1
|
Kakiyama G, Bai-Kamara N, Rodriguez-Agudo D, Takei H, Minowa K, Fuchs M, Biddinger S, Windle JJ, Subler MA, Murai T, Suzuki M, Nittono H, Sanyal A, Pandak WM. Liver specific transgenic expression of CYP7B1 attenuates early western diet-induced MASLD progression. J Lipid Res 2025; 66:100757. [PMID: 39952566 PMCID: PMC11954105 DOI: 10.1016/j.jlr.2025.100757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/30/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025] Open
Abstract
Effect of liver specific oxysterol 7α-hydroxylase (CYP7B1) overexpression on the Western diet (WD)-induced metabolic dysfunction-associated steatotic liver disease (MASLD) progression was studied in mice. Among various hepatic genes impacted during MASLD development, CYP7B1 is consistently suppressed in multiple MASLD mouse models and in human MASLD cohorts. CYP7B1 enzyme suppression leads to accumulations of bioactive oxysterols such as (25R)26-hydroxycholesterol (26HC) and 25-hydroxycholesterol (25HC). We challenged liver specific CYP7B1 transgenic (CYP7B1hep.tg) overexpressing mice with ad libitum WD feeding. Unlike their WT counterparts, WD-fed CYP7B1hep.tg mice developed no significant hepatotoxicity as evidenced by liver histology, lipid quantifications, and serum biomarker analyses. Hepatic 26HC and 25HC levels were maintained at the basal levels. The comparative gene expression/lipidomic analyses between WT and CYP7B1hep.tg mice revealed that chronically accumulated 26HC initiates LXR/PPAR-mediated hepatic fatty acid uptake and lipogenesis which surpasses fatty acid metabolism and export; compromising metabolic functions. In addition, major pathways related to oxidative stress, inflammation, and immune system including retinol metabolism, arachidonic acid metabolism, and linoleic acid metabolism were significantly impacted in the WD-fed WT mice. All pathways were unaltered in CYP7B1hep.tg mice liver. Furthermore, the nucleus of WT mouse liver but not of CYP7B1hep.tg mouse liver accumulated 26HC and 25HC in response to WD. These data strongly suggested that these two oxysterols are specifically important in nuclear transcriptional regulation for the described cytotoxic pathways. In conclusion, this study represents a "proof-of-concept" that maintaining normal mitochondrial cholesterol metabolism with hepatic CYP7B1 expression prevents oxysterol-driven liver toxicity; thus attenuating MASLD progression.
Collapse
Affiliation(s)
- Genta Kakiyama
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Research Services, Central Virginia Veterans Affairs Health Care System, Richmond, VA, USA.
| | - Nanah Bai-Kamara
- Research Services, Central Virginia Veterans Affairs Health Care System, Richmond, VA, USA
| | - Daniel Rodriguez-Agudo
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Research Services, Central Virginia Veterans Affairs Health Care System, Richmond, VA, USA
| | - Hajime Takei
- Junshin Clinic Bile Acid Institute, Meguro-ku, Tokyo, Japan
| | - Kei Minowa
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Research Services, Central Virginia Veterans Affairs Health Care System, Richmond, VA, USA; Department of Pediatrics, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Michael Fuchs
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Research Services, Central Virginia Veterans Affairs Health Care System, Richmond, VA, USA
| | - Sudha Biddinger
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, MA, USA
| | - Jolene J Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond VA, USA
| | - Mark A Subler
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond VA, USA
| | - Tsuyoshi Murai
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari, Hokkaido, Japan
| | - Mitsuyoshi Suzuki
- Department of Pediatrics, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | | | - Arun Sanyal
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - William M Pandak
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Research Services, Central Virginia Veterans Affairs Health Care System, Richmond, VA, USA
| |
Collapse
|
2
|
Guo J, Du L. An update on ox-LDL-inducing vascular smooth muscle cell-derived foam cells in atherosclerosis. Front Cell Dev Biol 2024; 12:1481505. [PMID: 39524227 PMCID: PMC11543427 DOI: 10.3389/fcell.2024.1481505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
Excess cholesterol accumulation induces the accumulation of foam cells, eventually accelerating atherosclerosis progress. Historically, the mechanisms of macrophage-derived foam cells have attracted attention because of their central role in plaque development, which was challenged by lineage tracing in union with single-cell sequencing (sc-seq). Accumulated studies have uncovered how vascular smooth muscle cells (VSMCs) proliferate and migrate to the vascular intima and accumulate, then transform into foam cells induced by surplus lipids, finally accounting for 30% to 70% of the total foam cells within the plaque of both mice and humans. Therefore, the mechanisms of VSMC-derived foam cells have received increasing attention. The review intends to summarize the transformation mechanism of VSMCs into foam cells induced by oxidized low-density lipoproteins (ox-LDL) in atherosclerosis.
Collapse
Affiliation(s)
- Jingjing Guo
- Luoyang Key Laboratory of Cardiovascular Science, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Laijing Du
- Department of Cardiology, Henan Key Laboratory of Cardiovascular Science, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
3
|
Chandrasekaran P, Weiskirchen R. The Role of SCAP/SREBP as Central Regulators of Lipid Metabolism in Hepatic Steatosis. Int J Mol Sci 2024; 25:1109. [PMID: 38256181 PMCID: PMC10815951 DOI: 10.3390/ijms25021109] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is rapidly increasing worldwide at an alarming pace, due to an increase in obesity, sedentary and unhealthy lifestyles, and unbalanced dietary habits. MASLD is a unique, multi-factorial condition with several phases of progression including steatosis, steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Sterol element binding protein 1c (SREBP1c) is the main transcription factor involved in regulating hepatic de novo lipogenesis. This transcription factor is synthesized as an inactive precursor, and its proteolytic maturation is initiated in the membrane of the endoplasmic reticulum upon stimulation by insulin. SREBP cleavage activating protein (SCAP) is required as a chaperon protein to escort SREBP from the endoplasmic reticulum and to facilitate the proteolytic release of the N-terminal domain of SREBP into the Golgi. SCAP inhibition prevents activation of SREBP and inhibits the expression of genes involved in triglyceride and fatty acid synthesis, resulting in the inhibition of de novo lipogenesis. In line, previous studies have shown that SCAP inhibition can resolve hepatic steatosis in animal models and intensive research is going on to understand the effects of SCAP in the pathogenesis of human disease. This review focuses on the versatile roles of SCAP/SREBP regulation in de novo lipogenesis and the structure and molecular features of SCAP/SREBP in the progression of hepatic steatosis. In addition, recent studies that attempt to target the SCAP/SREBP axis as a therapeutic option to interfere with MASLD are discussed.
Collapse
Affiliation(s)
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, D-52074 Aachen, Germany
| |
Collapse
|
4
|
Zhang Y, Fang X, Shuang F, Chen G. Dexamethasone potentiates the insulin-induced Srebp-1c expression in primary rat hepatocytes. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
5
|
Rajasekaran S, Ramaian Santhaseela A, Ragunathan S, Venkataraman S, Jayavelu T. Altered Lysosomal Function Manipulates Cellular Biosynthetic Capacity By Remodeling Intracellular Cholesterol Distribution. Cell Biochem Biophys 2023; 81:29-38. [PMID: 36459362 DOI: 10.1007/s12013-022-01123-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022]
Abstract
Lysosomes are known to influence cholesterol trafficking into endoplasmic reticulum (ER) membranes. Though intracellular cholesterol levels are known to influence the lipid biosynthetic responses in ER, the specific effects of lysosomal modulation on these outcomes is not known. To demonstrate this, C2C12 cells were treated with chloroquine, a lysosomotropic agent, and its effects on cellular biosynthetic capacity, structural and functional status of ER was determined. In addition to its known effects on autophagy reduction, chloroquine treatment induced accumulation of total cellular lipid and ER-specific cholesterol content. It was also observed that chloroquine caused an increase in smooth-ER content with defects in overall protein turnover. Further, since ER and mitochondria function in close association through ER membrane contact sites, it is likely that lysosomal modulation also brings about associated changes in mitochondria. In this regard, we found that chloroquine reduces mitochondrial membrane potential and mitochondrial dynamics. Collectively, the differential biosynthetic response of rise in lipid content, but not protein content, cannot be accounted by merely considering that chloroquine induced suppression of autophagy causes defects in organelle function. In this defective autophagy scenario, both biosynthetic responses such as lipid and protein synthesis are expected to be reduced rather than only the latter, as observed with chloroquine. These findings suggest that cholesterol trafficking/distribution within cellular organelles could act as an intracellular mediator of differential biosynthetic remodelling in interconnected organelles.
Collapse
|
6
|
Ma S, Pang X, Tian S, Sun J, Hu Q, Li X, Lu Y. The protective effects of sulforaphane on high-fat diet-induced metabolic associated fatty liver disease in mice via mediating the FXR/LXRα pathway. Food Funct 2022; 13:12966-12982. [PMID: 36448414 DOI: 10.1039/d2fo02341e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Metabolic-associated fatty liver disease (MAFLD) is becoming the key factor in causing chronic liver disease all over the world. Sulforaphane (SFN) has been proven to be effective in alleviating many metabolic diseases, such as obesity and type 2 diabetes. In this study, C57BL/6 mice were fed a high-fat diet for 12 weeks to induce MAFLD and given SFN (10 mg per kg bw) daily. Our results showed that SFN not only improved the excessive accumulation of fat in the liver cells but also ameliorated liver and serum inflammatory and antioxidant levels. In addition, SFN can regulate bile-acid metabolism and fatty-acid synthesis by affecting their farnesoid X receptor (FXR)/liver X receptor alpha (LXRα) signaling pathway, ultimately alleviating MAFLD. Our study provides a theoretical basis for the mechanism by which SFN alleviates hepatic steatosis.
Collapse
Affiliation(s)
- Shaotong Ma
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Xinyi Pang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Shuhua Tian
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Jing Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Qiaobin Hu
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Xiangfei Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Yingjian Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| |
Collapse
|
7
|
Saito H, Tachiura W, Nishimura M, Shimizu M, Sato R, Yamauchi Y. Hydroxylation site-specific and production-dependent effects of endogenous oxysterols on cholesterol homeostasis: Implications for SREBP-2 and LXR. J Biol Chem 2022; 299:102733. [PMID: 36423680 PMCID: PMC9792893 DOI: 10.1016/j.jbc.2022.102733] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/26/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022] Open
Abstract
The cholesterol metabolites, oxysterols, play central roles in cholesterol feedback control. They modulate the activity of two master transcription factors that control cholesterol homeostatic responses, sterol regulatory element-binding protein-2 (SREBP-2) and liver X receptor (LXR). Although the role of exogenous oxysterols in regulating these transcription factors has been well established, whether endogenously synthesized oxysterols similarly control both SREBP-2 and LXR remains poorly explored. Here, we carefully validate the role of oxysterols enzymatically synthesized within cells in cholesterol homeostatic responses. We first show that SREBP-2 responds more sensitively to exogenous oxysterols than LXR in Chinese hamster ovary cells and rat primary hepatocytes. We then show that 25-hydroxycholesterol (25-HC), 27-hydroxycholesterol, and 24S-hydroxycholesterol endogenously synthesized by CH25H, CYP27A1, and CYP46A1, respectively, suppress SREBP-2 activity at different degrees by stabilizing Insig (insulin-induced gene) proteins, whereas 7α-hydroxycholesterol has little impact on SREBP-2. These results demonstrate the role of site-specific hydroxylation of endogenous oxysterols. In contrast, the expression of CH25H, CYP46A1, CYP27A1, or CYP7A1 fails to induce LXR target gene expression. We also show the 25-HC production-dependent suppression of SREBP-2 using a tetracycline-inducible CH25H expression system. To induce 25-HC production physiologically, murine macrophages are stimulated with a Toll-like receptor 4 ligand, and its effect on SREBP-2 and LXR is examined. The results also suggest that de novo synthesis of 25-HC preferentially regulates SREBP-2 activity. Finally, we quantitatively determine the specificity of the four cholesterol hydroxylases in living cells. Based on our current findings, we conclude that endogenous side-chain oxysterols primarily regulate the activity of SREBP-2, not LXR.
