.)
| |
Collapse
|
15
|
Chinta P, Garcia EC, Tajuddin KH, Akhidenor N, Davis A, Faure L, Spencer JV. Control of Cytokines in Latent Cytomegalovirus Infection. Pathogens 2020; 9:pathogens9100858. [PMID: 33096622 PMCID: PMC7589642 DOI: 10.3390/pathogens9100858] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Human cytomegalovirus (HCMV) has evolved a number of mechanisms for long-term co-existence within its host. HCMV infects a wide range of cell types, including fibroblasts, epithelial cells, monocytes, macrophages, dendritic cells, and myeloid progenitor cells. Lytic infection, with the production of infectious progeny virions, occurs in differentiated cell types, while undifferentiated myeloid precursor cells are the primary site of latent infection. The outcome of HCMV infection depends partly on the cell type and differentiation state but is also influenced by the composition of the immune environment. In this review, we discuss the role of early interactions between HCMV and the host immune system, particularly cytokine and chemokine networks, that facilitate the establishment of lifelong latent infection. A better understanding of these cytokine signaling pathways could lead to novel therapeutic targets that might prevent latency or eradicate latently infected cells.
Collapse
|
16
|
Hu L, Wen Z, Chen J, Chen Y, Jin L, Shi H, Chen J, Chen J. The cytomegalovirus UL146 gene product vCXCL1 promotes the resistance of hepatic cells to CD8 + T cells through up-regulation of PD-L1. Biochem Biophys Res Commun 2020; 532:393-399. [PMID: 32883520 DOI: 10.1016/j.bbrc.2020.08.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 08/15/2020] [Indexed: 01/03/2023]
Abstract
The HCMV (human cytomegalovirus) encodes numerous proteins which function to evade the immune response, which allows the virus to replicate. Exploring the mechanisms of HCMV immune escape helps to find the strategy to inhibit HCMV replicate. CD8+ T cells play a critical role in the immune response to viral pathogens. However, the mechanisms of HCMV to evade the attack by CD8+ T cells remain largely unknown. Viral CXCL1 (vCXCL1) is the production of HCMV UL146 gene. Here, we found that vCXCL1 promoted the resistance of hepatic cells to CD8+ T cells. vCXCL1 increased the levels of PD-L1 protein expression and mRNA expression. VCXCL1 enhanced the binding of STAT3 transcription factor to the promoter of PD-L1 and increased the activity of PD-L1 promoter. Furthermore, down-regulation of PD-L1 reduced the effects of vCXCL1 on the resistance of hepatic cells to CD8+ T cells. Taken together, vCXCL1 promotes the resistance of hepatic cells to CD8+ T cells through up-regulation of PD-L1. This finding might provide a new mechanism of HCMV immune escape.
Collapse
Affiliation(s)
- Linglong Hu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, People's Republic of China
| | - Zhengwang Wen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, People's Republic of China
| | - Jingjing Chen
- Wenzhou Medical University, Zhejiang Province, People's Republic of China
| | - Yiping Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, People's Republic of China
| | - Longteng Jin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, People's Republic of China
| | - Haifan Shi
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, People's Republic of China
| | - Junya Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, People's Republic of China
| | - Jie Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, People's Republic of China.
| |
Collapse
|
17
|
Dunn DM, Munger J. Interplay Between Calcium and AMPK Signaling in Human Cytomegalovirus Infection. Front Cell Infect Microbiol 2020; 10:384. [PMID: 32850483 PMCID: PMC7403205 DOI: 10.3389/fcimb.2020.00384] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
Calcium signaling and the AMP-activated protein kinase (AMPK) signaling networks broadly regulate numerous aspects of cell biology. Human Cytomegalovirus (HCMV) infection has been found to actively manipulate the calcium-AMPK signaling axis to support infection. Many HCMV genes have been linked to modulating calcium signaling, and HCMV infection has been found to be reliant on calcium signaling and AMPK activation. Here, we focus on the cell biology of calcium and AMPK signaling and what is currently known about how HCMV modulates these pathways to support HCMV infection and potentially contribute to oncomodulation.
Collapse
Affiliation(s)
- Diana M Dunn
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| | - Joshua Munger
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| |
Collapse
|
18
|
Xu J, Liu X, Zhang X, Marshall B, Dong Z, Liu Y, Espinosa-Heidmann DG, Zhang M. Ocular cytomegalovirus latency exacerbates the development of choroidal neovascularization. J Pathol 2020; 251:200-212. [PMID: 32243583 DOI: 10.1002/path.5447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/28/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022]
Abstract
Age-related macular degeneration (AMD) is a complex, multifactorial, progressive disease which represents a leading cause of irreversible visual impairment and blindness in older individuals. Human cytomegalovirus (HCMV), which infects 50-80% of humans, is usually acquired during early life and persists in a latent state for the life of the individual. In view of its previously described pro-angiogenic properties, we hypothesized that cytomegalovirus might be a novel risk factor for progression to an advanced form, neovascular AMD, which is characterized by choroidal neovascularization (CNV). The purpose of this study was to investigate if latent ocular murine cytomegalovirus (MCMV) infection exacerbated the development of CNV in vascular endothelial growth factor (VEGF)-overexpressing VEGF-Ahyper mice. Here we show that neonatal infection with MCMV resulted in dissemination of virus to various organs throughout the body including the eye, where it localized principally to the choroid in both VEGF-overexpressingVEGF-Ahyper and wild-type(WT) 129 mice. By 6 months post-infection, no replicating virus was detected in eyes and extraocular tissues, although virus DNA was still present in all eyes and extraocular tissues of both VEGF-Ahyper and WT mice. Expression of MCMV immediate early (IE) 1 mRNA was detected only in latently infected eyes of VEGF-Ahyper mice, but not in eyes of WT mice. Significantly increased CNV was observed in eyes of MCMV-infected VEGF-Ahyper mice compared to eyes of uninfected VEGF-Ahyper mice, while no CNV lesions were observed in eyes of either infected or uninfected WT mice. Protein levels of several inflammatory/angiogenic factors, particularly VEGF and IL-6, were significantly higher in eyes of MCMV-infected VEGF-Ahyper mice, compared to uninfected controls. Initial studies of ocular tissue from human cadavers revealed that HCMV DNA was present in four choroid/retinal pigment epithelium samples from 24 cadavers. Taken together, our data suggest that ocular HCMV latency could be a significant risk factor for the development of AMD. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jinxian Xu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA.,The James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| | - Xinglou Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA.,The James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA.,Department of Pediatrics, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xinyan Zhang
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA.,The James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| | - Brendan Marshall
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA.,Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA.,The James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA.,Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Diego G Espinosa-Heidmann
- The James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA.,Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ming Zhang
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA.,The James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| |
Collapse
|
19
|
Where do we Stand after Decades of Studying Human Cytomegalovirus? Microorganisms 2020; 8:microorganisms8050685. [PMID: 32397070 PMCID: PMC7284540 DOI: 10.3390/microorganisms8050685] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/27/2020] [Accepted: 05/05/2020] [Indexed: 12/26/2022] Open
Abstract
Human cytomegalovirus (HCMV), a linear double-stranded DNA betaherpesvirus belonging to the family of Herpesviridae, is characterized by widespread seroprevalence, ranging between 56% and 94%, strictly dependent on the socioeconomic background of the country being considered. Typically, HCMV causes asymptomatic infection in the immunocompetent population, while in immunocompromised individuals or when transmitted vertically from the mother to the fetus it leads to systemic disease with severe complications and high mortality rate. Following primary infection, HCMV establishes a state of latency primarily in myeloid cells, from which it can be reactivated by various inflammatory stimuli. Several studies have shown that HCMV, despite being a DNA virus, is highly prone to genetic variability that strongly influences its replication and dissemination rates as well as cellular tropism. In this scenario, the few currently available drugs for the treatment of HCMV infections are characterized by high toxicity, poor oral bioavailability, and emerging resistance. Here, we review past and current literature that has greatly advanced our understanding of the biology and genetics of HCMV, stressing the urgent need for innovative and safe anti-HCMV therapies and effective vaccines to treat and prevent HCMV infections, particularly in vulnerable populations.
