1
|
Underwood L, Jiang CS, Oh JY, Sato PY. Unheralded Adrenergic Receptor Signaling in Cellular Oxidative Stress and Death. CURRENT OPINION IN PHYSIOLOGY 2024; 40:100766. [PMID: 39070968 PMCID: PMC11271747 DOI: 10.1016/j.cophys.2024.100766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Catecholamines (CAs) bind and activate adrenergic receptors (ARs), thus exuding a key role in cardiac adaptations to global physiological queues. Prolonged exposure to high levels of CAs promotes deleterious effects on the cardiovascular system, leading to organ dysfunction and heart failure (HF). In addition to the prominent role of ARs in inotropic and chronotropic responses, recent studies have delved into elucidating mechanisms contributing to CA toxicity and cell death. Central to this process is understanding the involvement of α1AR and βAR in cardiac remodeling and mechanisms of cellular survival. Here, we highlight the complexity of AR signaling and the fundamental need for a better understanding of its contribution to oxidative stress and cell death. This crucial informational nexus remains a barrier to the development of new therapeutic strategies for cardiovascular diseases.
Collapse
Affiliation(s)
- Lilly Underwood
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL
| | - Chun-Sun Jiang
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL
| | - Joo-Yeun Oh
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL
| | - Priscila Y Sato
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
2
|
Breitwieser GE, Cippitelli A, Wang Y, Pelletier O, Dershem R, Wei J, Toll L, Fakhoury B, Brunori G, Metpally R, Carey DJ, Robishaw J. Rare GPR37L1 Variants Reveal Potential Association between GPR37L1 and Disorders of Anxiety and Migraine. J Neurosci 2024; 44:e1226232024. [PMID: 38569927 PMCID: PMC11089846 DOI: 10.1523/jneurosci.1226-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
GPR37L1 is an orphan receptor that couples through heterotrimeric G-proteins to regulate physiological functions. Since its role in humans is not fully defined, we used an unbiased computational approach to assess the clinical significance of rare G-protein-coupled receptor 37-like 1 (GPR37L1) genetic variants found among 51,289 whole-exome sequences from the DiscovEHR cohort. Rare GPR37L1 coding variants were binned according to predicted pathogenicity and analyzed by sequence kernel association testing to reveal significant associations with disease diagnostic codes for epilepsy and migraine, among others. Since associations do not prove causality, rare GPR37L1 variants were functionally analyzed in SK-N-MC cells to evaluate potential signaling differences and pathogenicity. Notably, receptor variants exhibited varying abilities to reduce cAMP levels, activate mitogen-activated protein kinase (MAPK) signaling, and/or upregulate receptor expression in response to the agonist prosaptide (TX14(A)), as compared with the wild-type receptor. In addition to signaling changes, knock-out (KO) of GPR37L1 or expression of certain rare variants altered cellular cholesterol levels, which were also acutely regulated by administration of the agonist TX14(A) via activation of the MAPK pathway. Finally, to simulate the impact of rare nonsense variants found in the large patient cohort, a KO mouse line lacking Gpr37l1 was generated. Although KO animals did not recapitulate an acute migraine phenotype, the loss of this receptor produced sex-specific changes in anxiety-related disorders often seen in chronic migraineurs. Collectively, these observations define the existence of rare GPR37L1 variants associated with neuropsychiatric conditions in the human population and identify the signaling changes contributing to pathological processes.
Collapse
Affiliation(s)
- Gerda E Breitwieser
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Andrea Cippitelli
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Yingcai Wang
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Oliver Pelletier
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Ridge Dershem
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Jianning Wei
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Lawrence Toll
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Bianca Fakhoury
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Gloria Brunori
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | | | - David J Carey
- Geisinger, Weis Center for Research, Danville, Pennsylvania
| | - Janet Robishaw
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
- College of Veterinary Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
3
|
Alrasheed NM, Alammari RB, Alshammari TK, Alamin MA, Alharbi AO, Alonazi AS, Bin Dayel AF, Alrasheed NM. α1A Adrenoreceptor blockade attenuates myocardial infarction by modulating the integrin-linked kinase/TGF-β/Smad signaling pathways. BMC Cardiovasc Disord 2023; 23:153. [PMID: 36964489 PMCID: PMC10037904 DOI: 10.1186/s12872-023-03188-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 03/16/2023] [Indexed: 03/26/2023] Open
Abstract
Background Myocardial infarction (MI) is considered a public health problem. According to the World Health Organization, MI is a leading cause of death and comorbidities worldwide. Activation of the α1A adrenergic receptor is a contributing factor to the development of MI. Tamsulosin, an α1A adrenergic blocker, has gained wide popularity as a medication for the treatment of benign prostatic hyperplasia. Limited evidence from previous studies has revealed the potential cardioprotective effects of tamsulosin, as its inhibitory effect on the α1A adrenoceptor protects the heart by acting on the smooth muscle of blood vessels, which results in hypotension; however, its effect on the infarcted heart is still unclear. The mechanisms of the expected cardioprotective effects mediated by tamsulosin are not yet understood. Transforming growth factor-beta (TGF-β), a mediator of fibrosis, is considered an attractive therapeutic target for remodeling after MI. The role of α1A adrenoceptor inhibition or its relationships with integrin-linked kinase (ILK) and TGF-β/small mothers against decapentaplegic (Smad) signaling pathways in attenuating MI are unclear. The present study was designed to investigate whether tamsulosin attenuates MI by modulating an ILK-related TGF-β/Smad pathway. Methods Twenty-four adult male Wistar rats were randomly divided into 4 groups: control, ISO, TAM, and ISO + TAM. ISO (150 mg/kg, intraperitoneally) was injected on Days 20 and 21 to induce MI. Tamsulosin (0.8 mg/kg, orally) was administered for 21 days, prior to ISO injection for 2 consecutive days. Heart-to-body weight ratios and cardiac and fibrotic biomarker levels were subsequently determined. ILK, TGF-β1, p-Smad2/3, and collagen III protein expression levels were determined using biomolecular methods. Results Tamsulosin significantly attenuated the relative heart-to-body weight index (p < 0.5) and creatine kinase-MB level (p < 0.01) compared with those in the ISO control group. While ISO resulted in superoxide anion production and enhanced oxidative damage, tamsulosin significantly prevented this damage through antioxidant defense mechanisms, increasing glutathione and superoxide dismutase levels (p < 0.05) and decreasing lipid peroxide oxidation levels (p < 0.01). The present data revealed that tamsulosin reduced TGF-β/p-Smad2/3 expression and enhanced ILK expression. Conclusion Tamsulosin may exert a cardioprotective effect by modulating the ILK-related TGF-β/Smad signaling pathway. Thus, tamsulosin may be a useful therapeutic approach for preventing MI. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-023-03188-w.
