1
|
Yang M, Zhou P, Gui C, Da G, Gong L, Zhang X. Comparative Transcriptome Analysis of Ampelopsis megalophylla for Identifying Genes Involved in Flavonoid Biosynthesis and Accumulation during Different Seasons. Molecules 2019; 24:molecules24071267. [PMID: 30939828 PMCID: PMC6480179 DOI: 10.3390/molecules24071267] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 12/11/2022] Open
Abstract
Ampelopsis megalophylla is an important species used in Chinese folk medicine. Flavonoids, the most important active components of plants, greatly determine the quality of A. megalophylla. However, biosynthesis of flavonoids at the molecular and genetic levels in A. megalophylla is not well understood. In this study, we performed chemical analysis and transcriptome analysis of A. megalophylla in different seasons (i.e., May, August, and October). Accumulation of flavonoids was higher in May than in the other two months. Genes involved in the flavonoid biosynthesis pathway, such as chalcone synthase, anthocyanidin synthase, flavanone 3-hydroxylase, flavonoid-3′,5′-hydroxylase, caffeoyl-CoA O-methyltransferase, dihydroflavonol 4-reductase, 4-coumarate-CoA ligase, phenylalanine ammonia-lyase, cinnamate 4-hydroxylase, flavonoid 3′-monooxygenase, shikimate O-hydroxycinnamoyltransferase, and leucoanthocyanidin reductase, were identified based on transcriptome data. Fifty ATP binding cassette (ABC) transporter, nine SNARE, forty-nine GST, and eighty-four glycosyltransferases unigenes related to flavonoid transport and biomodification were also found. Moreover, seventy-eight cytochrome P450s and multiple transcription factors (five MYB, two bHLH, and three WD40 family genes) may be associated with the regulation of the flavonoid biosynthesis process. These results provide insights into the molecular processes of flavonoid biosynthesis in A. megalophylla and offer a significant resource for the application of genetic engineering in developing varieties with improved quality.
Collapse
Affiliation(s)
- Min Yang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Peina Zhou
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Chun Gui
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Guozheng Da
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Ling Gong
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Xiuqiao Zhang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| |
Collapse
|
2
|
|
3
|
Anuradha CV. L-carnitine: implications in the treatment of the metabolic syndrome and Type 2 diabetes. Expert Rev Endocrinol Metab 2008; 3:777-783. [PMID: 30764066 DOI: 10.1586/17446651.3.6.777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The metabolic syndrome (MS) is a conglomeration of inter-related common clinical disorders, including obesity, glucose intolerance, hypertension and dyslipidemia, which predispose to Type 2 diabetes (T2D) and cardiovascular diseases. Hyperinsulinemia, per se, and insulin resistance are the pathogenic factors associated with the metabolic risk factors. Since these risk factors are the most frequent causes for mortality among patients with T2D and the MS, treatments targeting normalization of both lipid and glucose homeostasis are of interest. The crucial role of L-carnitine (CA) as a regulator of lipid and glucose metabolism has raised considerable interest in its use as a potential tool for therapeutic intervention in the MS. Several clinical studies have, therefore, been undertaken to examine the efficacy and other benefits in the treatment of T2D and the MS. Studies from rodent models of MS have also shown the positive effects of CA on several components of the syndrome. CA, being an endogenous water-soluble nutrient, could be a safe adjunct and a relevant future drug for the MS. This review provides an overview on the importance of CA in T2D and the MS and the need for further evaluation of its inclusion in treatment protocols.
Collapse
Affiliation(s)
- Carani V Anuradha
- a Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar-608 002, Tamil Nadu, India.
| |
Collapse
|
4
|
Yamamoto R, Kobayashi H, Yanagita T, Yokoo H, Kurose T, Shiraishi S, Minami SI, Matsukura S, Wada A. Up-Regulation of Cell Surface Insulin Receptor by Protein Kinase C-α in Adrenal Chromaffin Cells. J Neurochem 2008. [DOI: 10.1111/j.1471-4159.2000.750672.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
|
6
|
Nicotra M, Bottini N, La Torre M, Amante A, Bottini E, Gloria-Bottini F. Repeated spontaneous abortion. Cooperative effects of ADA and ACP1 genetic polymorphisms. Am J Reprod Immunol 2007; 58:1-10. [PMID: 17565542 DOI: 10.1111/j.1600-0897.2007.00483.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
PROBLEM In consideration of the effect of adenosine deaminase (ADA) and ACP1 (a low-molecular-weight protein tyrosine phosphatase) on T-cell receptor activity, we have analysed the joint distribution of these polymorphisms in a sample of women with primary repeated spontaneous abortion (RSA) to search for possible interactive effects on susceptibility to RSA. METHOD OF STUDY ACP1 and ADA phenotypes were determined in 170 women with primary RSA in 79 healthy consecutive puerperae and in 160 female newborns from the Caucasian population of Rome and in 357 healthy consecutive puerperae from the Caucasian population of Penne. Chi-square test of independence and three way contingency table analysis by a log-linear model were performed. RESULTS Women with low-ADA activity and high-ACP1 activity show the lowest susceptibility to RSA. Women with high-ADA activity and low-ACP1 activity, on the contrary, show the highest susceptibility to RSA and also the highest incidence of auto antibodies and of A blood group incompatibility. CONCLUSION The data are in agreement with those expected on the basis of the effects of ACP1 and ADA genetic variability on T-cell receptor activity and suggest a cooperative effect of the two polymorphic systems in the susceptibility/resistance to repeated spontaneous abortion.
Collapse
Affiliation(s)
- M Nicotra
- Institute of Gynaecology, Perinatology and Child Disease, University of Rome La Sapienza, School of Medicine, Rome, Italy
| | | | | | | | | | | |
Collapse
|
7
|
Rajasekar P, Anuradha CV. Fructose-induced hepatic gluconeogenesis: Effect of l-carnitine. Life Sci 2007; 80:1176-83. [PMID: 17239403 DOI: 10.1016/j.lfs.2006.12.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 11/29/2006] [Accepted: 12/12/2006] [Indexed: 11/30/2022]
Abstract
High fructose feeding (60 g/100 g diet) in rodents induces alterations in both glucose and lipid metabolism. The present study was aimed to evaluate whether intraperitoneal carnitine (CA), a transporter of fatty acyl-CoA into the mitochondria, could attenuate derangements in carbohydrate metabolizing enzymes and glucose overproduction in high fructose-diet fed rats. Male Wistar rats of body weight 150-160 g were divided into 4 groups of 6 rats each. Groups 1 and 4 animals received control diet while the groups 2 and 3 rats received high fructose-diet. Groups 3 and 4 animals were treated with CA (300 mg/Kg body weight/day, i.p.) for 30 days. At the end of the experimental period, levels of carnitine, glucose, insulin, lactate, pyruvate, glycerol, triglycerides and free fatty acids in plasma were determined. The activities of carbohydrate metabolizing enzymes and glycogen content in liver and muscle were assayed. Hepatocytes isolated from liver were studied for the gluconeogenic activity in the presence of substrates such as pyruvate, lactate, glycerol, fructose and alanine. Fructose-diet fed animals showed alterations in glucose metabolizing enzymes, increased circulating levels of gluconeogenic substrates and depletion of glycogen in liver and muscle. There was increased glucose output from hepatocytes of animals fed fructose-diet alone with all the gluconeogenic substrates. The abnormalities associated with fructose feeding such as increased gluconeogenesis, reduced glycogen content and other parameters were brought back to near normal levels by CA. Hepatocytes from these animals showed significant inhibition of glucose production from pyruvate (74.3%), lactate (65.4%), glycerol (69.6%), fructose (56.2%) and alanine (63.6%) as compared to CA untreated fructose-fed animals. The benefits observed could be attributed to the effect of CA on fatty acyl-CoA transport.
Collapse
Affiliation(s)
- Panchamoorthy Rajasekar
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar-608 002, Tamil Nadu, India
| | | |
Collapse
|
8
|
Specific protein kinase C isoforms as transducers and modulators of insulin signaling. Mol Genet Metab 2006; 89:32-47. [PMID: 16798038 DOI: 10.1016/j.ymgme.2006.04.017] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2006] [Revised: 04/23/2006] [Accepted: 04/23/2006] [Indexed: 12/14/2022]
Abstract
Recent studies implicate specific PKC isoforms in the insulin-signaling cascade. Insulin activates PKCs alpha, betaII, delta and zeta in several cell types. In addition, as will be documented in this review, certain members of the PKC family may also be activated and act upstream of PI3 and MAP kinases. Each of these isoforms has been shown one way or another either to mimic or to modify insulin-stimulated effects in one or all of the insulin-responsive tissues. Moreover, each of the isoforms has been shown to be activated by insulin stimulation or conditions important for effective insulin stimulation. Studies attempting to demonstrate a definitive role for any of the isoforms have been performed on different cells, ranging from appropriate model systems for skeletal muscle, liver and fat, such as primary cultures, and cell lines and even in vivo studies, including transgenic mice with selective deletion of specific PKC isoforms. In addition, studies have been done on certain expression systems such as CHO or HEK293 cells, which are far removed from the tissues themselves and serve mainly as vessels for potential protein-protein interactions. Thus, a clear picture for many of the isoforms remains elusive in spite of over two decades of intensive research. The recent intrusion of transgenic and precise molecular biology technologies into the research armamentarium has opened a wide range of additional possibilities for direct involvement of individual isoforms in the insulin signaling cascade. As we hope to discuss within the context of this review, whereas many of the long sought-after answers to specific questions are not yet clear, major advances have been made in our understanding of precise roles for individual PKC isoforms in mediation of insulin effects. In this review, in which we shall focus our attention on isoforms in the conventional and novel categories, a clear case will be made to show that these isoforms are not only expressed but are importantly involved in regulation of insulin metabolic effects.
Collapse
|
9
|
Cipok M, Aga-Mizrachi S, Bak A, Feurstein T, Steinhart R, Brodie C, Sampson SR. Protein kinase Calpha regulates insulin receptor signaling in skeletal muscle. Biochem Biophys Res Commun 2006; 345:817-24. [PMID: 16707110 DOI: 10.1016/j.bbrc.2006.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Accepted: 05/03/2006] [Indexed: 11/28/2022]
Abstract
Certain PKC isoforms are stimulated by insulin and interact with IR as well as with IRS, but it is still not clear if specific PKC isoforms regulate IR signaling directly or through IRS-1. PKCalpha may regulate IRS activity in response to insulin. We investigated the possibility that PKCalpha may be important in insulin signaling. Studies were conducted on skeletal muscle in adult mice and on L6 skeletal cells. PKCalpha is constitutively associated with IRS-1, and insulin stimulation of PKCalpha causes disassociation of the two proteins within 5 min. Blockade of PKCalpha inhibited insulin-induced disassociation of PKCalpha from IRS1. Selective inhibition of PKCalpha increased the ability of insulin to reduce blood glucose levels. Insulin stimulation activates PKB and increases the association of PKCalpha with PKB. Blockade of PKCalpha increased threonine phosphorylation of PKB. We suggest that PKCalpha regulates insulin signaling in skeletal muscle through its disassociation from IRS-1 and association with PKB.
