1
|
Yang L, Wang X, Zheng JX, Xu ZR, Li LC, Xiong YL, Zhou BC, Gao J, Xu CR. Determination of key events in mouse hepatocyte maturation at the single-cell level. Dev Cell 2023; 58:1996-2010.e6. [PMID: 37557173 DOI: 10.1016/j.devcel.2023.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 02/10/2023] [Accepted: 07/14/2023] [Indexed: 08/11/2023]
Abstract
Hepatocytes, the liver's predominant cells, perform numerous essential biological functions. However, crucial events and regulators during hepatocyte maturation require in-depth investigation. In this study, we performed single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq) to explore the precise hepatocyte development process in mice. We defined three maturation stages of postnatal hepatocytes, each of which establishes specific metabolic functions and exhibits distinct proliferation rates. Hepatic zonation is gradually formed during hepatocyte maturation. Hepatocytes or their nuclei with distinct ploidies exhibit zonation preferences in distribution and asynchrony in maturation. Moreover, by combining gene regulatory network analysis with in vivo genetic manipulation, we identified critical maturation- and zonation-related transcription factors. This study not only delineates the comprehensive transcriptomic profiles of hepatocyte maturation but also presents a paradigm to identify genes that function in the development of hepatocyte maturation and zonation by combining genetic manipulation and measurement of coordinates in a single-cell developmental trajectory.
Collapse
Affiliation(s)
- Li Yang
- Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xin Wang
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Jia-Xi Zheng
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing 100044, China
| | - Zi-Ran Xu
- PKU-Tsinghua-NIBS Graduate Program, Peking University, Beijing 100871, China
| | - Lin-Chen Li
- Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yu-Long Xiong
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Bi-Chen Zhou
- Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Jie Gao
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing 100044, China
| | - Cheng-Ran Xu
- Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; State Key Laboratory of Female Fertility Promotion, Peking University, Beijing 100191, China.
| |
Collapse
|
2
|
Noguchi K, Dincman TA, Dalton AC, Howley BV, McCall BJ, Mohanty BK, Howe PH. Interleukin-like EMT inducer (ILEI) promotes melanoma invasiveness and is transcriptionally up-regulated by upstream stimulatory factor-1 (USF-1). J Biol Chem 2018; 293:11401-11414. [PMID: 29871931 PMCID: PMC6065179 DOI: 10.1074/jbc.ra118.003616] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/22/2018] [Indexed: 12/25/2022] Open
Abstract
Interleukin-like EMT inducer (ILEI, FAM3C) is a secreted factor that contributes to the epithelial-to-mesenchymal transition (EMT), a cell-biological process that confers metastatic properties to a tumor cell. However, very little is known about how ILEI is regulated. Here we demonstrate that ILEI is an in vivo regulator of melanoma invasiveness and is transcriptionally up-regulated by the upstream stimulatory factor-1 (USF-1), an E-box-binding, basic-helix-loop-helix family transcription factor. shRNA-mediated knockdown of ILEI in melanoma cell lines attenuated lung colonization but not primary tumor formation. We also identified the mechanism underlying ILEI transcriptional regulation, which was through a direct interaction of USF-1 with the ILEI promoter. Of note, stimulation of endogenous USF-1 by UV-mediated activation increased ILEI expression, whereas shRNA-mediated USF-1 knockdown decreased ILEI gene transcription. Finally, we report that knocking down USF-1 decreases tumor cell migration. In summary, our work reveals that ILEI contributes to melanoma cell invasiveness in vivo without affecting primary tumor growth and is transcriptionally up-regulated by USF-1.
Collapse
Affiliation(s)
- Ken Noguchi
- Department of Biochemistry and Molecular Biology, College of Medicine, Charleston, South Carolina 29425
| | - Toros A Dincman
- Department of Biochemistry and Molecular Biology, College of Medicine, Charleston, South Carolina 29425; Division of Hematology and Oncology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Annamarie C Dalton
- Department of Biochemistry and Molecular Biology, College of Medicine, Charleston, South Carolina 29425
| | - Breege V Howley
- Department of Biochemistry and Molecular Biology, College of Medicine, Charleston, South Carolina 29425
| | - Buckley J McCall
- Department of Biochemistry and Molecular Biology, College of Medicine, Charleston, South Carolina 29425
| | - Bidyut K Mohanty
- Department of Biochemistry and Molecular Biology, College of Medicine, Charleston, South Carolina 29425
| | - Philip H Howe
- Department of Biochemistry and Molecular Biology, College of Medicine, Charleston, South Carolina 29425; Hollings Cancer Center, Charleston, South Carolina 29425.
| |
Collapse
|
3
|
Gaspar C, Silva-Marrero JI, Salgado MC, Baanante IV, Metón I. Role of upstream stimulatory factor 2 in glutamate dehydrogenase gene transcription. J Mol Endocrinol 2018; 60:247-259. [PMID: 29438976 DOI: 10.1530/jme-17-0142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 02/08/2018] [Indexed: 12/18/2022]
Abstract
Glutamate dehydrogenase (Gdh) plays a central role in ammonia detoxification by catalysing reversible oxidative deamination of l-glutamate into α-ketoglutarate using NAD+ or NADP+ as cofactor. To gain insight into transcriptional regulation of glud, the gene that codes for Gdh, we isolated and characterised the 5' flanking region of glud from gilthead sea bream (Sparus aurata). In addition, tissue distribution, the effect of starvation as well as short- and long-term refeeding on Gdh mRNA levels in the liver of S. aurata were also addressed. 5'-Deletion analysis of glud promoter in transiently transfected HepG2 cells, electrophoretic mobility shift assays, chromatin immunoprecipitation (ChIP) and site-directed mutagenesis allowed us to identify upstream stimulatory factor 2 (Usf2) as a novel factor involved in the transcriptional regulation of glud Analysis of tissue distribution of Gdh and Usf2 mRNA levels by reverse transcriptase-coupled quantitative real-time PCR (RT-qPCR) showed that Gdh is mainly expressed in the liver of S. aurata, while Usf2 displayed ubiquitous distribution. RT-qPCR and ChIP assays revealed that long-term starvation down-regulated the hepatic expression of Gdh and Usf2 to similar levels and reduced Usf2 binding to glud promoter, while refeeding resulted in a slow but gradual restoration of both Gdh and Usf2 mRNA abundance. Herein, we demonstrate that Usf2 transactivates S. aurata glud by binding to an E-box located in the proximal region of glud promoter. In addition, our findings provide evidence for a new regulatory mechanism involving Usf2 as a key factor in the nutritional regulation of glud transcription in the fish liver.
Collapse
Affiliation(s)
- Carlos Gaspar
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Jonás I Silva-Marrero
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - María C Salgado
- Servei de Bioquímica Clínica, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Isabel V Baanante
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Isidoro Metón
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Glucose transporter 1( GLUT1 ) gene frequency distribution of Xba IG > T and Hae IIIT > C polymorphisms among different West Indian patients with type 2 diabetes mellitus. GENE REPORTS 2017. [DOI: 10.1016/j.genrep.2016.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Zhu J, Xu K, Zhang X, Cao J, Jia Z, Yang R, Ma C, Chen C, Zhang T, Yan Z. Studies on the regulation of lipid metabolism and its mechanism of the iridoids rich fraction in Valeriana jatamansi Jones. Biomed Pharmacother 2016; 84:1891-1898. [PMID: 27832992 DOI: 10.1016/j.biopha.2016.10.099] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 10/16/2016] [Accepted: 10/31/2016] [Indexed: 12/27/2022] Open
Abstract
Valeriana jatamansi Jones, a plant with heart-shaped leaves in the Valeriana genus of Valerianaceae, is widely used in Chinese folk medicine. Iridoid is an important constituent of V. jatamansi that contributes to the pharmacological efficacy of the herb. This study aims to investigate the regulation of lipid metabolism and its mechanism of the iridoids rich fraction in V. jatamansi (IRFV). A high fat diet was used to establish the hyperlipidemia rat model, with 2mg/kg/d of simvastatin as a positive control, fed with 7.5, 15, and 30mg/kg/d of IRFV for 20days to investigate the lipid regulation activity and mechanism of IRFV. Body weight, liver index, total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) in both serum and liver, as well as total bile acid (TBA), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) in serum were measured. The lipoprotein lipase (LPL) and hepatic lipase (HL) activities and the apoprotein A5 (ApoA5), peroxisome proliferator-activated receptor α (PPAR-α), sterol regulatory element-binding proteins (SREBP-1c), and liver X receptor α (LXR-α) protein expressions were observed. Liver pathology was described through hematoxylin-eosin (HE) staining. Compared with the model group, three different IRFV dosages can slow down the weight gain of rats, reduce the contents of TG, and increase the contents of HDL-C in serum. Low IRFV dosage can significantly reduce the AST and ALT contents in serum, liver index, and the TG contents in liver, enhance LPL activity. Medium IRFV dosage can significantly decrease the TG and LDL-C contents in liver. High IRFV dosage can significantly reduce LDL-C, TBA, AST, and ALT contents in serum, and enhance HL activity. Three different IRFV dosages can significantly increase the ApoA5 and PPAR-α protein expression and decrease the SREBP-1c protein expression. Furthermore, the LXR-α protein expression decreased in low- and high-dose groups. Liver tissue pathological observation showed that IRFV can improve cell degeneration to a certain extent. These results strongly suggest that IRFV play significant roles in regulating lipid metabolism, the mechanism may be related to the increased ApoA5 protein expression.
Collapse
Affiliation(s)
- Jiali Zhu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Keke Xu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Xuemei Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Jiahong Cao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Zhanrong Jia
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Ruocong Yang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Chaoying Ma
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Chang Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Tiane Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine,Chengdu 611137, PR China.
| | - Zhiyong Yan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China.
| |
Collapse
|
6
|
Laurila PP, Soronen J, Kooijman S, Forsström S, Boon MR, Surakka I, Kaiharju E, Coomans CP, Van Den Berg SAA, Autio A, Sarin AP, Kettunen J, Tikkanen E, Manninen T, Metso J, Silvennoinen R, Merikanto K, Ruuth M, Perttilä J, Mäkelä A, Isomi A, Tuomainen AM, Tikka A, Ramadan UA, Seppälä I, Lehtimäki T, Eriksson J, Havulinna A, Jula A, Karhunen PJ, Salomaa V, Perola M, Ehnholm C, Lee-Rueckert M, Van Eck M, Roivainen A, Taskinen MR, Peltonen L, Mervaala E, Jalanko A, Hohtola E, Olkkonen VM, Ripatti S, Kovanen PT, Rensen PCN, Suomalainen A, Jauhiainen M. USF1 deficiency activates brown adipose tissue and improves cardiometabolic health. Sci Transl Med 2016; 8:323ra13. [PMID: 26819196 DOI: 10.1126/scitranslmed.aad0015] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
USF1 (upstream stimulatory factor 1) is a transcription factor associated with familial combined hyperlipidemia and coronary artery disease in humans. However, whether USF1 is beneficial or detrimental to cardiometabolic health has not been addressed. By inactivating USF1 in mice, we demonstrate protection against diet-induced dyslipidemia, obesity, insulin resistance, hepatic steatosis, and atherosclerosis. The favorable plasma lipid profile, including increased high-density lipoprotein cholesterol and decreased triglycerides, was coupled with increased energy expenditure due to activation of brown adipose tissue (BAT). Usf1 inactivation directs triglycerides from the circulation to BAT for combustion via a lipoprotein lipase-dependent mechanism, thus enhancing plasma triglyceride clearance. Mice lacking Usf1 displayed increased BAT-facilitated, diet-induced thermogenesis with up-regulation of mitochondrial respiratory chain complexes, as well as increased BAT activity even at thermoneutrality and after BAT sympathectomy. A direct effect of USF1 on BAT activation was demonstrated by an amplified adrenergic response in brown adipocytes after Usf1 silencing, and by augmented norepinephrine-induced thermogenesis in mice lacking Usf1. In humans, individuals carrying SNP (single-nucleotide polymorphism) alleles that reduced USF1 mRNA expression also displayed a beneficial cardiometabolic profile, featuring improved insulin sensitivity, a favorable lipid profile, and reduced atherosclerosis. Our findings identify a new molecular link between lipid metabolism and energy expenditure, and point to the potential of USF1 as a therapeutic target for cardiometabolic disease.
