1
|
Li L, Pan L, Lin Z, Wen J, Tan B, Liu H, Hu Y. Metformin improves insulin resistance, liver healthy and abnormal hepatic glucolipid metabolism via IR/PI 3K/AKT pathway in Ctenopharyngodon idella fed a high-carbohydrate diet. Comp Biochem Physiol C Toxicol Pharmacol 2024; 283:109976. [PMID: 38987002 DOI: 10.1016/j.cbpc.2024.109976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/13/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
The effects and underlying mechanisms of metformin which can improve glucose homeostasis of fish have rarely been explored. This experiment aimed to explore the influence of metformin on growth performance, body composition, liver health, hepatic glucolipid metabolic capacity and IR/PI3K/AKT pathway in grass carp (Ctenopharyngodon idella) fed high-carbohydrate diets. A normal diet (Control) and high carbohydrate diets with metformin supplementation (0.00 %, 0.20 %, 0.40 %, 0.60 % and 0.80 %) were configured. Six groups of healthy fish were fed with the experimental diet for eight weeks. The results showed that the growth performance of grass carp was impaired in high carbohydrate diet. Impairment of IR/PI3K/AKT signalling pathway reduced insulin sensitivity, while hepatic oxidative stress damage and decreased immunity affected liver metabolic function. The glycolysis and lipolysis decrease while the gluconeogenesis and fat synthesis increase, which triggers hyperglycaemia and lipid deposition in the body. Metformin supplementation restored the growth performance of grass carp. Metformin improved IR/PI3K/AKT pathway signalling and alleviated insulin resistance, while liver antioxidant capacity and immunity were enhanced resulting in the restoration of liver health. The elevation of glycolysis and lipolysis maintains glycaemic homeostasis and reduces lipid deposition, respectively. These results suggest that metformin supplementation restores liver health and activates the IR/PI3K/AKT signalling pathway, ameliorating insulin resistance and glucose-lipid metabolism disorders caused by a high-carbohydrate diet. As judged by HOMA-IR, the optimum supplementation level of metformin in grass carp (C. idella) fed a high-carbohydrate diet is 0.67 %.
Collapse
Affiliation(s)
- Lixian Li
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affairs, Zhanjiang 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, PR China
| | - Ling Pan
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affairs, Zhanjiang 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, PR China; Zhanjiang Experimental Station, CATAS. Zhanjiang 524013, PR China
| | - Zhixuan Lin
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affairs, Zhanjiang 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, PR China
| | - Jiasheng Wen
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affairs, Zhanjiang 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, PR China
| | - Beiping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affairs, Zhanjiang 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, PR China
| | - Hongyu Liu
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affairs, Zhanjiang 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, PR China.
| | - Yi Hu
- Hunan Research Center of Engineering Technology for Utilization of Distinctive Aquatic Resource, Hunan Agricultural University, Changsha 410128, PR China
| |
Collapse
|
2
|
Zhong H, Dong J, Zhu L, Mao J, Dong J, Zhao Y, Zou Y, Guo M, Ding G. Non-alcoholic fatty liver disease: pathogenesis and models. Am J Transl Res 2024; 16:387-399. [PMID: 38463579 PMCID: PMC10918142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/22/2024] [Indexed: 03/12/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a complex disease characterized by a massive accumulation of lipids in the liver, with a continuous progression of simple steatosis, non-alcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular carcinoma. Non-alcoholic fatty liver disease is associated with obesity, insulin resistance, and metabolic syndrome; it is a severe public health risk and is currently the most common liver disease of the world. In addition to the fatty infiltration of the liver in non-alcoholic fatty liver disease patients, the field of liver transplantation faces similar obstacles. NAFLD and NASH primarily involve lipotoxicity, inflammation, oxidative stress, and insulin resistance. However, the precise mechanisms and treatments remain unclear. Therapeutic approaches encompass exercise, weight control, as well as treatments targeting antioxidants and anti-inflammatory pathways. The role of animal models in research has become crucial as a key tool to explore the molecular mechanisms and potential treatments for non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. Here, we summarized the current understanding of the pathogenesis of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis and discussed animal models commonly used in recent years.
Collapse
Affiliation(s)
- Hanxiang Zhong
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Navy Medical UniversityShanghai, China
| | - Jiayong Dong
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Navy Medical UniversityShanghai, China
| | - Liye Zhu
- National Key Laboratory of Immunity and Inflammation & Institute of Immunology, Navy Medical UniversityShanghai, China
| | - Jiaxi Mao
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Navy Medical UniversityShanghai, China
| | - Junfeng Dong
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Navy Medical UniversityShanghai, China
| | - Yuanyu Zhao
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Navy Medical UniversityShanghai, China
| | - You Zou
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Navy Medical UniversityShanghai, China
| | - Meng Guo
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Navy Medical UniversityShanghai, China
- National Key Laboratory of Immunity and Inflammation & Institute of Immunology, Navy Medical UniversityShanghai, China
| | - Guoshan Ding
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Navy Medical UniversityShanghai, China
| |
Collapse
|
3
|
López-Méndez I, Maldonado-Rojas ADC, Uribe M, Juárez-Hernández E. Hunger & satiety signals: another key mechanism involved in the NAFLD pathway. Front Endocrinol (Lausanne) 2023; 14:1213372. [PMID: 37753211 PMCID: PMC10518611 DOI: 10.3389/fendo.2023.1213372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent metabolic disease, although prevalence could change according to region, nowadays is considered a public health problem whose real impact on the health system is unknown. NAFLD has a multifactorial and complex pathophysiology, due to this, developing a unique and effective pharmacological treatment has not been successful in reverting or avoiding the progression of this liver disease. Even though NAFLD pathophysiology is known, all actual treatments are focused on modifying or regulating the metabolic pathways, some of which interplay with obesity. It has been known that impairments in hunger and satiety signals are associated with obesity, however, abnormalities in these signals in patients with NAFLD and obesity are not fully elucidated. To describe these mechanisms opens an additional option as a therapeutic target sharing metabolic pathways with NAFLD, therefore, this review aims to describe the hormones and peptides implicated in both hunger-satiety in NAFLD. It has been established that NAFLD pharmacological treatment cannot be focused on a single purpose; hence, identifying interplays that lead to adding or modifying current treatment options could also have an impact on another related outcome such as hunger or satiety signals.
Collapse
Affiliation(s)
- Iván López-Méndez
- Hepatology and Transplants Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | | | - Misael Uribe
- Gastroenterology and Obesity Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | - Eva Juárez-Hernández
- Translational Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| |
Collapse
|
4
|
Iacob SA, Iacob DG. Non-Alcoholic Fatty Liver Disease in HIV/HBV Patients - a Metabolic Imbalance Aggravated by Antiretroviral Therapy and Perpetuated by the Hepatokine/Adipokine Axis Breakdown. Front Endocrinol (Lausanne) 2022; 13:814209. [PMID: 35355551 PMCID: PMC8959898 DOI: 10.3389/fendo.2022.814209] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is strongly associated with the metabolic syndrome and is one of the most prevalent comorbidities in HIV and HBV infected patients. HIV plays an early and direct role in the development of metabolic syndrome by disrupting the mechanism of adipogenesis and synthesis of adipokines. Adipokines, molecules that regulate the lipid metabolism, also contribute to the progression of NAFLD either directly or via hepatic organokines (hepatokines). Most hepatokines play a direct role in lipid homeostasis and liver inflammation but their role in the evolution of NAFLD is not well defined. The role of HBV in the pathogenesis of NAFLD is controversial. HBV has been previously associated with a decreased level of triglycerides and with a protective role against the development of steatosis and metabolic syndrome. At the same time HBV displays a high fibrogenetic and oncogenetic potential. In the HIV/HBV co-infection, the metabolic changes are initiated by mitochondrial dysfunction as well as by the fatty overload of the liver, two interconnected mechanisms. The evolution of NAFLD is further perpetuated by the inflammatory response to these viral agents and by the variable toxicity of the antiretroviral therapy. The current article discusses the pathogenic changes and the contribution of the hepatokine/adipokine axis in the development of NAFLD as well as the implications of HIV and HBV infection in the breakdown of the hepatokine/adipokine axis and NAFLD progression.
Collapse
Affiliation(s)
- Simona Alexandra Iacob
- Department of Infectious Diseases, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Infectious Diseases, National Institute of Infectious Diseases “Prof. Dr. Matei Bals”, Bucharest, Romania
| | - Diana Gabriela Iacob
- Department of Infectious Diseases, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Infectious Diseases, Emergency University Hospital, Bucharest, Romania
- *Correspondence: Diana Gabriela Iacob,
| |
Collapse
|
5
|
Matsumoto Y, Fujita S, Yamagishi A, Shirai T, Maeda Y, Suzuki T, Kobayashi KI, Inoue J, Yamamoto Y. Brown Rice Inhibits Development of Nonalcoholic Fatty Liver Disease in Obese Zucker (fa/fa) Rats by Increasing Lipid Oxidation Via Activation of Retinoic Acid Synthesis. J Nutr 2021; 151:2705-2713. [PMID: 34224565 DOI: 10.1093/jn/nxab188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/24/2021] [Accepted: 05/17/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND White rice and its unrefined form, brown rice, contain numerous compounds that are beneficial to human health. However, the starch content of rice can contribute to obesity, a main risk factor for nonalcoholic fatty liver disease (NAFLD). OBJECTIVES We investigated the effect of rice consumption on NAFLD and its underlying molecular mechanism. METHODS We randomly divided 7-week-old male obese Zucker (fa/fa) rats, an animal model of NAFLD, into 3 groups (n = 10 each) fed 1 of 3 diets for 10 weeks: a control diet (Cont; AIN-93G diet; 53% cornstarch), a white rice diet (WR; AIN-93G diet with cornstarch replaced with white rice powder), or a brown rice diet (BR; AIN-93G diet with cornstarch replaced with brown rice powder). Liver fat accumulation and gene expression related to lipid and vitamin A metabolisms, including retinoic acid (RA) signaling, were analyzed. RESULTS Hepatic lipid values were significantly decreased in the BR group compared with the Cont group, by 0.4-fold (P < 0.05). The expression of genes related to hepatic fatty acid oxidation, such as carnitine palmitoyltransferase 2, was approximately 2.1-fold higher in the BR group than the Cont group (P < 0.05). The expression of peroxisomal acyl-coenzyme A oxidase 1 and acyl-CoA dehydrogenase medium chain was also significantly increased, by 1.6-fold, in the BR group compared with the Cont group (P < 0.05). The expression of VLDL-secretion-related genes, such as microsomal triglyceride transfer protein, was also significantly higher in the BR group (2.4-fold; P < 0.05). Furthermore, aldehyde dehydrogenase 1 family member A1, an RA synthase gene, was 2-fold higher in the BR group than the Cont group (P < 0.05). CONCLUSIONS Brown rice prevented development of NAFLD in obese Zucker (fa/fa) rats. The beneficial effects of pregelatinized rice on NAFLD could be manifested as increased fatty acid oxidation and VLDL secretion, which are regulated by RA signaling.
Collapse
Affiliation(s)
- Yu Matsumoto
- Department of Agricultural Chemistry, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Saya Fujita
- Department of Agricultural Chemistry, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Ayano Yamagishi
- Department of Agricultural Chemistry, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Tomomi Shirai
- Department of Agricultural Chemistry, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | | | - Tsukasa Suzuki
- Department of Agricultural Chemistry, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Ken-Ichi Kobayashi
- Department of Agricultural Chemistry, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan.,Department of Foods and Human Nutrition, Faculty of Human Living Sciences Notre Dame Seishin University, Okayama, Japan
| | - Jun Inoue
- Department of Agricultural Chemistry, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Yuji Yamamoto
- Department of Agricultural Chemistry, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
6
|
Sardana O, Goyal R, Bedi O. Molecular and pathobiological involvement of fetuin-A in the pathogenesis of NAFLD. Inflammopharmacology 2021; 29:1061-1074. [PMID: 34185201 DOI: 10.1007/s10787-021-00837-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023]
Abstract
The liver acts as a manufacturing unit for the production of fetuin-A, which is essential for various physiological characteristics. Scientific research has shown that a moderate upward push in fetuin-A serum levels is associated with a confirmed non-alcoholic fatty liver disease (NAFLD) diagnosis. Fetuin-A modulation is associated with a number of pathophysiological variables that cause liver problems, including insulin receptor signaling deficiencies, adipocyte dysfunction, hepatic inflammation, fibrosis, triacylglycerol production, macrophage invasion, and TLR4 activation. The focus of the present review is on the various molecular pathways, and genetic relevance of mRNA expression of fetuin-A which is correlated with progression of NAFLD. The other major area of exploration in the present review is based on the new targets for the modulation of fetuin-A, like calorie restriction and novel pharmacological agents, such as rosuvastatin, metformin, and pioglitazone which are successfully implicated in the management of various liver-related complications.
Collapse
Affiliation(s)
- Ojus Sardana
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Ravi Goyal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Onkar Bedi
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| |
Collapse
|
7
|
Gerges SH, Wahdan SA, Elsherbiny DA, El-Demerdash E. Non-alcoholic fatty liver disease: An overview of risk factors, pathophysiological mechanisms, diagnostic procedures, and therapeutic interventions. Life Sci 2021; 271:119220. [PMID: 33592199 DOI: 10.1016/j.lfs.2021.119220] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a disorder of excessive fat accumulation in the liver, known as steatosis, without alcohol overconsumption. NAFLD can either manifest as simple steatosis or steatohepatitis, known as non-alcoholic steatohepatitis (NASH), which is accompanied by inflammation and possibly fibrosis. Furthermore, NASH might progress to hepatocellular carcinoma. NAFLD and NASH prevalence is in a continuous state of growth, and by 2018, NAFLD became a devastating metabolic disease with a global pandemic prevalence. The pathophysiology of NAFLD and NASH is not fully elucidated, but is known to involve the complex interplay between different metabolic, environmental, and genetic factors. In addition, unhealthy dietary habits and pre-existing metabolic disturbances together with other risk factors predispose NAFLD development and progression from simple steatosis to steatohepatitis, and eventually to fibrosis. Despite their growing worldwide prevalence, to date, there is no FDA-approved treatment for NAFLD and NASH. Several off-label medications are used to target disease risk factors such as obesity and insulin resistance, and some medications are used for their hepatoprotective effects. Unfortunately, currently used medications are not sufficiently effective, and research is ongoing to investigate the beneficial effects of different drugs and phytochemicals in NASH. In this review article, we outline the different risk factors and pathophysiological mechanisms involved in NAFLD, diagnostic procedures, and currently used management techniques.