Collapse
|
20
|
Abstract
The continuous interactions between host and pathogens during their coevolution have shaped both the immune system and the countermeasures used by pathogens. Natural killer (NK) cells are innate lymphocytes that are considered central players in the antiviral response. Not only do they express a variety of inhibitory and activating receptors to discriminate and eliminate target cells but they can also produce immunoregulatory cytokines to alert the immune system. Reciprocally, several unrelated viruses including cytomegalovirus, human immunodeficiency virus, influenza virus, and dengue virus have evolved a multitude of mechanisms to evade NK cell function, such as the targeting of pathways for NK cell receptors and their ligands, apoptosis, and cytokine-mediated signaling. The studies discussed in this article provide further insights into the antiviral function of NK cells and the pathways involved, their constituent proteins, and ways in which they could be manipulated for host benefit.
Collapse
Affiliation(s)
- Mathieu Mancini
- Department of Human Genetics, McGill University, Montreal, Quebec H3A 0C7, Canada;,
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Silvia M. Vidal
- Department of Human Genetics, McGill University, Montreal, Quebec H3A 0C7, Canada;,
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec H3G 0B1, Canada
- Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| |
Collapse
|
21
|
Abstract
: The use of cytomegalovirus (CMV) as a vaccine vector to express antigens against multiple infectious diseases, including simian immunodeficiency virus, Ebola virus, plasmodium, and mycobacterium tuberculosis, in rhesus macaques has generated extraordinary levels of protective immunity against subsequent pathogenic challenge. Moreover, the mechanisms of immune protection have altered paradigms about viral vector-mediated immunity against ectopically expressed vaccine antigens. Further optimization of CMV-vectored vaccines, particularly as this approach moves to human clinical trials will be augmented by a more complete understanding of how CMV engenders mechanisms of immune protection. This review summarizes the particulars of the specific CMV vaccine vector that has been used to date (rhesus CMV strain 68-1) in relation to CMV natural history.
Collapse
|
22
|
Bauer A, Madela J, Berg C, Daugvilaite V, Gurka S, Mages HW, Kroczek RA, Rosenkilde MM, Voigt S. Rat cytomegalovirus-encoded γ-chemokine vXCL1 is a highly adapted, species-specific agonist for rat XCR1-positive dendritic cells. J Cell Sci 2019; 133:jcs.236190. [PMID: 31649144 DOI: 10.1242/jcs.236190] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/22/2019] [Indexed: 12/22/2022] Open
Abstract
Dendritic cells (DCs) expressing the chemokine receptor XCR1 are specialized in antigen cross-presentation to control infections with intracellular pathogens. XCR1-positive (XCR1+) DCs are attracted by XCL1, a γ-chemokine secreted by activated CD8+ T cells and natural killer cells. Rat cytomegalovirus (RCMV) is the only virus known to encode a viral XCL1 analog (vXCL1) that competes for XCR1 binding with the endogenous chemokine. Here we show that vXCL1 from two different RCMV strains, as well as endogenous rat XCL1 (rXCL1) bind to and induce chemotaxis exclusively in rat XCR1+ DCs. Whereas rXCL1 activates the XCR1 Gi signaling pathway in rats and humans, both of the vXCL1s function as species-specific agonists for rat XCR1. In addition, we demonstrate constitutive internalization of XCR1 in XCR1-transfected HEK293A cells and in splenic XCR1+ DCs. This internalization was independent of β-arrestin 1 and 2 and was enhanced after binding of vXCL1 and rXCL1; however, vXCL1 appeared to be a stronger agonist. These findings suggest a decreased surface expression of XCR1 during DC cultivation at 37°C, and subsequent impairment of chemotactic activity and XCR1+ DC function.
Collapse
Affiliation(s)
- Agnieszka Bauer
- Department of Infectious Diseases, Robert Koch Institute, 13353 Berlin, Germany
| | - Julia Madela
- Department of Infectious Diseases, Robert Koch Institute, 13353 Berlin, Germany
| | - Christian Berg
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark.,Infectious Diseases Unit, Department of Medicine, Herlev-Gentofte Hospital, University of Copenhagen, 2730 Herlev, Denmark
| | - Viktorija Daugvilaite
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Stephanie Gurka
- Molecular Immunology, Robert Koch Institute, 13353 Berlin, Germany
| | - Hans Werner Mages
- Centre for biological threats and special pathogens, Robert Koch Institute, 13353 Berlin, Germany
| | | | - Mette M Rosenkilde
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Sebastian Voigt
- Department of Infectious Diseases, Robert Koch Institute, 13353 Berlin, Germany .,Department of Pediatric Oncology/Hematology/Stem Cell Transplantation, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| |
Collapse
|
23
|
Murine Cytomegalovirus Infection of Melanoma Lesions Delays Tumor Growth by Recruiting and Repolarizing Monocytic Phagocytes in the Tumor. J Virol 2019; 93:JVI.00533-19. [PMID: 31375579 DOI: 10.1128/jvi.00533-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/18/2019] [Indexed: 02/06/2023] Open
Abstract
Cytomegalovirus (CMV) is a ubiquitous betaherpesvirus that infects many different cell types. Human CMV (HCMV) has been found in several solid tumors, and it has been hypothesized that it may promote cellular transformation or exacerbate tumor growth. Paradoxically, in some experimental situations, murine CMV (MCMV) infection delays tumor growth. We previously showed that wild-type MCMV delayed the growth of poorly immunogenic B16 melanomas via an undefined mechanism. Here, we show that MCMV delayed the growth of these immunologically "cold" tumors by recruiting and modulating tumor-associated macrophages. Depletion of monocytic phagocytes with clodronate completely prevented MCMV from delaying tumor growth. Mechanistically, our data suggest that MCMV recruits new macrophages to the tumor via the virus-encoded chemokine MCK2, and viruses lacking this chemokine were unable to delay tumor growth. Moreover, MCMV infection of macrophages drove them toward a proinflammatory (M1)-like state. Importantly, adaptive immune responses were also necessary for MCMV to delay tumor growth as the effect was substantially blunted in Rag-deficient animals. However, viral spread was not needed and a spread-defective MCMV strain was equally effective. In most mice, the antitumor effect of MCMV was transient. Although the recruited macrophages persisted, tumor regrowth correlated with a loss of viral activity in the tumor. However, an additional round of MCMV infection further delayed tumor growth, suggesting that tumor growth delay was dependent on active viral infection. Together, our results suggest that MCMV infection delayed the growth of an immunologically cold tumor by recruiting and modulating macrophages in order to promote anti-tumor immune responses.IMPORTANCE Cytomegalovirus (CMV) is an exciting new platform for vaccines and cancer therapy. Although CMV may delay tumor growth in some settings, there is also evidence that CMV may promote cancer development and progression. Thus, defining the impact of CMV on tumors is critical. Using a mouse model of melanoma, we previously found that murine CMV (MCMV) delayed tumor growth and activated tumor-specific immunity although the mechanism was unclear. We now show that MCMV delayed tumor growth through a mechanism that required monocytic phagocytes and a viral chemokine that recruited macrophages to the tumor. Furthermore, MCMV infection altered the functional state of macrophages. Although the effects of MCMV on tumor growth were transient, we found that repeated MCMV injections sustained the antitumor effect, suggesting that active viral infection was needed. Thus, MCMV altered tumor growth by actively recruiting macrophages to the tumor, where they were modulated to promote antitumor immunity.
Collapse
|
24
|
Chen S, Shenk T, Nogalski MT. P2Y2 purinergic receptor modulates virus yield, calcium homeostasis, and cell motility in human cytomegalovirus-infected cells. Proc Natl Acad Sci U S A 2019; 116:18971-18982. [PMID: 31481624 PMCID: PMC6754545 DOI: 10.1073/pnas.1907562116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human cytomegalovirus (HCMV) manipulates many aspects of host cell biology to create an intracellular milieu optimally supportive of its replication and spread. Our study reveals that levels of several components of the purinergic signaling system, including the P2Y2 and P2X5 receptors, are elevated in HCMV-infected fibroblasts. Knockdown and drug treatment experiments demonstrated that P2Y2 enhances the yield of virus, whereas P2X5 reduces HCMV production. The HCMV IE1 protein induces P2Y2 expression; and P2Y2-mediated signaling is important for efficient HCMV gene expression, DNA synthesis, and the production of infectious HCMV progeny. P2Y2 cooperates with the viral UL37x1 protein to regulate cystolic Ca2+ levels. P2Y2 also regulates PI3K/Akt signaling and infected cell motility. Thus, P2Y2 functions at multiple points within the viral replication cycle to support the efficient production of HCMV progeny, and it may facilitate in vivo viral spread through its role in cell migration.