Collapse
Affiliation(s)
- Michal Cipok
- Gonda Diagnostic Center, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | | | | | | | | | | |
Collapse
|
10
|
Maniar R, Pecherskaya A, Ila R, Solem M. PKC alpha-dependent regulation of the IGF1 receptor in adult and embryonic rat cardiomyocytes. Mol Cell Biochem 2005; 275:15-24. [PMID: 16342423 DOI: 10.1007/s11010-005-7264-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In both, the adult rat ventricular cardiomyocytes and the embryonic rat heart cell line, H9c2, acute exposure to IGF1 resulted in activation of the IGF1 receptor's internal tyrosine kinase, and this was completely blocked by the PKC alpha inhibitor, Gö6976. In addition, RNA interference using siRNA mediated gene silencing of PKC alpha-inhibited IGF1 receptor activity and blocked PKC alpha expression in H9c2 cells. Biochemical experiments demonstrate that PKC alpha is associated with the IGFlR (beta subunit) only after acute IGF1 exposure, and this may suggest that there is a direct interaction and possibly a PKC alpha phosphorylation site within the internal IGF1 receptor domain. The downstream effects of blocking PKC alpha activity by exposure to Gö6976 include inhibition of IGF1-stimuated PI3 kinase activity and reduced IGF1-stimulated c-fos expression in the adult cardiomyocytes. Previously, the laboratory has reported that IGF1 activates PKC alpha in adult rat cardiomyocytes, and that PKC alpha activity is required for IGF1-dependent Erk/Erk2 activity and protein synthesis. Here, it is shown that IGF1-dependent protein synthesis is completely blocked by PD98059, indicating that the Raf-Mek-Erk cascade is required for IGF1's anabolic activity. Pretreatment with LY294002, a specific inhibitor of PI3 kinase, blocked IGF1-stimulated Erk1/Erk2 activity; therefore, PI3 kinase may also be required for IGF1-dependent protein synthesis. In H9c2 cells, coincubation with PMA lead to an increase in the rate of the IGF1 receptor activation, and this may further implicate a role for PKC in regulating the IGF1R. In conclusion, PKC alpha plays an essential role in the IGF1-signaling cascade, including the regulation of key signaling proteins involved in cell signaling and gene expression, and this may primarily be due to PKC alpha directly regulating the IGF1R.
Collapse
Affiliation(s)
- Ruchita Maniar
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
11
|
Pillay TS, Xiao S, Keranen L, Olefsky JM. Regulation of the insulin receptor by protein kinase C isoenzymes: preferential interaction with beta isoenzymes and interaction with the catalytic domain of betaII. Cell Signal 2004; 16:97-104. [PMID: 14607280 DOI: 10.1016/s0898-6568(03)00090-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We analysed the effects of high glucose in rat1 cells overexpressing insulin receptor. High (25 mM) glucose inhibited insulin-stimulated tyrosine kinase activity completely at insulin concentrations of 1 and 5 ng/ml. Decapeptides modelled on insulin receptor sequences surrounding serines 1035 and 1270 were found to inhibit protein kinase C activity in vitro and after microinjection into cells blocked the inhibition of mitogenesis induced by glucose. Purification of receptor from 3T3L1 adipocytes revealed that only the isoenzymes beta1, betaII and delta were detected. The site of the interaction was mapped to the catalytic domain of betaII. These results demonstrate that the inhibition of insulin receptor tyrosine kinase activity can be ameliorated using insulin receptor peptide sequences and there is constitutive and differential interaction of individual PKC isoenzymes with the insulin receptor, and in the case of betaII, this interaction maps to the catalytic domain rather than the regulatory domain.
Collapse
Affiliation(s)
- Tahir S Pillay
- Division of Endocrinology and Metabolism, Department of Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0673, USA.
| | | | | | | |
Collapse
|
12
|
Bottini N, Gloria-Bottini F, Borgiani P, Antonacci E, Lucarelli P, Bottini E. Type 2 diabetes and the genetics of signal transduction: a study of interaction between adenosine deaminase and acid phosphatase locus 1 polymorphisms. Metabolism 2004; 53:995-1001. [PMID: 15281007 DOI: 10.1016/j.metabol.2004.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Acid phosphatase locus 1 (ACP1) is a highly polymorphic enzyme that has an important role in flavoenzyme activity and in the control of insulin receptor activity and band 3 protein phosphorylation status. Adenosine deaminase (ADA) is a polymorphic enzyme that catalyses the irreversible deamination of adenosine to inosine and has an important role in regulating adenosine concentration. Based on the hypothesis that ACP1 counteracts insulin signaling by dephosphorylating the insulin receptor and that adenosine has an anti-insulin action, we reasoned that low ACP1 activity (low dephosphorylating action on insulin receptor) when associated with high ADA activity (low adenosine concentration) would result in a cumulative effect towards an increased glucose tolerance. On the contrary, high ACP1 activity when associated with low ADA activity would result in a cumulative effect towards a decreased glucose tolerance. A total of 280 adult subjects with type 2 diabetes from the population of Penne (Italy) were studied. There was a nonsignificant trend toward an increase in the proportion of subjects with the complex type with high ACP1 activity and low ADA activity (ie, *B/*B; *A/*C; *B/*C; *C/*C//ADA*1/*2 and *2/*2) in type 2 diabetes relative to that observed in newborn infants from the same population. High ACP1 activity/low ADA activity joint genotype was positively associated with high glycemic levels and with high body mass index (BMI) values. Low ACP1 activity/high ADA activity joint genotype was also positively associated with dyslipidemia. These findings suggest that both ACP1 and ADA contribute to the clinical manifestations of type 2 diabetes and probably also have a marginal influence on susceptibility to the disease. Both additive and epistatic interactions between the 2 systems seem to be operative.
Collapse
Affiliation(s)
- N Bottini
- Program of Signal Transduction, The Burnham Institute, La Jolla, CA, USA
| | | | | | | | | | | |
Collapse
|
13
|
Gao Z, Zhang X, Zuberi A, Hwang D, Quon MJ, Lefevre M, Ye J. Inhibition of Insulin Sensitivity by Free Fatty Acids Requires Activation of Multiple Serine Kinases in 3T3-L1 Adipocytes. Mol Endocrinol 2004; 18:2024-34. [PMID: 15143153 DOI: 10.1210/me.2003-0383] [Citation(s) in RCA: 241] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Insulin receptor substrate (IRS) has been suggested as a molecular target of free fatty acids (FFAs) for insulin resistance. However, the signaling pathways by which FFAs lead to the inhibition of IRS function remain to be established. In this study, we explored the FFA-signaling pathway that contributes to serine phosphorylation and degradation of IRS-1 in adipocytes and in dietary obese mice. Linoleic acid, an FFA used in this study, resulted in a reduction in insulin-induced glucose uptake in 3T3-L1 adipocytes. This mimics insulin resistance induced by high-fat diet in C57BL/6J mice. The reduction in glucose uptake is associated with a decrease in IRS-1, but not IRS-2 or GLUT4 protein abundance. Decrease in IRS-1 protein was proceeded by IRS-1 (serine 307) phosphorylation that was catalyzed by serine kinases inhibitor kappaB kinase (IKK) and c-JUN NH2-terminal kinase (JNK). IKK and JNK were activated by linoleic acid and inhibition of the two kinases led to prevention of IRS-1 reduction. We demonstrate that protein kinase C (PKC) theta is expressed in adipocytes. In 3T3-L1 adipocytes and fat tissue, PKCtheta was activated by fatty acids as indicated by its phosphorylation status, and by its protein level, respectively. Activation of PKCtheta contributes to IKK and JNK activation as inhibition of PKCtheta by calphostin C blocked activation of the latter kinases. Inhibition of either PKCtheta or IKK plus JNK by chemical inhibitors resulted in protection of IRS-1 function and insulin sensitivity in 3T3-L1 adipocytes. These data suggest that: 1) activation of PKCtheta contributes to IKK and JNK activation by FFAs; 2) IKK and JNK mediate PKCtheta signals for IRS-1 serine phosphorylation and degradation; and 3) this molecular mechanism may be responsible for insulin resistance associated with hyperlipidemia.
Collapse
Affiliation(s)
- Zhanguo Gao
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, Louisiana 70808, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Chavez JA, Summers SA. Characterizing the effects of saturated fatty acids on insulin signaling and ceramide and diacylglycerol accumulation in 3T3-L1 adipocytes and C2C12 myotubes. Arch Biochem Biophys 2004; 419:101-9. [PMID: 14592453 DOI: 10.1016/j.abb.2003.08.020] [Citation(s) in RCA: 375] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A strong correlation between intramyocellular lipid concentrations and the severity of insulin resistance has fueled speculation that lipid oversupply to skeletal muscle, fat, or liver may desensitize these tissues to the anabolic effects of insulin. To identify free fatty acids (FFAs) capable of inhibiting insulin action, we treated 3T3-L1 adipocytes or C2C12 myotubes with either the saturated FFA palmitate (C16:0) or the monounsaturated FFA oleate (C18:1), which were shown previously to be the most prevalent FFAs in rat soleus and gastrocnemius muscles. In C2C12 myotubes, palmitate, but not oleate, inhibited insulin-stimulation of glycogen synthesis, as well as its activation of Akt/Protein Kinase B (PKB), an obligate intermediate in the regulation of anabolic metabolism. Palmitate also induced the accrual of ceramide and diacylglycerol (DAG), two lipid metabolites that have been shown to inhibit insulin signaling in cultured cells and to accumulate in insulin resistant tissues. Interestingly, in 3T3-L1 adipocytes, neither palmitate nor oleate inhibited glycogen synthesis or Akt/PKB activation, nor did they induce ceramide or DAG synthesis. Using myotubes, we also tested whether other saturated fatty acids blocked insulin signaling while promoting ceramide and DAG accumulation. The long-chain fatty acids stearate (18:0), arachidate (20:0), and lignocerate (24:0) reproduced palmitate's effects on these events, while saturated fatty acids with shorter hydrocarbon chains [i.e., laurate (12:0) and myristate (14:0)] failed to induce ceramide accumulation or inhibit Akt/PKB activation. Collectively these findings implicate excess delivery of long-chain fatty acids in the development of insulin resistance resulting from lipid oversupply to skeletal muscle.
