1
|
Berriozabalgoitia A, Ruiz de Gordoa JC, Amores G, Santamarina-Garcia G, Hernández I, Virto M. Normal-Fat vs. High-Fat Diets and Olive Oil vs. CLA-Rich Dairy Fat: A Comparative Study of Their Effects on Atherosclerosis in Male Golden Syrian Hamsters. Metabolites 2023; 13:827. [PMID: 37512534 PMCID: PMC10383941 DOI: 10.3390/metabo13070827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
The relationship between milk fat intake (because of its high saturated fatty acid content) and the risk of suffering from cardiovascular diseases remains controversial. Thus, Golden Syrian hamsters were fed two types of fat-sheep milk fat that was rich in rumenic (cis9,trans11-18:2) and vaccenic (trans11-18:1) acids and olive oil-and two doses (a high- or normal-fat diet) for 14 weeks, and markers of lipid metabolism and atherosclerosis evolution were analyzed. The results revealed that the type and percentage of fat affected most plasma biochemical parameters related to lipid metabolism, while only the expression of five (CD36, SR-B1, ACAT, LDLR, and HMG-CoAR) of the studied lipid-metabolism-related genes was affected by these factors. According to aortic histology, when ingested in excess, both fats caused a similar increase in the thickness of fatty streaks, but the high-milk-fat-based diet caused a more atherogenic plasma profile. The compositions of the fats that were used, the results that were obtained, and the scientific literature indicated that the rumenic acid present in milk fat would regulate the expression of genes involved in ROS generation and, thus, protect against LDL oxidation, causing an effect similar to that of olive oil.
Collapse
Affiliation(s)
- Alaitz Berriozabalgoitia
- Lactiker Research Group, Department of Biochemistry and Molecular Biology, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Juan Carlos Ruiz de Gordoa
- Lactiker Research Group, Department of Biochemistry and Molecular Biology, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Gustavo Amores
- Lactiker Research Group, Department of Biochemistry and Molecular Biology, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, Prevención, Promoción y Cuidados en Salud, 01009 Vitoria-Gasteiz, Spain
| | - Gorka Santamarina-Garcia
- Lactiker Research Group, Department of Biochemistry and Molecular Biology, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, Prevención, Promoción y Cuidados en Salud, 01009 Vitoria-Gasteiz, Spain
| | - Igor Hernández
- Lactiker Research Group, Department of Biochemistry and Molecular Biology, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, Prevención, Promoción y Cuidados en Salud, 01009 Vitoria-Gasteiz, Spain
| | - Mailo Virto
- Lactiker Research Group, Department of Biochemistry and Molecular Biology, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, Prevención, Promoción y Cuidados en Salud, 01009 Vitoria-Gasteiz, Spain
| |
Collapse
|
2
|
García-Berumen CI, Vargas-Vargas MA, Ortiz-Avila O, Piña–Zentella RM, Ramos-Gómez M, Figueroa–García MDC, Mejía-Zepeda R, Rodríguez–Orozco AR, Saavedra–Molina A, Cortés-Rojo C. Avocado oil alleviates non-alcoholic fatty liver disease by improving mitochondrial function, oxidative stress and inflammation in rats fed a high fat-High fructose diet. Front Pharmacol 2022; 13:1089130. [PMID: 36601051 PMCID: PMC9807168 DOI: 10.3389/fphar.2022.1089130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by lipid accumulation in hepatocytes, and in advanced stages, by inflammation and fibrosis. Excessive ROS production due to mitochondrial dysfunction contributes to NAFLD development, making the decrease in mitochondrial ROS production an emerging target to alleviate NAFLD. Previously, we have shown that avocado oil, a source of several bioactive compounds with antioxidant effects, decreases oxidative stress by improving the function of the mitochondrial electron transport chain (ETC) and decreasing ROS levels in mitochondria of diabetic and hypertensive rats. Therefore, we tested in this work whether avocado oil alleviates NAFLD by attenuating mitochondrial dysfunction, oxidative stress and inflammation. NAFLD was induced in rats by a high fat-high fructose (HF) diet administered for six (HF6) or twelve (HF12) weeks. Hepatic steatosis, hypertrophy and inflammation were detected in both the HF6 and HF12 groups. Hyperglycemia was observed only in the HF12 group. The HF6 and HF12 groups displayed dyslipidemia, impairments in mitochondrial respiration, complex III activity, and electron transfer in cytochromes in the complex III. This led to an increase in the levels of ROS and lipid peroxidation. The substitution of the HF6 diet by standard chow and avocado oil for 6 weeks (HF6+AVO + D), or supplementation of the HF12 diet with avocado oil (HF12 + AVO), ameliorated NAFLD, hyperglycemia, dyslipidemia, and counteracted mitochondrial dysfunctions and oxidative stress. The substitution of the HF6 diet by standard chow without avocado oil did not correct many of these abnormalities, confirming that the removal of the HF diet is not enough to counteract NAFLD and mitochondrial dysfunction. In summary, avocado oil decreases NAFLD by improving mitochondrial function, oxidative stress, and inflammation.
Collapse
Affiliation(s)
| | | | - Omar Ortiz-Avila
- Facultad de Enfermería, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, México
| | | | | | | | - Ricardo Mejía-Zepeda
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, México
| | - Alain Raimundo Rodríguez–Orozco
- Facultad de Ciencias Médicas y Biológicas “Dr. Ignacio Chávez”, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, México
| | - Alfredo Saavedra–Molina
- Instituto de Investigaciones Químico–Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, México
| | - Christian Cortés-Rojo
- Instituto de Investigaciones Químico–Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, México,*Correspondence: Christian Cortés-Rojo,
| |
Collapse
|
3
|
Fournier N, Benoist JF, Allaoui F, Nowak M, Dakroub H, Vedie B, Paul JL. Contrasting effects of membrane enrichment with polyunsaturated fatty acids on phospholipid composition and cholesterol efflux from cholesterol-loaded J774 mouse or primary human macrophages. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158536. [PMID: 31672574 DOI: 10.1016/j.bbalip.2019.158536] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 08/30/2019] [Accepted: 09/24/2019] [Indexed: 12/15/2022]
Abstract
A high consumption of polyunsaturated fatty acids (PUFAs), particularly n-3 PUFAs, is atheroprotective. PUFAs incorporation into membrane phospholipids alters the functionality of membrane proteins. We studied the consequences of the in vitro supplementation of several PUFAs on the FA profiles and on ABCA1-dependent cholesterol efflux capacities from cholesterol-loaded macrophages. Arachidonic acid (AA, C20:4 n-6) and, to a lesser extent, eicosapentaenoic acid (EPA, C20:5 n-3), dose-dependently impaired cholesterol efflux from cholesterol-loaded J774 mouse macrophages without alterations in ABCA1 expression, whereas docosahexaenoic acid (DHA, C22:6 n-3) had no impact. AA cells exhibited higher proportions of arachidonic acid and adrenic acid (C22:4 n-6), its elongation product. EPA cells exhibited slightly higher proportions of EPA associated with much higher proportions of docosapentaenoic acid (C22:5 n-3), its elongation product and with lower proportions of AA. Conversely, both EPA and DHA and, to a lesser extent, AA decreased cholesterol efflux from cholesterol-loaded primary human macrophages (HMDM). The differences observed in FA profiles after PUFA supplementations were different from those observed for the J774 cells. In conclusion, we are the first to report that AA and EPA, but not DHA, have deleterious effects on the cardioprotective ABCA1 cholesterol efflux pathway from J774 foam cells. Moreover, the membrane incorporation of PUFAs does not have the same impact on cholesterol efflux from murine (J774) or human (HMDM) cholesterol-loaded macrophages. This finding emphasizes the key role of the cellular model in cholesterol efflux studies and may partly explain the heterogeneous literature data on the impact of PUFAs on cholesterol efflux.
Collapse
Affiliation(s)
- Natalie Fournier
- Lip(Sys)(2) - EA 7357, Athérosclérose: homéostasie et trafic du cholestérol des macrophages, Univ. Paris-Sud, Université Paris-Saclay, UFR de Pharmacie, 92290 Châtenay-Malabry, France; Laboratoire de Biochimie, AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Européen Georges Pompidou, 75015 Paris, France.
| | - Jean-François Benoist
- Lip(Sys)(2) - EA 7357, Athérosclérose: homéostasie et trafic du cholestérol des macrophages, Univ. Paris-Sud, Université Paris-Saclay, UFR de Pharmacie, 92290 Châtenay-Malabry, France; Laboratoire de Biochimie hormonale, AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Robert Debré, 75019 Paris, France
| | - Fatima Allaoui
- Lip(Sys)(2) - EA 7357, Athérosclérose: homéostasie et trafic du cholestérol des macrophages, Univ. Paris-Sud, Université Paris-Saclay, UFR de Pharmacie, 92290 Châtenay-Malabry, France
| | - Maxime Nowak
- Lip(Sys)(2) - EA 7357, Athérosclérose: homéostasie et trafic du cholestérol des macrophages, Univ. Paris-Sud, Université Paris-Saclay, UFR de Pharmacie, 92290 Châtenay-Malabry, France
| | - Hani Dakroub
- Lip(Sys)(2) - EA 7357, Athérosclérose: homéostasie et trafic du cholestérol des macrophages, Univ. Paris-Sud, Université Paris-Saclay, UFR de Pharmacie, 92290 Châtenay-Malabry, France
| | - Benoît Vedie
- Laboratoire de Biochimie, AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Européen Georges Pompidou, 75015 Paris, France
| | - Jean-Louis Paul
- Lip(Sys)(2) - EA 7357, Athérosclérose: homéostasie et trafic du cholestérol des macrophages, Univ. Paris-Sud, Université Paris-Saclay, UFR de Pharmacie, 92290 Châtenay-Malabry, France; Laboratoire de Biochimie, AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Européen Georges Pompidou, 75015 Paris, France
| |
Collapse
|
4
|
Shah M, Adams-Huet B, Franklin B, Phillips M, Mitchell J. The Effects of High-Protein and High-Monounsaturated Fat Meals on Postprandial Lipids, Lipoprotein Particle Numbers, Cytokines, and Leptin Responses in Overweight/Obese Subjects. Metab Syndr Relat Disord 2018; 16:150-158. [DOI: 10.1089/met.2017.0167] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Meena Shah
- Department of Kinesiology, Texas Christian University, Fort Worth, Texas
| | - Beverley Adams-Huet
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Brian Franklin
- Department of Kinesiology, Texas Christian University, Fort Worth, Texas
| | - Melody Phillips
- Department of Kinesiology, Texas Christian University, Fort Worth, Texas
| | - Joel Mitchell
- Department of Kinesiology, Texas Christian University, Fort Worth, Texas
| |
Collapse
|
5
|
Drouin-Chartier JP, Tremblay AJ, Lépine MC, Lemelin V, Lamarche B, Couture P. Substitution of dietary ω-6 polyunsaturated fatty acids for saturated fatty acids decreases LDL apolipoprotein B-100 production rate in men with dyslipidemia associated with insulin resistance: a randomized controlled trial. Am J Clin Nutr 2018; 107:26-34. [PMID: 29381796 PMCID: PMC5972657 DOI: 10.1093/ajcn/nqx013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/24/2017] [Indexed: 12/11/2022] Open
Abstract
Background The substitution of omega (ω)-6 (n-6) polyunsaturated fatty acids (PUFAs) for saturated fatty acids (SFAs) is advocated in cardiovascular disease prevention. The impact of this substitution on lipoprotein metabolism in subjects with dyslipidemia associated with insulin resistance (IR) remains unknown. Objective In men with dyslipidemia and IR, we evaluated the impact of substituting ω-6 PUFAs for SFAs on the in vivo kinetics of apolipoprotein (apo) B-containing lipoproteins and on the intestinal expression of key genes involved in lipoprotein metabolism. Design Dyslipidemic and IR men (n = 36) were recruited for this double-blind, randomized, crossover, controlled trial. Subjects consumed, in a random order, a fully controlled diet rich in SFAs (SFAs: 13.4% of energy; ω-6 PUFAs: 4.0%) and a fully controlled diet rich in ω-6 PUFAs (SFAs: 6.0%; ω-6 PUFAs: 11.3%) for periods of 4 wk, separated by a 4-wk washout period. At the end of each diet, the in vivo kinetics of apoB-containing lipoproteins were measured and the intestinal expression of key genes involved in lipoprotein metabolism was quantified in duodenal biopsies taken from each participant. Results The substitution of ω-6 PUFAs for SFAs had no impact on TRL apoB-48 fractional catabolic rate (Δ = -3.8%, P = 0.7) and production rate (Δ = +1.2%, P = 0.9), although it downregulated the intestinal expression of the microsomal triglyceride transfer protein (Δ = -18.4%, P = 0.006) and apoB (Δ = -16.6%, P = 0.005). The substitution of ω-6 PUFAs for SFAs decreased the LDL apoB-100 pool size (Δ = -7.8%; P = 0.005). This difference was attributed to a reduction in the LDL apoB-100 production rate after the substitution of ω-6 PUFAs for SFAs (Δ = -10.0%; P = 0.003). Conclusions This study demonstrates that the substitution of dietary ω-6 PUFAs for SFAs decreases the production and number of LDL particles in men with dyslipidemia and IR. This trial was registered at clinicaltrials.gov as NCT01934543.