Collapse
Affiliation(s)
- Saisai Chen
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014
| | - Thomas Shenk
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014
| | - Maciej T Nogalski
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014
| |
Collapse
|
25
|
Huang Q, Kahn CR, Altindis E. Viral Hormones: Expanding Dimensions in Endocrinology. Endocrinology 2019; 160:2165-2179. [PMID: 31310273 PMCID: PMC6736053 DOI: 10.1210/en.2019-00271] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/10/2019] [Indexed: 02/07/2023]
Abstract
Viruses have developed different mechanisms to manipulate their hosts, including the process of viral mimicry in which viruses express important host proteins. Until recently, examples of viral mimicry were limited to mimics of growth factors and immunomodulatory proteins. Using a comprehensive bioinformatics approach, we have shown that viruses possess the DNA/RNA with potential to encode 16 different peptides with high sequence similarity to human peptide hormones and metabolically important regulatory proteins. We have characterized one of these families, the viral insulin/IGF-1-like peptides (VILPs), which we identified in four members of the Iridoviridae family. VILPs can bind to human insulin and IGF-1 receptors and stimulate classic postreceptor signaling pathways. Moreover, VILPs can stimulate glucose uptake in vitro and in vivo and stimulate DNA synthesis. DNA sequences of some VILP-carrying viruses have been identified in the human enteric virome. In addition to VILPs, sequences with homology to 15 other peptide hormones or cytokines can be identified in viral DNA/RNA sequences, some with a very high identity to hormones. Recent data by others has identified a peptide that resembles and mimics α-melanocyte-stimulating hormone's anti-inflammatory effects in in vitro and in vivo models. Taken together, these studies reveal novel mechanisms of viral and bacterial pathogenesis in which the microbe can directly target or mimic the host endocrine system. These findings also introduce the concept of a system of microbial hormones that provides new insights into the evolution of peptide hormones, as well as potential new roles of microbial hormones in health and disease.
Collapse
Affiliation(s)
- Qian Huang
- Boston College Biology Department, Chestnut Hill, Massachusetts
| | - C Ronald Kahn
- Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Emrah Altindis
- Boston College Biology Department, Chestnut Hill, Massachusetts
- Correspondence: Emrah Altindis, PhD, Boston College Biology Department, Higgins Hall 515, 140 Commonwealth Avenue, Chestnut Hill, Massachusetts 02467. E-mail:
| |
Collapse
|
26
|
Human Cytomegalovirus Disruption of Calcium Signaling in Neural Progenitor Cells and Organoids. J Virol 2019; 93:JVI.00954-19. [PMID: 31217241 DOI: 10.1128/jvi.00954-19] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 06/11/2019] [Indexed: 12/15/2022] Open
Abstract
The herpesvirus human cytomegalovirus (HCMV) is a leading cause of congenital birth defects. Infection can result in infants born with a variety of symptoms, including hepatosplenomegaly, microcephaly, and developmental disabilities. Microcephaly is associated with disruptions in the neural progenitor cell (NPC) population. Here, we defined the impact of HCMV infection on neural tissue development and calcium regulation, a critical activity in neural development. Regulation of intracellular calcium involves purinergic receptors and voltage-gated calcium channels (VGCC). HCMV infection compromised the ability of both pathways in NPCs as well as fibroblasts to respond to stimulation. We observed significant drops in basal calcium levels in infected NPCs which were accompanied by loss in VGCC activity and purinergic receptor responses. However, uninfected cells in the population retained responsiveness. Addition of the HCMV inhibitor maribavir reduced viral spread but failed to restore activity in infected cells. To study neural development, we infected three-dimensional cortical organoids with HCMV. Infection spread to a subset of cells over time and disrupted organoid structure, with alterations in developmental and neural layering markers. Organoid-derived infected neurons and astrocytes were unable to respond to stimulation whereas uninfected cells retained nearly normal responses. Maribavir partially restored structural features, including neural rosette formation, and dampened the impact of infection on neural cellular function. Using a tissue model system, we have demonstrated that HCMV alters cortical neural layering and disrupts calcium regulation in infected cells.IMPORTANCE Human cytomegalovirus (HCMV) replicates in several cell types throughout the body, causing disease in the absence of an effective immune response. Studies on HCMV require cultured human cells and tissues due to species specificity. In these studies, we investigated the impact of infection on developing three-dimensional cortical organoid tissues, with specific emphasis on cell-type-dependent calcium signaling. Calcium signaling is an essential function during neural differentiation and cortical development. We observed that HCMV infects and spreads within these tissues, ultimately disrupting cortical structure. Infected cells exhibited depleted calcium stores and loss of ATP- and KCl-stimulated calcium signaling while uninfected cells in the population maintained nearly normal responses. Some protection was provided by the viral inhibitor maribavir. Overall, our studies provide new insights into the impact of HCMV on cortical tissue development and function.
Collapse
|
27
|
The Human Cytomegalovirus Chemokine vCXCL-1 Modulates Normal Dissemination Kinetics of Murine Cytomegalovirus In Vivo. mBio 2019; 10:mBio.01289-19. [PMID: 31239384 PMCID: PMC6593410 DOI: 10.1128/mbio.01289-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
An adequate in vivo analysis of HCMV’s viral chemokine vCXCL-1 has been lacking. Here we generate recombinant MCMVs expressing vCXCL-1 to study vCXCL-1 function in vivo using MCMV as a surrogate. We demonstrate that vCXCL-1 increases MCMV dissemination kinetics for both primary and secondary dissemination. Additionally, we provide evidence, that the murine neutrophil is largely a bystander in the mouse’s response to vCXCL-1. We confirm the hypothesis that vCXCL-1 is a HCMV virulence factor. Infection of severely immunocompromised mice with MCMVs expressing vCXCL-1 was lethal in more than 50% of infected animals, while all animals infected with parental virus survived during a 12-day period. This work provides needed insights into vCXCL-1 function in vivo. Human cytomegalovirus (HCMV) is a betaherpesvirus that is a significant pathogen within newborn and immunocompromised populations. Morbidity associated with HCMV infection is the consequence of viral dissemination. HCMV has evolved to manipulate the host immune system to enhance viral dissemination and ensure long-term survival within the host. The immunomodulatory protein vCXCL-1, a viral chemokine functioning primarily through the CXCR2 chemokine receptor, is hypothesized to attract CXCR2+ neutrophils to infection sites, aiding viral dissemination. Neutrophils harbor HCMV in vivo; however, the interaction between vCXCL-1 and the neutrophil has not been evaluated in vivo. Using the mouse model and mouse cytomegalovirus (MCMV) infection, we show that murine neutrophils harbor and transfer infectious MCMV and that virus replication initiates within this cell type. Utilizing recombinant MCMVs expressing vCXCL-1 from the HCMV strain (Toledo), we demonstrated that vCXCL-1 significantly enhances MCMV dissemination kinetics. Through cellular depletion experiments, we observe that neutrophils impact dissemination but that overall dissemination is largely neutrophil independent. This work adds neutrophils to the list of innate cells (i.e., dendritic and macrophages/monocytes) that contribute to MCMV dissemination but refutes the hypothesis that neutrophils are the primary cell responding to vCXCL-1.
Collapse
|
28
|
Koshizuka T, Sato Y, Kobiyama S, Oshima M, Suzutani T. A two-step culture method utilizing secreted luciferase recombinant virus for detection of anti-cytomegalovirus compounds. Microbiol Immunol 2018; 62:651-658. [PMID: 30187945 DOI: 10.1111/1348-0421.12645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 12/26/2022]
Abstract
Quantification of human cytomegalovirus (HCMV) replication by plaque assay reflects viral infectivity but has several drawbacks. Recombinant virus expressing reporter genes can facilitate quantification of HCMV replication. In this study, a recombinant virus, Towne-BAC(dTT)-MetLuc, was constructed and the secretable Metridia luciferase (MetLuc) gene inserted into it under UL146 promoter. In addition, the UL130 gene was repaired to allow growth of the recombinant virus in both fibroblasts and epithelial cells. As predicted, luciferase activity was secreted into the culture medium and correlated with virus replication in infected fibroblasts and epithelial cells. Furthermore, secreted luciferase activity was correlated with the size of the recombinant virus inoculum with a dynamic range of 3 logs. This recombinant virus was used in a two-step culture protocol for detection of the anti-HCMV activity of compounds; that is, the supernatant of a first-step culture with anti-viral compounds was collected and inoculated into uninfected cells to create a second-step culture. Although secreted luciferase activity leaked in the first-step culture supernatant in the presence of some antiviral compounds, luciferase activity in the second-step culture supernatant reflected the virus yield in the first-step culture. Therefore, comparison of luciferase activity in the first- and second-step cultures indicated the anti-viral activity of the compounds. This two-step culture protocol facilitates screening of anti-viral compounds.