Collapse
Affiliation(s)
- Pirkka-Pekka Laurila
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki FI-00251, Finland. Department of Medical Genetics, University of Helsinki, Helsinki FI-00014, Finland. Institute for Molecular Medicine Finland, FIMM, Helsinki FI-00251, Finland.
| | - Jarkko Soronen
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki FI-00251, Finland. Institute for Molecular Medicine Finland, FIMM, Helsinki FI-00251, Finland. Minerva Foundation Institute for Medical Research, Helsinki FI-00290, Finland
| | - Sander Kooijman
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden 2333 ZA, Netherlands. Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden 2333 ZA, Netherlands
| | - Saara Forsström
- Molecular Neurology, Research Programs Unit, University of Helsinki, Helsinki FI-00014, Finland
| | - Mariëtte R Boon
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden 2333 ZA, Netherlands. Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden 2333 ZA, Netherlands
| | - Ida Surakka
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki FI-00251, Finland. Institute for Molecular Medicine Finland, FIMM, Helsinki FI-00251, Finland
| | - Essi Kaiharju
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki FI-00251, Finland
| | - Claudia P Coomans
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden 2333 ZA, Netherlands. Department of Molecular Cell Biology, Leiden University Medical Center, Leiden 2333 ZA, Netherlands
| | | | - Anu Autio
- Turku PET Centre, University of Turku and Turku University Hospital, Turku FI-20520, Finland
| | - Antti-Pekka Sarin
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki FI-00251, Finland. Institute for Molecular Medicine Finland, FIMM, Helsinki FI-00251, Finland
| | - Johannes Kettunen
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki FI-00251, Finland. Institute for Molecular Medicine Finland, FIMM, Helsinki FI-00251, Finland. Computational Medicine, Institute of Health Sciences, University of Oulu and Oulu University Hospital, Oulu FI-90014, Finland
| | - Emmi Tikkanen
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki FI-00251, Finland. Institute for Molecular Medicine Finland, FIMM, Helsinki FI-00251, Finland. Hjelt Institute, University of Helsinki, Helsinki FI-00014, Finland
| | - Tuula Manninen
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki FI-00251, Finland. Molecular Neurology, Research Programs Unit, University of Helsinki, Helsinki FI-00014, Finland
| | - Jari Metso
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki FI-00251, Finland
| | | | - Krista Merikanto
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki FI-00251, Finland
| | - Maija Ruuth
- Wihuri Research Institute, Helsinki FI-00290, Finland
| | - Julia Perttilä
- Minerva Foundation Institute for Medical Research, Helsinki FI-00290, Finland
| | - Anne Mäkelä
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu FI-90014, Finland
| | - Ayaka Isomi
- Hiroshima University, Hiroshima 730-0053, Japan
| | - Anita M Tuomainen
- Institute of Dentistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Anna Tikka
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki FI-00251, Finland
| | - Usama Abo Ramadan
- Experimental MRI Laboratory, Department of Neurology, Helsinki University Central Hospital, Helsinki FI-00290, Finland
| | - Ilkka Seppälä
- Department of Clinical Chemistry, Fimlab Laboratories, and Tampere University School of Medicine, Tampere FI-33014, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, and Tampere University School of Medicine, Tampere FI-33014, Finland
| | - Johan Eriksson
- Department of Health, National Institute for Health and Welfare, Helsinki FI-00271, Finland. Folkhälsan Research Centre, Helsinki FI-00251, Finland. Unit of General Practice, Helsinki University Central Hospital, Helsinki FI-00290, Finland. Department of General Practice and Primary Health Care, University of Helsinki, Helsinki FI-00014, Finland
| | - Aki Havulinna
- Department of Health, National Institute for Health and Welfare, Helsinki FI-00271, Finland
| | - Antti Jula
- Department of Health, National Institute for Health and Welfare, Helsinki FI-00271, Finland
| | - Pekka J Karhunen
- Department of Clinical Chemistry, Fimlab Laboratories, and Tampere University School of Medicine, Tampere FI-33014, Finland
| | - Veikko Salomaa
- Department of Health, National Institute for Health and Welfare, Helsinki FI-00271, Finland
| | - Markus Perola
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki FI-00251, Finland
| | - Christian Ehnholm
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki FI-00251, Finland
| | | | - Miranda Van Eck
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden 2333 ZA, Netherlands
| | - Anne Roivainen
- Turku PET Centre, University of Turku and Turku University Hospital, Turku FI-20520, Finland. Turku Center for Disease Modeling, University of Turku, Turku FI-20520, Finland
| | - Marja-Riitta Taskinen
- Diabetes and Obesity Research Program, University of Helsinki, Helsinki FI-00014, Finland
| | | | - Eero Mervaala
- Institute of Biomedicine, University of Helsinki, Helsinki FI-00014, Finland
| | - Anu Jalanko
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki FI-00251, Finland
| | - Esa Hohtola
- Department of Genetics and Physiology, University of Oulu, Oulu FI-90014, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Helsinki FI-00290, Finland
| | - Samuli Ripatti
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki FI-00251, Finland. Institute for Molecular Medicine Finland, FIMM, Helsinki FI-00251, Finland. Hjelt Institute, University of Helsinki, Helsinki FI-00014, Finland. Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | | | - Patrick C N Rensen
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden 2333 ZA, Netherlands. Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden 2333 ZA, Netherlands
| | - Anu Suomalainen
- Molecular Neurology, Research Programs Unit, University of Helsinki, Helsinki FI-00014, Finland. Department of Neurology, Helsinki University Central Hospital, Helsinki FI-00290, Finland. Neuroscience Center, University of Helsinki, Helsinki FI-00014, Finland
| | - Matti Jauhiainen
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki FI-00251, Finland.
| |
Collapse
|
7
|
Horbach T, Chi TF, Götz C, Sharma S, Juffer AH, Dimova EY, Kietzmann T. GSK3β-dependent phosphorylation alters DNA binding, transactivity and half-life of the transcription factor USF2. PLoS One 2014; 9:e107914. [PMID: 25238393 PMCID: PMC4169611 DOI: 10.1371/journal.pone.0107914] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/21/2014] [Indexed: 12/13/2022] Open
Abstract
The upstream stimulatory factor 2 (USF2) is a regulator of important cellular processes and is supposed to have also a role during tumor development. However, the knowledge about the mechanisms that control the function of USF2 is limited. The data of the current study show that USF2 function is regulated by phosphorylation and identified GSK3β as an USF2-phosphorylating kinase. The phosphorylation sites within USF2 could be mapped to serine 155 and threonine 230. In silico analyses of the 3-dimensional structure revealed that phosphorylation of USF2 by GSK3β converts it to a more open conformation which may influence transactivity, DNA binding and target gene expression. Indeed, experiments with GSK-3β-deficient cells revealed that USF2 transactivity, DNA binding and target gene expression were reduced upon lack of GSK3β. Further, experiments with USF2 variants mimicking GSK3β phosphorylated USF2 in GSK3β-deficient cells showed that phosphorylation of USF2 by GSK3β did not affect cell proliferation but increased cell migration. Together, this study reports a new mechanism by which USF2 may contribute to cancerogenesis.
Collapse
Affiliation(s)
- Tina Horbach
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
- Department of Chemistry, University of Kaiserslautern, Kaiserslautern, Germany
| | - Tabughang Franklin Chi
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Claudia Götz
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Satyan Sharma
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - André H. Juffer
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Elitsa Y. Dimova
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
- * E-mail:
| |
Collapse
|
8
|
Cui W, Du B, Zhou W, Jia Y, Sun G, Sun J, Zhang D, Yuan H, Xu F, Lu X, Luo P, Miao L. Relationship between five GLUT1 gene single nucleotide polymorphisms and diabetic nephropathy: a systematic review and meta-analysis. Mol Biol Rep 2012; 39:8551-8. [PMID: 22707195 DOI: 10.1007/s11033-012-1711-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Accepted: 06/06/2012] [Indexed: 12/20/2022]
Abstract
So far, case-control studies on the association between glucose transporter 1 (GLUT1) gene single nucleotide polymorphisms (SNPs) and diabetic nephropathy (DN) have generated considerable controversy. To clarify the linkage of GLUT1 SNPs on the risk of DN, a systematic review and meta-analysis was performed. A comprehensive literature search of electronic databases was conducted to obtain relative studies. Nine case-control studies were included. Significant differences were found between XbaI SNP (rs841853) and increased risk of DN in all genetic models. Subgroup analyses for Caucasians population and DN from both type 1 and type 2 diabetes also revealed positive results. For Enh2-1 SNP (rs841847), Enh2-2 SNP (rs841848) and HaeIII SNP (rs1385129), obvious linkages were demonstrated in recessive model. However, analysis for the association between HpyCH4V SNP (rs710218) and the susceptibility of DN showed no significance. Likewise, negative outcome was also found in the assessment for the influence of XbaI or Enh2-2 SNP on the pathogenesis progress of DN. The evidence currently available shows that XbaI, Enh2 and HaeIII SNPs, but not HpyCH4V SNP, in GLUT1 gene may be genetic susceptibility to DN. However, data does not support the association between either XbaI or Enh2-2 SNP and the severity of DN.
Collapse
Affiliation(s)
- Wenpeng Cui
- Department of Nephrology, Second Hospital, Jilin University, 218 Ziqiang Street, Changchun 130041, Jilin, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Pandey V, Chaube B, Bhat MK. Hyperglycemia regulates MDR-1, drug accumulation and ROS levels causing increased toxicity of carboplatin and 5-fluorouracil in MCF-7 cells. J Cell Biochem 2011; 112:2942-52. [DOI: 10.1002/jcb.23210] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Hsu CC, Kao WL, Steffes MW, Gambir T, Brancati FL, Heilig CW, Shuldiner AR, Boerwinkle EA, Coresh J. Genetic variation of glucose transporter-1 (GLUT1) and albuminuria in 10,278 European Americans and African Americans: a case-control study in the Atherosclerosis Risk in Communities (ARIC) study. BMC MEDICAL GENETICS 2011; 12:16. [PMID: 21247498 PMCID: PMC3034664 DOI: 10.1186/1471-2350-12-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 01/19/2011] [Indexed: 11/10/2022]
Abstract
Background Evidence suggests glucose transporter-1(GLUT1) genetic variation affects diabetic nephropathy and albuminuria. Our aim was to evaluate associations with albuminuria of six GLUT1 single nucleotide polymorphisms(SNPs), particularly XbaI and the previously associated Enhancer-2(Enh2) SNP. Methods A two-stage case-control study was nested in a prospective cohort study of 2156 African Americans and 8122 European Americans with urinary albumin-to-creatinine ratio(ACR). Cases comprised albuminuria(N = 825; ≥ 30 μg/mg) and macroalbuminuria(N = 173; ≥ 300 μg/mg). ACR < 30 μg/mg classified controls(n = 9453). Logistic regression and odds ratios(OR) assessed associations. The evaluation phase(stage 1, n = 2938) tested associations of albuminuria(n = 305) with six GLUT1 SNPs: rs841839, rs3768043, rs2297977, Enh2(rs841847) XbaI(rs841853), and rs841858. Enh2 was examined separately in the replication phase(stage 2, n = 7340) and the total combined sample (n = 10,278), with all analyses stratified by race and type 2 diabetes. Results In European Americans, after adjusting for diabetes and other GLUT1 SNPs in stage 1, Enh2 risk genotype(TT) was more common in albuminuric cases(OR = 3.37, P = 0.090) whereas XbaI (OR = 0.94, p = 0.931) and remaining SNPs were not. In stage 1, the Enh2 association with albuminuria was significant among diabetic European Americans(OR = 2.36, P = 0.025). In African Americans, Enh2 homozygosity was rare(0.3%); XbaI was common(18.0% AA) and not associated with albuminuria. In stage 2(n = 7,340), Enh2 risk genotype had increased but non-significant OR among diabetic European Americans(OR = 1.66, P = 0.192) and not non-diabetics(OR = 0.99, p = 0.953), not replicating stage 1. Combining stages 1 and 2, Enh2 was associated with albuminuria(OR 2.14 [1.20-3.80], P = 0.009) and macroalbuminuria(OR 2.69, [1.02-7.09], P = 0.045) in diabetic European Americans. The Enh2 association with macroalbuminuria among non-diabetic European Americans with fasting insulin(OR = 1.84, P = 0.210) was stronger at the highest insulin quartile(OR = 4.08, P = 0.040). Conclusions As demonstrated with type 1 diabetic nephropathy, the GLUT1 Enh2 risk genotype, instead of XbaI, may be associated with type 2 diabetic albuminuria among European Americans, though an association is not conclusive. The association among diabetic European Americans found in stage 1 was not replicated in stage 2; however, this risk association was evident after combining all diabetic European Americans from both stages. Additionally, our results suggest this association may extend to non-diabetics with high insulin concentrations. Rarity of the Enh2 risk genotype among African Americans precludes any definitive conclusions, although data suggest a risk-enhancing role.