Collapse
Affiliation(s)
| | - André J Tremblay
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Marie-Claude Lépine
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Valéry Lemelin
- Department of Gastroenterology and Lipid Research Center, CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Benoît Lamarche
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Patrick Couture
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada,Lipid Research Center, CHU de Québec-Université Laval, Quebec City, Quebec, Canada,Address correspondence to PC (e-mail: )
| |
Collapse
|
6
|
Fournier N, Sayet G, Vedie B, Nowak M, Allaoui F, Solgadi A, Caudron E, Chaminade P, Benoist JF, Paul JL. Eicosapentaenoic acid membrane incorporation impairs cholesterol efflux from cholesterol-loaded human macrophages by reducing the cholesteryl ester mobilization from lipid droplets. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1079-1091. [PMID: 28739279 DOI: 10.1016/j.bbalip.2017.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 12/26/2022]
Abstract
A diet containing a high n-3/n-6 polyunsaturated fatty acids (PUFA) ratio has cardioprotective properties. PUFAs incorporation into membranes influences the function of membrane proteins. We investigated the impact of the membrane incorporation of PUFAs, especially eicosapentaenoic acid (EPA) (C20:5 n-3), on the anti-atherogenic cholesterol efflux pathways. We used cholesteryl esters (CE)-loaded human monocyte-derived macrophages (HMDM) to mimic foam cells exposed to the FAs for a long period of time to ensure their incorporation into cellular membranes. Phospholipid fraction of EPA cells exhibited high levels of EPA and its elongation product docosapentaenoic acid (DPA) (C22:5 n-3), which was associated with a decreased level of arachidonic acid (AA) (C20:4 n-6). EPA 70μM reduced ABCA1-mediated cholesterol efflux to apolipoprotein (apo) AI by 30% without any alteration in ABCA1 expression. The other tested PUFAs, DPA, docosahexaenoic acid (DHA) (C22:6 n-3), and AA, were also able to reduce ABCA1 functionality while the monounsaturated oleic FA slightly decreased efflux and the saturated palmitic FA had no impact. Moreover, EPA also reduced cholesterol efflux to HDL mediated by the Cla-1 and ABCG1 pathways. EPA incorporation did not hinder efflux in free cholesterol-loaded HMDM and did not promote esterification of cholesterol. Conversely, EPA reduced the neutral hydrolysis of cytoplasmic CE by 24%. The reduced CE hydrolysis was likely attributed to the increase in cellular TG contents and/or the decrease in apo E secretion after EPA treatment. In conclusion, EPA membrane incorporation reduces cholesterol efflux in human foam cells by reducing the cholesteryl ester mobilization from lipid droplets.
Collapse
Affiliation(s)
- Natalie Fournier
- Univ Paris Sud-Paris Saclay, EA 7357, Lip(Sys)(2), Athérosclérose: homéostasie et trafic du cholestérol des macrophages (FKA EA 4529), UFR de Pharmacie, 92296 Châtenay-Malabry, France; AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Européen Georges Pompidou, Laboratoire de Biochimie, 75015 Paris, France.
| | - Guillaume Sayet
- Univ Paris Sud-Paris Saclay, EA 7357, Lip(Sys)(2), Chimie Analytique Pharmaceutique (FKA EA 4041), UFR de Pharmacie, 92296 Châtenay-Malabry, France
| | - Benoît Vedie
- AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Européen Georges Pompidou, Laboratoire de Biochimie, 75015 Paris, France
| | - Maxime Nowak
- Univ Paris Sud-Paris Saclay, EA 7357, Lip(Sys)(2), Athérosclérose: homéostasie et trafic du cholestérol des macrophages (FKA EA 4529), UFR de Pharmacie, 92296 Châtenay-Malabry, France
| | - Fatima Allaoui
- Univ Paris Sud-Paris Saclay, EA 7357, Lip(Sys)(2), Athérosclérose: homéostasie et trafic du cholestérol des macrophages (FKA EA 4529), UFR de Pharmacie, 92296 Châtenay-Malabry, France
| | - Audrey Solgadi
- Univ Paris Sud-Paris Saclay, SFR IPSIT (Institut Paris-Saclay d'Innovation Thérapeutique), UMS IPSIT Service d'Analyse des Médicaments et Métabolites, 92296 Châtenay-Malabry, France
| | - Eric Caudron
- Univ Paris Sud-Paris Saclay, EA 7357, Lip(Sys)(2), Chimie Analytique Pharmaceutique (FKA EA 4041), UFR de Pharmacie, 92296 Châtenay-Malabry, France
| | - Pierre Chaminade
- Univ Paris Sud-Paris Saclay, EA 7357, Lip(Sys)(2), Chimie Analytique Pharmaceutique (FKA EA 4041), UFR de Pharmacie, 92296 Châtenay-Malabry, France
| | - Jean-François Benoist
- AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Robert Debré, Laboratoire de Biochimie hormonale, 75019 Paris, France
| | - Jean-Louis Paul
- Univ Paris Sud-Paris Saclay, EA 7357, Lip(Sys)(2), Athérosclérose: homéostasie et trafic du cholestérol des macrophages (FKA EA 4529), UFR de Pharmacie, 92296 Châtenay-Malabry, France; AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Européen Georges Pompidou, Laboratoire de Biochimie, 75015 Paris, France
| |
Collapse
|
7
|
Deckelbaum RJ, Chang C, Worgall TS, Seo T. Molecular mechanisms for biological endpoints of n-3 fatty acids. SCANDINAVIAN JOURNAL OF FOOD & NUTRITION 2016. [DOI: 10.1080/17482970601069375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | | | - Tilla S. Worgall
- Institute of Human NutritionNew YorkUSA
- Department of PediatricsNew YorkUSA
- Department of PathologyColumbia University Medical CenterNew YorkUSA
| | - Toru Seo
- Institute of Human NutritionNew YorkUSA
- Department of PediatricsNew YorkUSA
| |
Collapse
|
8
|
García-Pelayo MC, García-Peregrín E, Martínez-Cayuela M. Differential Translational Effects of Myristic Acid and Eicosapentaenoic Acid on 3-Hydroxy-3-Methylglutaryl-CoA Reductase From Reuber H35 Hepatoma Cells. Exp Biol Med (Maywood) 2016; 229:781-6. [PMID: 15337832 DOI: 10.1177/153537020422900810] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The mechanisms by which saturated and polyunsaturated fatty acids may exert their effects on levels of blood cholesterol and human atherosclerosis have not been fully established. In this work, we studied the translational effects of myristic (14:0) and eicosapentaenoic (20:5) acids on 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase from Reuber H35 hepatoma cells. This enzyme is an intrinsic membrane, 96-kDa protein whose proteolysis releases an enzymatically active, 52- to 56-kDa, soluble fragment. We optimized an immunoblot procedure for quantifying small amounts of both the native and the soluble forms of HMG-CoA reductase from Reuber H35 hepatoma cells. We demonstrated that the upregulation of HMG-CoA reductase by myristic acid is due to an increase of the HMG-CoA reductase protein; therefore, protein synthesis would be required for the increase of HMG-CoA reductase activity caused by this fatty acid. In contrast, the downregulation of HMG-CoA reductase caused by eicosapentaenoic acid is not due to decreased protein synthesis, since similar levels of protein were found in the presence and absence of this fatty acid. Results obtained with cycloheximide as a protein-synthesis inhibitor confirm these findings.
Collapse
Affiliation(s)
- M Carmen García-Pelayo
- Department of Biochemistry and Molecular Biology, University of Granada, Polígono de Cartuja s/n, 18071 Granada, Spain
| | | | | |
Collapse
|
9
|
Ferguson JJ, Stojanovski E, MacDonald-Wicks L, Garg ML. Fat type in phytosterol products influence their cholesterol-lowering potential: A systematic review and meta-analysis of RCTs. Prog Lipid Res 2016; 64:16-29. [DOI: 10.1016/j.plipres.2016.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 08/02/2016] [Accepted: 08/02/2016] [Indexed: 12/29/2022]
|
10
|
Guo W, Gong Y, Fu Z, Fu J, Sun Y, Ju X, Chang Y, Wang W, Zhu X, Gao B, Liu X, Yang T, Zhou H. The effect of cholesteryl ester transfer protein on pancreatic beta cell dysfunction in mice. Nutr Metab (Lond) 2016; 13:21. [PMID: 26973702 PMCID: PMC4788865 DOI: 10.1186/s12986-016-0082-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 03/06/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Cholesterol accumulation causes pancreatic beta cell lipotoxicity and dysfunction. Cholesteryl ester transfer protein (CETP) plays an important role in blood lipid homeostasis. However, its role in tissue lipid metabolism remains unclear. We hypothesized that plasma CETP impact cholesterol homeostasis in the beta cells, thus damaging their functions. METHODS The adipose tissue-specific CETP expression transgenic (aP2-CETPTg) mice, characterized by high CETP levels in the circulation, were used in this study. Pancreatic islet cholesterol and beta cell function were assessed in mice. We further measured mRNA levels of the genes involved in beta cell proliferation and differentiation, inflammation and cholesterol metabolism. TUNEL assay was applied to investigate beta cell apoptosis in islets. RESULTS The aP2-CETPTg mice exhibited glucose intolerance, lower plasma insulin concentrations but increased insulin sensitivity compared with wild type mice. In addition, glucose-stimulated insulin secretion from isolated pancreatic islets significantly decreased, and free cholesterol significantly increased. Moreover, the number and size of islets from aP2-CETPTg mice were significantly decreased. Genes involved in beta cell proliferation, such as Pdx1 and BETA2, were down-regulated; genes involved in inflammation and ER stress, such as IL-1β, CHOP, and Xbp1 were up-regulated, in line with an increase of beta cell apoptosis. CONCLUSIONS Plasma CETP causes free cholesterol accumulation in islets which could contribute to beta cell dysfunction. Thus, CETP inhibition could be a novel protective strategy for dyslipidemia related to diabetes and obese.
Collapse
Affiliation(s)
- Wen Guo
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 China
| | - Yingyun Gong
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 China
| | - Zhenzhen Fu
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 China
| | - Jinxiang Fu
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 China
| | - Yan Sun
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 China
| | - Xianxia Ju
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 China
| | - Yina Chang
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 China
| | - Wen Wang
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 China
| | - Xiaohui Zhu
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 China
| | - Beibei Gao
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 China
| | - Xiaoyun Liu
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 China
| | - Tao Yang
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 China
| | - Hongwen Zhou
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 China
| |
Collapse
|
11
|
Seo HS, Choi MH. Cholesterol homeostasis in cardiovascular disease and recent advances in measuring cholesterol signatures. J Steroid Biochem Mol Biol 2015; 153:72-9. [PMID: 25910582 DOI: 10.1016/j.jsbmb.2015.04.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/17/2015] [Accepted: 04/20/2015] [Indexed: 01/08/2023]
Abstract
Despite the biochemical importance of cholesterol, its abnormal metabolism has serious cellular consequences that lead to endocrine disorders such as cardiovascular disease (CVD). Nevertheless, the impact of blood cholesterol as a CVD risk factor is still debated, and treatment with cholesterol-lowering drugs remains controversial, particularly in older patients. Although, the prevalence of CVD increases with age, the underlying mechanisms for this phenomenon are not well understood, and metabolic changes have not been confirmed as predisposing factors of atherogenesis. The quantification of circulating biomarkers for cholesterol homeostasis is therefore warranted, and reference values for cholesterol absorption and synthesis should be determined in order to establish CVD risk factors. The traditional lipid profile is often derived rather than directly measured and lacks a universal standard to interpret the results. In contrast, mass spectrometry-based cholesterol profiling can accurately measure free cholesterol as a biologically active component. This approach allows to detect alterations in various metabolic pathways that control cholesterol homeostasis, by quantitative analysis of cholesterol and its precursors/metabolites as well as dietary sterols. An overview of the mechanism of cholesterol homeostasis under different physiological conditions may help to identify predictive biomarkers of concomitant atherosclerosis and conventional CVD risk factors.