Collapse
Affiliation(s)
- Tetsuo Koshizuka
- Department of Microbiology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | - Yuko Sato
- Department of Microbiology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | - Shoe Kobiyama
- Department of Microbiology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | - Mami Oshima
- Department of Microbiology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | - Tatsuo Suzutani
- Department of Microbiology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 960-1295, Japan
| |
Collapse
|
29
|
The Human Cytomegalovirus Protein UL148A Downregulates the NK Cell-Activating Ligand MICA To Avoid NK Cell Attack. J Virol 2018; 92:JVI.00162-18. [PMID: 29950412 DOI: 10.1128/jvi.00162-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 06/18/2018] [Indexed: 01/19/2023] Open
Abstract
Natural killer (NK) cells are lymphocytes of the innate immune system capable of killing hazardous cells, including virally infected cells. NK cell-mediated killing is triggered by activating receptors. Prominent among these is the activating receptor NKG2D, which binds several stress-induced ligands, among them major histocompatibility complex (MHC) class I-related chain A (MICA). Most of the human population is persistently infected with human cytomegalovirus (HCMV), a virus which employs multiple immune evasion mechanisms, many of which target NK cell responses. HCMV infection is mostly asymptomatic, but in congenitally infected neonates and in immunosuppressed patients it can lead to serious complications and mortality. Here we discovered that an HCMV protein named UL148A whose role was hitherto unknown is required for evasion of NK cells. We demonstrate that UL148A-deficient HCMV strains are impaired in their ability to downregulate MICA expression. We further show that when expressed by itself, UL148A is not sufficient for MICA targeting, but rather acts in concert with an unknown viral factor. Using inhibitors of different cellular degradation pathways, we show that UL148A targets MICA for lysosomal degradation. Finally, we show that UL148A-mediated MICA downregulation hampers NK cell-mediated killing of HCMV-infected cells. Discovering the full repertoire of HCMV immune evasion mechanisms will lead to a better understanding of the ability of HCMV to persist in the host and may also promote the development of new vaccines and drugs against HCMV.IMPORTANCE Human cytomegalovirus (HCMV) is a ubiquitous pathogen which is usually asymptomatic but that can cause serious complications and mortality in congenital infections and in immunosuppressed patients. One of the difficulties in developing novel vaccines and treatments for HCMV is its remarkable ability to evade our immune system. In particular, HCMV directs significant efforts to thwarting cells of the innate immune system known as natural killer (NK) cells. These cells are crucial for successful control of HCMV infection, and yet our understanding of the mechanisms which HCMV utilizes to elude NK cells is partial at best. In the present study, we discovered that a protein encoded by HCMV which had no known function is important for preventing NK cells from killing HCMV-infected cells. This knowledge can be used in the future for designing more-efficient HCMV vaccines and for formulating novel therapies targeting this virus.
Collapse
|
30
|
Jackson JW, Sparer T. There Is Always Another Way! Cytomegalovirus' Multifaceted Dissemination Schemes. Viruses 2018; 10:v10070383. [PMID: 30037007 PMCID: PMC6071125 DOI: 10.3390/v10070383] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 12/12/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a β-herpes virus that is a significant pathogen within immune compromised populations. HCMV morbidity is induced through viral dissemination and inflammation. Typically, viral dissemination is thought to follow Fenner's hypothesis where virus replicates at the site of infection, followed by replication in the draining lymph nodes, and eventually replicating within blood filtering organs. Although CMVs somewhat follow Fenner's hypothesis, they deviate from it by spreading primarily through innate immune cells as opposed to cell-free virus. Also, in vivo CMVs infect new cells via cell-to-cell spread and disseminate directly to secondary organs through novel mechanisms. We review the historic and recent literature pointing to CMV's direct dissemination to secondary organs and the genes that it has evolved for increasing its ability to disseminate. We also highlight aspects of CMV infection for studying viral dissemination when using in vivo animal models.
Collapse
Affiliation(s)
- Joseph W Jackson
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, TN 37996, USA.
| | - Tim Sparer
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, TN 37996, USA.
| |
Collapse
|
31
|
Pocock JM, Storisteanu DML, Reeves MB, Juss JK, Wills MR, Cowburn AS, Chilvers ER. Human Cytomegalovirus Delays Neutrophil Apoptosis and Stimulates the Release of a Prosurvival Secretome. Front Immunol 2017; 8:1185. [PMID: 28993776 PMCID: PMC5622148 DOI: 10.3389/fimmu.2017.01185] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/07/2017] [Indexed: 12/24/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a major cause of viral disease in the young and the immune-suppressed. At sites of infection, HCMV recruits the neutrophil, a cell with a key role in orchestrating the initial immune response. Herein, we report a profound survival response in human neutrophils exposed to the clinical HCMV isolate Merlin, but not evident with the attenuated strain AD169, through suppression of apoptosis. The initial survival event, which is independent of viral gene expression and involves activation of the ERK/MAPK and NF-κB pathways, is augmented by HCMV-stimulated release of a secretory cytokine profile that further prolongs neutrophil lifespan. As aberrant neutrophil survival contributes to tissue damage, we predict that this may be relevant to the immune pathology of HCMV, and the presence of this effect in clinical HCMV strains and its absence in attenuated strains implies a beneficial effect to the virus in pathogenesis and/or dissemination. In addition, we show that HCMV-exposed neutrophils release factors that enhance monocyte recruitment and drive monocyte differentiation to a HCMV-permissive phenotype in an IL-6-dependent manner, thus providing an ideal vehicle for viral dissemination. This study increases understanding of HCMV-neutrophil interactions, highlighting the potential role of neutrophil recruitment as a virulence mechanism to promote HCMV pathology in the host and influence the dissemination of HCMV infection. Targeting these mechanisms may lead to new antiviral strategies aimed at limiting host damage and inhibiting viral spread.
Collapse
Affiliation(s)
- Joanna M. Pocock
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s and Papworth Hospitals, Cambridge, United Kingdom
| | - Daniel M. L. Storisteanu
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s and Papworth Hospitals, Cambridge, United Kingdom
| | - Matthew B. Reeves
- Department of Virology, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Jatinder K. Juss
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s and Papworth Hospitals, Cambridge, United Kingdom
| | - Mark R. Wills
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s and Papworth Hospitals, Cambridge, United Kingdom
| | - Andrew S. Cowburn
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s and Papworth Hospitals, Cambridge, United Kingdom
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Edwin R. Chilvers
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s and Papworth Hospitals, Cambridge, United Kingdom
| |
Collapse
|
32
|
Pontejo SM, Murphy PM. Chemokines encoded by herpesviruses. J Leukoc Biol 2017; 102:1199-1217. [PMID: 28848041 DOI: 10.1189/jlb.4ru0417-145rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/15/2022] Open
Abstract
Viruses use diverse strategies to elude the immune system, including copying and repurposing host cytokine and cytokine receptor genes. For herpesviruses, the chemokine system of chemotactic cytokines and receptors is a common source of copied genes. Here, we review the current state of knowledge about herpesvirus-encoded chemokines and discuss their possible roles in viral pathogenesis, as well as their clinical potential as novel anti-inflammatory agents or targets for new antiviral strategies.