Collapse
Affiliation(s)
- Nawal M. Alrasheed
- grid.56302.320000 0004 1773 5396Department of Pharmacology and Toxicology, College of Pharmacy , King Saud University, P.O. Box 70474, Riyadh, 11567 Saudi Arabia
| | - Raghad B. Alammari
- grid.56302.320000 0004 1773 5396Pharm D. Student, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Tahani K. Alshammari
- grid.56302.320000 0004 1773 5396Department of Pharmacology and Toxicology, College of Pharmacy , King Saud University, P.O. Box 70474, Riyadh, 11567 Saudi Arabia
| | - Maha A. Alamin
- grid.56302.320000 0004 1773 5396Department of Pharmacology and Toxicology, College of Pharmacy , King Saud University, P.O. Box 70474, Riyadh, 11567 Saudi Arabia
| | - Abeer O. Alharbi
- grid.56302.320000 0004 1773 5396Department of Pharmacology and Toxicology, College of Pharmacy , King Saud University, P.O. Box 70474, Riyadh, 11567 Saudi Arabia
| | - Asma S. Alonazi
- grid.56302.320000 0004 1773 5396Department of Pharmacology and Toxicology, College of Pharmacy , King Saud University, P.O. Box 70474, Riyadh, 11567 Saudi Arabia
| | - Anfal F. Bin Dayel
- grid.56302.320000 0004 1773 5396Department of Pharmacology and Toxicology, College of Pharmacy , King Saud University, P.O. Box 70474, Riyadh, 11567 Saudi Arabia
| | - Nouf M. Alrasheed
- grid.56302.320000 0004 1773 5396Department of Pharmacology and Toxicology, College of Pharmacy , King Saud University, P.O. Box 70474, Riyadh, 11567 Saudi Arabia
| |
Collapse
|
4
|
da Silva AAS, de Santi F, Hinton BT, Cerri PS, Sasso-Cerri E. Venlafaxine increases aromatization, reduces apical V-ATPase in clear cells and induces increased number of mast cells and smooth muscle cells death in rat cauda epididymis. Life Sci 2023; 315:121329. [PMID: 36584913 DOI: 10.1016/j.lfs.2022.121329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/12/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Depressive disorders (DD) have affected millions of people worldwide. Venlafaxine, antidepressant of the class of serotonin and norepinephrine reuptake inhibitors, has been prescribed for the treatment of DD. In rat testes, venlafaxine induces testosterone (T) aromatization and increases estrogen levels. Aromatase is a key enzyme for the formation of estrogen in the epididymis, an essential organ for male fertility. We investigated the impact of serotonergic/noradrenergic venlafaxine effect on the epididymal cauda region, focusing on aromatase, V-ATPase and EGF epithelial immunoexpression, smooth muscle (SM) integrity and mast cells number (MCN). Male rats were distributed into control (CG; n = 10) and venlafaxine (VFG, n = 10) groups. VFG received 30 mg/kg b.w. of venlafaxine for 35 days. The epididymal cauda was processed for light and transmission electron microscopy (TEM). The expression of connexin 43 (Cx43) and estrogen alpha (Esr1), adrenergic (Adra1a) and serotonergic (Htr1b) receptors were analyzed. Clear cells (CCs) area, SM thickness, viable spermatozoa (VS) and MCN were evaluated. Apoptosis was confirmed by TUNEL and TEM. The following immunoreactions were performed: T, aromatase, T/aromatase co-localization, V-ATPase, EGF, Cx43 and PCNA. The increased Adra1a and reduced Htr1b expressions confirmed the noradrenergic and serotonergic venlafaxine effects, respectively, corroborating the increased MCN, apoptosis and atrophy of SM. In VFG, the epithelial EGF increased, explaining Cx43 overexpression and basal cells mitotic activity. T aromatization and Esr1 downregulation indicate high estrogen levels, explaining CCs hypertrophy and changes in the V-ATPase localization, corroborating VS reduction. Thus, in addition to serotonergic/noradrenergic effects, T/estrogen imbalance, induced by venlafaxine, impairs epididymal structure and function.
Collapse
Affiliation(s)
- André Acácio Souza da Silva
- São Paulo State University (Unesp), School of Dentistry, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Araraquara, Brazil
| | - Fabiane de Santi
- Federal University of São Paulo, Department of Morphology and Genetics, São Paulo, Brazil
| | - Barry T Hinton
- University of Virginia, School of Medicine, Department of Cell Biology, Charlottesville, USA
| | - Paulo Sérgio Cerri
- São Paulo State University (Unesp), School of Dentistry, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Araraquara, Brazil
| | - Estela Sasso-Cerri
- São Paulo State University (Unesp), School of Dentistry, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Araraquara, Brazil.
| |
Collapse
|
5
|
Altieri DI, Etzion Y, Anderson HD. Cannabinoid receptor agonist attenuates angiotensin II-induced enlargement and mitochondrial dysfunction in rat atrial cardiomyocytes. Front Pharmacol 2023; 14:1142583. [PMID: 37113758 PMCID: PMC10126395 DOI: 10.3389/fphar.2023.1142583] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/13/2023] [Indexed: 04/29/2023] Open
Abstract
Pathological remodeling of atrial tissue renders the atria more prone to arrhythmia upon arrival of electrical triggers. Activation of the renin-angiotensin system is an important factor that contributes to atrial remodeling, which may result in atrial hypertrophy and prolongation of P-wave duration. In addition, atrial cardiomyocytes are electrically coupled via gap junctions, and electrical remodeling of connexins may result in dysfunction of coordinated wave propagation within the atria. Currently, there is a lack of effective therapeutic strategies that target atrial remodeling. We previously proposed that cannabinoid receptors (CBR) may have cardioprotective qualities. CB13 is a dual cannabinoid receptor agonist that activates AMPK signaling in ventricular cardiomyocytes. We reported that CB13 attenuates tachypacing-induced shortening of atrial refractoriness and inhibition of AMPK signaling in the rat atria. Here, we evaluated the effects of CB13 on neonatal atrial rat cardiomyocytes (NRAM) stimulated by angiotensin II (AngII) in terms of atrial myocyte enlargement and mitochondrial function. CB13 inhibited AngII-induced enhancement of atrial myocyte surface area in an AMPK-dependent manner. CB13 also inhibited mitochondrial membrane potential deterioration in the same context. However, AngII and CB13 did not affect mitochondrial permeability transition pore opening. We further demonstrate that CB13 increased Cx43 compared to AngII-treated neonatal rat atrial myocytes. Overall, our results support the notion that CBR activation promotes atrial AMPK activation, and prevents myocyte enlargement (an indicator that suggests pathological hypertrophy), mitochondrial depolarization and Cx43 destabilization. Therefore, peripheral CBR activation should be further tested as a novel treatment strategy in the context of atrial remodeling.
