1
|
Osna NA, New-Aaron M, Dagur RS, Thomes P, Simon L, Levitt D, McTernan P, Molina PE, Choi HY, Machida K, Sherman KE, Riva A, Phillips S, Chokshi S, Kharbanda KK, Weinman S, Ganesan M. A review of alcohol-pathogen interactions: New insights into combined disease pathomechanisms. Alcohol Clin Exp Res 2022; 46:359-370. [PMID: 35076108 PMCID: PMC8920772 DOI: 10.1111/acer.14777] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/05/2023]
Abstract
Progression of chronic infections to end-stage diseases and poor treatment results are frequently associated with alcohol abuse. Alcohol metabolism suppresses innate and adaptive immunity leading to increased viral load and its spread. In case of hepatotropic infections, viruses accelerate alcohol-induced hepatitis and liver fibrosis, thereby promoting end-stage outcomes, including cirrhosis and hepatocellular carcinoma (HCC). In this review, we concentrate on several unexplored aspects of these phenomena, which illustrate the combined effects of viral/bacterial infections and alcohol in disease development. We review alcohol-induced alterations implicated in immunometabolism as a central mechanism impacting metabolic homeostasis and viral pathogenesis in Simian immunodeficiency virus/human immunodeficiency virus infection. Furthermore, in hepatocytes, both HIV infection and alcohol activate oxidative stress to cause lysosomal dysfunction and leakage and apoptotic cell death, thereby increasing hepatotoxicity. In addition, we discuss the mechanisms of hepatocellular carcinoma and tumor signaling in hepatitis C virus infection. Finally, we analyze studies that review and describe the immune derangements in hepatotropic viral infections focusing on the development of novel targets and strategies to restore effective immunocompetency in alcohol-associated liver disease. In conclusion, alcohol exacerbates the pathogenesis of viral infections, contributing to a chronic course and poor outcomes, but the mechanisms behind these events are virus specific and depend on virus-alcohol interactions, which differ among the various infections.
Collapse
Affiliation(s)
- Natalia A. Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Moses New-Aaron
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Environmental Health, Occupational Health, and Toxicology, College of Public Health, Department of Environmental Health, Occupational Health, and Toxicology, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Raghubendra S. Dagur
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Paul Thomes
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Liz Simon
- Department of Physiology & Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | - Danielle Levitt
- Department of Physiology & Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | - Patrick McTernan
- Department of Physiology & Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | - Patricia E. Molina
- Department of Physiology & Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | - Hye Yeon Choi
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089-9020, USA
| | - Keigo Machida
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089-9020, USA
- Southern California Research Center for ALPD and Cirrhosis, Los Angeles, CA 90089-9141, USA
| | - Kenneth E. Sherman
- Department of Internal Medicine, Division of Digestive Disease, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0595, USA
| | - Antonio Riva
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
| | - Sandra Phillips
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
| | - Shilpa Chokshi
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
| | - Kusum K. Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Steven Weinman
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
2
|
Fuior EV, Gafencu AV. Apolipoprotein C1: Its Pleiotropic Effects in Lipid Metabolism and Beyond. Int J Mol Sci 2019; 20:ijms20235939. [PMID: 31779116 PMCID: PMC6928722 DOI: 10.3390/ijms20235939] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 12/20/2022] Open
Abstract
Apolipoprotein C1 (apoC1), the smallest of all apolipoproteins, participates in lipid transport and metabolism. In humans, APOC1 gene is in linkage disequilibrium with APOE gene on chromosome 19, a proximity that spurred its investigation. Apolipoprotein C1 associates with triglyceride-rich lipoproteins and HDL and exchanges between lipoprotein classes. These interactions occur via amphipathic helix motifs, as demonstrated by biophysical studies on the wild-type polypeptide and representative mutants. Apolipoprotein C1 acts on lipoprotein receptors by inhibiting binding mediated by apolipoprotein E, and modulating the activities of several enzymes. Thus, apoC1 downregulates lipoprotein lipase, hepatic lipase, phospholipase A2, cholesterylester transfer protein, and activates lecithin-cholesterol acyl transferase. By controlling the plasma levels of lipids, apoC1 relates directly to cardiovascular physiology, but its activity extends beyond, to inflammation and immunity, sepsis, diabetes, cancer, viral infectivity, and-not last-to cognition. Such correlations were established based on studies using transgenic mice, associated in the recent years with GWAS, transcriptomic and proteomic analyses. The presence of a duplicate gene, pseudogene APOC1P, stimulated evolutionary studies and more recently, the regulatory properties of the corresponding non-coding RNA are steadily emerging. Nonetheless, this prototypical apolipoprotein is still underexplored and deserves further research for understanding its physiology and exploiting its therapeutic potential.
Collapse
Affiliation(s)
- Elena V. Fuior
- Institute of Cellular Biology and Pathology “N. Simionescu”, 050568 Bucharest, Romania;
| | - Anca V. Gafencu
- Institute of Cellular Biology and Pathology “N. Simionescu”, 050568 Bucharest, Romania;
- Correspondence:
| |
Collapse
|
3
|
Pirim D, Radwan ZH, Wang X, Niemsiri V, Hokanson JE, Hamman RF, Feingold E, Bunker CH, Demirci FY, Kamboh MI. Apolipoprotein E-C1-C4-C2 gene cluster region and inter-individual variation in plasma lipoprotein levels: a comprehensive genetic association study in two ethnic groups. PLoS One 2019; 14:e0214060. [PMID: 30913229 PMCID: PMC6435132 DOI: 10.1371/journal.pone.0214060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/12/2019] [Indexed: 01/15/2023] Open
Abstract
The apolipoprotein E-C1-C4-C2 gene cluster at 19q13.32 encodes four amphipathic apolipoproteins. The influence of APOE common polymorphisms on plasma lipid/lipoprotein profile, especially on LDL-related traits, is well recognized; however, little is known about the role of other genes/variants in this gene cluster. In this study, we evaluated the role of common and uncommon/rare genetic variation in this gene region on inter-individual variation in plasma lipoprotein levels in non-Hispanic Whites (NHWs) and African blacks (ABs). In the variant discovery step, the APOE, APOC1, APOC4, APOC2 genes were sequenced along with their flanking and hepatic control regions (HCR1 and HCR2) in 190 subjects with extreme HDL-C/TG levels. The next step involved the genotyping of 623 NHWs and 788 ABs for the identified uncommon/rare variants and common tagSNPs along with additional relevant SNPs selected from public resources, followed by association analyses with lipid traits. A total of 230 sequence variants, including 15 indels were identified, of which 65 were novel. A total of 70 QC-passed variants in NHWs and 108 QC-passed variants in ABs were included in the final association analyses. Single-site association analysis of SNPs with MAF>1% revealed 20 variants in NHWs and 24 variants in ABs showing evidence of association with at least one lipid trait, including several variants exhibiting independent associations from the established APOE polymorphism even after multiple-testing correction. Overall, our study has confirmed known associations and also identified novel associations in this genomic region with various lipid traits. Our data also support the contribution of both common and uncommon/rare variation in this gene region in affecting plasma lipid profile in the general population.
Collapse
Affiliation(s)
- Dilek Pirim
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Molecular Biology and Genetics, Faculty of Arts&Science, Uludag University, Gorukle, Bursa, Turkey
| | - Zaheda H. Radwan
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Xingbin Wang
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Vipavee Niemsiri
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - John E. Hokanson
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Richard F. Hamman
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Eleanor Feingold
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Clareann H. Bunker
- Department of Epidemiology, Graduate School of Public Health, University Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - F. Yesim Demirci
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (MIK); (FYD)
| | - M. Ilyas Kamboh
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (MIK); (FYD)
| |
Collapse
|
4
|
Inhibitory effects of metachromin A on hepatitis B virus production via impairment of the viral promoter activity. Antiviral Res 2017; 145:136-145. [PMID: 28827084 DOI: 10.1016/j.antiviral.2017.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 07/14/2017] [Accepted: 08/02/2017] [Indexed: 01/12/2023]
Abstract
The currently available antiviral agents for chronic infection with hepatitis B virus (HBV) are pegylated interferon-α and nucleoside/nucleotide analogues, although it has been difficult to completely eliminate covalently closed circular DNA (cccDNA) from patients. To identify an antiviral compound targeting HBV core promoter, 15 terpenes originating from marine organisms were screened using a cell line expressing firefly luciferase under the control of the HBV core promoter. Metachromin A, which is a merosesquiterpene isolated from the marine sponge Dactylospongia metachromia, inhibited the viral promoter activity at the highest level among the tested compounds, and suppressed HBV production with an EC50 value of 0.8 μM regardless of interferon signaling and cytotoxicity. The analysis on the structure-activity relationship revealed that the hydroquinone moiety, and the double bonds at carbon numbers-5 and -9 in metachromin A are crucial for anti-HBV activity. Furthermore, metachromin A reduced the protein level but not the RNA level of hepatic nuclear factor 4α, which mainly upregulates the activities of enhancer I/X promoter and enhancer II/core promoter. These results suggest that metachromin A can inhibit HBV production via impairment of the viral promoter activity. Antiviral agents targeting the viral promoter may ameliorate HBV-related disorders regardless of remaining cccDNA.
Collapse
|
5
|
Trusca VG, Fuior EV, Fenyo IM, Kardassis D, Simionescu M, Gafencu AV. Differential action of glucocorticoids on apolipoprotein E gene expression in macrophages and hepatocytes. PLoS One 2017; 12:e0174078. [PMID: 28355284 PMCID: PMC5371326 DOI: 10.1371/journal.pone.0174078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/02/2017] [Indexed: 11/19/2022] Open
Abstract
Apolipoprotein E (apoE) has anti-atherosclerotic properties, being involved in the transport and clearance of cholesterol-rich lipoproteins as well as in cholesterol efflux from cells. We hypothesized that glucocorticoids may exert anti-inflammatory properties by increasing the level of macrophage-derived apoE. Our data showed that glucocorticoids increased apoE expression in macrophages in vitro as well as in vivo. Dexamethasone increased ~6 fold apoE mRNA levels in cultured peritoneal macrophages and RAW 264.7 cells. Administered to C57BL/6J mice, dexamethasone induced a two-fold increase in apoE expression in peritoneal macrophages. By contrast, glucocorticoids did not influence apoE expression in hepatocytes, in vitro and in vivo. Moreover, dexamethasone enhanced apoE promoter transcriptional activity in RAW 264.7 macrophages, but not in HepG2 cells, as tested by transient transfections. Analysis of apoE proximal promoter deletion mutants, complemented by protein-DNA interaction assays demonstrated the functionality of a putative glucocorticoid receptors (GR) binding site predicted by in silico analysis in the -111/-104 region of the human apoE promoter. In hepatocytes, GR can bind to their specific site within apoE promoter but are not able to modulate the gene expression. The modulatory blockade in hepatocytes is a consequence of partial involvement of transcription factors and other signaling molecules activated through MEK1/2 and PLA2/PLC pathways. In conclusion, our study indicates that glucocorticoids (1) differentially target apoE gene expression; (2) induce a significant increase in apoE level specifically in macrophages. The local increase of apoE gene expression in macrophages at the level of the atheromatous plaque may have therapeutic implications in atherosclerosis.