Collapse
Affiliation(s)
- Hong Seog Seo
- Cardiovascular Center, Korea University Guro Hospital, Seoul 152-703, South Korea; Korea University-Korea Institute of Science and Technology Graduated School of Converging Science and Technology, Seoul 152-703, South Korea
| | - Man Ho Choi
- Materials and Life Science Research Division, Korea Institute of Science and Technology, Seoul 136-791, South Korea.
| |
Collapse
|
12
|
Protective effects of dietary avocado oil on impaired electron transport chain function and exacerbated oxidative stress in liver mitochondria from diabetic rats. J Bioenerg Biomembr 2015; 47:337-53. [PMID: 26060181 DOI: 10.1007/s10863-015-9614-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 05/29/2015] [Indexed: 02/07/2023]
Abstract
Electron transport chain (ETC) dysfunction, excessive ROS generation and lipid peroxidation are hallmarks of mitochondrial injury in the diabetic liver, with these alterations also playing a role in the development of non-alcoholic fatty liver disease (NAFLD). Enhanced mitochondrial sensitivity to lipid peroxidation during diabetes has been also associated to augmented content of C22:6 in membrane phospholipids. Thus, we aimed to test whether avocado oil, a rich source of C18:1 and antioxidants, attenuates the deleterious effects of diabetes on oxidative status of liver mitochondria by decreasing unsaturation of acyl chains of membrane lipids and/or by improving ETC functionality and decreasing ROS generation. Streptozocin-induced diabetes elicited a noticeable increase in the content of C22:6, leading to augmented mitochondrial peroxidizability index and higher levels of lipid peroxidation. Mitochondrial respiration and complex I activity were impaired in diabetic rats with a concomitant increase in ROS generation using a complex I substrate. This was associated to a more oxidized state of glutathione, All these alterations were prevented by avocado oil except by the changes in mitochondrial fatty acid composition. Avocado oil did not prevented hyperglycemia and polyphagia although did normalized hyperlipidemia. Neither diabetes nor avocado oil induced steatosis. These results suggest that avocado oil improves mitochondrial ETC function by attenuating the deleterious effects of oxidative stress in the liver of diabetic rats independently of a hypoglycemic effect or by modifying the fatty acid composition of mitochondrial membranes. These findings might have also significant implications in the progression of NAFLD in experimental models of steatosis.
Collapse
|
13
|
Contrasting effects of arachidonic acid and docosahexaenoic acid membrane incorporation into cardiomyocytes on free cholesterol turnover. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1842:1413-21. [DOI: 10.1016/j.bbalip.2014.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 06/29/2014] [Accepted: 07/03/2014] [Indexed: 11/19/2022]
|
14
|
Afonso MDS, Castilho G, Lavrador MSF, Passarelli M, Nakandakare ER, Lottenberg SA, Lottenberg AM. The impact of dietary fatty acids on macrophage cholesterol homeostasis. J Nutr Biochem 2014; 25:95-103. [DOI: 10.1016/j.jnutbio.2013.10.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 09/11/2013] [Accepted: 10/03/2013] [Indexed: 11/16/2022]
|
15
|
Adding MUFA to a dietary portfolio of cholesterol-lowering foods reduces apoAI fractional catabolic rate in subjects with dyslipidaemia. Br J Nutr 2013; 110:426-36. [DOI: 10.1017/s000711451200534x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The present randomised parallel study assessed the impact of adding MUFA to a dietary portfolio of cholesterol-lowering foods on the intravascular kinetics of apoAI- and apoB-containing lipoproteins in subjects with dyslipidaemia. A sample of sixteen men and postmenopausal women consumed a run-in stabilisation diet for 4 weeks. Subjects were then randomly assigned to an experimental dietary portfolio either high or low in MUFA for another 4 weeks. MUFA substituted 13·0 % of total energy from carbohydrate (CHO) in the high-MUFA dietary portfolio. Lipoprotein kinetics were assessed after the run-in and portfolio diets using a primed, constant infusion of [2H3]leucine and multicompartmental modelling. The high-MUFA dietary portfolio resulted in higher apoAI pool size (PS) compared with the low-MUFA dietary portfolio (15·9 % between-diet difference, P= 0·03). This difference appeared to be mainly attributable to a reduction in apoAI fractional catabolic rate (FCR) after the high-MUFA diet ( − 5·6 %, P= 0·02 v. pre-diet values), with no significant change in production rate. The high-MUFA dietary portfolio tended to reduce LDL apoB100 PS compared with the low-MUFA dietary portfolio ( − 28·5 % between-diet difference, P= 0·09), predominantly through an increase in LDL apoB100 FCR (23·2 % between-diet difference, P= 0·04). These data suggest that adding MUFA to a dietary portfolio of cholesterol-lowering foods provides the added advantage of raising HDL primarily through a reduction in HDL clearance rate. Replacing CHO with MUFA in a dietary portfolio may also lead to reductions in LDL apoB100 concentrations primarily by increasing LDL clearance rate, thus potentiating further the well-known cholesterol-lowering effect of this diet.
Collapse
|
16
|
Jelinek D, Castillo JJ, Richardson LM, Luo L, Heidenreich RA, Garver WS. The Niemann-Pick C1 gene is downregulated in livers of C57BL/6J mice by dietary fatty acids, but not dietary cholesterol, through feedback inhibition of the SREBP pathway. J Nutr 2012; 142:1935-42. [PMID: 22990467 PMCID: PMC3497932 DOI: 10.3945/jn.112.162818] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Niemann-Pick C1 (NPC1) gene is associated with human obesity. Mouse models with decreased Npc1 gene dosage are susceptible to weight gain when fed a high-fat diet, but not a low-fat diet, consistent with an Npc1 gene-diet interaction. The objectives of this study were to define regulation of the Npc1 gene and to investigate the Npc1 gene-diet interaction responsible for weight gain. The experimental design involved feeding C57BL/6J male mice a low-fat diet (with 0.00, 0.10, or 1.00% cholesterol) or a high-fat diet (with 0.02% cholesterol) until 30 wk to determine regulation of the Npc1 gene in liver. The key results showed that the Npc1 gene was downregulated by dietary fatty acids (54%, P = 0.022), but not by dietary cholesterol, through feedback inhibition of the sterol regulatory element-binding protein (SREBP) pathway. However, the dietary fatty acids secondarily increased liver cholesterol, which also inhibits the SREBP pathway. Similarly, the Npc1 gene was downregulated in peritoneal fibroblasts isolated from C57BL/6J weanling male mice not exposed to the experimental diets and incubated in media supplemented with purified oleic acid (37%, P = 0.038) but not in media supplemented with purified cholesterol. These results are important because they suggest a novel mechanism for the interaction of fatty acids with the Npc1 gene to influence energy balance and to promote weight gain. Moreover, the responsiveness of the Npc1 gene to fatty acids is consistent with studies that suggest that the encoded NPC1 protein has a physiologic role in regulating both cholesterol and fatty acid metabolism.
Collapse
Affiliation(s)
| | | | | | - Li Luo
- Department of Internal Medicine, and
| | - Randall A. Heidenreich
- Department of Pediatrics, The University of New Mexico Health Sciences Center, Albuquerque, NM
| | - William S. Garver
- Department of Biochemistry and Molecular Biology,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
17
|
Abstract
Reviewed here are the modes of action of soy components used as ingredients in foods, which can lower plasma levels of low-density lipoprotein (LDL) and cholesterol, which are markers for the risk for atherosclerosis. Soy ingredients act via more than one mode of action including the following: LDL absorption suppression, cholesterol efflux stimulation, LDL resorption stimulation, LDL oxidation prevention, LDL particle size increase, cholesterol synthesis reduction, and bile secretion increase. Individual genetics, lifestyle, and nutrition habits alter LDL management and a better understanding of the various modes of actions of soy ingredients may facilitate the composition of effective ingredient cocktails. The optimization of food components offers further alternatives to LDL management to augment drug therapy for patients who are unable to reach their target LDL cholesterol levels or who are suffering from side effects or drug insensitivity.
Collapse
Affiliation(s)
- Jan H van Ee
- Archer Daniels Midland Company, Koog aan de Zaan, The Netherlands.
| |
Collapse
|
18
|
Oosterveer MH, van Dijk TH, Tietge UJF, Boer T, Havinga R, Stellaard F, Groen AK, Kuipers F, Reijngoud DJ. High fat feeding induces hepatic fatty acid elongation in mice. PLoS One 2009; 4:e6066. [PMID: 19557132 PMCID: PMC2699051 DOI: 10.1371/journal.pone.0006066] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 05/25/2009] [Indexed: 01/07/2023] Open
Abstract
Background High-fat diets promote hepatic lipid accumulation. Paradoxically, these diets also induce lipogenic gene expression in rodent liver. Whether high expression of these genes actually results in an increased flux through the de novo lipogenic pathway in vivo has not been demonstrated. Methodology/Principal Findings To interrogate this apparent paradox, we have quantified de novo lipogenesis in C57Bl/6J mice fed either chow, a high-fat or a n-3 polyunsaturated fatty acid (PUFA)-enriched high-fat diet. A novel approach based on mass isotopomer distribution analysis (MIDA) following 1-13C acetate infusion was applied to simultaneously determine de novo lipogenesis, fatty acid elongation as well as cholesterol synthesis. Furthermore, we measured very low density lipoprotein-triglyceride (VLDL-TG) production rates. High-fat feeding promoted hepatic lipid accumulation and induced the expression of lipogenic and cholesterogenic genes compared to chow-fed mice: induction of gene expression was found to translate into increased oleate synthesis. Interestingly, this higher lipogenic flux (+74 µg/g/h for oleic acid) in mice fed the high-fat diet was mainly due to an increased hepatic elongation of unlabeled palmitate (+66 µg/g/h) rather than to elongation of de novo synthesized palmitate. In addition, fractional cholesterol synthesis was increased, i.e. 5.8±0.4% vs. 8.1±0.6% for control and high fat-fed animals, respectively. Hepatic VLDL-TG production was not affected by high-fat feeding. Partial replacement of saturated fat by fish oil completely reversed the lipogenic effects of high-fat feeding: hepatic lipogenic and cholesterogenic gene expression levels as well as fatty acid and cholesterol synthesis rates were normalized. Conclusions/Significance High-fat feeding induces hepatic fatty acid synthesis in mice, by chain elongation and subsequent desaturation rather than de novo synthesis, while VLDL-TG output remains unaffected. Suppression of lipogenic fluxes by fish oil prevents from high fat diet-induced hepatic steatosis in mice.
Collapse
Affiliation(s)
- Maaike H Oosterveer
- Department of Pediatrics, Center for Liver Digestive and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Matthan NR, Dillard A, Lecker JL, Ip B, Lichtenstein AH. Effects of dietary palmitoleic acid on plasma lipoprotein profile and aortic cholesterol accumulation are similar to those of other unsaturated fatty acids in the F1B golden Syrian hamster. J Nutr 2009; 139:215-21. [PMID: 19106316 PMCID: PMC4274120 DOI: 10.3945/jn.108.099804] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The lower susceptibility of palmitoleic acid (16:1) to oxidation compared to PUFA may confer functional advantages with respect to finding acceptable alternatives to partially hydrogenated fats, but limited data are available on its effect on cardiovascular risk factors. This study investigated the effect of diets (10% fat, 0.1% cholesterol, wt:wt) enriched with macadamia [monounsaturated fatty acid (MUFA)16:1], palm (SFA,16:0), canola (MUFA,18:1), or safflower (PUFA,18:2) oils on lipoprotein profiles and aortic cholesterol accumulation in F1B Golden Syrian hamsters (n = 16/group). After 12 wk, 8 hamsters in each group were killed (phase 1). The remaining hamsters fed palm oil were changed to a diet containing coconut oil, while hamsters in the other diet groups continued on their original diets for an additional 6 wk (phase 2). With minor exceptions, the time course and dietary SFA source did not alter the study outcomes. Macadamia oil-fed hamsters had lower non-HDL cholesterol and triglyceride concentrations compared with the palm and coconut oil-fed hamsters and higher HDL-cholesterol compared with the coconut, canola, and safflower oil-fed hamsters. The aortic cholesterol concentration was not affected by dietary fat type. The hepatic cholesterol concentration was higher in the unsaturated compared with the saturated oil-fed hamsters. RBC membrane and aortic cholesteryl ester, triglyceride, and phospholipid fatty acid profiles reflected that of the dietary oil. These data suggest that an oil relatively high in palmitoleic acid does not adversely affect plasma lipoprotein profiles or aortic cholesterol accumulation and was similar to other unsaturated fatty acid-rich oils.