Collapse
Affiliation(s)
- Charles C Hsu
- Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Naukkarinen J, Nilsson E, Koistinen HA, Söderlund S, Lyssenko V, Vaag A, Poulsen P, Groop L, Taskinen MR, Peltonen L. Functional variant disrupts insulin induction of USF1: mechanism for USF1-associated dyslipidemias. ACTA ACUST UNITED AC 2009; 2:522-9. [PMID: 20031629 DOI: 10.1161/circgenetics.108.840421] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The upstream transcription factor 1 (USF1) gene is associated with familial combined hyperlipidemia, the most common genetic dyslipidemia in humans, as well as with various dyslipidemic changes in numerous other studies. Typical of complex disease-associated genes, neither the explicit mutations have been described nor the functional consequences for risk allele carriers been reported at the cellular or tissue level. METHODS AND RESULTS In this study, we aimed at describing the molecular mechanism through which the strongest associating intronic single-nucleotide polymorphism variant in USF1 is involved in the development of dyslipidemia. The effects of the risk variant on gene expression were studied in 2 relevant human tissues, fat and muscle. Global transcript profiles of 47 fat biopsies ascertained for carriership of the risk allele were tested for differential expression of known USF1 target genes as well as for broader effects on the transcript profile. Allelic imbalance of USF1 in fat was assessed using a quantitative sequencing approach. The possible allele-specific effect of insulin on the expression of USF1 was studied in 118 muscle biopsies before and after a euglycemic hyperinsulinemic clamp. The risk allele of single-nucleotide polymorphism rs2073658 seems to eradicate the inductive effect of insulin on the expression of USF1 in muscle and fat. The expression of numerous target genes is in turn perturbed in adipose tissue. CONCLUSIONS In risk allele carriers, a defective response of USF1 to insulin results in the suboptimal response of relevant target genes that contributes to the enhanced risk of developing dyslipidemia and coronary heart disease.
Collapse
Affiliation(s)
- Jussi Naukkarinen
- Institute for Molecular Medicine Finland (FIMM), National Institute for Health and Welfare, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Samoylenko A, Dimova EY, Horbach T, Teplyuk N, Immenschuh S, Kietzmann T. Opposite expression of the antioxidant heme oxygenase-1 in primary cells and tumor cells: regulation by interaction of USF-2 and Fra-1. Antioxid Redox Signal 2008; 10:1163-74. [PMID: 18331200 DOI: 10.1089/ars.2007.1968] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Heme oxygenase-1 is the rate-limiting enzyme for the degradation of the prooxidant heme. Previously, we showed that an E-box within the HO-1 promoter is crucial for the regulation of HO-1 expression in primary hepatocytes. Further to investigate the importance of this E-box, we determined the regulatory capacity of the E-box-binding factor USF-2 in primary cells in comparison with transformed cell lines. We found that HO-1 expression was inhibited by USF-2 in primary cells, whereas it was induced in tumor cell lines. Mutation of either the E-box or the AP-1 site within the HO-1 promoter only partially affected the USF-dependent regulation. However, this regulation was dramatically reduced in tumor cells and completely abolished in primary cells transfected with an HO-1 promoter construct containing mutations in both the E-box and the AP-1 site, suggesting that AP-1 factors and USF-2 may act in a cooperative manner. Indeed, protein-protein interaction studies revealed that USF proteins interacted with Fra-1. Further, the USF-dependent HO-1 promoter activity was not detectable with an USF-2 mutant lacking residues of the USF-specific region (USR) or the transactivation domain encoded by exon 4. Together, these data suggest that USF-2 has opposite regulatory roles for HO-1 gene expression in primary cells and tumor cell lines.
Collapse
Affiliation(s)
- Anatoly Samoylenko
- Department of Biochemistry, University of Kaiserslautern, Kaiserslautern, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Glucose Regulates the Expression of the Apolipoprotein A5 Gene. J Mol Biol 2008; 380:789-98. [DOI: 10.1016/j.jmb.2008.04.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 04/22/2008] [Accepted: 04/23/2008] [Indexed: 11/23/2022]
|
14
|
Turturro F, Von Burton G, Friday E. Hyperglycemia-induced thioredoxin-interacting protein expression differs in breast cancer-derived cells and regulates paclitaxel IC50. Clin Cancer Res 2007; 13:3724-30. [PMID: 17575238 DOI: 10.1158/1078-0432.ccr-07-0244] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE We studied the hyperglycemia-induced expression of thioredoxin-interacting protein (TXNIP) expression and its relevance on the cytotoxic activity of paclitaxel in mammary epithelial-derived cell lines. EXPERIMENTAL DESIGN Nontumorigenic cells (MCF10A); tumorigenic, nonmetastatic cells (MCF-7/T47D); and tumorigenic, metastatic cells (MDA-MB-231/MDA-MB-435s) were grown either in 5 or 20 mmol/L glucose chronically. Semiquantitative reverse transcription-PCR was used to assess TXNIP RNA expression in response to glucose. Reactive oxygen species were detected by CM-H2DCFDA (5-6-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate) and measured for mean fluorescence intensity with flow cytometry. Thioredoxin activity was assayed by the insulin disulfide-reducing assay. Proliferation was evaluated using CellTiter96 reagent with 490-nm absorption. Obtained absorbance values were used to calculate the paclitaxel IC(50) in 5 or 20 mmol/L glucose using the Chou's dose-effect equation. RESULTS We show that hyperglycemia by itself affects the level of TXNIP RNA in breast cancer-derived cells. TXNIP RNA level differs between nontumorigenic/nonmetastatic, tumorigenic cells (low TXNIP level), and metastatic cells (high TXNIP level). The differences in TXNIP RNA level, in reactive oxygen species level, and in thioredoxin activity are all related. We further show that hyperglycemia is a favorable condition in increasing the paclitaxel cytotoxicity by causing IC(50) 3-fold decrease in metastatic breast cancer-derived MDA-MB-231 cells. The increased paclitaxel cytotoxicity is associated with an additive effect on the hyperglycemia-mediated TXNIP expression more evident in conditions of hyperglycemia than normoglycemia. CONCLUSIONS Our study opens a new perspective on the relevance of metabolic conditions of hyperglycemia in the biology and treatment of cancer, particularly in view of the epidemic of diabetes.
Collapse
Affiliation(s)
- Francesco Turturro
- Department of Medicine, Feist-Weiller Cancer Center, Louisiana State University Health Science Center, Shreveport, Louisiana 71103, USA.
| | | | | |
Collapse
|
15
|
Turturro F, Friday E, Welbourne T. Hyperglycemia regulates thioredoxin-ROS activity through induction of thioredoxin-interacting protein (TXNIP) in metastatic breast cancer-derived cells MDA-MB-231. BMC Cancer 2007; 7:96. [PMID: 17555594 PMCID: PMC1906826 DOI: 10.1186/1471-2407-7-96] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Accepted: 06/07/2007] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND We studied the RNA expression of the genes in response to glucose from 5 mM (condition of normoglycemia) to 20 mM (condition of hyperglycemia/diabetes) by microarray analysis in breast cancer derived cell line MDA-MB-231. We identified the thioredoxin-interacting protein (TXNIP), whose RNA level increased as a gene product particularly sensitive to the variation of the level of glucose in culture media. We investigated the kinesis of the TXNIP RNA and protein in response to glucose and the relationship between this protein and the related thioredoxin (TRX) in regulating the level of reactive oxygen species (ROS) in MDA-MB-231 cells. METHODS MDA-MB-231 cells were grown either in 5 or 20 mM glucose chronically prior to plating. For glucose shift (5/20), cells were plated in 5 mM glucose and shifted to 20 mM at time 0. Cells were analyzed with Affymetrix Human U133A microarray chip and gene expression profile was obtained. Semi-quantitative RT-PCR and Western blot was used to validate the expression of TXNIP RNA and protein in response to glucose, respectively. ROS were detected by CM-H2DCFDA (5-6-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate) and measured for mean fluorescence intensity with flow cytometry. TRX activity was assayed by the insulin disulfide reducing assay. RESULTS We found that the regulation of TXNIP gene expression by glucose in MDA-MB-231 cells occurs rapidly within 6 h of its increased level (20 mM glucose) and persists through the duration of the conditions of hyperglycemia. The increased level of TXNIP RNA is followed by increased level of protein that is associated with increasing levels of ROS and reduced TRX activity. The inhibition of the glucose transporter GLUT1 by phloretin notably reduces TXNIP RNA level and the inhibition of the p38 MAP kinase activity by SB203580 reverses the effects of TXNIP on ROS-TRX activity. CONCLUSION In this study we show that TXNIP is an oxidative stress responsive gene and its expression is exquisitely regulated by glucose level in highly metastatic MDA-MB-231 cells.
Collapse
Affiliation(s)
- Francesco Turturro
- Department of Medicine, Feist-Weiller Cancer Center, Louisiana State University Health Science Center, 1501 Kings Highway, Shreveport, Louisiana, 70103, USA
- Gene Therapy Program, Louisiana State University Health Science Center, 1501 Kings Highway, Shreveport, Louisiana, 70103, USA
| | - Ellen Friday
- Department of Medicine, Feist-Weiller Cancer Center, Louisiana State University Health Science Center, 1501 Kings Highway, Shreveport, Louisiana, 70103, USA
- Gene Therapy Program, Louisiana State University Health Science Center, 1501 Kings Highway, Shreveport, Louisiana, 70103, USA
| | - Tomas Welbourne
- Department of Molecular and Cellular Physiology, Louisiana State University Health Science Center, 1501 Kings Highway, Shreveport, Louisiana, 70103, USA
| |
Collapse
|
16
|
Ghoneim C, Soula-Rothhut M, Blanchevoye C, Martiny L, Antonicelli F, Rothhut B. Activating Transcription Factor-1-mediated Hepatocyte Growth Factor-induced Down-regulation of Thrombospondin-1 Expression Leads to Thyroid Cancer Cell Invasion. J Biol Chem 2007; 282:15490-7. [PMID: 17409099 DOI: 10.1074/jbc.m610586200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hepatocyte growth factor (HGF) plays a major role in the pathogenesis of a variety of human epithelial tumors including papillary carcinoma of the thyroid. Previous reports demonstrated that HGF, acting through the Met receptor, repressed thrombospondin-1 (TSP-1) expression. To study the mechanisms by which HGF down-regulated TSP-1 expression, we transiently transfected a panel of deleted human TSP-1 promoter reporter plasmids into papillary thyroid carcinoma cells. We identified a region between -1210 and -1123 bp relative to the transcription start site that is responsive to HGF treatment and harbors a cAMP-responsive element (CRE) at position -1199 (TGACGTCC). Overexpression of various members of the CRE-binding protein family identified activating transcription factor-1 (ATF-1) as the transcription factor responsible for HGF-induced repression of TSP-1 promoter activity. This inhibition was associated with a concomitant increase in the abundance of nuclear ATF-1 protein. Gel shift and antibody supershift studies indicated that ATF-1 was involved in DNA binding to the TSP-1-CRE site. Finally, we utilized small hairpin RNA to target ATF-1 and showed that these small interfering RNA constructs significantly inhibited ATF-1 expression at both the RNA and the protein level. ATF-1 knockdown prevented HGF-induced down-regulation of TSP-1 promoter activity and protein expression and also reduced HGF-dependent tumor cell invasion. Taken together, our results indicate that HGF-induced down-regulation of TSP-1 expression is mediated by the interaction of ATF-1 with the CRE binding site in the TSP-1 promoter and that this transcription factor plays a crucial role for tumor invasiveness in papillary carcinoma of the thyroid triggered by HGF.
Collapse
Affiliation(s)
- Christelle Ghoneim
- Unité Matrice Extracellulaire et Régulations Cellulaires, Laboratory of Biochemistry, Université de Reims Champagne Ardenne (URCA), CNRS, 51687 Reims, France
| | | | | | | | | | | |
Collapse
|
17
|
Bayele HK, McArdle H, Srai SKS. Cis and trans regulation of hepcidin expression by upstream stimulatory factor. Blood 2006; 108:4237-45. [PMID: 16902156 DOI: 10.1182/blood-2005-07-027037] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
AbstractHepcidin is the presumed negative regulator of systemic iron levels; its expression is induced in iron overload, infection, and inflammation, and by cytokines, but is suppressed in hypoxia and anemia. Although the gene is exquisitely sensitive to changes in iron status in vivo, its mRNA is devoid of prototypical iron-response elements, and it is therefore not obvious how it may be regulated by iron flux. The multiplicity of effectors of its expression also suggests that the transcriptional circuitry controlling the gene may be very complex indeed. In delineating enhancer elements within both the human and mouse hepcidin gene promoters, we show here that members of the basic helix-loop-helix leucine zipper (bHLH-ZIP) family of transcriptional regulators control hepcidin expression. The upstream stimulatory factor 2 (USF2), previously linked to hepcidin through gene ablation in inbred mice, appears to exert a polar or cis-acting effect, while USF1 may act in trans to control hepcidin expression. In mice, we found variation in expression of both hepcidin genes, driven by these transcription factors. In addition, c-Myc and Max synergize to control the expression of this hormone, supporting previous findings for the role of this couple in regulating iron metabolism. Transcriptional activation by both USF1/USF2 and c-Myc/Max heterodimers occurs through E-boxes within the promoter. Site-directed mutagenesis of these elements rendered the promoter unresponsive to USF1/USF2 or c-Myc/Max. Dominant-negative mutants of USF1 and USF2 reciprocally attenuated promoter transactivation by both wild-type USF1 and USF2. Promoter occupancy by the transcription factors was confirmed by DNA-binding and chromatin immunoprecipitation assays. Taken together, it would appear that synergy between these members of the bHLH-ZIP family of transcriptional regulators may subserve an important role in iron metabolism as well as other pathways in which hepcidin may be involved.