Collapse
Affiliation(s)
- Violeta Georgeta Trusca
- Department of Genomics, Transcriptomics and Molecular Therapies, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, Bucharest, Romania
| | - Elena Valeria Fuior
- Department of Genomics, Transcriptomics and Molecular Therapies, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, Bucharest, Romania
| | - Ioana Madalina Fenyo
- Department of Genomics, Transcriptomics and Molecular Therapies, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, Bucharest, Romania
| | - Dimitris Kardassis
- Department of Basic Sciences, University of Crete Medical School, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Crete, Greece
| | - Maya Simionescu
- Department of Genomics, Transcriptomics and Molecular Therapies, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, Bucharest, Romania
| | - Anca Violeta Gafencu
- Department of Genomics, Transcriptomics and Molecular Therapies, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, Bucharest, Romania
| |
Collapse
|
6
|
Kattenhorn LM, Tipper CH, Stoica L, Geraghty DS, Wright TL, Clark KR, Wadsworth SC. Adeno-Associated Virus Gene Therapy for Liver Disease. Hum Gene Ther 2016; 27:947-961. [PMID: 27897038 PMCID: PMC5177998 DOI: 10.1089/hum.2016.160] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/23/2016] [Indexed: 12/14/2022] Open
Abstract
The field of adeno-associated virus (AAV) gene therapy has progressed rapidly over the past decade, with the advent of novel capsid serotype and organ-specific promoters, and an increasing understanding of the immune response to AAV administration. In particular, liver-directed therapy has made remarkable strides, with a number of clinical trials currently planned and ongoing in hemophilia A and B, as well as other liver disorders. This review focuses on liver-directed AAV gene therapy, including historic context, current challenges, and future developments.
Collapse
|
7
|
Construction of minicircle DNA vectors capable of correcting familial hypercholesterolemia phenotype in a LDLR-deficient mouse model. Gene Ther 2016; 23:657-63. [PMID: 27092942 DOI: 10.1038/gt.2016.37] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 03/29/2016] [Accepted: 04/05/2016] [Indexed: 01/05/2023]
Abstract
Familial hypercholesterolemia (FH) caused by defect in low-density lipoprotein receptor (LDLR) is a life-threatening disease with poor response to conventional treatments. Earlier gene therapy studies have generated promising results, but further development is hampered because the cells harboring the viral vectors were eliminated by host immune system soon after delivery, whereas the nonviral vectors were too bulky to be delivered to target cells. To overcome these problems, we constructed multiple minicircle (MC) DNA vectors to express the therapeutic LDLR. MC is an optimized nonviral vector that is capable of expressing high level of transgene product persistently. We found that among the seven MCs tested, the best is MC5 with multiple advanced features. First, the LDLr gene was placed under the control of sterol regulatory element (SRE) using LDLr gene promoter or apoprotein E (ApoE) promoter, allowing the transcription of the LDLr gene to be regulated by serum low-density lipoprotein (LDL) cholesterol as its functional gene counterpart. Second, a hepatic control region (HCR) was placed upstream of the promoter that serves as a controller to ensure liver-specific expression. Third, the modified Kozak sequence was placed in front of the LDLr gene start codon to enhance its translation efficiency. MC5 was 5.23 kb in size, and was capable of tight physiological control in intracellular LDL cholesterol level even when challenged with high dose of sterols in vitro. Importantly, it was able to correct the phenotype of LDLR-deficient mice C57BL/6 LDLR(-/-) for more than 105 days without detectable toxicity. Therefore, this MC has the clinical application potential for treating FH.
Collapse
|
8
|
Hepatocyte nuclear factor 4α and downstream secreted phospholipase A2 GXIIB regulate production of infectious hepatitis C virus. J Virol 2013; 88:612-27. [PMID: 24173221 DOI: 10.1128/jvi.02068-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hepatitis C virus (HCV) is a major cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma in humans. The life cycle of HCV is closely associated with the metabolism of lipids, especially very-low-density lipoprotein (VLDL) in hepatocytes. Hepatocyte nuclear factor 4α (HNF4α), the most abundant transcription factor in the liver, regulates the VLDL secretory pathway. However, the effects of HNF4α on the HCV life cycle are unclear. In this study, we investigated the regulatory effects of HNF4α on HCV assembly and secretion. HCV in HNF4α-deficient hepatocytes showed reduced assembly and secretion but unchanged entry and RNA replication. Bezafibrate, a chemical inhibitor of HNF4α, suppressed HCV assembly and secretion. HNF4α downregulation resulted in rearrangement of cytosolic lipid droplets (LDs), as evidenced by the aggregation of large LDs and distorted cytosolic distribution. Phospholipase A2 GXIIB (PLA2GXIIB), an HNF4α-regulated factor involved in VLDL secretion, was found to be crucial in HCV secretion. PLA2GXIIB expression was upregulated in hepatocytes harboring HCV subgenomic replicons or in HCV-infected hepatocytes. This upregulation was transcriptionally controlled in an HNF4α-dependent manner after HCV infection. Furthermore, PLA2GXIIB combined with microsomal triglyceride transfer protein was found to be responsible for the regulation of HNF4α-induced HCV infectivity. These results suggest that HNF4α and its downstream PLA2GXIIB are important factors affecting the late stage of the HCV life cycle and may serve as potential drug targets for the treatment of HCV infection.
Collapse
|
9
|
Trusca VG, Florea IC, Kardassis D, Gafencu AV. STAT1 interacts with RXRα to upregulate ApoCII gene expression in macrophages. PLoS One 2012; 7:e40463. [PMID: 22808166 PMCID: PMC3395716 DOI: 10.1371/journal.pone.0040463] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 06/07/2012] [Indexed: 12/01/2022] Open
Abstract
Apolipoprotein CII (apoCII) is a specific activator of lipoprotein lipase and plays an important role in triglyceride metabolism. The aim of our work was to elucidate the regulatory mechanisms involved in apoCII gene modulation in macrophages. Using Chromosome Conformation Capture we demonstrated that multienhancer 2 (ME.2) physically interacts with the apoCII promoter and this interaction facilitates the transcriptional enhancement of the apoCII promoter by the transcription factors bound on ME.2. We revealed that the transcription factor STAT1, previously shown to bind to its specific site on ME.2, is functional for apoCII gene upregulation. We found that siRNA-mediated inhibition of STAT1 gene expression significantly decreased the apoCII levels, while STAT1 overexpression in RAW 264.7 macrophages increased apoCII gene expression. Using transient transfections, DNA pull down and chromatin immunoprecipitation assays, we revealed a novel STAT1 binding site in the −500/−493 region of the apoCII promoter, which mediates apoCII promoter upregulation by STAT1. Interestingly, STAT1 could not exert its upregulatory effect when the RXRα/T3Rβ binding site located on the apoCII promoter was mutated, suggesting physical and functional interactions between these factors. Using GST pull-down and co-immunoprecipitation assays, we demonstrated that STAT1 physically interacts with RXRα. Taken together, these data revealed that STAT1 bound on ME.2 cooperates with RXRα located on apoCII promoter and upregulates apoCII expression only in macrophages, due to the specificity of the long-range interactions between the proximal and distal regulatory elements. Moreover, we showed for the first time that STAT1 and RXRα physically interact to exert their regulatory function.
Collapse
Affiliation(s)
- Violeta G. Trusca
- Institute of Cellular Biology and Pathology, “Nicolae Simionescu” of the Romanian Academy, Bucharest, Romania
| | - Irina C. Florea
- Institute of Cellular Biology and Pathology, “Nicolae Simionescu” of the Romanian Academy, Bucharest, Romania
| | - Dimitris Kardassis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Anca V. Gafencu
- Institute of Cellular Biology and Pathology, “Nicolae Simionescu” of the Romanian Academy, Bucharest, Romania
- * E-mail:
| |
Collapse
|
10
|
Patwardhan RP, Hiatt JB, Witten DM, Kim MJ, Smith RP, May D, Lee C, Andrie JM, Lee SI, Cooper GM, Ahituv N, Pennacchio LA, Shendure J. Massively parallel functional dissection of mammalian enhancers in vivo. Nat Biotechnol 2012; 30:265-70. [PMID: 22371081 PMCID: PMC3402344 DOI: 10.1038/nbt.2136] [Citation(s) in RCA: 379] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 01/23/2012] [Indexed: 01/01/2023]
Abstract
The functional consequences of genetic variation in mammalian regulatory elements are poorly understood. We report the in vivo dissection of three mammalian enhancers at single-nucleotide resolution through a massively parallel reporter assay. For each enhancer, we synthesized a library of >100,000 mutant haplotypes with 2-3% divergence from the wild-type sequence. Each haplotype was linked to a unique sequence tag embedded within a transcriptional cassette. We introduced each enhancer library into mouse liver and measured the relative activities of individual haplotypes en masse by sequencing the transcribed tags. Linear regression analysis yielded highly reproducible estimates of the effect of every possible single-nucleotide change on enhancer activity. The functional consequence of most mutations was modest, with ∼22% affecting activity by >1.2-fold and ∼3% by >2-fold. Several, but not all, positions with higher effects showed evidence for purifying selection, or co-localized with known liver-associated transcription factor binding sites, demonstrating the value of empirical high-resolution functional analysis.
Collapse
Affiliation(s)
- Rupali P Patwardhan
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kim HS, Kim JC, Lee YK, Kim JS, Park YS. Hepatic control elements promote long-term expression of human coagulation factor IX gene in hydrodynamically transfected mice. J Gene Med 2011; 13:365-72. [PMID: 21710610 DOI: 10.1002/jgm.1583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Long-term expression of the delivered target gene is critical for successful gene therapy. Recently, hepatic control region I (HCR I) originating from the apolipoprotein (apo)C-I pseudogene was shown to be a critical element for long-term gene expression in the liver of mice. HCR II is another hepatic control region of apoC-I. METHODS HCR I, HCR II and HCR I/II-containing plasmids encoding factor IX were prepared and hydrodynamically transferred into the liver of normal and hemophilia B mice. Factor IX expression, clotting activity and formation of antibodies against the expressed gene product were compared. RESULTS HCR I-, HCR II- and HCR I/II-containing plasmids all induced long-term gene expression in both normal and hemophilia B mice. Post-transfection factor IX expression in the hemophilia B mice remained above 500 ng/ml for 210 days. Antibodies against human factor IX were detected at a low level in the serum, although they had no effect on the levels and clotting activity of the expressed factor IX. CONCLUSIONS We have shown in mouse models that hydrodynamic transfection of pBS-HCRII-HP-FIXA and pBS-HCRI/II-HP-FIXA was able to induce and maintain the expression and clotting activity of human factor IX for a long period of time at a potentially therapeutic level. With an appropriate delivery system, this type of plasmid vector could be clinically useful for the hepatic expression of therapeutic genes including human factor IX.