Collapse
|
20
|
Chen CT, Liu Z, Ouellet M, Calon F, Bazinet RP. Rapid beta-oxidation of eicosapentaenoic acid in mouse brain: an in situ study. Prostaglandins Leukot Essent Fatty Acids 2009; 80:157-63. [PMID: 19237271 DOI: 10.1016/j.plefa.2009.01.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 12/05/2008] [Accepted: 01/08/2009] [Indexed: 01/06/2023]
Abstract
Analyses of brain phospholipid fatty acid profiles reveal a selective deficiency and enrichment in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), respectively. In order to account for this difference in brain fatty acid levels, we hypothesized that EPA is more rapidly beta-oxidized upon its entry into the brain. Wild-type C57BL/6 mice were perfused with either (14)C-EPA or (14)C-DHA via in situ cerebral perfusion for 40s, followed by a bicarbonate buffer to wash out the residual radiolabeled polyunsaturated fatty acid (PUFA) in the capillaries. (14)C-PUFA-perfused brains were extracted for chemical analyses of neutral lipid and phospholipid fatty acids. Based on the radioactivity in aqueous, total lipid, neutral lipid and phospholipid fractions, volume of distribution (V(D), microl/g) was calculated. The V(D) between (14)C-EPA- and (14)C-DHA-perfused samples was not statistically different for total lipid, neutral lipids or total phospholipids. However, the V(D) of (14)C-EPA in the aqueous fraction was 2.5 times higher than that of (14)C-DHA (p=0.025), suggesting a more extensive beta-oxidation than DHA. Furthermore, radiolabeled palmitoleic acid, a fatty acid that can be synthesized de novo, was detected in brain phospholipids from (14)C-EPA but not from (14)C-DHA-perfused mice suggesting that beta-oxidation products of EPA were recycled into endogenous fatty acid biosynthetic pathways. These findings suggest that low levels of EPA in brain phospholipids compared to DHA may be the result of its rapid beta-oxidation upon uptake by the brain.
Collapse
Affiliation(s)
- Chuck T Chen
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, FitzGerald Building, 150 College St., Room 306, Toronto, Ontario, Canada M5S 3E2.
| | | | | | | | | |
Collapse
|
21
|
Locke JA, Wasan KM, Nelson CC, Guns ES, Leon CG. Androgen-mediated cholesterol metabolism in LNCaP and PC-3 cell lines is regulated through two different isoforms of acyl-coenzyme A:Cholesterol Acyltransferase (ACAT). Prostate 2008; 68:20-33. [PMID: 18000807 DOI: 10.1002/pros.20674] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND The objective of this work was to determine the effect of an androgen agonist, R1881, on intracellular cholesterol synthesis and esterification in androgen-sensitive (AS) prostate cancer (LNCaP) cells. METHODS We investigated the activity and expression of cholesterol metabolism enzymes, HMG-CoA-reductase and ACAT in the LNCaP and PC-3 (androgen-independent control) models. RESULTS Microsomal PC-3 HMG-CoA-reductase activity was increased with R1881 despite having similar cholesterol levels while increased cholesterol levels in microsomes from LNCaPs treated with R1881 (L+) were associated with increased HMG-CoA reductase activity. Increased intracellular cholesteryl esters (CE) found in (L+) were not associated with an increased ACAT1 activity. There was no effect from androgen treatment on ACAT1 protein expression in theses cells; however, ACAT2 expression was induced upon R1881 treatment. In contrast, we found an increase in the in vitro ACAT1 activity in PC-3 cells treated with androgen (P+). Only ACAT1 expression was induced in P+. We further assessed the expression of STAT1 alpha, a transcriptional activator that modulates ACAT1 expression. STAT1 alpha expression and phosphorylation were induced in P+. To determine the role of the AR on ACAT1 expression and esterification, we treated PC-3 cells overexpressing the androgen receptor with R1881 (PAR+). AR expression was decreased in PAR+ cells; ACAT1 protein expression and cholesterol ester levels were also decreased, however, ACAT2 remained unchanged. STAT1 alpha expression was decreased in PAR+. CONCLUSIONS Overall, these findings support the importance of cholesterol metabolism regulation within prostate cancer cells and unravel a novel role for STAT1 alpha in prostate cancer metabolism.
Collapse
Affiliation(s)
- Jennifer A Locke
- Department of Urologic Sciences, University of British Columbia, The Prostate Centre at Vancouver General Hospital, Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
22
|
Densupsoontorn N, Worgall TS, Seo T, Hamai H, Deckelbaum RJ. Fatty acid supplied as triglyceride regulates SRE-mediated gene expression as efficiently as free fatty acids. Lipids 2007; 42:885-91. [PMID: 17680293 DOI: 10.1007/s11745-007-3093-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Accepted: 06/26/2007] [Indexed: 01/21/2023]
Abstract
Sterol regulatory element binding proteins (SREBPs) are key transcription proteins that bind to sterol regulatory elements (SRE) of genes essential for cellular cholesterol and fatty acid homeostasis. Polyunsaturated fatty acids (PUFA) strongly inhibit SREBP processing at post-transcriptional levels. We questioned if delivering PUFA as part of a triglyceride (TG) molecule would have similar effects and efficiency as free non-esterified PUFA. CHO cells stably transfected with an SRE-promoter linked to the luciferase reporter gene were incubated for 8-24 h with linoleic acid (LA) complexed to BSA (molar ratios 0.5-4:1), VLDL-sized trilinolein emulsions (TL, 25-200 microg/ml), and chylomicron-sized soy oil emulsions in the presence and absence of apoE. Effects of LA and TL on decreasing SRE-luciferase activity were similar and dose and time dependent. Both TL and LA significantly and rapidly (<or=2-12 h) reduced SRE-mediated gene expression by up to 75%. At equal fatty acid concentrations, SRE inhibition by TL was as effective as LA. ApoE addition increased inhibition by TL. Inhibition of gene expression was highly correlated to cell TG accumulation. We conclude that TG like fatty acids are rapid and efficient modulators of SRE-mediated gene expression.
Collapse
Affiliation(s)
- Narumon Densupsoontorn
- Institute of Human Nutrition and Department of Pediatrics, College of Physicians and Surgeons, Columbia University, 630 W. 168th St., PH1512, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
23
|
Oestvang J, Johansen B. PhospholipaseA2: A key regulator of inflammatory signalling and a connector to fibrosis development in atherosclerosis. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:1309-16. [PMID: 16904370 DOI: 10.1016/j.bbalip.2006.06.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2006] [Revised: 06/23/2006] [Accepted: 06/24/2006] [Indexed: 11/23/2022]
Abstract
Atherosclerosis is a progressive inflammatory disease that takes place in the intima of the arterial wall. It is characterized by activation of endothelial cells, proliferation of smooth muscle cells and macrophages, accumulation of lipoproteins, deposition of extracellular matrix components and enhanced lipolytic enzyme activity. Phospholipase A(2) (PLA(2)) has been postulated to play an important role in the inflammatory process of atherosclerosis, but its molecular mechanism is uncertain. The secretory PLA(2) is expressed at increased levels in an atherosclerotic plaque and may hydrolyze low-density lipoproteins (LDL). This action promotes the production of pro-inflammatory lipids such as lysophospholipids, unsaturated fatty acids and eicosanoids. The current review highlights recent findings on how LDL-derived lipid mediators, generated by sPLA_2 modification of LDL, regulate pro-inflammatory activation and intracellular signaling in macrophages. Moreover, the review discusses how PLA_2 enzymes regulate signalling that promotes collagen accumulation and fibrotic plaque development. PLA_2 could therefore function as a connector between inflammation and fibrosis, the latter being an endpoint of chronic inflammation.
Collapse
Affiliation(s)
- Janne Oestvang
- Department of Biology, Section for Molecular Biology and Biotechnology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | | |
Collapse
|
24
|
Schønberg SA, Lundemo AG, Fladvad T, Holmgren K, Bremseth H, Nilsen A, Gederaas O, Tvedt KE, Egeberg KW, Krokan HE. Closely related colon cancer cell lines display different sensitivity to polyunsaturated fatty acids, accumulate different lipid classes and downregulate sterol regulatory element-binding protein 1. FEBS J 2006; 273:2749-65. [PMID: 16817902 DOI: 10.1111/j.1742-4658.2006.05292.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
N-6 polyunsaturated fatty acids (PUFAs) may be associated with increased risk of colon cancer, whereas n-3 PUFAs may have a protective effect. We examined the effects of docosahexaenoic acid (DHA), eicosapentaenoic acid and arachidonic acid on the colon carcinoma cell lines SW480 derived from a primary tumour, and SW620 derived from a metastasis of the same tumour. DHA had the strongest growth-inhibitory effect on both cell lines. SW620 was relatively more growth-inhibited than SW480, but SW620 also had the highest growth rate in the absence of PUFAs. Flow cytometry revealed an increase in the fraction of cells in the G2/M phase of the cell cycle, particularly for SW620 cells. Growth inhibition was apparently not caused by increased lipid peroxidation, reduced glutathione or low activity of glutathione peroxidase. Transmission electron microscopy revealed formation of cytoplasmic lipid droplets after DHA treatment. In SW620 cells an eightfold increase in total cholesteryl esters and a 190-fold increase in DHA-containing cholesteryl esters were observed after DHA treatment. In contrast, SW480 cells accumulated DHA-enriched triglycerides. Arachidonic acid accumulated in a similar manner, whereas the nontoxic oleic acid was mainly incorporated in triglycerides in both cell lines. Interestingly, nuclear sterol regulatory element-binding protein 1 (nSREBP1), recently associated with cell growth regulation, was downregulated after DHA treatment in both cell lines. Our results demonstrate cell-specific mechanisms for the processing and storage of cytotoxic PUFAs in closely related cell lines, and suggest downregulation of nSREBP1 as a possible contributor to the growth inhibitory effect of DHA.
Collapse
Affiliation(s)
- Svanhild A Schønberg
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Yu-Poth S, Yin D, Kris-Etherton PM, Zhao G, Etherton TD. Long-chain polyunsaturated fatty acids upregulate LDL receptor protein expression in fibroblasts and HepG2 cells. J Nutr 2005; 135:2541-5. [PMID: 16251608 DOI: 10.1093/jn/135.11.2541] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The objective of this study was to investigate the effect of individual PUFAs on LDL receptor (LDLr) expression in human fibroblasts and HepG2 cells, and to evaluate whether acyl CoA:cholesterol acyltransferase (ACAT) and sterol regulatory element-binding protein 1 (SREBP-1) were involved in the regulation of LDLr expression by fatty acids. When fibroblasts and HepG2 cells were cultured with serum-free defined medium for 48 h, there was a 3- to 5-fold (P < 0.05) increase in LDLr protein and mRNA levels. Incubation of fibroblasts and HepG2 cells in serum-free medium supplemented with 25-hydroxycholesterol (25OH-cholesterol, 5 mg/L) for 24 h decreased LDLr protein and mRNA levels by 50-90% (P < 0.05). Arachidonic acid [AA, 20:4(n-6)], EPA [20:5(n-3)], and DHA [22:6(n-3)] antagonized the depression of LDLr gene expression by 25OH-cholesterol and increased LDLr protein abundance 1- to 3-fold (P < 0.05), but had no significant effects on LDLr mRNA levels. Oleic (18:1), linoleic (18:2), and alpha-linolenic acids [18:3(n-3)] did not significantly affect LDLr expression. ACAT inhibitor (58-035, 1 mg/L) attenuated the regulatory effect of AA on LDLr protein abundance by approximately 40% (P < 0.05), but did not modify the regulatory effects of other unsaturated fatty acids in HepG2 cells. The present results suggest that AA, EPA, and DHA increase LDLr protein levels, and that ACAT plays a role in modulating the effects of AA on LDLr protein levels. Furthermore, the effects of the fatty acids appeared to be independent of any change in SREBP-1 protein.