Collapse
Affiliation(s)
- Henry K Bayele
- Department of Biochemistry & Molecular Biology, University College London, NW3 2PF, United Kingdom
| | | | | |
Collapse
|
18
|
Qi L, Allen RR, Lu Q, Higgins CE, Garone R, Staiano-Coico L, Higgins PJ. PAI-1 transcriptional regulation during the G0 --> G1 transition in human epidermal keratinocytes. J Cell Biochem 2006; 99:495-507. [PMID: 16622840 DOI: 10.1002/jcb.20885] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Plasminogen activator inhibitor type-1 (PAI-1) is the major negative regulator of the plasmin-dependent pericellular proteolytic cascade. PAI-1 gene expression is normally growth state regulated but frequently elevated in chronic fibroproliferative and neoplastic diseases affecting both stromal restructuring and cellular migratory activities. Kinetic modeling of cell cycle transit in synchronized human keratinocytes (HaCaT cells) indicated that PAI-1 transcription occurred early after serum stimulation of quiescent (G0) cells and prior to entry into a cycling G1 condition. PAI-1 repression (in G0) was associated with upstream stimulatory factor-1 (USF-1) occupancy of two consensus E box motifs (5'-CACGTG-3') at the PE1 and PE2 domains in the PF1 region (nucleotides -794 to -532) of the PAI-1 promoter. Chromatin immunoprecipitation (ChIP) analysis established that the PE1 and PE2 site E boxes were occupied by USF-1 in quiescent cells and by USF-2 in serum-activated, PAI-1-expressing keratinocytes. This reciprocal and growth state-dependent residence of USF family members (USF-1 vs. USF-2) at PE1/PE2 region chromatin characterized the G0 --> G1 transition period and the transcriptional status of the PAI-1 gene. A consensus E box motif was required for USF/E box interactions, as a CG --> AT substitution at the two central nucleotides inhibited formation of USF/probe complexes. The 5' flanking sites (AAT or AGAC) in the PE2 segment were not necessary for USF binding. USF recognition of the PE1/PE2 region E box sites required phosphorylation with several potential involved residues, including T153, maping to the USF-specific region (USR). A T153A substitution in USF-1 did not repress serum-induced PAI-1 expression whereas the T153D mutant was an effective suppressor. As anticipated from the ChIP results, transfection of wild-type USF-2 failed to inhibit PAI-1 induction. Collectively, these data suggest that USF family members are important regulators of PAI-1 gene control during serum-stimulated recruitment of quiescent human epithelial cells into the growth cycle.
Collapse
Affiliation(s)
- Li Qi
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York 12208, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Dimova EY, Kietzmann T. Cell type-dependent regulation of the hypoxia-responsive plasminogen activator inhibitor-1 gene by upstream stimulatory factor-2. J Biol Chem 2005; 281:2999-3005. [PMID: 16330554 DOI: 10.1074/jbc.m512078200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcriptional regulation of the plasminogen activator inhibitor type-1 (PAI-1) gene is an important issue since PAI-1 plays a crucial role in various pathological conditions. The transcription factor USF-2 was shown to be a negative regulator for rat PAI-1 expression, and therefore it was the aim of this study to evaluate the role of USF-2 for human PAI-1 expression. We found in human hepatoma cells (HepG2) that USF-2 induced human PAI-1 expression via two classical E-boxes and the hypoxia-responsive element (HRE) within the promoter. Gel-shift analyses showed that E-box 4 and E-box 5 bound USFs, and although the HRE contributed to the USF-dependent effects, it did not bind them. By contrast, USF-2 inhibited PAI-1 promoter activity in primary rat hepatocytes suggesting that PAI-1 expression depends on either the promoter context or USF activity which might be cell type-specific. Cotransfection of human or rat PAI-1 promoter luciferase constructs with expression vectors for wild-type USF-2 or USF-2 mutants in human HepG2 and rat H4IIE cells as well as in primary rat hepatocytes revealed that the effects of USF on PAI-1 expression depend on the cell type rather than the promoter context and that the USF-specific region domain of USF accounts for the observed cell type-specific effects.
Collapse
Affiliation(s)
- Elitsa Y Dimova
- Department of Biochemistry, Faculty of Chemistry, University of Kaiserslautern, D-67663 Kaiserslautern, Germany.
| | | |
Collapse
|
20
|
Naukkarinen J, Gentile M, Soro-Paavonen A, Saarela J, Koistinen HA, Pajukanta P, Taskinen MR, Peltonen L. USF1 and dyslipidemias: converging evidence for a functional intronic variant. Hum Mol Genet 2005; 14:2595-605. [PMID: 16076849 DOI: 10.1093/hmg/ddi294] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Upstream transcription factor 1 (USF1), the first gene associated with familial combined hyperlipidemia (FCHL), regulates numerous genes of glucose and lipid metabolism. Phenotypic overlap between FCHL, type 2 diabetes and the metabolic syndrome makes this gene an intriguing candidate in the disease process of these traits as well. As no disease-associated mutations in the coding region of USF1 have been identified, we addressed the functional role of intronic single nucleotide polymorphisms (SNPs) which define the FCHL-risk alleles of USF1, and identified that a 20 bp DNA sequence, containing the critical intronic SNP, binds nuclear protein(s), representing a likely transcriptional regulatory element. This functional role is further supported by the differential expression of USF1-regulated genes in fat biopsy between individuals carrying different allelic variants of USF1. Importantly, apolipoprotein E (APOE) is the most downregulated gene in the risk individuals, linking the potential risk alleles of USF1 with the impaired APOE-dependent catabolism of atherogenic lipoprotein particles.
Collapse
Affiliation(s)
- Jussi Naukkarinen
- Department of Molecular Medicine, National Public Health Institute, Finland
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Wijayanti N, Kietzmann T, Immenschuh S. Heme Oxygenase-1 Gene Activation by the NAD(P)H Oxidase Inhibitor 4-(2-Aminoethyl) Benzenesulfonyl Fluoride via a Protein Kinase B, p38-dependent Signaling Pathway in Monocytes. J Biol Chem 2005; 280:21820-9. [PMID: 15833736 DOI: 10.1074/jbc.m502943200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Heme oxygenase (HO)-1 is the inducible isoform of the rate-limiting enzyme of heme degradation and modulates the inflammatory immune response. Because HO-1 is up-regulated by NAD(P)H oxidase activators such as lipopolysaccharide and 12-O-tetradecanoylphorbol-13-acetate in monocytic cells, we investigated the gene regulation of HO-1 by the chemical NAD(P)H oxidase inhibitor 4-(2-aminoethyl) benzenesulfonyl fluoride (AEBSF). Unexpectedly, AEBSF induced endogenous gene expression and promoter activity of HO-1 in cell cultures of human and mouse monocytes. Inhibition of the phosphatidylinositol 3-kinase/protein kinase B (PKB) pathway by pharmacological inhibitors and cotransfection of an expression vector for a dominant negative mutant of PKB reduced the AEBSF-dependent induction of HO-1 gene transcription. Accordingly, overexpressed constitutively active PKB markedly up-regulated HO-1 promoter activity. AEBSF activated the mitogen-activated protein kinases (MAPK) JNK and p38. Inhibition of p38alpha and p38beta, but not that of JNK or p38gamma and p38delta, prevented the induction of HO-1 gene expression by AEBSF. p38 was stimulated by AEBSF in a PKB-dependent manner as demonstrated by a luciferase assay with a Gal4-CHOP fusion protein. Finally, AEBSF- and PKB-dependent induction of HO-1 promoter activity was reduced by simultaneous mutation of an E-box motif (-47/-42) and a cAMP response element/AP-1 element (-664/-657) of the proximal HO-1 gene promoter. Overexpression of the basic helix-loop-helix transcription factor USF2 and coactivator p300 enhanced the AEBSF-dependent response of the HO-1 promoter. The data suggest that the transcriptional induction of HO-1 gene expression by AEBSF is mediated via activation of a PKB, p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Nastiti Wijayanti
- Institut für Klinische Immunologie und Transfusionsmedizin, Justus-Liebig-Universität Giessen, Langhanstrasse 7, D-35392 Giessen, Germany
| | | | | |
Collapse
|
22
|
Allen RR, Qi L, Higgins PJ. Upstream stimulatory factor regulates E box-dependent PAI-1 transcription in human epidermal keratinocytes. J Cell Physiol 2005; 203:156-65. [PMID: 15372465 DOI: 10.1002/jcp.20211] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Certain growth factors (e.g., TGF-beta1) initiate a "plastic" response in human keratinocytes (HaCaT cells) characterized by changes in gene expression and increased cell motility. While microarray analyses identified a number of involved genes, plasminogen activator inhibitor type 1 (PAI-1) is among the subset most highly responsive to TGF-beta1. Previous antisense attenuation of PAI-1 synthesis confirmed an essential role for this protease inhibitor in cell motility (Providence et al., 2002, J Cell Sci 115:3767-3777; Providence and Higgins, 2004, J Cell Physiol 200:297-308). It was important, therefore, to clarify molecular mechanisms underlying PAI-1 expression control in human keratinocytes. A consensus E box motif (5'-CACGTG-3') at nucleotides -566 to -561 in the PE2 region of the PAI-1 gene was required for TGF-beta1-induced transcription of a PAI-1 promoter-driven luceriferase reporter. Truncation of the PE2 E box or mutation of the CACGTG hexanucleotide to CAATTG inhibited growth factor-stimulated promoter function confirming the importance of this site in inducible expression. A similar mutation at the PE1 E box (nucleotides -682 to -677), in contrast, did not result in reduced luciferase activity. Competing CACGTG-containing DNAs, regardless of the presence or absence of PAI-1-specific flanking sequences or lacking accessory sequences (i.e., Smad-binding sites, AAT trinucleotide spacer), inhibited complex formation between HaCaT cell nuclear factors and a 45-mer PE2 region probe. A deoxyoligonucleotide that differed from the consensus E box by a CG --> AT substitution (the same base change incorporated into the PAI-1p806-lucerifase reporter by site-directed mutagenesis) but with random (i.e., non-PAI-1) flanking sequences also failed to compete with the PE2 region probe for protein binding whereas the same construct with an intact CACGTG motif was an effective competitor. The major protein/DNA interactions in the PE2 segment, therefore, are E box-dependent. USF-1, a member of the upstream stimulatory factor family, bound the PE2 construct suggesting a role for USF proteins in E box residence and PAI-1 gene expression. Chromatin immunoprecipitation, using primers designed to amplify a 300-bp PE2-associated promoter fragment and containing no other E box motifs except the target CACGTG at nucleotides -566 to -561, confirmed that this site was occupied by USF-1 or a USF-1-containing complex in both quiescent and TGF-beta1-stimulated cells. Transfection of a dominant-negative USF construct effectively attenuated serum- and TGF-beta1-induced PAI-1 synthesis as well as TGF-beta1-stimulated Matrigel barrier invasion. Dominant-negative USF-expressing keratinocytes, moreover, specifically had a reduced capacity for Matrigel barrier invasion. USF elements, therefore, are important regulators of growth factor-initiated PAI-1 transcription (as predicted from the identification of PAI-1 as a direct USF target gene) and the associated epithelial migratory response.
Collapse
Affiliation(s)
- Rosalie R Allen
- Center for Cell Biology & Cancer Research, Albany Medical College, Albany, New York 12208, USA
| | | | | |
Collapse
|
23
|
Firlej V, Bocquet B, Desbiens X, de Launoit Y, Chotteau-Lelièvre A. Pea3 Transcription Factor Cooperates with USF-1 in Regulation of the Murine bax Transcription without Binding to an Ets-binding Site. J Biol Chem 2005; 280:887-98. [PMID: 15466854 DOI: 10.1074/jbc.m408017200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Pea3 transcription factor (which belongs to the PEA3 group) from the Ets family has been shown to be involved in mammary embryogenesis and oncogenesis. However, except for proteinases, only few of its target genes have been reported. In the present report, we identified bax as a Pea3 up-regulated gene. We provide evidence of this regulation by using Pea3 overexpression and Pea3 silencing in a mammary cell line. Both Pea3 and Erm, another member of the PEA3 group, are able to transactivate bax promoter fragments. Although the minimal Pea3-regulated bax promoter does not contain an Ets-binding site, two functional upstream stimulatory factor-regulated E boxes are present. We further demonstrate the ability of Pea3 and USF-1 to cooperate for the transactivation of the bax promoter, mutation of the E boxes dramatically reducing the Pea3 transactivation potential. Although Pea3 did not directly bind to the minimal bax promoter, we provide evidence that USF-1 could form a ternary complex with Pea3 and DNA. Taken together, our results suggest that Pea3 may regulate bax transcription via the interaction with USF-1 but without binding to DNA.