Collapse
Affiliation(s)
- Danielle I. Altieri
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), Albrechtsen Research Centre, St Boniface Hospital, Winnipeg, MB, Canada
| | - Yoram Etzion
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hope D. Anderson
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), Albrechtsen Research Centre, St Boniface Hospital, Winnipeg, MB, Canada
- *Correspondence: Hope D. Anderson,
| |
Collapse
|
6
|
de Santi F, Beltrame FL, Rodrigues BM, Scaramele NF, Lopes FL, Cerri PS, Sasso-Cerri E. Venlafaxine-induced adrenergic signaling stimulates Leydig cells steroidogenesis via Nur77 overexpression: a possible role of EGF. Life Sci 2021; 289:120069. [PMID: 34688693 DOI: 10.1016/j.lfs.2021.120069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022]
Abstract
Venlafaxine, a norepinephrine and serotonin reuptake inhibitor, impairs rat sperm parameters, spermatogenesis and causes high intratesticular estrogen and testosterone levels, indicating that Leydig cells (LCs) may be a venlafaxine target. We evaluated the effect of venlafaxine treatment on LCs in vivo, focusing on adrenergic signaling, EGF immunoexpression and steroidogenesis. Germ cells mitotic/meiotic activity and UCHL1 levels were also evaluated in the seminiferous epithelium. Adult male rats received venlafaxine (30 mg/kg) or distilled water. In testicular sections, the seminiferous tubules, epithelium and the LCs nuclear areas were measured, and the immunoexpression of Ki-67, UCHL1, StAR, EGF, c-Kit and 17β-HSD was evaluated. UCHL1, StAR and EGF protein levels and Adra1a, Nur77 and Ndrg2 expression were analyzed. MDA and nitrite testicular levels, and serum estrogen and testosterone levels were measured. Venlafaxine induced LCs hypertrophy and Ndrg2 upregulation, in parallel to increased number of Ki-67, c-Kit- and 17β-HSD-positive interstitial cells, indicating that this antidepressant stimulates LCs lineage proliferation and differentiation. Upregulation of Adra1a and Nur77 could explain the high levels of StAR and testosterone levels, as well as aromatization. Enhanced EGF immunoexpresion in LCs suggests that this growth fact is involved in adrenergically-induced steroidogenesis, likely via upregulation of Nur77. Slight tubular atrophy and weak Ki-67 immunoexpression in germ cells, in association with high UCHL1 levels, indicate that spermatogenesis is likely impaired by this enzyme under supraphysiological estrogen levels. These data corroborate the unchanged MDA and nitrite levels. Therefore, venlafaxine stimulates LCs steroidogenesis via adrenergic signaling, and EGF may be involved in this process.
Collapse
Affiliation(s)
- Fabiane de Santi
- Federal University of São Paulo, Department of Morphology and Genetics, São Paulo, Brazil
| | - Flávia L Beltrame
- Federal University of São Paulo, Department of Morphology and Genetics, São Paulo, Brazil
| | - Beatriz M Rodrigues
- São Paulo State University (Unesp), School of Dentistry, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Araraquara, Brazil
| | - Natália F Scaramele
- São Paulo State University (Unesp), School of Veterinary Medicine, Department of Production and Animal Health, Araçatuba, Brazil
| | - Flávia L Lopes
- São Paulo State University (Unesp), School of Veterinary Medicine, Department of Production and Animal Health, Araçatuba, Brazil
| | - Paulo S Cerri
- São Paulo State University (Unesp), School of Dentistry, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Araraquara, Brazil
| | - Estela Sasso-Cerri
- São Paulo State University (Unesp), School of Dentistry, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Araraquara, Brazil.
| |
Collapse
|
7
|
Kaidonis X, Niu W, Chan AY, Kesteven S, Wu J, Iismaa SE, Vatner S, Feneley M, Graham RM. Adaptation to exercise-induced stress is not dependent on cardiomyocyte α 1A-adrenergic receptors. J Mol Cell Cardiol 2021; 155:78-87. [PMID: 33647309 DOI: 10.1016/j.yjmcc.2021.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 01/20/2021] [Accepted: 02/21/2021] [Indexed: 12/31/2022]
Abstract
The 'fight or flight' response to physiological stress involves sympathetic nervous system activation, catecholamine release and adrenergic receptor stimulation. In the heart, this induces positive inotropy, previously attributed to the β1-adrenergic receptor subtype. However, the role of the α1A-adrenergic receptor, which has been suggested to be protective in cardiac pathology, has not been investigated in the setting of physiological stress. To explore this, we developed a tamoxifen-inducible, cardiomyocyte-specific α1A-adrenergic receptor knock-down mouse model, challenged mice to four weeks of endurance swim training and assessed cardiac outcomes. With 4-OH tamoxifen treatment, expression of the α1A-adrenergic receptor was knocked down by 80-89%, without any compensatory changes in the expression of other adrenergic receptors, or changes to baseline cardiac structure and function. Swim training caused eccentric hypertrophy, regardless of genotype, demonstrated by an increase in heart weight/tibia length ratio (30% and 22% in vehicle- and tamoxifen-treated animals, respectively) and an increase in left ventricular end diastolic volume (30% and 24% in vehicle- and tamoxifen-treated animals, respectively) without any change in the wall thickness/chamber radius ratio. Consistent with physiological hypertrophy, there was no increase in fetal gene program (Myh7, Nppa, Nppb or Acta1) expression. In response to exercise-induced volume overload, stroke volume (39% and 30% in vehicle- and tamoxifen-treated animals, respectively), cardiac output/tibia length ratio (41% in vehicle-treated animals) and stroke work (61% and 33% in vehicle- and tamoxifen-treated animals, respectively) increased, regardless of genotype. These findings demonstrate that cardiomyocyte α1A-adrenergic receptors are not necessary for cardiac adaptation to endurance exercise stress and their acute ablation is not deleterious.