Collapse
Affiliation(s)
- Jose Antonio Chavez
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | | |
Collapse
|
15
|
Kim CH, Kim MS, Youn JY, Park HS, Song HS, Song KH, Park JY, Lee KU. Lipolysis in skeletal muscle is decreased in high-fat-fed rats. Metabolism 2003; 52:1586-92. [PMID: 14669160 DOI: 10.1016/s0026-0495(03)00328-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The intracellular triglyceride content in skeletal muscle is increased in insulin-resistant states such as obesity or high-fat feeding. It has been hypothesized that increased fatty acid oxidation resulting from increased lipolysis of intramyocellular triglycerides may be responsible for this insulin resistance. This study was undertaken to examine whether insulin resistance is associated with increased lipolysis in skeletal muscle in rats fed a high-fat diet. Sprague-Dawley rats were fed a high-fat diet for 5 weeks. Lipolysis in skeletal muscle and adipose tissue was determined by measuring the interstitial glycerol concentrations using a microdialysis method in basal and hyperinsulinemic-euglycemic clamp conditions. In the basal state, plasma free fatty acid (FFA) levels were higher in high-fat-fed rats than in low fat-fed rats (P <.05). In contrast, plasma glycerol levels (P <.001) and interstitial glycerol concentrations of skeletal muscle (P <.05) and adipose tissue (P <.01) were lower in high fat-fed rats than in low fat-fed rats. Plasma (P <.05) and interstitial glycerol concentrations (P <.05 for skeletal muscle, P <.01 for adipose tissue) during the hyperinsulinemic euglycemic clamps were also lower in the high-fat diet group. These results do not support the idea that increased fatty acid oxidation resulting from increased lipolysis of intramyocellular triglycerides is responsible for the insulin resistance in high fat-fed rats.
Collapse
Affiliation(s)
- Chul-Hee Kim
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Chavez JA, Knotts TA, Wang LP, Li G, Dobrowsky RT, Florant GL, Summers SA. A role for ceramide, but not diacylglycerol, in the antagonism of insulin signal transduction by saturated fatty acids. J Biol Chem 2003; 278:10297-303. [PMID: 12525490 DOI: 10.1074/jbc.m212307200] [Citation(s) in RCA: 466] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Multiple studies suggest that lipid oversupply to skeletal muscle contributes to the development of insulin resistance, perhaps by promoting the accumulation of lipid metabolites capable of inhibiting signal transduction. Herein we demonstrate that exposing muscle cells to particular saturated free fatty acids (FFAs), but not mono-unsaturated FFAs, inhibits insulin stimulation of Akt/protein kinase B, a serine/threonine kinase that is a central mediator of insulin-stimulated anabolic metabolism. These saturated FFAs concomitantly induced the accumulation of ceramide and diacylglycerol, two products of fatty acyl-CoA that have been shown to accumulate in insulin-resistant tissues and to inhibit early steps in insulin signaling. Preventing de novo ceramide synthesis negated the antagonistic effect of saturated FFAs toward Akt/protein kinase B. Moreover, inducing ceramide buildup recapitulated and augmented the inhibitory effect of saturated FFAs. By contrast, diacylglycerol proved dispensable for these FFA effects. Collectively these results identify ceramide as a necessary and sufficient intermediate linking saturated fats to the inhibition of insulin signaling.
Collapse
Affiliation(s)
- Jose Antonio Chavez
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins 80523-1870, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Affiliation(s)
- E Shafrir
- Department of Medicine, Diabetes Research Centre, Hadassah University Hospital, Ein Kerem, Jerusalem, 91120 Israel.
| | | |
Collapse
|
18
|
Saksena S, Gill RK, Syed IA, Tyagi S, Alrefai WA, Ramaswamy K, Dudeja PK. Inhibition of apical Cl-/OH- exchange activity in Caco-2 cells by phorbol esters is mediated by PKCepsilon. Am J Physiol Cell Physiol 2002; 283:C1492-500. [PMID: 12372810 DOI: 10.1152/ajpcell.00473.2001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present studies were undertaken to examine the possible regulation of apical membrane Cl-/OH- exchanger in Caco-2 cells by protein kinase C (PKC). The effect of the phorbol ester phorbol 12-myristate 13-acetate (PMA), an in vitro PKC agonist, on OH- gradient-driven 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS)-sensitive 36Cl uptake in Caco-2 cells was assessed. The results demonstrated that PMA decreased apical Cl-/OH- exchanger activity via phosphatidylinositol 3-kinase (PI3-kinase)-mediated activation of PKCepsilon. The data consistent with these conclusions are as follows: 1) short-term treatment of cells for 1-2 h with PMA (100 nM) significantly decreased Cl-/OH- exchange activity compared with control (4alpha-PMA); 2) pretreatment of cells with specific PKC inhibitors chelerythrine chloride, calphostin C, and GF-109203X completely blocked the inhibition of Cl-/OH- exchange activity by PMA; 3) specific inhibitors for PKCepsilon (Ro-318220) but not PKCalpha (Go-6976) significantly blocked the PMA-mediated inhibition; 4) specific PI3-kinase inhibitors wortmannin and LY-294002 significantly attenuated the inhibitory effect of PMA; and 5) PI3-kinase activators IRS-1 peptide and phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P(3)] mimicked the effects of PMA. These findings provide the first evidence for PKCepsilon-mediated inhibition of Cl-/OH- exchange activity in Caco-2 cells and indicate the involvement of the PI3-kinase-mediated pathways in the regulation of Cl- absorption in intestinal epithelial cells.
Collapse
Affiliation(s)
- Seema Saksena
- Section of Digestive and Liver Diseases, Department of Medicine, University of Illinois at Chicago and West Side Department of Veterans Affairs Medical Center, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Faisal A, el-Shemerly M, Hess D, Nagamine Y. Serine/threonine phosphorylation of ShcA. Regulation of protein-tyrosine phosphatase-pest binding and involvement in insulin signaling. J Biol Chem 2002; 277:30144-52. [PMID: 12052829 DOI: 10.1074/jbc.m203229200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Serine phosphorylation of the ShcA signaling molecule has been reported recently. In this work, we have identified 12-O-tetradecanoylphorbol-13-acetate (TPA)- and growth factor-induced serine/threonine phosphorylation sites in p52(Shc) and p66(Shc). Among them, Ser(29) in p52(Shc) (equivalent to Ser(138) in p66(Shc)) was phosphorylated only after TPA stimulation. Phosphorylation of this site together with the intact phosphotyrosine-binding domain was essential for ShcA binding to the protein-tyrosine phosphatase PTP-PEST. TPA-induced ShcA phosphorylation at this site (and hence, its association with PTP-PEST) was inhibited by a protein kinase C-specific inhibitor and was induced by overexpression of constitutively active mutants of protein kinase Calpha, -epsilon, and -delta isoforms. Insulin also induced ShcA/PTP-PEST association, although to a lesser extent than TPA. Overexpression of a PTP-PEST binding-defective mutant of p52(Shc) (S29A) enhanced insulin-induced ERK activation in insulin receptor-overexpressing HIRc-B cells. Consistent with this, p52(Shc) S29A was more tyrosine-phosphorylated than wild-type p52(Shc) after insulin stimulation. Thus, we have identified a new mechanism whereby serine phosphorylation of ShcA controls the ability of its phosphotyrosine-binding domain to bind PTP-PEST, which is responsible for the dephosphorylation and down-regulation of ShcA after insulin stimulation.
Collapse
Affiliation(s)
- Amir Faisal
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | | | | | | |
Collapse
|
20
|
Rosenzweig T, Braiman L, Bak A, Alt A, Kuroki T, Sampson SR. Differential effects of tumor necrosis factor-alpha on protein kinase C isoforms alpha and delta mediate inhibition of insulin receptor signaling. Diabetes 2002; 51:1921-30. [PMID: 12031982 DOI: 10.2337/diabetes.51.6.1921] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Tumor necrosis factor-alpha (TNF-alpha) is a multifunctional cytokine that interferes with insulin signaling, but the molecular mechanisms of this effect are unclear. Because certain protein kinase C (PKC) isoforms are activated by insulin, we examined the role of PKC in TNF-alpha inhibition of insulin signaling in primary cultures of mouse skeletal muscle. TNF-alpha, given 5 min before insulin, inhibited insulin-induced tyrosine phosphorylation of insulin receptor (IR), IR substrate (IRS)-1, insulin-induced association of IRS-1 with the p85 subunit of phosphatidylinositol 3-kinase (PI3-K), and insulin-induced glucose uptake. Insulin and TNF-alpha each caused tyrosine phosphorylation and activation of PKCs delta and alpha, but when TNF-alpha preceded insulin, the effects were less than that produced by each substance alone. Insulin induced PKCdelta specifically to coprecipitate with IR, an effect blocked by TNF-alpha. Both PKCalpha and -delta are constitutively associated with IRS-1. Whereas insulin decreased coprecipitation of IRS-1 with PKCalpha, it increased coprecipitation of IRS-1 with PKCdelta. TNF-alpha blocked the effects of insulin on association of both PKCs with IRS-1. To further investigate the involvement of PKCs in inhibitory actions of TNF-alpha on insulin signaling, we overexpressed specific PKC isoforms in mature myotubes. PKCalpha overexpression inhibited basal and insulin-induced IR autophosphorylation, whereas PKCdelta overexpression increased IR autophosphorylation and abrogated the inhibitory effect of TNF-alpha on IR autophosphorylation and signaling to PI3-K. Blockade of PKCalpha antagonized the inhibitory effects of TNF-alpha on both insulin-induced IR tyrosine phosphorylation and IR signaling to PI3-K. We suggest that the effects of TNF-alpha on IR tyrosine phosphorylation are mediated via alteration of insulin-induced activation and association of PKCdelta and -alpha with upstream signaling molecules.
Collapse
Affiliation(s)
- Tovit Rosenzweig
- Faculty of Life Sciences, Gonda-Goldschmied Center, Bar-Ilan University, Ramat-Gan, Israel
| | | | | | | | | | | |
Collapse
|
21
|
Cooney GJ, Thompson AL, Furler SM, Ye J, Kraegen EW. Muscle long-chain acyl CoA esters and insulin resistance. Ann N Y Acad Sci 2002; 967:196-207. [PMID: 12079848 DOI: 10.1111/j.1749-6632.2002.tb04276.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A common observation in animal models and in humans is that accumulation of muscle triglyceride is associated with the development of insulin resistance. In animals, this is true of genetic models of obesity and nutritional models of insulin resistance generated by high-fat feeding, infusion of lipid, or infusion of glucose. Although there is a strong link between the accumulation of triglycerides (TG) in muscle and insulin resistance, it is unlikely that TG are directly involved in the generation of muscle insulin resistance. There are now other plausible mechanistic links between muscle lipid metabolites and insulin resistance, in addition to the classic substrate competition proposed by Randle's glucose-fatty acid cycle. The first step in fatty acid metabolism (oxidation or storage) is activation to the long-chain fatty acyl CoA (LCACoA). This review covers the evidence suggesting that cytosolic accumulation of this active form of lipid in muscle can lead to impaired insulin signaling, impaired enzyme activity, and insulin resistance, either directly or by conversion to other lipid intermediates that alter the activity of key kinases and phosphatases. Actions of fatty acids to bind specific nuclear transcription factors provide another mechanism whereby different lipids could influence metabolism.