Collapse
Affiliation(s)
- Sergio M Pontejo
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Philip M Murphy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
33
|
Pontejo SM, Murphy PM. Two glycosaminoglycan-binding domains of the mouse cytomegalovirus-encoded chemokine MCK-2 are critical for oligomerization of the full-length protein. J Biol Chem 2017; 292:9613-9626. [PMID: 28432120 DOI: 10.1074/jbc.m117.785121] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/20/2017] [Indexed: 01/22/2023] Open
Abstract
Chemokines are essential for antimicrobial host defenses and tissue repair. Herpesviruses and poxviruses also encode chemokines, copied from their hosts and repurposed for multiple functions, including immune evasion. The CC chemokine MCK-2 encoded by mouse CMV (MCMV) has an atypical structure consisting of a classic chemokine domain N-terminal to a second unique domain, resulting from the splicing of MCMV ORFs m131 and m129 MCK-2 is essential for full MCMV infectivity in macrophages and for persistent infection in the salivary gland. However, information about its mechanism of action and specific biochemical roles for the two domains has been lacking. Here, using genetic, chemical, and enzymatic analyses of multiple mouse cell lines as well as primary mouse fibroblasts from salivary gland and lung, we demonstrate that MCK-2 binds glycosaminoglycans (GAGs) with affinities in the following order: heparin > heparan sulfate > chondroitin sulfate = dermatan sulfate. Both MCK-2 domains bound these GAGs independently, and computational analysis together with site-directed mutagenesis identified five basic residues distributed across the N terminus and the 30s and 50s loops of the chemokine domain that are important GAG binding determinants. Both domains were required for GAG-dependent oligomerization of full-length MCK-2. Thus, MCK-2 is an atypical viral chemokine consisting of a CC chemokine domain and a unique non-chemokine domain, both of which bind GAGs and are critical for GAG-dependent oligomerization of the full-length protein.
Collapse
Affiliation(s)
- Sergio M Pontejo
- From the Laboratory of Molecular Immunology, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Philip M Murphy
- From the Laboratory of Molecular Immunology, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
34
|
Scarborough JA, Paul JR, Spencer JV. Evolution of the ability to modulate host chemokine networks via gene duplication in human cytomegalovirus (HCMV). INFECTION GENETICS AND EVOLUTION 2017; 51:46-53. [PMID: 28315475 DOI: 10.1016/j.meegid.2017.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/12/2017] [Accepted: 03/13/2017] [Indexed: 12/23/2022]
Abstract
Human cytomegalovirus (HCMV) is a widespread pathogen that is particularly skillful at evading immune detection and defense mechanisms, largely due to extensive co-evolution with its host. One aspect of this co-evolution involves the acquisition of virally encoded G protein-coupled receptors (GPCRs) with homology to the chemokine receptor family. GPCRs are the largest family of cell surface proteins, found in organisms from yeast to humans, and they regulate a variety of cellular processes including development, sensory perception, and immune cell trafficking. The US27 and US28 genes are encoded by human and primate CMVs, but homologs are not found in the genomes of viruses infecting rodents or other species. Phylogenetic analysis was used to investigate the US27 and US28 genes, which are adjacent in the unique short (US) region of the HCMV genome, and their relationship to one another and to human chemokine receptor genes. The results indicate that both US27 and US28 share the same common ancestor with human chemokine receptor CX3CR1, suggesting that a single host gene was captured and a subsequent viral gene duplication event occurred. The US28 gene product (pUS28) has maintained the function of the ancestral gene and has the ability to bind and signal in response to CX3CL1/fractalkine, the natural ligand for CX3CR1. In contrast, pUS27 does not bind to any known chemokine ligand, and the sequence has diverged significantly, highlighted by the fact that pUS27 currently exhibits greater sequence similarity to human CCR1. While the evolutionary advantage of the gene duplication and neofunctionalization event remains unclear, the US27 and US28 genes are highly conserved among different HCMV strains and retained even in laboratory strains that have lost many virulence genes, suggesting that US27 and US28 have each evolved distinct, important functions during virus infection.
Collapse
Affiliation(s)
- Jessica A Scarborough
- Department of Biology, University of San Francisco, Harney Science Center, 2130 Fulton Street, San Francisco, CA 94117, USA
| | - John R Paul
- Department of Biology, University of San Francisco, Harney Science Center, 2130 Fulton Street, San Francisco, CA 94117, USA
| | - Juliet V Spencer
- Department of Biology, University of San Francisco, Harney Science Center, 2130 Fulton Street, San Francisco, CA 94117, USA.
| |
Collapse
|
35
|
Polymorphisms and features of cytomegalovirus UL144 and UL146 in congenitally infected neonates with hepatic involvement. PLoS One 2017; 12:e0171959. [PMID: 28222150 PMCID: PMC5319779 DOI: 10.1371/journal.pone.0171959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 01/28/2017] [Indexed: 10/25/2022] Open
Abstract
Human cytomegalovirus is a significant agent of hepatic involvement in neonates. In this study, we investigated the polymorphisms and features of the viral genes UL144 and UL146 as well as their significance to congenital hepatic involvement. In 79 neonates with congenital cytomegalovirus infection and hepatic involvement, full length UL144 and UL146 were successfully amplified in 73.42% and 60.76% of cases, respectively. Sequencing indicated that both genes were hypervariable. Notably, UL144 genotype B was highly associated with aspartate aminotransferase (P = 0.028) and lactate dehydrogenase (P = 0.046). Similarly, UL146 genotype G1 and G13 were significantly associated with CMV IgM (P = 0.026), CMV IgG (P = 0.034), alanine aminotransferase (P = 0.019), and aspartate aminotransferase (P = 0.032). In conclusion, dominant UL144 (genotype B) and UL146 (genotype G1 and G13) genotypes are associated with elevated levels of enzymes and CMV IgM and IgG of cytomegalovirus infection.
Collapse
|
36
|
Effect of human cytomegalovirus (HCMV) US27 on CXCR4 receptor internalization measured by fluorogen-activating protein (FAP) biosensors. PLoS One 2017; 12:e0172042. [PMID: 28207860 PMCID: PMC5313195 DOI: 10.1371/journal.pone.0172042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/30/2017] [Indexed: 01/08/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a widespread pathogen and a member of the Herpesviridae family. HCMV has a large genome that encodes many genes that are non-essential for virus replication but instead play roles in manipulation of the host immune environment. One of these is the US27 gene, which encodes a protein with homology to the chemokine receptor family of G protein-coupled receptors (GPCRs). The US27 protein has no known chemokine ligands but can modulate the signaling activity of host receptor CXCR4. We investigated the mechanism for enhanced CXCR4 signaling in the presence of US27 using a novel biosensor system comprised of fluorogen activating proteins (FAPs). FAP-tagged CXCR4 and US27 were used to explore receptor internalization and recovery dynamics, and the results demonstrate that significantly more CXCR4 internalization was observed in the presence of US27 compared to CXCR4 alone upon stimulation with CXCL12. While ligand-induced endocytosis rates were higher, steady state internalization of CXCR4 was not affected by US27. Additionally, US27 underwent rapid endocytosis at a rate that was independent of either CXCR4 expression or CXCL12 stimulation. These results demonstrate that one mechanism by which US27 can enhance CXCR4 signaling is to alter receptor internalization dynamics, which could ultimately have the effect of promoting virus dissemination by increasing trafficking of HCMV-infected cells to tissues where CXCL12 is highly expressed.
Collapse
|
37
|
Partners in Crime: The Role of CMV in Immune Dysregulation and Clinical Outcome During HIV Infection. Curr HIV/AIDS Rep 2016; 13:10-9. [PMID: 26810437 DOI: 10.1007/s11904-016-0297-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the current era of combination antiretroviral therapy (ART), human immunodeficiency virus (HIV)-infected individuals are living longer and healthier lives. Nevertheless, HIV-infected persons are at greater risk for age-related disorders, which have been linked to residual immune dysfunction and inflammation. HIV-infected individuals are almost universally co-infected with cytomegalovirus (CMV) and both viruses are associated with inflammation-related morbidities. Therefore, a detailed investigation of the relationship between CMV and aging-related morbidities emerging during chronic HIV infection is warranted. Here, we review the literature on how CMV co-infection affects HIV infection and host immunity and we discuss the gaps in our knowledge that need elucidation.