Collapse
Affiliation(s)
- Xenia Kaidonis
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St.Vincent's Clinical School, University of NSW, Kensington, NSW 2052, Australia
| | - Wenxing Niu
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; School of Medical Sciences, University of NSW, Kensington, NSW 2052, Australia
| | - Andrea Y Chan
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Scott Kesteven
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St.Vincent's Clinical School, University of NSW, Kensington, NSW 2052, Australia
| | - Jianxin Wu
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Siiri E Iismaa
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St.Vincent's Clinical School, University of NSW, Kensington, NSW 2052, Australia
| | - Stephen Vatner
- Cardiovascular Research Institute, Dept. of Cell Biology and Molecular Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Michael Feneley
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St.Vincent's Clinical School, University of NSW, Kensington, NSW 2052, Australia
| | - Robert M Graham
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St.Vincent's Clinical School, University of NSW, Kensington, NSW 2052, Australia.
| |
Collapse
|
8
|
Zhang J, Simpson PC, Jensen BC. Cardiac α1A-adrenergic receptors: emerging protective roles in cardiovascular diseases. Am J Physiol Heart Circ Physiol 2020; 320:H725-H733. [PMID: 33275531 DOI: 10.1152/ajpheart.00621.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
α1-Adrenergic receptors (ARs) are catecholamine-activated G protein-coupled receptors (GPCRs) that are expressed in mouse and human myocardium and vasculature, and play essential roles in the regulation of cardiovascular physiology. Though α1-ARs are less abundant in the heart than β1-ARs, activation of cardiac α1-ARs results in important biologic processes such as hypertrophy, positive inotropy, ischemic preconditioning, and protection from cell death. Data from the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT) indicate that nonselectively blocking α1-ARs is associated with a twofold increase in adverse cardiac events, including heart failure and angina, suggesting that α1-AR activation might also be cardioprotective in humans. Mounting evidence implicates the α1A-AR subtype in these adaptive effects, including prevention and reversal of heart failure in animal models by α1A agonists. In this review, we summarize recent advances in our understanding of cardiac α1A-ARs.
Collapse
Affiliation(s)
- Jiandong Zhang
- McAllister Heart Institute, University of North Carolina, School of Medicine, Chapel Hill, North Carolina
| | - Paul C Simpson
- Department of Medicine and Research Service, San Francisco Veterans Affairs Medical Center and Cardiovascular Research Institute, University of California, San Francisco, California
| | - Brian C Jensen
- McAllister Heart Institute, University of North Carolina, School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
9
|
Wijaya LK, Stumbles PA, Drummond PD. A positive feedback loop between alpha 1-adrenoceptors and inflammatory cytokines in keratinocytes. Exp Cell Res 2020; 391:112008. [PMID: 32304706 DOI: 10.1016/j.yexcr.2020.112008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/02/2020] [Accepted: 04/12/2020] [Indexed: 01/11/2023]
Abstract
A positive feedback loop between inflammatory cytokines and alpha1-adrenoceptors (α1-AR) (a target of the sympathetic nervous system neurotransmitter norepinephrine) influences inflammatory responses in immune cells. This cross-talk between the sympathetic nervous system and immune system may play a role in promoting chronic inflammation. Emerging evidence shows that α1-AR interact with inflammatory cytokines in keratinocytes, and this epidermal adrenergic signalling may contribute to skin inflammatory responses following injury, disease or stress. In this study, utilizing an in vitro approach, we hypothesized that α1-AR interact in a positive feedback loop with inflammatory mediators in keratinocytes. The pro-inflammatory cytokine tumor necrosis factor α (TNFα) was used to induce an inflammatory state in cultured keratinocytes. TNFα increased interleukin (IL)-1β, IL-6, IL-8 and nerve growth factor (NGF) production and gene expression levels of α1-AR subtype B (α1B-AR). Additional stimulation of α1-AR further increased IL-6 levels, while maintaining high levels of IL-8 and decreasing levels of IL-1β and NGF. Our results suggest that reciprocal influences between α1-ARs and inflammatory cytokines may play a role in normal inflammatory responses. However, if unchecked, this cycle could contribute to pathology (e.g. chronic inflammatory diseases, chronic pain conditions, and stress-induced cancer progression).
Collapse
Affiliation(s)
- Linda K Wijaya
- College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia, Australia
| | - Philip A Stumbles
- College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia, Australia; Telethon Kids Institute, Perth, Western Australia, Australia
| | - Peter D Drummond
- College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia, Australia.
| |
Collapse
|
10
|
Stofkova A, Kamimura D, Ohki T, Ota M, Arima Y, Murakami M. Photopic light-mediated down-regulation of local α 1A-adrenergic signaling protects blood-retina barrier in experimental autoimmune uveoretinitis. Sci Rep 2019; 9:2353. [PMID: 30787395 PMCID: PMC6382936 DOI: 10.1038/s41598-019-38895-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 01/04/2019] [Indexed: 01/15/2023] Open
Abstract
We have reported the gateway reflex, which describes specific neural activations that regulate immune cell gateways at specific blood vessels in the central nervous system (CNS). Four types of gateway reflexes exist, all of which induce alterations in endothelial cells at specific vessels of the blood-brain barrier followed by inflammation in the CNS in the presence of CNS-autoreactive T cells. Here we report a new gateway reflex that suppresses the development of retinal inflammation by using an autoreactive T cell-mediated ocular inflammation model. Exposure to photopic light down-regulated the adrenoceptor pathway to attenuate ocular inflammation by suppressing breaching of the blood-retina barrier. Mechanistic analysis showed that exposure to photopic light down-regulates the expression of α1A-adrenoceptor (α1AAR) due to high levels of norepinephrine and epinephrine, subsequently suppressing inflammation. Surgical ablation of the superior cervical ganglion (SCG) did not negate the protective effect of photopic light, suggesting the involvement of retinal noradrenergic neurons rather than sympathetic neurons from the SCG. Blockade of α1AAR signaling under mesopic light recapitulated the protective effect of photopic light. Thus, targeting regional adrenoceptor signaling might represent a novel therapeutic strategy for autoimmune diseases including those that affect organs separated by barriers such as the CNS and eyes.