Collapse
Affiliation(s)
- G J Cooney
- Garvan Institute of Medical Research, St. Vincent's Hospital, Sydney, NSW 2010, Australia.
| | | | | | | | | |
Collapse
|
22
|
Lewis GF, Carpentier A, Adeli K, Giacca A. Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocr Rev 2002; 23:201-29. [PMID: 11943743 DOI: 10.1210/edrv.23.2.0461] [Citation(s) in RCA: 744] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The primary genetic, environmental, and metabolic factors responsible for causing insulin resistance and pancreatic beta-cell failure and the precise sequence of events leading to the development of type 2 diabetes are not yet fully understood. Abnormalities of triglyceride storage and lipolysis in insulin-sensitive tissues are an early manifestation of conditions characterized by insulin resistance and are detectable before the development of postprandial or fasting hyperglycemia. Increased free fatty acid (FFA) flux from adipose tissue to nonadipose tissue, resulting from abnormalities of fat metabolism, participates in and amplifies many of the fundamental metabolic derangements that are characteristic of the insulin resistance syndrome and type 2 diabetes. It is also likely to play an important role in the progression from normal glucose tolerance to fasting hyperglycemia and conversion to frank type 2 diabetes in insulin resistant individuals. Adverse metabolic consequences of increased FFA flux, to be discussed in this review, are extremely wide ranging and include, but are not limited to: 1) dyslipidemia and hepatic steatosis, 2) impaired glucose metabolism and insulin sensitivity in muscle and liver, 3) diminished insulin clearance, aggravating peripheral tissue hyperinsulinemia, and 4) impaired pancreatic beta-cell function. The precise biochemical mechanisms whereby fatty acids and cytosolic triglycerides exert their effects remain poorly understood. Recent studies, however, suggest that the sequence of events may be the following: in states of positive net energy balance, triglyceride accumulation in "fat-buffering" adipose tissue is limited by the development of adipose tissue insulin resistance. This results in diversion of energy substrates to nonadipose tissue, which in turn leads to a complex array of metabolic abnormalities characteristic of insulin-resistant states and type 2 diabetes. Recent evidence suggests that some of the biochemical mechanisms whereby glucose and fat exert adverse effects in insulin-sensitive and insulin-producing tissues are shared, thus implicating a diabetogenic role for energy excess as a whole. Although there is now evidence that weight loss through reduction of caloric intake and increase in physical activity can prevent the development of diabetes, it remains an open question as to whether specific modulation of fat metabolism will result in improvement in some or all of the above metabolic derangements or will prevent progression from insulin resistance syndrome to type 2 diabetes.
Collapse
Affiliation(s)
- Gary F Lewis
- Department of Medicine, Division of Endocrinology, University of Toronto, Canada M5G 2C4.
| | | | | | | |
Collapse
|
23
|
Tagami S, Inokuchi Ji JI, Kabayama K, Yoshimura H, Kitamura F, Uemura S, Ogawa C, Ishii A, Saito M, Ohtsuka Y, Sakaue S, Igarashi Y. Ganglioside GM3 participates in the pathological conditions of insulin resistance. J Biol Chem 2002; 277:3085-92. [PMID: 11707432 DOI: 10.1074/jbc.m103705200] [Citation(s) in RCA: 278] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Gangliosides are known as modulators of transmembrane signaling by regulating various receptor functions. We have found that insulin resistance induced by tumor necrosis factor-alpha (TNF-alpha) in 3T3-L1 adipocytes was accompanied by increased GM3 ganglioside expression caused by elevating GM3 synthase activity and its mRNA. We also demonstrated that TNF-alpha simultaneously produced insulin resistance by uncoupling insulin receptor activity toward insulin receptor substrate-1 (IRS-1) and suppressing insulin-sensitive glucose transport. Pharmacological depletion of GM3 in adipocytes by an inhibitor of glucosylceramide synthase prevented the TNF-alpha-induced defect in insulin-dependent tyrosine phosphorylation of IRS-1 and also counteracted the TNF-alpha-induced serine phosphorylation of IRS-1. Moreover, when the adipocytes were incubated with exogenous GM3, suppression of tyrosine phosphorylation of insulin receptor and IRS-1 and glucose uptake in response to insulin stimulation was observed, demonstrating that GM3 itself is able to mimic the effects of TNF on insulin signaling. We used the obese Zucker fa/fa rat and ob/ob mouse, which are known to overproduce TNF-alpha mRNA in adipose tissues, as typical models of insulin resistance. We found that the levels of GM3 synthase mRNA in adipose tissues of these animals were significantly higher than in their lean counterparts. Taken together, the increased synthesis of cellular GM3 by TNF may participate in the pathological conditions of insulin resistance in type 2 diabetes.
Collapse
Affiliation(s)
- Seiichi Tagami
- First Department of Medicine, Hokkaido University School of Medicine, Kita 15-jo, Nishi 7-chome, Kita-ku, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Plesneva SA, Shpakov AO, Kuznetsova LA, Pertseva MN. A dual role of protein kinase C in insulin signal transduction via adenylyl cyclase signaling system in muscle tissues of vertebrates and invertebrates. Biochem Pharmacol 2001; 61:1277-91. [PMID: 11322932 DOI: 10.1016/s0006-2952(01)00592-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Further decoding of a novel adenylyl cyclase signaling mechanism (ACSM) of the action of insulin and related peptides detected earlier (Pertseva et al. Comp Biochem Physiol B Biochem Mol Biol 1995;112:689-95 and Pertseva et al. Biochem Pharmacol 1996;52:1867-74) was carried out with special attention given to the role of protein kinase C (PKC) in the ACSM. It was shown for the first time that transduction of the insulin signal via the ACSM followed by adenylyl cyclase (AC, EC 4.6.1.1) activation was blocked in the muscle tissues of rat and mollusc Anodonta cygnea in the presence of pertussis toxin, inducing the impairment of G(i)-protein function, wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PI3-K), and calphostin C, a blocker of PKC. The cholera toxin treatment of muscle membranes led to an increase in basal AC activity and a decrease in enzyme insulin reactivity. Phorbol ester and diacylglycerol activation of PKC (acute treatment) induced the inhibition of the insulin AC activating effect. This negative influence was also observed in the case of the AC system activated by biogenic amines. It was first concluded that the ACSM of insulin action involves the following signaling chain: receptor tyrosine kinase => G(i) (betagamma) => PI3-K => PKCzeta (?) => G(s) => AC => adenosine 3',5'-cyclic monophosphate. It was also concluded that the PKC system has a dual role in the ACSM: (1) a regulatory role (PKC sensitive to phorbol esters) that is manifested as a negative feedback modulation of insulin signal transduction via the ACSM; (2) a transductory role, which consists in direct participation of atypical PKC (PKCzeta) in the process of insulin signal transduction via the ACSM.
Collapse
Affiliation(s)
- S A Plesneva
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez au. 44, 194223, St. Petersburg, Russia
| | | | | | | |
Collapse
|
25
|
Ikeda Y, Olsen GS, Ziv E, Hansen LL, Busch AK, Hansen BF, Shafrir E, Mosthaf-Seedorf L. Cellular mechanism of nutritionally induced insulin resistance in Psammomys obesus: overexpression of protein kinase Cepsilon in skeletal muscle precedes the onset of hyperinsulinemia and hyperglycemia. Diabetes 2001; 50:584-92. [PMID: 11246878 DOI: 10.2337/diabetes.50.3.584] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The sand rat (Psammomys obesus) is an animal model of nutritionally induced diabetes. We report here that several protein kinase C (PKC) isoforms (alpha, epsilon, and zeta, representing all three subclasses of PKC) are overexpressed in the skeletal muscle of diabetic animals of this species. This is most prominent for the epsilon isotype of PKC. Interestingly, increased expression of PKCepsilon could already be detected in normoinsulinemic, normoglycemic (prediabetic) animals of the diabetes-prone (DP) line when compared with a diabetes-resistant (DR) line. In addition, plasma membrane (PM)-associated fractions of PKCalpha and PKCepsilon were significantly increased in skeletal muscle of diabetic animals, suggesting chronic activation of these PKC isotypes in the diabetic state. The increased PM association of these PKC isotypes revealed a significant correlation with the diacylglycerol content in the muscle samples. Altered expression/activity of PKCepsilon, in particular, may thus contribute to the development of diabetes in these animals; along with other PKC isotypes, it may be involved in the progression of the disease. This may possibly occur through inhibition of insulin receptor (IR) tyrosine kinase activity mediated by serine/threonine phosphorylation of the IR or insulin receptor substrate 1 (IRS-1). However, overexpression of PKCepsilon also mediated down-regulation of IR numbers in a cell culture model (HEK293), resulting in attenuation of insulin downstream signaling (reduced protein kinase B [PKB]/Akt activity). In accordance with this, we detected decreased 125I-labeled insulin binding, probably reflecting a downregulation of IR numbers, in skeletal muscle of Psammomys animals from the DP line. The number of IRs was inversely correlated to both the expression and PM-associated levels of PKCepsilon. These data suggest that overexpression of PKCepsilon may be causally related to the development of insulin resistance in these animals, possibly by increasing the degradation of IRs.
Collapse
Affiliation(s)
- Y Ikeda
- Department of Molecular Signaling, Hagedorn Research Institute, Gentofte, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Ye JM, Doyle PJ, Iglesias MA, Watson DG, Cooney GJ, Kraegen EW. Peroxisome proliferator-activated receptor (PPAR)-alpha activation lowers muscle lipids and improves insulin sensitivity in high fat-fed rats: comparison with PPAR-gamma activation. Diabetes 2001; 50:411-7. [PMID: 11272155 DOI: 10.2337/diabetes.50.2.411] [Citation(s) in RCA: 262] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Peroxisome proliferator-activated receptor (PPAR)-alpha agonists lower circulating lipids, but the consequences for muscle lipid metabolism and insulin sensitivity are not clear. We investigated whether PPAR-alpha activation improves insulin sensitivity in insulin-resistant rats and compared the effects with PPAR-gamma activation. Three-week high fat-fed male Wistar rats were untreated or treated with the specific PPAR-alpha agonist WY14643 or the PPAR-gamma agonist pioglitazone (both 3 mg x kg(-1) x day(-1)) for the last 2 weeks of high-fat feeding. Like pioglitazone, WY14643 lowered basal plasma levels of glucose, triglycerides (-16% vs. untreated), and leptin (-52%), and also muscle triglyceride (-34%) and total long-chain acyl-CoAs (LCACoAs) (-41%) (P < 0.05). In contrast to pioglitazone, WY14643 substantially reduced visceral fat weight and total liver triglyceride content (P < 0.01) without increasing body weight gain. WY14643 and pioglitazone similarly enhanced whole-body insulin sensitivity (clamp glucose infusion rate increased 35 and 37% and glucose disposal 22 and 15%, respectively, vs. untreated). Both agents enhanced insulin-mediated muscle glucose metabolic index (Rg') and reduced muscle triglyceride and LCACoA accumulation (P < 0.05). Although pioglitazone had more potent effects than WY14643 on muscle insulin sensitization, this was associated with its greater effect to reduce muscle LCACoA accumulation. Overall insulin-mediated muscle Rg' was inversely correlated with the content of LCACoAs (r = -0.74, P = 0.001) and with plasma triglyceride levels (r = -0.77, P < 0.001). We conclude that even though WY14643 and pioglitazone, representing PPAR-alpha and PPAR-gamma activation, respectively, may alter muscle lipid supply by different mechanisms, both significantly improve muscle insulin action in the high fat-fed rat model of insulin resistance, and this effect is proportional to the degree to which they reduce muscle lipid accumulation.