Collapse
Affiliation(s)
- Samar H Gerges
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Abbasia, Cairo 11566, Egypt
| | - Sara A Wahdan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Abbasia, Cairo 11566, Egypt
| | - Doaa A Elsherbiny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Abbasia, Cairo 11566, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Abbasia, Cairo 11566, Egypt.
| |
Collapse
|
8
|
Geng X, Liu H, Yuwen Q, Wang J, Zhang S, Zhang X, Sun J. Protective effects of zingerone on high cholesterol diet-induced atherosclerosis through lipid regulatory signaling pathway. Hum Exp Toxicol 2021; 40:1732-1745. [PMID: 33845646 DOI: 10.1177/09603271211006170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIM A high cholesterol diet (HCD) is known to cause metabolic dysregulation, oxidative stress, cardiovascular diseases and atherogenesis. Zingerone is a pharmacologically active component of dry ginger. Zingerone has been shown to have a wide range of pharmacological properties, including scavenging free radicals, high antioxidant activity, suppressing lipid peroxidation and anti-inflammatory. This study aimed to investigate the effects of Zingerone on HCD-induced atherosclerosis in rats. METHODS Animals were divided into four categories (n = 6). Group I: normal control, Group II: zingerone control (20 mg/kg b.wt.), group III: HCD-induced atherosclerosis, Group IV: HCD + zingerone, respectively, for 8 weeks. RESULTS The HCD-fed rats resulted in a significant increase in an atherosclerotic lesion, lipid peroxidation, lipid profile, high-density lipoprotein concentration, cardiac markers, body weight, reduced antioxidant status, and displayed atherosclerosis. These findings were conventional by up-regulated expression of lipid regulatory genes like sterol-regulatory-element-binding protein-c (SREBP-c), fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), acetyl-CoA synthetase (ACS), liver X receptor-alpha (LXR-α), and down-regulated expression of acetyl-CoA oxidase (ACO), peroxisome proliferator-activated receptor-alpha (PPAR-α) and carnitine palmitoyl transferase-1 (CPT-1) in HCD-fed rats. These significant changes were observed in the zingerone-treated rats for the last 4 weeks. CONCLUSION These findings suggest that zingerone reduced atherosclerosis by modulated the atherosclerotic lesion, lipid profile, antioxidant status and lipid regulatory gene expression in HCD-fed rats.
Collapse
Affiliation(s)
- X Geng
- Department of Emergency, 159363Tangshan Gongren Hospital, Tangshan, Hebei, People's Republic of China
| | - H Liu
- Medical Imaging Department, 159363Tangshan Gongren Hospital, Tangshan, Hebei, People's Republic of China
| | - Q Yuwen
- Medical Imaging Department, Yanda Hospital, Langfang, Hebei, People's Republic of China
| | - J Wang
- Department of Stomatology, 159363Tangshan Gongren Hospital, Tangshan, Hebei, People's Republic of China
| | - S Zhang
- Department of Emergency, Luanzhou People's Hospital, Tangshan, Hebei, People's Republic of China
| | - X Zhang
- Department of Infectious Diseases, Zunhua People's Hospital, Tangshan, Hebei, People's Republic of China
| | - J Sun
- Medical Imaging Department, 159363Tangshan Gongren Hospital, Tangshan, Hebei, People's Republic of China
| |
Collapse
|
9
|
Tumor Metabolic Reprogramming by Adipokines as a Critical Driver of Obesity-Associated Cancer Progression. Int J Mol Sci 2021; 22:ijms22031444. [PMID: 33535537 PMCID: PMC7867092 DOI: 10.3390/ijms22031444] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 12/11/2022] Open
Abstract
Adiposity is associated with an increased risk of various types of carcinoma. One of the plausible mechanisms underlying the tumor-promoting role of obesity is an aberrant secretion of adipokines, a group of hormones secreted from adipose tissue, which have exhibited both oncogenic and tumor-suppressing properties in an adipokine type- and context-dependent manner. Increasing evidence has indicated that these adipose tissue-derived hormones differentially modulate cancer cell-specific metabolism. Some adipokines, such as leptin, resistin, and visfatin, which are overproduced in obesity and widely implicated in different stages of cancer, promote cellular glucose and lipid metabolism. Conversely, adiponectin, an adipokine possessing potent anti-tumor activities, is linked to a more favorable metabolic phenotype. Adipokines may also play a pivotal role under the reciprocal regulation of metabolic rewiring of cancer cells in tumor microenvironment. Given the fact that metabolic reprogramming is one of the major hallmarks of cancer, understanding the modulatory effects of adipokines on alterations in cancer cell metabolism would provide insight into the crosstalk between obesity, adipokines, and tumorigenesis. In this review, we summarize recent insights into putative roles of adipokines as mediators of cellular metabolic rewiring in obesity-associated tumors, which plays a crucial role in determining the fate of tumor cells.
Collapse
|
10
|
Pham D, Tilija Pun N, Park P. Autophagy activation and SREBP-1 induction contribute to fatty acid metabolic reprogramming by leptin in breast cancer cells. Mol Oncol 2021; 15:657-678. [PMID: 33226729 PMCID: PMC7858107 DOI: 10.1002/1878-0261.12860] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/03/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022] Open
Abstract
Leptin, a hormone predominantly derived from adipose tissue, is well known to induce growth of breast cancer cells. However, its underlying mechanisms remain unclear. In this study, we examined the role of reprogramming of lipid metabolism and autophagy in leptin-induced growth of breast cancer cells. Herein, leptin induced significant increase in fatty acid oxidation-dependent ATP production in estrogen receptor-positive breast cancer cells. Furthermore, leptin induced both free fatty acid release and intracellular lipid accumulation, indicating a multifaceted effect of leptin in fatty acid metabolism. These findings were further validated in an MCF-7 tumor xenograft mouse model. Importantly, all the aforementioned metabolic effects of leptin were mediated via autophagy activation. In addition, SREBP-1 induction driven by autophagy and fatty acid synthase induction, which is mediated by SREBP-1, plays crucial roles in leptin-stimulated metabolic reprogramming and are required for growth of breast cancer cell, suggesting a pivotal contribution of fatty acid metabolic reprogramming to tumor growth by leptin. Taken together, these results highlighted a crucial role of autophagy in leptin-induced cancer cell-specific metabolism, which is mediated, at least in part, via SREBP-1 induction.
Collapse
Affiliation(s)
- Duc‐Vinh Pham
- College of PharmacyYeungnam UniversityGyeongsanKorea
| | | | - Pil‐Hoon Park
- College of PharmacyYeungnam UniversityGyeongsanKorea
- Research Institute of Cell CultureYeungnam UniversityGyeongsanKorea
| |
Collapse
|
11
|
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is caused by the accumulation of fat in over 5% of hepatocytes in the absence of alcohol consumption. NAFLD is considered the hepatic manifestation of metabolic syndrome (MS). Recently, an expert consensus suggested as more appropriate the term MAFLD (metabolic-associated fatty liver disease). Insulin resistance (IR) plays a key role in the development of NAFLD, as it causes an increase in hepatic lipogenesis and an inhibition of adipose tissue lipolysis. Beyond the imbalance of adipokine levels, the increase in the mass of visceral adipose tissue also determines an increase in free fatty acid (FFA) levels. In turn, an excess of FFA is able to determine IR through the inhibition of the post-receptor insulin signal. Adipocytes secrete chemokines, which are able to enroll macrophages inside the adipose tissue, responsible, in turn, for the increased levels of TNF-α. The latter, as well as resistin and other pro-inflammatory cytokines such as IL-6, enhances insulin resistance and correlates with endothelial dysfunction and an increased cardiovascular (CV) risk. In this review, the role of diet, intestinal microbiota, genetic and epigenetic factors, low-degree chronic systemic inflammation, mitochondrial dysfunction, and endoplasmic reticulum stress on NAFLD have been addressed. Finally, the clinical impact of NAFLD on cardiovascular and renal outcomes, and its direct link with type 2 diabetes have been discussed.
Collapse
|
12
|
Unraveling the Role of Leptin in Liver Function and Its Relationship with Liver Diseases. Int J Mol Sci 2020; 21:ijms21249368. [PMID: 33316927 PMCID: PMC7764544 DOI: 10.3390/ijms21249368] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/19/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023] Open
Abstract
Since its discovery twenty-five years ago, the fat-derived hormone leptin has provided a revolutionary framework for studying the physiological role of adipose tissue as an endocrine organ. Leptin exerts pleiotropic effects on many metabolic pathways and is tightly connected with the liver, the major player in systemic metabolism. As a consequence, understanding the metabolic and hormonal interplay between the liver and adipose tissue could provide us with new therapeutic targets for some chronic liver diseases, an increasing problem worldwide. In this review, we assess relevant literature regarding the main metabolic effects of leptin on the liver, by direct regulation or through the central nervous system (CNS). We draw special attention to the contribution of leptin to the non-alcoholic fatty liver disease (NAFLD) pathogenesis and its progression to more advanced stages of the disease as non-alcoholic steatohepatitis (NASH). Likewise, we describe the contribution of leptin to the liver regeneration process after partial hepatectomy, the mainstay of treatment for certain hepatic malignant tumors.
Collapse
|
13
|
Hoque KM, Dixon EE, Lewis RM, Allan J, Gamble GD, Phipps-Green AJ, Halperin Kuhns VL, Horne AM, Stamp LK, Merriman TR, Dalbeth N, Woodward OM. The ABCG2 Q141K hyperuricemia and gout associated variant illuminates the physiology of human urate excretion. Nat Commun 2020; 11:2767. [PMID: 32488095 PMCID: PMC7265540 DOI: 10.1038/s41467-020-16525-w] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 05/06/2020] [Indexed: 02/06/2023] Open
Abstract
The pathophysiological nature of the common ABCG2 gout and hyperuricemia associated variant Q141K (rs2231142) remains undefined. Here, we use a human interventional cohort study (ACTRN12615001302549) to understand the physiological role of ABCG2 and find that participants with the Q141K ABCG2 variant display elevated serum urate, unaltered FEUA, and significant evidence of reduced extra-renal urate excretion. We explore mechanisms by generating a mouse model of the orthologous Q140K Abcg2 variant and find male mice have significant hyperuricemia and metabolic alterations, but only subtle alterations of renal urate excretion and ABCG2 abundance. By contrast, these mice display a severe defect in ABCG2 abundance and function in the intestinal tract. These results suggest a tissue specific pathobiology of the Q141K variant, support an important role for ABCG2 in urate excretion in both the human kidney and intestinal tract, and provide insight into the importance of intestinal urate excretion for serum urate homeostasis. The common ABCG2 variant Q141K contributes to hyperuricemia and gout risk. Here, using a human interventional study and a new orthologous mouse model, the authors report a tissue specific pathobiology of the Q141K variant, and support a significant role for ABCG2 in urate excretion in both the kidney and intestine.
Collapse
Affiliation(s)
- Kazi Mirajul Hoque
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Eryn E Dixon
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Raychel M Lewis
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jordyn Allan
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Gregory D Gamble
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | | | | | - Anne M Horne
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Lisa K Stamp
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Tony R Merriman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Nicola Dalbeth
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Owen M Woodward
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
14
|
Ntandja Wandji LC, Gnemmi V, Mathurin P, Louvet A. Combined alcoholic and non-alcoholic steatohepatitis. JHEP Rep 2020; 2:100101. [PMID: 32514497 PMCID: PMC7267467 DOI: 10.1016/j.jhepr.2020.100101] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/18/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023] Open
Abstract
While metabolic syndrome and alcohol consumption are the two main causes of chronic liver disease, one of the two conditions is often predominant, with the other acting as a cofactor of morbimortality. It has been shown that obesity and alcohol act synergistically to increase the risk of fibrosis progression, hepatic carcinogenesis and mortality, while genetic polymorphisms can strongly influence disease progression. Based on common pathogenic pathways, there are several potential targets that could be used to treat both diseases; based on the prevalence and incidence of these diseases, new therapies and clinical trials are needed urgently.