Collapse
Affiliation(s)
- Hong Sung Kim
- Department of Biomedical Laboratory Science, Korea Nazarene University, Cheonan
| | | | | | | | | |
Collapse
|
12
|
Ishiwata A, Mimuro J, Mizukami H, Kashiwakura Y, Yasumoto A, Sakata A, Ohmori T, Madoiwa S, Ono F, Shima M, Yoshioka A, Ozawa K, Sakata Y. Mutant macaque factor IX T262A: a tool for hemophilia B gene therapy studies in macaques. Thromb Res 2010; 125:533-7. [PMID: 20170943 DOI: 10.1016/j.thromres.2010.01.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 01/12/2010] [Accepted: 01/25/2010] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Gene therapy is expected to be the next generation therapy for hemophilia, and a good animal model is required for hemophilia gene therapy preclinical studies. METHODS Taking advantage of the human factor IX (FIX) specificity of monoclonal antibody 3A6, the epitope of which resides in the amino acid polypeptide segment including Ala 262 of human FIX, mutant macaque FIX with an amino acid substitution of Thr 262 to Ala (macaque FIX T262A) was generated and its reactivity to monoclonal antibody 3A6, biological activity and expression in vivo were studied. RESULTS Enzyme-linked immunosorbent assays (ELISAs) and Western blot analyses showed that monoclonal antibody 3A6 bound to human FIX and macaque FIX T262A but not to wild-type macaque FIX. Recombinant macaque FIX T262A exhibited a comparable coagulation activity to wild-type macaque FIX and human FIX. High expression of macaque FIX T262A was achieved in mice by injection of AAV8 vectors carrying the macaque FIX T262A gene and reached levels of up to 31.5microg/mL (1050% of the normal human FIX concentration). Macaque FIX T262A expressed in the liver of mice was as biologically active as that expressed in vitro. In addition, the macaque FIX T262A concentrations determined by a 3A6-based ELISA were not influenced by the presence of normal macaque plasma. CONCLUSIONS The results of the present study suggest that macaque FIX T262A may be processed appropriately in vivo and that the macaque FIX T262A concentration in the macaque circulation can be quantified precisely by a monoclonal antibody 3A6-based ELISA.
Collapse
Affiliation(s)
- Akira Ishiwata
- Divisions of Cell and Molecular Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi-ken 329-0498, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ishiwata A, Mimuro J, Mizukami H, Kashiwakura Y, Takano K, Ohmori T, Madoiwa S, Ozawa K, Sakata Y. Liver-restricted expression of the canine factor VIII gene facilitates prevention of inhibitor formation in factor VIII-deficient mice. J Gene Med 2010; 11:1020-9. [PMID: 19757487 DOI: 10.1002/jgm.1391] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Gene therapy for hemophilia A with adeno-associated virus (AAV) vectors involves difficulties in the efficient expression of factor VIII (FVIII) and in antibody formation against transgene-derived FVIII. METHODS AAV8 vectors carrying the canine B domain deleted FVIII (cFVIII) gene under the control of the ubiquitous beta-actin promoter, the liver-specific human alpha1 anti-trypsin promoter (HAAT) and the liver-specific hepatic control region (HCR) enhancer/human alpha1 anti-trypsin promoter complex (HCRHAAT) were used for the expression of cFVIII in FVIII deficient (fviii(-/-)) mice. RESULTS Addition of the hepatic control region enhancer element to the HAAT promoter successfully augmented HAAT promoter activity without loss of liver-specificity in vivo. Using this enhancer/promoter complex, a high cFVIII transgene expression was achieved, resulting in increased blood cFVIII activities to more than 100% of the normal canine FVIII levels in fviii(-/-) mice at a 1 : 10 lower dose of the AAV8 vector carrying the cFVIII gene driven by the HAAT promoter. Under short-term immunosuppression, neutralizing antibodies against cFVIII developed in only one out of six mice when the HAAT promoter was used for cFVIII expression, whereas all the mice developed neutralizing antibodies against cFVIII when the beta-actin promoter was used for cFVIII expression. No neutralizing antibodies against cFVIII developed in fviii(-/-) mice that received the AAV8 vector carrying the cFVIII gene driven by the HCRHAAT enhancer/promoter complex without immunosuppression. CONCLUSIONS These data suggest that AAV8 vector-mediated liver-restricted cFVIII gene expression is sufficient for immune hypo-responsiveness to transgene-derived cFVIII in fviii(-/-) mice.
Collapse
Affiliation(s)
- Akira Ishiwata
- Division of Cell and Molecular Medicine, Center for Molecular Medicine, Jichi Medical University, School of Medicine, Yakushiji, Shimotsuke, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Fu Q, Jia S, Sun Z, Tian F, Du J, Zhou Y, Wang Y, Wang X, Zhan L. φC31 integrase and liver-specific regulatory elements confer high-level, long-term expression of firefly luciferase in mouse liver. Biotechnol Lett 2009; 31:1151-7. [DOI: 10.1007/s10529-009-9996-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 03/16/2009] [Accepted: 03/19/2009] [Indexed: 01/28/2023]
|
15
|
Kim SI, Shin D, Lee H, Ahn BY, Yoon Y, Kim M. Targeted delivery of siRNA against hepatitis C virus by apolipoprotein A-I-bound cationic liposomes. J Hepatol 2009; 50:479-88. [PMID: 19155084 DOI: 10.1016/j.jhep.2008.10.029] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 10/20/2008] [Accepted: 10/21/2008] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Hepatitis C virus (HCV) is one of the major human hepatic RNA viruses. Recently, we developed a liver-specific siRNA delivery technology using DTC-Apo composed of cationic liposomes (DTC) and apolipoprotein A-I (apo A-I). Here, we investigated whether DTC-Apo nanoparticles can systemically deliver siRNA into mouse hepatocytes expressing HCV proteins and inhibit their expression efficiently. METHODS A transient HCV model was constructed by hydrodynamic injection of plasmid DNA expressing viral structural proteins under hepatic control region and alpha1-antitrypsin promoter elements. Using this model, DTC-Apo containing HCV-core-specific siRNA was intravenously injected to assess antiviral activity as well as the duration of silencing. RESULTS Post-administration of DTC-Apo/HCV-specific siRNA at a dose of 2mg siRNA/kg inhibited viral gene expression by 65-75% in the liver on day 2. Improved activity (95% knockdown on day 2) without immunotoxicity was obtained by 2'-OMe-modification at two U sequences on its sense strand. Notably, the gene silencing effect of the modified siRNA was still maintained at day 6, while the unmodified one lost RNAi activity after day 4. CONCLUSIONS Our results suggest that DTC-Apo liposome is a highly potential delivery vehicle to transfer therapeutic siRNA especially targeting HCV to the liver.
Collapse
Affiliation(s)
- Soo In Kim
- Virus Research Laboratory, Mogam Biotechnology Research Institute, Giheung-Gu, Gyeonggi-Do, South Korea
| | | | | | | | | | | |
Collapse
|
16
|
Laurence JM, Wang C, Zheng M, Cunningham S, Earl J, Tay SS, Allen RDM, McCaughan GW, Alexander IE, Bishop GA, Sharland AF. Overexpression of indoleamine dioxygenase in rat liver allografts using a high-efficiency adeno-associated virus vector does not prevent acute rejection. Liver Transpl 2009; 15:233-41. [PMID: 19177450 DOI: 10.1002/lt.21662] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The aim of this study was to evaluate the ability of local overexpression of indoleamine dioxygenase (IDO) to abrogate rat liver transplant rejection by the use of an adeno-associated virus vector [recombinant adeno-associated virus 2/8 (rAAV2/8)] to deliver the transgene to the allograft prior to transplantation. A green fluorescent protein (GFP)-expressing vector [recombinant adeno-associated virus 2/8-liver-specific promoter 1-enhanced green fluorescent protein (rAAV2/8-LSP1-eGFP)] was used to examine the kinetics of expression and optimal dosing for transduction of Piebald Virol Glaxo (PVG) rat livers. A vector encoding the rat IDO gene (rAAV2/8-LSP1-rIDO) was constructed and tested by its ability to induce tryptophan catabolism and kynurenine production in vitro and in vivo. PVG donor rats were injected, via the portal vein, with rAAV2/8-LSP1-rIDO 2 weeks before transplantation into PVG strain isograft or Lewis (LEW) strain allograft recipients. With the enhanced GFP vector, 29.5% and 47.4% of hepatocytes were found to express GFP at 3 and 6 weeks after injection, respectively. In untransplanted PVG animals, the rAAV2/8-LSP1-rIDO vector induced, 3 weeks after administration, a 1.8-fold increase (P = 0.0161) in liver IDO activity, which was associated with a fall in serum tryptophan to 0.5 times the baseline level (P < 0.001). PVG recipients of PVG liver isografts pretreated with the IDO-expressing vector had a 45% lower level of serum tryptophan than recipients of isografts pretreated with the GFP-expressing vector (P = 0.03). LEW recipients of PVG liver allografts pretreated with the rat IDO vector had a median survival time of 12 days, whereas recipients of allografts pretreated with rAAV2/8-LSP1-eGFP had a median survival time of 13 days (P = 0.38). Both groups displayed similar histological features of acute cellular rejection. In conclusion, rAAV2/8 vectors produce highly efficient, though delayed, hepatocyte transduction in vivo and provide a useful gene delivery tool for transplantation models. However, gene delivery using IDO was unsuccessful in prolonging rat liver allograft survival.
Collapse
Affiliation(s)
- Jerome M Laurence
- Collaborative Transplantation Research Group, Royal Prince Alfred Hospital and University of Sydney, Sydney, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lee H, Kim SI, Shin D, Yoon Y, Choi TH, Cheon GJ, Kim M. Hepatic siRNA delivery using recombinant human apolipoprotein A-I in mice. Biochem Biophys Res Commun 2008; 378:192-6. [PMID: 19017527 DOI: 10.1016/j.bbrc.2008.11.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 11/04/2008] [Indexed: 10/21/2022]
Abstract
Apolipoprotein A-I (apo A-I), the major protein component of high density lipoprotein (HDL), plays a key role in reverse cholesterol transport from peripheral tissues to liver or steroidogenic organs. Class B, type 1 scavenger receptor (SR-BI) is abundantly expressed in these target tissues and recognizes apo A-I of HDL for selective cholesteryl ester uptake. Recently, we reported the liver-targeting potential of plasma-derived apo A-I and the efficient delivery of therapeutic small interfering RNAs (siRNA) assembled with cationic liposome and apo A-I. In this study, we expressed and purified recombinant human apo A-I (rhapo A-I), low endotoxin grade, from an Escherichia coli expression system. The liver-targeting property of rhapo A-I was compared to that of plasma-derived apo A-I. Using a hepatitis C virus mouse model, intravenous administration of virus-specific siRNA with liposome and rhapo A-I significantly inhibited viral protein expression, demonstrating great promise for its use in clinical applications.