Collapse
Affiliation(s)
- J M Ye
- Garvan Institute of Medical Research, Sydney, Australia.
| | | | | | | | | | | |
Collapse
|
27
|
Tang S, Le-Tien H, Goldstein BJ, Shin P, Lai R, Fantus IG. Decreased in situ insulin receptor dephosphorylation in hyperglycemia-induced insulin resistance in rat adipocytes. Diabetes 2001; 50:83-90. [PMID: 11147799 DOI: 10.2337/diabetes.50.1.83] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The regulation of insulin receptor (IR) tyrosine (tyr) phosphorylation is a key step in the control of insulin signaling. Augmented IR tyr dephosphorylation by protein tyrosine phosphatases (PTPs) may contribute to insulin resistance. To investigate this possibility in hyperglycemia-induced insulin resistance, primary cultured rat adipocytes were rendered insulin-resistant by chronic exposure (18 h) to 15 mmo/l glucose combined with 10(-7) mol/l insulin. Insulin-resistant adipocytes showed a decrease in insulin sensitivity and a maximum response of 2-deoxyglucose uptake, which was associated with a decrease in maximum insulin-stimulated IR tyr phosphorylation in situ. To assess tyr dephosphorylation, IRs of insulin-stimulated permeabilized adipocytes were labeled with [gamma-32P]ATP and chased for 2 min with unlabeled ATP in the presence of EDTA. In a nonradioactive protocol, insulin-stimulated adipocytes were permeabilized and exposed to EDTA and erbstatin for 2 min, and IRs were immunoblotted with anti-phosphotyrosine (pY) antibodies. Both methods showed a similar diminished extent of IR tyr dephosphorylation in resistant cells. Immunoblotting of four candidate IR-PTPs demonstrated no change in PTP1B or the SH2 domain containing phosphatase-2 (SHP-2), whereas a significant decrease in leukocyte antigen-related phosphatase (LAR) (51 +/- 3% of control) and an increase in PTP-alpha (165 +/- 16%) were found. Activity of immunoprecipitated PTPs toward a triple tyr phosphorylated IR peptide revealed a correlation with protein content for PTP1B, SHP-2, and LAR but a decrease in apparent specific activity of PTP-alpha. The data indicate that decreased IR tyr phosphorylation in hyperglycemia-induced insulin resistance is not due to enhanced dephosphorylation. The diminished IR tyr dephosphorylation observed in this model is associated with decreased LAR protein content and activity.
Collapse
Affiliation(s)
- S Tang
- Banting and Best Diabetes Centre, University of Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
28
|
Ellis BA, Poynten A, Lowy AJ, Furler SM, Chisholm DJ, Kraegen EW, Cooney GJ. Long-chain acyl-CoA esters as indicators of lipid metabolism and insulin sensitivity in rat and human muscle. Am J Physiol Endocrinol Metab 2000; 279:E554-60. [PMID: 10950822 DOI: 10.1152/ajpendo.2000.279.3.e554] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Long-chain acyl-CoAs (LCACoA) are an activated lipid species that are key metabolites in lipid metabolism; they also have a role in the regulation of other cellular processes. However, few studies have linked LCACoA content in rat and human muscle to changes in nutritional status and insulin action. Fasting rats for 18 h significantly elevated the three major LCACoA species in muscle (P < 0.001), whereas high-fat feeding of rats with a safflower oil (18:2) diet produced insulin resistance and increased total LCACoA content (P < 0.0001) by specifically increasing 18:2-CoA. The LCACoA content of red muscle from rats (4-8 nmol/g) was 4- to 10-fold higher than adipose tissue (0.4-0.9 nmol/g, P < 0.001), suggesting that any contamination of muscle samples with adipocytes would contribute little to the LCACoA content of muscle. In humans, the LCACoA content of muscle correlated significantly with a measure of whole body insulin action in 17 male subjects (r(2) = 0.34, P = 0.01), supporting a link between muscle lipid metabolism and insulin action. These results demonstrate that the LCACoA pool reflects lipid metabolism and nutritional state in muscle. We conclude that the LCACoA content of muscle provides a direct index of intracellular lipid metabolism and its links to insulin action, which, unlike triglyceride content, is not subject to contamination by closely associated adipose tissue.
Collapse
Affiliation(s)
- B A Ellis
- Garvan Institute of Medical Research, St. Vincent's Hospital, Sydney, New South Wales, Australia.
| | | | | | | | | | | | | |
Collapse
|
29
|
Soni P, Lakkis M, Poy MN, Fernström MA, Najjar SM. The differential effects of pp120 (Ceacam 1) on the mitogenic action of insulin and insulin-like growth factor 1 are regulated by the nonconserved tyrosine 1316 in the insulin receptor. Mol Cell Biol 2000; 20:3896-905. [PMID: 10805733 PMCID: PMC85733 DOI: 10.1128/mcb.20.11.3896-3905.2000] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
pp120 (Ceacam 1) undergoes ligand-stimulated phosphorylation by the insulin receptor, but not by the insulin-like growth factor 1 receptor (IGF-1R). This differential phosphorylation is regulated by the C terminus of the beta-subunit of the insulin receptor, the least conserved domain of the two receptors. In the present studies, deletion and site-directed mutagenesis in stably transfected hepatocytes derived from insulin receptor knockout mice (IR(-/-)) revealed that Tyr(1316), which is replaced by the nonphosphorylatable phenylalanine in IGF-1R, regulated the differential phosphorylation of pp120 by the insulin receptor. Similarly, the nonconserved Tyr(1316) residue also regulated the differential effect of pp120 on IGF-1 and insulin mitogenesis, with pp120 downregulating the growth-promoting action of insulin, but not that of IGF-1. Thus, it appears that pp120 phosphorylation by the insulin receptor is required and sufficient to mediate its downregulatory effect on the mitogenic action of insulin. Furthermore, the current studies revealed that the C terminus of the beta-subunit of the insulin receptor contains elements that suppress the mitogenic action of insulin. Because IR(-/-) hepatocytes are derived from liver, an insulin-targeted tissue, our observations have finally resolved the controversy about the role of the least-conserved domain of insulin and IGF-1Rs in mediating the difference in the mitogenic action of their ligands, with IGF-1 being more mitogenic than insulin.
Collapse
Affiliation(s)
- P Soni
- Department of Pharmacology and Therapeutics, Medical College of Ohio, Toledo, Ohio 43614, USA
| | | | | | | | | |
Collapse
|
30
|
Kim CH, Youn JH, Park JY, Hong SK, Park KS, Park SW, Suh KI, Lee KU. Effects of high-fat diet and exercise training on intracellular glucose metabolism in rats. Am J Physiol Endocrinol Metab 2000; 278:E977-84. [PMID: 10826998 DOI: 10.1152/ajpendo.2000.278.6.e977] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the effects of high-fat diet (HFD) and exercise training on insulin-stimulated whole body glucose fluxes and several key steps of glucose metabolism in skeletal muscle. Rats were maintained for 3 wk on either low-fat (LFD) or high-fat diet with or without exercise training (swimming for 3 h per day). After the 3-wk diet/exercise treatments, animals underwent hyperinsulinemic euglycemic clamp experiments for measurements of insulin-stimulated whole body glucose fluxes. In addition, muscle samples were taken at the end of the clamps for measurements of glucose 6-phosphate (G-6-P) and GLUT-4 protein contents, hexokinase, and glycogen synthase (GS) activities. Insulin-stimulated glucose uptake was decreased by HFD and increased by exercise training (P < 0.01 for both). The opposite effects of HFD and exercise training on insulin-stimulated glucose uptake were associated with similar increases in muscle G-6-P levels (P < 0.05 for both). However, the increase in G-6-P level was accompanied by decreased GS activity without changes in GLUT-4 protein content and hexokinase activities in the HFD group. In contrast, the increase in G-6-P level in the exercise-trained group was accompanied by increased GLUT-4 protein content and hexokinase II (cytosolic) and GS activities. These results suggest that HFD and exercise training affect insulin sensitivity by acting predominantly on different steps of intracellular glucose metabolism. High-fat feeding appears to induce insulin resistance by affecting predominantly steps distal to G-6-P (e.g., glycolysis and glycogen synthesis). Exercise training affected multiple steps of glucose metabolism both proximal and distal to G-6-P. However, increased muscle G-6-P levels in the face of increased glucose metabolic fluxes suggest that the effect of exercise training is quantitatively more prominent on the steps proximal to G-6-P (i.e., glucose transport and phosphorylation).
Collapse
Affiliation(s)
- C H Kim
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Seoul 140-743, Korea
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Zheng WH, Kar S, Quirion R. Stimulation of protein kinase C modulates insulin-like growth factor-1-induced akt activation in PC12 cells. J Biol Chem 2000; 275:13377-85. [PMID: 10788447 DOI: 10.1074/jbc.275.18.13377] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of protein kinase C (PKC) plays an important role in the negative regulation of receptor signaling, but its effect on insulin-like growth factor-1 (IGF-1) receptor signaling remains unclear. In this study, we characterized the intracellular pathways involved in IGF-1-induced activation of Akt and evaluated the effects of the PKC activator phorbol 12-myristate 13-acetate (PMA) on the Akt activation by IGF-1. IGF-1 induced a time- and concentration-dependent activation of Akt. The effect of IGF-1 was blocked by the phosphatidylinositide 3-kinase (PI3K) inhibitors LY294002 (50 micrometer) and wortmannin (0.5 micrometer), but not by the MEK inhibitor PD98059 (50 micrometer) or the p70 S6 kinase pathway inhibitor rapamycin (50 nm), suggesting that the stimulation of Akt by IGF-1 is mediated by the PI3K pathway. Interestingly, cotreatment with PMA (400 nm) attenuated IGF-1-induced activation of Akt. The attenuation was blocked completely by the PKC inhibitor GO6983 (0.5 micrometer), but only partially by the MEK inhibitor PD98059 (50 micrometer), indicating that MAPK-dependent and -independent pathways are involved. PMA induced the activation of PKC in PC12 cells, and this induction was blocked by GO6983. These data further support the role of PKC in the effect of PMA. Moreover, PKCdelta is likely involved in the action of PMA on the basis of data obtained using isoform-specific inhibitors such as rottlerin. PMA also decreased IGF-1-induced tyrosine phosphorylation of insulin receptor substrate-1 and its association with PI3K. Taken together, these results suggest, for the first time, that stimulation of PKC modulates IGF-1-induced activation of Akt.