Collapse
Affiliation(s)
- Shaomei Yu-Poth
- Graduate Program in Nutrition, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
26
|
Dove DE, Su YR, Swift LL, Linton MF, Fazio S. ACAT1 deficiency increases cholesterol synthesis in mouse peritoneal macrophages. Atherosclerosis 2005; 186:267-74. [PMID: 16144700 DOI: 10.1016/j.atherosclerosis.2005.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Revised: 07/20/2005] [Accepted: 08/01/2005] [Indexed: 11/30/2022]
Abstract
Acyl-coenzyme A:cholesterol acyltransferase (ACAT) esterifies free cholesterol and stores cholesteryl esters in lipid droplets. Macrophage ACAT1 deficiency results in increased atherosclerotic lesion area in hyperlipidemic mice via disrupted cholesterol efflux, increased lipoprotein uptake, accumulation of intracellular vesicles, and accelerated apoptosis. The objective of this study was to determine whether lipid synthesis is affected by ACAT1. The synthesis, esterification, and efflux of new cholesterol were measured in peritoneal macrophages from ACAT1(-/-) mice. Cholesterol synthesis was increased by 134% (p=0.001) in ACAT1(-/-) macrophages compared to wildtype macrophages. Increased synthesis resulted in a proportional increase in the efflux of newly synthesized cholesterol. Although the esterification of new cholesterol was reduced by 93% (p<0.001) in ACAT1(-/-) macrophages, trace amounts of newly synthesized cholesteryl esters were detectable. Furthermore, the expression of SREBP1a mRNA was increased 6-fold in ACAT1(-/-) macrophages compared to wildtype macrophages, suggesting an up-regulation of cholesterol and fatty acid synthesis in ACAT1(-/-) macrophages. Increased cholesterol synthesis and up-regulation of SREBP in ACAT1(-/-) macrophages suggests that ACAT1 affects the regulation of lipid metabolism in macrophages. This change in cholesterol homeostasis may contribute to the atherogenic potential of ACAT1(-/-) macrophages.
Collapse
Affiliation(s)
- Dwayne E Dove
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN 37232-6300, USA
| | | | | | | | | |
Collapse
|
27
|
Abstract
Dietary fatty acids have a considerable effect on plasma LDL cholesterol (LDL-C) concentrations and therefore on the risk for coronary heart disease. Numerous studies have been conducted in animal models to elucidate the mechanisms by which different types of fatty acids modulate plasma cholesterol concentrations. In addition, multiple clinical trials and epidemiological data have demonstrated the effects of fatty acids in determining the concentrations of circulating LDL. SFAs and trans fatty acids have a detrimental effect on plasma lipids, whereas PUFAs of the (n-6) family and monounsaturated fatty acids decrease plasma LDL-C concentrations. Among the SFAs, stearic acid (18:0) appears to have a neutral effect on LDL-C, while lauric (12:0), myristic (14:0), and palmitic (16:0) acids are considered to be hypercholesterolemic. SFAs increase plasma LDL-C by increasing the formation of LDL in the plasma compartment and by decreasing LDL turnover. Although unsaturated fatty acids increase cholesterol synthesis, they also increase hepatic LDL receptor number and LDL turnover in vivo. Fatty acids are also ligands of important regulatory elements, which can play a role in determining plasma cholesterol. This article presents a summary of the major effects of various types of fatty acids on plasma lipid concentrations and the mechanisms involved.
Collapse
Affiliation(s)
- Maria Luz Fernandez
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA.
| | | |
Collapse
|
28
|
Abstract
Apart from being an important macronutrient, dietary fat has recently gained much prominence for its role in regulating gene expression. Polyunsaturated fatty acids (PUFAs) affect gene expression through various mechanisms including, but not limited to, changes in membrane composition, intracellular calcium levels, and eicosanoid production. Furthermore, PUFAs and their various metabolites can act at the level of the nucleus, in conjunction with nuclear receptors and transcription factors, to affect the transcription of a variety of genes. Several of these transcription mediators have been identified and include the nuclear receptors peroxisome proliferator-activated receptor (PPAR), hepatocyte nuclear factor (HNF)-4alpha, and liver X receptor (LXR) and the transcription factors sterol-regulatory element binding protein (SREBP) and nuclear factor-kappaB (NFkappaB). Their interaction with PUFAs has been shown to be critical to the regulation of several key genes of lipid metabolism. Working out the mechanisms by which these interactions and consequent effects occur is proving to be complicated but is invaluable to our understanding of the role that dietary fat can play in disease management and prevention.
Collapse
Affiliation(s)
- Harini Sampath
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
29
|
Effect of dietary ratios of fatty acids on cholesterol metabolism in rats and on low-density lipoprotein uptake in hepatocytes. Nutr Res 2005. [DOI: 10.1016/j.nutres.2005.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Tserng KY, Griffin R. Studies of lipid turnover in cells with stable isotope and gas chromatograph-mass spectrometry. Anal Biochem 2005; 325:344-53. [PMID: 14751270 DOI: 10.1016/j.ab.2003.10.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Phospholipids are major building blocks for biological membranes. In addition, metabolites derived from their degradation are important signals in major cellular events, such as proliferation and apoptosis. The concept of lipid signaling in cells is derived mainly from the measurement of change in the concentration of lipid molecules. However, these changes in concentration are only a small part of the underlying metabolic change induced by a perturbation in the cell. In contrast, metabolic kinetic studies documenting product-precursor relationships and turnover rates are useful in elucidating the responsible mechanisms. Historically, metabolic studies of phospholipids in cells have been carried out with pulse or pulse-chase methods using radioactive isotopes. While these studies provide valuable information, their scope is restricted by inherent limitations. In this paper we describe a method using [1,2,3,4-13C(4)]palmitate as the tracer for studying the metabolic kinetics of the molecular species of diacylglycerol, ceramide, phosphatidylcholine, and sphingomyelin. After growing cells in the presence of labeled palmitate complexed to serum albumin, the lipids are extracted and separated into lipid classes. After enzymatic hydrolysis, diacylglyerols and ceramides as bis-trimethylsilyl derivatives are determined quantitatively with capillary column gas chromatography. Internal standards for each lipid class are used in the procedure. In addition, the isotopic enrichments of the lipid molecular species are determined with gas chromatograph-mass spectrometry. We applied this method to the study of HL60 cells. Different turnover rates were found for various molecular species. In addition, the sn-1 and sn-2 acyl groups appear to be synthesized at different rates for different molecular species. Other information, such as chain elongation and desaturation, might also be derived through the use of this method.
Collapse
Affiliation(s)
- Kou-Yi Tserng
- Medical Research Service, Veterans Affairs Medical Center, Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | |
Collapse
|
31
|
Lee JY, Carr TP. Dietary fatty acids regulate acyl-CoA:cholesterol acyltransferase and cytosolic cholesteryl ester hydrolase in hamsters. J Nutr 2004; 134:3239-44. [PMID: 15570019 DOI: 10.1093/jn/134.12.3239] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
To investigate the effects of dietary fatty acids on acyl-CoA:cholesterol acyltransferase (ACAT) and cytosolic cholesteryl ester hydrolase (cCEH), male Syrian hamsters (F(1)B hybrid) were fed a modified version of the NIH-07 open formula, cereal-based rodent diet enriched with one of the following 4 dietary fatty acids: palmitic acid (16:0), trans fatty acids (18:1t), oleic acid (18:1c), or linoleic acid (18:2). Hamsters fed 16:0 and 18:1t had significantly higher plasma non-HDL cholesterol concentrations compared with those fed 18:1c and 18:2. However, differences in plasma apolipoprotein (apo)B(100) concentration, hepatic cCEH mRNA abundance, and hepatic ACAT activity between 16:0- and 18:1t-fed hamsters suggest that the hypercholesterolemic effects are achieved by different mechanisms. Specifically, an increase in ACAT activity by 16:0 may induce enrichment of cholesteryl esters in apoB(100)-containing particles, whereas 18:1t may increase the number of the particles. Hepatic cholesteryl esters accumulated in the 18:1c- and 18:2-fed groups with no differences in hepatic ACAT activity and cCEH mRNA abundance among hamsters fed unsaturated fatty acids (i.e., 18:1t, 18:1c, and 18:2). Considering the lack of change in free cholesterol concentration and increased cholesteryl esters in the liver, the hypocholesterolemic effect of 18:1c and 18:2 compared with 18:1t may be attributed to decreased production of apoB(100)-containing particles. ACAT-1 was expressed in all the tissues examined; in contrast, ACAT-2 was highly expressed in the liver and small intestine. Hepatic ACAT activity was disproportionate to the levels of ACAT-1 and ACAT-2 mRNA and protein, indicating post-transcriptional regulation of ACAT by dietary fatty acids. The data suggest that cholesterolemic effects of individual dietary fatty acids can be achieved through their independent modulation of pathways regulating assembly and secretion of apoB(100)-containing particles.
Collapse
Affiliation(s)
- Ji-Young Lee
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE 68583, USA
| | | |
Collapse
|
32
|
Vielemeyer O, McIntosh MT, Joiner KA, Coppens I. Neutral lipid synthesis and storage in the intraerythrocytic stages of Plasmodium falciparum. Mol Biochem Parasitol 2004; 135:197-209. [PMID: 15110461 DOI: 10.1016/j.molbiopara.2003.08.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2003] [Revised: 06/23/2003] [Accepted: 08/18/2003] [Indexed: 11/20/2022]
Abstract
In eukaryotic cells the neutral lipids, steryl esters and triacylglycerol, are synthesized by membrane-bound O-acyltransferases and stored in cytosolic lipid bodies. We show here that the intraerythrocytic stages of Plasmodium falciparum produce triacylglycerol using oleate and diacylglycerol as substrates. Parasite membrane preparations reveal a synthesis rate of 4.5 +/- 0.8 pmol x min(-1)mg(-1) of protein with maximal production occurring in the mid- and late-trophozoite stages in both, membrane preparations and live parasites. In contrast to other eukaryotic cells, no discernable amounts of steryl esters are produced, and the parasite is insensitive to cholesterol esterification inhibitors. Synthesized neutral lipids are stored as lipid bodies in the parasite cytosol in a stage specific manner. Their biogenesis is not modified upon incubation with excess fatty acids or lipoproteins or after lipoprotein depletion of the culture medium. We investigated on the enzymes involved in neutral lipid synthesis and found that only one gene with significant homology to known members of the membrane-bound O-acyltransferase family is present in the P. falciparum genome. It encodes a microsomal transmembrane protein with a predicted size of 78.1 kDa, which we named PfDGAT because of its close identity with various known acyl-CoA:diacylglycerol acyltransferases. PfDGAT is expressed in a stage specific manner as documented by Western blotting and immunoprecipitation assays using antibodies against Toxoplasma DGAT, suggesting that PfDGAT is the most likely candidate for plasmodial triacylglycerol synthesis.
Collapse
Affiliation(s)
- Ole Vielemeyer
- Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, PO Box 20822, New Haven, CT 06520-8022, USA
| | | | | | | |
Collapse
|
33
|
Donnelly KL, Margosian MR, Sheth SS, Lusis AJ, Parks EJ. Increased lipogenesis and fatty acid reesterification contribute to hepatic triacylglycerol stores in hyperlipidemic Txnip-/- mice. J Nutr 2004; 134:1475-80. [PMID: 15173414 DOI: 10.1093/jn/134.6.1475] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The effect of decreased fatty acid oxidation on liver lipid metabolism in HcB-19 mice, a mouse model of hyperlipidemia (Txnip(-/-)), was investigated using metabolic labeling. De novo cholesterol synthesis and de novo lipogenesis were quantified using 1-(13)C(1) acetic acid, and liver triacylglycerol (TAG) derived from dietary fatty acids was quantified using dietary glyceryl tri(hexandecanoate-d(31)). Tissue samples were analyzed for TAG, free cholesterol (FC), and cholesterol ester (CE) content. Txnip(-/-) mice had significantly elevated (P < 0.05) serum nonesterified fatty acids compared with wild-type (WT) littermates; their livers weighed more and contained more TAG and total cholesterol. Txnip(-/-) liver also contained measurable CE; CE was not detectable in WT mice. Liver CE content was elevated despite lower cholesterol fractional synthesis rates (16 vs. 31%/d in Txnip(-/-) and WT mice, respectively). FC absolute synthesis rate (ASR) in WT mice (0.28 +/- 0.0 micromol/d) was similar to the combined synthesis rates of FC (0.13 +/- 0.10 micromol/d) and CE (0.10 +/- 0.00 micromol/d) in Txnip(-/-) mice. Lipogenesis, as assessed by TAG-palmitate ASR, was significantly greater in Txnip(-/-) mice (1.47 +/- 0.08 vs. 0.49 +/- 0.06 micro mol/d) and liver fatty acid synthase activity was also higher (7.96 +/- 2.53 vs. 4.83 +/- 1.44 U/mg protein). Both elevated lipogenesis and increased fatty acid reesterification to glycerol and cholesterol contributed to fat in the livers of Txnip(-/-) mice. These data support elevated fatty acid synthesis as the primary contributor to liver TAG in Txnip(-/-) mice, although increased esterification of fatty acids also contributed to excess liver TAG. The absolute total cholesterol synthesis rate was not altered, but esterification of fatty acids to cholesterol provided an additional means to buffer physiologically the negative results of excess fatty acid availability.