Collapse
Key Words
- ACC, acetyl-CoA carboxylase
- ALD
- ALD, alcohol-related liver disease
- ASH
- ASH, alcohol-related steatohepatitis
- ASK-1, apoptosis signal-regulating kinase 1
- Alcohol
- BMI, body mass index
- CLD, chronic liver disease
- CPT, carnitine palmitoyltransferase
- DNL, de novo lipogenesis
- EASL, European Association for the Study of the Liver
- ER, endoplasmic reticulum
- FXR, farnesoid X receptor
- HCC, hepatocellular carcinoma
- HSD17B13, hydroxysteroid 17-beta dehydrogenase 13
- IL, interleukin
- LPS, lipopolysaccharide
- MBOAT7, membrane bound O-acyl transferase 7
- MELD, model for end-stage liver disease
- NAFLD
- NAFLD, non-alcoholic fatty liver disease
- NASH
- NASH, non-alcoholic steatohepatitis
- OR, odds ratio
- PAMP, pathogen-associated molecular pattern
- PI3K, phosphatidylinositol-3-kinase
- PIP3, phosphatidylinositol 3,4,5-triphosphate
- PNPLA3, palatin-like phospholipase domain-containing 3
- PRKCE, protein kinase C Epsilon
- ROS, reactive oxygen species
- SREBP-1c, sterol regulatory element binding protein-1c
- TLR, Toll-like receptor
- TM6SF2, transmembrane 6 superfamily member 2
- TNF-α, tumour necrosis factor-α
- WHO, World Health Organization
- diabetes
- metabolic syndrome
- obesity
Collapse
Affiliation(s)
- Line Carolle Ntandja Wandji
- Service des maladies de l'appareil digestif, Hôpital Huriez, Rue Polonowski, 59037 Lille Cedex, France
- Université Lille Nord de France, Lille, France
- Unité INSERM 995, Lille, France
| | | | - Philippe Mathurin
- Service des maladies de l'appareil digestif, Hôpital Huriez, Rue Polonowski, 59037 Lille Cedex, France
- Université Lille Nord de France, Lille, France
- Unité INSERM 995, Lille, France
| | - Alexandre Louvet
- Service des maladies de l'appareil digestif, Hôpital Huriez, Rue Polonowski, 59037 Lille Cedex, France
- Université Lille Nord de France, Lille, France
- Unité INSERM 995, Lille, France
- Corresponding author. Address: Service des maladies de l'appareil digestif, Hôpital Huriez, Rue Polonowski, 59037 Lille Cedex, France. Tel.: +33 320445597; fax: +33 320445564.
| |
Collapse
|
15
|
El-Daly UM, Saber MM, Abdellateif MS, Nassar HR, Namour AE, Ismail YM, Zekri ARN. The Possible Role of Adipokines in HCV Associated Hepatocellular Carcinoma. Asian Pac J Cancer Prev 2020; 21:599-609. [PMID: 32212784 PMCID: PMC7437316 DOI: 10.31557/apjcp.2020.21.3.599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Indexed: 01/14/2023] Open
Abstract
Background: Adipokines play an important role in the regulation of inflammation and tumor progression. Aim: Assessment of the possible role of adiponectin, leptin and visfatin in HCV associated hepatocellular carcinoma (HCC). Methods: patients were classified into 85 patients with HCV associated HCC, 100 patients with chronic hepatitis C viral (HCV) infection compared to 50 normal control (NC) subjects. All subjects included in the study were assessed for HCV infection by seropositive HCV antibodies, as well as HCV RNA by RT-PCR. Serum levels of adiponectin, leptin and visfatin were assessed using enzyme linked immunosorbent assay (ELISA). The data were correlated to the relevant clinic-pathological features of the patients, and the overall survival (OS) rate. Results: There was a significant difference in the serum levels of adiponectin and visfatin among HCC, HCV and NC groups (P<0.001). The serum levels of leptin and alpha fetoprotein (AFP) were significantly higher in HCC group (P<0.001). There was a significant association between the serum level of adiponectin and advanced Child class liver cirrhosis (P=0.03), as well as with poor performance status (ECOG, P=0.02). Serum leptin associated significantly with the number of lesions in the liver (P=0.006), visfatin associated with increased mortality rate (P<0.001). Adiponectin, leptin and visfatin associated significantly with liver cirrhosis in HCV patients (P<0.01). Leptin achieved the highest sensitivity (98.8%). visfatin achieved the highest specificity (100%) and PPV (100%) for detection of HCC. The combination of serum leptin and visfatin for the diagnosis of HCV associated HCC showed sensitivity, specificity, PPV, NPV and accuracy (100%, 96.6%, 93.4%, 100% and 97.4%; respectively). Conclusion: Adiponectin, leptin and visfatin have an important role(s) in the pathogenesis of HCV associated HCC.
Collapse
Affiliation(s)
- Usama M El-Daly
- Department of Medical Oncology, Damietta Oncology Center, Damietta,, Egypt
| | - Magdy M Saber
- Department of Medical Oncology and Malignant Hematology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mona S Abdellateif
- Medical Biochemistry and Molecular Biology, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Hanan R Nassar
- Department of Medical Oncology and Malignant Hematology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Alfred E Namour
- Department of Medical Oncology and Malignant Hematology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Yahia M Ismail
- Department of Medical Oncology and Malignant Hematology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Abdel-Rhaman N Zekri
- Molecular Virology and Immunology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
16
|
Kim HJ, Moon JH, Chung H, Shin JS, Kim B, Kim JM, Kim JS, Yoon IH, Min BH, Kang SJ, Kim YH, Jo K, Choi J, Chae H, Lee WW, Kim S, Park CG. Bioinformatic analysis of peripheral blood RNA-sequencing sensitively detects the cause of late graft loss following overt hyperglycemia in pig-to-nonhuman primate islet xenotransplantation. Sci Rep 2019; 9:18835. [PMID: 31827198 PMCID: PMC6906328 DOI: 10.1038/s41598-019-55417-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 11/12/2019] [Indexed: 01/19/2023] Open
Abstract
Clinical islet transplantation has recently been a promising treatment option for intractable type 1 diabetes patients. Although early graft loss has been well studied and controlled, the mechanisms of late graft loss largely remains obscure. Since long-term islet graft survival had not been achieved in islet xenotransplantation, it has been impossible to explore the mechanism of late islet graft loss. Fortunately, recent advances where consistent long-term survival (≥6 months) of adult porcine islet grafts was achieved in five independent, diabetic nonhuman primates (NHPs) enabled us to investigate on the late graft loss. Regardless of the conventional immune monitoring methods applied in the post-transplant period, the initiation of late graft loss could rarely be detected before the overt graft loss observed via uncontrolled blood glucose level. Thus, we retrospectively analyzed the gene expression profiles in 2 rhesus monkey recipients using peripheral blood RNA-sequencing (RNA-seq) data to find out the potential cause(s) of late graft loss. Bioinformatic analyses showed that highly relevant immunological pathways were activated in the animal which experienced late graft failure. Further connectivity analyses revealed that the activation of T cell signaling pathways was the most prominent, suggesting that T cell-mediated graft rejection could be the cause of the late-phase islet loss. Indeed, the porcine islets in the biopsied monkey liver samples were heavily infiltrated with CD3+ T cells. Furthermore, hypothesis test using a computational experiment reinforced our conclusion. Taken together, we suggest that bioinformatics analyses with peripheral blood RNA-seq could unveil the cause of insidious late islet graft loss.
Collapse
Affiliation(s)
- Hyun-Je Kim
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
- Department of Dermatology and the Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ji Hwan Moon
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA
| | - Hyunwoo Chung
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
| | - Jun-Seop Shin
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Bongi Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jong-Min Kim
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jung-Sik Kim
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Il-Hee Yoon
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Byoung-Hoon Min
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Seong-Jun Kang
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
| | - Yong-Hee Kim
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Kyuri Jo
- Department of Computer Engineering, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Joungmin Choi
- Division of Computer Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Heejoon Chae
- Division of Computer Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Won-Woo Lee
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
| | - Sun Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Republic of Korea.
- Bioinformatics Institute, Department of Computer Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
- Department of Computer Science & Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Chung-Gyu Park
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03080, Republic of Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea.
| |
Collapse
|
17
|
Shen L, Cordero JF, Wang JS, Shen Y, Li S, Liang L, Zou Z, Li C. Association between genetically determined leptin and blood lipids considering alcohol consumption: a Mendelian randomisation study. BMJ Open 2019; 9:e026860. [PMID: 31699712 PMCID: PMC6858149 DOI: 10.1136/bmjopen-2018-026860] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES The objective of this study was to evaluate the association of genetically determined leptin with lipids. DESIGN We conducted a Mendelian randomisation study to assess a potential causal relationship between serum leptin and lipid levels. We also evaluated whether alcohol drinking modified the associations of genetically determined leptin with blood lipids. SETTING AND PARTICIPANTS 3860 participants of the Framingham Heart Study third generation cohort. RESULTS Both genetic risk scores (GRSs), the GRS generated using leptin loci independent of body mass index (BMI) and GRS generated using leptin loci dependent of BMI, were positively associated with log-transformed leptin (log-leptin). The BMI-independent leptin GRS was associated with log-transformed triglycerides (log-TG, β=-0.66, p=0.01), but not low-density lipoprotein cholesterol (LDL-C, p=0.99), high-density lipoprotein cholesterol (HDL-C, p=0.44) or total cholesterol (TC, p=0.49). Instrumental variable estimation showed that per unit increase in genetically determined log-leptin was associated with 0.55 (95% CI: 0.05 to 1.00) units decrease in log-TG. Besides significant association with log-TG (β=-0.59, p=0.009), the BMI-dependent GRS was nominally associated with HDL-C (β=-10.67, p=0.09) and TC (β=-28.05, p=0.08). When stratified by drinking status, the BMI-dependent GRS was associated with reduced levels of LDL-C (p=0.03), log-TG (p=0.004) and TC (p=0.003) among non-current drinkers only. Significant interactions between the BMI-dependent GRS and alcohol drinking were identified for LDL-C (p=0.03), log-TG (p=0.03) and TC (p=0.02). CONCLUSION These findings together indicated that genetically determined leptin was negatively associated with lipid levels and the association may be modified by alcohol consumption.
Collapse
Affiliation(s)
- Luqi Shen
- Department of Epidemiology and Biostatistics, University of Georgia College of Public Health, Athens, Georgia, USA
| | - José F Cordero
- Department of Epidemiology and Biostatistics, University of Georgia College of Public Health, Athens, Georgia, USA
| | - Jia-Sheng Wang
- Department of Environmental Health Science, University of Georgia College of Public Health, Athens, Georgia, USA
| | - Ye Shen
- Department of Epidemiology and Biostatistics, University of Georgia College of Public Health, Athens, Georgia, USA
| | - Shengxu Li
- Children's Minnesota Research Institute, Children's Hospitals and Clinics of Minnesota, Minneapolis, Minnesota, USA
| | - Lirong Liang
- Clinical Epidemiology and Tobacco Dependence Treatment Research Department, Beijing Institute of Respitatory Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Zhiyong Zou
- Institute of Child and Adolescent Health, Peking University School of Public Health, Beijing, China
| | - Changwei Li
- Department of Epidemiology and Biostatistics, University of Georgia College of Public Health, Athens, Georgia, USA
| |
Collapse
|
18
|
Tan J, Xu J, Wei G, Zhang L, Sun L, Wang G, Li F, Jiang F. HNF1 α Controls Liver Lipid Metabolism and Insulin Resistance via Negatively Regulating the SOCS-3-STAT3 Signaling Pathway. J Diabetes Res 2019; 2019:5483946. [PMID: 31223625 PMCID: PMC6541945 DOI: 10.1155/2019/5483946] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 03/12/2019] [Accepted: 03/20/2019] [Indexed: 01/30/2023] Open
Abstract
This study is aimed at evaluating the effects, functions, and mechanism of HNF1α on hepatic glycolipid metabolism. In this study, free fatty acid- (FFA-) induced steatosis of hepatocyte liver cell LO2 was used as an in vitro model. The methods of Oil Red O staining, RT-qPCR, western blot, and immunofluorescence staining were used to detect LO2-regulated HNF1α expression and its effects on FFA-induced LO2 cell steatosis, the insulin signaling and SOCS-3-STAT3 signaling pathways, the expression of lipid metabolism-related regulators, and phosphorylation. With increased FFA induction time, the expression of HNF1α in the LO2 fatty degeneration hepatic cells gradually decreased. Downregulation of HNF1α expression aggravated FFA-induced steatosis of LO2 hepatocytes. HNF1α promotes activation of the insulin pathway and oxidative breakdown of fat and inhibits lipid anabolism. Inhibitors of STAT3 can reverse the regulation of decreased HNF1α expression on the insulin signaling pathway and fat metabolism. We also confirmed this pathway using HNF1α-/- mice combining treatment with STAT3 inhibitor NSC 74859 in vivo. HNF1α regulates hepatic lipid metabolism by promoting the expression of SOCS-3 and negatively regulating the STAT3 signaling pathway.
Collapse
Affiliation(s)
- Jiaorong Tan
- Department of Endocrinology, People's Hospital of Shanghai Putuo, Tongji University School of Medicine, Shanghai 200060, China
| | - Jiahong Xu
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Guohua Wei
- Department of Gastroenterology, People's Hospital of Shanghai Putuo, Tongji University School of Medicine, Shanghai 200060, China
| | - Lijuan Zhang
- Department of Endocrinology, People's Hospital of Shanghai Putuo, Tongji University School of Medicine, Shanghai 200060, China
| | - Long'e Sun
- Department of Gastroenterology, People's Hospital of Shanghai Putuo, Tongji University School of Medicine, Shanghai 200060, China
| | - Guangyu Wang
- Department of Endocrinology, People's Hospital of Shanghai Putuo, Tongji University School of Medicine, Shanghai 200060, China
| | - Fei Li
- Department of Endocrinology, People's Hospital of Shanghai Putuo, Tongji University School of Medicine, Shanghai 200060, China
| | - Fengxiang Jiang
- Department of Gastroenterology, People's Hospital of Shanghai Putuo, Tongji University School of Medicine, Shanghai 200060, China
| |
Collapse
|
19
|
Lee G, Jang H, Kim YY, Choe SS, Kong J, Hwang I, Park J, Im SS, Kim JB. SREBP1c-PAX4 Axis Mediates Pancreatic β-Cell Compensatory Responses Upon Metabolic Stress. Diabetes 2019; 68:81-94. [PMID: 30352876 DOI: 10.2337/db18-0556] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/03/2018] [Indexed: 11/13/2022]
Abstract
SREBP1c is a key transcription factor for de novo lipogenesis. Although SREBP1c is expressed in pancreatic islets, its physiological roles in pancreatic β-cells are largely unknown. In this study, we demonstrate that SREBP1c regulates β-cell compensation under metabolic stress. SREBP1c expression level was augmented in pancreatic islets from obese and diabetic animals. In pancreatic β-cells, SREBP1c activation promoted the expression of cell cycle genes and stimulated β-cell proliferation through its novel target gene, PAX4 Compared with SREBP1c+/+ mice, SREBP1c-/- mice showed glucose intolerance with low insulin levels. Moreover, β-cells from SREBP1c-/- mice exhibited reduced capacity to proliferate and secrete insulin. Conversely, transplantation of SREBP1c-overexpressing islets restored insulin levels and relieved hyperglycemia in streptozotocin-induced diabetic animals. Collectively, these data suggest that pancreatic SREBP1c is a key player in mediating β-cell compensatory responses in obesity.