Collapse
Affiliation(s)
- W H Zheng
- Douglas Hospital Research Center, Departments of Psychiatry and of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H4H 1R3, Canada
| | | | | |
Collapse
|
32
|
Abate N. Obesity and cardiovascular disease. Pathogenetic role of the metabolic syndrome and therapeutic implications. J Diabetes Complications 2000; 14:154-74. [PMID: 10989324 DOI: 10.1016/s1056-8727(00)00067-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Since obesity is a major risk factor for cardiovascular disease (CVD), the increasing prevalence and degree of obesity in all developed countries has the potential to significantly offset the current efforts to decrease CVD burden in our population. Obesity is pathogenetically related to several clinical and sub-clinical abnormalities that contribute to the development of atherosclerotic placks and their complication, leading to the onset of cardiovascular events. Obesity seems to interact with inheritable factors in determining the onset of insulin resistance, a metabolic abnormality that is responsible for altered glucose metabolism and predisposition to type 2 diabetes, but that also has a major role in the development of dyslipidemia, hypertension and many other sub-clinical abnormalities that contribute to the atherosclerotic process and onset of cardiovascular events. Inheritable factors seem to modulate the onset of type 2 diabetes, dyslipidemia, hypertension and various insulin resistance-related sub-clinical abnormalities, often in a clustering pattern that is commonly referred to as the "metabolic syndrome." Inheritable factors also are involved in the onset of CVD in a given population or individuals with various components of the metabolic syndrome. Intense research is currently undergoing to better understand the molecular mechanisms that could explain the relationship between environmental and inheritable factors that lead from obesity to atherosclerosis and cardiovascular event. The elucidation of these mechanisms will provide improved therapeutic strategies to reduce cardiovascular risk in the obese patients. However, effective therapeutic tools that control each of the known pathophysiological steps mediating CVD in obese patients are already available and should be used more aggressively. Patient education and coordinated approach of physicians, nurses and other health care providers in a multidisciplinary treatment of the obese patient is of fundamental importance to reduce CVD burden in our population.
Collapse
Affiliation(s)
- N Abate
- Department of Internal Medicine, The Center for Human Nutrition, Division of Endocrinology and Metabolism, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75235-9061, USA.
| |
Collapse
|
33
|
Cortright RN, Azevedo JL, Zhou Q, Sinha M, Pories WJ, Itani SI, Dohm GL. Protein kinase C modulates insulin action in human skeletal muscle. Am J Physiol Endocrinol Metab 2000; 278:E553-62. [PMID: 10710511 DOI: 10.1152/ajpendo.2000.278.3.e553] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There is good evidence from cell lines and rodents that elevated protein kinase C (PKC) overexpression/activity causes insulin resistance. Therefore, the present study determined the effects of PKC activation/inhibition on insulin-mediated glucose transport in incubated human skeletal muscle and primary adipocytes to discern a potential role for PKC in insulin action. Rectus abdominus muscle strips or adipocytes from obese, insulin-resistant, and insulin-sensitive patients were incubated in vitro under basal and insulin (100 nM)-stimulated conditions in the presence of GF 109203X (GF), a PKC inhibitor, or 12-deoxyphorbol 13-phenylacetate 20-acetate (dPPA), a PKC activator. PKC inhibition had no effect on basal glucose transport. GF increased (P < 0.05) insulin-stimulated 2-deoxyglucose (2-DOG) transport approximately twofold above basal. GF plus insulin also increased (P < 0.05) insulin receptor tyrosine phosphorylation 48% and phosphatidylinositol 3-kinase (PI 3-kinase) activity approximately 50% (P < 0.05) vs. insulin treatment alone. Similar results for GF on glucose uptake were observed in human primary adipocytes. Further support for the hypothesis that elevated PKC activity is related to insulin resistance comes from the finding that PKC activation by dPPA was associated with a 40% decrease (P < 0.05) in insulin-stimulated 2-DOG transport. Incubation of insulin-sensitive muscles with GF also resulted in enhanced insulin action ( approximately 3-fold above basal). These data demonstrate that certain PKC inhibitors augment insulin-mediated glucose uptake and suggest that PKC may modulate insulin action in human skeletal muscle.
Collapse
Affiliation(s)
- R N Cortright
- School of Medicine, East Carolina University, Greenville, North Carolina 27858, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Qi C, Pekala PH. Tumor necrosis factor-alpha-induced insulin resistance in adipocytes. PROCEEDINGS OF THE SOCIETY FOR EXPERIMENTAL BIOLOGY AND MEDICINE. SOCIETY FOR EXPERIMENTAL BIOLOGY AND MEDICINE (NEW YORK, N.Y.) 2000; 223:128-35. [PMID: 10654615 DOI: 10.1046/j.1525-1373.2000.22318.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent studies examining the link between insulin resistance and the development of obesity and noninsulin-dependent diabetes mellitus are consistent with the involvement of tumor necrosis factor-alpha (TNF-alpha) as a central mediator. In insulin resistant obese mouse models, neutralization of TNF-alpha in circulation has been demonstrated to restore insulin-mediated glucose uptake. Adipose tissue has been shown to be a site for synthesis of TNF-alpha, with the degree of adiposity directly correlated with the level of synthesis. Studies conducted on obese human patients have demonstrated a correlation between levels of TNF-alpha, the extent of obesity, as well as the level of hyperinsulinemia observed. Mechanistic studies in cell culture have suggested that TNF-alpha functions to render cells insulin resistant through regulation of the synthesis of the insulin responsive glucose transporter as well as through interference with insulin signaling. This review will address these issues and additionally introduce the reader to the molecular aspects of TNF-alpha, its receptors as well as TNF-alpha-initiated signaling cascades, that are necessary to understand the function of this cytokine in the regulation of adipose tissue metabolism.
Collapse
Affiliation(s)
- C Qi
- Department of Biochemistry, School of Medicine, East Carolina University, Greenville, North Carolina 27858, USA
| | | |
Collapse
|
35
|
Shafrir E, Ziv E, Mosthaf L. Nutritionally induced insulin resistance and receptor defect leading to beta-cell failure in animal models. Ann N Y Acad Sci 1999; 892:223-46. [PMID: 10842665 DOI: 10.1111/j.1749-6632.1999.tb07798.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Animals with genetically or nutritionally induced insulin resistance and Type 2 diabetes comprise two groups: those with resilient beta-cells, e.g., ob/ob mice or fa/fa rats, capable of longstanding compensatory insulin hypersecretion and those with labile beta-cells in which the secretion pressure leads to beta-cell degranulation and apoptosis, e.g., db/db mice and Psammomys gerbils (sand rats). Psammomys features low insulin receptor density; on a relatively high energy diet it becomes hyperinsulinemic and hyperglycemic. In hyperinsulinemic clamp the hepatic glucose production is only partially suppressed by insulin, even in the normoglycemic state. The capacity of insulin to activate muscle and liver receptor tyrosine kinase is nearly abolished. GLUT4 content and mRNA are markedly reduced. Hyperinsulinemia was also demonstrated to inhibit insulin signaling and glucose transport in several other species. Among the factors affecting the insulin signaling pathway, phosphorylation of serine/threonine appears to be the prominent cause of receptor malfunction as inferred from the finding of overexpression of PKC epsilon isoforms in the muscle and liver of Psammomys. The insulin resistance syndrome progressing in animals with labile beta-cells to overt diabetes and beta-cell failure is a "thrifty gene" characteristic. This is probably also true for human populations emerging from food scarcity into nutritional affluence, inappropriate for their metabolic capacity. Thus, the nutritionally induced hyperinsulinemia, associated with PKC epsilon activation may be looked upon from the molecular point of view as "PKC epsilon overexpression syndrome."
Collapse
Affiliation(s)
- E Shafrir
- Department of Biochemistry, Hadassah University Hospital, Jerusalem, Israel.
| | | | | |
Collapse
|
36
|
Caruso M, Miele C, Oriente F, Maitan A, Bifulco G, Andreozzi F, Condorelli G, Formisano P, Beguinot F. In L6 skeletal muscle cells, glucose induces cytosolic translocation of protein kinase C-alpha and trans-activates the insulin receptor kinase. J Biol Chem 1999; 274:28637-44. [PMID: 10497232 DOI: 10.1074/jbc.274.40.28637] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In L6 skeletal muscle cells expressing human insulin receptors (L6(hIR)), exposure to 25 mM glucose for 3 min induced a rapid 3-fold increase in GLUT1 and GLUT4 membrane translocation and glucose uptake. The high glucose concentration also activated the insulin receptor kinase toward the endogenous insulin receptor substrates (IRS)-1 and IRS-2. At variance, in L6 cells expressing kinase-deficient insulin receptors, the exposure to 25 mM glucose elicited no effect on glucose disposal. In the L6(hIR) cells, the acute effect of glucose on insulin receptor kinase was paralleled by a 2-fold decrease in both the membrane and the insulin receptor co-precipitated protein kinase C (PKC) activities and a 3-fold decrease in receptor Ser/Thr phosphorylation. Western blotting of the receptor precipitates with isoform-specific PKC antibodies revealed that the glucose-induced decrease in membrane- and receptor-associated PKC activities was accounted for by dissociation of PKCalpha but not of PKCbeta or -delta. This decrease in PKCalpha was paralleled by a similarly sized increase in cytosolic PKCalpha. In intact L6(hIR) cells, inhibition of PKCalpha expression by using a specific antisense oligonucleotide caused a 3-fold increase in IRS phosphorylation by the insulin receptor. This effect was independent of insulin and accompanied by a 2.5-fold increase in glucose disposal by the cells. Thus, in the L6 skeletal muscle cells, glucose acutely regulates its own utilization through the insulin signaling system, independent of insulin. Glucose autoregulation appears to involve PKCalpha dissociation from the insulin receptor and its cytosolic translocation.
Collapse
Affiliation(s)
- M Caruso
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Centro di Endocrinologia ed Oncologia Sperimentale del Consiglio Nazionale delle Ricerche, Federico II University of Naples, Naples 80131, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Strack V, Bossenmaier B, Stoyanov B, Mosthaf L, Kellerer M, Lammers R, Häring HU. The inhibitory effect of 2-deoxyglucose on insulin receptor autophosphorylation does not depend on known serine phosphorylation sites or other conserved serine residues of the receptor beta-subunit. FEBS Lett 1999; 449:111-4. [PMID: 10338114 DOI: 10.1016/s0014-5793(99)00409-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Hyperglycemia induces insulin resistance in diabetic patients. It is known that supraphysiological levels of D-glucose or 2-deoxyglucose inhibit the insulin receptor and it is speculated that this effect is mediated by serine phosphorylation of the insulin receptor beta-subunit and other proteins of the insulin signaling chain. To test this hypothesis we prepared point mutations of the human insulin receptor where serine was exchanged to alanine at 16 different positions, either at known phosphorylation sites or at positions which are conserved in different tyrosine kinase receptors. These receptor constructs were expressed in HEK 293 cells and the effect of 2-deoxyglucose (25 mM) on insulin (100 nM) induced receptor autophosphorylation was studied. 2-Deoxyglucose consistently inhibits insulin stimulated autophosphorylation of all constructs to the same degree as observed in wild-type human insulin receptor. The data suggest that none of the chosen serine positions are involved in 2-deoxyglucose induced receptor inhibition.