Collapse
Affiliation(s)
- Virginie Firlej
- Laboratoire de Biologie du Développement UPRES-EA1033, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq, France
| | | | | | | | | |
Collapse
|
24
|
deGraffenried LA, Hopp TA, Valente AJ, Clark RA, Fuqua SAW. Regulation of the estrogen receptor alpha minimal promoter by Sp1, USF-1 and ERalpha. Breast Cancer Res Treat 2004; 85:111-20. [PMID: 15111769 DOI: 10.1023/b:brea.0000025398.93829.78] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The exact molecular mechanisms regulating estrogen receptor alpha (ERalpha) expression in breast tumors are unclear, but studies suggest that they are partly at the level of transcription. We have focused on the transcription factors that regulate the ERalpha minimal promoter, which we have previously shown to reside within the first 245 bp of the 5'-flanking region of the gene. Within this region are several elements essential for full ERalpha promoter transcriptional activity, including a GC box and an imperfect E box. In earlier studies we demonstrated an essential function for the Sp1 family of transcription factors in the regulation of ERalpha expression. We have now identified both USF-1 and ERalpha itself as components of a multi-protein complex of transcription factors that interacts at the ERalpha minimal promoter and is essential for its full transcriptional activity. Electrophoretic mobility shift assays demonstrated that Sp1 and USF-1, but not ERalpha, bind directly to the ERalpha minimal promoter. We showed by GST pull-down assays that ERalpha is able to interact in vitro with USF-1, suggesting, in addition to a possible interaction between ERalpha and Sp1, a mechanism whereby ERalpha is able to interact with the protein complex. Combined exogenous expression of the components of the complex in MCF-7 breast cancer cells resulted in a synergistic effect on transactivation of the ERalpha minimal promoter, suggesting that the importance of the protein complex is in the interactions among the components. Based upon these findings, we propose a possible model for transcription from the ERalpha minimal promoter.
Collapse
Affiliation(s)
- Linda A deGraffenried
- Department of Medicine, The University of Texas Health Science Center, San Antonio, USA
| | | | | | | | | |
Collapse
|
25
|
Thomas BE, Thekkumkara TJ. Glucose mediates transcriptional repression of the human angiotensin type-1 receptor gene: role for a novel cis-acting element. Mol Biol Cell 2004; 15:4347-55. [PMID: 15269283 PMCID: PMC519131 DOI: 10.1091/mbc.e04-03-0203] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Human angiotensin type 1 receptor (hAT1R) gene is regulated by hormones, second messengers, and both pathophysiological and developmental states. The focus of the present study was to determine the role of glucose in the trans-repression of hAT1R gene transcription and to identify the functional cis-acting response element(s). Serial deletions of the hAT1R promoter region indicated that an area between -1717 and -1543 base pairs upstream of the 5' end of the cDNA sequence has a glucose responsive regulatory element (GluRE) to down-regulate the gene expression. Further analysis revealed a putative 29-bp (5'-AACTGATTTTTGTATATTGATCTTGTATT-3') repressor element located between -1582 and -1610 bp was necessary for transcriptional repression. Removal of this region from promoter construct abolished repression of the hAT1R gene transcription in human proximal tubule epithelial cells (hPTECs). Using mobility shift assays, we demonstrated DNA binding activity to the labeled repressor element in hPTEC nuclear extracts. Additional studies demonstrated increased DNA binding activity to the labeled repressor element in nuclear extracts treated with high glucose (25 mM). Southwestern analysis identified two GluRE binding proteins of 34 and 36 kDa in glucose-treated extracts. Glucose-induced activity of the repressor trans-acting factor(s) reached a maximum at 4 h, which correlated with decreased transcriptional activity of the hAT1R gene, suggesting that glucose can down-regulate the transcription of the hAT1R gene through the repressor element. Furthermore, insertion of the glucose response element into heterologous SV40 promoter (SV40) chloramphenicol acetyl transferase (CAT) vector showed orientation/distance-independent repression of SV40 promoter-mediated CAT activity in hPTECs. Our results show that the glucose response factor(s) acts as trans-acting factor(s) binding to the cis-acting repressor element in the hAT1R promoter, which may participate in the control of basal transcription as well as glucose-mediated transcriptional inhibition of the hAT1R gene.
Collapse
Affiliation(s)
- Beena E Thomas
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | | |
Collapse
|
26
|
Chang THT, Primig M, Hadchouel J, Tajbakhsh S, Rocancourt D, Fernandez A, Kappler R, Scherthan H, Buckingham M. An enhancer directs differential expression of the linked Mrf4 and Myf5 myogenic regulatory genes in the mouse. Dev Biol 2004; 269:595-608. [PMID: 15110722 DOI: 10.1016/j.ydbio.2004.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2003] [Revised: 02/03/2004] [Accepted: 02/06/2004] [Indexed: 10/26/2022]
Abstract
The myogenic regulatory factors, Mrf4 and Myf5, play a key role in skeletal muscle formation. An enhancer trap approach, devised to isolate positive-acting elements from a 200-kb YAC covering the mouse Mrf4-Myf5 locus in a C2 myoblast assay, yielded an enhancer, A17, which mapped at -8 kb 5' of Mrf4 and -17 kb 5' of Myf5. An E-box bound by complexes containing the USF transcription factor is critical for enhancer activity. In transgenic mice, A17 gave two distinct and mutually exclusive expression profiles before birth, which correspond to two phases of Mrf4 transcription. Linked to the Tk or Mrf4 minimal promoters, the nlacZ reporter was expressed either in embryonic myotomes, or later in fetal muscle, with the majority of Mrf4 lines showing embryonic expression. When linked to the Myf5 minimal promoter, only fetal muscle expression was detected. These observations identify A17 as a sequence that targets sites of myogenesis in vivo and raise questions about the mutually exclusive modes of expression and possible promoter/enhancer interactions at the Mrf4-Myf5 locus.
Collapse
Affiliation(s)
- Ted Hung-Tse Chang
- Département de Biologie du Développement, CNRS URA 2578, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Weigert C, Brodbeck K, Sawadogo M, Häring HU, Schleicher ED. Upstream Stimulatory Factor (USF) Proteins Induce Human TGF-β1 Gene Activation via the Glucose-response Element–1013/–1002 in Mesangial Cells. J Biol Chem 2004; 279:15908-15. [PMID: 14757763 DOI: 10.1074/jbc.m313524200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hyperglycemia-enhanced flux through the hexosamine biosynthetic pathway (HBP) has been implicated in the up-regulated gene expression of transforming growth factor-beta1 (TGF-beta1) in mesangial cells, thus leading to mesangial matrix expansion and diabetic glomerulosclerosis. Since the -1013 to -1002 region of the TGF-beta1 promoter shows high homology to glucose-response elements (GlRE) formerly described in genes involved in glucose metabolism, we studied the function of the GlRE in the high glucose-induced TGF-beta1 gene activation in mesangial cells. We found that high glucose concentrations enhanced the nuclear amount of upstream stimulatory factors (USF) and their binding to this sequence. Fusion of the GlRE to the thymidine kinase promoter resulted in glucose responsiveness of this promoter construct. Overexpression of either USF-1 or USF-2 increased TGF-beta1 promoter activity 2-fold, which was prevented by mutation or deletion of the GlRE. The high glucose-induced activation of the GlRE is mediated by the HBP; increased flux through the HBP induced by high glucose concentrations, by glutamine, or by overexpression of the rate-limiting enzyme glutamine:fructose-6-phosphate aminotransferase (GFAT) particularly activated USF-2 expression. GFAT-overexpressing cells showed higher USF binding activity to the GlRE and enhanced promoter activation via the GlRE. Increasing O-GlcNAc modification of proteins by streptozotocin, thereby mimicking HBP activation, also resulted in increased mRNA and nuclear protein levels of USF-2, leading to enhanced DNA binding activity to the GlRE. USF proteins themselves were not found to be O-GlcNAc-modified. Thus, we have provided evidence for a new molecular mechanism linking high glucose-enhanced HBP activity with increased nuclear USF protein levels and DNA binding activity and with up-regulated TGF-beta1 promoter activity.
Collapse
Affiliation(s)
- Cora Weigert
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Pathobiochemistry, University of Tübingen, D-72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
28
|
|
29
|
Duran-Sandoval D, Mautino G, Martin G, Percevault F, Barbier O, Fruchart JC, Kuipers F, Staels B. Glucose regulates the expression of the farnesoid X receptor in liver. Diabetes 2004; 53:890-8. [PMID: 15047603 DOI: 10.2337/diabetes.53.4.890] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An increased prevalence of hypertriglyceridemia and gallbladder disease occurs in patients with diabetes or insulin resistance. Hypertriglyceridemia is positively associated to gall bladder disease risk. The farnesoid X receptor (FXR) is a bile acid-activated nuclear receptor that plays a key role in bile acid and triglyceride homeostasis. The mechanisms controlling FXR gene expression are poorly understood. This study evaluated whether FXR gene expression is regulated by alterations in glucose homeostasis. FXR expression was decreased in livers of streptozotocin-induced diabetic rats and normalized upon insulin supplementation. Concomitantly with diabetes progression, FXR expression also decreased in aging diabetic Zucker rats. In primary rat hepatocytes, D-glucose increased FXR mRNA in a dose- and time-dependent manner, whereas insulin counteracted this effect. Addition of xylitol, a precursor of xylulose-5-phosphate, to primary rat hepatocytes increased FXR expression to a comparable level as D-glucose. Finally, expression of the FXR target genes, SHP and apolipoprotein C-III, were additively regulated by D-glucose and FXR ligands. This study demonstrates that FXR is decreased in animal models of diabetes. In addition, FXR is regulated by glucose likely via the pentose phosphate pathway. Dysregulation of FXR expression may contribute to alterations in lipid and bile acid metabolism in patients with diabetes or insulin resistance.
Collapse
Affiliation(s)
- Daniel Duran-Sandoval
- Atherosclerosis Department, Unité de Recherche 545 Institute National de la Santé et de la Recherche Médicale, Pasteur Institute of Lille, and Faculty of Pharmacy, Lille2 University, Lille, France
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Roth U, Jungermann K, Kietzmann T. Modulation of glucokinase expression by hypoxia-inducible factor 1 and upstream stimulatory factor 2 in primary rat hepatocytes. Biol Chem 2004; 385:239-47. [PMID: 15134337 DOI: 10.1515/bc.2004.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Glucokinase (GK) is the key enzyme of glucose utilization in liver and is localized in the less aerobic perivenous area. Until now, the O2-responsive elements in the liver-specific GK promoter are unknown, and therefore the aim of this study was to identify the O2-responsive element in this promoter. We found that the GK promoter sequence -87/-80 matched the binding site for hypoxia inducible factor 1 (HIF-1) and upstream stimulatory factor (USF). In primary rat hepatocytes we could show that venous pO2 enhanced HIF-1alpha and USF-2a levels, both of which activated GK expression. Furthermore, transfection experiments revealed that the GK sequence -87/-80 mediated the HIF-1alpha- or USF-2-dependent activation of the GK promoter. The binding of HIF-1 and USF to the GK-HRE was corroborated by electrophoretic mobility shift assay (EMSA). However, the maximal response to HIF-1alpha or USF was only achieved when constructs with the -87/-80 sequence in context with a 3'-36 bp native GK promoter sequence containing a hepatocyte nuclear factor 4 (HNF-4) binding site were used. HIF-1alpha and HNF-4 additively activated the GK promoter, while USF-2 and HNF-4 together did not show this additive activation. Thus, HIF-1 and USF may play differential roles in the modulation of GK expression in response to O2.