Collapse
|
38
|
Al-Omari A, Aljamaan F, Alhazzani W, Salih S, Arabi Y. Cytomegalovirus infection in immunocompetent critically ill adults: literature review. Ann Intensive Care 2016; 6:110. [PMID: 27813024 PMCID: PMC5095093 DOI: 10.1186/s13613-016-0207-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 10/17/2016] [Indexed: 12/21/2022] Open
Abstract
Cytomegalovirus (CMV) infection is increasingly recognized in critically ill immunocompetent patients. Some studies have demonstrated an association between CMV disease and increased mortality rates, prolonged intensive care unit and hospital length of stay, prolonged mechanical ventilation, and nosocomial infections. However, there is a considerable controversy whether such association represents a causal relationship between CMV disease and unfavorable outcomes or just a marker of the severity of the critical illness. Detection of CMV using polymerase chain reaction and CMV antigenemia is the standard diagnostic approach. CMV may have variety of clinical manifestations reflecting the involvement of different organ systems. Treatment of CMV in critical care is challenging due to diagnostic challenge and drug toxicity, and building predictive model for CMV disease in critical care setting would be promising to identify patients at risk and starting prophylactic therapy. Our objective was to broadly review the current literature on the prevalence and incidence, clinical manifestations, potential limitations of different diagnostic modalities, prognosis, and therapeutic options of CMV disease in critically ill patients.
Collapse
Affiliation(s)
- Awad Al-Omari
- Critical Care and Infection Control Department, Dr. Sulaiman Al Habib Medical Group, Riyadh, Saudi Arabia. .,AlFaisal University, Riyadh, Saudi Arabia.
| | - Fadi Aljamaan
- Intensive Care Department, King Khalid University Hospital, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | | | - Samer Salih
- Department of Internal Medicine, Dr. Sulaiman Al Habib Medical Group, Riyadh, Saudi Arabia
| | - Yaseen Arabi
- Intensive Care Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|
39
|
Abstract
Herpesviruses have evolved exquisite virus-host interactions that co-opt or evade a number of host pathways to enable the viruses to persist. Persistence of human cytomegalovirus (CMV), the prototypical betaherpesvirus, is particularly complex in the host organism. Depending on host physiology and the cell types infected, CMV persistence comprises latent, chronic, and productive states that may occur concurrently. Viral latency is a central strategy by which herpesviruses ensure their lifelong persistence. Although much remains to be defined about the virus-host interactions important to CMV latency, it is clear that checkpoints composed of viral and cellular factors exist to either maintain a latent state or initiate productive replication in response to host cues. CMV offers a rich platform for defining the virus-host interactions and understanding the host biology important to viral latency. This review describes current understanding of the virus-host interactions that contribute to viral latency and reactivation.
Collapse
Affiliation(s)
- Felicia Goodrum
- Department of Immunobiology, BIO5 Institute, University of Arizona, Tucson, Arizona 85721;
| |
Collapse
|
40
|
Dogra P, Miller-Kittrell M, Pitt E, Jackson JW, Masi T, Copeland C, Wu S, Miller WE, Sparer T. A little cooperation helps murine cytomegalovirus (MCMV) go a long way: MCMV co-infection rescues a chemokine salivary gland defect. J Gen Virol 2016; 97:2957-2972. [PMID: 27638684 DOI: 10.1099/jgv.0.000603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cytomegaloviruses (CMVs) produce chemokines (vCXCLs) that have both sequence and functional homology to host chemokines. Assessment of vCXCL-1's role in CMV infection is limited to in vitro and in silico analysis due to CMVs species specificity. In this study, we used the murine CMV (MCMV) mouse model to evaluate the function of vCXCL-1 in vivo. Recombinant MCMVs expressing chimpanzee CMV vCXCL-1 (vCXCL-1CCMV) or host chemokine, mCXCL1, underwent primary dissemination to the popliteal lymph node, spleen and lung similar to the parental MCMV. However, neither of the recombinants expressing chemokines was recovered from the salivary gland (SG) at any time post-infection although viral DNA was detected. This implies that the virus does not grow in the SG or the overexpressed chemokine induces an immune response that leads to suppressed growth. Pointing to immune suppression of virus replication, recombinant viruses were isolated from the SG following infection of immune-ablated mice [i.e. SCID (severe combined immunodeficiency), NSG (non-obese diabetic SCID gamma) or cyclophosphamide treated]. Depletion of neutrophils or NK cells does not rescue the recovery of chemokine-expressing recombinants in the SG. Surprisingly we found that co-infection of parental virus and chemokine-expressing virus leads to the recovery of the recombinants in the SG. We suggest that parental virus reduces the levels of chemokine expression leading to a decrease in inflammatory monocytes and subsequent SG growth. Therefore, aberrant expression of the chemokines induces cells of the innate and adaptive immune system that curtail the growth and dissemination of the recombinants in the SG.
Collapse
Affiliation(s)
- Pranay Dogra
- Department of Microbiology, University of Tennessee, 1414 Cumberland Avenue, Knoxville, TN 37996, USA
| | - Mindy Miller-Kittrell
- Department of Microbiology, University of Tennessee, 1414 Cumberland Avenue, Knoxville, TN 37996, USA
| | - Elisabeth Pitt
- Department of Microbiology, University of Tennessee, 1414 Cumberland Avenue, Knoxville, TN 37996, USA
| | - Joseph W Jackson
- Department of Microbiology, University of Tennessee, 1414 Cumberland Avenue, Knoxville, TN 37996, USA
| | - Tom Masi
- Department of Microbiology, University of Tennessee, 1414 Cumberland Avenue, Knoxville, TN 37996, USA
| | - Courtney Copeland
- Department of Microbiology, University of Tennessee, 1414 Cumberland Avenue, Knoxville, TN 37996, USA
| | - Shuen Wu
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0524, USA
| | - William E Miller
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0524, USA
| | - Tim Sparer
- Department of Microbiology, University of Tennessee, 1414 Cumberland Avenue, Knoxville, TN 37996, USA
| |
Collapse
|
41
|
Adler SP, Manganello AM, Lee R, McVoy MA, Nixon DE, Plotkin S, Mocarski E, Cox JH, Fast PE, Nesterenko PA, Murray SE, Hill AB, Kemble G. A Phase 1 Study of 4 Live, Recombinant Human Cytomegalovirus Towne/Toledo Chimera Vaccines in Cytomegalovirus-Seronegative Men. J Infect Dis 2016; 214:1341-1348. [PMID: 27521362 DOI: 10.1093/infdis/jiw365] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 06/28/2016] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Human cytomegalovirus (HCMV) infection causes disease in newborns and transplant recipients. A HCMV vaccine (Towne) protects transplant recipients. METHODS The genomes of Towne and the nonattenuated Toledo strain were recombined, yielding 4 Towne/Toledo chimera vaccines. Each of 36 HCMV-seronegative men received 1 subcutaneous dose of 10, 100, or 1000 plaque-forming units (PFU) in cohorts of 3. Safety and immunogenicity were evaluated over 12 weeks after immunization and for 52 weeks for those who seroconverted. RESULTS There were no serious local or systemic reactions. No subject had HCMV in urine or saliva. For chimera 3, none of 9 subjects seroconverted. For chimera 1, 1 of 9 seroconverted (the seroconverter received 100 PFU). For chimera 2, 3 subjects seroconverted (1 received 100 PFU, and 2 received 1000 PFU). For chimera 4, 7 subjects seroconverted (1 received 10 PFU, 3 received 100 PFU, and 3 received 1000 PFU). All 11 seroconverters developed low but detectable levels of neutralizing activity. CD4+ T-cell responses were detectable in 1 subject (who received 100 PFU of chimera 4). Seven subjects receiving chimera 2 or 4 had detectable CD8+ T-cell responses to IE1; 3 responded to 1-2 additional antigens. CONCLUSIONS The Towne/Toledo chimera vaccine candidates were well tolerated and were not excreted. Additional human trials of chimeras 2 and 4 are appropriate. CLINICAL TRIALS REGISTRATION NCT01195571.
Collapse
Affiliation(s)
| | | | | | | | - Daniel E Nixon
- Department of Internal Medicine, Virginia Commonwealth University, Richmond
| | - Stanley Plotkin
- University of Pennsylvania.,Wistar Institute, Philadelphia, Pennsylvania
| | - Edward Mocarski
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University, Atlanta, Georgia
| | | | | | - Pavlo A Nesterenko
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University
| | - Susan E Murray
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University.,Department of Biology, University of Portland, Oregon
| | - Ann B Hill
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University
| | | |
Collapse
|
42
|
Zhai L, Wu L, Li F, Burnham RS, Pizarro JC, Xu B. A Rapid Method for Refolding Cell Surface Receptors and Ligands. Sci Rep 2016; 6:26482. [PMID: 27215173 PMCID: PMC4877712 DOI: 10.1038/srep26482] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 05/03/2016] [Indexed: 01/08/2023] Open
Abstract
Production of membrane-associated cell surface receptors and their ligands is often a cumbersome, expensive, and time-consuming process that limits detailed structural and functional characterization of this important class of proteins. Here we report a rapid method for refolding inclusion-body-based, recombinant cell surface receptors and ligands in one day, a speed equivalent to that of soluble protein production. This method efficiently couples modular on-column immobilized metal ion affinity purification and solid-phase protein refolding. We demonstrated the general utility of this method for producing multiple functionally active immunoreceptors, ligands, and viral decoys, including challenging cell surface proteins that cannot be produced using typical dialysis- or dilution-based refolding approaches.