Collapse
Affiliation(s)
- Kerry L Donnelly
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, 55108, USA
| | | | | | | | | |
Collapse
|
34
|
Pan M, Cederbaum AI, Zhang YL, Ginsberg HN, Williams KJ, Fisher EA. Lipid peroxidation and oxidant stress regulate hepatic apolipoprotein B degradation and VLDL production. J Clin Invest 2004; 113:1277-87. [PMID: 15124019 PMCID: PMC398425 DOI: 10.1172/jci19197] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2003] [Accepted: 01/29/2004] [Indexed: 12/14/2022] Open
Abstract
How omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) lower plasma lipid levels is incompletely understood. We previously showed that marine omega-3 PUFAs (docosahexaenoic acid [DHA] and eicosapentaenoic acid) stimulate a novel pathway, post-ER presecretory proteolysis (PERPP), that degrades apolipoprotein B100 (ApoB100), thereby reducing lipoprotein secretion from liver cells. To identify signals stimulating PERPP, we examined known actions of omega-3 PUFA. In rat hepatoma or primary rodent hepatocytes incubated with omega-3 PUFA, cotreatment with the iron chelator desferrioxamine, an inhibitor of iron-dependent lipid peroxidation, or vitamin E, a lipid antioxidant, suppressed increases in thiobarbituric acid-reactive substances (TBARSs; a measure of lipid peroxidation products) and restored ApoB100 recovery and VLDL secretion. Moreover, omega-6 and nonmarine omega-3 PUFA, also prone to peroxidation, increased ApoB100 degradation via intracellular induction of TBARSs. Even without added fatty acids, degradation of ApoB100 in primary hepatocytes was blocked by desferrioxamine or antioxidant cotreatment. To extend these results in vivo, mice were infused with DHA, which increased hepatic TBARSs and reduced VLDL-ApoB100 secretion. These results establish a novel link between lipid peroxidation and oxidant stress with ApoB100 degradation via PERPP, and may be relevant to the hypolipidemic actions of dietary PUFAs, the basal regulation of ApoB100 secretion, and hyperlipidemias arising from ApoB100 overproduction.
Collapse
Affiliation(s)
- Meihui Pan
- The Zena and Michael A. Wiener Cardiovascular Institute and the Department of Medicine, Mount Sinai School of Medicine, New York, New York, USA
| | | | | | | | | | | |
Collapse
|
35
|
Choy HA, Wang XP, Schotz MC. Reduced atherosclerosis in hormone-sensitive lipase transgenic mice overexpressing cholesterol acceptors. Biochim Biophys Acta Mol Cell Biol Lipids 2004; 1634:76-85. [PMID: 14643795 DOI: 10.1016/j.bbalip.2003.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Macrophage-specific overexpression of cholesteryl ester hydrolysis in hormone-sensitive lipase transgenic (HSL Tg) female mice paradoxically increases cholesterol esterification and cholesteryl ester accumulation in macrophages, and thus susceptibility to diet-induced atherosclerosis compared to nontransgenic C57BL/6 mice. The current studies suggest that whereas increased cholesterol uptake could contribute to transgenic foam cell formation, there are no differences in cholesterol synthesis and the expression of cholesterol efflux mediators (ABCA1, ABCG1, apoE, PPARgamma, and LXRalpha) compared to wild-type macrophages. HSL Tg macrophages exhibit twofold greater efflux of cholesterol to apoA-I in vitro, suggesting the potential rate-limiting role of cholesteryl ester hydrolysis in efflux. However, macrophage cholesteryl ester levels appear to depend on the relative efficacy of alternate pathways for free cholesterol in either efflux or re-esterification. Thus, increased atherosclerosis in HSL Tg mice appears to be due to the coupling of the efficient re-esterification of excess free cholesterol to its limited removal mediated by the cholesterol acceptors in these mice. The overexpression of cholesterol acceptors in HSL-apoA-IV double-transgenic mice increases plasma HDL levels and decreases diet-induced atherosclerosis compared to HSL Tg mice, with aortic lesions reduced to sizes in nontransgenic littermates. The results in vivo are consistent with the effective efflux from HSL Tg macrophages supplemented with HDL and apoA-I in vitro, and highlight the importance of cholesterol acceptors in inhibiting atherosclerosis caused by imbalances in the cholesteryl ester cycle.
Collapse
Affiliation(s)
- Henry A Choy
- Lipid Research Laboratory, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | | | | |
Collapse
|
36
|
Yu-Poth S, Yin D, Zhao G, Kris-Etherton PM, Etherton TD. Conjugated linoleic acid upregulates LDL receptor gene expression in HepG2 cells. J Nutr 2004; 134:68-71. [PMID: 14704295 DOI: 10.1093/jn/134.1.68] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Conjugated linoleic acid (CLA) exerts anticarcinogenic and antiatherosclerotic effects in animals. The present study was conducted to examine the effects of CLA on LDL receptor (LDLr) expression in HepG2 cells, and to evaluate whether the sterol response element binding protein 1 (SREBP-1) and acyl CoA:cholesterol acyltransferase (ACAT) were involved in the regulation of LDLr expression by CLA. When HepG2 cells were cultured with serum-free DMEM for 48 h, there was a three- to fivefold (P<0.05) increase in LDLr protein and mRNA levels. Incubation of HepG2 cells in serum-free medium supplemented with 25-hydroxycholesterol (25OH, 5 mg/L) for 24 h decreased LDLr protein and mRNA by 50-70% (P<0.05) and mature SREBP-1 by 20-40% (P<0.05). CLA, but not linoleic acid, antagonized the depressive effects of 25OH and increased both LDLr protein and mRNA abundance twofold (P<0.05). LDLr protein and mRNA abundance were not different when HepG2 cells were cultured with CLA (0.4 mmol/L) plus 25OH in the presence or absence of an ACAT inhibitor (58-035, 1 mg/L). Furthermore, CLA had no effect on SREBP-1 abundance. These results suggest that CLA upregulates LDLr expression via a mechanism that is independent of ACAT and SREBP-1.
Collapse
Affiliation(s)
- Shaomei Yu-Poth
- Graduate Program in Nutrition, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
37
|
Siahanidou T, Mandyla H, Papassotiriou I, Anagnostakis D. Serum lipids in preterm infants fed a formula supplemented with nucleotides. J Pediatr Gastroenterol Nutr 2004; 38:56-60. [PMID: 14676595 DOI: 10.1097/00005176-200401000-00013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
BACKGROUND The effect of dietary nucleotides on lipid metabolism has been the subject of clinical studies with conflicting results. We measured serum triglycerides, total cholesterol (total-C), and lipoprotein cholesterol levels (HDL-C, LDL-C, and VLDL-C) in preterm neonates fed formula with and without nucleotide supplements. METHODS This prospective, randomized, controlled study included 150 healthy preterm neonates (gestational age, 33.0 +/- 1.9 weeks) matched for gestational age, birth weight, and gender. Subjects were assigned at birth to receive either a standard milk formula supplemented with nucleotides (group F-NT) or the same formula without nucleotides (group F). Serum was obtained before discharge (29.1 +/- 10.0 days of life) and triglycerides, total-C, and HDL-C were determined enzymatically. LDL-C and VLDL-C were estimated by the Friedewald formula. For statistical analysis t test, Mann Whitney-U test, two-way ANOVA, and chi2 test were used, as appropriate. The influence of several factors on serum lipid levels was evaluated by linear regression analysis. RESULTS Serum triglycerides, total-C, and VLDL-C levels did not differ between groups. HDL-C levels (median; 25th-75th percentiles) were significantly higher (P < 0.001) in group F-NT (48.0 mg/dL; 40.5-57.0 mg/dL) than in group F (34.5 mg/dL; 27.2-44.0 mg/dL). On the contrary, LDL-C levels (median; 25th-75th percentiles) were significantly lower (P < 0.001) in group F-NT (39.0 mg/dL; 26.0-54.0 mg/dL) than in group F (65.0 mg/dL; 41.0-73.0 mg/dL). In the multiple regression analysis, nucleotide supplementation was identified as one of the controlled independent factors influencing serum HDL-C and LDL-C levels. CONCLUSIONS Preterm neonates fed from birth with formula supplemented with nucleotides have significantly higher HDL-C and lower LDL-C serum levels than do neonates fed unsupplemented formula. The clinical relevance of these results remains to be elucidated.
Collapse
Affiliation(s)
- Tania Siahanidou
- Neonatal Unit, A' Department of Pediatrics, Athens University, Greece.
| | | | | | | |
Collapse
|
38
|
Hsieh SL, Liu RW, Wu CH, Cheng WT, Kuo CM. cDNA nucleotide sequence coding for stearoyl-CoA desaturase and its expression in the zebrafish (Danio rerio) embryo. Mol Reprod Dev 2003; 66:325-33. [PMID: 14579408 DOI: 10.1002/mrd.10358] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A cDNA sequence of stearoyl-CoA desaturase (SCD) was determined from zebrafish (Danio rerio) and compared to the corresponding genes in several teleosts. Zebrafish SCD cDNA has a size of 1,061 bp, encodes a polypeptide of 325 amino acids, and shares 88, 85, 84, and 83% similarities with tilapia (Oreochromis mossambicus), grass carp (Ctenopharyngodon idella), common carp (Cyprinus carpio), and milkfish (Chanos chanos), respectively. This 1,061 bp sequence specifies a protein that, in common with other fatty acid desaturases, contains three histidine boxes, believed to be involved in catalysis. These observations suggested that SCD genes are highly conserved. In addition, an oligonucleotide probe complementary to zebrafish SCD mRNA was hybridized to mRNA of approximately 396 bases with Northern blot analysis. The Northern blot and RT-PCR analyses showed that the SCD mRNA was expressed predominantly in the liver, intestine, gill, and muscle, while a lower level was found in the brain. Furthermore, we utilized whole-mount in situ hybridization and real-time quantitative RT-PCR to identify expression of the zebrafish SCD gene at five different stages of development. This revealed that very high levels of transcripts were found in zebrafish at all stages during embryogenesis and early development.
Collapse
Affiliation(s)
- S L Hsieh
- Marine Research Station, Institute of Zoology, Academia Sinica, I-lan, Taiwan
| | | | | | | | | |
Collapse
|
39
|
Wijendran V, Pronczuk A, Bertoli C, Hayes KC. Dietary trans-18:1 raises plasma triglycerides and VLDL cholesterol when replacing either 16:0 or 18:0 in gerbils. J Nutr Biochem 2003; 14:584-90. [PMID: 14559109 DOI: 10.1016/s0955-2863(03)00106-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To compare the relative impact of trans-18:1 with the two main dietary saturated fatty acids it replaces, plasma lipid response was assessed in Mongolian gerbils fed diets rich in 16:0 (24%en),18:0 (10%en), or trans-18:1 (4 or 6%en). The diets were designed such that the 18:0-rich diet substituted 7%en as 18:0 for 16:0, whereas 4%en and 6%en from trans-18:1 was substituted for 16:0 in the two trans diets. The control group was fed a diet formulated according to the fatty acid balance of American Heart Association (AHA), but provided 40%en as fat. Gerbils (n = 10 per dietary group) were fed one of the five diets for 8 weeks. The control diet, with 4 times the polyunsaturated fatty acids (PUFA) content and a P:S ratio about 10 times greater than the test diets, resulted in the lowest plasma TC, LDL cholesterol (LDL-C) and VLDL cholesterol (VLDL-C). Among the test diets, plasma TC and TG were lowest with the 18:0-rich diet. TC in gerbils fed the 16:0-rich diet and 4%en-trans were 20% higher than the 18:0-rich diet, while the 6%en-trans diet was 35% higher. VLDL-C was significantly higher in the 6%en-trans diet compared to all other groups at 8 weeks. Both trans fatty acid diets elevated plasma TG approximately 2- and 3-fold, respectively, compared to the 16:0-rich and 18:0-rich diets at 8 weeks. Further, plasma TG continued to rise over time with trans fatty acids compared to 16:0 or 18:0. Thus, in the fatty acid-sensitive gerbil, impaired TG metabolism represents a major aspect of the hyperlipemia caused by trans fatty acid substitution for major saturated fatty acids.