Collapse
Affiliation(s)
- Ulrike Roth
- Institut für Biochemie und Molekulare Zellbiologie, Georg-August-Universität, Humboldtallee 23, D-37073 Göttingen, Germany
| | | | | |
Collapse
|
31
|
Salero E, Giménez C, Zafra F. Identification of a non-canonical E-box motif as a regulatory element in the proximal promoter region of the apolipoprotein E gene. Biochem J 2003; 370:979-86. [PMID: 12444925 PMCID: PMC1223214 DOI: 10.1042/bj20021142] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2002] [Revised: 11/15/2002] [Accepted: 11/25/2002] [Indexed: 11/17/2022]
Abstract
We have used the yeast one-hybrid system to identify transcription factors with binding capability to specific sequences in proximal regions of the apolipoprotein E gene ( APOE ) promoter. The sequence between -113 and -80 nt, which contains regulatory elements in various cell types, was used as a bait to screen a human brain cDNA library. Four cDNA clones that encoded portions of the human upstream-stimulatory-factor (USF) transcription factor were isolated. Electrophoretic-mobility-shift assays ('EMSAs') using nuclear extracts from various human cell lines as well as from rat brain and liver revealed the formation of two DNA-protein complexes within the sequence CACCTCGTGAC (region -101/-91 of the APOE promoter) that show similarity to the E-box element. The retarded complexes contained USF1, as deduced from competition and supershift assays. Functional experiments using different APOE promoter-luciferase reporter constructs transiently transfected into U87, HepG2 or HeLa cell lines showed that mutations that precluded the formation of complexes decreased the basal activity of the promoter by about 50%. Overexpression of USF1 in U87 glioblastoma cells led to an increased activity of the promoter that was partially mediated by the atypical E-box. The stimulatory effect of USF1 was cell-type specific, as it was not observed in hepatoma HepG2 cells. Similarly, overexpression of a USF1 dominant-negative mutant decreased the basal activity of the promoter in glioblastoma, but not in hepatoma, cells. These data indicated that USF, and probably other related transcription factors, might be involved in the basal transcriptional machinery of APOE by binding to a non-canonical E-box motif within the proximal promoter.
Collapse
Affiliation(s)
- Enrique Salero
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Universidad Autónoma de Madrid-CSIC, 28049 Madrid, Spain
| | | | | |
Collapse
|
32
|
Wang H, Wollheim CB. ChREBP rather than USF2 regulates glucose stimulation of endogenous L-pyruvate kinase expression in insulin-secreting cells. J Biol Chem 2002; 277:32746-52. [PMID: 12087089 DOI: 10.1074/jbc.m201635200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
There is controversy whether or not upstream stimulatory factors (USF) regulate the glucose responsiveness of L-pyruvate kinase (L-PK) promoter activity in hepatocytes. It has been suggested that USF-2 is required for glucose stimulation of L-PK promoter activity in single islet beta-cells and INS-1 cells (Kennedy, H. J., Viollet, B., Rafiq, I., Kahn, A., and Rutter, G. A. (1997) J. Biol. Chem. 272, 20636-20640). In the present study, the tet-on system has been employed to achieve tightly controlled and inducible expression of USF-1 and -2 and their dominant-negative mutants DN-USF-1 (DeltabTDU1) and -2 (TDU2) in INS-1 cells. Quantitative Northern blot analysis shows that neither basal level nor glucose responsiveness of endogenous L-PK mRNA is affected by overexpression of USF-1 and -2. Likewise, the L-PK expression is unaltered by dominant-negative suppression of USF function. Western blotting demonstrates that USF-1 and -2 and DN-USF-1 and -2 proteins are stably expressed in nuclear fractions of INS-1 cells. Immunofluorescence staining indicates the uniform induction of these transgene-encoded proteins in the cell nuclei. Electrophoretic mobility shift assays using the L-PK promoter segment reveal that induction of USF-1 and -2 dramatically enhances the USF binding activity, whereas DN-USF-1 and -2 abolish binding. DN-USF-1 and -2 exert their dominant-negative effect by forming non-functional heterodimers with endogenous USF proteins. Carbohydrate response element-binding protein (ChREBP) was recently shown to regulate the glucose responsiveness of the L-PK promoter activity in hepatocytes. We now report the presence of this transcription factor in rat islets and INS-1 cells. Glucose stimulates ChREBP transcription in INS-1 cells, as shown by nuclear run-on experiments. Overexpression of ChREBP in INS-1 cells using the tet-on system results in a left shift of glucose responsiveness of L-PK expression and an enhanced L-PK promoter activity. Both endogenous and doxycycline-induced ChREBP proteins bind to the L-PK promoter in a glucose-dependent manner. These unprecedented results suggest that ChREBP rather than USF mediates glucose-promoted L-PK expression in insulin-secreting cells.
Collapse
MESH Headings
- Animals
- Basic Helix-Loop-Helix Leucine Zipper Transcription Factors
- Blotting, Northern
- Blotting, Western
- Cell Nucleus/metabolism
- Cloning, Molecular
- DNA, Complementary/metabolism
- DNA-Binding Proteins/metabolism
- Dose-Response Relationship, Drug
- Down-Regulation
- Genes, Dominant
- Glucose/metabolism
- Glucose/pharmacology
- Hepatocytes/metabolism
- Immunoblotting
- Insulin/metabolism
- Luciferases/metabolism
- Mice
- Microscopy, Fluorescence
- Plasmids/metabolism
- Promoter Regions, Genetic
- Protein Binding
- Pyruvate Kinase/metabolism
- RNA, Messenger/metabolism
- Subcellular Fractions
- Time Factors
- Transcription Factors/metabolism
- Transcription, Genetic
- Transcriptional Activation
- Transfection
- Up-Regulation
- Upstream Stimulatory Factors
Collapse
Affiliation(s)
- Haiyan Wang
- Division of Clinical Biochemistry, Department of Internal Medicine, University Medical Center, CH-1211 Geneva 4, Switzerland.
| | | |
Collapse
|
33
|
Ng DPK, Canani L, Araki SI, Smiles A, Moczulski D, Warram JH, Krolewski AS. Minor effect of GLUT1 polymorphisms on susceptibility to diabetic nephropathy in type 1 diabetes. Diabetes 2002; 51:2264-9. [PMID: 12086959 DOI: 10.2337/diabetes.51.7.2264] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Elevation of intracellular glucose in mesangial cells as mediated by GLUT1 may be important in initiating cellular mechanisms that cause diabetic nephropathy. To determine whether DNA sequence differences in GLUT1 confer susceptibility to this complication, single-nucleotide polymorphisms (SNPs) in this gene were examined using a large case-control study. SNPs examined included the known XbaI (intron 2) and HaeIII SNPs (exon 2). Four novel SNPs located in three putative enhancers were also investigated. Homozygosity for the XbaI(-) allele was associated with diabetic nephropathy (odds ratio 1.83 [95% CI 1.01-3.33]). Furthermore, homozygosity for the A allele for a novel SNP (enhancer-2 SNP 1) located in a putative insulin-responsive enhancer-2 was associated with diabetic nephropathy (2.38 [1.16-4.90]). Patients who were homozygous for risk alleles at both XbaI SNP and enhancer-2 SNP 1 [i.e., homozygosity for XbaI(-)/A haplotype] also had an increased risk of diabetic nephropathy (2.40 [1.13-5.07]). Because enhancer-2 SNP 1 may directly control GLUT1 expression, the strong linkage disequilibrium between the two SNPs likely accounts for XbaI SNP being associated with diabetic nephropathy. In conclusion, our study confirms that SNPs at the GLUT1 locus are associated with susceptibility to diabetic nephropathy in type 1 diabetes. Although these SNPs confer a considerable personal risk for diabetic nephropathy, they account for a limited proportion of cases among type 1 diabetic patients.
Collapse
Affiliation(s)
- Daniel P K Ng
- Section on Genetics and Epidemiology, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Dahle MK, Taskén K, Taskén KA. USF2 inhibits C/EBP-mediated transcriptional regulation of the RIIbeta subunit of cAMP-dependent protein kinase. BMC Mol Biol 2002; 3:10. [PMID: 12086590 PMCID: PMC117135 DOI: 10.1186/1471-2199-3-10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2002] [Accepted: 06/21/2002] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cyclic AMP-dependent protein kinase (PKA) plays a central role in regulation of energy metabolism. Upon stimulation of testicular Sertoli cells by follicle stimulating hormone (FSH), glycolysis is activated to increase the production of nutrients for the germ cells, and a new regulatory subunit of cAMP-dependent protein kinase, RIIbeta, is induced. We have previously shown that production of the transcription factor C/EBPbeta is rapidly increased by FSH and cAMP in primary Sertoli cell cultures, and that C/EBPbeta induces the RIIbeta promoter. RESULTS In this work we show that USF1, USF2 and truncated USF isoforms bind to a conserved E-box in the RIIbeta gene. Interestingly, overexpression of USF2, but not USF1, led to inhibition of both cAMP- and C/EBPbeta-mediated induction of RIIbeta. Furthermore, Western blots show that a novel USF1 isoform is induced by cAMP in Sertoli cells. CONCLUSIONS These results indicate that the expression of various USF isoforms may be regulated by cAMP, and that the interplay between USF and C/EBPbeta is important for cAMP-mediated regulation of RIIbeta expression. The counteracting effects of USF2 and C/EBPbeta observed on the RIIbeta promoter is in accordance with the hypothesis that C/EBP and USF play opposite roles in regulation of glucose metabolism.
Collapse
Affiliation(s)
- Maria Krudtaa Dahle
- Department of Medical Biochemistry, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Kjetil Taskén
- Department of Medical Biochemistry, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Kristin Austlid Taskén
- Department of Medical Biochemistry, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| |
Collapse
|
35
|
Pastier D, Lacorte JM, Chambaz J, Cardot P, Ribeiro A. Two initiator-like elements are required for the combined activation of the human apolipoprotein C-III promoter by upstream stimulatory factor and hepatic nuclear factor-4. J Biol Chem 2002; 277:15199-206. [PMID: 11839757 DOI: 10.1074/jbc.m200227200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human apoC-III (-890/+24) promoter activity is strongly activated by hepatic nuclear factor (HNF)-4 through its binding to the proximal (-87/-72) element B. This site overlaps the binding site for an activity that we identified as the ubiquitously expressed upstream stimulatory factor (USF) (Ribeiro, A., Pastier, D., Kardassis, D., Chambaz, J., and Cardot, P. (1999) J. Biol. Chem. 274, 1216-1225). In the present study, we characterized the relationship between USF and HNF-4 in the activation of human apoC-III transcription. Although USF and HNF-4 binding to element B is mutually exclusive, co-transfection experiments in HepG2 cells surprisingly showed a combined effect of USF and HNF-4 in the transactivation of the (-890/+24) apoC-III promoter. This effect only requires the proximal region (-99/+24) of the apoC-III promoter and depends neither on USF binding to its cognate site in element B nor on a USF-dependent facilitation of HNF-4 binding to its site. By contrast, we found by electrophoretic mobility shift assay and footprinting analysis two USF low affinity binding sites, located within the proximal promoter at positions -58/-31 (element II) and -19/-4 (element I), which are homologous to initiator-like element sequence. Co-transfection experiments in HepG2 cells show that a mutation in element II reduces 2-fold the USF transactivation effect on the proximal promoter of apoC-III and that a mutation in element I inhibits the combined effect of USF and HNF-4. In conclusion, these initiator-like elements are directly involved in the transactivation of the apoC-III promoter by USF and are necessary to the combined effect between USF and HNF-4 for the apoC-III transcription.
Collapse
Affiliation(s)
- Daniele Pastier
- U505 INSERM, Université Pierre et Marie Curie, Institut des Cordeliers, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | | | | | | | | |
Collapse
|
36
|
Calomme C, Nguyen TLA, de Launoit Y, Kiermer V, Droogmans L, Burny A, Van Lint C. Upstream stimulatory factors binding to an E box motif in the R region of the bovine leukemia virus long terminal repeat stimulates viral gene expression. J Biol Chem 2002; 277:8775-89. [PMID: 11741930 DOI: 10.1074/jbc.m107441200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bovine leukemia virus (BLV) promoter is located in its 5'-long terminal repeat and is composed of the U3, R, and U5 regions. BLV transcription is regulated by cis-acting elements located in the U3 region, including three 21-bp enhancers required for transactivation of the BLV promoter by the virus-encoded transactivator Tax(BLV). In addition to the U3 cis-acting elements, both the R and U5 regions contain stimulatory sequences. To date, no transcription factor-binding site has been identified in the R region. Here sequence analysis of this region revealed the presence of a potential E box motif (5'-CACGTG-3'). By competition and supershift gel shift assays, we demonstrated that the basic helix-loop-helix transcription factors USF1 and USF2 specifically interacted with this R region E box motif. Mutations abolishing upstream stimulatory factor (USF) binding caused a reproducible decrease in basal or Tax-activated BLV promoter-driven gene expression in transient transfection assays of B-lymphoid cell lines. Cotransfection experiments showed that the USF1 and USF2a transactivators were able to act through the BLV R region E box. Taken together, these results physically and functionally characterize a USF-binding site in the R region of BLV. This E box motif located downstream of the transcription start site constitutes a new positive regulatory element involved in the transcriptional activity of the BLV promoter and could play an important role in virus replication.