Collapse
Affiliation(s)
- Hyeon Lee
- Virus Research Laboratory, Mogam Biotechnology Research Institute, 341 Bojeong-dong, Giheung-gu, Yongin-si, Gyeonggi-do 449-913, South Korea
| | | | | | | | | | | | | |
Collapse
|
18
|
Wooddell CI, Reppen T, Wolff JA, Herweijer H. Sustained liver-specific transgene expression from the albumin promoter in mice following hydrodynamic plasmid DNA delivery. J Gene Med 2008; 10:551-63. [PMID: 18330848 DOI: 10.1002/jgm.1179] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND To properly study gene expression in vivo, often long-term expression is desired. Previous studies using plasmid DNA (pDNA) vectors have typically resulted in short-term expression. Here, we evaluated combinations of the albumin promoter with different enhancers and untranslated regions for liver-specific expression in mice. METHODS A series of pDNA secreted alkaline phosphatase (SEAP) reporter gene expression vectors was constructed using the albumin promoter and various other expression cassette elements. Each was evaluated for level and duration of SEAP expression in mice following hydrodynamic tail vein delivery. RESULTS Sustained liver expression was obtained from vectors combining the albumin promoter with an albumin 3' untranslated region (3'UTR). The level of expression was increased by inclusion of enhancers and a 5' intron. The optimal expression vector consisted of the albumin promoter combined with an alpha-fetoprotein MERII enhancer, 5' intron from the factor IX gene, and the 3'UTR from the albumin gene including intron 14. With this vector, SEAP reporter gene expression levels remained high for 1 year, at levels comparable to those obtained from the cytomegalovirus (CMV) promoter on day 1. Expression of human apolipoprotein E3 (hApoE) in ApoE knockout mice provided a dose-dependent correction of their hypercholesterolemia. CONCLUSIONS Liver-specific sustained transgene expression can be obtained at very high levels from optimized pDNA vectors, without the use of integration systems. Such vectors will further facilitate biological studies of genes in vivo and may find application in gene therapy.
Collapse
|
19
|
Cunningham SC, Dane AP, Spinoulas A, Alexander IE. Gene Delivery to the Juvenile Mouse Liver Using AAV2/8 Vectors. Mol Ther 2008; 16:1081-1088. [DOI: 10.1038/mt.2008.72] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 03/14/2008] [Indexed: 11/09/2022] Open
|
20
|
Abstract
PURPOSE OF REVIEW The identification of regulatory polymorphisms has become a key problem in human genetics. In the past few years there has been a conceptual change in the way in which regulatory single-nucleotide polymorphisms are studied. We revise the new approaches and discuss how gene expression studies can contribute to a better knowledge of the genetics of common diseases. RECENT FINDINGS New techniques for the association of single-nucleotide polymorphisms with changes in gene expression have been recently developed. This, together with a more comprehensive use of the old in-vitro methods, has produced a great amount of genetic information. When added to current databases, it will help to design better tools for the detection of regulatory single-nucleotide polymorphisms. SUMMARY The identification of functional regulatory single-nucleotide polymorphisms cannot be done by the simple inspection of DNA sequence. In-vivo techniques, based on primer-extension, and the more recently developed 'haploChIP' allow the association of gene variants to changes in gene expression. Gene expression analysis by conventional in-vitro techniques is the only way to identify the functional consequences of regulatory single-nucleotide polymorphisms. The amount of information produced in the last few years will help to refine the tools for the future analysis of regulatory gene variants.
Collapse
Affiliation(s)
- Sandra Pampín
- Department of Molecular Biology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | | |
Collapse
|
21
|
Rhee J, Ge H, Yang W, Fan M, Handschin C, Cooper M, Lin J, Li C, Spiegelman BM. Partnership of PGC-1α and HNF4α in the Regulation of Lipoprotein Metabolism. J Biol Chem 2006; 281:14683-90. [PMID: 16574644 DOI: 10.1074/jbc.m512636200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) is a transcriptional coactivator involved in several aspects of energy metabolism. It is induced or activated under different stimuli in a highly tissue-specific manner and subsequently partners with certain transcription factors in those tissues to execute various biological programs. In the fasted liver, PGC-1alpha is induced and interacts with hepatocyte nuclear factor 4alpha (HNF4alpha) and other transcription factors to activate gluconeogenesis and increase hepatic glucose output. Given the broad spectrum of liver genes responsive to HNF4alpha, we sought to determine those that were specifically targeted by the combination of PGC-1alpha and HNF4alpha. Coexpression of these two molecules in murine stem cells reveals a high induction of mRNA for apolipoproteins A-IV and C-II. Forced expression of PGC-1alpha in mouse and human hepatoma cells increases the mRNA of a subset of apolipoproteins implicated in very low density lipoprotein and triglyceride metabolism, including apolipoproteins A-IV, C-II, and C-III. Coactivation of the apoC-III/A-IV promoter region by PGC-1alpha occurs through a highly conserved HNF4alpha response element, the loss of which completely abolishes activation by PGC-1alpha and HNF4alpha. Adenoviral infusion of PGC-1alpha into live mice increases hepatic expression of apolipoproteins A-IV, C-II, and C-III and increases serum and very low density lipoprotein triglyceride levels. Conversely, knock down of PGC-1alpha in vivo causes a decrease in both apolipoprotein expression and serum triglyceride levels. These data point to a crucial role for the PGC-1alpha/HNF4alpha partnership in hepatic lipoprotein metabolism.
Collapse
Affiliation(s)
- James Rhee
- Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, One Jimmy Fund Way, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Tam JLY, Triantaphyllopoulos K, Todd H, Raguz S, de Wit T, Morgan JE, Partridge TA, Makrinou E, Grosveld F, Antoniou M. The human desmin locus: gene organization and LCR-mediated transcriptional control. Genomics 2006; 87:733-46. [PMID: 16545539 DOI: 10.1016/j.ygeno.2006.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Revised: 01/20/2006] [Accepted: 01/29/2006] [Indexed: 12/16/2022]
Abstract
Locus control regions (LCRs) are defined by their ability to confer reproducible physiological levels of transgene expression in mice and therefore thought to possess the ability to generate dominantly a transcriptionally active chromatin structure. We report the first characterization of a muscle-cell-specific LCR, which is linked to the human desmin gene (DES). The DES LCR consists of five regions of muscle-specific DNase I hypersensitivity (HS) localized between -9 and -18 kb 5' of DES and reproducibly drives full physiological levels of expression in all muscle cell types. The DES LCR DNase I HS regions are highly conserved between humans and other mammals and can potentially bind a broad range of muscle-specific and ubiquitous transcription factors. Bioinformatics and direct molecular analysis show that the DES locus consists of three muscle-specific (DES) or muscle preferentially expressed genes (APEG1 and SPEG, the human orthologue of murine striated-muscle-specific serine/threonine protein kinase, Speg). The DES LCR may therefore regulate expression of SPEG and APEG1 as well as DES.
Collapse
Affiliation(s)
- Jennifer L Y Tam
- Nuclear Biology Group, Department of Medical and Molecular Genetics, King's College London School of Medicine, King's College London-Guy's Campus, 8th Floor Guy's Tower, Guy's Hospital, London SE1 9RT, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wooddell CI, Van Hout CV, Reppen T, Lewis DL, Herweijer H. Long-term RNA interference from optimized siRNA expression constructs in adult mice. Biochem Biophys Res Commun 2005; 334:117-27. [PMID: 15993838 DOI: 10.1016/j.bbrc.2005.06.066] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Accepted: 06/13/2005] [Indexed: 10/25/2022]
Abstract
DNA constructs for small interfering RNA (siRNA) expression in mammalian cells have the potential for longer-term target gene knockdown than synthetic siRNAs. We compared in adult mice the efficacy and longevity of target gene knockdown from siRNA expression cassettes contained in plasmids, PCR-generated linear constructs or PCR constructs containing "dumbbell" ends using the hydrodynamic delivery method. Plasmid siRNA expression constructs were more effective than PCR constructs for target gene knockdown. The efficacy of the PCR constructs was improved by addition of short extensions beyond the transcription termination signal and greatly improved by addition of dumbbell ends. Constructs containing the H1 promoter were significantly less effective in mice than those containing the U6 promoter, whereas both promoters functioned equally well in cultured cells. Target gene knockdown perdured for at least 20 weeks in mice after delivery of either PCR or plasmid siRNA expression cassettes. These results will help guide RNAi vector design.
Collapse
|
24
|
Miao CH. A novel gene expression system: non-viral gene transfer for hemophilia as model systems. ADVANCES IN GENETICS 2005; 54:143-77. [PMID: 16096011 DOI: 10.1016/s0065-2660(05)54007-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It is highly desirable to generate tissue-specific and persistently high-level transgene expression per genomic copy from gene therapy vectors. Such vectors can reduce the cost and preparation of the vectors and reduce possible host immune responses to the vector and potential toxicity. Many gene therapy vectors have failed to produce therapeutic levels of transgene because of inefficient promoters, loss of vector or gene expression from episomal vectors, or a silencing effect of integration sites on integrating vectors. Using in vivo screening of vectors incorporating many different combinations of gene regulatory sequences, liver-specific, high-expressing vectors to accommodate factor IX, factor VIII, and other genes for effective gene transfer have been established. Persistent and high levels of factor IX and factor VIII gene expression for treating hemophilia B and A, respectively, were achieved in mouse livers using hydrodynamics-based gene transfer of naked plasmid DNA incorporating these novel gene expression systems. Some other systems to prolong or stabilize the gene expression following gene transfer are also discussed.