Collapse
Affiliation(s)
- V Strack
- Eberhard-Karls-University Tübingen, Medical Clinic Department IV, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Gulliford T, Ouyang X, Epstein RJ. Intensification of growth factor receptor signalling by phorbol treatment of ligand-primed cells implies a dimer-stabilizing effect of protein kinase C-dependent juxtamembrane domain phosphorylation. Cell Signal 1999; 11:245-52. [PMID: 10372802 DOI: 10.1016/s0898-6568(98)00058-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Protein kinase C (PKC) phosphorylates the juxtamembrane domain of many growth factor receptors, but the physiologic effect of this modification on ligand signalling and desensitisation is unclear. Here we show that PKC-dependent transmodulation of EGFR and ErbB2 signalling is schedule-specific: prolonged pre-treatment of A431 cells with the PKC agonist phorbol dibutyrate potently inhibits subsequent ligand-induced EGFR signalling as expected, but EGF pre-treatment reverses the inhibitory effect of phorbol. The agonist activity of PKC on receptor signalling is even more apparent when cells are treated with phorbol in the presence of a tyrosine phosphatase inhibitor. Because these findings suggested a synergistic interaction between tyrosine- and PKC-dependent phosphorylation events, we sought to define the interactions of tyrosine-phosphorylated and PKC-modified ErbB2 subsets within EGF-inducible hetero-oligomers. Growth factor-dependent PKC transphosphorylation takes place exclusively within endocytosed tyrosine-phosphorylated receptor oligomers. Moreover, phorbol differentially affects two ErbB2 C-terminal autophosphorylation sites: whereas phosphorylation of Tyr1222 is reduced, phosphorylation of Tyr1139 is increased. These results suggest that PKC-dependent phosphorylation of the juxtamembrane domain may contribute positively to both internalisation and signalling of ligand-activated receptors, simultaneously accelerating termination of growth factor action. We propose that transient PKC-dependent signal amplification results from enhanced stability of liganded receptor oligomers due to phosphorylation-dependent juxtamembrane domain interactions, analogous to the protein-protein binding now known to be induced by serine-threonine phosphorylation of CREB and SMAD.
Collapse
Affiliation(s)
- T Gulliford
- Department of Oncology, Charing Cross Hospital, London, UK
| | | | | |
Collapse
|
39
|
Hunter SJ, Garvey WT. Insulin action and insulin resistance: diseases involving defects in insulin receptors, signal transduction, and the glucose transport effector system. Am J Med 1998; 105:331-45. [PMID: 9809695 DOI: 10.1016/s0002-9343(98)00300-3] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- S J Hunter
- Department of Medicine, Medical University of South Carolina, Ralph H. Johnson Veterans Affairs Medical Center, Charleston 29425, USA
| | | |
Collapse
|
40
|
Antoine PJ, Bertrand F, Auclair M, Magré J, Capeau J, Cherqui G. Insulin induction of protein kinase C alpha expression is independent of insulin receptor Tyr1162/1163 residues and involves mitogen-activated protein kinase kinase 1 and sustained activation of nuclear p44MAPK. Endocrinology 1998; 139:3133-42. [PMID: 9645686 DOI: 10.1210/endo.139.7.6094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We examined the effect of insulin on protein kinase C alpha (PKCalpha) expression and the implication of the mitogen-activated protein kinase kinase 1 mitogen-activated protein kinase (MAPK) pathway in this effect. PKCalpha expression was measured by quantitative RT-PCR and Western blotting using Chinese hamster ovary (CHO) cells overexpressing human insulin receptors of the wild type (CHO-R) or insulin receptors mutated at Tyr1162/1163 autophosphorylation sites (CHO-Y2). In CHO-R cells, insulin caused a time- and concentration-dependent increase in PKCalpha messenger RNA, with a maximum at 6 h and 10-(8)M insulin. This increase involved a transcriptional mechanism, as it was not due to stabilization of PKCalpha messenger RNA and was associated with a similar increase in the immunoreactive PKCalpha level. Insulin induction of PKCalpha expression involved the MEK1MAPK pathway, as it was 1) almost completely suppressed by the potent MEK1 inhibitor PD98059, 2) mimicked by the dominant-active MEK1 (S218D/S222D) mutant, and 3) associated with sustained MAPK activation. In CHO-Y2 cells in which the early phase of MAPK activation by insulin was lost and only the late and sustained phase of activation was observed, insulin signaling of PKCalpha expression was preserved and again involved the MEK1-MAPK pathway. Moreover, we show that in both CHO-R and CHO-Y2 cells, insulin stimulation of PKCalpha gene expression was associated with prolonged activation of nuclear p44MAPK. These results indicate that induction of PKCalpha gene expression by insulin is independent of Tyr1162/1163 autophosphorylation sites and correlates with sustained activation of p44MAPK at the nuclear level.
Collapse
Affiliation(s)
- P J Antoine
- INSERM U-402, Institut Federatif de Recherche 65, Laboratoire de Biologie Cellulaire, Faculté de Médecine Saint-Antoine, Paris, France
| | | | | | | | | | | |
Collapse
|
41
|
Meller N, Altman A, Isakov N. New perspectives on PKCtheta, a member of the novel subfamily of protein kinase C. Stem Cells 1998; 16:178-92. [PMID: 9617893 DOI: 10.1002/stem.160178] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Members of the protein kinase C (PKC) family of serine/threonine protein kinases have been implicated in numerous cellular responses in a large variety of cell types. Expression patterns of individual members and differences in their cofactor requirements and potential substrate specificity suggest that each isoenzyme may be involved in specific regulatory processes. The PKCtheta isoenzyme exhibits a relatively restricted expression pattern with high protein levels found predominantly in hematopoietic cells and skeletal muscle. PKCtheta was found to be expressed in T, but not B lymphocytes, and to colocalize with the T-cell antigen receptor (TCR) at the site of contact between the antigen-responding T cell and the antigen-presenting cell (APC). Colocalization of PKCtheta with the TCR was selective for this isoenzyme and occurred only upon antigen-mediated responses leading to T-cell activation and proliferation. PKCtheta was found to be involved in the regulation of transcriptional activation of early-activation genes, predominantly AP-1, and its cellular distribution and activation were found to be regulated by the 14-3-3 protein. Other findings indicated that PKCtheta can associate with the HIV negative factor (Nef) protein, suggesting that altered regulation of PKCtheta by Nef may contribute to the T-cell impairments that are characteristic of infection by HIV. PKCtheta is expressed at relatively high levels in skeletal muscle, where it is suggested to play a role in signal transduction in both the developing and mature neuromuscular junction. In addition, PKCtheta appears to be involved in the insulin-mediated response of intact skeletal muscle, as well as in experimentally induced insulin resistance of skeletal muscle. Further studies suggest that PKCtheta is expressed in endothelial cells and is involved in multiple processes essential for angiogenesis and wound healing, including the regulation of cell cycle progression, formation and maintenance of actin cytoskeleton, and formation of capillary tubes. Here, we review recent progress in the study of PKCtheta and discuss its potential role in various cellular responses.
Collapse
Affiliation(s)
- N Meller
- Department of Microbiology and Immunology, Faculty of Health Sciences, and the Cancer Research Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | | | | |
Collapse
|
42
|
Gagnon AM, Chabot J, Pardasani D, Sorisky A. Extracellular matrix induced by TGFbeta impairs insulin signal transduction in 3T3-L1 preadipose cells. J Cell Physiol 1998; 175:370-8. [PMID: 9572482 DOI: 10.1002/(sici)1097-4652(199806)175:3<370::aid-jcp15>3.0.co;2-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
When 3T3-L1 preadipose cells are exposed to transforming growth factor beta (TGFbeta), they synthesize more extracellular matrix (ECM) and resist differentiation-inducing stimuli. The mechanism by which ECM suppresses adipose cell differentiation (adipogenesis) remains unknown. Since adipogenesis is an insulin/insulin-like growth factor-1 (IGF-1)-dependent process, we investigated whether TGFbeta-induced ECM inhibits insulin signaling. When preadipose cells were pretreated overnight with TGFbeta, we observed a 75% decrease in insulin-stimulated tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) compared to that in control cells. Culturing 3T3-L1 preadipose cells on fibronectin, a component of the ECM induced by TGFbeta, also inhibited insulin-dependent IRS-1 tyrosine phosphorylation and adipogenesis, supporting a role for ECM in mediating TGFbeta's inhibitory effect on insulin signaling. Since the insulin-stimulated association of phosphoinositide (PI) 3-kinase with IRS-1 depends on IRS-1 tyrosine phosphorylation, we measured the presence of the PI 3-kinase 85 kDa regulatory subunit in anti-IRS-1 immunoprecipitates. Following insulin stimulation, PI 3-kinase-IRS-1 association was reduced by 70% in TGFbeta pretreated vs. control preadipose cells. However, insulin-stimulated cellular production of PI(3,4,5)P3 was unaltered by TGFbeta pretreatment. This suggests that IRS-1-associated p85-type PI 3-kinase may represent a particular subset of total cellular PI 3-kinase that is specifically inhibited by TGFbeta. Reduction of insulin-stimulated association of IRS-1 with p85-type PI 3-kinase by TGFbeta may be one potential mechanism through which TGFbeta blocks 3T3-L1 adipose cell differentiation.