Collapse
Affiliation(s)
- Claire Calomme
- Université Libre de Bruxelles, Institut de Biologie et de Médecine Moléculaires, Service de Chimie Biologique, Laboratoire de Virologie Moléculaire, Rue des Profs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | | | | | | | | | | | | |
Collapse
|
37
|
Yang XP, Freeman LA, Knapper CL, Amar MJ, Remaley A, Brewer HB, Santamarina-Fojo S. The E-box motif in the proximal ABCA1 promoter mediates transcriptional repression of the ABCA1 gene. J Lipid Res 2002. [DOI: 10.1016/s0022-2275(20)30172-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
38
|
Travers MT, Vallance AJ, Gourlay HT, Gill CA, Klein I, Bottema CB, Barber MC. Promoter I of the ovine acetyl-CoA carboxylase-alpha gene: an E-box motif at -114 in the proximal promoter binds upstream stimulatory factor (USF)-1 and USF-2 and acts as an insulin-response sequence in differentiating adipocytes. Biochem J 2001; 359:273-84. [PMID: 11583573 PMCID: PMC1222145 DOI: 10.1042/0264-6021:3590273] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Acetyl-CoA carboxylase-alpha (ACC-alpha) plays a central role in co-ordinating de novo fatty acid synthesis in animal tissues. We have characterized the regulatory region of the ovine ACC-alpha gene. Three promoters, PI, PII and PIII, are dispersed throughout 50 kb of genomic DNA. Expression from PI is limited to adipose tissue and liver. Sequence comparison of the proximal promoters of ovine and mouse PIs demonstrates high nucleotide identity and that they are characterized by a TATA box at -29, C/EBP (CCAAT enhancer-binding protein)-binding motifs and multiple E-box motifs. A 4.3 kb ovine PI-luciferase reporter construct is insulin-responsive when transfected into differentiated ovine adipocytes, whereas when this construct is transfected into ovine preadipocytes and HepG2 cells the construct is inactive and is not inducible by insulin. By contrast, transfection of a construct corresponding to 132 bp of the proximal promoter linked to a luciferase reporter is active and inducible by insulin in all three cell systems. Insulin signalling to the -132 bp construct in differentiated ovine adipocytes involves, in part, an E-box motif at -114. Upstream stimulatory factor (USF)-1 and USF-2, but not sterol regulatory element-binding protein 1 (SREBP-1), are major components of protein complexes that bind this E-box motif. Activation of the 4.3 kb PI construct in differentiated ovine adipocytes is associated with endogenous expression of PI transcripts throughout differentiation; PI transcripts are not detectable by RNase-protection assay in ovine preadipocytes, HepG2 cells or 3T3-F442A adipocytes. These data indicate the presence of repressor motifs in PI that are required to be de-repressed during adipocyte differentiation to allow induction of the promoter by insulin.
Collapse
Affiliation(s)
- M T Travers
- Hannah Research Institute, Hannah Research Park, Ayr KA6 5HL, UK
| | | | | | | | | | | | | |
Collapse
|
39
|
Krones A, Jungermann K, Kietzmann T. Cross-talk between the signals hypoxia and glucose at the glucose response element of the L-type pyruvate kinase gene. Endocrinology 2001; 142:2707-18. [PMID: 11356723 DOI: 10.1210/endo.142.6.8200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The signals oxygen and glucose play an important role in metabolism, angiogenesis, tumorigenesis, and embryonic development. Little is known about an interaction of these two signals. We demonstrate here the cross-talk between oxygen and glucose in the regulation of L-type pyruvate kinase (L-PK) gene expression in the liver. In the liver the periportal to perivenous drop in O(2) tension was proposed to be an endocrine key regulator for the zonated gene expression. In primary rat hepatocyte cultures the expression of the L-PK gene on mRNA and on protein level was induced by venous pO(2), whereas its glucose-dependent induction occurred predominantly under arterial pO(2). It was shown by transient transfection of L-PK promoter luciferase and glucose response element (Glc(PK)RE) SV40 promoter luciferase gene constructs that the modulation by O(2) of the glucose-dependent induction occurred at the Glc(PK)RE in the L-PK gene promoter. The reduction of the glucose-dependent induction of the L-PK gene expression under venous pO(2) appeared to be mediated via an interference between hypoxia inducible factor-1 (HIF-1) and upstream stimulating factor at the Glc(PK)RE. The glucose response element also functioned as an hypoxia response element which was confirmed in cotransfection assays with Glc(PK)RE luciferase gene constructs and HIF-1alpha expression vectors. Furthermore, it was found by gel shift and supershift assay that HIF-1alpha and USF-1 or USF-2 could bind to the Glc(PK)RE. Our findings implicate that the cross-talk between oxygen and glucose might have a fundamental role in the regulation of several physiological and pathophysiological processes.
Collapse
Affiliation(s)
- A Krones
- Institut für Biochemie und Molekulare Zellbiologie, Georg-August-Universität, Humboldtallee 23, D-37073 Göttingen, Germany
| | | | | |
Collapse
|
40
|
Samoylenko A, Roth U, Jungermann K, Kietzmann T. The upstream stimulatory factor-2a inhibits plasminogen activator inhibitor-1 gene expression by binding to a promoter element adjacent to the hypoxia-inducible factor-1 binding site. Blood 2001; 97:2657-66. [PMID: 11313255 DOI: 10.1182/blood.v97.9.2657] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1) expression is induced by hypoxia (8% O(2)) via the PAI-1 promoter region -175/-159 containing a hypoxia response element (HRE-2) binding the hypoxia-inducible factor-1 (HIF-1) and an adjacent response element (HRE-1) binding a so far unknown factor. The aim of the present study was to identify this factor and to investigate its role in the regulation of PAI-1 expression. It was found by supershift assays that the upstream stimulatory factor-2a (USF-2a) bound mainly to the HRE-1 of the PAI-1 promoter and to a lesser extent to HRE-2. Overexpression of USF-2a inhibited PAI-1 messenger RNA and protein expression and activated L-type pyruvate kinase expression in primary rat hepatocytes under normoxia and hypoxia. Luciferase (Luc) gene constructs driven by 766 and 276 base pairs of the 5'-flanking region of the PAI-1 gene were transfected into primary hepatocytes together with expression vectors encoding wild-type USF-2a and a USF-2a mutant lacking DNA binding and dimerization activity (DeltaHU2a). Cotransfection of the wild-type USF-2a vector reduced Luc activity by about 8-fold, whereas cotransfection of DeltaHU2a did not influence Luc activity. Mutation of the HRE-1 (-175/-168) in the PAI-1 promoter Luc constructs decreased USF-dependent inhibition of Luc activity. Mutation of the HRE-2 (-165/-158) was less effective. Cotransfection of a HIF-1alpha vector could compete for the binding of USF at HRE-2. These results indicated that the balance between 2 transcriptional factors, HIF-1 and USF-2a, which can bind adjacent HRE sites, appears to be involved in the regulation of PAI-1 expression in many clinical conditions.
Collapse
Affiliation(s)
- A Samoylenko
- Institut für Biochemie und Molekulare Zellbiologie, Humboldtallee 23, Göttingen, Germany
| | | | | | | |
Collapse
|
41
|
Barradeau S, Imaizumi-Scherrer T, Weiss MC, Faust DM. Muscle-regulated expression and determinants for neuromuscular junctional localization of the mouse RIalpha regulatory subunit of cAMP-dependent protein kinase. Proc Natl Acad Sci U S A 2001; 98:5037-42. [PMID: 11296260 PMCID: PMC33159 DOI: 10.1073/pnas.081393598] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2000] [Indexed: 11/18/2022] Open
Abstract
In skeletal muscle, transcription of the gene encoding the mouse type Ialpha (RIalpha) subunit of the cAMP-dependent protein kinase is initiated from the alternative noncoding first exons 1a and 1b. Here, we report that activity of the promoter upstream of exon 1a (Pa) depends on two adjacent E boxes (E1 and E2) in NIH 3T3-transfected fibroblasts as well as in intact muscle. Both basal activity and MyoD transactivation of the Pa promoter require binding of the upstream stimulating factors (USF) to E1. E2 binds either an unknown protein in a USF/E1 complex-dependent manner or MyoD. Both E2-bound proteins seem to function as repressors, but with different strengths, of the USF transactivation potential. Previous work has shown localization of the RIalpha protein at the neuromuscular junction. Using DNA injection into muscle of plasmids encoding segments of RIalpha or RIIalpha fused to green fluorescent protein, we demonstrate that anchoring at the neuromuscular junction is specific to RIalpha subunits and requires the amino-terminal residues 1-81. Mutagenesis of Phe-54 to Ala in the full-length RIalpha-green fluorescent protein template abolishes localization, indicating that dimerization of RIalpha is essential for anchoring. Moreover, two other hydrophobic residues, Val-22 and Ile-27, are crucial for localization of RIalpha at the neuromuscular junction. These amino acids are involved in the interaction of the Caenorhabditis elegans type Ialpha homologue R(CE) with AKAP(CE) and for in vitro binding of RIalpha to dual A-kinase anchoring protein 1. We also show enrichment of dual A-kinase anchoring protein 1 at the neuromuscular junction, suggesting that it could be responsible for RIalpha tethering at this site.
Collapse
Affiliation(s)
- S Barradeau
- Unité de Génétique de la Différenciation, Département de Biologie Moléculaire, Institut Pasteur, Unité de Recherche Associée 1773 du Centre National de la Recherche Scientifique, 25, Rue du Dr Roux, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
42
|
Massillon D. Regulation of the glucose-6-phosphatase gene by glucose occurs by transcriptional and post-transcriptional mechanisms. Differential effect of glucose and xylitol. J Biol Chem 2001; 276:4055-62. [PMID: 11087741 DOI: 10.1074/jbc.m007939200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To understand how glucose regulates the expression of the glucose-6-phosphatase gene, the effect of glucose was studied in primary cultures of rat hepatocytes. Glucose-6-phosphatase mRNA levels increased about 10-fold when hepatocytes were incubated with 20 mm glucose. The rate of transcription of the glucose-6-phosphatase gene increased about 3-fold in hepatocytes incubated with glucose. The half-life of glucose-6-phosphatase mRNA was estimated to be 90 min in the absence of glucose and 3 h in its presence. Inhibition of the oxidative and the nonoxidative branches of the pentose phosphate pathway blocked the stimulation of glucose-6-phosphatase expression by glucose but not by xylitol or carbohydrates that enter the glycolytic/gluconeogenic pathways at the level of the triose phosphates. These results indicate that (i) the glucose induction of the mRNA for the catalytic unit of glucose-6-phosphatase occurs by transcriptional and post-transcriptional mechanisms and that (ii) xylitol and glucose increase the expression of this gene through different signaling pathways.
Collapse
Affiliation(s)
- D Massillon
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| |
Collapse
|
43
|
Takahashi K, Nishiyama C, Okumura K, Ra C, Ohtake Y, Yokota T. Molecular cloning of rat USF2 cDNA and characterization of splicing variants. Biosci Biotechnol Biochem 2001; 65:56-62. [PMID: 11272846 DOI: 10.1271/bbb.65.56] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The complete nucleotide sequence of rat USF2 cDNA was determined. In addition to the full length clone (USF2FL), four isoforms (delta1, delta2, delta3, and delta4) suggested to be generated by alternative splicing were isolated. USF2delta1 and delta2 lacked 27 and 67 internal amino acid residues, respectively. USF2delta3 and delta4 lacked most of the entire sequence but encoded short peptides of an N-terminal portion of USF2FL. Overexpression of USF2FL increased the transcription of the human high affinity IgE receptor (FcepsilonRI) alpha chain gene through specific binding to the CAGCTG motif in the first intron. On the other hand, overexpression of USF2delta1 or delta2 reduced the transcription of the human FcepsilonRI alpha chain gene. Both USF2FL and USF2delta1 bound to CACGTG as well as CAGCTG, while USF2delta2 bound to CACGTG but not to CAGCTG. These results suggested the presence of a different and definitive role of each variant in the expression of the alpha chain gene.