Collapse
Affiliation(s)
- Andrea Stofkova
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, 060-0815, Japan. .,Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Daisuke Kamimura
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, 060-0815, Japan
| | - Takuto Ohki
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, 060-0815, Japan
| | - Mitsutoshi Ota
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, 060-0815, Japan
| | - Yasunobu Arima
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, 060-0815, Japan
| | - Masaaki Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, 060-0815, Japan.
| |
Collapse
|
11
|
Sárközy M, Szűcs G, Fekete V, Pipicz M, Éder K, Gáspár R, Sója A, Pipis J, Ferdinandy P, Csonka C, Csont T. Transcriptomic alterations in the heart of non-obese type 2 diabetic Goto-Kakizaki rats. Cardiovasc Diabetol 2016; 15:110. [PMID: 27496100 PMCID: PMC4975916 DOI: 10.1186/s12933-016-0424-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/14/2016] [Indexed: 12/22/2022] Open
Abstract
Background There is a spectacular rise in the global prevalence of type 2 diabetes mellitus (T2DM) due to the worldwide obesity epidemic. However, a significant proportion of T2DM patients are non-obese and they also have an increased risk of cardiovascular diseases. As the Goto-Kakizaki (GK) rat is a well-known model of non-obese T2DM, the goal of this study was to investigate the effect of non-obese T2DM on cardiac alterations of the transcriptome in GK rats. Methods Fasting blood glucose, serum insulin and cholesterol levels were measured at 7, 11, and 15 weeks of age in male GK and control rats. Oral glucose tolerance test and pancreatic insulin level measurements were performed at 11 weeks of age. At week 15, total RNA was isolated from the myocardium and assayed by rat oligonucleotide microarray for 41,012 genes, and then expression of selected genes was confirmed by qRT-PCR. Gene ontology and protein–protein network analyses were performed to demonstrate potentially characteristic gene alterations and key genes in non-obese T2DM. Results Fasting blood glucose, serum insulin and cholesterol levels were significantly increased, glucose tolerance and insulin sensitivity were significantly impaired in GK rats as compared to controls. In hearts of GK rats, 204 genes showed significant up-regulation and 303 genes showed down-regulation as compared to controls according to microarray analysis. Genes with significantly altered expression in the heart due to non-obese T2DM includes functional clusters of metabolism (e.g. Cyp2e1, Akr1b10), signal transduction (e.g. Dpp4, Stat3), receptors and ion channels (e.g. Sln, Chrng), membrane and structural proteins (e.g. Tnni1, Mylk2, Col8a1, Adam33), cell growth and differentiation (e.g. Gpc3, Jund), immune response (e.g. C3, C4a), and others (e.g. Lrp8, Msln, Klkc1, Epn3). Gene ontology analysis revealed several significantly enriched functional inter-relationships between genes influenced by non-obese T2DM. Protein–protein interaction analysis demonstrated that Stat is a potential key gene influenced by non-obese T2DM. Conclusions Non-obese T2DM alters cardiac gene expression profile. The altered genes may be involved in the development of cardiac pathologies and could be potential therapeutic targets in non-obese T2DM. Electronic supplementary material The online version of this article (doi:10.1186/s12933-016-0424-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Márta Sárközy
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
| | - Gergő Szűcs
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary.,Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Veronika Fekete
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
| | - Márton Pipicz
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
| | - Katalin Éder
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Renáta Gáspár
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
| | - Andrea Sója
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
| | | | - Péter Ferdinandy
- Pharmahungary Group, Szeged, Hungary.,Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Csaba Csonka
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
| | - Tamás Csont
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary.
| |
Collapse
|
12
|
Thomas RC, Cowley PM, Singh A, Myagmar BE, Swigart PM, Baker AJ, Simpson PC. The Alpha-1A Adrenergic Receptor in the Rabbit Heart. PLoS One 2016; 11:e0155238. [PMID: 27258143 PMCID: PMC4892533 DOI: 10.1371/journal.pone.0155238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/26/2016] [Indexed: 11/20/2022] Open
Abstract
The alpha-1A-adrenergic receptor (AR) subtype is associated with cardioprotective signaling in the mouse and human heart. The rabbit is useful for cardiac disease modeling, but data on the alpha-1A in the rabbit heart are limited. Our objective was to test for expression and function of the alpha-1A in rabbit heart. By quantitative real-time reverse transcription PCR (qPCR) on mRNA from ventricular myocardium of adult male New Zealand White rabbits, the alpha-1B was 99% of total alpha-1-AR mRNA, with <1% alpha-1A and alpha-1D, whereas alpha-1A mRNA was over 50% of total in brain and liver. Saturation radioligand binding identified ~4 fmol total alpha-1-ARs per mg myocardial protein, with 17% alpha-1A by competition with the selective antagonist 5-methylurapidil. The alpha-1D was not detected by competition with BMY-7378, indicating that 83% of alpha-1-ARs were alpha-1B. In isolated left ventricle and right ventricle, the selective alpha-1A agonist A61603 stimulated a negative inotropic effect, versus a positive inotropic effect with the nonselective alpha-1-agonist phenylephrine and the beta-agonist isoproterenol. Blood pressure assay in conscious rabbits using an indwelling aortic telemeter showed that A61603 by bolus intravenous dosing increased mean arterial pressure by 20 mm Hg at 0.14 μg/kg, 10-fold lower than norepinephrine, and chronic A61603 infusion by iPRECIO programmable micro Infusion pump did not increase BP at 22 μg/kg/d. A myocardial slice model useful in human myocardium and an anthracycline cardiotoxicity model useful in mouse were both problematic in rabbit. We conclude that alpha-1A mRNA is very low in rabbit heart, but the receptor is present by binding and mediates a negative inotropic response. Expression and function of the alpha-1A in rabbit heart differ from mouse and human, but the vasopressor response is similar to mouse.