Collapse
Affiliation(s)
- Gung Lee
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Hagoon Jang
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ye Young Kim
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Sung Sik Choe
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jinuk Kong
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Injae Hwang
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jeu Park
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Seung-Soon Im
- Department of Physiology and Medical Research Center, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Jae Bum Kim
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
20
|
Presas E, McCartney F, Sultan E, Hunger C, Nellen S, V. Alvarez C, Werner U, Bazile D, Brayden DJ, O'Driscoll CM. Physicochemical, pharmacokinetic and pharmacodynamic analyses of amphiphilic cyclodextrin-based nanoparticles designed to enhance intestinal delivery of insulin. J Control Release 2018; 286:402-414. [DOI: 10.1016/j.jconrel.2018.07.045] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/11/2018] [Accepted: 07/29/2018] [Indexed: 12/18/2022]
|
21
|
Axen KV, Harper MA, Kuo YF, Axen K. Very low-carbohydrate, high-fat, weight reduction diet decreases hepatic gene response to glucose in obese rats. Nutr Metab (Lond) 2018; 15:54. [PMID: 31061673 PMCID: PMC6497366 DOI: 10.1186/s12986-018-0284-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/18/2018] [Indexed: 12/15/2022] Open
Abstract
Background Very low carbohydrate (VLC) diets are used to promote weight loss and improve insulin resistance (IR) in obesity. Since the high fat content of VLC diets may predispose to hepatic steatosis and hepatic insulin resistance, we investigated the effect of a VLC weight-reduction diet on measures of hepatic and whole body insulin resistance in obese rats. Methods In Phase 1, adult male Sprague-Dawley rats were made obese by ad libitum consumption of a high-fat (HF1, 60% of energy) diet; control rats ate a lower-fat (LF, 15%) diet for 10 weeks. In Phase 2, obese rats were fed energy-restricted amounts of a VLC (5%C, 65%F), LC (19%C, 55%F) or HC (55%C, 15%F) diet for 8 weeks while HF2 rats continued the HF diet ad libitum. In Phase 3, VLC rats were switched to the HC diet for 1 week. At the end of each phase, measurements of body composition and metabolic parameters were obtained. Hepatic insulin resistance was assessed by comparing expression of insulin-regulated genes following an oral glucose load,that increased plasma insulin levels, with the expression observed in the feed-deprived state. Results At the end of Phase 1, body weight, percent body fat, and hepatic lipid levels were greater in HF1 than LF rats (p < 0.05). At the end of Phase 2, percent body fat and intramuscular triglyceride decreased in LC and HC (p < 0.05), but not VLC rats, despite similar weight loss. VLC and HF2 rats had higher HOMA-IR and higher insulin at similar glucose levels following an ip glucose load than HC rats (p < 0.05). HC, but not VLC or HF2 rats, showed changes in Srebf1, Scd1, and Cpt1a expression (p < 0.05) in response to an oral glucose load. At the end of Phase 3, switching from the VLC to the HC diet mitigated differences in hepatic gene expression. Conclusion When compared with a high-carbohydrate, low-fat diet that produced similar weight loss, a commonly used VLC diet failed to improve whole body insulin resistance; it also reduced insulin’s effect on hepatic gene expression, which may reflect the development of hepatic insulin resistance.
Collapse
Affiliation(s)
- Kathleen V Axen
- Department of Health and Nutrition Sciences, Brooklyn College, City University of New York, New York, USA
| | - Marianna A Harper
- Department of Health and Nutrition Sciences, Brooklyn College, City University of New York, New York, USA
| | - Yu Fu Kuo
- Department of Health and Nutrition Sciences, Brooklyn College, City University of New York, New York, USA
| | - Kenneth Axen
- Department of Health and Nutrition Sciences, Brooklyn College, City University of New York, New York, USA
| |
Collapse
|
22
|
Mao C, Yu Z, Li C, Jin Y, Ma M. The Functional Properties of Preserved Eggs: From Anti-cancer and Anti-inflammatory Aspects. Korean J Food Sci Anim Resour 2018; 38:615-628. [PMID: 30018504 PMCID: PMC6048375 DOI: 10.5851/kosfa.2018.38.3.615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/01/2018] [Accepted: 04/22/2018] [Indexed: 01/14/2023] Open
Abstract
Preserved egg, a kind of alkaline-fermented food, is a traditional egg product in China. Here, we investigated the nutritional functions of preserved eggs by in vivo and in vitro experiments. The results of in vivo studies showed that the levels of triglycerides (TG), total cholesterol (TCHO) and low-density lipoprotein cholesterol/high density lipoprotein cholesterol (LDL-C/HDL-C) were significantly decreased (p<0.05) in the liver of rats treated with preserved eggs. Meanwhile, the levels of two important cancer markers, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), were also significantly decreased (p<0.05) in treated rats. In vitro studies were performed on Caco-2 cells, a human epithelial colorectal adenocarcinoma cell line. It demonstrated that the gastrointestinal (GI) digests of preserved eggs significantly accelerated (p<0.05) the apoptosis by upregulating caspase-3 in the Caco-2 cells. Besides, after treated with preserved eggs, the half maximal inhibitory concentration (IC50) of preserved eggs digests to Caco-2 cells was 5.75 mg/mL, indicating the significant inhibition of cell proliferation provided by preserved eggs (p<0.05). The results shown in this study demonstrated that preserved eggs may be a novel functional food involved with antilipemic, anti-inflammatory activity as well as the effect on accelarating the apoptosis of Caco-2 cells.
Collapse
Affiliation(s)
- Changyi Mao
- College of Food Science and Technology,
Huazhong Agricultural University, Wuhan
430070, China
- National R&D Center for Egg Processing,
Huazhong Agricultural University, Wuhan
430070, China
| | - Zhihui Yu
- College of Food Science and Technology,
Huazhong Agricultural University, Wuhan
430070, China
- National R&D Center for Egg Processing,
Huazhong Agricultural University, Wuhan
430070, China
| | - Chengliang Li
- College of Food Science and Technology,
Huazhong Agricultural University, Wuhan
430070, China
- National R&D Center for Egg Processing,
Huazhong Agricultural University, Wuhan
430070, China
| | - Yongguo Jin
- College of Food Science and Technology,
Huazhong Agricultural University, Wuhan
430070, China
- National R&D Center for Egg Processing,
Huazhong Agricultural University, Wuhan
430070, China
| | - Meihu Ma
- College of Food Science and Technology,
Huazhong Agricultural University, Wuhan
430070, China
- National R&D Center for Egg Processing,
Huazhong Agricultural University, Wuhan
430070, China
| |
Collapse
|
23
|
Francisco V, Pino J, Campos-Cabaleiro V, Ruiz-Fernández C, Mera A, Gonzalez-Gay MA, Gómez R, Gualillo O. Obesity, Fat Mass and Immune System: Role for Leptin. Front Physiol 2018; 9:640. [PMID: 29910742 PMCID: PMC5992476 DOI: 10.3389/fphys.2018.00640] [Citation(s) in RCA: 276] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/11/2018] [Indexed: 12/13/2022] Open
Abstract
Obesity is an epidemic disease characterized by chronic low-grade inflammation associated with a dysfunctional fat mass. Adipose tissue is now considered an extremely active endocrine organ that secretes cytokine-like hormones, called adipokines, either pro- or anti-inflammatory factors bridging metabolism to the immune system. Leptin is historically one of most relevant adipokines, with important physiological roles in the central control of energy metabolism and in the regulation of metabolism-immune system interplay, being a cornerstone of the emerging field of immunometabolism. Indeed, leptin receptor is expressed throughout the immune system and leptin has been shown to regulate both innate and adaptive immune responses. This review discusses the latest data regarding the role of leptin as a mediator of immune system and metabolism, with particular emphasis on its effects on obesity-associated metabolic disorders and autoimmune and/or inflammatory rheumatic diseases.
Collapse
Affiliation(s)
- Vera Francisco
- The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Servizo Galego de Saude and Instituto de Investigación Sanitaria de Santiago, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Jesús Pino
- The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Servizo Galego de Saude and Instituto de Investigación Sanitaria de Santiago, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Victor Campos-Cabaleiro
- The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Servizo Galego de Saude and Instituto de Investigación Sanitaria de Santiago, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Clara Ruiz-Fernández
- The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Servizo Galego de Saude and Instituto de Investigación Sanitaria de Santiago, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Antonio Mera
- Servizo Galego de Saude, Division of Rheumatology, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Miguel A Gonzalez-Gay
- Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, Hospital Universitario Marqués de Valdecilla, Universidad de Cantabria and IDIVAL, Santander, Spain
| | - Rodolfo Gómez
- Musculoskeletal Pathology Group, Servizo Galego de Saude and Instituto de Investigación Sanitaria de Santiago, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Oreste Gualillo
- The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Servizo Galego de Saude and Instituto de Investigación Sanitaria de Santiago, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| |
Collapse
|
24
|
Boutari C, Perakakis N, Mantzoros CS. Association of Adipokines with Development and Progression of Nonalcoholic Fatty Liver Disease. Endocrinol Metab (Seoul) 2018; 33:33-43. [PMID: 29589386 PMCID: PMC5874193 DOI: 10.3803/enm.2018.33.1.33] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 02/09/2018] [Accepted: 02/14/2018] [Indexed: 12/15/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease affecting 30% of the general population and 40% to 70% of obese individuals. Adipose tissue plays a crucial role in its pathogenesis, as it produces and secretes pro- and anti-inflammatory cytokines called adipokines. Adiponectin and leptin have well-determined actions in terms of NAFLD pathophysiology. Adiponectin deficiency is associated with a pro-inflammatory condition, as it is observed in obesity and other metabolic disorders. On the other hand, increased leptin levels, above the normal levels, act as a pro-inflammatory stimulus. Regarding other adipokines (resistin, visfatin, chemerin, retinol-binding protein 4, irisin), data about their contribution to NAFLD pathogenesis and progression are inconclusive. In addition, pharmacological agents like thiazolidinediones (pioglitazone and rosiglitazone), that are used in the management of NAFLD exert favourable effects on adipokine levels, which in turn may contribute to the improvement of liver function. This review summarizes the current knowledge and developments in the association between adipokines and NAFLD and discusses possible therapeutic implications targeting the modulation of adipokine levels as a potential tool for the treatment of NAFLD.
Collapse
Affiliation(s)
- Chrysoula Boutari
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Nikolaos Perakakis
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Christos Socrates Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
Erfani Majd N, Tabandeh MR, Shahriari A, Soleimani Z. Okra (Abelmoscus esculentus) Improved Islets Structure, and Down-Regulated PPARs Gene Expression in Pancreas of High-Fat Diet and Streptozotocin-Induced Diabetic Rats. CELL JOURNAL 2017; 20:31-40. [PMID: 29308616 PMCID: PMC5759678 DOI: 10.22074/cellj.2018.4819] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 02/07/2017] [Indexed: 01/18/2023]
Abstract
Objective Okra (Abelmoschus esculentus) is a tropical vegetable that is rich in carbohydrates, fibers, proteins and
natural antioxidants. The aim of the present study was to evaluate the effects of Okra powder on pancreatic islets
and its action on the expression of PPAR-γ and PPAR-α genes in pancreas of high-fat diet (HFD) and streptozotocin-
induced diabetic rats.
Materials and Methods In this experimental study, diabetes was induced by feeding HFD (60% fat) for 30 days
followed by an injection of streptozotocin (STZ, 35 mg/kg). Okra powder (200 mg/kg) was given orally for 30 days after
diabetes induction. At the end of the experiment, pancreas tissues were removed and stained by haematoxylin and
Eozine and aldehyde fuchsin for determination of the number of β-cells in pancreatic islets. Fasting blood sugar (FBS),
Triglycerides (TG), cholesterol, high density lipoprotein (HDL), low density lipoprotein (LDL), and insulin levels were
measured in serum. Moreover, PPAR-γ and PPAR-α mRNAs expression were measured in pancreas using real time
polymerase chain reaction (PCR) analysis.
Results Okra supplementation significantly decreased the elevated levels of FBS, total cholesterol, and TG and attenuated
homeostasis model assessment of basal insulin resistance (HOMA-IR) index in diabetic rats. The expression levels of PPAR-γ
and PPAR-α genes that were elevated in diabetic rats, attenuated in okra-treated rats (P<0.05). Furthermore, okra improved
the histological damages of pancreas including vacuolization and decreased β-cells mass, in diabetic rats.
Conclusion Our findings confirmed the potential anti-hyperglycemic and hypolipidemic effects of Okra. These changes
were associated with reduced pancreatic tissue damage. Down-regulation of PPARs genes in the pancreas of diabetic
rats after treatment with okra, demonstrates that okra may improve glucose homeostasis and β-cells impairment in
diabetes through a PPAR-dependent mechanism.