Collapse
Affiliation(s)
- Hodaka Saito
- Laboratory of Food Biochemistry, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Wakana Tachiura
- Laboratory of Food Biochemistry, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Mizuki Nishimura
- Laboratory of Food Biochemistry, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Makoto Shimizu
- Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryuichiro Sato
- Laboratory of Food Biochemistry, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan,Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Yoshio Yamauchi
- Laboratory of Food Biochemistry, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan,Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan,For correspondence: Yoshio Yamauchi
| |
Collapse
|
8
|
Chen J, Su Y, Pi S, Hu B, Mao L. The Dual Role of Low-Density Lipoprotein Receptor-Related Protein 1 in Atherosclerosis. Front Cardiovasc Med 2021; 8:682389. [PMID: 34124208 PMCID: PMC8192809 DOI: 10.3389/fcvm.2021.682389] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/05/2021] [Indexed: 12/26/2022] Open
Abstract
Low-density lipoprotein receptor–related protein-1 (LRP1) is a large endocytic and signaling receptor belonging to the LDL receptor (LDLR) gene family and that is widely expressed in several tissues. LRP1 comprises a large extracellular domain (ECD; 515 kDa, α chain) and a small intracellular domain (ICD; 85 kDa, β chain). The deletion of LRP1 leads to embryonic lethality in mice, revealing a crucial but yet undefined role in embryogenesis and development. LRP1 has been postulated to participate in numerous diverse physiological and pathological processes ranging from plasma lipoprotein homeostasis, atherosclerosis, tumor evolution, and fibrinolysis to neuronal regeneration and survival. Many studies using cultured cells and in vivo animal models have revealed the important roles of LRP1 in vascular remodeling, foam cell biology, inflammation and atherosclerosis. However, its role in atherosclerosis remains controversial. LRP1 not only participates in the removal of atherogenic lipoproteins and proatherogenic ligands in the liver but also mediates the uptake of aggregated LDL to promote the formation of macrophage- and vascular smooth muscle cell (VSMC)-derived foam cells, which causes a prothrombotic transformation of the vascular wall. The dual and opposing roles of LRP1 may also represent an interesting target for atherosclerosis therapeutics. This review highlights the influence of LRP1 during atherosclerosis development, focusing on its dual role in vascular cells and immune cells.
Collapse
Affiliation(s)
- Jiefang Chen
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Su
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Shulan Pi
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Hu
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Mao
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
High-phosphorus diets reduce aortic lesions and cardiomyocyte size and modify lipid metabolism in Ldl receptor knockout mice. Sci Rep 2020; 10:20748. [PMID: 33247205 PMCID: PMC7695849 DOI: 10.1038/s41598-020-77509-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
The consumption of phosphorus in Western populations largely exceeds the recommended intake, while vitamin D supply is often insufficient. Both situations are linked to an increased cardiovascular risk. A 17-week two-factorial study with Ldl receptor-/- mice was conducted to investigate the cardiovascular impact of dietary phosphorus [adequate (0.3%; P0.3) vs. high (1.5%; P1.5)] in combination with a low (50 IU/kg; D50) or adequate vitamin D diet (1000 IU/kg; D1000). The data demonstrate that mice fed the P1.5 vs. P0.3 diets developed smaller vascular lesions (p = 0.013) and cardiac hypotrophy (p = 0.011), which were accompanied by diminished IGF1 and insulin signalling activity in their hearts. Vitamin D showed no independent effect on atherogenesis and heart morphology. Feeding P1.5 vs. P0.3 diets resulted in markedly reduced serum triacylglycerols (p < 0.0001) and cholesterol (p < 0.0001), higher faecal lipid excretion (p < 0.0001) and a reduced mRNA abundance of hepatic sterol exporters and lipoprotein receptors. Minor hypocholesterolaemic and hypotriglyceridaemic effects were also found in mice fed the D1000 vs. D50 diets (p = 0.048, p = 0.026). To conclude, a high phosphorus intake strongly affected the formation of vascular lesions, cardiac morphology, and lipid metabolism, although these changes are not indicative of an increased cardiovascular risk.
Collapse
|
10
|
Liu N, Sun Q, Xu H, Yu X, Chen W, Wei H, Jiang J, Xu Y, Lu W. Hyperuricemia induces lipid disturbances mediated by LPCAT3 upregulation in the liver. FASEB J 2020; 34:13474-13493. [PMID: 32780898 DOI: 10.1096/fj.202000950r] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/18/2020] [Accepted: 07/24/2020] [Indexed: 12/18/2022]
Abstract
Potential underlying molecular mechanisms for uric acid-induced lipid metabolic disturbances had not been elucidated clearly. This study investigated the effects and underlying mechanisms of uric acid on the development of lipid metabolic disorders. We collected blood samples from 100 healthy people and 100 patients with hyperuricemia for whom serum lipid analysis was performed. Meanwhile, a mouse model of hyperuricemia was generated, and lipidomics was performed on liver tissues, comparing control and hyperuricemia groups, to analyze lipid profiles and key metabolic enzymes. Uric acid directly induced serum lipid metabolic disorders in both humans and mice based on triglycerides, total cholesterol, and low-density lipoprotein cholesterol. Through lipidomic analysis, 46 lipids were differentially expressed in hyperuricemic mouse livers, and the phosphatidylcholine composition was altered, which was mediated by LPCAT3 upregulation. High-uric acid levels-induced p-STAT3 inhibition and SREBP-1c activation in vivo and in vitro. Moreover, LPCAT3-knockdown significantly attenuated uric acid-induced p-STAT3 inhibition, SREBP-1c activation, and lipid metabolic disorders in L02 cells. In conclusion, uric acid induces lipid metabolic disturbances through LPCAT3-mediated p-STAT3 inhibition and SREBP-1c activation. LPCAT3 could be a key regulatory factor linking hyperuricemia and lipid metabolic disorders. These results might provide novel insights into the clinical treatment of hyperuricemia.
Collapse
Affiliation(s)
- Ning Liu
- Basic Medical College, Anhui Medical University, Hefei, China
| | - Qianqian Sun
- Basic Medical College, Anhui Medical University, Hefei, China
| | - Hu Xu
- Basic Medical College, Anhui Medical University, Hefei, China
| | - Xiaojuan Yu
- Basic Medical College, Anhui Medical University, Hefei, China
| | - Wentong Chen
- Basic Medical College, Anhui Medical University, Hefei, China
| | - Hongquan Wei
- Basic Medical College, Anhui Medical University, Hefei, China
| | - Jie Jiang
- Basic Medical College, Anhui Medical University, Hefei, China.,College of Pharmacy, Anhui Medical University, Hefei, China
| | - Youzhi Xu
- Basic Medical College, Anhui Medical University, Hefei, China
| | - Wenjie Lu
- Basic Medical College, Anhui Medical University, Hefei, China
| |
Collapse
|
11
|
Yang B, Zhang B, Cao Z, Xu X, Huo Z, Zhang P, Xiang S, Zhao Z, Lv C, Meng M, Zhang G, Dong L, Shi S, Yang L, Zhou Q. The lipogenic LXR-SREBF1 signaling pathway controls cancer cell DNA repair and apoptosis and is a vulnerable point of malignant tumors for cancer therapy. Cell Death Differ 2020; 27:2433-2450. [PMID: 32144382 PMCID: PMC7370224 DOI: 10.1038/s41418-020-0514-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/23/2020] [Accepted: 02/03/2020] [Indexed: 01/13/2023] Open
Abstract
Cancer cells are defective in DNA repair, so they experience increased DNA strand breaks, genome instability, gene mutagenesis, and tumorigenicity; however, multiple classic DNA repair genes and pathways are strongly activated in malignant tumor cells to compensate for the DNA repair deficiency and gain an apoptosis resistance. The mechanisms underlying this phenomenon in cancer are unclear. We speculate that a key DNA repair gene or signaling pathway in cancer has not yet been recognized. Here, we show that the lipogenic liver X receptor (LXR)-sterol response element binding factor-1 (SREBF1) axis controls the transcription of a key DNA repair gene polynucleotide kinase/phosphatase (PNKP), thereby governing cancer cell DNA repair and apoptosis. Notably, the PNKP levels were significantly reduced in 95% of human pancreatic cancer (PC) patients, particularly deep reduction for sixfold in all of the advanced-stage PC cases. PNKP is also deficient in three other types of cancer that we examined. In addition, the expression of LXRs and SREBF1 was significantly reduced in the tumor tissues from human PC patients compared with the adjacent normal tissues. The newly identified LXR-SREBF1-PNKP signaling pathway is deficient in PC, and the defect in the pathway contributes to the DNA repair deficiency in the cancer. Strikingly, further diminution of the vulnerable LXR-SREBF1-PNKP signaling pathway using a small molecule triptonide, a new LXR antagonist identified in this investigation, at a concentration of 8 nM robustly activated tumor-suppressor p53 and readily elevated cancer cell DNA strand breaks over an apoptotic threshold, and selectively induced PC cell apoptosis, resulting in almost complete elimination of tumors in xenograft mice without obvious complications. Our findings provide new insight into DNA repair and apoptosis in cancer, and offer a new platform for developing novel anticancer therapeutics.
Collapse
Affiliation(s)
- Bo Yang
- Department of General Surgery, The Third Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- The First People's Hospital of Changzhou, Changzhou, 213003, P. R. China
| | - Bin Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- State Key Laboratory of Radiation Medicine, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
- Suzhou Institute of Systems Medicine, Suzhou, 215123, China
| | - Zhifei Cao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
- State Key Laboratory of Radiation Medicine, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
- Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
- 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
| | - Xingdong Xu
- Department of General Surgery, The People's Hospital of China, Three Gorges University, Yichang, 443000, P. R. China
- The First People's Hospital of Yichang, Yichang, 443000, P. R. China
| | - Zihe Huo
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- State Key Laboratory of Radiation Medicine, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Pan Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- State Key Laboratory of Radiation Medicine, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Shufen Xiang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- State Key Laboratory of Radiation Medicine, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Zhe Zhao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- State Key Laboratory of Radiation Medicine, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Chunping Lv
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- State Key Laboratory of Radiation Medicine, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Mei Meng
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- State Key Laboratory of Radiation Medicine, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Gaochuan Zhang
- Department of Bioinformatics, College of Basic Medical Science, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Liang Dong
- Department of Pathology, College of Basic Medical Science, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Shucheng Shi
- Department of General Surgery, The Third Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- The First People's Hospital of Changzhou, Changzhou, 213003, P. R. China
| | - Lan Yang
- Department of General Surgery, The Third Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- The First People's Hospital of Changzhou, Changzhou, 213003, P. R. China
| | - Quansheng Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
- State Key Laboratory of Radiation Medicine, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
- Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
- 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
| |
Collapse
|
12
|
Bagchi AK, Surendran A, Malik A, Jassal DS, Ravandi A, Singal PK. IL-10 attenuates OxPCs-mediated lipid metabolic responses in ischemia reperfusion injury. Sci Rep 2020; 10:12120. [PMID: 32694752 PMCID: PMC7374703 DOI: 10.1038/s41598-020-68995-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 01/03/2020] [Indexed: 12/12/2022] Open
Abstract
Oxidized phospholipids (OxPLs) promote inflammation as well as low density lipoprotein (LDL) uptake in a variety of physiological and pathological states. Given the anti-inflammatory role of the cytokine IL-10, we investigated its modulatory effect on the production of oxidized phosphatidylcholines (OxPCs) as well as lipid metabolic responses in global myocardial ischemia/reperfusion (I/R) injury. Increased OxPCs levels, by 1-Palmitoyl-2-(5-oxovaleryl)-sn-glycero-3-phosphocholine (POVPC), promoted oxidative stress (OS) and cell death. OxPCs-mediated-OS, resulted in oxidized low-density lipoprotein receptor 1 (LOX-1) activation and upregulated the expression of toll-like receptor 2 (TLR2). IL-10-induced increase in proprotein convertase subtilisin/kexin type 9 (PCSK9) negatively regulated LOX-1 as well as TLR2 inflammatory responses. Under stress conditions, phosphorylation of sterol regulatory element binding protein 1c (SREBP 1c) was prevented by IL-10. The latter also prevented the generation of OxPCs and reduced their ratio (OxPCs/PCs) during injury. LOX-1 activation also promoted SREBP1c-mediated TGF-βRII expression which was inhibited by IL-10. Both fragmented and non-fragmented OxPCs were elevated during I/R and this effect was attenuated by IL-10. The largest impact (two–threefold change at log2) was on PAzPC, (1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine)—a fragmented OxPC. Thus it appears that among different OxPCs, IL-10 significantly reduces a single molecule (PAzPC)-mediated lipid metabolic responses in cardiomyocytes thereby mitigating inflammation and cell death.