Collapse
Affiliation(s)
- R. Croft Thomas
- Department of Medicine, Cardiology Division, and Research Service, VA Medical Center, San Francisco, CA, United States of America
- Department of Medicine and Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, United States of America
| | - Patrick M. Cowley
- Department of Medicine, Cardiology Division, and Research Service, VA Medical Center, San Francisco, CA, United States of America
- Department of Medicine and Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, United States of America
| | - Abhishek Singh
- Department of Medicine, Cardiology Division, and Research Service, VA Medical Center, San Francisco, CA, United States of America
- Department of Medicine and Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, United States of America
| | - Bat-Erdene Myagmar
- Department of Medicine, Cardiology Division, and Research Service, VA Medical Center, San Francisco, CA, United States of America
- Department of Medicine and Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, United States of America
| | - Philip M. Swigart
- Department of Medicine, Cardiology Division, and Research Service, VA Medical Center, San Francisco, CA, United States of America
| | - Anthony J. Baker
- Department of Medicine, Cardiology Division, and Research Service, VA Medical Center, San Francisco, CA, United States of America
- Department of Medicine and Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, United States of America
| | - Paul C. Simpson
- Department of Medicine, Cardiology Division, and Research Service, VA Medical Center, San Francisco, CA, United States of America
- Department of Medicine and Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
13
|
Dolatshad NF, Hellen N, Jabbour RJ, Harding SE, Földes G. G-protein Coupled Receptor Signaling in Pluripotent Stem Cell-derived Cardiovascular Cells: Implications for Disease Modeling. Front Cell Dev Biol 2015; 3:76. [PMID: 26697426 PMCID: PMC4673467 DOI: 10.3389/fcell.2015.00076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 11/09/2015] [Indexed: 12/13/2022] Open
Abstract
Human pluripotent stem cell derivatives show promise as an in vitro platform to study a range of human cardiovascular diseases. A better understanding of the biology of stem cells and their cardiovascular derivatives will help to understand the strengths and limitations of this new model system. G-protein coupled receptors (GPCRs) are key regulators of stem cell maintenance and differentiation and have an important role in cardiovascular cell signaling. In this review, we will therefore describe the state of knowledge concerning the regulatory role of GPCRs in both the generation and function of pluripotent stem cell derived-cardiomyocytes, -endothelial, and -vascular smooth muscle cells. We will consider how far the in vitro disease models recapitulate authentic GPCR signaling and provide a useful basis for discovery of disease mechanisms or design of therapeutic strategies.
Collapse
Affiliation(s)
- Nazanin F Dolatshad
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK
| | - Nicola Hellen
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK
| | - Richard J Jabbour
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK
| | - Sian E Harding
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK
| | - Gabor Földes
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK ; The Heart and Vascular Center of Semmelweis University, Semmelweis University Budapest, Hungary
| |
Collapse
|
14
|
Sárközy M, Szűcs G, Pipicz M, Zvara Á, Éder K, Fekete V, Szűcs C, Bárkányi J, Csonka C, Puskás LG, Kónya C, Ferdinandy P, Csont T. The effect of a preparation of minerals, vitamins and trace elements on the cardiac gene expression pattern in male diabetic rats. Cardiovasc Diabetol 2015; 14:85. [PMID: 26126619 PMCID: PMC4499218 DOI: 10.1186/s12933-015-0248-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/17/2015] [Indexed: 02/06/2023] Open
Abstract
Background Diabetic patients have an increased risk of developing cardiovascular diseases, which are the leading cause of death in developed countries. Although multivitamin products are widely used as dietary supplements, the effects of these products have not been investigated in the diabetic heart yet. Therefore, here we investigated if a preparation of different minerals, vitamins, and trace elements (MVT) affects the cardiac gene expression pattern in experimental diabetes. Methods Two-day old male Wistar rats were injected with streptozotocin (i.p. 100 mg/kg) or citrate buffer to induce diabetes. From weeks 4 to 12, rats were fed with a vehicle or a MVT preparation. Fasting blood glucose measurement and oral glucose tolerance test were performed at week 12, and then total RNA was isolated from the myocardium and assayed by rat oligonucleotide microarray for 41012 oligonucleotides. Results Significantly elevated fasting blood glucose concentration and impaired glucose tolerance were markedly improved by MVT-treatment in diabetic rats at week 12. Genes with significantly altered expression due to diabetes include functional clusters related to cardiac hypertrophy (e.g. caspase recruitment domain family, member 9; cytochrome P450, family 26, subfamily B, polypeptide; FXYD domain containing ion transport regulator 3), stress response (e.g. metallothionein 1a; metallothionein 2a; interleukin-6 receptor; heme oxygenase (decycling) 1; and glutathione S-transferase, theta 3), and hormones associated with insulin resistance (e.g. resistin; FK506 binding protein 5; galanin/GMAP prepropeptide). Moreover the expression of some other genes with no definite cardiac function was also changed such as e.g. similar to apolipoprotein L2; brain expressed X-linked 1; prostaglandin b2 synthase (brain). MVT-treatment in diabetic rats showed opposite gene expression changes in the cases of 19 genes associated with diabetic cardiomyopathy. In healthy hearts, MVT-treatment resulted in cardiac gene expression changes mostly related to immune response (e.g. complement factor B; complement component 4a; interferon regulatory factor 7; hepcidin). Conclusions MVT-treatment improved diagnostic markers of diabetes. This is the first demonstration that MVT-treatment significantly alters cardiac gene expression profile in both control and diabetic rats. Our results and further studies exploring the mechanistic role of individual genes may contribute to the prevention or diagnosis of cardiac complications in diabetes. Electronic supplementary material The online version of this article (doi:10.1186/s12933-015-0248-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Márta Sárközy
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary.
| | - Gergő Szűcs
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary.
| | - Márton Pipicz
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary.
| | - Ágnes Zvara
- Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary.
| | - Katalin Éder
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary.
| | - Veronika Fekete
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary.
| | | | | | - Csaba Csonka
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary.
| | - László G Puskás
- Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary.
| | - Csaba Kónya
- Béres Pharmaceuticals Ltd, Budapest, Hungary.
| | - Péter Ferdinandy
- Pharmahungary Group, Szeged, Hungary. .,Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.
| | - Tamás Csont
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary.
| |
Collapse
|
15
|
Alpha-1-adrenergic receptors in heart failure: the adaptive arm of the cardiac response to chronic catecholamine stimulation. J Cardiovasc Pharmacol 2014; 63:291-301. [PMID: 24145181 DOI: 10.1097/fjc.0000000000000032] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alpha-1-adrenergic receptors (ARs) are G protein-coupled receptors activated by catecholamines. The alpha-1A and alpha-1B subtypes are expressed in mouse and human myocardium, whereas the alpha-1D protein is found only in coronary arteries. There are far fewer alpha-1-ARs than beta-ARs in the nonfailing heart, but their abundance is maintained or increased in the setting of heart failure, which is characterized by pronounced chronic elevation of catecholamines and beta-AR dysfunction. Decades of evidence from gain and loss-of-function studies in isolated cardiac myocytes and numerous animal models demonstrate important adaptive functions for cardiac alpha-1-ARs to include physiological hypertrophy, positive inotropy, ischemic preconditioning, and protection from cell death. Clinical trial data indicate that blocking alpha-1-ARs is associated with incident heart failure in patients with hypertension. Collectively, these findings suggest that alpha-1-AR activation might mitigate the well-recognized toxic effects of beta-ARs in the hyperadrenergic setting of chronic heart failure. Thus, exogenous cardioselective activation of alpha-1-ARs might represent a novel and viable approach to the treatment of heart failure.