Collapse
Affiliation(s)
- Lu Zhai
- Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
- Interdepartmental Microbiology Graduate Program, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Ling Wu
- Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Feng Li
- Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Robert S. Burnham
- Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Juan C. Pizarro
- Department of Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Bin Xu
- Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
- Interdepartmental Microbiology Graduate Program, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
- Center for Drug Discovery, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| |
Collapse
|
43
|
Luganini A, Terlizzi ME, Gribaudo G. Bioactive Molecules Released From Cells Infected with the Human Cytomegalovirus. Front Microbiol 2016; 7:715. [PMID: 27242736 PMCID: PMC4865657 DOI: 10.3389/fmicb.2016.00715] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 04/29/2016] [Indexed: 01/01/2023] Open
Abstract
Following primary infection in humans, the human cytomegalovirus (HCMV) persists in a latent state throughout the host’s lifetime despite a strong and efficient immune response. If the host experiences some form of immune dysregulation, such as immunosuppression or immunodeficiency, HCMV reactivates, thereby emerging from latency. Thus, in the absence of effective functional immune responses, as occurs in immunocompromised or immunoimmature individuals, both HCMV primary infections and reactivations from latency can cause significant morbidity and mortality. However, even in immunocompetent hosts, HCMV represents a relevant risk factor for the development of several chronic inflammatory diseases and certain forms of neoplasia. HCMV infection may shift between the lytic and latent state, regulated by a delicate and intricate balance between virus-mediated immunomodulation and host immune defenses. Indeed, HCMV is a master in manipulating innate and adaptive host defense pathways, and a large portion of its genome is devoted to encoding immunomodulatory proteins; such proteins may thus represent important virulence determinants. However, the pathogenesis of HCMV-related diseases is strengthened by the activities of bioactive molecules, of both viral and cellular origin, that are secreted from infected cells and collectively named as the secretome. Here, we review the state of knowledge on the composition and functions of HCMV-derived secretomes. In lytic infections of fibroblasts and different types of endothelial cells, the majority of HCMV-induced secreted proteins act in a paracrine fashion to stimulate the generation of an inflammatory microenvironment around infected cells; this may lead to vascular inflammation and angiogenesis that, in turn, foster HCMV replication and its dissemination through host tissues. Conversely, the HCMV secretome derived from latently infected hematopoietic progenitor cells induces an immunosuppressive extracellular environment that interferes with immune recognition and elimination of latently infected cells, thereby promoting viral persistence. Characterization of the composition and biological activities of HCMV secretomes from different types of infected cells will lay the foundation for future advances in our knowledge about the pathogenesis HCMV diseases and may provide targets for the development of novel antiviral intervention strategies.
Collapse
Affiliation(s)
- Anna Luganini
- Laboratory of Microbiology and Virology, Department of Life Sciences and Systems Biology, University of Turin Turin, Italy
| | - Maria E Terlizzi
- Laboratory of Microbiology and Virology, Department of Life Sciences and Systems Biology, University of Turin Turin, Italy
| | - Giorgio Gribaudo
- Laboratory of Microbiology and Virology, Department of Life Sciences and Systems Biology, University of Turin Turin, Italy
| |
Collapse
|
44
|
HCMV vCXCL1 Binds Several Chemokine Receptors and Preferentially Attracts Neutrophils over NK Cells by Interacting with CXCR2. Cell Rep 2016; 15:1542-1553. [PMID: 27160907 DOI: 10.1016/j.celrep.2016.04.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 02/25/2016] [Accepted: 04/05/2016] [Indexed: 12/18/2022] Open
Abstract
HCMV is a highly sophisticated virus that has developed various mechanisms for immune evasion and viral dissemination throughout the body (partially mediated by neutrophils). NK cells play an important role in elimination of HCMV-infected cells. Both neutrophils and NK cells utilize similar sets of chemokine receptors to traffic, to and from, various organs. However, the mechanisms by which HCMV attracts neutrophils and not NK cells are largely unknown. Here, we show a unique viral protein, vCXCL1, which targets three chemokine receptors: CXCR1 and CXCR2 expressed on neutrophils and CXCR1 and CX3CR1 expressed on NK cells. Although vCXCL1 attracted both cell types, neutrophils migrated faster and more efficiently than NK cells through the binding of CXCR2. Therefore, we propose that HCMV has developed vCXCL1 to orchestrate its rapid systemic dissemination through preferential attraction of neutrophils and uses alternative mechanisms to counteract the later attraction of NK cells.
Collapse
|
45
|
Yue Y, Kaur A, Lilja A, Diamond DJ, Walter MR, Barry PA. The susceptibility of primary cultured rhesus macaque kidney epithelial cells to rhesus cytomegalovirus strains. J Gen Virol 2016; 97:1426-1438. [PMID: 26974598 DOI: 10.1099/jgv.0.000455] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Kidney epithelial cells are common targets for human and rhesus cytomegalovirus (HCMV and RhCMV) in vivo, and represent an important reservoir for long-term CMV shedding in urine. To better understand the role of kidney epithelial cells in primate CMV natural history, primary cultures of rhesus macaque kidney epithelial cells (MKE) were established and tested for infectivity by five RhCMV strains, including two wild-type strains (UCD52 and UCD59) and three strains containing different coding contents in UL/b'. The latter strains included 180.92 [containing an intact RhUL128-RhUL130-R hUL131 (RhUL128L) locus but deleted for the UL/b' RhUL148-rh167-loci], 68-1 (RhUL128L-defective and fibroblast-tropic) and BRh68-1.2 (the RhUL128L-repaired version of 68-1). As demonstrated by RhCMV cytopathic effect, plaque formation, growth kinetics and early virus entry, we showed that MKE were differentially susceptible to RhCMV infection, related to UL/b' coding contents of the different strains. UCD52 and UCD59 replicated vigorously in MKE, 68-1 replicated poorly, and 180.92 grew with intermediate kinetics. Reconstitution of RhUL128L in 68-1 (BRh68-1.2) restored its replication efficiency in MKE as compared to UCD52 and UCD59, consistent with the essential role of UL128L for HCMV epithelial tropism. Further analysis revealed that the UL/b' UL148-rh167-loci deletion in 180.92 impaired RhUL132 (rh160) expression. Given that 180.92 retains an intact RhUL128L, but genetically or functionally lacks genes from RhUL132 (rh160) to rh167 in UL/b', its attenuated infection efficiency indicated that, along with RhUL128L, an additional protein(s) encoded within the UL/b' RhUL132 (rh160)-rh167 region (potentially, RhUL132 and/or RhUL148) is indispensable for efficient replication in MKE.
Collapse
Affiliation(s)
- Yujuan Yue
- Center for Comparative Medicine, University of California, Davis, CA, USA
| | - Amitinder Kaur
- Department of Immunology, Tulane National Primate Research Center, Tulane University, Covington, LA, USA
| | - Anders Lilja
- Hookipa Biotech AG, Helmut-Qualtinger-Gasse 2, Vienna, Austria.,Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ 08544, USA
| | - Don J Diamond
- Division of Translational Vaccine Research, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Mark R Walter
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Peter A Barry
- Center for Comparative Medicine, University of California, Davis, CA, USA.,Department of Pathology and Laboratory Medicine, University of California, Davis, CA, USA.,California National Primate Research Center, University of California, Davis, CA, USA
| |
Collapse
|
46
|
Cornaby C, Tanner A, Stutz EW, Poole BD, Berges BK. Piracy on the molecular level: human herpesviruses manipulate cellular chemotaxis. J Gen Virol 2015; 97:543-560. [PMID: 26669819 DOI: 10.1099/jgv.0.000370] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cellular chemotaxis is important to tissue homeostasis and proper development. Human herpesvirus species influence cellular chemotaxis by regulating cellular chemokines and chemokine receptors. Herpesviruses also express various viral chemokines and chemokine receptors during infection. These changes to chemokine concentrations and receptor availability assist in the pathogenesis of herpesviruses and contribute to a variety of diseases and malignancies. By interfering with the positioning of host cells during herpesvirus infection, viral spread is assisted, latency can be established and the immune system is prevented from eradicating viral infection.