Collapse
Affiliation(s)
- Naeem Erfani Majd
- Department of Basic Sciences, Histology Section, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.,Stem Cell and Transgenic Technology Research Center of Shahid Chamran University of Ahvaz, Ahvaz, Iran. Electronic Address:
| | - Mohammad Reza Tabandeh
- Stem Cell and Transgenic Technology Research Center of Shahid Chamran University of Ahvaz, Ahvaz, Iran.,Department of Biochemistry and Molecular Biology Section, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Ali Shahriari
- Department of Biochemistry and Molecular Biology Section, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Zahra Soleimani
- Department of Basic Sciences, Histology Section, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
26
|
Zhang JJ, Hao JJ, Zhang YR, Wang YL, Li MY, Miao HL, Zou XJ, Liang B. Zinc mediates the SREBP-SCD axis to regulate lipid metabolism in Caenorhabditis elegans. J Lipid Res 2017; 58:1845-1854. [PMID: 28710073 DOI: 10.1194/jlr.m077198] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/12/2017] [Indexed: 12/15/2022] Open
Abstract
Maintenance of lipid homeostasis is crucial for cells in response to lipid requirements or surplus. The SREBP transcription factors play essential roles in regulating lipid metabolism and are associated with many metabolic diseases. However, SREBP regulation of lipid metabolism is still not completely understood. Here, we showed that reduction of SBP-1, the only homolog of SREBPs in Caenorhabditis elegans, surprisingly led to a high level of zinc. On the contrary, zinc reduction by mutation of sur-7, encoding a member of the cation diffusion facilitator (CDF) family, restored the fat accumulation and fatty acid profile of the sbp-1(ep79) mutant. Zinc reduction resulted in iron overload, which thereby directly activated the conversion activity of stearoyl-CoA desaturase (SCD), a main target of SREBP, to promote lipid biosynthesis and accumulation. However, zinc reduction reversely repressed SBP-1 nuclear translocation and further downregulated the transcription expression of SCD for compensation. Collectively, we revealed zinc-mediated regulation of the SREBP-SCD axis in lipid metabolism, distinct from the negative regulation of SREBP-1 or SREBP-2 by phosphatidylcholine or cholesterol, respectively, thereby providing novel insights into the regulation of lipid homeostasis.
Collapse
Affiliation(s)
- Jing-Jing Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Jun-Jun Hao
- State Key Laboratory of Genetic Resources and Evolutionary and Functional Genomics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yu-Ru Zhang
- College of Fisheries, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yan-Li Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Ming-Yi Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Hui-Lai Miao
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Xiao-Ju Zou
- Department of Life Science and Biotechnology, Key Laboratory of Special Biological Resource Development and Utilization of University in Yunnan Province, Kunming University, Kunming 650214, China
| | - Bin Liang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China .,Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| |
Collapse
|
27
|
Murphy BA, Tadin-Strapps M, Jensen K, Mogg R, Liaw A, Herath K, Bhat G, McLaren DG, Previs SF, Pinto S. siRNA-mediated inhibition of SREBP cleavage-activating protein reduces dyslipidemia in spontaneously dysmetabolic rhesus monkeys. Metabolism 2017; 71:202-212. [PMID: 28521874 DOI: 10.1016/j.metabol.2017.02.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 02/26/2017] [Accepted: 02/27/2017] [Indexed: 01/07/2023]
Abstract
BACKGROUND SREBP cleavage-activating protein (SCAP) is a cholesterol binding endoplasmic reticulum (ER) membrane protein that is required to activate SREBP transcription factors. SREBPs regulate genes involved in lipid biosynthesis. They also influence lipid clearance by modulating the expression of LDL receptor (LDLR) and proprotein convertase subtilisin/kexin type 9 (PCSK9) genes. Inhibiting SCAP decreases circulating PCSK9, triglycerides (TG), and LDL-cholesterol (LDL-C), both in vitro and in vivo. Type 2 diabetics with dyslipidemia are at high risk for cardiovascular diseases. These patients present a unique pathophysiological lipid profile characterized by moderately elevated LDL-C, elevated TG and reduced HDL-cholesterol (HDL-C). The spontaneous dysmetabolic rhesus monkey model (DysMet RhM) recapitulates this human dyslipidemia and therefore is an attractive preclinical model to evaluate SCAP inhibition as a therapy for this disease population. The objective to of this study was to assess the effect of SCAP inhibition on the lipid profile of DysMet RhM. METHOD We assessed the effect of inhibiting hepatic SCAP on the lipid profile of DysMet RhM using an siRNA encapsulated lipid nanoparticle (siRNA-LNP). RESULTS The SCAP siRNA-LNP significantly reduced LDL-C, PCSK9 and TG in DysMet RhM; LDL-C was reduced by ≥20%, circulating PCSK9 by 30-40% and TG by >25%. These changes by the SCAP siRNA-LNP agree with the predicted effect of SCAP inhibition and reduced SREBP tone on these endpoints. CONCLUSION These data demonstrate that a SCAP siRNA-LNP improved the lipid profile in a clinically relevant preclinical disease model and provide evidence for SCAP inhibition as a therapy for diabetic dyslipidemic patients.
Collapse
Affiliation(s)
- Beth Ann Murphy
- Pharmacology, Merck &Co. Inc., 2000 Galloping Hill Rd., Kenilworth, NJ 07033, USA.
| | - Marija Tadin-Strapps
- Genetics and Pharmacogenomics, Merck & Co. Inc., 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Kristian Jensen
- Cardiometabolic Disease, Merck & Co. Inc., 2000 Galloping Hill Rd., Kenilworth, NJ 07033, USA
| | - Robin Mogg
- Biostatistics, Merck & Co. Inc., 351 North Sumneytown Pike, North Wales, PA 19454, USA
| | - Andy Liaw
- Biostatistics, Merck & Co. Inc., 126 E. Lincoln Avenue, PO Box 2000, Rahway, NJ 07065, USA
| | - Kithsiri Herath
- Cardiometabolic Disease, Merck & Co. Inc., 2000 Galloping Hill Rd., Kenilworth, NJ 07033, USA
| | - Gowri Bhat
- Cardiometabolic Disease, Merck & Co. Inc., 2000 Galloping Hill Rd., Kenilworth, NJ 07033, USA
| | - David G McLaren
- Pharmacology, Merck &Co. Inc., 2000 Galloping Hill Rd., Kenilworth, NJ 07033, USA
| | - Stephen F Previs
- Cardiometabolic Disease, Merck & Co. Inc., 2000 Galloping Hill Rd., Kenilworth, NJ 07033, USA
| | - Shirly Pinto
- Cardiometabolic Disease, Merck & Co. Inc., 2000 Galloping Hill Rd., Kenilworth, NJ 07033, USA
| |
Collapse
|
28
|
Horska K, Ruda-Kucerova J, Karpisek M, Suchy P, Opatrilova R, Kotolova H. Depot risperidone-induced adverse metabolic alterations in female rats. J Psychopharmacol 2017; 31:487-499. [PMID: 28347258 DOI: 10.1177/0269881117691466] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Atypical antipsychotics are associated with adverse metabolic effects including weight gain, increased adiposity, dyslipidaemia, alterations in glucose metabolism and insulin resistance. Increasing evidence suggests that metabolic dysregulation precedes weight gain development. The aim of this study was to evaluate alterations in adipokines, hormones and basic serum biochemical parameters induced by chronic treatment with depot risperidone at two doses (20 and 40 mg/kg) in female Sprague-Dawley rats. Dose-dependent metabolic alterations induced by risperidone after 6 weeks of treatment were revealed. Concomitant to weight gain and increased liver weight, an adverse lipid profile with an elevated triglyceride level was observed in the high exposure group, administered a 40 mg/kg dose repeatedly, while the low dose exposure group, administered a 20 mg/kg dose, developed weight gain without alterations in the lipid profile and adipokine levels. An initial peak in leptin serum level after the higher dose was observed in the absence of weight gain. This finding may indicate that the metabolic alterations observed in this study are not consequent to body weight gain. Taken together, these data may support the primary effects of atypical antipsychotics on peripheral tissues.
Collapse
Affiliation(s)
- Katerina Horska
- 1 Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Jana Ruda-Kucerova
- 2 Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Michal Karpisek
- 1 Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic.,3 R&D Department, Biovendor - Laboratorni Medicina, Brno, Czech Republic
| | - Pavel Suchy
- 1 Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Radka Opatrilova
- 4 Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Hana Kotolova
- 1 Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| |
Collapse
|
29
|
Balakumar M, Raji L, Prabhu D, Sathishkumar C, Prabu P, Mohan V, Balasubramanyam M. High-fructose diet is as detrimental as high-fat diet in the induction of insulin resistance and diabetes mediated by hepatic/pancreatic endoplasmic reticulum (ER) stress. Mol Cell Biochem 2016; 423:93-104. [PMID: 27699590 DOI: 10.1007/s11010-016-2828-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 09/22/2016] [Indexed: 01/05/2023]
Abstract
In the context of high human consumption of fructose diets, there is an imperative need to understand how dietary fructose intake influence cellular and molecular mechanisms and thereby affect β-cell dysfunction and insulin resistance. While evidence exists for a relationship between high-fat-induced insulin resistance and metabolic disorders, there is lack of studies in relation to high-fructose diet. Therefore, we attempted to study the effect of different diets viz., high-fat diet (HFD), high-fructose diet (HFS), and a combination (HFS + HFD) diet on glucose homeostasis and insulin sensitivity in male Wistar rats compared to control animals fed with normal pellet diet. Investigations include oral glucose tolerance test, insulin tolerance test, histopathology by H&E and Masson's trichrome staining, mRNA expression by real-time PCR, protein expression by Western blot, and caspase-3 activity by colorimetry. Rats subjected to high-fat/fructose diets became glucose intolerant, insulin-resistant, and dyslipidemic. Compared to control animals, rats subjected to different combination of fat/fructose diets showed increased mRNA and protein expression of a battery of ER stress markers both in pancreas and liver. Transcription factors of β-cell function (INSIG1, SREBP1c and PDX1) as well as hepatic gluconeogenesis (FOXO1 and PEPCK) were adversely affected in diet-induced insulin-resistant rats. The convergence of chronic ER stress towards apoptosis in pancreas/liver was also indicated by increased levels of CHOP mRNA & increased activity of both JNK and Caspase-3 in rats subjected to high-fat/fructose diets. Our study exposes the experimental support in that high-fructose diet is equally detrimental in causing metabolic disorders.
Collapse
Affiliation(s)
- M Balakumar
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialties Centre, WHO Collaborating Centre for Non-Communicable Diseases Prevention & Control, Gopalapuram, Chennai, 600086, India
| | - L Raji
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialties Centre, WHO Collaborating Centre for Non-Communicable Diseases Prevention & Control, Gopalapuram, Chennai, 600086, India
| | - D Prabhu
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialties Centre, WHO Collaborating Centre for Non-Communicable Diseases Prevention & Control, Gopalapuram, Chennai, 600086, India
| | - C Sathishkumar
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialties Centre, WHO Collaborating Centre for Non-Communicable Diseases Prevention & Control, Gopalapuram, Chennai, 600086, India
| | - P Prabu
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialties Centre, WHO Collaborating Centre for Non-Communicable Diseases Prevention & Control, Gopalapuram, Chennai, 600086, India
| | - V Mohan
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialties Centre, WHO Collaborating Centre for Non-Communicable Diseases Prevention & Control, Gopalapuram, Chennai, 600086, India
| | - M Balasubramanyam
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialties Centre, WHO Collaborating Centre for Non-Communicable Diseases Prevention & Control, Gopalapuram, Chennai, 600086, India.
| |
Collapse
|
30
|
Glucagon regulates hepatic lipid metabolism via cAMP and Insig-2 signaling: implication for the pathogenesis of hypertriglyceridemia and hepatic steatosis. Sci Rep 2016; 6:32246. [PMID: 27582413 PMCID: PMC5007496 DOI: 10.1038/srep32246] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 08/04/2016] [Indexed: 12/22/2022] Open
Abstract
Insulin induced gene-2 (Insig-2) is an ER-resident protein that inhibits the activation of sterol regulatory element-binding proteins (SREBPs). However, cellular factors that regulate Insig-2 expression have not yet been identified. Here we reported that cyclic AMP-responsive element-binding protein H (CREBH) positively regulates mRNA and protein expression of a liver specific isoform of Insig-2, Insig-2a, which in turn hinders SREBP-1c activation and inhibits hepatic de novo lipogenesis. CREBH binds to the evolutionally conserved CRE-BP binding elements located in the enhancer region of Insig-2a and upregulates its mRNA and protein expression. Metabolic hormone glucagon and nutritional fasting activated CREBH, which upregulated expression of Insig-2a in hepatocytes and inhibited SREBP-1c activation. In contrast, genetic depletion of CREBH decreased Insig-2a expression, leading to the activation of SREBP-1c and its downstream lipogenic target enzymes. Compromising CREBH-Insig-2 signaling by siRNA interference against Insig-2 also disrupted the inhibitory effect of this signaling pathway on hepatic de novo triglyceride synthesis. These actions resulted in the accumulation of lipid droplets in hepatocytes and systemic hyperlipidemia. Our study identified CREBH as the first cellular protein that regulates Insig-2a expression. Glucagon activated the CREBH-Insig-2a signaling pathway to inhibit hepatic de novo lipogenesis and prevent the onset of hepatic steatosis and hypertriglyceridemia.
Collapse
|
31
|
Chen G, Ni Y, Nagata N, Xu L, Ota T. Micronutrient Antioxidants and Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2016; 17:ijms17091379. [PMID: 27563875 PMCID: PMC5037659 DOI: 10.3390/ijms17091379] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/12/2016] [Accepted: 08/17/2016] [Indexed: 12/14/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most important chronic liver diseases worldwide and has garnered increasing attention in recent decades. NAFLD is characterized by a wide range of liver changes, from simple steatosis to nonalcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma. The blurred pathogenesis of NAFLD is very complicated and involves lipid accumulation, insulin resistance, inflammation, and fibrogenesis. NAFLD is closely associated with complications such as obesity, diabetes, steatohepatitis, and liver fibrosis. During the progression of NAFLD, reactive oxygen species (ROS) are activated and induce oxidative stress. Recent attempts at establishing effective NAFLD therapy have identified potential micronutrient antioxidants that may reduce the accumulation of ROS and finally ameliorate the disease. In this review, we present the molecular mechanisms involved in the pathogenesis of NAFLD and introduce some dietary antioxidants that may be used to prevent or cure NAFLD, such as vitamin D, E, and astaxanthin.