Collapse
Affiliation(s)
- Ashim K Bagchi
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Ave. Room R3022, Winnipeg, MB, R2H 2A6, Canada.,Department of Physiology and Pathophysiology, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Ave. Room R3022, Winnipeg, MB, R2H 2A6, Canada
| | - Arun Surendran
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Ave. Room R3022, Winnipeg, MB, R2H 2A6, Canada.,Department of Physiology and Pathophysiology, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Ave. Room R3022, Winnipeg, MB, R2H 2A6, Canada
| | - Akshi Malik
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Ave. Room R3022, Winnipeg, MB, R2H 2A6, Canada.,Department of Physiology and Pathophysiology, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Ave. Room R3022, Winnipeg, MB, R2H 2A6, Canada
| | - Davinder S Jassal
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Ave. Room R3022, Winnipeg, MB, R2H 2A6, Canada.,Section of Cardiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Amir Ravandi
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Ave. Room R3022, Winnipeg, MB, R2H 2A6, Canada.,Section of Cardiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Pawan K Singal
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Ave. Room R3022, Winnipeg, MB, R2H 2A6, Canada. .,Department of Physiology and Pathophysiology, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Ave. Room R3022, Winnipeg, MB, R2H 2A6, Canada.
| |
Collapse
|
13
|
Moseti D, Regassa A, Chen C, O K, Kim WK. 25-Hydroxycholesterol Inhibits Adipogenic Differentiation of C3H10T1/2 Pluripotent Stromal Cells. Int J Mol Sci 2020; 21:ijms21020412. [PMID: 31936485 PMCID: PMC7013583 DOI: 10.3390/ijms21020412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/30/2019] [Accepted: 01/02/2020] [Indexed: 01/07/2023] Open
Abstract
Understanding of adipogenesis is important to find remedies for obesity and related disorders. In addition, it is also critical in bone disorders because there is a reciprocal relationship between adipogenesis and osteogenesis in bone micro-environment. Oxysterols are pro-osteogenic and anti-adipogenic molecules via hedgehog activation in pluripotent bone marrow stomal cells. However, no study has evaluated the role of specific oxysterols in C3H10T1/2 cells, which are a good cell model for studying osteogenesis and adipogenesis in bone-marrows. Thus, we investigated the effects of specific oxysterols on adipogenesis and expression of adipogenic transcripts in C3H10T1/2 cells. Treatment of cells with DMITro significantly induced mRNA expression of Pparγ. This induction was significantly inhibited by 25-HC. The expression of C/cepα, Fabp4 and Lpl was also inhibited by 25-HC. To determine the mechanism by which 25-HC inhibits adipogenesis, the effects of the hedgehog signalling pathway inhibitor, cyclopamine and CUR61414, were evaluated. Treatment of C3H10T1/2 cells with DMITro + cyclopamine or DMITro + CUR61414 for 96h did not modulate adipocyte differentiation; cyclopamine and CUR61414 did not reverse the inhibitory effects of 25-HC, suggesting that the canonical hedgehog signalling may not play a role in the anti-adipogenic effects of 25-HC in C3H10T1/2 cells. In addition, LXR agonist did not inhibit adipogenesis, but 25-HC strongly inhibits adipogenesis of C3H10T1/2 cells. Our observations showed that 25-HC was the most potent oxysterol in inhibiting adipogenesis and the expression of key adipogenic transcripts in C3H10T1/2 cells among the tested oxysterols, suggesting its potential application in providing an intervention in osteoporosis and obesity. We also report that the inhibitory effects of 25-HC on adipogenic differentiation in C3H10T1/2 cells are not mediated by hedgehog signaling and LXR.
Collapse
Affiliation(s)
- Dorothy Moseti
- Department of Animal Science, University of Manitoba, 201 Animal Science building, Winnipeg, MB R3T 2N2, Canada (A.R.)
| | - Alemu Regassa
- Department of Animal Science, University of Manitoba, 201 Animal Science building, Winnipeg, MB R3T 2N2, Canada (A.R.)
| | - Chongxiao Chen
- Department of Poultry Science, University of Georgia, 303 Poultry Science building, Athens, GA 30602-2772, USA;
| | - Karmin O
- Department of Animal Science, University of Manitoba, 201 Animal Science building, Winnipeg, MB R3T 2N2, Canada (A.R.)
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, 303 Poultry Science building, Athens, GA 30602-2772, USA;
- Correspondence: ; Tel./Fax: +1-706-248-9584
| |
Collapse
|
14
|
Püschel GP, Henkel J. Dietary cholesterol does not break your heart but kills your liver. Porto Biomed J 2019; 3:e12. [PMID: 31595236 PMCID: PMC6726297 DOI: 10.1016/j.pbj.0000000000000012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 05/11/2018] [Indexed: 02/07/2023] Open
Abstract
It is increasingly accepted that dietary cholesterol has a much lower impact on the progression of cardiovascular disease than previously assumed. However, both animal experiments and human studies seem to support the view that dietary cholesterol may contribute to the transition from benign steatosis to the potentially fatal non-alcoholic steatohepatitis. Cholesterol esters and cholesterol accumulate in the hepatocyte and impair its function. This leads to oxidative stress and endoplasmic reticulum stress triggering the release of pro-inflammatory cytokines and rendering the hepatocyte more susceptible to apoptotic or necrotic cell death. Kupffer cells group around dying hepatocytes and phagocytose the hepatocyte debris and lipids. In addition, they are exposed to lipid peroxidation products released from hepatocytes. Kupffer cells, thus activated, release pro-inflammatory, chemotactic and profibrotic cytokines that promote inflammation and fibrosis. Therefore, dietary cholesterol may be harmful to the liver, in particular when administered in combination with polyunsaturated fatty acids that favor lipid peroxidation.
Collapse
Affiliation(s)
- Gerhard P Püschel
- Department of Nutritional Biochemistry, University of Potsdam, Institute of Nutritional Science, Nuthetal, Germany
| | - Janin Henkel
- Department of Nutritional Biochemistry, University of Potsdam, Institute of Nutritional Science, Nuthetal, Germany
| |
Collapse
|
15
|
Corton JC. Frequent Modulation of the Sterol Regulatory Element Binding Protein (SREBP) by Chemical Exposure in the Livers of Rats. ACTA ACUST UNITED AC 2019; 10:113-129. [PMID: 30931410 DOI: 10.1016/j.comtox.2019.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Inappropriate activation of sterol regulatory element-binding proteins (SREBPs) can lead to non-alcoholic fatty liver disease (NAFLD). To link chemical exposure to SREBP activity, a previously characterized gene expression biomarker (Rooney et al., 2019) was used to identify microarray comparisons from rat liver that exhibited significant positive or negative correlation to the biomarker. The effects of 620 chemicals on SREBP activity were examined across 9305 chemical-dose-time microarray comparisons. SREBP was found to be frequently modulated by chemical exposure with 54% of the chemicals affecting SREBP activity. Activators included inhibitors of cholesterogenesis that act to inhibit HMG-CoA reductase (statins) or inhibit Cyp51 (conazoles). Most chemical effects were transient, lasting usually no more than 2-4 days. Modulation of SREBP in most cases led to coordinated increases or decreases in lipogenic and cholesterogenic genes. However, 570 chemical exposure conditions were identified in which regulation was uncoupled. Most of these conditions affected cholesterogenic genes in the absence of parallel effects on lipogenic genes. Together, these findings show that SREBP is a frequent target of chemical exposure and expression of lipogenic and cholesterogenic genes can be uncoupled.
Collapse
Affiliation(s)
- J Christopher Corton
- Integrated Systems Toxicology Division, NHEERL/ORD, US-EPA, Research Triangle Park, NC 27711
| |
Collapse
|
16
|
Changes of the Fatty Acid Profile in Erythrocyte Membranes of Patients following 6-Month Dietary Intervention Aimed at the Regression of Nonalcoholic Fatty Liver Disease (NAFLD). Can J Gastroenterol Hepatol 2018; 2018:5856201. [PMID: 30631760 PMCID: PMC6304595 DOI: 10.1155/2018/5856201] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/16/2018] [Accepted: 11/22/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is closely related to the metabolism disorders of fatty acids. The pathogenesis of the disease includes an increased concentration of FFA in blood, an increase in the biosynthesis of fatty acids, and disorders in the process of β-oxidation. OBJECTIVE The aim of the study was to analyze the fatty acids in erythrocyte membranes among 55 patients with NAFLD who were subjected to a 6-month dietary intervention in order to reduce fatty liver. MATERIALS AND METHODS Basic anthropometric and biochemical measurements were performed. The profile of fatty acids was measured in the membranes of erythrocytes and analyzed by gas chromatography. The dietary compliance was evaluated using 72-diary questionnaires, anthropometric measurements. RESULTS With the reduction of fatty liver (p<0.01), the patients' biochemical and anthropometric parameters were significantly improved. A significant decrease in the concentration of alanine aminotransferase (p<0.01) and asparagine aminotransferase (p<0.01) was observed, along with a decrease in the amount of insulin (p<0.05) and insulin resistance (p<0.05). Significant changes in terms of the fatty acid profile were observed among patients who followed the dietary intervention. There was a noticeable tendency in terms of the reduction palmitic acid (p<0.055) and a significant reduction of stearic acid (p<0.05). Significant changes in the profile of fatty acids were also associated with the reductionof palmitoleic (p<0.05) and oleic acids (p<0.05). Another statistically significant change observed was the increase in polyunsaturated fatty acids. In particular (p<0.01) the rise of eicosapentaenoic (p<0.055) and docosahexaenoic acids (p<0.55) was noted. CONCLUSION The profile of fatty acids turned out to be a potential biomarker of the liver changes during NAFLD regression. Further research is needed to fully elucidate the usefulness and applicability of our findings in the management of NAFLD.
Collapse
|
17
|
Jiang SY, Li H, Tang JJ, Wang J, Luo J, Liu B, Wang JK, Shi XJ, Cui HW, Tang J, Yang F, Qi W, Qiu WW, Song BL. Discovery of a potent HMG-CoA reductase degrader that eliminates statin-induced reductase accumulation and lowers cholesterol. Nat Commun 2018; 9:5138. [PMID: 30510211 PMCID: PMC6277434 DOI: 10.1038/s41467-018-07590-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/31/2018] [Indexed: 12/17/2022] Open
Abstract
Statins are inhibitors of HMG-CoA reductase, the rate-limiting enzyme of cholesterol biosynthesis, and have been clinically used to treat cardiovascular disease. However, a paradoxical increase of reductase protein following statin treatment may attenuate the effect and increase the side effects. Here we present a previously unexplored strategy to alleviate statin-induced reductase accumulation by inducing its degradation. Inspired by the observations that cholesterol intermediates trigger reductase degradation, we identify a potent degrader, namely Cmpd 81, through structure-activity relationship analysis of sterol analogs. Cmpd 81 stimulates ubiquitination and degradation of reductase in an Insig-dependent manner, thus dramatically reducing protein accumulation induced by various statins. Cmpd 81 can act alone or synergistically with statin to lower cholesterol and reduce atherosclerotic plaques in mice. Collectively, our work suggests that inducing reductase degradation by Cmpd 81 or similar chemicals alone or in combination with statin therapy can be a promising strategy for treating cardiovascular disease.
Collapse
Affiliation(s)
- Shi-You Jiang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Institute for Advanced Studies, Wuhan University, 430072, Wuhan, China
| | - Hui Li
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, China
| | - Jing-Jie Tang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Jie Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, China
| | - Jie Luo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Institute for Advanced Studies, Wuhan University, 430072, Wuhan, China
| | - Bing Liu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, China
| | - Jin-Kai Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Institute for Advanced Studies, Wuhan University, 430072, Wuhan, China
| | - Xiong-Jie Shi
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Institute for Advanced Studies, Wuhan University, 430072, Wuhan, China
| | - Hai-Wei Cui
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, China
| | - Jie Tang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, China
| | - Fan Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, China
| | - Wei Qi
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wen-Wei Qiu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, China.
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Institute for Advanced Studies, Wuhan University, 430072, Wuhan, China.
| |
Collapse
|
18
|
Miyazaki T, Honda A, Ikegami T, Iida T, Matsuzaki Y. Human-specific dual regulations of FXR-activation for reduction of fatty liver using in vitro cell culture model. J Clin Biochem Nutr 2018; 64:112-123. [PMID: 30936623 PMCID: PMC6436045 DOI: 10.3164/jcbn.18-80] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 09/19/2018] [Indexed: 12/12/2022] Open
Abstract
Nuclear receptor farnesoid X receptor activation inhibits fatty acid synthesis through the liver X receptor-α-sterol regulatory element binding protein-1c pathway universally in animals, but also has human-specific crosstalk with the peroxisome proliferator-activated receptor-α. The effects of farnesoid X receptor-ligands on both the synthesis and degradation of fatty liver through nuclear receptor-related regulation were investigated in both human and murine hepatocytes. A fatty liver culture cell model was established using a synthetic liver X receptor-α-ligand (To901317) for both human and mouse non-neoplastic hepatocytes. The hepatocytes were exposed to natural or synthetic farnesoid X receptor-ligands (bile acids, GW4064, obeticholic acid) together with or after To901317. Cellular triglyceride accumulation was significantly inhibited by the farnesoid X receptor-ligands along with inhibition of lipogenic genes and up-regulation of farnesoid X receptor-target small heterodimer partner in both human and mouse cells. The accumulated triglyceride was significantly degraded by the farnesoid X receptor-ligands only in the human cells accompanied with the up-regulations of peroxisome proliferator-activated receptor-α and fatty acid β-oxidation. Farnesoid X receptor-ligands can be therapeutic agents for treating human fatty liver through dual effects on inhibition of lipogenesis and on enhancement of lipolysis.