Collapse
Affiliation(s)
- Vasuki Wijendran
- Foster Biomedical Research Lab, Brandeis University, Waltham, MA, USA
| | | | | | | |
Collapse
|
40
|
García-Pelayo MC, García-Peregrín E, Martínez-Cayuela M. Modification of phospholipids fatty acid composition in reuber H35 hepatoma cells: Effect on HMG-CoA reductase activity. J Cell Biochem 2003; 90:586-91. [PMID: 14523992 DOI: 10.1002/jcb.10650] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
There is controversy about the effect of saturated and polyunsaturated fats on 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase, the main regulatory enzyme of cholesterogenic pathway. Results from dietary studies are difficult to interpret because diets normally contain a mixture of fatty acids. Therefore, we have used Reuber H35 hepatoma cells whose phospholipids were enriched in different individual fatty acids and have studied their effects on the cellular reductase activity. Lauric, myristic, eicosapentaenoic (EPA), and docosahexaenoic (DHA) acids were supplemented to the culture medium coupled to bovine serum albumin. The four fatty acids were incorporated into phospholipids from cells grown in media containing whole serum or lipoprotein-poor serum (LPPS). Reductase activity of cells cultivated in a medium with LPPS was three to four times higher than those cultivated in medium with whole serum. Saturated fatty acids increased reductase activity of cells grown in medium with whole serum, whereas n-3 polyunsaturated fatty acids (PUFA) decreased it. However, both saturated and polyunsaturated fatty acids increased reductase activity when serum lipoproteins were removed. In conclusion, this is one of the first reports demonstrating that saturated and n-3 PUFA only show differential effects on HMG-CoA reductase activity in the presence of lipoproteins.
Collapse
|
41
|
Eder K, Keller U, Hirche F, Brandsch C. Thermally oxidized dietary fats increase the susceptibility of rat LDL to lipid peroxidation but not their uptake by macrophages. J Nutr 2003; 133:2830-7. [PMID: 12949373 DOI: 10.1093/jn/133.9.2830] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aim of this study was to investigate the effect of dietary oxidized fats on the lipoprotein profile and the atherogenicity of LDL. Two experiments with male Sprague-Dawley rats were conducted. In Experiment 1, diets with either fresh fat or oxidized fat, prepared by heating at temperatures of 50, 105 or 190 degrees C, containing either 25 or 250 mg alpha-tocopherol equivalents/kg were used. In Experiment 2, diets with fresh or oxidized fat, heated at a temperature of 55 degrees C, containing 25 mg alpha-tocopherol equivalents/kg, were used. In Experiment 1, rats fed all types of oxidized fats had higher concentrations of HDL cholesterol and lower ratios between plasma and HDL cholesterol than rats fed the diet containing the fresh fat. As determined from the lag time, the susceptibility of LDL to copper-induced lipid peroxidation was higher in rats fed oxidized fats heated at 105 or 190 degrees C than in rats fed the diets containing the fresh fat or the oxidized fat treated at 50 degrees C, irrespective of the dietary vitamin E concentration. However, in Experiment 2, the composition of LDL apolipoproteins and uptake of LDL by macrophages were not different between rats fed the fresh fat diet and those fed the oxidized fat diet. We conclude that ingestion of oxidized fats does not adversely affect the lipoprotein profile in the rat model used, and does not cause modifications of apolipoproteins that would lead to enhanced uptake of LDL via macrophage scavenger receptors.
Collapse
Affiliation(s)
- Klaus Eder
- Institute of Nutritional Sciences, Martin-Luther-University of Halle-Wittenberg, Emil-Abderhalden-Strassse 26, D-06108 Halle/Saale, Germany.
| | | | | | | |
Collapse
|
42
|
Gill JMR, Brown JC, Caslake MJ, Wright DM, Cooney J, Bedford D, Hughes DA, Stanley JC, Packard CJ. Effects of dietary monounsaturated fatty acids on lipoprotein concentrations, compositions, and subfraction distributions and on VLDL apolipoprotein B kinetics: dose-dependent effects on LDL. Am J Clin Nutr 2003; 78:47-56. [PMID: 12816770 DOI: 10.1093/ajcn/78.1.47] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Replacing dietary saturated fatty acids (SFAs) with monounsaturated fatty acids (MUFAs) lowers LDL cholesterol, but the underlying mechanisms remain unclear. OBJECTIVE We assessed the effects of replacing dietary SFAs with MUFAs on concentrations and subclass distributions of VLDL, intermediate-density lipoprotein, LDL, and HDL and on VLDL apolipoprotein B kinetics. DESIGN Thirty-five moderately hypercholesterolemic, middle-aged volunteers consumed for 6 wk, in random order, diets containing low (L-MUFA; 7.8% of energy from MUFAs), moderate (M-MUFA; 10.3% from MUFAs), or high (H-MUFA; 13.7% from MUFAs) amounts of MUFAs. Fasting blood samples were taken from all subjects after each intervention. VLDL apolipoprotein B kinetic studies were performed in a subgroup after the L-MUFA and H-MUFA diets. RESULTS Plasma cholesterol concentrations decreased in a dose-dependent manner with increasing intakes of dietary MUFAs. This change was entirely accounted for by reduced LDL cholesterol (-0.20 and -0.49 mmol/L after the M-MUFA and H-MUFA diets, respectively, compared with the concentration after the L-MUFA diet; P for trend < 0.01). Plasma triacylglycerol and HDL cholesterol were not significantly affected by the dietary intervention, nor were the concentrations of VLDL(1) (S(f) 60-400), VLDL(2) (S(f) 20-60), or intermediate-density lipoprotein (S(f) 12-20). Production and catabolic rates for VLDL(1) and VLDL(2) were also unaffected. HDL and LDL subclass distributions were not significantly altered, but as a consequence of the overall LDL lowering, concentrations of atherogenic LDL-III were 25% lower after the H-MUFA diet than after the L-MUFA diet (P = 0.02). CONCLUSION The effects of replacing dietary SFAs with MUFAs on lipoprotein metabolism appear to be almost exclusively limited to the LDL density class.
Collapse
Affiliation(s)
- Jason M R Gill
- Department of Pathological Biochemistry, University of Glasgow, Glasgow, United Kingdom .
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Huang Z, Inazu A, Kawashiri MA, Nohara A, Higashikata T, Mabuchi H. Dual effects on HDL metabolism by cholesteryl ester transfer protein inhibition in HepG2 cells. Am J Physiol Endocrinol Metab 2003; 284:E1210-9. [PMID: 12604506 DOI: 10.1152/ajpendo.00453.2002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cholesteryl ester transfer protein (CETP) promotes reverse cholesterol transport via exchange of cholesteryl ester and triglyceride among lipoproteins. Here, we focused on HDL metabolism during inhibition of CETP expression by using CETP antisense oligodeoxynucleotides (ODNs) in HepG2 cells. CETP secretion was decreased by 70% in mRNA levels and by 52% in mass 20 h after ODNs against CETP were delivered to HepG2 cells. Furthermore, as a consequence of the downregulation of CETP, the expression of scavenger receptor class B type I (SR-BI), an HDL receptor, was also reduced by approximately 50% in mRNA and protein levels, whereas the apolipoprotein A-I (apoA-I) expression and secretion were increased by 30 and 92%, respectively. In a functional study, the selective uptake of (125)I-[(14)C]cholesteryl oleate-labeled HDL(3) was decreased. Cholesterol efflux to apoA-I and HDL(3) was significantly increased by 88 and 37%, respectively. Moreover, the CE levels in cells after antisense treatment were elevated by 20%, which was related to the about twofold increase of cholesterol esterification and increased acyl-CoA:cholesterol acyltransferase 1 mRNA levels. Taken together, these findings suggest that although acute suppression of CETP expression leads to an elevation in cellular cholesterol stores, apoA-I secretion, and cellular cholesterol efflux to apoA-I, the return of HDL-CE to hepatocytes via an SR-BI pathway was inhibited in vitro. Thus antisense inhibition of hepatic CETP expression manifests dual effects: namely, increased formation of HDL and suppression of catabolism of HDL-CE, probably via the SR-BI pathway.
Collapse
Affiliation(s)
- Zhiping Huang
- Molecular Genetics of Cardiovascular Disorders, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Johnson RA, Hamilton JA, Worgall TS, Deckelbaum RJ. Free fatty acids modulate intermembrane trafficking of cholesterol by increasing lipid mobilities: novel 13C NMR analyses of free cholesterol partitioning. Biochemistry 2003; 42:1637-45. [PMID: 12578377 DOI: 10.1021/bi0264465] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cholesterol and free fatty acids in membranes modulate major biological processes, and their cellular metabolism and actions are often coordinately regulated. However, effects of free fatty acid on cholesterol-membrane interactions have proven difficult to monitor in real time in intact systems. We developed a novel (13)C NMR method to assess effects of free fatty acids on molecular interactions of cholesterol within--and transfer between--model membranes. An important advantage of this method is the ability to acquire kinetic data without separation of donor and acceptor membranes. Large unilamellar phospholipid vesicles (LUV) with phosphatidylcholine/cholesterol ratios of 4:1 served as cholesterol donors. Small unilamellar vesicles (SUV) made with phosphatidylcholine were acceptors. The (13)C(4)-cholesterol peak is narrow in SUV, but very broad in LUV, spectra; the increase in intensity of this peak over time monitored transfer. Oleic acid and other long chain free fatty acids [saturated (C12-18) and unsaturated (C18)] dose-dependently increased mobilities of lipids in LUV (phospholipid and cholesterol) and cholesterol transfer rates, whereas short (C8-10) and very long (C24) chain free fatty acids did not. Decreasing pH from 7.4 to 6.5 (+/-oleic acid) had no effect on cholesterol transfer, and 5 mol % fatty acyl-CoAs increased transfer rates, demonstrating greater importance of the fatty-acyl tail over the headgroup. In LUV containing sphingomyelin, transfer rates decreased, but the presence of oleic acid increased transfer 1.3-fold. These results demonstrate free fatty acid-facilitated cholesterol movement within and between membranes, which may contribute to their multiple biological effects.
Collapse
Affiliation(s)
- Rebecca A Johnson
- Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, 630 West 168th Street PH 1512, New York, New York 10032, USA
| | | | | | | |
Collapse
|
45
|
Seo T, Velez-Carrasco W, Qi K, Hall M, Worgall TS, Johnson RA, Deckelbaum RJ. Selective uptake from LDL is stimulated by unsaturated fatty acids and modulated by cholesterol content in the plasma membrane: role of plasma membrane composition in regulating non-SR-BI-mediated selective lipid transfer. Biochemistry 2002; 41:7885-94. [PMID: 12069577 DOI: 10.1021/bi011949g] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We previously reported that unsaturated fatty acids stimulated low-density lipoprotein (LDL) particle uptake in J774 macrophages by increasing LDL receptor activity. Since free fatty acids (FFA) also change plasma membrane properties, a putative cholesteryl ester (CE) acceptor for selective uptake (SU), we questioned the ability of FFA to modulate SU from LDL. Using [(3)H]cholesteryl ether/(125)I-LDL to trace CE core and whole particle uptake, we found that oleic acid and eicosapentaenoic acid, but not saturated stearic acid, increased SU by 30% over control levels. An ACAT inhibitor, Dup128, abolished FFA effects on SU, indicating that increased SU by FFA was secondary to changes in cell-free cholesterol (FC). Consistent with these observations, ACAT inhibition increased cell FC and reduced LDL SU by half. The important role of plasma membrane composition was further demonstrated in that beta-cyclodextrin- (beta-CD-) mediated FC removal from the plasma membrane increased SU from LDL and was further stimulated by U18666A, a compound that inhibits FC transport between lysosomes and the plasma membrane. In contrast, cholesterol-saturated beta-CD markedly reduced LDL SU. In contrast to LDL SU, oleic acid, ACAT inhibition, U18666A, or beta-CD had no effects on HDL SU. Moreover, HDL SU was inhibited by antimouse SR-BI antibody by more than 50% but had little effect on LDL SU. In C57BL/6 mice fed a high fat diet, plasma FFA levels increased, and SU accounted for an almost 4-fold increased proportion of total cholesterol delivery to the arterial wall. Taken together, these data suggest that LDL SU is mediated by pathways independent of SR-BI and is influenced by plasma membrane FC content. Moreover, in conditions where elevated plasma FFA occur, SU from LDL can be an important mechanism for cholesterol delivery in vivo.