Collapse
Affiliation(s)
- Guanliang Chen
- Department of Cell Metabolism and Nutrition, Brain/Liver Interface Medicine Research Center, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan.
| | - Yinhua Ni
- Department of Cell Metabolism and Nutrition, Brain/Liver Interface Medicine Research Center, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan.
| | - Naoto Nagata
- Department of Cell Metabolism and Nutrition, Brain/Liver Interface Medicine Research Center, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan.
| | - Liang Xu
- Department of Cell Metabolism and Nutrition, Brain/Liver Interface Medicine Research Center, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan.
| | - Tsuguhito Ota
- Department of Cell Metabolism and Nutrition, Brain/Liver Interface Medicine Research Center, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan.
| |
Collapse
|
32
|
|
33
|
Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism 2016; 65:1038-48. [PMID: 26823198 DOI: 10.1016/j.metabol.2015.12.012] [Citation(s) in RCA: 2088] [Impact Index Per Article: 232.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/14/2015] [Accepted: 12/17/2015] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is increasingly prevalent and represents a growing challenge in terms of prevention and treatment. Despite its high prevalence, only a small minority of affected patients develops inflammation and subsequently fibrosis and chronic liver disease, while most of them only exhibit simple steatosis. In this context, the full understanding of the mechanisms underlying the development of NAFLD and non-alcoholic steatohepatitis (NASH) is of extreme importance; despite advances in this field, knowledge on the pathogenesis of NAFLD is still incomplete. The 'two-hit' hypothesis is now obsolete, as it is inadequate to explain the several molecular and metabolic changes that take place in NAFLD. The "multiple hit" hypothesis considers multiple insults acting together on genetically predisposed subjects to induce NAFLD and provides a more accurate explanation of NAFLD pathogenesis. Such hits include insulin resistance, hormones secreted from the adipose tissue, nutritional factors, gut microbiota and genetic and epigenetic factors. In this article, we review the factors that form this hypothesis.
Collapse
Affiliation(s)
- Elena Buzzetti
- UCL Institute for Liver and Digestive Health and Sheila Sherlock Liver Unit, Royal Free Hospital and UCL, London, UK
| | - Massimo Pinzani
- UCL Institute for Liver and Digestive Health and Sheila Sherlock Liver Unit, Royal Free Hospital and UCL, London, UK
| | - Emmanuel A Tsochatzis
- UCL Institute for Liver and Digestive Health and Sheila Sherlock Liver Unit, Royal Free Hospital and UCL, London, UK.
| |
Collapse
|
34
|
Jang H, Lee GY, Selby CP, Lee G, Jeon YG, Lee JH, Cheng KKY, Titchenell P, Birnbaum MJ, Xu A, Sancar A, Kim JB. SREBP1c-CRY1 signalling represses hepatic glucose production by promoting FOXO1 degradation during refeeding. Nat Commun 2016; 7:12180. [PMID: 27412556 PMCID: PMC4947181 DOI: 10.1038/ncomms12180] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 06/08/2016] [Indexed: 12/12/2022] Open
Abstract
SREBP1c is a key lipogenic transcription factor activated by insulin in the postprandial state. Although SREBP1c appears to be involved in suppression of hepatic gluconeogenesis, the molecular mechanism is not thoroughly understood. Here we show that CRY1 is activated by insulin-induced SREBP1c and decreases hepatic gluconeogenesis through FOXO1 degradation, at least, at specific circadian time points. SREBP1c−/− and CRY1−/− mice show higher blood glucose than wild-type (WT) mice in pyruvate tolerance tests, accompanied with enhanced expression of PEPCK and G6Pase genes. CRY1 promotes degradation of nuclear FOXO1 by promoting its binding to the ubiquitin E3 ligase MDM2. Although SREBP1c fails to upregulate CRY1 expression in db/db mice, overexpression of CRY1 attenuates hyperglycaemia through reduction of hepatic FOXO1 protein and gluconeogenic gene expression. These data suggest that insulin-activated SREBP1c downregulates gluconeogenesis through CRY1-mediated FOXO1 degradation and that dysregulation of hepatic SREBP1c-CRY1 signalling may contribute to hyperglycaemia in diabetic animals. The clock protein Cry regulates hepatic glucose metabolism. Here the authors show that SREBP1c, activated by insulin signalling after feeding, directly regulates Cry transcription at specific circadian time points, and that Cry represses hepatic glucose production by promoting proteasomal degradation of Foxo1.
Collapse
Affiliation(s)
- Hagoon Jang
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Center for Adipose Tissue Remodeling, Seoul National University, Seoul 151-742, Korea
| | - Gha Young Lee
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Center for Adipose Tissue Remodeling, Seoul National University, Seoul 151-742, Korea
| | - Christopher P Selby
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, CB # 7260, Chapel Hill, North Carolina 27599-7260, USA
| | - Gung Lee
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Center for Adipose Tissue Remodeling, Seoul National University, Seoul 151-742, Korea
| | - Yong Geun Jeon
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Center for Adipose Tissue Remodeling, Seoul National University, Seoul 151-742, Korea
| | - Jae Ho Lee
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Center for Adipose Tissue Remodeling, Seoul National University, Seoul 151-742, Korea
| | - Kenneth King Yip Cheng
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Medicine, The University of Hong Kong, Hong Kong, 999077, China
| | - Paul Titchenell
- The Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Morris J Birnbaum
- The Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Medicine, The University of Hong Kong, Hong Kong, 999077, China
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, CB # 7260, Chapel Hill, North Carolina 27599-7260, USA
| | - Jae Bum Kim
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Center for Adipose Tissue Remodeling, Seoul National University, Seoul 151-742, Korea
| |
Collapse
|
35
|
Suk M, Shin Y. Effect of high-intensity exercise and high-fat diet on lipid metabolism in the liver of rats. J Exerc Nutrition Biochem 2016; 19:289-95. [PMID: 27274461 PMCID: PMC4886838 DOI: 10.5717/jenb.2015.15122303] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
PURPOSE This study investigated the effects of high-intensity exercise (Ex) and high dietary fat intake on lipid metabolism in the liver of rats. METHODS Male Sprague-Dawley rats were randomly assigned to one of the four groups (n=10 per group) that were maintained on a normal diet (ND) or high-fat diet (HFD) consisting of 30% fat (w/w), with or without exercise on a treadmill at 30 m/min and 8% grade) for 4 weeks (i.e., ND, ND+Ex, HFD, and HFD+Ex groups). RESULTS Body weight (p<.001), total plasma cholesterol (TC) (p<.001), triglyceride (TG) (p<.05), and liver TG levels (p<.05) were increased in the HFD group relative to the ND groups, and serum glucose (p<.05), insulin (p<.05), homeostatic model assessment of insulin resistance (HOMA-IR) (p<.01), and liver TG levels (p<.01) were also higher in the HFD group compared to the ND+Ex group. Plasma free fatty acid was elevated in the HFD+Ex group compared to the HFD group (p<.01). With the exception of acetyl coenzyme A carboxylase, the expression of lipid metabolism-related genes in the liver was altered in the Ex groups compared to the control group (p<.05), with genes involved in lipolysis specifically up regulated in the HFD+Ex group compared to the other groups. CONCLUSION Vigorous exercise may increase glucose utilization and fat oxidation by activating genes in the liver that are associated with lipid metabolism compared to that in animals consuming a HFD without exercise. Therefore, high intensity exercise can be considered to counter the adverse effects of high dietary fat intake.
Collapse
Affiliation(s)
- MinHwa Suk
- College of Sports Science, Department of exercise prescription and rehabilitation, Dankook University, Cheonan Republic of Korea
| | - YunA Shin
- College of Sports Science, Department of exercise prescription and rehabilitation, Dankook University, Cheonan Republic of Korea
| |
Collapse
|
36
|
Natalicchio A, Biondi G, Marrano N, Labarbuta R, Tortosa F, Spagnuolo R, D'Oria R, Carchia E, Leonardini A, Cignarelli A, Perrini S, Laviola L, Giorgino F. Long-Term Exposure of Pancreatic β-Cells to Palmitate Results in SREBP-1C-Dependent Decreases in GLP-1 Receptor Signaling via CREB and AKT and Insulin Secretory Response. Endocrinology 2016; 157:2243-58. [PMID: 27035653 DOI: 10.1210/en.2015-2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The effects of prolonged exposure of pancreatic β-cells to high saturated fatty acids on glucagon-like peptide-1 (GLP-1) action were investigated. Murine islets, human pancreatic 1.1B4 cells, and rat INS-1E cells were exposed to palmitate for 24 hours. mRNA and protein expression/phosphorylation were measured by real-time RT-PCR and immunoblotting, respectively. Specific short interfering RNAs were used to knockdown expression of the GLP-1 receptor (Glp1r) and Srebf1. Insulin release was assessed with a specific ELISA. Exposure of murine islets, as well as of human and INS-1E β-cells, to palmitate reduced the ability of exendin-4 to augment insulin mRNA levels, protein content, and release. In addition, palmitate blocked exendin-4-stimulated cAMP-response element-binding protein and v-akt murine thymoma viral oncogene homolog phosphorylation, whereas phosphorylation of MAPK-ERK kinase-1/2 and ERK-1/2 was not altered. Similarly, RNA interference-mediated suppression of Glp1r expression prevented exendin-4-induced cAMP-response element-binding protein and v-akt murine thymoma viral oncogene homolog phosphorylation, but did not impair exendin-4 stimulation of MAPK-ERK kinase-1/2 and ERK-1/2. Both islets from mice fed a high fat diet and human and INS-1E β-cells exposed to palmitate showed reduced GLP-1 receptor and pancreatic duodenal homeobox-1 (PDX-1) and increased sterol regulatory element-binding protein (SREBP-1C) mRNA and protein levels. Furthermore, suppression of SREBP-1C protein expression prevented the reduction of PDX-1 and GLP-1 receptor levels and restored exendin-4 signaling and action. Finally, treatment of INS-1E cells with metformin for 24 h resulted in inhibition of SREBP-1C expression, increased PDX-1 and GLP-1 receptor levels, consequently, enhancement of exendin-4-induced insulin release. Palmitate impairs exendin-4 effects on β-cells by reducing PDX-1 and GLP-1 receptor expression and signaling in a SREBP-1C-dependent manner. Metformin counteracts the impairment of GLP-1 receptor signaling induced by palmitate.