Collapse
Affiliation(s)
- Carol H Miao
- Department of Pediatrics, University of Washington and Children's Hospital and Regional Medical Center, Seattle, Washington 98195, USA
| |
Collapse
|
25
|
Kankkonen HM, Vähäkangas E, Marr RA, Pakkanen T, Laurema A, Leppänen P, Jalkanen J, Verma IM, Ylä-Herttuala S. Long-Term Lowering of Plasma Cholesterol Levels in LDL-Receptor-Deficient WHHL Rabbits by Gene Therapy. Mol Ther 2004; 9:548-56. [PMID: 15093185 DOI: 10.1016/j.ymthe.2004.01.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2003] [Accepted: 01/20/2004] [Indexed: 11/25/2022] Open
Abstract
Lentiviral vectors encoding rabbit low-density lipoprotein receptor (LDLR) or green fluorescent protein (GFP) under the control of a liver-specific promoter (LSP) were used for intraportal gene transfer into the liver of hypercholesterolemic LDLR-deficient Watanabe Heritable Hyperlipidemic rabbits. In vitro cell culture analysis demonstrated functionality of the LSP-LDLR vector in mediating increased degradation of LDL in transduced liver cells. Twenty-five rabbits were each injected with 1 x 10(9) infectious virus particles into the portal vein. Liver biopsy samples were collected 4 weeks after the gene transfer and the rabbits were followed up for 2 years. Histological and RT-PCR analyses showed the expression of GFP and LDLR transgenes in the biopsy samples. Clinical chemistry and histological analyses revealed normal liver function and morphology during the 2-year follow-up with no safety issues. LSP-LDLR-treated rabbits demonstrated an average of 14 +/- 7% decrease in serum cholesterol levels during the first 4 weeks, 44 +/- 8% decrease at 1 year, and 34 +/- 10% decrease at the 2-year time point compared to the control rabbits. This study demonstrates the safety and potential benefits of the third-generation liver-specific lentiviral vectors in the treatment of familial hypercholesterolemia using direct intraportal liver gene therapy without the need for liver resection.
Collapse
Affiliation(s)
- Hanna M Kankkonen
- A. I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine, University of Kuopio, Neulaniementie 2, FIN-70210 Kuopio, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Gehrke S, Jérôme V, Müller R. Chimeric transcriptional control units for improved liver-specific transgene expression. Gene 2004; 322:137-43. [PMID: 14644505 DOI: 10.1016/j.gene.2003.08.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Hepatocyte-directed delivery of therapeutic genes is a major field of gene therapy. An important issue in this context is the availability of promoters units providing for maximum transcriptional activity and specificity. Although a number of liver-specific promoters and transcriptional control elements have been identified and used for gene delivery, no systematic study has been performed to identify the best suitable combination of known liver-specific promoter and enhancer elements. We now report the results of a comparative investigation addressing this issue. We tested a total of 25 synthetic transcriptional control units consisting of either of the four core promoters from liver-specific genes linked in various combinations and configurations to hepatocyte-specific enhancer elements. These constructs were analyzed for transcriptional activity in different cell types in cell culture and in mouse liver in vivo. The data lead to the clear conclusion that a combination of the alcohol dehydrogenase 6 (ADH6) basal promoter linked to two tandem copies of an apoplipoprotein E enhancer element is the transcriptional control unit of choice for the liver-specific expression of transgenes.
Collapse
Affiliation(s)
- Stephan Gehrke
- Institute of Molecular Biology and Tumor Research, Philipps-University, Emil-Mannkopff-Strasse 2, 35033 Marburg, Germany
| | | | | |
Collapse
|
27
|
Kim E, Xie S, Yeh SD, Lee YF, Collins LL, Hu YC, Shyr CR, Mu XM, Liu NC, Chen YT, Wang PH, Chang C. Disruption of TR4 orphan nuclear receptor reduces the expression of liver apolipoprotein E/C-I/C-II gene cluster. J Biol Chem 2003; 278:46919-26. [PMID: 12954636 DOI: 10.1074/jbc.m304088200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein E (apoE) is synthesized in many tissues, and the liver is the primary site from which apoE redistributes cholesterol and other lipids to peripheral tissues. Here we demonstrate that the TR4 orphan nuclear receptor (TR4) can induce apoE expression in HepG2 cells. This TR4-mediated regulation of apoE gene expression was further confirmed in vivo using TR4 knockout mice. Both serum apoE protein and liver apoE mRNA levels were significantly reduced in TR4 knockout mice. Gel shift and luciferase reporter gene assays further demonstrated that TR4 can induce apoE gene expression via a TR4 response element located in the hepatic control region that is 15 kb downstream of the apoE gene. Furthermore our in vivo data from TR4 knockout mice prove that TR4 can also regulate apolipoprotein C-I and C-II gene expression via the TR4 response element within the hepatic control region. Together our data show that loss of TR4 down-regulates expression of the apoE/C-I/C-II gene cluster in liver cells, demonstrating important roles of TR4 in the modulation of lipoprotein metabolism.
Collapse
Affiliation(s)
- Eungseok Kim
- George Whipple Laboratory for Cancer Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Barnes LM, Bentley CM, Dickson AJ. Stability of protein production from recombinant mammalian cells. Biotechnol Bioeng 2003; 81:631-9. [PMID: 12529877 DOI: 10.1002/bit.10517] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
One of the most important criteria for successful generation of a therapeutic protein from a recombinant cell is to obtain a cell line that maintains stability of production. If this is not achieved it can generate problems for process yields, effective use of time and money, and for regulatory approval of products. However, selection of a cell line that sustains stability of production over the required time period may be difficult to achieve during development of a therapeutic protein. There are several studies in the literature that have reported on the instability of protein production from recombinant cell lines. The causes of instability of production are varied and, in many cases, the exact molecular mechanisms are unknown. The production of proteins by cells is modulated by molecular events at levels ranging from transcription, posttranscriptional processing, translation, posttranslational processing, to secretion. There is potential for regulation of stability of protein production at many or all of these stages. In this study we review published information on stability of protein production for three industrially important cell lines: hybridoma, Chinese hamster ovary (CHO), and nonsecreting (NS0) myeloma cell lines. We highlight the most likely molecular loci at which instability may be engendered and indicate other areas of protein production that may affect stability from mammalian cells. We also outline approaches that could help to overcome the problems associated with unpredictable expression levels and maximized production, and indicate the consequences these might have for stability of production.
Collapse
Affiliation(s)
- Louise M Barnes
- 2.205 School of Biological Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, United Kingdom.
| | | | | |
Collapse
|
29
|
Abstract
Locus control regions (LCRs) are operationally defined by their ability to enhance the expression of linked genes to physiological levels in a tissue-specific and copy number-dependent manner at ectopic chromatin sites. Although their composition and locations relative to their cognate genes are different, LCRs have been described in a broad spectrum of mammalian gene systems, suggesting that they play an important role in the control of eukaryotic gene expression. The discovery of the LCR in the beta-globin locus and the characterization of LCRs in other loci reinforces the concept that developmental and cell lineage-specific regulation of gene expression relies not on gene-proximal elements such as promoters, enhancers, and silencers exclusively, but also on long-range interactions of various cis regulatory elements and dynamic chromatin alterations.
Collapse
Affiliation(s)
- Qiliang Li
- Division of Medical Genetics, Department of Genome Sciences, University of Washington, 1705 NE Pacific Street, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
30
|
Mak PA, Laffitte BA, Desrumaux C, Joseph SB, Curtiss LK, Mangelsdorf DJ, Tontonoz P, Edwards PA. Regulated expression of the apolipoprotein E/C-I/C-IV/C-II gene cluster in murine and human macrophages. A critical role for nuclear liver X receptors alpha and beta. J Biol Chem 2002; 277:31900-8. [PMID: 12032151 DOI: 10.1074/jbc.m202993200] [Citation(s) in RCA: 188] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipid-loaded macrophage "foam cells" accumulate in the subendothelial space during the development of fatty streaks and atherosclerotic lesions. To better understand the consequences of such lipid loading, murine peritoneal macrophages were isolated and incubated with ligands for two nuclear receptors, liver X receptor (LXR) and retinoic acid receptor (RXR). Analysis of the expressed mRNAs using microarray technology led to the identification of four highly induced genes that encode apolipoproteins E, C-I, C-IV, and C-II. Northern blot analysis confirmed that the mRNA levels of these four genes were induced 2-14-fold in response to natural or synthetic ligands for LXR and/or RXR. The induction of all four mRNAs was greatly attenuated in peritoneal macrophages derived from LXRalpha/beta null mice. The two LXR response elements located within the multienhancers ME.1 and ME.2 were shown to be essential for the induction of apoC-II promoter-reporter genes by ligands for LXR and/or RXR. Finally, immunohistochemical studies demonstrate that apoC-II protein co-localizes with macrophages within murine arterial lesions. Taken together, these studies demonstrate that activated LXR induces the expression of the apoE/C-I/C-IV/C-II gene cluster in both human and murine macrophages. These results suggest an alternative mechanism by which lipids are removed from macrophage foam cells.
Collapse
Affiliation(s)
- Puiying A Mak
- Department of Biological Chemistry and Medicine, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Inoue Y, Hayhurst GP, Inoue J, Mori M, Gonzalez FJ. Defective ureagenesis in mice carrying a liver-specific disruption of hepatocyte nuclear factor 4alpha (HNF4alpha ). HNF4alpha regulates ornithine transcarbamylase in vivo. J Biol Chem 2002; 277:25257-65. [PMID: 11994307 DOI: 10.1074/jbc.m203126200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hepatocyte nuclear factor 4alpha (HNF4alpha) regulates the expression of many genes preferentially expressed in liver. HNF4alpha-null mice die during embryogenesis precluding the analysis of its function in the adult. To circumvent this problem, liver-specific HNF4alpha-null mice were produced. Mice lacking hepatic HNF4alpha expression exhibited increased serum ammonia and reduced serum urea. This disruption in ureagenesis may be explained by a marked decrease in expression and activity of hepatic ornithine transcarbamylase (OTC). To determine the molecular mechanisms involved in transcriptional regulation of the mouse OTC gene, the OTC promoter region was analyzed. Sequence analysis revealed the presence of two putative HNF4alpha-binding sites in the mouse OTC promoter region. By using transient transfection analysis, it was established that high levels of promoter activity were dependent on both HNF4alpha-binding sites and the expression of HNF4alpha. Furthermore, the proximal HNF4alpha-binding site was found to be more important than the distal one for transactivating OTC promoter. These data demonstrate that HNF4alpha is critical for urea homeostasis by direct regulation of the OTC gene in vivo.
Collapse
Affiliation(s)
- Yusuke Inoue
- Laboratory of Metabolism, Division of Basic Sciences, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
32
|
Wagner K, Dendorfer U, Chilla S, Schlöndorff D, Luckow B. Identification of new regulatory sequences far upstream of the mouse monocyte chemoattractant protein-1 gene. Genomics 2001; 78:113-23. [PMID: 11735217 DOI: 10.1006/geno.2001.6660] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We systematically searched for sequences influencing the expression of the mouse monocyte chemoattractant protein-1 (MCP-1) gene (Scya2) by mapping DNase I hypersensitive sites (HS) in the chromatin of mesangial cells in a 40-kb interval around the gene. We found nine HS located between -24 kb and +12.7 kb. Three HS coincided with previously known regulatory sequences (HS-2.4, HS-1.0, and HS-0.2). We tested two of the previously unknown HS located far upstream of Scya2 (HS-19.4 and HS-16.3) in transfection experiments using luciferase reporter constructs and mouse mesangial cells as recipients. In transient transfections, both HS had a moderate effect on basal promoter activity as well as promoter activity stimulated by tumor necrosis factor-alpha. In stable transfection experiments, we found much higher activity. A DNA fragment containing HS-19.4 and HS-16.3 caused a considerable increase in the number of stably integrated luciferase copies. We determined the nucleotide sequence of the 5' flanking region to -28.6 kb. Computer-assisted sequence analysis did not yield evidence of an additional gene. These HS are located within the 5' flanking region of a gene cluster consisting of Scya2 (MCP-1), Scya7 (MCP-3), Scya11 (eotaxin), Scya12 (MCP-5), and Scya8 (MCP-2). This report represents the first comprehensive chromatin analysis of the mouse MCP-1 locus leading to the identification of a complex regulatory region located far upstream of Scya2.