Collapse
|
16
|
Földes G, Matsa E, Kriston-Vizi J, Leja T, Amisten S, Kolker L, Kodagoda T, Dolatshad NF, Mioulane M, Vauchez K, Arányi T, Ketteler R, Schneider MD, Denning C, Harding SE. Aberrant α-adrenergic hypertrophic response in cardiomyocytes from human induced pluripotent cells. Stem Cell Reports 2014; 3:905-14. [PMID: 25418732 PMCID: PMC4235744 DOI: 10.1016/j.stemcr.2014.09.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 08/28/2014] [Accepted: 09/01/2014] [Indexed: 11/26/2022] Open
Abstract
Cardiomyocytes from human embryonic stem cells (hESC-CMs) and induced pluripotent stem cells (hiPSC-CMs) represent new models for drug discovery. Although hypertrophy is a high-priority target, we found that hiPSC-CMs were systematically unresponsive to hypertrophic signals such as the α-adrenoceptor (αAR) agonist phenylephrine (PE) compared to hESC-CMs. We investigated signaling at multiple levels to understand the underlying mechanism of this differential responsiveness. The expression of the normal α1AR gene, ADRA1A, was reversibly silenced during differentiation, accompanied by ADRA1B upregulation in either cell type. ADRA1B signaling was intact in hESC-CMs, but not in hiPSC-CMs. We observed an increased tonic activity of inhibitory kinase pathways in hiPSC-CMs, and inhibition of antihypertrophic kinases revealed hypertrophic increases. There is tonic suppression of cell growth in hiPSC-CMs, but not hESC-CMs, limiting their use in investigation of hypertrophic signaling. These data raise questions regarding the hiPSC-CM as a valid model for certain aspects of cardiac disease.
Collapse
Affiliation(s)
- Gabor Földes
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; Heart and Vascular Center, Semmelweis University, Budapest H1122, Hungary.
| | - Elena Matsa
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - János Kriston-Vizi
- Bioinformatics Image Core, Medical Research Council Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Thomas Leja
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Stefan Amisten
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Oxford University, The Churchill Hospital, Oxford OX3 7LJ, UK
| | - Ljudmila Kolker
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; National Institute for Biological Standards and Controls, Cell Biology and Imaging, Hertfordshire EN6 3QG, UK
| | - Thusharika Kodagoda
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Nazanin F Dolatshad
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Maxime Mioulane
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Karine Vauchez
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Tamás Arányi
- Institute of Enzymology, RCNS, Hungarian Academy of Sciences, Budapest H1113, Hungary
| | - Robin Ketteler
- Bioinformatics Image Core, Medical Research Council Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Michael D Schneider
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Chris Denning
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Sian E Harding
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| |
Collapse
|
17
|
O'Connell TD, Jensen BC, Baker AJ, Simpson PC. Cardiac alpha1-adrenergic receptors: novel aspects of expression, signaling mechanisms, physiologic function, and clinical importance. Pharmacol Rev 2013; 66:308-33. [PMID: 24368739 DOI: 10.1124/pr.112.007203] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Adrenergic receptors (AR) are G-protein-coupled receptors (GPCRs) that have a crucial role in cardiac physiology in health and disease. Alpha1-ARs signal through Gαq, and signaling through Gq, for example, by endothelin and angiotensin receptors, is thought to be detrimental to the heart. In contrast, cardiac alpha1-ARs mediate important protective and adaptive functions in the heart, although alpha1-ARs are only a minor fraction of total cardiac ARs. Cardiac alpha1-ARs activate pleiotropic downstream signaling to prevent pathologic remodeling in heart failure. Mechanisms defined in animal and cell models include activation of adaptive hypertrophy, prevention of cardiac myocyte death, augmentation of contractility, and induction of ischemic preconditioning. Surprisingly, at the molecular level, alpha1-ARs localize to and signal at the nucleus in cardiac myocytes, and, unlike most GPCRs, activate "inside-out" signaling to cause cardioprotection. Contrary to past opinion, human cardiac alpha1-AR expression is similar to that in the mouse, where alpha1-AR effects are seen most convincingly in knockout models. Human clinical studies show that alpha1-blockade worsens heart failure in hypertension and does not improve outcomes in heart failure, implying a cardioprotective role for human alpha1-ARs. In summary, these findings identify novel functional and mechanistic aspects of cardiac alpha1-AR function and suggest that activation of cardiac alpha1-AR might be a viable therapeutic strategy in heart failure.
Collapse
Affiliation(s)
- Timothy D O'Connell
- VA Medical Center (111-C-8), 4150 Clement St., San Francisco, CA 94121. ; or Dr. Timothy D. O'Connell, E-mail:
| | | | | | | |
Collapse
|
18
|
Papay RS, Shi T, Piascik MT, Naga Prasad SV, Perez DM. α₁A-adrenergic receptors regulate cardiac hypertrophy in vivo through interleukin-6 secretion. Mol Pharmacol 2013; 83:939-48. [PMID: 23404509 DOI: 10.1124/mol.112.084483] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The role of α₁-adrenergic receptors (ARs) in the regulation of cardiac hypertrophy is still unclear, because transgenic mice demonstrated hypertrophy or the lack of it despite high receptor overexpression. To further address the role of the α₁-ARs in cardiac hypertrophy, we analyzed unique transgenic mice that overexpress constitutively active mutation (CAM) α₁A-ARs or CAM α₁B-ARs under the regulation of large fragments of their native promoters. These constitutively active receptors are expressed in all tissues that endogenously express their wild-type counterparts as opposed to only myocyte-targeted transgenic mice. In this study, we discovered that CAM α₁A-AR mice in vivo have cardiac hypertrophy independent of changes in blood pressure, corroborating earlier studies, but in contrast to myocyte-targeted α₁A-AR mice. We also found cardiac hypertrophy in CAM α₁B-AR mice, in agreement with previous studies, but hypertrophy only developed in older mice. We also discovered unique α₁-AR-mediated hypertrophic signaling that was AR subtype-specific with CAM α₁A-AR mice secreting atrial naturietic factor and interleukin-6 (IL-6), whereas CAM α₁B-AR mice expressed activated nuclear factor-κB (NF-κB). These particular hypertrophic signals were blocked when the other AR subtype was coactivated. We also discovered that crossbreeding the two CAM models (double CAM α₁A/B-AR) inhibited the development of hypertrophy and was reversible with single receptor activation, suggesting that coactivation of the receptors can lead to novel antagonistic signal transduction. This was confirmed by demonstrating antagonistic signals that were even lower than normal controls in the double CAM α₁A/B-AR mice for p38, NF-κB, and the IL-6/glycoprotein 130/signal transducer and activator of transcription 3 pathway. Because α₁A/B double knockout mice fail to develop hypertrophy in response to IL-6, our results suggest that IL-6 is a major mediator of α₁A-AR cardiac hypertrophy.