Collapse
Affiliation(s)
- Teruo Miyazaki
- Joint Research Center, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuo, Ami, Inashiki, Ibaraki 300-0395, Japan
| | - Akira Honda
- Joint Research Center, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuo, Ami, Inashiki, Ibaraki 300-0395, Japan.,Department of Internal Medicine, Division of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuo, Ami, Inashiki, Ibaraki 300-0395, Japan
| | - Tadashi Ikegami
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuo, Ami, Inashiki, Ibaraki 300-0395, Japan
| | - Takashi Iida
- Department of Chemistry, College of Humanities and Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
| | - Yasushi Matsuzaki
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuo, Ami, Inashiki, Ibaraki 300-0395, Japan
| |
Collapse
|
19
|
Howell GE, McDevitt E, Henein L, Mulligan C, Young D. "Trans-nonachlor increases extracellular free fatty acid accumulation and de novo lipogenesis to produce hepatic steatosis in McArdle-RH7777 cells". Toxicol In Vitro 2018; 50:285-292. [PMID: 29654899 DOI: 10.1016/j.tiv.2018.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/28/2018] [Accepted: 04/05/2018] [Indexed: 12/19/2022]
Abstract
Recent studies suggest there may be an environmental exposure component to the development and progression of non-alcoholic fatty liver disease (NAFLD) involving the organochlorine (OC) pesticides or their metabolites. However, the roles of OC compounds in the development of NAFLD has not been fully elucidated. Therefore, the current study was designed to determine if exposure to trans-nonachlor, a prevalent OC compound, could promote hepatocyte lipid accumulation and determine potential pro-steatotic mechanisms. McArdle-RH7777 (McA) hepatoma cells were incubated with trans-nonachlor for 24 h then neutral lipid accumulation was determined by Oil Red O staining. Exposure to trans-nonachlor produced a concentration dependent increase in neutral lipid accumulation. Trans-nonachlor also increased extracellular free fatty acid-induced neutral lipid accumulation which appears to be due at least in part to increased free fatty acid accumulation as evident by increased accumulation of Bodipy labeled dodecanoic acid. Additionally, 14C-acetate incorporation into total cellular lipids was increased by trans-nonachlor implicating increased de novo lipogenesis (DNL) as a potential mediator of trans-nonachlor-induced neutral lipid accumulation. Taken together, the present data indicate exposure to trans-nonachlor has a direct, pro-steatotic effect on hepatocytes to increase lipid accumulation through the combinatorial actions of extracellular free fatty acid accumulation and increased DNL.
Collapse
Affiliation(s)
- George Eli Howell
- Mississippi State University College of Veterinary Medicine, Department of Basic Sciences, Mississippi State, MS 39762, United States.
| | - Erin McDevitt
- Mississippi State University College of Veterinary Medicine, Department of Basic Sciences, Mississippi State, MS 39762, United States
| | - Lucie Henein
- Mississippi State University College of Veterinary Medicine, Department of Basic Sciences, Mississippi State, MS 39762, United States
| | - Charlee Mulligan
- Mississippi State University College of Veterinary Medicine, Department of Basic Sciences, Mississippi State, MS 39762, United States
| | - Darian Young
- Mississippi State University College of Veterinary Medicine, Department of Basic Sciences, Mississippi State, MS 39762, United States
| |
Collapse
|
20
|
DeBose-Boyd RA, Ye J. SREBPs in Lipid Metabolism, Insulin Signaling, and Beyond. Trends Biochem Sci 2018; 43:358-368. [PMID: 29500098 DOI: 10.1016/j.tibs.2018.01.005] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 12/22/2022]
Abstract
Sterol regulatory element-binding proteins (SREBPs) are a family of membrane-bound transcription factors that activate genes encoding enzymes required for synthesis of cholesterol and unsaturated fatty acids. SREBPs are controlled by multiple mechanisms at the level of mRNA synthesis, proteolytic activation, and transcriptional activity. In this review, we summarize the recent findings that contribute to the current understanding of the regulation of SREBPs and their physiologic roles in maintenance of lipid homeostasis, insulin signaling, innate immunity, and cancer development.
Collapse
Affiliation(s)
- Russell A DeBose-Boyd
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9046, USA.
| | - Jin Ye
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9046, USA.
| |
Collapse
|
21
|
Gianfrancesco MA, Paquot N, Piette J, Legrand-Poels S. Lipid bilayer stress in obesity-linked inflammatory and metabolic disorders. Biochem Pharmacol 2018; 153:168-183. [PMID: 29462590 DOI: 10.1016/j.bcp.2018.02.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/15/2018] [Indexed: 12/13/2022]
Abstract
The maintenance of the characteristic lipid compositions and physicochemical properties of biological membranes is essential for their proper function. Mechanisms allowing to sense and restore membrane homeostasis have been identified in prokaryotes for a long time and more recently in eukaryotes. A membrane remodeling can result from aberrant metabolism as seen in obesity. In this review, we describe how such lipid bilayer stress can account for the modulation of membrane proteins involved in the pathogenesis of obesity-linked inflammatory and metabolic disorders. We address the case of the Toll-like receptor 4 that is implicated in the obesity-related low grade inflammation and insulin resistance. The lipid raft-mediated TLR4 activation is promoted by an enrichment of the plasma membrane with saturated lipids or cholesterol increasing the lipid phase order. We discuss of the plasma membrane Na, K-ATPase that illustrates a new concept according to which direct interactions between specific residues and particular lipids determine both stability and activity of the pump in parallel with indirect effects of the lipid bilayer. The closely related sarco(endo)-plasmic Ca-ATPase embedded in the more fluid ER membrane seems to be more sensitive to a lipid bilayer stress as demonstrated by its inactivation in cholesterol-loaded macrophages or its inhibition mediated by an increased PtdCho/PtdEtn ratio in obese mice hepatocytes. Finally, we describe the model recently proposed for the activation of the conserved IRE-1 protein through alterations in the ER membrane lipid packing and thickness. Such IRE-1 activation could occur in response to abnormal lipid synthesis and membrane remodeling as observed in hepatocytes exposed to excess nutrients. Since the IRE-1/XBP1 branch also stimulates the lipid synthesis, this pathway could create a vicious cycle "lipogenesis-ER lipid bilayer stress-lipogenesis" amplifying hepatic ER pathology and the obesity-linked systemic metabolic defects.
Collapse
Affiliation(s)
- Marco A Gianfrancesco
- Laboratory of Immunometabolism and Nutrition, GIGA-I3, University of Liège, Liège, Belgium; Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, University Hospital of Liège, Liège, Belgium
| | - Nicolas Paquot
- Laboratory of Immunometabolism and Nutrition, GIGA-I3, University of Liège, Liège, Belgium; Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, University Hospital of Liège, Liège, Belgium
| | - Jacques Piette
- Laboratory of Virology and Immunology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
| | - Sylvie Legrand-Poels
- Laboratory of Immunometabolism and Nutrition, GIGA-I3, University of Liège, Liège, Belgium; Laboratory of Virology and Immunology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium.
| |
Collapse
|
22
|
Linden AG, Li S, Choi HY, Fang F, Fukasawa M, Uyeda K, Hammer RE, Horton JD, Engelking LJ, Liang G. Interplay between ChREBP and SREBP-1c coordinates postprandial glycolysis and lipogenesis in livers of mice. J Lipid Res 2018; 59:475-487. [PMID: 29335275 PMCID: PMC5832931 DOI: 10.1194/jlr.m081836] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/02/2018] [Indexed: 12/28/2022] Open
Abstract
Lipogenesis in liver is highest in the postprandial state; insulin activates SREBP-1c, which transcriptionally activates genes involved in FA synthesis, whereas glucose activates carbohydrate-responsive element-binding protein (ChREBP), which activates both glycolysis and FA synthesis. Whether SREBP-1c and ChREBP act independently of one another is unknown. Here, we characterized mice with liver-specific deletion of ChREBP (L-Chrebp−/− mice). Hepatic ChREBP deficiency resulted in reduced mRNA levels of glycolytic and lipogenic enzymes, particularly in response to sucrose refeeding following fasting, a dietary regimen that elicits maximal lipogenesis. mRNA and protein levels of SREBP-1c, a master transcriptional regulator of lipogenesis, were also reduced in L-Chrebp−/− livers. Adeno-associated virus-mediated restoration of nuclear SREBP-1c in L-Chrebp−/− mice normalized expression of a subset of lipogenic genes, while not affecting glycolytic genes. Conversely, ChREBP overexpression alone failed to support expression of lipogenic genes in the livers of mice lacking active SREBPs as a result of Scap deficiency. Together, these data show that SREBP-1c and ChREBP are both required for coordinated induction of glycolytic and lipogenic mRNAs. Whereas SREBP-1c mediates insulin’s induction of lipogenic genes, ChREBP mediates glucose’s induction of both glycolytic and lipogenic genes. These overlapping, but distinct, actions ensure that the liver synthesizes FAs only when insulin and carbohydrates are both present.
Collapse
Affiliation(s)
- Albert G Linden
- Departments of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Shili Li
- Departments of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Hwa Y Choi
- Departments of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Fei Fang
- Departments of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Masashi Fukasawa
- Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390.,Veterans Affairs Medical Center, Dallas, TX 75216
| | - Kosaku Uyeda
- Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390.,Veterans Affairs Medical Center, Dallas, TX 75216
| | - Robert E Hammer
- Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jay D Horton
- Departments of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390.,Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Luke J Engelking
- Departments of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390 .,Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Guosheng Liang
- Departments of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
23
|
Abstract
AbstractDietary phospholipid (PL) supplementation has been shown to reduce lipid accumulation in the tissues of farmed fish; however, the mechanisms underlying this effect are largely unknown. Thus, the present study was conducted to evaluate the potential impacts of PL on hepatic lipid metabolism both in vivo and in vitro. For in vivo study, four experimental diets – low lipid and low PL diet, as control diet (LL-LP diet, containing 12 % lipid and 1·5 % PL), low-lipid and high-PL diet (containing 12 % lipid and 8 % PL), high-lipid and low-PL diet (HL-LP diet, containing 20 % lipid and 1·5 % PL) and high-lipid and high-PL diet (HL-HP diet, containing 20 % lipid and 8 % PL) – were randomly allocated to four groups of large yellow croaker (Larimichthys crocea) (three cages per group) with similar initial body weight (approximately 8 g). For in vitro study, primary hepatocytes isolated from large yellow croaker were incubated either with graded levels of phosphatidylcholine (PC) (0–250 μm) or small interfering RNA (siRNA) for CTP: choline phosphate cytidylyltranferase α (CCTα) (siRNA-CCTα). Results showed that survival was independent of dietary treatments (P>0·05). Weight gain and feed efficiency in the HL-HP group were significantly higher than in the LL-LP and HL-LP groups (P<0·05). High level of dietary PL could markedly reduce abnormal hepatic lipid accumulation induced by the HL-LP diet (P<0·05). Similarly, compared with the corresponding controls, a significant decrease/increase in lipid content was observed in primary hepatocytes incubated with PC/siRNA-CCTα (P<0·05). High level of dietary PL reversed the HL-LP diet-induced increased levels of mRNA of fatty acid uptake and lipid synthesis related genes (P<0·05). In addition, High level of dietary PL markedly down-regulated the transcript levels of fatty acid oxidation-related genes and enhanced the transcript levels of VLDL assembly-related genes regardless of dietary lipid levels (P<0·05). Compared with corresponding controls, primary hepatocytes treated with PC showed significantly higher mRNA expression of lipid synthesis and VLDL assembly-related genes and lower mRNA expression of fatty acid oxidation-related genes, with hepatocytes treated with siRNA-CCTα exhibiting the opposite trend (P<0·05). In summary, these results demonstrated that high level of dietary PL might reverse the HL-LP diet-induced abnormal lipid accumulation in the liver through inhibiting fatty acid uptake and lipid synthesis, together with promoting the lipid export at the transcriptional level. Lipid export-promoting effect of PC was confirmed by in vitro studies. The present study showed for the first time that PL or PC could influence various metabolic pathways to regulate hepatic lipid deposition in fish at least at the transcriptional level.
Collapse
|
24
|
Xian X, Ding Y, Dieckmann M, Zhou L, Plattner F, Liu M, Parks JS, Hammer RE, Boucher P, Tsai S, Herz J. LRP1 integrates murine macrophage cholesterol homeostasis and inflammatory responses in atherosclerosis. eLife 2017; 6:e29292. [PMID: 29144234 PMCID: PMC5690284 DOI: 10.7554/elife.29292] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 10/22/2017] [Indexed: 12/11/2022] Open
Abstract
Low-density lipoprotein receptor-related protein 1 (LRP1) is a multifunctional cell surface receptor with diverse physiological roles, ranging from cellular uptake of lipoproteins and other cargo by endocytosis to sensor of the extracellular environment and integrator of a wide range of signaling mechanisms. As a chylomicron remnant receptor, LRP1 controls systemic lipid metabolism in concert with the LDL receptor in the liver, whereas in smooth muscle cells (SMC) LRP1 functions as a co-receptor for TGFβ and PDGFRβ in reverse cholesterol transport and the maintenance of vascular wall integrity. Here we used a knockin mouse model to uncover a novel atheroprotective role for LRP1 in macrophages where tyrosine phosphorylation of an NPxY motif in its intracellular domain initiates a signaling cascade along an LRP1/SHC1/PI3K/AKT/PPARγ/LXR axis to regulate and integrate cellular cholesterol homeostasis through the expression of the major cholesterol exporter ABCA1 with apoptotic cell removal and inflammatory responses.