Collapse
Affiliation(s)
- K Wagner
- Ludwig-Maximilians-Universität, Medizinische Poliklinik, Schillerstrasse 42, D-80336 München, Germany
| | | | | | | | | |
Collapse
|
33
|
Mensenkamp AR, Teusink B, Baller JF, Wolters H, Havinga R, van Dijk KW, Havekes LM, Kuipers F. Mice expressing only the mutant APOE3Leiden gene show impaired VLDL secretion. Arterioscler Thromb Vasc Biol 2001; 21:1366-72. [PMID: 11498467 DOI: 10.1161/hq0801.093864] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Apolipoprotein E (apoE)-deficient mice develop hepatic steatosis and show impaired very low density lipoprotein (VLDL)-triglyceride (TG) secretion. These effects are normalized on the introduction of the human APOE3 gene. To assess whether this apoE effect is isoform specific, we studied hepatic lipid metabolism in mice expressing either APOE3 or the mutant APOE3Leiden on apoe-/- or apoe+/- backgrounds. The transgenes were expressed mainly in periportal hepatocytes, as revealed by in situ hybridization. Mice expressing APOE3Leiden, on the apoe-/- and apoe+/- backgrounds, had fatty livers, which were absent in APOE3/apoe-/- mice. APOE3Leiden/apoe-/- mice showed a strongly reduced VLDL-TG secretion compared with APOE3/apoe-/- mice (48+/-14 versus 82+/-10 micromol/kg per hour, respectively). The presence of a single mouse apoe allele increased VLDL-TG secretion in APOE3Leiden/apoe+/- mice (121+/-43 micromol/kg per hour) compared with APOE3Leiden/apoe-/- mice. These results show that APOE3Leiden does not prevent development of a fatty liver and does not normalize VLDL-TG secretion in mice with an apoE-deficient background. The presence of a single mouse apoe allele is sufficient to normalize the APOE3Leiden-associated reduction of VLDL-TG secretion but does not prevent steatosis. We conclude that apoE-mediated stimulation of VLDL secretion is isoform specific.
Collapse
Affiliation(s)
- A R Mensenkamp
- Groningen University Institute for Drug Exploration, Center for Liver, Digestive, and Metabolic Diseases, Faculty of Medical Sciences and University Hospital Groningen, Groningen, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Two distal downstream enhancers direct expression of the human apolipoprotein E gene to astrocytes in the brain. J Neurosci 2001. [PMID: 11157067 DOI: 10.1523/jneurosci.21-03-00812.2001] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Two distal downstream enhancers controlling astrocyte expression of the human apolipoprotein E (apoE) gene in the brain were identified by analysis of transgenic mice generated with various constructs of the apoE/C-I/C-IV/C-II gene cluster. In wild-type mice, the highest overall levels of apoE mRNA were found in astrocytes in the glomerular layer of olfactory bulbs and in Bergmann glia in the cerebellum. This pattern of expression was reproduced in transgenic mice expressing the entire human apoE gene cluster and also in transgenic mice expressing specific enhancer segments within the cluster. Expression of the human apoE transgene at these sites was specified by two enhancer domains: one enhancer is located 3.3 kb downstream of the apoE gene, and a duplication of this sequence is located 15 kb downstream of the apoE gene. Astrocyte enhancer activity was contained within 620 and 619 bp segments of these domains that show subtle differences in regional expression. In the absence of these distal enhancers, the apoE gene was not expressed in astrocytes. The relatively high levels of apoE expression at specific sites in the olfactory bulb and cerebellum suggest the presence of unique regulatory signals at these locations that may reflect common cellular properties and apoE gene functions. The localization of the two astrocytic enhancers reveals an unexpected complexity in the control of apoE production that is essential to understanding apoE function in the brain.
Collapse
|
35
|
Miao CH, Thompson AR, Loeb K, Ye X. Long-term and therapeutic-level hepatic gene expression of human factor IX after naked plasmid transfer in vivo. Mol Ther 2001; 3:947-57. [PMID: 11407909 DOI: 10.1006/mthe.2001.0333] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Naked DNA transfer of a high-expressing human factor IX (hFIX) plasmid yielded long-term (over 1 1/2 years) and therapeutic-level (0.5-2 microg/ml) gene expression of hFIX from mouse livers. The expression cassette contained a hepatic locus control region from the ApoE gene locus, an alpha1-anti-trypsin promoter, hFIX cDNA, a portion of the hFIX first intron, and a bovine growth hormone polyadenylation signal. In contrast, a hFIX plasmid containing the expression cassette without effective regulatory elements produced initially low-level gene expression that rapidly declined to undetectable levels. Southern analyses of the cellular DNA indicated that the majority of the input genome from either vector persisted as episomal forms of the original plasmids. Together with RT-PCR analyses of the transcripts, these data indicated that at least two processes are critical for sustained gene expression: persistence of vector DNA and transcriptional/posttranscriptional activation. Liver regeneration after partial hepatectomy resulted in a significant decline in transgene expression, further suggestive of decreased episomal plasmid maintenance rather than transgene integration. Transaminase levels and liver histology showed that rapid intravenous plasmid injection into mice induced transient focal acute liver damage (< 5% of hepatocytes), which was rapidly repaired within 3 to 10 days and resulted thereafter in histologically normal tissue. No significant differences were observed between rapid injection of plasmid and saline control solutions. Transient, very low level antibodies directed against hFIX did not prevent the circulation of therapeutic levels of the protein. Gene transfer of hFIX plasmid DNA into liver elicited neither transgene-specific cytotoxic effect nor long-term toxicity. These results demonstrate that long-term expression of hFIX can be achieved by nonviral plasmid transfer and suggest that this occurs independent of integration.
Collapse
Affiliation(s)
- C H Miao
- Puget Sound Blood Center, University of Washington, Seattle, Washington 98104, USA.
| | | | | | | |
Collapse
|
36
|
Hayhurst GP, Lee YH, Lambert G, Ward JM, Gonzalez FJ. Hepatocyte nuclear factor 4alpha (nuclear receptor 2A1) is essential for maintenance of hepatic gene expression and lipid homeostasis. Mol Cell Biol 2001; 21:1393-403. [PMID: 11158324 PMCID: PMC99591 DOI: 10.1128/mcb.21.4.1393-1403.2001] [Citation(s) in RCA: 865] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The numerous functions of the liver are controlled primarily at the transcriptional level by the concerted actions of a limited number of hepatocyte-enriched transcription factors (hepatocyte nuclear factor 1alpha [HNF1alpha], -1beta, -3alpha, -3beta, -3gamma, -4alpha, and -6 and members of the c/ebp family). Of these, only HNF4alpha (nuclear receptor 2A1) and HNF1alpha appear to be correlated with the differentiated phenotype of cultured hepatoma cells. HNF1alpha-null mice are viable, indicating that this factor is not an absolute requirement for the formation of an active hepatic parenchyma. In contrast, HNF4alpha-null mice die during embryogenesis. Moreover, recent in vitro experiments using tetraploid aggregation suggest that HNF4alpha is indispensable for hepatocyte differentiation. However, the function of HNF4alpha in the maintenance of hepatocyte differentiation and function is less well understood. To address the function of HNF4alpha in the mature hepatocyte, a conditional gene knockout was produced using the Cre-loxP system. Mice lacking hepatic HNF4alpha expression accumulated lipid in the liver and exhibited greatly reduced serum cholesterol and triglyceride levels and increased serum bile acid concentrations. The observed phenotypes may be explained by (i) a selective disruption of very-low-density lipoprotein secretion due to decreased expression of genes encoding apolipoprotein B and microsomal triglyceride transfer protein, (ii) an increase in hepatic cholesterol uptake due to increased expression of the major high-density lipoprotein receptor, scavenger receptor BI, and (iii) a decrease in bile acid uptake to the liver due to down-regulation of the major basolateral bile acid transporters sodium taurocholate cotransporter protein and organic anion transporter protein 1. These data indicate that HNF4alpha is central to the maintenance of hepatocyte differentiation and is a major in vivo regulator of genes involved in the control of lipid homeostasis.
Collapse
Affiliation(s)
- G P Hayhurst
- Laboratory of Metabolism, Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
37
|
Medstrand P, Landry JR, Mager DL. Long terminal repeats are used as alternative promoters for the endothelin B receptor and apolipoprotein C-I genes in humans. J Biol Chem 2001; 276:1896-903. [PMID: 11054415 DOI: 10.1074/jbc.m006557200] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
To examine the potential regulatory involvement of retroelements in the human genome, we screened the transcribed sequences of GenBank and expressed sequence tag data bases with long terminal repeat (LTR) elements derived from different human endogenous retroviruses. These screenings detected human transcripts containing LTRs belonging to the human endogenous retrovirus-E family fused to the apolipoprotein CI (apoC-I) and the endothelin B receptor (EBR) genes. However, both genes are known to have non-LTR (native) promoters. Initial reverse transcription-polymerase chain reaction experiments confirmed and authenticated the presence of transcripts from both the native and LTR promoters. Using a 5'-rapid amplification of cDNA ends protocol, we showed that the alternative transcripts of apoC-I and EBR are initiated and promoted by the LTRs. The LTR-apoC-I fusion and native apoC-I transcripts are present in many of the tissues tested. As expected, we found apoC-I preferentially expressed in liver, where about 15% of the transcripts are derived from the LTR promoter. Transient transfections suggest that the expression is not dependent on the LTR itself, but the presence of the LTR increases activity of the apoC-I promoter from both humans and baboons. The native EBR-driven transcripts were also detected in many tissues, whereas the LTR-driven transcripts appear limited to placenta. In contrast to the LTR of apoC-I, the EBR LTR promotes a significant proportion of the total EBR transcripts, and transient transfection results indicate that the LTR acts as a strong promoter and enhancer in a placental cell line. This investigation reports two examples where LTR sequences contribute to increased transcription of human genes and illustrates the impact of mobile elements on gene and genome evolution.