Collapse
MESH Headings
- Androstenes/chemistry
- Animals
- Anticholesteremic Agents/chemistry
- Aorta/metabolism
- CD36 Antigens/metabolism
- Carrier Proteins/metabolism
- Cell Line
- Cell Membrane/chemistry
- Cell Membrane/metabolism
- Cholesterol/chemistry
- Cholesterol/metabolism
- Cyclodextrins/chemistry
- Dietary Fats/administration & dosage
- Dietary Fats/metabolism
- Dose-Response Relationship, Drug
- Enzyme Inhibitors/chemistry
- Fatty Acids, Nonesterified/chemistry
- Fatty Acids, Unsaturated/chemistry
- Lipoproteins, HDL/metabolism
- Lipoproteins, LDL/metabolism
- Macrophages/metabolism
- Male
- Membrane Proteins
- Mice
- Mice, Inbred C57BL
- Oleic Acid/metabolism
- Receptors, Immunologic
- Receptors, Lipoprotein
- Receptors, Scavenger
- Scavenger Receptors, Class B
- Sterol O-Acyltransferase/antagonists & inhibitors
- Time Factors
- beta-Cyclodextrins
Collapse
Affiliation(s)
- Toru Seo
- Institute of Human Nutrition and Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Worgall TS, Johnson RA, Seo T, Gierens H, Deckelbaum RJ. Unsaturated fatty acid-mediated decreases in sterol regulatory element-mediated gene transcription are linked to cellular sphingolipid metabolism. J Biol Chem 2002; 277:3878-85. [PMID: 11707431 DOI: 10.1074/jbc.m102393200] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A major physiological feedback mechanism of cholesterol in transcription of a number of lipid metabolism-related genes is mediated by sterol regulatory elements (SREs) and their binding proteins (SREBPs). Polyunsaturated free fatty acids alone, as well as synergistically with sterols, decrease SRE-mediated gene expression up to 80% in a dose-dependent manner by decreasing levels of the active transcription factor SREBP. We investigated potential mechanisms for this effect. We hypothesized that free fatty acids reduce SREBP-mediated gene transcription by increasing intracellular cholesterol content through the hydrolysis of cellular sphingomyelin, which has a high affinity for free cholesterol. We also questioned whether the lipid second messenger ceramide, a product of sphingomyelin hydrolysis, can decrease SRE-mediated gene transcription. First we investigated the effect of fatty acids on sphingomyelin hydrolysis. Incubation of [(3)H]choline-labeled cells with unsaturated (but not saturated) fatty acids induced hydrolysis of [(3)H]choline-labeled sphingomyelin. Also, incubation of cell extracts from fatty acid-treated cells with [(3)H]sphingomyelin increased generation of [(3)H]ceramide compared with control cells in vitro. We found that addition of ceramide analogs alone and additively with fatty acids decreased SRE expression and that ceramide analogs reduced levels of the transcriptionally active forms of SREBP-1 and SREBP-2. Increasing intracellular ceramide levels by exogenous sphingomyelinase or inhibition of ceramidase decreased SRE-mediated gene expression. None of the above conditions induced apoptosis. Incubation with U18666A, a compound that inhibits intracellular cholesterol movement, increased SRE-mediated gene transcription. C(2)-ceramide abrogated the effect of U18666A on SRE-mediated gene transcription, suggesting cholesterol-independent regulation of SREBP. We provide evidence that sphingomyelin hydrolysis and intermediates of sphingomyelin metabolism (in addition to cholesterol and fatty acids) contribute to regulation of SRE-mediated gene transcription.
Collapse
Affiliation(s)
- Tilla S Worgall
- Institute of Human Nutrition and the Department of Pediatrics, Columbia University, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
47
|
Taghibiglou C, Van Iderstine SC, Kulinski A, Rudy D, Adeli K. Intracellular mechanisms mediating the inhibition of apoB-containing lipoprotein synthesis and secretion in HepG2 cells by avasimibe (CI-1011), a novel acyl-coenzyme A: cholesterol acyltransferase (ACAT) inhibitor. Biochem Pharmacol 2002; 63:349-60. [PMID: 11853686 DOI: 10.1016/s0006-2952(01)00918-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have studied the cellular and molecular mechanisms involved in the suppression of apoB secretion from HepG2 cells following incubation with avasimibe (CI-1011), a novel inhibitor of acyl-coenzyme A: cholesterol acyltransferase (ACAT). Cellular lipid analysis revealed that avasimibe significantly decreased the synthesis of cholesterol and cholesteryl ester, and, at higher doses, of triglyceride. Time-course trypsin protection assays revealed that avasimibe induced the accumulation of translocationally arrested apoB intracellularly. Pulse-chase studies showed that the treatment with avasimibe induced a >75% decrease in apoB secretion relative to control, but initially enhanced the protein stability and cellular accumulation of apoB. Subcellular fractionation of microsomes further confirmed the accumulation of secretion-incompetent apoB-lipoproteins in the endoplasmic reticulum (ER) and Golgi compartments of avasimibe-treated HepG2 cells. Although incubation of drug-treated cells with carbobenzoxyl-leucinyl-leucinyl-leucinal (MG132), a potent proteasome inhibitor, increased cellular apoB (70%), it failed to increase apoB secretion. Drug treatment induced an accumulation of secretion-incompetent apoB-containing lipoprotein particles, the majority of which demonstrated a density in a range similar to that of high-density lipoprotein. However, studies in permeabilized cells demonstrated that, at longer chase times, intracellularly accumulated apoB was eventually degraded, indicating that the inhibition of degradation may be transient. Oleate treatment of avasimibe-treated cells partially restored apoB secretion but not to the levels seen in control cells. In summary, we hypothesize that avasimibe acutely blocks the secretion of apoB and its associated lipoproteins from HepG2 cells, transiently enhancing its membrane association and cellular accumulation with eventual intracellular degradation of accumulated apoB.
Collapse
Affiliation(s)
- Changiz Taghibiglou
- Division of Clinical Biochemistry, Department of Laboratory Medicine and Pathobiology, Hospital for Sick Children, University of Toronto, Ont., Canada
| | | | | | | | | |
Collapse
|
48
|
Pal S, Thomson AM, Bottema CD, Roach PD. Polyunsaturated fatty acids downregulate the low density lipoprotein receptor of human HepG2 cells. J Nutr Biochem 2002; 13:55-63. [PMID: 11834220 DOI: 10.1016/s0955-2863(01)00195-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The aim of the study was to investigate the effect of different fatty acids on the low density lipoprotein (LDL) receptor of cultured human liver HepG2 cells. Previous studies investigating the effect of fatty acids on LDL expression have reported conflicting findings and are limited to measurements of LDL receptor binding activity. Therefore, this study is unique in that the relative effects of different fatty acids on the LDL receptor were investigated at three different stages of expression: 1) functional cellular LDL binding activity, 2) amount of LDL receptor protein and 3) LDL receptor mRNA level. The HepG2 cells were incubated for 24 hr with either 100 &mgr;M palmitic, oleic, linoleic or eicosapentaenoic acid (EPA). The measurement of LDL receptor binding activity was with colloidal gold-LDL conjugates, cellular LDL receptor protein was by western blotting and LDL receptor mRNA by Southern blotting of reverse-transcribed, polymerase chain reaction-amplified cDNA. The LDL receptor binding activity, protein and mRNA levels decreased as the degree of unsaturation of the fatty acids increased (palmitic acid greater-than-or-equal oleic acid > linoleic acid > EPA) and the inverse relationship held whether or not cholesterol was included in the culture media. The relative differences were very similar for the three stages of expression indicating that modulation of the LDL receptor by the fatty acids occurred at the level of gene transcription. The increased susceptibility to oxidation of the polyunsaturated fatty acids was unlikely to be a factor in the effect because EPA and linoleic acid (250 &mgr;M) still downregulated the LDL receptor in the presence of the antioxidant vitamin E (50 &mgr;M). In conclusion, the polyunsaturates, linoleic acid and EPA, effectively downregulated the LDL receptor of HepG2 cells compared to palmitic acid. The effects of these fatty acids were observed at the level of LDL receptor binding activity, protein and mRNA, strongly suggesting that the fatty acid effects were at the level of gene transcription.
Collapse
Affiliation(s)
- Sebely Pal
- CSIRO Health Sciences and Nutrition, 5000, Adelaide, South Australia, Australia
| | | | | | | |
Collapse
|
49
|
Makowski L, Boord JB, Maeda K, Babaev VR, Uysal KT, Morgan MA, Parker RA, Suttles J, Fazio S, Hotamisligil GS, Linton MF. Lack of macrophage fatty-acid-binding protein aP2 protects mice deficient in apolipoprotein E against atherosclerosis. Nat Med 2001; 7:699-705. [PMID: 11385507 PMCID: PMC4027052 DOI: 10.1038/89076] [Citation(s) in RCA: 541] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The adipocyte fatty-acid-binding protein, aP2, has an important role in regulating systemic insulin resistance and lipid metabolism. Here we demonstrate that aP2 is also expressed in macrophages, has a significant role in their biological responses and contributes to the development of atherosclerosis. Apolipoprotein E (ApoE)-deficient mice also deficient for aP2 showed protection from atherosclerosis in the absence of significant differences in serum lipids or insulin sensitivity. aP2-deficient macrophages showed alterations in inflammatory cytokine production and a reduced ability to accumulate cholesterol esters when exposed to modified lipoproteins. Apoe-/- mice with Ap2+/+ adipocytes and Ap2-/- macrophages generated by bone-marrow transplantation showed a comparable reduction in atherosclerotic lesions to those with total aP2 deficiency, indicating an independent role for macrophage aP2 in atherogenesis. Through its distinct actions in adipocytes and macrophages, aP2 provides a link between features of the metabolic syndrome and could be a new therapeutic target for the prevention of atherosclerosis.
Collapse
Affiliation(s)
- Liza Makowski
- Division of Biological Sciences and Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Jeffrey B Boord
- Departments of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kazuhisa Maeda
- Division of Biological Sciences and Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Vladimir R Babaev
- Departments of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - K Teoman Uysal
- Division of Biological Sciences and Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Maureen A Morgan
- Bristol-Myers Squibb PRI, Department of Metabolic Research, Princeton, New Jersey, USA
| | - Rex A Parker
- Bristol-Myers Squibb PRI, Department of Metabolic Research, Princeton, New Jersey, USA
| | - Jill Suttles
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Sergio Fazio
- Departments of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Gökhan S Hotamisligil
- Division of Biological Sciences and Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, USA
| | - MacRae F Linton
- Departments of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
50
|
Seo T, Oelkers PM, Giattina MR, Worgall TS, Sturley SL, Deckelbaum RJ. Differential modulation of ACAT1 and ACAT2 transcription and activity by long chain free fatty acids in cultured cells. Biochemistry 2001; 40:4756-62. [PMID: 11294643 DOI: 10.1021/bi0022947] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fatty acyl CoA and cholesterol are the substrates for cholesteryl ester synthesis by acyl coenzyme A:cholesterol acyltransferase (ACAT). Two ACAT genes have been identified; ACAT1 is expressed ubiquitously while ACAT2 is primarily expressed in intestine and liver. We tested effects of different free fatty acids (FFAs) on ACAT1 and ACAT2 expression and activity in HepG2 human hepatocytes and THP1 human macrophages. Incubation of oleic acid, arachidonic acid, or eicosapentaenoic acid, but not 25-hydroxycholesterol, induced ACAT1 mRNA levels 1.5--2-fold in HepG2, with no affect on ACAT2 mRNA. FFA had no affect on ACAT1 mRNA in THP1 cells. To determine if FFAs affect ACAT1 or ACAT2 posttranscriptionally, cells were labeled with [(3)H]cholesterol in the presence of the different FFAs for 1--5 h. Both HepG2 and THP1 cells showed the greatest cholesteryl ester production with oleic acid. This was also confirmed by the observation that more [(3)H]oleic acid incorporated into CE compared to [(3)H]eicosapentaenoic acid, even though there was no difference in the total uptake of these FFAs. In ACAT-deficient SRD4, CHO cells stably transfected with human ACAT1 or ACAT2, ACAT1 expressing cells showed a strong preference for oleic acid while ACAT2 expressing cells utilized unsaturated FFAs. Acyl CoA substrate specificity was further tested in microsomes isolated from these cells as well as HepG2 and THP1. THP1 and ACAT1 cells utilized oleoyl CoA preferentially. In contrast, HepG2 and ACAT2 microsomes utilized linolenoyl CoA as well. We conclude that FFAs increase ACAT1 mRNA levels in a cell specific manner, and furthermore that the ACAT reactions exhibit differential FFA utilization.
Collapse
Affiliation(s)
- T Seo
- Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, 630W 168th Street PH1512, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|