Collapse
Affiliation(s)
- Xunde Xian
- Departments of Molecular GeneticsUT Southwestern Medical CenterDallasUnited States
| | - Yinyuan Ding
- Departments of Molecular GeneticsUT Southwestern Medical CenterDallasUnited States
- Key Laboratory of Medical Electrophysiology, Ministry of Education of ChinaInstitute of Cardiovascular Research, Southwest Medical UniversityLuzhouChina
| | - Marco Dieckmann
- Departments of Molecular GeneticsUT Southwestern Medical CenterDallasUnited States
| | - Li Zhou
- Departments of Molecular GeneticsUT Southwestern Medical CenterDallasUnited States
| | - Florian Plattner
- Department of PsychiatryUniversity of Texas Southwestern Medical CenterDallasUnited States
- Center for Translational Neurodegeneration ResearchUniversity of Texas Southwestern Medical CenterDallasUnited States
| | - Mingxia Liu
- Section on Molecular Medicine, Department of Internal MedicineWake Forest School of MedicineWinston-SalemNorth Carolina
| | - John S Parks
- Section on Molecular Medicine, Department of Internal MedicineWake Forest School of MedicineWinston-SalemNorth Carolina
| | - Robert E Hammer
- Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasUnited States
| | | | - Shirling Tsai
- Department of SurgeryUT Southwestern Medical CenterDallasUnited States
- Dallas VA Medical CenterDallasUnited States
| | - Joachim Herz
- Departments of Molecular GeneticsUT Southwestern Medical CenterDallasUnited States
- Center for Translational Neurodegeneration ResearchUniversity of Texas Southwestern Medical CenterDallasUnited States
- Department of NeuroscienceUT SouthwesternDallasUnited States
- Department of Neurology and NeurotherapeuticsUT SouthwesternDallasUnited States
| |
Collapse
|
25
|
Zhang L, Rajbhandari P, Priest C, Sandhu J, Wu X, Temel R, Castrillo A, de Aguiar Vallim TQ, Sallam T, Tontonoz P. Inhibition of cholesterol biosynthesis through RNF145-dependent ubiquitination of SCAP. eLife 2017; 6:e28766. [PMID: 29068315 PMCID: PMC5656429 DOI: 10.7554/elife.28766] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 10/05/2017] [Indexed: 12/25/2022] Open
Abstract
Cholesterol homeostasis is maintained through concerted action of the SREBPs and LXRs. Here, we report that RNF145, a previously uncharacterized ER membrane ubiquitin ligase, participates in crosstalk between these critical signaling pathways. RNF145 expression is induced in response to LXR activation and high-cholesterol diet feeding. Transduction of RNF145 into mouse liver inhibits the expression of genes involved in cholesterol biosynthesis and reduces plasma cholesterol levels. Conversely, acute suppression of RNF145 via shRNA-mediated knockdown, or chronic inactivation of RNF145 by genetic deletion, potentiates the expression of cholesterol biosynthetic genes and increases cholesterol levels both in liver and plasma. Mechanistic studies show that RNF145 triggers ubiquitination of SCAP on lysine residues within a cytoplasmic loop essential for COPII binding, potentially inhibiting its transport to Golgi and subsequent processing of SREBP-2. These findings define an additional mechanism linking hepatic sterol levels to the reciprocal actions of the SREBP-2 and LXR pathways.
Collapse
Affiliation(s)
- Li Zhang
- Department of Pathology and Laboratory MedicineHoward Hughes Medical Institute, University of California, Los AngelesLos AngelesUnited States
| | - Prashant Rajbhandari
- Department of Pathology and Laboratory MedicineHoward Hughes Medical Institute, University of California, Los AngelesLos AngelesUnited States
| | - Christina Priest
- Department of Pathology and Laboratory MedicineHoward Hughes Medical Institute, University of California, Los AngelesLos AngelesUnited States
| | - Jaspreet Sandhu
- Department of Pathology and Laboratory MedicineHoward Hughes Medical Institute, University of California, Los AngelesLos AngelesUnited States
| | - Xiaohui Wu
- Department of Medicine, Division of CardiologyUniversity of California, Los AngelesLos AngelesUnited States
| | - Ryan Temel
- Saha Cardiovascular Research CenterUniversity of KentuckyLexingtonUnited States
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonUnited States
| | - Antonio Castrillo
- Instituto de Investigaciones Biomédicas Alberto SolsCSIC-Universidad Autónoma de Madrid, Unidad de Biomedicina-Universidad de Las Palmas de Gran Canaria (Unidad asociada al CSIC)Las Palmas de Gran CanariaSpain
- Instituto Universitario de Investigaciones Biomédicas y SanitariasUniversidad de Las Palmas de Gran CanariaLas Palmas de Gran CanariaSpain
| | - Thomas Q de Aguiar Vallim
- Department of Medicine, Division of CardiologyUniversity of California, Los AngelesLos AngelesUnited States
| | - Tamer Sallam
- Department of Medicine, Division of CardiologyUniversity of California, Los AngelesLos AngelesUnited States
| | - Peter Tontonoz
- Department of Pathology and Laboratory MedicineHoward Hughes Medical Institute, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
26
|
Bellanti F, Villani R, Facciorusso A, Vendemiale G, Serviddio G. Lipid oxidation products in the pathogenesis of non-alcoholic steatohepatitis. Free Radic Biol Med 2017; 111:173-185. [PMID: 28109892 DOI: 10.1016/j.freeradbiomed.2017.01.023] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/11/2017] [Accepted: 01/15/2017] [Indexed: 02/08/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the major public health challenge for hepatologists in the twenty-first century. NAFLD comprises a histological spectrum ranging from simple steatosis or fatty liver, to steatohepatitis, fibrosis, and cirrhosis. It can be categorized into two principal phenotypes: (1) non-alcoholic fatty liver (NAFL), and (2) non-alcoholic steatohepatitis (NASH). The mechanisms of NAFLD progression consist of lipid homeostasis alterations, redox unbalance, insulin resistance, and inflammation in the liver. Even though several studies show an association between the levels of lipid oxidation products and disease state, experimental evidence suggests that compounds such as reactive aldehydes and cholesterol oxidation products, in addition to representing hallmarks of hepatic oxidative damage, may behave as active players in liver dysfunction and the development of NAFLD. This review summarizes the processes that contribute to the metabolic alterations occurring in fatty liver that produce fatty acid and cholesterol oxidation products in NAFLD, with a focus on inflammation, the control of insulin signalling, and the transcription factors involved in lipid metabolism.
Collapse
Affiliation(s)
- Francesco Bellanti
- C.U.R.E. Centre for Liver Diseases Research and Treatment, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy
| | - Rosanna Villani
- C.U.R.E. Centre for Liver Diseases Research and Treatment, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy
| | - Antonio Facciorusso
- C.U.R.E. Centre for Liver Diseases Research and Treatment, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy
| | - Gianluigi Vendemiale
- C.U.R.E. Centre for Liver Diseases Research and Treatment, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy
| | - Gaetano Serviddio
- C.U.R.E. Centre for Liver Diseases Research and Treatment, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy.
| |
Collapse
|
27
|
Rong X, Wang B, Palladino EN, de Aguiar Vallim TQ, Ford DA, Tontonoz P. ER phospholipid composition modulates lipogenesis during feeding and in obesity. J Clin Invest 2017; 127:3640-3651. [PMID: 28846071 DOI: 10.1172/jci93616] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/11/2017] [Indexed: 12/31/2022] Open
Abstract
Sterol regulatory element-binding protein 1c (SREBP-1c) is a central regulator of lipogenesis whose activity is controlled by proteolytic cleavage. The metabolic factors that affect its processing are incompletely understood. Here, we show that dynamic changes in the acyl chain composition of ER phospholipids affect SREBP-1c maturation in physiology and disease. The abundance of polyunsaturated phosphatidylcholine in liver ER is selectively increased in response to feeding and in the setting of obesity-linked insulin resistance. Exogenous delivery of polyunsaturated phosphatidylcholine to ER accelerated SREBP-1c processing through a mechanism that required an intact SREBP cleavage-activating protein (SCAP) pathway. Furthermore, induction of the phospholipid-remodeling enzyme LPCAT3 in response to liver X receptor (LXR) activation promoted SREBP-1c processing by driving the incorporation of polyunsaturated fatty acids into ER. Conversely, LPCAT3 deficiency increased membrane saturation, reduced nuclear SREBP-1c abundance, and blunted the lipogenic response to feeding, LXR agonist treatment, or obesity-linked insulin resistance. Desaturation of the ER membrane may serve as an auxiliary signal of the fed state that promotes lipid synthesis in response to nutrient availability.
Collapse
Affiliation(s)
- Xin Rong
- Department of Pathology and Laboratory Medicine, Department of Medicine, UCLA, Los Angeles, California, USA
| | - Bo Wang
- Department of Pathology and Laboratory Medicine, Department of Medicine, UCLA, Los Angeles, California, USA
| | - Elisa Nd Palladino
- Department of Biochemistry and Molecular Biology, and Center for Cardiovascular Research, Saint Louis University, St. Louis, Missouri, USA
| | | | - David A Ford
- Department of Biochemistry and Molecular Biology, and Center for Cardiovascular Research, Saint Louis University, St. Louis, Missouri, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, Department of Medicine, UCLA, Los Angeles, California, USA.,Molecular Biology Institute, and.,Howard Hughes Medical Institute, UCLA, Los Angeles, California, USA
| |
Collapse
|
28
|
Santini A, Novellino E. Nutraceuticals in hypercholesterolaemia: an overview. Br J Pharmacol 2017; 174:1450-1463. [PMID: 27685833 PMCID: PMC5429323 DOI: 10.1111/bph.13636] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 12/30/2022] Open
Abstract
Growing attention is now being given to the possible preventive/alternative ways to avoid illness onset. Changes in lifestyle and food habits are taking over from the conventional pharmaceutical-based approach, especially for chronic pathologies. Nutraceuticals have been proposed as key tools for the prevention and cure of some pathological conditions. This is leading research to develop new formulations based on these pharma-foods addressed in a specific way to prevent and cure health issues, which, in turn, will have an effect on therapy-related costs sustained by any National Health Organization. According to existing regulations, nutraceuticals cannot be categorized as either food or drugs but, by definition, often inhabit a grey area in between the two, being assimilated into food supplements, notwithstanding the beneficial properties that they can provide for some pathological conditions. A nutraceuticals-based approach for health management, in particular for some pathological conditions, has resulted in a worldwide growing 'nutraceutical' revolution. An outstanding example is the approach to the 'metabolic syndrome', which includes overweight, obesity and cardiovascular-related diseases, causing a sort of cascade of chronic health conditions, which is becoming a norm in modern life. Hypercholesterolaemia is one of these. It represents an example of a pathology that can be linked to both a poor lifestyle and dietary habits. The nutraceutical approach to hypercholesterolaemia is described in the present review as a possible alternative to the conventional drug-based therapy. LINKED ARTICLES This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc.
Collapse
Affiliation(s)
| | - Ettore Novellino
- Department of PharmacyUniversity of Napoli Federico IINaplesItaly
| |
Collapse
|
29
|
Bawazeer NA, Choudary H, Zamzami MA, Abdulaal WH, Zeyadi M, ALbukhari A, Middleton B, Moselhy SS. POSSIBLE REGULATION OF LDL-RECEPTOR BY NARINGENIN IN HEPG2 HEPATOMA CELL LINE. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES 2016; 14:278-287. [PMID: 28480406 PMCID: PMC5411880 DOI: 10.21010/ajtcam.v14i1.30] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background: High plasma concentration of low-density lipoprotein cholesterol (LDL-c) plays a significant role in the incidence of atherosclerosis and coronary heart diseases (CHD). Materials and Methods: The purpose of this study was to investigate the mechanism by which citrus flavonoids, naringenin regulate the LDL receptor (LDLr) gene in human liver using the human hepatoma cell line, HepG2 as a model. Results: Time-course transient transfection of HepG2 cells with luciferase reporter-gene constructs incorporating the promoters of SREBP-1a,-1c, -2 and LDLr, revealed that in lipoprotein-deficient medium (LPDM), only SREBP-1a promoter activity was increased significantly after 4h exposure to 200μM naringenin respectively. However, after 24h incubation with 200μM naringenin the gene expression activities of all the SREBP-1a, -1c, -2 and LDLr promoter-constructs were increased significantly. The effects of both 200μM naringenin on elevating LDLr mRNA are possibly due to regulation of gene transcription by SREBP-la and SREBP-2. However, the suppression effect of 200μM naringenin on hepatic SREBP-1c mRNA expression is likely associated with the reduction in mRNA expression of both acetyl-CoA carboxylase and fatty acid synthase in human hepatoma HepG2 cells. It was found that, 200μM naringenin was likely to stimulate LDLr gene expression via increase phosphorylation of PI3K and ERK1/2 which enhance the transcription factors SREBP-1a and SREBP-2 mRNA levels and increased their protein maturation in human hepatoma HepG2 cell. Conclusion: Diets supplemented with naringenin could effectively reduce mortality and morbidity from coronary heart diseases and as cardio-protective effects in humans.