Collapse
Affiliation(s)
- P Medstrand
- Terry Fox Laboratory, British Columbia Cancer Agency and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, V5Z 1L3, Canada
| | | | | |
Collapse
|
38
|
Wang X, Zeng W, Murakawa M, Freeman MW, Seed B. Episomal segregation of the adenovirus enhancer sequence by conditional genome rearrangement abrogates late viral gene expression. J Virol 2000; 74:11296-303. [PMID: 11070029 PMCID: PMC113234 DOI: 10.1128/jvi.74.23.11296-11303.2000] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have constructed a recombinant adenovirus gene delivery system that is capable of undergoing growth phase-dependent site-specific recombination. When propagated in 293 producer cells, the vector retains its linear double-stranded form and can be propagated to high titer and purified by conventional procedures. Upon introduction into target cells, the viral chromosome undergoes cyclization to generate an autonomously replicating circular episome and a detached linear fragment. The viral enhancer and reporter gene segregate with the circular episome, which contains no adenovirus open reading frames. The effect of rearrangement of adenovirus gene expression was assessed by quantitative reverse transcription-PCR measurement of the abundance of transcripts encoding the tripartite leader sequence (TPL) of the major late promoter. Whereas nonrearranging viruses produced approximately 10(4) TPL transcripts per 10(6) infecting genomes in the HepG2 liver cell line, no transcripts were detectable in the same cells infected with comparable levels of circularizing vector. Because no helper virus is required to propagate these vectors, the problems of recombination with and contamination by helper virus are eliminated. We also present an efficient and reliable method for generating recombinant adenoviruses.
Collapse
Affiliation(s)
- X Wang
- Nessel Gene Therapy Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | |
Collapse
|
39
|
Shih SJ, Allan C, Grehan S, Tse E, Moran C, Taylor JM. Duplicated downstream enhancers control expression of the human apolipoprotein E gene in macrophages and adipose tissue. J Biol Chem 2000; 275:31567-72. [PMID: 10893248 DOI: 10.1074/jbc.m005468200] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two distal enhancers that specify apolipoprotein (apo) E gene expression in isolated macrophages and adipose tissue were identified in transgenic mice that were generated with constructs of the human apoE/C-I/C-I'/C-IV/C-II gene cluster. One of these enhancers, multienhancer 1, consists of a 620-nucleotide sequence located 3.3 kilobases (kb) downstream of the apoE gene. The second enhancer, multienhancer 2, is a 619-nucleotide sequence located 15.9 kb downstream of the apoE gene and 5.9 kb downstream of the apoC-I gene. The two enhancers are 95% identical in sequence, and they are likely to have arisen as a consequence of the gene duplication event that yielded the apoC-I gene and the apoC-I' pseudogene. Both enhancer sequences appear to have equivalent activity in directing apoE gene expression in peritoneal macrophages and in adipocytes, suggesting that their activity in specific cell types may be determined by common regulatory elements.
Collapse
Affiliation(s)
- S J Shih
- Gladstone Institute of Cardiovascular Disease, San Francisco, California 94141-9100, USA
| | | | | | | | | | | |
Collapse
|
40
|
Miao CH, Ohashi K, Patijn GA, Meuse L, Ye X, Thompson AR, Kay MA. Inclusion of the hepatic locus control region, an intron, and untranslated region increases and stabilizes hepatic factor IX gene expression in vivo but not in vitro. Mol Ther 2000; 1:522-32. [PMID: 10933977 DOI: 10.1006/mthe.2000.0075] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We systematically compared human factor IX gene expression from a variety of plasmids containing different cis-regulatory sequences after transfection into different hepatocyte cell lines, or in vivo, after their injection into the livers of mice. Although there was a 1.5- to 2.0-fold variation in gene expression from cultured cells, a 65-fold variation was observed in the in vivo studies. We found that a plasmid containing the apolipoprotein E locus control region (HCR), human alpha1-antitrypsin (hAAT) promoter, hFIX minigene (hFIXmg) sequence including a portion of the first intron (intron A), 3'-untranslated region (3'-UTR), and a bovine growth hormone polyadenylation signal (bpA) produced the highest serum level of human factor IX, reaching 18 microg/ml (normal = 5 microg/ml) 1 day after injection. Although most of the plasmid DNAs resulted in transient gene expression, inclusion of an intron, a polyadenylation signal from either the 1.7-kb 3'-UTR or the 0.3-kb bpA, and the HCR resulted in persistent and therapeutic levels of hFIX gene expression, ranging from 0.5 to 2 microg/ml (10 to 40% of normal) for 225 days (length of experiment). These data underscore the importance of cis sequences for enhancing in vivo hepatic gene expression and reemphasize the lack of correlation of gene expression in tissue culture and in vivo studies.
Collapse
Affiliation(s)
- C H Miao
- Department of Medicine and Puget Sound Blood Center, University of Washington, Seattle 98195, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The beta-globin locus control region (LCR) is the founding member of a novel class of cis-acting regulatory elements that confer high level, tissue-specific, site-of-integration-independent, copy number-dependent expression on linked transgenes located in ectopic chromatin sites. Knowledge from beta-globin and other LCR studies has shed light on our understanding of the long-range interaction between enhancers and promoters, the relationship between chromatin conformation and transcriptional regulation, and the developmental regulation of multiple gene loci. After over a decade of investigation and discovery, we take a retrospective look at the beta-globin LCR and other LCRs, summarize their properties and review models of LCR function.
Collapse
Affiliation(s)
- Q Li
- Division of Medical Genetics, Mail Box 357720, Department of Medicine, University of Washington, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
42
|
Ratziu V, Lalazar A, Wong L, Dang Q, Collins C, Shaulian E, Jensen S, Friedman SL. Zf9, a Kruppel-like transcription factor up-regulated in vivo during early hepatic fibrosis. Proc Natl Acad Sci U S A 1998; 95:9500-5. [PMID: 9689109 PMCID: PMC21367 DOI: 10.1073/pnas.95.16.9500] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Wound repair in the liver induces altered gene expression in stellate cells (resident mesenchymal cells) in a process known as "activation." A zinc finger transcription factor cDNA, zf9, was cloned from rat stellate cells activated in vivo. Zf9 expression and biosynthesis are increased markedly in activated cells in vivo compared with cells from normal rats ("quiescent" cells). The factor is localized to the nucleus and the perinuclear zone in activated but not quiescent cells. Zf9 mRNA also is expressed widely in nonhepatic adult rat tissues and the fetal liver. The zf9 nucleotide sequence predicts a member of the Kruppel-like family with a unique N-terminal domain rich in serine-proline clusters and leucines. The human zf9 gene maps to chromosome 10P near the telomere. Zf9 binds specifically to a DNA oligonucleotide containing a GC box motif. The N-terminal domain of Zf9 (amino acids 1-201) is transactivating in the chimeric GAL4 hybrid system. In Drosophila schneider cells, full length Zf9 transactivates a reporter construct driven by the SV40 promoter/enhancer, which contains several GC boxes. A physiologic role for Zf9 is suggested by its transactivation of a collagen alpha1(I) promoter reporter. Transactivation of collagen alpha1(I) by Zf9 is context-dependent, occurring strongly in stellate cells, modestly in Hep G2 cells, and not at all in D. schneider cells. Our results suggest that Zf9 may be an important signal in hepatic stellate cell activation after liver injury.
Collapse
Affiliation(s)
- V Ratziu
- University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Vorgia P, Zannis VI, Kardassis D. A short proximal promoter and the distal hepatic control region-1 (HCR-1) contribute to the liver specificity of the human apolipoprotein C-II gene. Hepatic enhancement by HCR-1 requires two proximal hormone response elements which have different binding specificities for orphan receptors HNF-4, ARP-1, and EAR-2. J Biol Chem 1998; 273:4188-96. [PMID: 9461615 DOI: 10.1074/jbc.273.7.4188] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We have identified the regulatory elements, some of the factors and potential regulatory mechanisms which determine the tissue specificity of the human apoC-II gene. The -545/+18 apoC-II promoter directs high levels of expression of the reporter CAT gene in cells of hepatic origin (HepG2), low levels of expression in cells of intestinal origin (CaCo-2) and basal expression in HeLa cells. Deletion analysis identified negative regulatory elements within the -545/-388 region and positive regulatory elements within the -388/-55 region. Linkage of different apoC-II promoter segments to the hepatic control region-1 (HCR-1) enhanced the promoter activity 2.5-11-fold in HepG2 cells but did not affect its activity in CaCo-2 or COS-1 cells. DNase I footprinting analysis using rat liver nuclear extracts identified five protected regions within the -545/+18 apoC-II promoter as follows: CIIA (-74/-44), CIIB (-102/-81), CIIC (-159/-116), CIID (-288/-265), and CIIE (-497/-462). Elements CIIB and CIIC contain hormone response elements. CIIB is recognized by hepatic nuclear factor-4 (HNF-4) but not ARP-1 or EAR-2, whereas CIIC is recognized by ARP-1 and EAR-2 but not by HNF-4. HNF-4 transactivated the apoC-II promoter or the apoC-II promoter linked to the HCR-1 in COS-1 cells. A double mutation in elements CIIB and CIIC that eliminated binding of HNF-4 or ARP-1 and EAR-2, respectively, to these sites abolished the enhancer activity of HCR-1. The combined data suggest that the apoC-II promoter/HCR-1 cluster can direct expression in cells of hepatic origin and that optimal enhancer activity requires synergistic interactions between factors bound to the distal HCR-1 and nuclear receptors bound to the two proximal hormone response elements.
Collapse
Affiliation(s)
- P Vorgia
- Division of Basic Sciences, Section of Biochemistry, Department of Medicine, University of Crete and the Institute of Molecular Biology and Biotechnology, Herakleion 71110, Crete, Greece
| | | | | |
Collapse
|
44
|
Jaggar RT, Chan HY, Harris AL, Bicknell R. Endothelial cell-specific expression of tumor necrosis factor-alpha from the KDR or E-selectin promoters following retroviral delivery. Hum Gene Ther 1997; 8:2239-47. [PMID: 9449377 DOI: 10.1089/hum.1997.8.18-2239] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The tumor vasculature offers a target for anti-cancer gene therapy which has the advantages both of good accessibility to systemically delivered therapy and comparative homogeneity across solid tumor types. We aimed to develop retroviruses carrying endothelial-specific promoters for the delivery of genes to proliferating endothelial cells in vitro and to tumor endothelial cells in vivo. This paper reports the generation of such retroviral vectors and the level of expression of murine tumor necrosis factor-alpha (mTNF-alpha) cDNA following infection into endothelial cells and stromal fibroblasts. Retroviral vectors carrying mTNF-alpha have been generated whose expression is controlled either by the retroviral long terminal repeat or by 5' proximal promoter sequences from the endothelial-specific kinase insert domain receptor (KDR)/VEGF receptor and E-Selectin promoters within the context of a self-inactivating (SIN) vector backbone. Both KDR and E-Selectin have been shown to be upregulated on tumor endothelium. A putative polyadenylation sequence AAATAAA within the E-Selectin promoter was mutated to permit faithful transmission of retroviral vectors carrying this promoter. We demonstrate a 10- to 11-fold increase in mTNF-alpha expression from promoter elements within sEND endothelioma cells as compared to NIH-3T3 fibroblasts. Suggestions for further improvements in vector design are discussed.