Collapse
Affiliation(s)
- Annalisa Natalicchio
- Department of Emergency and Organ Transplantation (A.N., G.B., N.M., R.L., F.T., R.S., R.D., A.L., A.C., S.P., L.L., F.G.), Section of Internal Medicine, Endocrinology, Andrology, and Metabolic Diseases, University of Bari Aldo Moro, I-70124 Bari, Italy; and IRGS Biogem (E.C.), I-83031 Ariano Irpino, Avellino, Italy
| | - Giuseppina Biondi
- Department of Emergency and Organ Transplantation (A.N., G.B., N.M., R.L., F.T., R.S., R.D., A.L., A.C., S.P., L.L., F.G.), Section of Internal Medicine, Endocrinology, Andrology, and Metabolic Diseases, University of Bari Aldo Moro, I-70124 Bari, Italy; and IRGS Biogem (E.C.), I-83031 Ariano Irpino, Avellino, Italy
| | - Nicola Marrano
- Department of Emergency and Organ Transplantation (A.N., G.B., N.M., R.L., F.T., R.S., R.D., A.L., A.C., S.P., L.L., F.G.), Section of Internal Medicine, Endocrinology, Andrology, and Metabolic Diseases, University of Bari Aldo Moro, I-70124 Bari, Italy; and IRGS Biogem (E.C.), I-83031 Ariano Irpino, Avellino, Italy
| | - Rossella Labarbuta
- Department of Emergency and Organ Transplantation (A.N., G.B., N.M., R.L., F.T., R.S., R.D., A.L., A.C., S.P., L.L., F.G.), Section of Internal Medicine, Endocrinology, Andrology, and Metabolic Diseases, University of Bari Aldo Moro, I-70124 Bari, Italy; and IRGS Biogem (E.C.), I-83031 Ariano Irpino, Avellino, Italy
| | - Federica Tortosa
- Department of Emergency and Organ Transplantation (A.N., G.B., N.M., R.L., F.T., R.S., R.D., A.L., A.C., S.P., L.L., F.G.), Section of Internal Medicine, Endocrinology, Andrology, and Metabolic Diseases, University of Bari Aldo Moro, I-70124 Bari, Italy; and IRGS Biogem (E.C.), I-83031 Ariano Irpino, Avellino, Italy
| | - Rosaria Spagnuolo
- Department of Emergency and Organ Transplantation (A.N., G.B., N.M., R.L., F.T., R.S., R.D., A.L., A.C., S.P., L.L., F.G.), Section of Internal Medicine, Endocrinology, Andrology, and Metabolic Diseases, University of Bari Aldo Moro, I-70124 Bari, Italy; and IRGS Biogem (E.C.), I-83031 Ariano Irpino, Avellino, Italy
| | - Rossella D'Oria
- Department of Emergency and Organ Transplantation (A.N., G.B., N.M., R.L., F.T., R.S., R.D., A.L., A.C., S.P., L.L., F.G.), Section of Internal Medicine, Endocrinology, Andrology, and Metabolic Diseases, University of Bari Aldo Moro, I-70124 Bari, Italy; and IRGS Biogem (E.C.), I-83031 Ariano Irpino, Avellino, Italy
| | - Emanuele Carchia
- Department of Emergency and Organ Transplantation (A.N., G.B., N.M., R.L., F.T., R.S., R.D., A.L., A.C., S.P., L.L., F.G.), Section of Internal Medicine, Endocrinology, Andrology, and Metabolic Diseases, University of Bari Aldo Moro, I-70124 Bari, Italy; and IRGS Biogem (E.C.), I-83031 Ariano Irpino, Avellino, Italy
| | - Anna Leonardini
- Department of Emergency and Organ Transplantation (A.N., G.B., N.M., R.L., F.T., R.S., R.D., A.L., A.C., S.P., L.L., F.G.), Section of Internal Medicine, Endocrinology, Andrology, and Metabolic Diseases, University of Bari Aldo Moro, I-70124 Bari, Italy; and IRGS Biogem (E.C.), I-83031 Ariano Irpino, Avellino, Italy
| | - Angelo Cignarelli
- Department of Emergency and Organ Transplantation (A.N., G.B., N.M., R.L., F.T., R.S., R.D., A.L., A.C., S.P., L.L., F.G.), Section of Internal Medicine, Endocrinology, Andrology, and Metabolic Diseases, University of Bari Aldo Moro, I-70124 Bari, Italy; and IRGS Biogem (E.C.), I-83031 Ariano Irpino, Avellino, Italy
| | - Sebastio Perrini
- Department of Emergency and Organ Transplantation (A.N., G.B., N.M., R.L., F.T., R.S., R.D., A.L., A.C., S.P., L.L., F.G.), Section of Internal Medicine, Endocrinology, Andrology, and Metabolic Diseases, University of Bari Aldo Moro, I-70124 Bari, Italy; and IRGS Biogem (E.C.), I-83031 Ariano Irpino, Avellino, Italy
| | - Luigi Laviola
- Department of Emergency and Organ Transplantation (A.N., G.B., N.M., R.L., F.T., R.S., R.D., A.L., A.C., S.P., L.L., F.G.), Section of Internal Medicine, Endocrinology, Andrology, and Metabolic Diseases, University of Bari Aldo Moro, I-70124 Bari, Italy; and IRGS Biogem (E.C.), I-83031 Ariano Irpino, Avellino, Italy
| | - Francesco Giorgino
- Department of Emergency and Organ Transplantation (A.N., G.B., N.M., R.L., F.T., R.S., R.D., A.L., A.C., S.P., L.L., F.G.), Section of Internal Medicine, Endocrinology, Andrology, and Metabolic Diseases, University of Bari Aldo Moro, I-70124 Bari, Italy; and IRGS Biogem (E.C.), I-83031 Ariano Irpino, Avellino, Italy
| |
Collapse
|
37
|
Palou M, Sánchez J, García-Carrizo F, Palou A, Picó C. Pectin supplementation in rats mitigates age-related impairment in insulin and leptin sensitivity independently of reducing food intake. Mol Nutr Food Res 2015. [DOI: 10.1002/mnfr.201500292] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Mariona Palou
- Laboratory of Molecular Biology; Nutrition and Biotechnology (Nutrigenomics); University of the Balearic Islands and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN); Palma de Mallorca Balearic Islands Spain
| | - Juana Sánchez
- Laboratory of Molecular Biology; Nutrition and Biotechnology (Nutrigenomics); University of the Balearic Islands and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN); Palma de Mallorca Balearic Islands Spain
| | - Francisco García-Carrizo
- Laboratory of Molecular Biology; Nutrition and Biotechnology (Nutrigenomics); University of the Balearic Islands and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN); Palma de Mallorca Balearic Islands Spain
| | - Andreu Palou
- Laboratory of Molecular Biology; Nutrition and Biotechnology (Nutrigenomics); University of the Balearic Islands and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN); Palma de Mallorca Balearic Islands Spain
| | - Catalina Picó
- Laboratory of Molecular Biology; Nutrition and Biotechnology (Nutrigenomics); University of the Balearic Islands and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN); Palma de Mallorca Balearic Islands Spain
| |
Collapse
|
38
|
Wang J, Song MY, Bae UJ, Lim JM, Kwon KS, Park BH. n-3 Polyunsaturated fatty acids protect against pancreatic β-cell damage due to ER stress and prevent diabetes development. Mol Nutr Food Res 2015; 59:1791-802. [PMID: 26080997 DOI: 10.1002/mnfr.201500299] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/07/2015] [Accepted: 06/09/2015] [Indexed: 12/11/2022]
Abstract
SCOPE In this study, we focus on the effects of n-3 polyunsaturated fatty acids (PUFAs) on tunicamycin-, streptozotocin-, or high fat diet (HFD)-induced β-cell damage and dysfunction. MATERIALS AND METHODS Pretreatment with n-3 PUFAs protected RINm5F cells and mouse islets against tunicamycin-induced β-cell damage through suppression of ER stress and apoptosis induction. This protective effect of n-3 PUFAs on β-cells was further demonstrated by the normalization of insulin secretion in response to glucose in tunicamycin-treated islets. In multiple low-dose streptozotocin-induced diabetes models, fat-1 mice, which endogenously synthesize n-3 PUFAs from n-6 PUFAs, were fully resistant to the development of diabetes, with normal islet morphology, high insulin immunoreactivity, and decreased apoptotic cells. In HFD-induced diabetes models, fat-1 mice also exhibited improved glucose tolerance and functional β-cell mass. In both diabetes models, we observed an attenuation of ER stress in fat-1 mice. Interestingly, n-3 PUFAs attenuated the nuclear translocation of lipogenic transcription factors sterol regulatory element-binding protein-1 (SREBP-1) and C/EBPβ, induced by tunicamycin or HFD, suggesting that n-3 PUFAs suppress ER stress via modulation of SREBP-1 and C/EBPβ. CONCLUSION Together, these results suggest that n-3 PUFAs block ER stress, thus protecting β cells against diabetogenic insult; therefore, dietary supplementation of n-3 PUFAs has therapeutic potential for the preservation of functional β-cell mass.
Collapse
Affiliation(s)
- Jie Wang
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Mi-Young Song
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Ui-Jin Bae
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Jung Min Lim
- Department of Anatomy, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Keun Sang Kwon
- Department of Preventive Medicine, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Byung-Hyun Park
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Republic of Korea
| |
Collapse
|
39
|
Soyal SM, Nofziger C, Dossena S, Paulmichl M, Patsch W. Targeting SREBPs for treatment of the metabolic syndrome. Trends Pharmacol Sci 2015; 36:406-16. [PMID: 26005080 DOI: 10.1016/j.tips.2015.04.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/20/2015] [Accepted: 04/23/2015] [Indexed: 12/11/2022]
Abstract
Over the past few decades, mortality resulting from cardiovascular disease (CVD) steadily decreased in western countries; however, in recent years, the decline has become offset by the increase in obesity. Obesity is strongly associated with the metabolic syndrome and its atherogenic dyslipidemia resulting from insulin resistance. While lifestyle treatment would be effective, drugs targeting individual risk factors are often required. Such treatment may result in polypharmacy. Novel approaches are directed towards the treatment of several risk factors with one drug. Studies in animal models and humans suggest a central role for sterol regulatory-element binding proteins (SREBPs) in the pathophysiology of the metabolic syndrome. Four recent studies targeting the maturation or transcriptional activities of SREBPs provide proof of concept for the efficacy of SREBP inhibition in this syndrome.
Collapse
Affiliation(s)
- Selma M Soyal
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Charity Nofziger
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Markus Paulmichl
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Wolfgang Patsch
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
40
|
Bhaswant M, Poudyal H, Brown L. Mechanisms of enhanced insulin secretion and sensitivity with n-3 unsaturated fatty acids. J Nutr Biochem 2015; 26:571-84. [PMID: 25841249 DOI: 10.1016/j.jnutbio.2015.02.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 12/16/2022]
Abstract
The widespread acceptance that increased dietary n-3 polyunsaturated fatty acids (PUFAs), especially α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), improve health is based on extensive studies in animals, isolated cells and humans. Visceral adiposity is part of the metabolic syndrome, together with insulin resistance, dyslipidemia, hypertension and inflammation. Alleviation of metabolic syndrome requires normalization of insulin release and responses. This review assesses our current knowledge of the mechanisms that allow n-3 PUFAs to improve insulin secretion and sensitivity. EPA has been more extensively studied than either ALA or DHA. The complex actions of EPA include increased G-protein-receptor-mediated release of glucagon-like peptide 1 (GLP-1) from enteroendocrine L-cells in the intestine, up-regulation of the apelin pathway and down-regulation of other control pathways to promote insulin secretion by the pancreatic β-cells, together with suppression of inflammatory responses to adipokines, inhibition of peroxisome proliferator-activated receptor α actions and prevention of decreased insulin-like growth factor-1 secretion to improve peripheral insulin responses. The receptors involved and the mechanisms of action probably differ for ALA and DHA, with antiobesity effects predominating for ALA and anti-inflammatory effects for DHA. Modifying both GLP-1 release and the actions of adipokines by n-3 PUFAs could lead to additive improvements in both insulin secretion and sensitivity.
Collapse
Affiliation(s)
- Maharshi Bhaswant
- Centre for Chronic Disease Prevention & Management, College of Health and Biomedicine, Victoria University, Melbourne VIC 3021, Australia; School of Health and Wellbeing, University of Southern Queensland, Toowoomba QLD 4350, Australia
| | - Hemant Poudyal
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine and The Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8302, Japan
| | - Lindsay Brown
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba QLD 4350, Australia.
| |
Collapse
|
41
|
Yue JTY, Abraham MA, LaPierre MP, Mighiu PI, Light PE, Filippi BM, Lam TKT. A fatty acid-dependent hypothalamic–DVC neurocircuitry that regulates hepatic secretion of triglyceride-rich lipoproteins. Nat Commun 2015; 6:5970. [DOI: 10.1038/ncomms6970] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 11/26/2014] [Indexed: 12/31/2022] Open
|
42
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) is associated with insulin resistance and obesity, as well as progressive liver dysfunction. Recent animal studies have underscored the importance of hepatic growth hormone (GH) signaling in the development of NAFLD. The imprinted Delta-like homolog 1 (Dlk1)/preadipocyte factor 1 (Pref1) gene encodes a complex protein producing both circulating and membrane-tethered isoforms whose expression dosage is functionally important because even modest elevation during embryogenesis causes lethality. DLK1 is up-regulated during embryogenesis, during suckling, and in the mother during pregnancy. We investigated the normal role for elevated DLK1 dosage by overexpressing Dlk1 from endogenous control elements. This increased DLK1 dosage caused improved glucose tolerance with no primary defect in adipose tissue expansion even under extreme metabolic stress. Rather, Dlk1 overexpression caused reduced fat stores, pituitary insulin-like growth factor 1 (IGF1) resistance, and a defect in feedback regulation of GH. Increased circulatory GH culminated in a switch in whole body fuel metabolism and a reduction in hepatic steatosis. We propose that the function of DLK1 is to shift the metabolic mode of the organism toward peripheral lipid oxidation and away from lipid storage, thus mediating important physiological adaptations associated with early life and with implications for metabolic disease resistance.
Collapse
|
43
|
Zheng H, Zhao J, Zheng Y, Wu J, Liu Y, Peng J, Hong Z. Protective effects and mechanisms of total alkaloids of Rubus alceaefolius Poir on non‑alcoholic fatty liver disease in rats. Mol Med Rep 2014; 10:1758-64. [PMID: 25051256 DOI: 10.3892/mmr.2014.2403] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 05/09/2014] [Indexed: 01/30/2023] Open
Abstract
The plant Rubus alceaefolius Poir is used as a hepatic protectant in Traditional Chinese Medicine. The aim of the present study was to confirm the protective effect of the total alkaloids of Rubus alceaefolius Poir (TARAP) on the liver and to evaluate the potential molecular mechanisms associated with adipocytokines underlying non-alcoholic fatty liver disease (NAFLD) in rats. To generate the NAFLD model, Sprague-Dawley rats were administered a high‑fat diet and following 12 weeks of model construction, rats were orally treated with a positive control drug and different doses of TARAP daily for 28 days. The rats were then sacrificed and the livers were collected to evaluate the liver index (LI) and observe histological changes by hematoxylin and eosin (H&E) staining. The secretion levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum were examined by ELISA. Finally, the expression levels of leptin (LEP), resistin and adiponectin (APN) in liver tissues were determined by immunohistochemistry (IHC). The results demonstrated that, in the group treated with methionine and choline bitartrate tablets and in the groups treated with different doses of TARAP, there was a significant reduction in the LI (P<0.05 or P<0.01), a downregulation of the secretion levels of ALT and AST, reduced levels of LEP and resistin and an increased expression of APN in the liver of NAFLD rats compared with the model group. Furthermore, the effect of TARAP treatment of NAFLD rats was dose dependent. In conclusion, TARAP is a potential agent for downregulating LEP and resistin and upregulating APN expression in rats with NAFLD. Furthermore, TARAP may be a potential candidate for improving treatment responses in patients with NAFLD.
Collapse
Affiliation(s)
- Haiyin Zheng
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jinyan Zhao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Yuqing Zheng
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Juan Wu
- Simulation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Yan Liu
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Zhenfeng Hong
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
44
|
Ha BG, Park JE, Shin EJ, Shon YH. Effects of balanced deep-sea water on adipocyte hypertrophy and liver steatosis in high-fat, diet-induced obese mice. Obesity (Silver Spring) 2014; 22:1669-78. [PMID: 24634394 DOI: 10.1002/oby.20740] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 03/06/2014] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To determine the effects of balanced deep-sea water (BDSW) on adipocyte hypertrophy and liver steatosis in high-fat diet (HFD)-induced obese C57BL/6J mice. METHODS BDSW was prepared by mixing deep-sea water (DSW) mineral extracts and desalinated water. C57BL/6J mice were fed a normal diet or HFD with or without BDSW with different hardness (500, 1000, or 2000) for 20 weeks. RESULTS BDSW suppressed body weight gain in HFD-fed mice. Histopathologic assays of the fat and liver revealed that BDSW inhibited the increase in adipocyte size and improved severe liver steatosis in HFD-fed mice. BDSW suppressed the expression of adipogenic, lipogenic, lipolytic, and pro-inflammatory cytokine genes and increased the expression of adipokines and β-oxidation genes in fat. In the liver, BDSW suppressed the expression of genes involved in lipogenesis and cholesterol synthesis, and increased the expression of genes related to β-oxidation. Furthermore, BDSW improved the impaired phosphorylation of IRS-1, LKB1, AMPK, and mTOR in fat and liver tissues of HFD-fed mice. CONCLUSIONS These results suggest that BDSW has potential as an anti-lipidemic agent, given its ability to suppress body weight gain and liver steatosis through the regulation of lipid metabolism by signal molecule activation.