Collapse
Affiliation(s)
- K Takahashi
- Foods and Pharmaceuticals Research and Development Laboratory, Asahi Breweries Ltd., Ibaraki, Japan.
| | | | | | | | | | | |
Collapse
|
44
|
Breen GA, Jordan EM. Upstream stimulatory factor 2 stimulates transcription through an initiator element in the mouse cytochrome c oxidase subunit Vb promoter. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1517:119-27. [PMID: 11118624 DOI: 10.1016/s0167-4781(00)00269-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Upstream stimulatory factor (USF) is a basic helix-loop-helix-leucine zipper transcription factor that plays an important role in transcriptional activation and cell proliferation. In this article, we demonstrate that the mouse cytochrome c oxidase subunit Vb gene (Cox5b) can be transactivated by ectopic expression of USF2 through an initiator (Inr) element in the core promoter. Importantly, using a dominant-negative mutant of USF2, we demonstrate the role of endogenous USF2 proteins in the transcriptional activation of the Cox5b Inr. Domains of USF2 encoded by exon 4, exon 5 and the USF-specific region are important for maximum activation of the Cox5b Inr. Using the adenovirus E1A oncoprotein, we show that p300/CBP acts as a coactivator in the USF2-dependent activation of the Cox5b Inr. We also demonstrate that although expression of multifunctional regulatory factor, Yin Yang 1 (YY1), can stimulate transcription of the Cox5b Inr to a modest extent, expression of YY1 together with USF2 greatly reduces the level of activation of the Cox5b Inr. Furthermore, we show that the transcription factor, Sp1, represses both the YY1- and the USF2-dependent activation of the Cox5b Inr, indicating competition among Sp1, YY1, and USF2.
Collapse
Affiliation(s)
- G A Breen
- Department of Molecular and Cell Biology, The University of Texas at Dallas, P.O. Box 830688, Richardson, TX 75083-0688, USA.
| | | |
Collapse
|
45
|
da Silva Xavier G, Varadi A, Ainscow EK, Rutter GA. Regulation of gene expression by glucose in pancreatic beta -cells (MIN6) via insulin secretion and activation of phosphatidylinositol 3'-kinase. J Biol Chem 2000; 275:36269-77. [PMID: 10967119 DOI: 10.1074/jbc.m006597200] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Increases in glucose concentration control the transcription of the preproinsulin (PPI) gene and several other genes in the pancreatic islet beta-cell. Although recent data have demonstrated that secreted insulin may regulate the PPI gene (Leibiger, I. B., Leibiger, B., Moede, T., and Berggren, P. O. (1998) Mol. Cell 1, 933-938), the role of insulin in the control of other beta-cell genes is unexplored. To study the importance of insulin secretion in the regulation of the PPI and liver-type pyruvate kinase (L-PK) genes by glucose, we have used intranuclear microinjection of promoter-luciferase constructs into MIN6 beta-cells and photon-counting imaging. The activity of each promoter was increased either by 30 (versus 3) mm glucose or by 1-20 nm insulin. These effects of insulin were not due to enhanced glucose metabolism since culture with the hormone had no impact on the stimulation of increases in intracellular ATP concentration caused by 30 mm glucose. Furthermore, the islet-specific glucokinase promoter and cellular glucokinase immunoreactivity were unaffected by 30 mm glucose or 20 nm insulin. Inhibition of insulin secretion with the Ca(2+) channel blocker verapamil, the ATP-sensitive K(+) channel opener diazoxide, or the alpha(2)-adrenergic agonist clonidine blocked the effects of glucose on L-PK gene transcription. Similarly, 30 mm glucose failed to induce the promoter after inhibition of phosphatidylinositol 3'-kinase activity with LY294002 and the expression of dominant negative-acting phosphatidylinositol 3'-kinase (Deltap85) or the phosphoinositide 3'-phosphatase PTEN (phosphatase and tensin homologue). LY294002 also diminished the activation of the L-PK gene caused by inhibition of 5'-AMP-activated protein kinase with anti-5'-AMP-activated protein kinase alpha2 antibodies. Conversely, stimulation of insulin secretion with 13 mm KCl or 10 microm tolbutamide strongly activated the PPI and L-PK promoters. These data indicate that, in MIN6 beta-cells, stimulation of insulin secretion is important for the activation by glucose of L-PK as well as the PPI promoter, but does not cause increases in glucokinase gene expression or glucose metabolism.
Collapse
Affiliation(s)
- G da Silva Xavier
- Department of Biochemistry, School of Medical Sciences, University Walk, University of Bristol, Bristol BS8 1TD, United Kingdom
| | | | | | | |
Collapse
|
46
|
Mhaskar Y, Armour G, Dunaway G. Alteration of the levels of the M-type 6-phosphofructo-1-kinase mRNA isoforms during neonatal maturation of heart, brain and muscle. Mol Cell Biochem 2000; 214:81-7. [PMID: 11195794 DOI: 10.1023/a:1007195017569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
During muscle, heart, and brain neonatal maturation, the capacity to utilize glucose in energy metabolism is directly related to the extent of accumulation of the 6-phosphofructo-1-kinase (PFK) M-type subunit. Neonatal development of other organs, such as liver and kidney, which are not characterized by large increases in the capacity to use glucose do not exhibit large increases in the M-type subunit protein. The presence of the M-type subunit in a PFK isozyme pool fosters a higher affinity utilization of carbohydrate and increased responsiveness to the levels of regulatory metabolites. To better appreciate this phenomenon, which is vital for normal development, the different isoforms of the M-type subunit mRNA's and alteration of their levels during maturation have been examined. Further, the potential promoter regions, i.e., the regions upstream from the sites of initiation of transcription, which are involved in expression of the different M-type subunit mRNA isoforms have been isolated, sequenced, and examined for possible transcription factor interaction sites. Using cDNA libraries produced from adult rat brain or skeletal muscle RNA, two primary forms of rat M-type subunit cDNA's were detected. Although the translated regions of these mRNA's were essentially identical, the 5'-untranslated region (5'-UTR) exhibited different lengths (90 or 59 bp) and sequences. Each M-type subunit cDNA had 10 common nucleotides immediately upstream from the initiator ATG, and the remaining 5'-UTR's had insignificant identity. A genomic fragment which interacted with probes complimentary to the sequences of the 5'-UTR of each M-type subunit mRNA isoform was isolated and sequenced by primer walking. It was discovered that the 5'-UTR of one of the mRNA's (proximal mRNA) was located immediately upstream from exon I and was apparently transcribed without splicing. Subsequently, the initial bp in the sequence of the other mRNA isoform (distal mRNA) was located 4010 bp upstream from the ATG in exon 1. Employing Reverse Transcription-Polymerase Chain Reaction using total RNA and scanning densitometry, the relative levels of the proximal and distal mRNA's during neonatal maturation of brain, heart, and muscle were measured. In these tissues, both forms of M-type subunit mRNA's were present, and during maturation tissue-specific differences were noted.
Collapse
Affiliation(s)
- Y Mhaskar
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield 62794-9629, USA
| | | | | |
Collapse
|
47
|
Affiliation(s)
- S Vaulont
- Institut Cochin de Génétique Moléculaire, U.129 INSERM, Université René Descartes, 75014 Paris, France.
| | | | | |
Collapse
|
48
|
Kaytor EN, Qian J, Towle HC, Olson LK. An indirect role for upstream stimulatory factor in glucose-mediated induction of pyruvate kinase and S14 gene expression. Mol Cell Biochem 2000; 210:13-21. [PMID: 10976753 DOI: 10.1023/a:1007006429041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Transcription of the L-type pyruvate kinase (L-PK) and S14 genes is induced in hepatocytes in response to increased glucose metabolism. The regulatory sequences of these genes responsible for induction by glucose have been mapped to related E-box containing motifs in the promoters. Similarly, L-PK promoter activity is stimulated in a differentiated pancreatic beta-cell line, INS-1, in response to elevated glucose. By mutational analysis, we demonstrate that the sequence requirements for glucose induction in the INS-1 cell are identical to those observed in the hepatocyte, suggesting that the same transcriptional factor(s) is responsible for regulation of L-PK expression in the two cell types. One nuclear factor that binds to the glucose regulatory sequences of both of these genes is the Upstream Stimulatory Factor (USF), a ubiquitous E-box binding protein. Mice deleted for the USF2 gene display a severely delayed response to carbohydrate feeding (Vallet et al. [26]). This observation, however, does not differentiate between a direct and an indirect role for USF in the process. To gain further insight into the possible involvement of USF in glucose signaling, we have used a recombinant adenoviral construct that expresses a dominant negative form of USF. This dominant negative can dimerize with endogenous USF and is shown to inhibit DNA binding of USF in hepatocytes and INS-1 cells. However, expression of the dominant negative USF did not block the ability of glucose to stimulate L-PK or S14 gene expression in hepatocytes or L-PK promoter activity in INS-1 cells. We conclude that USF does not act by binding to the glucose regulatory sequences of the S14 or L-PK genes and the role of USF in the process of glucose induction is indirect.
Collapse
Affiliation(s)
- E N Kaytor
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis 55455, USA
| | | | | | | |
Collapse
|
49
|
Moon YS, Latasa MJ, Kim KH, Wang D, Sul HS. Two 5'-regions are required for nutritional and insulin regulation of the fatty-acid synthase promoter in transgenic mice. J Biol Chem 2000; 275:10121-7. [PMID: 10744693 DOI: 10.1074/jbc.275.14.10121] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously reported that 2.1 kilobase pairs of the 5'-flanking sequence are sufficient for tissue-specific and hormonal/metabolic regulation of the fatty-acid synthase (FAS) gene in transgenic mice. We also demonstrated that the -65 E-box is required for insulin regulation of the FAS promoter using 3T3-L1 adipocytes in culture. To further define sequences required for FAS gene expression, we generated transgenic mice carrying from -644, -444, -278, and -131 to +67 base pairs of the rat FAS 5'-flanking sequence fused to the chloramphenicol acetyltransferase (CAT) reporter gene. Similar to the expression observed with -2100-FAS-CAT transgenic mice, transgenic mice harboring -644-FAS-CAT and -444-FAS-CAT expressed high levels of CAT mRNA only in lipogenic tissues (liver and adipose tissue) in a manner identical to the endogenous FAS mRNA. In contrast, -278-FAS-CAT and -131-FAS-CAT transgenic mice did not show appreciable CAT expression in any of the tissues examined. When previously fasted mice were refed a high carbohydrate, fat-free diet, CAT mRNA expression in transgenic mice harboring -644-FAS-CAT and -444-FAS-CAT was induced dramatically in liver and adipose tissue. The induction was virtually identical to that observed in -2100-FAS-CAT transgenic mice and to the endogenous FAS mRNA. In contrast, -278-FAS-CAT transgenic mice showed induction by feeding, but at a much lower magnitude in both liver and adipose tissue. The -131-FAS-CAT transgenic mice did not show any CAT expression either when fasted or refed a high carbohydrate diet. To study further the effect of insulin, we made these transgenic mice insulin-deficient by streptozotocin treatment. Insulin administration to the streptozotocin-diabetic mice increased CAT mRNA levels driven by the -644 FAS and -444 FAS promoters in liver and adipose tissue, paralleling the endogenous FAS mRNA levels. In the case of -278-FAS-CAT, the induction observed was at a much lower magnitude, and deletion to -131 base pairs did not show any increase in CAT expression by insulin. This study demonstrates that the sequence requirement for FAS gene regulation employing an in vitro culture system does not reflect the in vivo situation and that two 5'-flanking regions are required for proper nutritional and insulin regulation of the FAS gene. Cotransfection of the upstream stimulatory factor and various FAS promoter-luciferase constructs as well as in vitro binding studies suggest a function for the upstream stimulatory factor at both the -65 and -332 E-box sequences.
Collapse
Affiliation(s)
- Y S Moon
- Department of Nutritional Sciences, University of California, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
50
|
Koo SH, Towle HC. Glucose regulation of mouse S(14) gene expression in hepatocytes. Involvement of a novel transcription factor complex. J Biol Chem 2000; 275:5200-7. [PMID: 10671567 DOI: 10.1074/jbc.275.7.5200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription of genes encoding enzymes required for lipogenesis is induced in hepatocytes in response to elevated glucose metabolism. We have previously mapped the carbohydrate-response elements (ChoREs) of the rat liver-type pyruvate kinase (L-PK) and S(14) genes and found them to share significant sequence similarity. However, progress in unraveling this signaling pathway has been hampered due to the difficulty in identifying the key factor(s) that bind to these ChoREs. To gain further insight into the nature of the carbohydrate-responsive transcription factor, the glucose regulatory sequences from the mouse S(14) gene were examined in primary hepatocytes. Three elements were found to be essential for supporting the glucose response: a thyroid hormone-response element between -1522 and -1494, an accessory factor site between -1421 and -1392, and the ChoRE between -1450 and -1425. Of these, only the accessory factor site was conserved between the rat and mouse S(14) genes. Investigation of the ChoRE sequence indicated that two half E box motifs are critical for the response to glucose. Electrophoretic mobility shift assays revealed a complex formed between the mouse S(14) ChoRE and liver nuclear proteins. This complex was also formed by ChoREs from the rat S(14) and L-PK genes but not by mutants of these sites that are inactive in supporting the glucose response. These results suggest the presence of a novel transcription factor complex that mediates the glucose-regulated transcription of S(14) and L-PK genes.
Collapse
Affiliation(s)
- S H Koo
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|