Collapse
Affiliation(s)
- R T Jaggar
- Imperial Cancer Research Fund Molecular Oncology Unit, Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, UK
| | | | | | | |
Collapse
|
45
|
Allan CM, Taylor S, Taylor JM. Two hepatic enhancers, HCR.1 and HCR.2, coordinate the liver expression of the entire human apolipoprotein E/C-I/C-IV/C-II gene cluster. J Biol Chem 1997; 272:29113-9. [PMID: 9360987 DOI: 10.1074/jbc.272.46.29113] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We show that the liver-specific expression of all four genes in the human apolipoprotein (apo) E/C-I/C-IV/C-II gene cluster in transgenic mice is determined by the coordinate action of two distinct hepatic control regions (HCR). These enhancers are positioned 15 kilobases (kb) (HCR.1) and 26 kb (HCR.2) downstream of the apoE gene. To investigate the action of each HCR, transgenic mice were generated with a 70-kb human genomic fragment that contained the complete apoE gene cluster or with this fragment modified by the specific deletion of HCR.1, HCR.2, or both HCR domains. Hepatic expression of all four apolipoprotein genes was observed in transgenic mice in which either HCR.1 or HCR.2 was deleted, but no transgene expression was found in the liver in the absence of both HCR domains. The overall patterns of transgene expression suggested that HCR.2 was the dominant element for apoC-IV and apoC-II expression and that HCR.1 was dominant for the apoE/C-I expression. No liver-specific transcriptional activity was identified for the proximal promoter of any gene in the cluster; all liver-specific activity was associated with HCR.1 and HCR.2. Thus, the HCRs of the apoE gene cluster constitute unique regulatory domains for determining the requirements for apolipoprotein gene expression in the liver.
Collapse
Affiliation(s)
- C M Allan
- Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, California 94141-9100, USA
| | | | | |
Collapse
|
46
|
Oliveira HC, Chouinard RA, Agellon LB, Bruce C, Ma L, Walsh A, Breslow JL, Tall AR. Human cholesteryl ester transfer protein gene proximal promoter contains dietary cholesterol positive responsive elements and mediates expression in small intestine and periphery while predominant liver and spleen expression is controlled by 5'-distal sequences. Cis-acting sequences mapped in transgenic mice. J Biol Chem 1996; 271:31831-8. [PMID: 8943225 DOI: 10.1074/jbc.271.50.31831] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The plasma cholesteryl ester transfer protein (CETP) facilitates the transfer of high density lipoprotein cholesteryl esters to other lipoproteins and appears to be a key regulated component of reverse cholesterol transport. Earlier studies showed that a CETP transgene containing natural flanking sequences (-3.4 kilobase pairs (kbp) upstream, +2.2 kbp downstream) was expressed in an authentic tissue distribution and induced in liver and other tissues in response to dietary or endogenous hypercholesterolemia. In order to localize the DNA elements responsible for these effects, we prepared transgenic mice expressing six new DNA constructs containing different amounts of natural flanking sequence of the CETP gene. Tissue-specific expression and dietary cholesterol response of CETP mRNA were determined. The native pattern of predominant expression in liver and spleen with cholesterol induction was shown by a -3.4 (5'), +0.2 (3') kbp transgene, indicating no major contribution of distal 3'-sequences. Serial 5'-deletions showed that a -570 base pairs (bp) transgene gave predominant expression in small intestine with cholesterol induction of CETP mRNA in that organ, and a -370 bp transgene gave highest expression in adrenal gland with partial dietary cholesterol induction of CETP mRNA and plasma activity. Further deletion to -138 bp 5'-flanking sequence resulted in a transgene that was not expressed in vivo. Both the -3.4 kbp and -138 bp transgenes were expressed when transfected into a cultured murine hepatocyte cell line, but only the former was induced by treating the cells with LDL. When linked to a human apoA-I transgene, the -570 to -138 segment of the CETP gene promoter gave rise to a relative positive response of hepatic apoA-I mRNA to the high cholesterol diet in two out of three transgenic lines. Thus, 5'-elements between -3,400 and -570 bp in the CETP promoter endow predominant expression in liver and spleen. Elements between -570 and -370 are required for expression in small intestine and some other tissues, and elements between -370 and -138 contribute to adrenal expression. The minimal CETP promoter element associated with a positive sterol response in vivo was found in the proximal CETP gene promoter between -370 and -138 bp. This region contains a tandem repeat of a sequence known to mediate sterol down-regulation of the HMG-CoA reductase gene, suggesting either the presence of separate positive and negative sterol response elements in this region or the use of a common DNA element for both positive and negative sterol responses.
Collapse
Affiliation(s)
- H C Oliveira
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Oka K, Ishimura-Oka K, Chu MJ, Chan L. Transcription of the human hepatic lipase gene is modulated by multiple negative elements in HepG2 cells. Gene 1996; 180:69-80. [PMID: 8973349 DOI: 10.1016/s0378-1119(96)00408-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The expression of the hepatic lipase (HL) gene is highly tissue specific. In order to identify cis-acting elements which regulate the expression of this gene in the liver, multiple deletion mutants of the 5'-flanking region of the HL gene fused to the human growth hormone gene were transfected in HepG2 cells, which normally produce HL. Transient expression assays indicated the presence of negative (at nucleotides (nt) -1576(/)-1342 and -623(/)-407) and positive (at nt -1862(/)-1576 and -50(/)-9) regulatory elements. Transfection of HeLa cells, which do not produce HL, with the same deletion constructs resulted in a similar pattern of promoter activities. However, additional negative (nt -138/-50) and positive (nt -407(/)-138) elements were found. DNase I footprint analysis of the proximal and distal HLpromoter sequences with HepG2 and HeLa cell nuclear extracts identified seven protected regions: A, nt -1540(/)-1527; B, -1505(/)-1473; C, -1467(/)-1460; D, -592(/)-577; E, -565(/)-545; F, -234(/)-220; and G, -70(/) -48. Sites A, B, C, D and E were located within regions containing negative regulatory elements. In order to determine which nuclear factor interacts with the negative elements, sites B, D and E were mutated and the effects of mutation on competition in a gel retardation assay and on promoter activity were studied. When the binding motif for AP1 in sites B, D and E was mutated, the specific DNA-protein complexes were not competed with the mutant oligonucleotides and promoter activity increased twofold. The magnitude of the increase is less than expected from the deletion analysis, and simultaneous mutations did not cause further increase in promoter activity, which suggests that other sites are involved in this negative modulation. These results suggest that the transcription of the HLgene in HepG2 cells is negatively modulated by multiple cis-acting negative elements and AP1-like nuclear factor may play some role in this modulation.
Collapse
Affiliation(s)
- K Oka
- Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
48
|
Dang Q, Taylor J. In vivo footprinting analysis of the hepatic control region of the human apolipoprotein E/C-I/C-IV/C-II gene locus. J Biol Chem 1996; 271:28667-76. [PMID: 8910501 DOI: 10.1074/jbc.271.45.28667] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Expression of both the apolipoprotein (apo)E and apoC-I genes in the liver is specified by a 319-nucleotide hepatic control region (HCR-1) that is located 15 kilobase pairs downstream of the apoE gene and 5 kilobase pairs downstream of the apoC-I gene. In vivo footprint analysis of HCR-1 in intact nuclei revealed several liver-specific protein-binding sites that were not detectable by in vitro methods. In addition to three previously identified in vitro footprints, four in vivo footprints were identified in a region of HCR-1 that is required for directing gene expression to hepatocytes. Prominent liver-specific DNase I-hypersensitive sites were associated with these footprints. Liver-specific nuclear protein binding to these sites was confirmed by oligonucleotide gel-retention assays. The in vivo analysis also identified a cluster of nuclear protein-binding sites in the Alu family repeat segment adjacent to the domain required for liver expression. Micrococcal nuclease digestion indicated the presence of a nucleosome in the central domain of HCR-1 in liver chromatin that was in phase with the nucleosome location in tissues that did not express the transgene. These results suggest that HCR-1 functions in a highly structured chromatin environment requiring a complex interaction of liver-enriched transcription factors.
Collapse
Affiliation(s)
- Q Dang
- Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, California 94141-9100, USA
| | | |
Collapse
|
49
|
Shachter NS, Ebara T, Ramakrishnan R, Steiner G, Breslow JL, Ginsberg HN, Smith JD. Combined hyperlipidemia in transgenic mice overexpressing human apolipoprotein Cl. J Clin Invest 1996; 98:846-55. [PMID: 8698877 PMCID: PMC507495 DOI: 10.1172/jci118857] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have generated transgenic mice over-expressing human apolipoprotein CI (apo CI) using the native gene joined to the downstream 154-bp liver-specific enhancer that we defined for apo E. Human apo CI (HuCI)-transgenic mice showed elevation of plasma triglycerides (mg/dl) compared to controls in both the fasted (211 +/- 81 vs 123 +/- 52, P = 0.0001) and fed (265 +/- 105 vs 146 +/- 68, P < 0.0001) states. Unlike the human apo CII (HuCII)- and apo CIII (HuCIII)-transgenic mouse models of hypertriglyceridemia, plasma cholesterol was disproportionately elevated (95 +/- 23 vs 73 +/- 23, P = 0.002, fasted and 90 +/- 24 vs 61 +/- 14, P < 0.0001, fed). Lipoprotein fractionation showed increased VLDL and IDL + LDL with an increased cholesterol/triglyceride ratio (0.114 vs 0.065, P = 0.02, in VLDL). The VLDL apo E/apo B ratio was decreased 3.4-fold (P = 0.05) and apo CII and apo CIII decreased in proportion to apo E. Triglyceride and apo B production rates were normal, but clearance rates of VLDL triglycerides and postlipolysis lipoprotein "remnants" were significantly slowed. Plasma apo B was significantly elevated. Unlike HuCII- and HuCIII-transgenic mice, VLDL from HuCI transgenic mice bound heparin-Sepharose, a model for cell-surface glycosaminoglycans, normally. In summary, apo CI overexpression is associated with decreased particulate uptake of apo B-containing lipoproteins, leading to increased levels of several potentially atherogenic species, including cholesterol-enriched VLDL, IDL, and LDL.
Collapse
Affiliation(s)
- N S Shachter
- Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, New York 10032, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Kardassis D, Laccotripe M, Talianidis I, Zannis V. Transcriptional regulation of the genes involved in lipoprotein transport. The role of proximal promoters and long-range regulatory elements and factors in apolipoprotein gene regulation. Hypertension 1996; 27:980-1008. [PMID: 8613278 DOI: 10.1161/01.hyp.27.4.980] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- D Kardassis
- Section of Molecular Genetics, Boston University MedicalCenter, MA 02118-2394, USA
| | | | | | | |
Collapse
|