Collapse
Affiliation(s)
- Nora A Bawazeer
- Department of Home Economics, Taif University, Taif, Saudi Arabia
| | - Hani Choudary
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, Center of Innovation in Personalized Medicine, Cancer and Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mazin A Zamzami
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wesam H Abdulaal
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mustafa Zeyadi
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ashwag ALbukhari
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bruce Middleton
- Department of Biochemistry, Medical School, Nottingham University, Nottingham, United Kingdom
| | - Said S Moselhy
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia and Department of Biochemistry, Faculty of Science, Ain shams University, Cairo, Egypt.,Experimental biochemistry unit, & Bioactive natural products research Group (KAU)
| |
Collapse
|
30
|
Cai Z, Feng S, Xiang X, Mai K, Ai Q. Effects of dietary phospholipid on lipase activity, antioxidant capacity and lipid metabolism-related gene expression in large yellow croaker larvae (Larimichthys crocea). Comp Biochem Physiol B Biochem Mol Biol 2016; 201:46-52. [DOI: 10.1016/j.cbpb.2016.06.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 12/31/2022]
|
31
|
Nutraceuticals: A paradigm of proactive medicine. Eur J Pharm Sci 2016; 96:53-61. [PMID: 27613382 DOI: 10.1016/j.ejps.2016.09.003] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/31/2016] [Accepted: 09/04/2016] [Indexed: 12/19/2022]
Abstract
Nutraceuticals define a new category which shades the frontier between drugs and food. As per its definition, a nutraceutical is "a food or part of a food that provides benefits health in addition to its nutritional content". Active substances either way extracted from plants (phytocomplexes) or of animal origin, when extracted, concentrated and administered in a suitable pharmaceutical form, can create a very promising toolbox useful to prevent and/or support the therapy of some pathologic conditions given their proven clinical efficacy. It is worldwide recognized that diet and lifestyle are essential to promote and maintain well-being and nice-being condition, other than help to prevent diseases possible onset. Both non-correct dietary habits and lifestyle can in fact determine pathological conditions. The metabolic syndrome, a worldwide epidemic threat, can be named an outstanding example. This syndrome is characterized by a cascade of cardio metabolic risk factors which include obesity, insulin resistance, hypertension, and dyslipidemia. Prevention is the key strategy for an effective proactive medicine, in which efforts are addressed to prevention and, consequently, to lower the risk connected to some lifestyle related diseases reducing, at the same time, any National Health Systems cost needed to guarantee the proper therapeutic approach based on pharmaceuticals. Nutraceuticals use in prevention is a proactive reverse approach tool to pre-clinical health conditions. They can be effectively used, by including in the daily diet, in an area which shades in the range "beyond the diet, before drugs", since they combine both nutritional and beneficial healthy properties of food extracts with the healing properties of natural active compounds.
Collapse
|
32
|
Wen G, Pachner LI, Gessner DK, Eder K, Ringseis R. Sterol regulatory element-binding proteins are regulators of the sodium/iodide symporter in mammary epithelial cells. J Dairy Sci 2016; 99:9211-9226. [PMID: 27614840 DOI: 10.3168/jds.2016-11174] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/17/2016] [Indexed: 12/29/2022]
Abstract
The sodium/iodide symporter (NIS), which is essential for iodide concentration in the thyroid, is reported to be transcriptionally regulated by sterol regulatory element-binding proteins (SREBP) in rat FRTL-5 thyrocytes. The SREBP are strongly activated after parturition and throughout lactation in the mammary gland of cattle and are important for mammary epithelial cell synthesis of milk lipids. In this study, we tested the hypothesis that the NIS gene is regulated also by SREBP in mammary epithelial cells, in which NIS is functionally expressed during lactation. Regulation of NIS expression and iodide uptake was investigated by means of inhibition, silencing, and overexpression of SREBP and by reporter gene and DNA-binding assays. As a mammary epithelial cell model, the human MCF-7 cell line, a breast adenocarcinoma cell line, which shows inducible expression of NIS by all-trans retinoic acid (ATRA), and unlike bovine mammary epithelial cells, is widely used to investigate the regulation of mammary gland NIS and NIS-specific iodide uptake, was used. Inhibition of SREBP maturation by treatment with 25-hydroxycholesterol (5 µM) for 48h reduced ATRA (1 µM)-induced mRNA concentration of NIS and iodide uptake in MCF-7 cells by approximately 20%. Knockdown of SREBP-1c and SREBP-2 by RNA interference decreased the mRNA and protein concentration of NIS by 30 to 50% 48h after initiating knockdown, whereas overexpression of nuclear SREBP (nSREBP)-1c and nSREBP-2 increased the expression of NIS in MCF-7 cells by 45 to 60%, respectively, 48h after initiating overexpression. Reporter gene experiments with varying length of NIS promoter reporter constructs revealed that the NIS 5'-flanking region is activated by nSREBP-1c and nSREBP-2 approximately 1.5- and 4.5-fold, respectively, and activation involves a SREBP-binding motif (SRE) at -38 relative to the transcription start site of the NIS gene. Gel shift assays using oligonucleotides spanning either the wild-type or the mutated SRE at -38 of the NIS 5'-flanking region showed that in vitro-translated nSREBP-1c and nSREBP-2 bind only the wild-type but not the mutated SRE at -38 of NIS. Collectively, the present results from cell culture experiments with human mammary epithelial MCF-7 cells and from genetic studies show for the first time that the NIS gene and iodide uptake are regulated by SREBP in cultured human mammary epithelial cells. Future studies are necessary to clarify if the regulation of NIS expression and iodide uptake by SREBP also applies to the lactating bovine mammary epithelium.
Collapse
Affiliation(s)
- G Wen
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany
| | - L I Pachner
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany
| | - D K Gessner
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany
| | - K Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany
| | - R Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany.
| |
Collapse
|
33
|
Hwang S, Hartman IZ, Calhoun LN, Garland K, Young GA, Mitsche MA, McDonald J, Xu F, Engelking L, DeBose-Boyd RA. Contribution of Accelerated Degradation to Feedback Regulation of 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase and Cholesterol Metabolism in the Liver. J Biol Chem 2016; 291:13479-94. [PMID: 27129778 DOI: 10.1074/jbc.m116.728469] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Indexed: 11/06/2022] Open
Abstract
Accumulation of sterols in endoplasmic reticulum membranes stimulates the ubiquitination of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), which catalyzes a rate-limiting step in synthesis of cholesterol. This ubiquitination marks HMGCR for proteasome-mediated degradation and constitutes one of several mechanisms for feedback control of cholesterol synthesis. Mechanisms for sterol-accelerated ubiquitination and degradation of HMGCR have been elucidated through the study of cultured mammalian cells. However, the extent to which these reactions modulate HMGCR and contribute to control of cholesterol metabolism in whole animals is unknown. Here, we examine transgenic mice expressing in the liver the membrane domain of HMGCR (HMGCR (TM1-8)), a region necessary and sufficient for sterol-accelerated degradation, and knock-in mice in which endogenous HMGCR harbors mutations that prevent sterol-induced ubiquitination. Characterization of transgenic mice revealed that HMGCR (TM1-8) is appropriately regulated in the liver of mice fed a high cholesterol diet or chow diet supplemented with the HMGCR inhibitor lovastatin. Ubiquitination-resistant HMGCR protein accumulates in the liver and other tissues disproportionately to its mRNA, indicating that sterol-accelerated degradation significantly contributes to feedback regulation of HMGCR in vivo Results of these studies demonstrate that HMGCR is subjected to sterol-accelerated degradation in the liver through mechanisms similar to those established in cultured cells. Moreover, these studies designate sterol-accelerated degradation of HMGCR as a potential therapeutic target for prevention of atherosclerosis and associated cardiovascular disease.
Collapse
Affiliation(s)
- Seonghwan Hwang
- From the Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9046
| | - Isamu Z Hartman
- From the Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9046
| | - Leona N Calhoun
- From the Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9046
| | - Kristina Garland
- From the Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9046
| | - Gennipher A Young
- From the Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9046
| | - Matthew A Mitsche
- From the Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9046
| | - Jeffrey McDonald
- From the Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9046
| | - Fang Xu
- From the Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9046
| | - Luke Engelking
- From the Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9046
| | - Russell A DeBose-Boyd
- From the Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9046
| |
Collapse
|
34
|
Howell III GE, Mulligan C, Young D, Kondakala S. Exposure to chlorpyrifos increases neutral lipid accumulation with accompanying increased de novo lipogenesis and decreased triglyceride secretion in McArdle-RH7777 hepatoma cells. Toxicol In Vitro 2016; 32:181-9. [DOI: 10.1016/j.tiv.2016.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 12/09/2015] [Accepted: 01/06/2016] [Indexed: 01/14/2023]
|
35
|
Yonekura S, Hirota S, Miyazaki H, Tokutake Y. Subcellular Localization and Polymorphism of Bovine FABP4 in Bovine Intramuscular Adipocytes. Anim Biotechnol 2016; 27:96-103. [DOI: 10.1080/10495398.2015.1102148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Xu H, Luo J, Wang H, Wang H, Zhang T, Tian H, Yao D, Loor J. Sterol regulatory element binding protein-1 (SREBP-1)c promoter: Characterization and transcriptional regulation by mature SREBP-1 and liver X receptor α in goat mammary epithelial cells. J Dairy Sci 2016; 99:1595-1604. [DOI: 10.3168/jds.2015-10353] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 10/30/2015] [Indexed: 01/22/2023]
|
37
|
Glycogen synthase kinase-3-mediated phosphorylation of serine 73 targets sterol response element binding protein-1c (SREBP-1c) for proteasomal degradation. Biosci Rep 2015; 36:e00284. [PMID: 26589965 PMCID: PMC4718510 DOI: 10.1042/bsr20150234] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/30/2015] [Indexed: 01/08/2023] Open
Abstract
We have identified Serine 73 as a novel GSK-3β site on SREBP-1c that alters its affinity for SCAP, and proteasomal degradation. Phosphorylation of Serine 73 by GSK-3β during starvation (insulin-depleted stat) may lead to lower levels of SREBP-1c; conversely, de-phosphorylation of this site may be involved in stabilizing SREBP-1c by insulin (by blocking GSK-3β action). A functional role of this site needs to be corroborated in vivo. Sterol regulatory element binding protein-1c (SREBP-1c) is a key transcription factor that regulates genes involved in the de novo lipid synthesis and glycolysis pathways. The structure, turnover and transactivation potential of SREBP-1c are regulated by macronutrients and hormones via a cascade of signalling kinases. Using MS, we have identified serine 73 as a novel glycogen synthase kinase-3 (GSK-3) phosphorylation site in the rat SREBP-1c purified from McA-RH7777 hepatoma cells. Our site-specific mutagenesis strategy revealed that the turnover of SREBP-1c, containing wild type, phospho-null (serine to alanine) or phospho-mimetic (serine to aspartic acid) substitutions, was differentially regulated. We show that the S73D mutant of pSREBP-1c, that mimicked a state of constitutive phosphorylation, dissociated from the SREBP-1c–SCAP complex more readily and underwent GSK-3-dependent proteasomal degradation via SCFFbw7 ubiquitin ligase pathway. Pharmacologic inhibition of GSK-3 or knockdown of GSK-3 by siRNA prevented accelerated degradation of SREBP-1c. As demonstrated by MS, SREBP-1c was phosphorylated in vitro by GSK-3β at serine 73. Phosphorylation of serine 73 also occurs in the intact liver. We propose that GSK-3-mediated phosphorylation of serine 73 in the rat SREBP-1c and its concomitant destabilization represents a novel mechanism involved in the inhibition of de novo lipid synthesis in the liver.
Collapse
|
38
|
Ono K, Horie T, Nishino T, Baba O, Kuwabara Y, Yokode M, Kita T, Kimura T. MicroRNA-33a/b in lipid metabolism – novel “thrifty” models. Circ J 2015; 79:278-84. [PMID: 25744742 DOI: 10.1253/circj.cj-14-1252] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
MicroRNAs (miRNAs; miRs) are small non-protein-coding RNAs that negatively regulate gene expression. They bind to the 3' UTR of specific mRNAs and either inhibit translation or promote mRNA degradation. There is emerging evidence linking miR-33a/b to lipid homoeostasis, targeting ABCA1,SREBF1, etc and it would appear that they have acted as "thrifty genes" during evolution to maintain cholesterol levels both at the cellular and whole body level. As we are now living in a period of "satiation", miR-33a/b no longer seem to be useful and could be potential therapeutic targets for lipid disorders and/or atherosclerosis. In this review, we describe the current understanding of the function of miR-33a/b in lipid homeostasis, focusing on the "thrifty" aspect.
Collapse
Affiliation(s)
- Koh Ono
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Horie T, Nishino T, Baba O, Kuwabara Y, Nakao T, Nishiga M, Usami S, Izuhara M, Sowa N, Yahagi N, Shimano H, Matsumura S, Inoue K, Marusawa H, Nakamura T, Hasegawa K, Kume N, Yokode M, Kita T, Kimura T, Ono K. MicroRNA-33 regulates sterol regulatory element-binding protein 1 expression in mice. Nat Commun 2014; 4:2883. [PMID: 24300912 PMCID: PMC3863899 DOI: 10.1038/ncomms3883] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 11/07/2013] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRs) are small non-protein-coding RNAs that bind to specific mRNAs and inhibit translation or promote mRNA degradation. Recent reports have indicated that miR-33, which is located within the intron of sterol regulatory element-binding protein (SREBP) 2, controls cholesterol homoeostasis and may be a potential therapeutic target for the treatment of atherosclerosis. Here we show that deletion of miR-33 results in marked worsening of high-fat diet-induced obesity and liver steatosis. Using miR-33(-/-)Srebf1(+/-) mice, we demonstrate that SREBP-1 is a target of miR-33 and that the mechanisms leading to obesity and liver steatosis in miR-33(-/-) mice involve enhanced expression of SREBP-1. These results elucidate a novel interaction between SREBP-1 and SREBP-2 mediated by miR-33 in vivo.