Collapse
Affiliation(s)
- Byung Geun Ha
- Bio-Medical Research Institute, Kyungpook National University Hospital, Daegu, Korea
| | | | | | | |
Collapse
|
45
|
Zhao X, Xiaoli, Zong H, Abdulla A, Yang EST, Wang Q, Ji JY, Pessin JE, Das BC, Yang F. Inhibition of SREBP transcriptional activity by a boron-containing compound improves lipid homeostasis in diet-induced obesity. Diabetes 2014; 63:2464-73. [PMID: 24608444 PMCID: PMC4066337 DOI: 10.2337/db13-0835] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dysregulation of lipid homeostasis is intimately associated with obesity, type 2 diabetes, and cardiovascular diseases. Sterol regulatory-element binding proteins (SREBPs) are the master regulators of lipid biosynthesis. Previous studies have shown that the conserved transcriptional cofactor Mediator complex is critically required for the SREBP transcriptional activity, and recruitment of the Mediator complex to the SREBP transactivation domains (TADs) is through the MED15-KIX domain. Recently, we have synthesized several boron-containing small molecules. Among these novel compounds, BF175 can specifically block the binding of MED15-KIX to SREBP1a-TAD in vitro, resulting in an inhibition of the SREBP transcriptional activity and a decrease of SREBP target gene expression in cultured hepatocytes. Furthermore, BF175 can improve lipid homeostasis in the mouse model of diet-induced obesity. Compared with the control, BF175 treatment decreased the expression of SREBP target genes in mouse livers and decreased hepatic and blood levels of lipids. These results suggest that blocking the interaction between SREBP-TADs and the Mediator complex by small molecules may represent a novel approach for treating diseases with aberrant lipid homeostasis.
Collapse
Affiliation(s)
- Xiaoping Zhao
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NYDepartment of Developmental & Molecular Biology, Albert Einstein College of Medicine, Bronx, NYDepartment of Nuclear Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Xiaoli
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NYDepartment of Developmental & Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Haihong Zong
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
| | - Arian Abdulla
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NYDepartment of Developmental & Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Ellen S T Yang
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
| | - Qun Wang
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX
| | - Jun-Yuan Ji
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX
| | - Jeffrey E Pessin
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NYDepartment of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY
| | - Bhaskar C Das
- Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Fajun Yang
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NYDepartment of Developmental & Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
46
|
Jung UJ, Choi MS. Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci 2014; 15:6184-223. [PMID: 24733068 PMCID: PMC4013623 DOI: 10.3390/ijms15046184] [Citation(s) in RCA: 1296] [Impact Index Per Article: 117.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/27/2014] [Accepted: 04/01/2014] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence indicates that obesity is closely associated with an increased risk of metabolic diseases such as insulin resistance, type 2 diabetes, dyslipidemia and nonalcoholic fatty liver disease. Obesity results from an imbalance between food intake and energy expenditure, which leads to an excessive accumulation of adipose tissue. Adipose tissue is now recognized not only as a main site of storage of excess energy derived from food intake but also as an endocrine organ. The expansion of adipose tissue produces a number of bioactive substances, known as adipocytokines or adipokines, which trigger chronic low-grade inflammation and interact with a range of processes in many different organs. Although the precise mechanisms are still unclear, dysregulated production or secretion of these adipokines caused by excess adipose tissue and adipose tissue dysfunction can contribute to the development of obesity-related metabolic diseases. In this review, we focus on the role of several adipokines associated with obesity and the potential impact on obesity-related metabolic diseases. Multiple lines evidence provides valuable insights into the roles of adipokines in the development of obesity and its metabolic complications. Further research is still required to fully understand the mechanisms underlying the metabolic actions of a few newly identified adipokines.
Collapse
Affiliation(s)
- Un Ju Jung
- Center for Food and Nutritional Genomics Research, Kyungpook National University, 1370 Sankyuk Dong Puk-ku, Daegu 702-701, Korea.
| | - Myung-Sook Choi
- Center for Food and Nutritional Genomics Research, Kyungpook National University, 1370 Sankyuk Dong Puk-ku, Daegu 702-701, Korea.
| |
Collapse
|
47
|
Spartano NL, Lamon-Fava S, Matthan NR, Obin MS, Greenberg AS, Lichtenstein AH. Linoleic acid suppresses cholesterol efflux and ATP-binding cassette transporters in murine bone marrow-derived macrophages. Lipids 2014; 49:415-22. [PMID: 24595513 DOI: 10.1007/s11745-014-3890-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 02/19/2014] [Indexed: 01/25/2023]
Abstract
Individuals with type 2 diabetes mellitus (T2DM) are at increased risk of developing cardiovascular disease (CVD), possibly associated with elevated plasma free fatty acid concentrations. Paradoxically, evidence suggests that unsaturated, compared to saturated fatty acids, suppress macrophage cholesterol efflux, favoring cholesterol accumulation in the artery wall. Murine bone marrow-derived macrophages (BMDM) were used to further explore the relationship between saturated and unsaturated fatty acids, and cholesterol efflux mediated by ATP-binding cassette transporters (ABCA1 and ABCG1) through transcription factors liver-x-receptor-alpha (LXR-α) and sterol receptor element binding protein (SREBP)-1. BMDM isolated from C57BL/6 mice were exposed to 100 μM linoleic acid (18:2) or palmitic acid (16:0) for 16 h, and 25 μg/mL oxidized low density lipoprotein for an additional 24 h. ABCA1 and ABCG1 mRNA expression was suppressed to a greater extent by 18:2 (60 % and 54 %, respectively) than 16:0 (30 % and 29 %, respectively) relative to the control (all p < 0.01). 18:2 decreased ABCA1 protein levels by 94 % and high density lipoprotein (HDL) mediated cholesterol efflux by 53 % (both p < 0.05), and had no significant effect on ABCG1, LXR-α or SREBP-1 protein levels. 16:0 had no effect on ABCA1, ABCG1, LXR-α or SREBP-1 protein expression or HDL-mediated cholesterol efflux. These results suggest that 18:2, relative to 16:0, attenuated macrophage HDL-mediated cholesterol efflux through down regulation of ABCA1 mRNA and protein levels but not through changes in LXR-α or SREBP-1 expression. The effect of 18:2 relative to 16:0 on macrophages cholesterol homeostasis may exacerbate the predisposition of individuals with T2DM to increased CVD risk.
Collapse
Affiliation(s)
- Nicole L Spartano
- J. M. USDA Human Nutrition Research Center on Aging, Tufts University, 711 Washington Street, Boston, MA, USA, 02111,
| | | | | | | | | | | |
Collapse
|
48
|
Yang Y, Tong Y, Gong M, Lu Y, Wang C, Zhou M, Yang Q, Mao T, Tong N. Activation of PPARβ/δ protects pancreatic β cells from palmitate-induced apoptosis by upregulating the expression of GLP-1 receptor. Cell Signal 2014; 26:268-278. [PMID: 24269940 DOI: 10.1016/j.cellsig.2013.11.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 10/27/2013] [Accepted: 11/11/2013] [Indexed: 02/05/2023]
Abstract
We previously showed that activated peroxisome proliferator-activated receptor (PPAR)β/δ can protect pancreatic β cells against lipotoxic apoptosis. However, the molecular mechanism remained unclear. Glucagon-like peptide-1 receptor (GLP-1R) has been reported to exhibit a protective effect against lipotoxic apoptosis in pancreatic β cells. In the present study, we aimed to investigate the underlying molecular mechanisms that PPARβ/δ activation suppressed apoptosis and improved β cell function impaired by fatty acids, focusing on contribution of GLP-1R. Isolated rat islets and rat insulin-secreting INS-1 cells were treated with the PPARβ/δ agonist GW501516 (GW) in the presence or absence of palmitate (PA) and transfected with siRNA for PPARβ/δ or treated with the PPARβ/δ antagonist GSK0660. Apoptosis was assessed by DNA fragmentation, Hoechst 33342 staining and flow cytometry. GLP-1R expression in INS-1 cells and islets was assayed by immunoblotting, quantitative PCR (qPCR) and immunofluorescence staining. SREBP-1c, Caveolin-1, Akt, Bcl-2, Bcl-xl and caspase-3 expression was measured using immunoblotting and qPCR. Our results showed that PPARβ/δ activation decreased apoptosis in β cells and robustly stimulated GLP-1R expression under lipotoxic conditions. GW enhanced glucose-stimulated insulin secretion (GSIS) impaired by PA through stimulation of GLP-1R expression in β cells. Moreover, SREBP-1c/Caveolin-1 signaling was involved in PPARβ/δ-regulated GLP-1R expression. Finally, GW exerted anti-apoptotic effects via interfering with GLP-1R-dependent Akt/Bcl-2 and Bcl-xl/caspase-3 signaling pathways. Our study suggested that the anti-apoptotic action of GW may involve its transcriptional regulation of GLP-1R, and PPARβ/δ activation may represent a new therapeutic method for protecting pancreatic β cells from lipotoxicity.
Collapse
Affiliation(s)
- Yan Yang
- Division of Endocrinology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yuzhen Tong
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Meng Gong
- Laboratory of Endocrinology and Metabolism, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yanrong Lu
- Laboratory of Transplantation Engineering, West China Hospital of Sichuan University, Chengdu, China
| | - Chengshi Wang
- Laboratory of Transplantation Engineering, West China Hospital of Sichuan University, Chengdu, China
| | - Mingliang Zhou
- Laboratory of Endocrinology and Metabolism, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qiu Yang
- Division of Endocrinology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Tingrui Mao
- Division of Endocrinology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Nanwei Tong
- Division of Endocrinology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
49
|
von Schnurbein J, Heni M, Moss A, Nagel SA, Machann J, Muehleder H, Debatin KM, Farooqi S, Wabitsch M. Rapid improvement of hepatic steatosis after initiation of leptin substitution in a leptin-deficient girl. Horm Res Paediatr 2014; 79:310-7. [PMID: 23651953 DOI: 10.1159/000348541] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 02/01/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Leptin deficiency is associated with severe obesity and metabolic disturbances. Increased liver fat content has been reported in only one case beforehand, even though hepatic steatosis is a typical comorbidity of common obesity. It is also frequent in patients with lipodystrophy where it resolves under leptin therapy. SUBJECT AND METHODS In 2010, we reported a leptin-deficient patient with a novel homozygous mutation in the leptin gene and severe hepatic steatosis. We have now studied serum changes and changes in liver fat content during the substitution with recombinant methionyl human leptin. RESULTS After 23 weeks of leptin substitution, elevated transaminases, total cholesterol and low-density lipoprotein levels normalized. After 62 weeks, homeostasis model assessment of insulin resistance improved from 10.7 to 6.0 and body fat mass dropped from 50.2 to 37.8%. Liver fat content was drastically reduced from 49.7 to 9.4%. The first changes in liver fat content were detectable after 3 days of therapy. CONCLUSION Our patient showed a remarkable reduction of liver fat content during the treatment with recombinant methionyl human leptin. These changes occurred rapidly after initiation of the substitution, which implies that leptin has a direct effect on hepatic lipid metabolism in humans as it is seen in rodents.
Collapse
Affiliation(s)
- J von Schnurbein
- Division of Pediatric Endocrinology and Diabetes, University Medical Center Ulm, Ulm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ding L, Pang S, Sun Y, Tian Y, Yu L, Dang N. Coordinated Actions of FXR and LXR in Metabolism: From Pathogenesis to Pharmacological Targets for Type 2 Diabetes. Int J Endocrinol 2014; 2014:751859. [PMID: 24872814 PMCID: PMC4020365 DOI: 10.1155/2014/751859] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 04/09/2014] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes (T2D) is the most prevalent metabolic disease, and many people are suffering from its complications driven by hyperglycaemia and dyslipidaemia. Nuclear receptors (NRs) are ligand-inducible transcription factors that mediate changes to metabolic pathways within the body. As metabolic regulators, the farnesoid X receptor (FXR) and the liver X receptor (LXR) play key roles in the pathogenesis of T2D, which remains to be clarified in detail. Here we review the recent progress concerning the physiological and pathophysiological roles of FXRs and LXRs in the regulation of bile acid, lipid and glucose metabolism and the implications in T2D, taking into account that these two nuclear receptors are potential pharmaceutical targets for the treatment of T2D and its complications.
Collapse
Affiliation(s)
- Lin Ding
- Endocrinology Department, Jinan Central Hospital Affiliated to Shandong University, No. 105 Jiefang Road, Jinan, Shandong 250013, China
| | - Shuguang Pang
- Endocrinology Department, Jinan Central Hospital Affiliated to Shandong University, No. 105 Jiefang Road, Jinan, Shandong 250013, China
- *Shuguang Pang:
| | - Yongmei Sun
- Endocrinology Department, Jinan Central Hospital Affiliated to Shandong University, No. 105 Jiefang Road, Jinan, Shandong 250013, China
| | - Yuling Tian
- Endocrinology Department, Jinan Central Hospital Affiliated to Shandong University, No. 105 Jiefang Road, Jinan, Shandong 250013, China
| | - Li Yu
- Endocrinology Department, Jinan Central Hospital Affiliated to Shandong University, No. 105 Jiefang Road, Jinan, Shandong 250013, China
| | - Ningning Dang
- Endocrinology Department, Jinan Central Hospital Affiliated to Shandong University, No. 105 Jiefang Road, Jinan, Shandong 250013, China
| |
Collapse
|