Collapse
Affiliation(s)
- A M Gagnon
- Ottawa Civic Hospital Loeb Research Institute, Department of Medicine, University of Ottawa, Canada
| | | | | | | |
Collapse
|
43
|
Mochly-Rosen D, Kauvar LM. Modulating protein kinase C signal transduction. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1998; 44:91-145. [PMID: 9547885 DOI: 10.1016/s1054-3589(08)60126-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- D Mochly-Rosen
- Department of Molecular Pharmacology, Stanford University School of Medicine, California 94305, USA
| | | |
Collapse
|
44
|
Mccarthy TL, Ji C, Casinghino S, Centrella M. Alternate signaling pathways selectively regulate binding of insulin-like growth factor I and II on fetal rat bone cells. J Cell Biochem 1998. [DOI: 10.1002/(sici)1097-4644(19980315)68:4<446::aid-jcb5>3.0.co;2-q] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Huang C, Ma WY, Dong Z. Potentiation of insulin-induced phosphatidylinositol-3 kinase activity by phorbol ester is mediated by protein kinase C epsilon. Cell Signal 1998; 10:185-90. [PMID: 9607141 DOI: 10.1016/s0898-6568(97)00098-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Our previous results have demonstrated that phorbol 12-myristate 13-acetate (TPA) and insulin synergistically stimulate the activity of phosphatidylinositol-3 kinase (PI-3 kinase) and PI-3 kinase plays an important role in both of TPA-induced AP-1 activation and cell transformation in tumour promotion sensitive (P+) JB6 cells. In the present study, we investigated the role of PKC and its isozymes in the synergistic induction of PI-3 kinase by TPA and insulin. Bisindolylmaleimide inhibits TPA- and TPA+ insulin-induced PI-3 kinase activity. Pretreatment of cells for 24 h with TPA has significant inhibitory effects on TPA-induced PI-3 kinase activity and abolishes the synergistic effect of TPA and insulin-stimulated PI-3 kinase activity. Furthermore, overexpression of a dominant negative PKC epsilon, but not dominant negative PKC alpha, blocks the synergistic effect of TPA and insulin-induced PI-3 kinase activity. These results indicate that the potentiation effect of TPA on insulin-induced PI-3 kinase activity is specific through PKC epsilon in JB6 cells.
Collapse
Affiliation(s)
- C Huang
- Hormel Institute, University of Minnesota, Austin 55912, USA
| | | | | |
Collapse
|
46
|
Xu B, Berkich DA, Crist GH, LaNoue KF. A1 adenosine receptor antagonism improves glucose tolerance in Zucker rats. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:E271-9. [PMID: 9486158 DOI: 10.1152/ajpendo.1998.274.2.e271] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The A1 adenosine receptor (A1ar) antagonist 1,3-dipropyl-8-(p-acrylic)-phenylxanthine (BW-1433) was administered to lean and obese Zucker rats to probe the influence of endogenously activated A1ars on whole body energy metabolism. The drug induced a transient increase in lipolysis as indicated by a rise in serum glycerol in obese rats. The disappearance of the response by day 7 of chronic studies was accompanied by an increase in A1ar numbers. Glucose tolerance tests were administered to rats treated with BW-1433. Peak serum insulin levels and areas under glucose curves (AUGs) were 34 and 41% lower in treated obese animals than in controls, respectively, and 19 and 39% lower in lean animals. With chronic administration (6 wk), AUGs decreased 47 and 33% in obese and lean animals, respectively. There was no effect of BW-1433 in either lean or obese rats on weight gain or percent body fat. Thus the major sustained influence of whole body A1ar antagonism in both lean and obese animals was an increase in whole body glucose tolerance at lower levels of insulin.
Collapse
Affiliation(s)
- B Xu
- Department of Cellular and Molecular Physiology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey 17033-0850, USA
| | | | | | | |
Collapse
|
47
|
Schmitz U, Ishida M, Berk BC. Angiotensin II stimulates tyrosine phosphorylation of phospholipase C-gamma-associated proteins. Characterization of a c-Src-dependent 97-kD protein in vascular smooth muscle cells. Circ Res 1997; 81:550-7. [PMID: 9314836 DOI: 10.1161/01.res.81.4.550] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Stimulation of phospholipase C-gamma (PLC-gamma) is a critical event in angiotensin II (Ang II) signal transduction. We have previously shown that in rat aortic smooth muscle (RASM) cells Ang II stimulates tyrosine phosphorylation of PLC-gamma via activation of c-Src. Because we failed to demonstrate a direct association between c-Src and PLC-gamma, we hypothesized that a linker protein mediates the interaction between these molecules. To identify PLC-gamma-associated proteins, RASM cells were labeled with [32P]orthophosphate and stimulated with 100 nmol/L Ang II for 5 minutes. PLC-gamma was immunoprecipitated, and associated proteins were characterized by autoradiography and Western blotting with anti-phosphotyrosine antibodies. Ang II stimulated the phosphorylation of 47-, 60-, 84-, and 97-kD PLC-gamma-associated proteins. Because Ang II increased tyrosine phosphorylation of only the 97-kD protein, we characterized p97 further. An important role for Src in tyrosine phosphorylation of p97 was suggested by findings that p97 phosphorylation was inhibited by the selective Src-family kinase inhibitor CP-118,556, diminished in mouse aortic smooth muscle (MASM) cells from c-Src knockout mice compared with wild-type MASM cells, and increased in v-Src-transformed NIH-3T3 cells compared with wild-type NIH-3T3 cells. These studies are the first to define a PLC-gamma-associated protein that may be required for Ang II-mediated signal transduction.
Collapse
Affiliation(s)
- U Schmitz
- Department of Medicine, University of Washington, Seattle 98195-7710, USA
| | | | | |
Collapse
|
48
|
Oakes ND, Camilleri S, Furler SM, Chisholm DJ, Kraegen EW. The insulin sensitizer, BRL 49653, reduces systemic fatty acid supply and utilization and tissue lipid availability in the rat. Metabolism 1997; 46:935-42. [PMID: 9258278 DOI: 10.1016/s0026-0495(97)90083-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Thiazolidinediones are oral insulin-sensitizing agents that may be useful for the treatment of non-insulin-dependent diabetes mellitus (NIDDM). BRL 49653 ameliorates insulin resistance and improves glucoregulation in high-fat-fed (HF) rats. It is known that thiazolidinediones bind to the peroxisome proliferator-activated receptor (PPAR gamma) in fat cells, but the extent to which the improved glucoregulation and hypolipidemic effects relate to adipose tissue requires clarification. We therefore examined BRL 49653 effects on lipid metabolism in HF and control (high-starch-fed [HS]) rats. The diet period was 3 weeks, with BRL 49653 (10 mumol/kg/d) or vehicle gavage administered over the last 4 days. Studies were performed on animals in the conscious fasted state. In HF rats, rate constants governing 3H-palmitate clearance were unaffected by BRL 49653. This finding, taken with a concurrent decrease of fasting plasma nonesterified fatty acids (NEFA) (P < .01, ANOVA), demonstrated that systemic NEFA supply and hence absolute utilization are reduced by BRL 49653. Hepatic triglyceride (TG) production (HTGP) assessed using Triton WR1339 was unaffected by diet or BRL 49653. In liver, BRL 49653 increased insulin-stimulated conversion of glucose into fatty acid in both HF (by 270%) and HS (by 30%) groups (P < .05). Relative to HS rats, HF animals had substantially elevated levels of muscle diglyceride (diacylglycerol[DG] by 240%, P < .001). BRL 49653 significantly reduced muscle DG in HF (by 30%, P < .05) but not in HS rats. The agent did not reduce the intake of dietary lipid. In conclusion, these results are consistent with a primary action of BRL 49653 in adipose tissue to conserve lipid by reducing systemic lipid supply and subsequent utilization. The parallel effects of diet and BRL 49653 treatment on insulin resistance and muscle acylglyceride levels support the involvement of local lipid oversupply in the generation of muscle insulin resistance.
Collapse
Affiliation(s)
- N D Oakes
- Garvan Institute of Medical Research, St. Vincent's Hospital, Sydney, Australia
| | | | | | | | | |
Collapse
|
49
|
Trujillo R, Miró F, Plana M, José M, Bollen M, Stalmans W, Itarte E. Substrates for protein kinase CK2 in insulin receptor preparations from rat liver membranes: identification of a 210-kDa protein substrate as the dimeric form of endoplasmin. Arch Biochem Biophys 1997; 344:18-28. [PMID: 9244377 DOI: 10.1006/abbi.1997.0155] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chromatography of extracts from rat liver membranes on wheat-germ lectin-Sepharose resulted in a partial resolution of the insulin receptor from other phosphorylatable proteins. Among the latter, a protein (p210, with an apparent M(r) of 210 kDa on SDS/PAGE under nonreducing conditions) was found to be phosphorylated by protein kinase CK2 on Thr and Ser residues. Under reducing conditions p210 was resolved into two phosphopolypeptides with apparent M(r) of 95 and 105 kDa. Neither the 95-kDa nor the 105-kDa polypeptides were recognized by antibodies against the beta-subunit of the insulin receptor. Both polypeptides gave identical phosphopeptide maps after protease V8 digestion and contained the same N-terminal amino acid sequence. This sequence coincided with that of endoplasmin, and both polypeptides as well as p210 were recognized by antibodies against this protein. This shows that p210 corresponds to the dimeric form of rat liver endoplasmin. DEAE-Sepharose chromatography of p210 preparations removed most other contaminating proteins and revealed the presence of a protein kinase activity that coeluted with p210. This protein kinase possessed the properties (substrate specificity and inhibition by heparin) that are characteristic of the protein kinase CK2 enzymes. Furthermore, phosphoamino acid analysis and phosphopeptide maps of the 95/105-kDa polypeptides phosphorylated either by the endogenous protein kinase or by exogenous protein kinase CK2 gave similar results. The phosphorylation of p210/endoplasmin by protein kinase CK2 and its coelution gives support to the involvement of this protein kinase in membrane-associated processes.
Collapse
Affiliation(s)
- R Trujillo
- Departament de Bioquímica i Biologia Molecular, Facultat de Cièncias,Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | | | | | | | |
Collapse
|
50
|
Huang C, Schmid PC, Ma WY, Schmid HH, Dong Z. Phosphatidylinositol-3 kinase is necessary for 12-O-tetradecanoylphorbol-13-acetate-induced cell transformation and activated protein 1 activation. J Biol Chem 1997; 272:4187-94. [PMID: 9020132 DOI: 10.1074/jbc.272.7.4187] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Phorbol esters, which activate isoforms of protein kinase C, are general activators of the transcription factor activated protein 1 (AP-1). The pathway involved in this signal transduction is not very clear. Currently, little is known about whether phosphatidylinositol-3 (PI-3) kinase plays any role in phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced signal transduction. We demonstrate here that TPA not only has markedly synergistic effects on insulin-induced PI-3 kinase activity, but it also can induce PI-3 kinase activity and the PI-3 phosphates by itself. We also found that insulin, a PI-3 kinase activator, enhanced TPA-induced AP-1 trans-activation and transformation in JB6 promotion-sensitive cells. Furthermore, wortmannin and LY294002, two PI-3 kinase inhibitors, markedly decreased AP-1 activity induced by insulin, TPA, or TPA and insulin and inhibited JB6 promotion-sensitive cell transformation induced by TPA or TPA and insulin. Most importantly, constitutive overexpression of the dominant negative PI-3 kinase P85 mutants completely blocked insulin- or TPA-induced AP-1 trans-activation and TPA-induced cell transformation. All evidence from present studies suggests that PI-3 kinase acts as a mediator in TPA-induced AP-1 activation and transformation in JB6 cells.
Collapse
Affiliation(s)
- C Huang
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | | | | | | | | |
Collapse
|