Collapse
Affiliation(s)
- Takahiro Horie
- 1] Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan [2] Department of Clinical Innovative Medicine, Institute for Advancement of Clinical and Translational Science, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan [3]
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Caputo M, De Rosa MC, Rescigno T, Zirpoli H, Vassallo A, De Tommasi N, Torino G, Tecce MF. Binding of polyunsaturated fatty acids to LXRα and modulation of SREBP-1 interaction with a specific SCD1 promoter element. Cell Biochem Funct 2014; 32:637-46. [PMID: 25264165 DOI: 10.1002/cbf.3067] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/01/2014] [Accepted: 08/23/2014] [Indexed: 01/07/2023]
Abstract
Stearoyl-CoA desaturase 1 (SCD1) is the rate limiting enzyme in unsaturated fatty acid biosynthesis. This enzyme has an important role in the regulation of hepatic lipogenesis and lipid oxidation, and alterations in these pathways may lead to several diseases. We examined, in HepG2 cell cultures, the mechanism of SCD1 regulation considering the involvement of two transcription factors: liver X receptor alpha (LXRα) and sterol regulatory element-binding protein-1 (SREBP-1), also investigating the effect of dietary polyunsaturated fatty acids (PUFAs) on this process. The analysis of SCD1 promoter allowed to identify a functional SREBP-1 binding site (SRE 1). LXRα activation increased SCD1 protein level through upregulation of SREBP-1 and its consequent binding to SRE 1 sequence. Polyunsaturated docosahexaenoic acid (DHA, C22:6), eicosapentaenoic acid (EPA, C20:5) and arachidonic acid (AA, C20:4) were able to reduce SREBP-1 binding to SCD1 promoter, while saturated stearic acid (SA, C18:0) did not give any effect. Surface plasmon resonance analysis showed a direct binding of DHA, EPA and AA to LXRα. These data indicate a direct inhibitory interaction of PUFAs with LXRα, a consequent reduction of SREBP-1 and of its binding to SCD1 promoter. This information provides a mechanism to explain the regulation of lipogenic pathways induced by PUFAs.
Collapse
Affiliation(s)
- Mariella Caputo
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Ryll A, Bucher J, Bonin A, Bongard S, Gonçalves E, Saez-Rodriguez J, Niklas J, Klamt S. A model integration approach linking signalling and gene-regulatory logic with kinetic metabolic models. Biosystems 2014; 124:26-38. [PMID: 25063553 DOI: 10.1016/j.biosystems.2014.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/11/2014] [Accepted: 07/18/2014] [Indexed: 12/16/2022]
Abstract
Systems biology has to increasingly cope with large- and multi-scale biological systems. Many successful in silico representations and simulations of various cellular modules proved mathematical modelling to be an important tool in gaining a solid understanding of biological phenomena. However, models spanning different functional layers (e.g. metabolism, signalling and gene regulation) are still scarce. Consequently, model integration methods capable of fusing different types of biological networks and various model formalisms become a key methodology to increase the scope of cellular processes covered by mathematical models. Here we propose a new integration approach to couple logical models of signalling or/and gene-regulatory networks with kinetic models of metabolic processes. The procedure ends up with an integrated dynamic model of both layers relying on differential equations. The feasibility of the approach is shown in an illustrative case study integrating a kinetic model of central metabolic pathways in hepatocytes with a Boolean logical network depicting the hormonally induced signal transduction and gene regulation events involved. In silico simulations demonstrate the integrated model to qualitatively describe the physiological switch-like behaviour of hepatocytes in response to nutritionally regulated changes in extracellular glucagon and insulin levels. A simulated failure mode scenario addressing insulin resistance furthermore illustrates the pharmacological potential of a model covering interactions between signalling, gene regulation and metabolism.
Collapse
Affiliation(s)
- A Ryll
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, D-39106 Magdeburg, Germany.
| | - J Bucher
- Insilico Biotechnology AG, Meitnerstraße 8, D-70563 Stuttgart, Germany
| | - A Bonin
- Insilico Biotechnology AG, Meitnerstraße 8, D-70563 Stuttgart, Germany
| | - S Bongard
- Insilico Biotechnology AG, Meitnerstraße 8, D-70563 Stuttgart, Germany
| | - E Gonçalves
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SD, Cambridge, United Kingdom
| | - J Saez-Rodriguez
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SD, Cambridge, United Kingdom
| | - J Niklas
- Insilico Biotechnology AG, Meitnerstraße 8, D-70563 Stuttgart, Germany
| | - S Klamt
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, D-39106 Magdeburg, Germany.
| |
Collapse
|
42
|
Wu X, Romero D, Swiatek WI, Dorweiler I, Kikani CK, Sabic H, Zweifel BS, McKearn J, Blitzer JT, Nickols GA, Rutter J. PAS kinase drives lipogenesis through SREBP-1 maturation. Cell Rep 2014; 8:242-55. [PMID: 25001282 DOI: 10.1016/j.celrep.2014.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 05/16/2014] [Accepted: 06/04/2014] [Indexed: 12/21/2022] Open
Abstract
Elevated hepatic synthesis of fatty acids and triglycerides, driven by hyperactivation of the SREBP-1c transcription factor, has been implicated as a causal feature of metabolic syndrome. SREBP-1c activation requires the proteolytic maturation of the endoplasmic-reticulum-bound precursor to the active, nuclear transcription factor, which is stimulated by feeding and insulin signaling. Here, we show that feeding and insulin stimulate the hepatic expression of PASK. We also demonstrate, using genetic and pharmacological approaches, that PASK is required for the proteolytic maturation of SREBP-1c in cultured cells and in the mouse and rat liver. Inhibition of PASK improves lipid and glucose metabolism in dietary animal models of obesity and dyslipidemia. Administration of a PASK inhibitor decreases hepatic expression of lipogenic SREBP-1c target genes, decreases serum triglycerides, and partially reverses insulin resistance. While the signaling network that controls SREBP-1c activation is complex, we propose that PASK is an important component with therapeutic potential.
Collapse
Affiliation(s)
- Xiaoying Wu
- Department of Biochemistry, University of Utah School of Medicine, 15 N. Medical Drive East, Salt Lake City, UT 84112-5650, USA
| | - Donna Romero
- Synergenics, 1700 Owens Street, Suite 515, San Francisco, CA 94158, USA
| | - Wojciech I Swiatek
- Department of Biochemistry, University of Utah School of Medicine, 15 N. Medical Drive East, Salt Lake City, UT 84112-5650, USA
| | - Irene Dorweiler
- Department of Biochemistry, University of Utah School of Medicine, 15 N. Medical Drive East, Salt Lake City, UT 84112-5650, USA
| | - Chintan K Kikani
- Department of Biochemistry, University of Utah School of Medicine, 15 N. Medical Drive East, Salt Lake City, UT 84112-5650, USA
| | - Hana Sabic
- Department of Biochemistry, University of Utah School of Medicine, 15 N. Medical Drive East, Salt Lake City, UT 84112-5650, USA
| | - Ben S Zweifel
- Synergenics, 1700 Owens Street, Suite 515, San Francisco, CA 94158, USA
| | - John McKearn
- Synergenics, 1700 Owens Street, Suite 515, San Francisco, CA 94158, USA
| | - Jeremy T Blitzer
- Synergenics, 1700 Owens Street, Suite 515, San Francisco, CA 94158, USA
| | - G Allen Nickols
- Synergenics, 1700 Owens Street, Suite 515, San Francisco, CA 94158, USA
| | - Jared Rutter
- Department of Biochemistry, University of Utah School of Medicine, 15 N. Medical Drive East, Salt Lake City, UT 84112-5650, USA.
| |
Collapse
|
43
|
Horie T, Nishino T, Baba O, Kuwabara Y, Nakao T, Nishiga M, Usami S, Izuhara M, Nakazeki F, Ide Y, Koyama S, Sowa N, Yahagi N, Shimano H, Nakamura T, Hasegawa K, Kume N, Yokode M, Kita T, Kimura T, Ono K. MicroRNA-33b knock-in mice for an intron of sterol regulatory element-binding factor 1 (Srebf1) exhibit reduced HDL-C in vivo. Sci Rep 2014; 4:5312. [PMID: 24931346 PMCID: PMC4058878 DOI: 10.1038/srep05312] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/30/2014] [Indexed: 01/21/2023] Open
Abstract
MicroRNAs (miRs) are small non-protein-coding RNAs that bind to specific mRNAs and inhibit translation or promote mRNA degradation. Recent reports, including ours, indicated that miR-33a located within the intron of sterol regulatory element-binding protein (SREBP) 2 controls cholesterol homeostasis and can be a possible therapeutic target for treating atherosclerosis. Primates, but not rodents, express miR-33b from an intron of SREBF1. Therefore, humanized mice, in which a miR-33b transgene is inserted within a Srebf1 intron, are required to address its function in vivo. We successfully established miR-33b knock-in (KI) mice and found that protein levels of known miR-33a target genes, such as ABCA1, ABCG1, and SREBP-1, were reduced compared with those in wild-type mice. As a consequence, macrophages from the miR-33b KI mice had a reduced cholesterol efflux capacity via apoA-I and HDL-C. Moreover, HDL-C levels were reduced by almost 35% even in miR-33b KI hetero mice compared with the control mice. These results indicate that miR-33b may account for lower HDL-C levels in humans than those in mice and that miR-33b is possibly utilized for a feedback mechanism to regulate its host gene SREBF1. Our mice will also aid in elucidating the roles of miR-33a/b in different genetic disease models.
Collapse
Affiliation(s)
- Takahiro Horie
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- Department of Clinical Innovative Medicine, Institute for Advancement of Clinical and Translational Science, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- These authors contributed equally to this work
| | - Tomohiro Nishino
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- These authors contributed equally to this work
| | - Osamu Baba
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yasuhide Kuwabara
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Tetsushi Nakao
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Masataka Nishiga
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Shunsuke Usami
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Masayasu Izuhara
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Fumiko Nakazeki
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yuya Ide
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Satoshi Koyama
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Naoya Sowa
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Naoya Yahagi
- Department of Internal Medicine (Endocrinology and Metabolism), Graduate School of Comprehensive Human Sciences, Nutrigenomics Research Group, Faculty of Medicine, and International Institute for Integrative Sleep Medicine (IIIS), World Premir International Research Center Initiative (WPI), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Graduate School of Comprehensive Human Sciences, Nutrigenomics Research Group, Faculty of Medicine, and International Institute for Integrative Sleep Medicine (IIIS), World Premir International Research Center Initiative (WPI), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Tomoyuki Nakamura
- Department of Pharmacology, Kansai Medical University, Moriguchi, Osaka 570-8506, Japan
| | - Koji Hasegawa
- Division of Translational Research, National Hospital Organization, Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Noriaki Kume
- Division of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Kobe 650-8586, Japan
| | - Masayuki Yokode
- Department of Clinical Innovative Medicine, Institute for Advancement of Clinical and Translational Science, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Toru Kita
- Department of Cardiovascular Medicine, Kobe City Medical Center General Hospital, Kobe 650-0046, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Koh Ono
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
44
|
A Comparison of the Potential Unfavorable Effects of Oxycholesterol and Oxyphytosterol in Mice: Different Effects, on Cerebral 24S-Hydroxychoelsterol and Serum Triacylglycerols Levels. Biosci Biotechnol Biochem 2014; 72:3128-33. [DOI: 10.1271/bbb.80256] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Takeshita Y, Takamura T, Honda M, Kita Y, Zen Y, Kato KI, Misu H, Ota T, Nakamura M, Yamada K, Sunagozaka H, Arai K, Yamashita T, Mizukoshi E, Kaneko S. The effects of ezetimibe on non-alcoholic fatty liver disease and glucose metabolism: a randomised controlled trial. Diabetologia 2014; 57:878-90. [PMID: 24407920 DOI: 10.1007/s00125-013-3149-9] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/15/2013] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS The cholesterol absorption inhibitor ezetimibe has been shown to ameliorate non-alcoholic fatty liver disease (NAFLD) pathology in a single-armed clinical study and in experimental animal models. In this study, we investigated the efficacy of ezetimibe on NAFLD pathology in an open-label randomised controlled clinical trial. METHODS We had planned to enrol 80 patients in the trial, as we had estimated that, with this sample size, the study would have 90% power. The study intervention and enrolment were discontinued because of the higher proportion of adverse events (significant elevation in HbA(1c)) in the ezetimibe group than in the control group. Thirty-two patients with NAFLD were enrolled and randomised (allocation by computer program). Ezetimibe (10 mg/day) was given to 17 patients with NAFLD for 6 months. The primary endpoint was change in serum aminotransferase level. Secondary outcomes were change in liver histology (12 control and 16 ezetimibe patients), insulin sensitivity including a hyperinsulinaemic-euglycaemic clamp study (ten control and 13 ezetimibe patients) and hepatic fatty acid composition (six control and nine ezetimibe patients). Hepatic gene expression profiling was completed in 15 patients using an Affymetrix gene chip. Patients and the physician in charge knew to which group the patient had been allocated, but people carrying out measurements or examinations were blinded to group. RESULTS Serum total cholesterol was significantly decreased in the ezetimibe group. The fibrosis stage and ballooning score were also significantly improved with ezetimibe treatment. However, ezetimibe treatment significantly increased HbA1c and was associated with a significant increase in hepatic long-chain fatty acids. Hepatic gene expression analysis showed coordinate downregulation of genes involved in skeletal muscle development and cell adhesion molecules in the ezetimibe treatment group, suggesting a suppression of stellate cell development into myofibroblasts. Genes involved in the L-carnitine pathway were coordinately downregulated by ezetimibe treatment and those in the steroid metabolism pathway upregulated, suggestive of impaired oxidation of long-chain fatty acids. CONCLUSIONS/INTERPRETATION Ezetimibe improved hepatic fibrosis but increased hepatic long-chain fatty acids and HbA1c in patients with NAFLD. These findings shed light on previously unrecognised actions of ezetimibe that should be examined further in future studies. TRIAL REGISTRATION University Hospital Medical Information Network (UMIN) Clinical Trials Registry UMIN000005250. FUNDING The study was funded by grants-in-aid from the Ministry of Education, Culture, Sports, Science and Technology, Japan, and research grants from MSD.