Collapse
Affiliation(s)
- Caleb Cornaby
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Anne Tanner
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Eric W Stutz
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Brian D Poole
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Bradford K Berges
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
47
|
Abstract
Human periodontitis is associated with a wide range of bacteria and viruses and with complex innate and adaptive immune responses. Porphyromonas gingivalis, Tannerella forsythia, Aggregatibacter actinomycetemcomitans, Treponema denticola, cytomegalovirus and other herpesviruses are major suspected pathogens of periodontitis, and a combined herpesvirus–bacterial periodontal infection can potentially explain major clinical features of the disease. Cytomegalovirus infects periodontal macrophages and T‐cells and elicits a release of interleukin‐1β and tumor necrosis factor‐α. These proinflammatory cytokines play an important role in the host defense against the virus, but they also have the potential to induce alveolar bone resorption and loss of periodontal ligament. Gingival fibroblasts infected with cytomegalovirus also exhibit diminished collagen production and release of an increased level of matrix metalloproteinases. This article reviews innate and adaptive immunity to cytomegalovirus and suggests that immune responses towards cytomegalovirus can play roles in controlling, as well as in exacerbating, destructive periodontal disease.
Collapse
|
48
|
Heo J, Dogra P, Masi TJ, Pitt EA, de Kruijf P, Smit MJ, Sparer TE. Novel Human Cytomegalovirus Viral Chemokines, vCXCL-1s, Display Functional Selectivity for Neutrophil Signaling and Function. THE JOURNAL OF IMMUNOLOGY 2015; 195:227-36. [PMID: 25987741 DOI: 10.4049/jimmunol.1400291] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 04/27/2015] [Indexed: 12/16/2022]
Abstract
Human CMV (HCMV) uses members of the hematopoietic system including neutrophils for dissemination throughout the body. HCMV encodes a viral chemokine, vCXCL-1, that is postulated to attract neutrophils for dissemination within the host. The gene encoding vCXCL-1, UL146, is one of the most variable genes in the HCMV genome. Why HCMV has evolved this hypervariability and how this affects the virus' dissemination and pathogenesis is unknown. Because the vCXCL-1 hypervariability maps to important binding and activation domains, we hypothesized that vCXCL-1s differentially activate neutrophils, which could contribute to HCMV dissemination, pathogenesis, or both. To test whether these viral chemokines affect neutrophil function, we generated vCXCL-1 proteins from 11 different clades from clinical isolates from infants infected congenitally with HCMV. All vCXCL-1s were able to induce calcium flux at a concentration of 100 nM and integrin expression on human peripheral blood neutrophils, despite differences in affinity for the CXCR1 and CXCR2 receptors. In fact, their affinity for CXCR1 or CXCR2 did not correlate directly with chemotaxis, G protein-dependent and independent (β-arrestin-2) activation, or secondary chemokine (CCL22) expression. Our data suggest that vCXCL-1 polymorphisms affect the binding affinity, receptor usage, and differential peripheral blood neutrophil activation that could contribute to HCMV dissemination and pathogenesis.
Collapse
Affiliation(s)
- Jinho Heo
- Department of Microbiology, The University of Tennessee, Knoxville, TN 37996; and
| | - Pranay Dogra
- Department of Microbiology, The University of Tennessee, Knoxville, TN 37996; and
| | - Tom J Masi
- Department of Microbiology, The University of Tennessee, Knoxville, TN 37996; and
| | - Elisabeth A Pitt
- Department of Microbiology, The University of Tennessee, Knoxville, TN 37996; and
| | - Petra de Kruijf
- Division of Medicinal Chemistry, VU University Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Martine J Smit
- Division of Medicinal Chemistry, VU University Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Tim E Sparer
- Department of Microbiology, The University of Tennessee, Knoxville, TN 37996; and
| |
Collapse
|
49
|
High-throughput analysis of human cytomegalovirus genome diversity highlights the widespread occurrence of gene-disrupting mutations and pervasive recombination. J Virol 2015; 89:7673-7695. [PMID: 25972543 DOI: 10.1128/jvi.00578-15] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Human cytomegalovirus is a widespread pathogen of major medical importance. It causes significant morbidity and mortality in the immunocompromised and congenital infections can result in severe disabilities or stillbirth. Development of a vaccine is prioritized, but no candidate is close to release. Although correlations of viral genetic variability with pathogenicity are suspected, knowledge about strain diversity of the 235kb genome is still limited. In this study, 96 full-length human cytomegalovirus genomes from clinical isolates were characterized, quadrupling the available information for full-genome analysis. These data provide the first high-resolution map of human cytomegalovirus interhost diversity and evolution. We show that cytomegalovirus is significantly more divergent than all other human herpesviruses and highlight hotspots of diversity in the genome. Importantly, 75% of strains are not genetically intact, but contain disruptive mutations in a diverse set of 26 genes, including immunomodulative genes UL40 and UL111A. These mutants are independent from culture passaging artifacts and circulate in natural populations. Pervasive recombination, which is linked to the widespread occurrence of multiple infections, was found throughout the genome. Recombination density was significantly higher than in other human herpesviruses and correlated with strain diversity. While the overall effects of strong purifying selection on virus evolution are apparent, evidence of diversifying selection was found in several genes encoding proteins that interact with the host immune system, including UL18, UL40, UL142 and UL147. These residues may present phylogenetic signatures of past and ongoing virus-host interactions. IMPORTANCE Human cytomegalovirus has the largest genome of all viruses that infect humans. Currently, there is a great interest in establishing associations between genetic variants and strain pathogenicity of this herpesvirus. Since the number of publicly available full-genome sequences is limited, knowledge about strain diversity is highly fragmented and biased towards a small set of loci. Combined with our previous work, we have now contributed 101 complete genome sequences. We have used these data to conduct the first high-resolution analysis of interhost genome diversity, providing an unbiased and comprehensive overview of cytomegalovirus variability. These data are of major value to the development of novel antivirals and a vaccine and to identify potential targets for genotype-phenotype experiments. Furthermore, they have enabled a thorough study of the evolutionary processes that have shaped cytomegalovirus diversity.
Collapse
|
50
|
Abstract
In celebrating the 60th anniversary of the first isolation of human cytomegalovirus (HCMV), we reflect on the merits and limitations of the viral strains currently being used to develop urgently needed treatments. HCMV research has been dependent for decades on the high-passage strains AD169 and Towne, heavily exploiting their capacity to replicate efficiently in fibroblasts. However, the genetic integrity of these strains is so severely compromised that great caution needs to be exercised when considering their past and future use. It is now evident that wild-type HCMV strains are not readily propagated in vitro. HCMV mutants are rapidly selected during isolation in fibroblasts, reproducibly affecting gene RL13, the UL128 locus (which includes genes UL128, UL130 and UL131A) and often the UL/b′ region. As a result, the virus becomes less cell associated, altered in tropism and less pathogenic. This problem is not restricted to high-passage strains, as even low-passage strains can harbour biologically significant mutations. Cloning and manipulation of the HCMV genome as a bacterial artificial chromosome (BAC) offers a means of working with stable, genetically defined strains. To this end, the low-passage strain Merlin genome was cloned as a BAC and sequentially repaired to match the viral sequence in the original clinical sample from which Merlin was derived. Restoration of UL128L to wild type was detrimental to growth in fibroblasts, whereas restoration of RL13 impaired growth in all cell types tested. Stable propagation of phenotypically wild-type virus could be achieved only by placing both regions under conditional expression. In addition to the development of these tools, the Merlin transcriptome and proteome have been characterized in unparalleled detail. Although Merlin may be representative of the clinical agent, high-throughput whole-genome deep sequencing studies have highlighted the remarkable high level of interstrain variation present in circulating virus. There is a need to develop systems capable of addressing the significance of this diversity, free from the confounding effects of genetic changes associated with in vitro adaptation. The generation of a set of BAC clones, each containing the genome of a different HCMV strain repaired to match the sequence in the clinical sample, would provide a pathway to address the biological and clinical effects of natural variation in wild-type HCMV.
Collapse
|