Collapse
Affiliation(s)
- Yumie Takeshita
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Laggai S, Kessler SM, Boettcher S, Lebrun V, Gemperlein K, Lederer E, Leclercq IA, Mueller R, Hartmann RW, Haybaeck J, Kiemer AK. The IGF2 mRNA binding protein p62/IGF2BP2-2 induces fatty acid elongation as a critical feature of steatosis. J Lipid Res 2014; 55:1087-97. [PMID: 24755648 DOI: 10.1194/jlr.m045500] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Indexed: 12/12/2022] Open
Abstract
Liver-specific overexpression of the insulin-like growth factor 2 (IGF2) mRNA binding protein p62/IGF2BP2-2 induces a fatty liver, which highly expresses IGF2 Because IGF2 expression is elevated in patients with steatohepatitis, the aim of our study was to elucidate the role and interconnection of p62 and IGF2 in lipid metabolism. Expression of p62 and IGF2 highly correlated in human liver disease. p62 induced an elevated ratio of C18:C16 and increased fatty acid elongase 6 (ELOVL6) protein, the enzyme catalyzing the elongation of C16 to C18 fatty acids and promoting nonalcoholic steatohepatitis in mice and humans. The p62 overexpression induced the activation of the ELOVL6 transcriptional activator sterol regulatory element binding transcription factor 1 (SREBF1). Recombinant IGF2 induced the nuclear translocation of SREBF1 and a neutralizing IGF2 antibody reduced ELOVL6 and mature SREBF1 protein levels. Concordantly, p62 and IGF2 correlated with ELOVL6 in human livers. Decreased palmitoyl-CoA levels, as found in p62 transgenic livers, can explain the lipogenic action of ELOVL6. Accordingly, p62 represents an inducer of hepatic C18 fatty acid production via a SREBF1-dependent induction of ELOVL6. These findings underline the detrimental role of p62 in liver disease.
Collapse
Affiliation(s)
- Stephan Laggai
- Department of Pharmacy, Pharmaceutical Biology, Department of Pharmacy, Pharmaceutical, Saarland University, Saarbrücken, Germany
| | - Sonja M Kessler
- Department of Pharmacy, Pharmaceutical Biology, Department of Pharmacy, Pharmaceutical, Saarland University, Saarbrücken, Germany Medicinal Chemistry, Saarland University, Saarbrücken, Germany Laboratory of Hepato-gastroenterology, Institut de Recherche expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | | | - Valérie Lebrun
- Laboratory of Hepato-gastroenterology, Institut de Recherche expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Katja Gemperlein
- Department of Pharmacy, Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | - Eva Lederer
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Isabelle A Leclercq
- Laboratory of Hepato-gastroenterology, Institut de Recherche expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Rolf Mueller
- Department of Pharmacy, Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | - Rolf W Hartmann
- Medicinal Chemistry, Saarland University, Saarbrücken, Germany Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | | | - Alexandra K Kiemer
- Department of Pharmacy, Pharmaceutical Biology, Department of Pharmacy, Pharmaceutical, Saarland University, Saarbrücken, Germany
| |
Collapse
|
47
|
Rauer C, Ringseis R, Rothe S, Wen G, Eder K. Sterol regulatory element-binding proteins are regulators of the rat thyroid peroxidase gene in thyroid cells. PLoS One 2014; 9:e91265. [PMID: 24625548 PMCID: PMC3953333 DOI: 10.1371/journal.pone.0091265] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 02/07/2014] [Indexed: 01/21/2023] Open
Abstract
Sterol regulatory element-binding proteins (SREBPs)-1c and -2, which were initially discovered as master transcriptional regulators of lipid biosynthesis and uptake, were recently identified as novel transcriptional regulators of the sodium-iodide symporter gene in the thyroid, which is essential for thyroid hormone synthesis. Based on this observation that SREBPs play a role for thyroid hormone synthesis, we hypothesized that another gene involved in thyroid hormone synthesis, the thyroid peroxidase (TPO) gene, is also a target of SREBP-1c and -2. Thyroid epithelial cells treated with 25-hydroxycholesterol, which is known to inhibit SREBP activation, had about 50% decreased mRNA levels of TPO. Similarly, the mRNA level of TPO was reduced by about 50% in response to siRNA mediated knockdown of both, SREBP-1 and SREBP-2. Reporter gene assays revealed that overexpression of active SREBP-1c and -2 causes a strong transcriptional activation of the rat TPO gene, which was localized to an approximately 80 bp region in the intron 1 of the rat TPO gene. In vitro- and in vivo-binding of both, SREBP-1c and SREBP-2, to this region in the rat TPO gene could be demonstrated using gel-shift assays and chromatin immunoprecipitation. Mutation analysis of the 80 bp region of rat TPO intron 1 revealed two isolated and two overlapping SREBP-binding elements from which one, the overlapping SRE+609/InvSRE+614, was shown to be functional in reporter gene assays. In connection with recent findings that the rat NIS gene is also a SREBP target gene in the thyroid, the present findings suggest that SREBPs may be possible novel targets for pharmacological modulation of thyroid hormone synthesis.
Collapse
Affiliation(s)
- Christine Rauer
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Gießen, Germany
- * E-mail:
| | - Susanne Rothe
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Gaiping Wen
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Gießen, Germany
| |
Collapse
|
48
|
Endo-Umeda K, Yasuda K, Sugita K, Honda A, Ohta M, Ishikawa M, Hashimoto Y, Sakaki T, Makishima M. 7-Dehydrocholesterol metabolites produced by sterol 27-hydroxylase (CYP27A1) modulate liver X receptor activity. J Steroid Biochem Mol Biol 2014; 140:7-16. [PMID: 24269243 DOI: 10.1016/j.jsbmb.2013.11.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/26/2013] [Accepted: 11/12/2013] [Indexed: 01/06/2023]
Abstract
7-Dehydrocholesterol (7-DHC) is a common precursor of vitamin D3 and cholesterol. Although various oxysterols, oxygenated cholesterol derivatives, have been implicated in cellular signaling pathways, 7-DHC metabolism and potential functions of its metabolites remain poorly understood. We examined 7-DHC metabolism by various P450 enzymes and detected three metabolites produced by sterol 27-hydroxylase (CYP27A1) using high-performance liquid chromatography. Two were further identified as 25-hydroxy-7-DHC and 26/27-hydroxy-7-DHC. These 7-DHC metabolites were detected in serum of a patient with Smith-Lemli-Opitz syndrome. Luciferase reporter assays showed that 25-hydroxy-7-DHC activates liver X receptor (LXR) α, LXRβ and vitamin D receptor and that 26/27-hydroxy-7-DHC induces activation of LXRα and LXRβ, although the activities of both compounds on LXRs were weak. In a mammalian two-hybrid assay, 25-hydroxy-7-DHC and 26/27-hydroxy-7-DHC induced interaction between LXRα and a coactivator fragment less efficiently than a natural LXR agonist, 22(R)-hydroxycholesterol. These 7-DHC metabolites did not oppose agonist-induced LXR activation and interacted directly to LXRα in a manner distinct from a potent agonist. These findings indicate that the 7-DHC metabolites are partial LXR activators. Interestingly, 25-hydroxy-7-DHC and 26/27-hydroxy-7-DHC suppressed mRNA expression of sterol regulatory element-binding protein 1c, an LXR target gene, in HepG2 cells and HaCaT cells, while they weakly increased mRNA levels of ATP-binding cassette transporter A1, another LXR target, in HaCaT cells. Thus, 7-DHC is catabolized by CYP27A1 to metabolites that act as selective LXR modulators.
Collapse
Affiliation(s)
- Kaori Endo-Umeda
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan
| | - Kaori Yasuda
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama 939-0398, Japan
| | - Kazuyuki Sugita
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Akira Honda
- Joint Research Center, Tokyo Medical University Ibaraki Medical Center, Ami, Ibaraki 300-0395, Japan
| | - Miho Ohta
- Department of Nutrition and Health, Faculty of Human Development, Soai University, Suminoe-ku, Osaka 559-0033, Japan
| | - Minoru Ishikawa
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Yuichi Hashimoto
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Toshiyuki Sakaki
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama 939-0398, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan.
| |
Collapse
|
49
|
Elfakhani M, Torabi S, Hussein D, Mills N, Verbeck GF, Mo H. Mevalonate deprivation mediates the impact of lovastatin on the differentiation of murine 3T3-F442A preadipocytes. Exp Biol Med (Maywood) 2014; 239:293-301. [PMID: 24477821 DOI: 10.1177/1535370213517614] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The statins competitively inhibit 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase activity and consequently the synthesis of mevalonate. The use of statins is associated with insulin resistance, presumably due to the impaired differentiation and diminished glucose utilization of adipocytes. We hypothesize that mevalonate is essential to adipocyte differentiation and adipogenic gene expression. Adipo-Red assay and Oil Red O staining showed that an eight-day incubation with 0-2.5 µmol/L lovastatin dose-dependently reduced the intracellular triglyceride content of murine 3T3-F442A adipocytes. Concomitantly, lovastatin downregulated the expression of peroxisome proliferator-activated receptor γ (Pparγ), leptin (Lep), fatty acid binding protein 4 (Fabp4), and adiponectin (AdipoQ) as measured by quantitative real-time polymerase chain reaction (real-time qPCR). The expression of sterol regulatory element binding protein 1 (Srebp-1), a transcriptional regulator of Pparγ and Lep genes, was also suppressed by lovastatin. Western-blot showed that lovastatin reduced the level of CCAAT/enhancer binding protein α (C/EBPα) while inducing a compensatory over-expression of HMG CoA reductase. The impact of lovastatin on intracellular triglyceride content and expression of the adipogenic genes was reversed by supplemental mevalonate. Mevalonate-derived metabolites have essential roles in promoting adipogenic gene expression and adipocyte differentiation.
Collapse
Affiliation(s)
- Manal Elfakhani
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, TX 76204, USA
| | | | | | | | | | | |
Collapse
|
50
|
Ren S, Ning Y. Sulfation of 25-hydroxycholesterol regulates lipid metabolism, inflammatory responses, and cell proliferation. Am J Physiol Endocrinol Metab 2014; 306:E123-30. [PMID: 24302009 PMCID: PMC3920008 DOI: 10.1152/ajpendo.00552.2013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Intracellular lipid accumulation, inflammatory responses, and subsequent apoptosis are the major pathogenic events of metabolic disorders, including atherosclerosis and nonalcoholic fatty liver diseases. Recently, a novel regulatory oxysterol, 5-cholesten-3b, 25-diol 3-sulfate (25HC3S), has been identified, and hydroxysterol sulfotransferase 2B1b (SULT2B1b) has been elucidated as the key enzyme for its biosynthesis from 25-hydroxycholesterol (25HC) via oxysterol sulfation. The product 25HC3S and the substrate 25HC have been shown to coordinately regulate lipid metabolism, inflammatory responses, and cell proliferation in vitro and in vivo. 25HC3S decreases levels of the nuclear liver oxysterol receptor (LXR) and sterol regulatory element-binding proteins (SREBPs), inhibits SREBP processing, subsequently downregulates key enzymes in lipid biosynthesis, decreases intracellular lipid levels in hepatocytes and THP-1-derived macrophages, prevents apoptosis, and promotes cell proliferation in liver tissues. Furthermore, 25HC3S increases nuclear PPARγ and cytosolic IκBα and decreases nuclear NF-κB levels and proinflammatory cytokine expression and secretion when cells are challenged with LPS and TNFα. In contrast to 25HC3S, 25HC, a known LXR ligand, increases nuclear LXR and decreases nuclear PPARs and cytosol IκBα levels. In this review, we summarize our recent findings, including the discovery of the regulatory oxysterol sulfate, its biosynthetic pathway, and its functional mechanism. We also propose that oxysterol sulfation functions as a regulatory signaling pathway.
Collapse
Affiliation(s)
- Shunlin Ren
- Departments of Medicine, McGuire Veterans Affairs Medical Center/Virginia Commonwealth University, Richmond, Virginia
| | | |
Collapse
|