Collapse
Affiliation(s)
- Robert S Papay
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | |
Collapse
|
19
|
Ziyatdinova NI, Dementieva RE, Fashutdinov LI, Zefirov TL. Blockade of different subtypes of α(1)-adrenoceptors produces opposite effect on heart chronotropy in newborn rats. Bull Exp Biol Med 2013; 154:184-5. [PMID: 23330119 DOI: 10.1007/s10517-012-1906-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We compared the effects of blockade of α(1A)-, α(1B)-, and α(1D)-subtypes of α(1)-adrenoceptors on the cardiac rhythm in newborn rats. Different responses of the heart were observed after blockade of several subtypes of α(1)-adrenoceptors. Administration of WB 4101, a selective blocker of α(1A)-adrenoceptors, increased heart rate, while blockade of α(1AD)-adrenoceptors with BMY 7378 decelerated of heart rhythm. Blockade of α(1B)-adrenoceptors with chloroethylclonidine produced no significant effects on heart chronotropy.
Collapse
Affiliation(s)
- N I Ziyatdinova
- Department of Anatomy, Physiology, and Human Health Protection, Kazan (Privolzhskii) Federal University, Russia
| | | | | | | |
Collapse
|
20
|
Pilipović I, Radojević K, Perišić M, Leposavić G. Glucocorticoid-catecholamine interplay within the composite thymopoietic regulatory network. Ann N Y Acad Sci 2012; 1261:34-41. [DOI: 10.1111/j.1749-6632.2012.06623.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Abstract
Adrenoceptors and dopamine receptors are grouped together under the name 'catecholamine receptors.' Catecholamines and catecholaminergic drugs act on catecholamine receptors located on or near the cardiovascular system. The physiological effects of catecholamine receptor stimulation are only partly understood. The catecholaminergic drugs used in critical care medicine today are not selective, or are, at best, in part selective for the various catecholamine receptor subtypes. Many patients, however, depend on them. A variety of animal models has been developed to unravel catecholamine distribution and function. However, the identification of species heterogeneity makes it imperative to determine catecholamine receptor distribution and function in humans. In addition, age-related alterations in catecholamine receptor distribution and function have been identified in human adults. This might have implications for our understanding of the effect of catecholamines in pediatric patients. This article will focus on the pediatric population and will review currently available in vitro data on the distribution and the function of catecholamine receptors in the cardiovascular system of fetuses and children. Also discussed are relevant young animal models and in vivo hemodynamic effects of cardiotonic drugs acting on the catecholamine receptor in children requiring major cardiac surgery. A better understanding of these topics might provide clues for new, receptor subtype-selective, therapeutic approaches in newborns and children with cardiac disease.
Collapse
|
22
|
Leposavić G, Pilipović I, Perišić M. Cellular and nerve fibre catecholaminergic thymic network: steroid hormone dependent activity. Physiol Res 2011; 60:S71-82. [PMID: 21777027 DOI: 10.33549/physiolres.932175] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The thymus plays a critical role in establishing and maintaining the peripheral T-cell pool. It does so by providing a microenvironment within which T-cell precursors differentiate and undergo selection processes to create a functional population of major histocompatibility complex-restricted, self-tolerant T cells. These cells are central to adaptive immunity. Thymic T-cell development is influenced by locally produced soluble factors and cell-to-cell interactions, as well as by sympathetic noradrenergic and endocrine system signalling. Thymic lymphoid and non-lymphoid cells have been shown not only to express beta- and alpha(1)- adrenoceptors (ARs), but also to synthesize catecholamines (CAs). Thus, it is suggested that CAs influence T-cell development via both neurocrine/endocrine and autocrine/paracrine action, and that they serve as immunotransmitters between thymocytes and nerves. CAs acting at multiple sites along the thymocyte developmental route affect T-cell generation not only numerically, but also qualitatively. Thymic CA level and synthesis, as well as AR expression exhibit sex steroid-mediated sexual dimorphism. Moreover, the influence of CAs on T-cell development exhibits glucocorticoid-dependent plasticity. This review summarizes recent findings in this field and our current understanding of complex and multifaceted neuroendocrine-immune communications at thymic level.
Collapse
Affiliation(s)
- G Leposavić
- Immunology Research Centre Branislav Janković, Institute of Virology, Vaccines and Sera Torlak, Belgrade, Serbia.
| | | | | |
Collapse
|
23
|
Fukuda K. Regeneration of cardiomyocytes from bone marrow: Use of mesenchymal stem cell for cardiovascular tissue engineering. Cytotechnology 2011; 41:165-75. [PMID: 19002953 DOI: 10.1023/a:1024882908173] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We have isolated a cardiomyogenic cell line (CMG cell) from murine bone marrow mesenchymal stem cells. The cells showed a fibroblast-like morphology, but the morphology changed after 5-azacytidine exposure. They began spontaneous beating after 2 weeks, and expressed ANP and BNP. Electron microscopy revealed a cardiomyocyte-like ultrastructure. These cells had several types of action potentials; sinus node-like and ventricular cell-like action potentials. The isoform of contractile protein genes indicated that their muscle phenotype was similar to fetal ventricular cardiomyocytes. They expressed alpha(1A), alpha(1B), alpha(1D), beta(1), and beta(2) adrenergic and M(1) and M(2) muscarinic receptors. Stimulation with phenylephrine, isoproterenol and carbachol increased ERK phosphorylation and second messengers. Isoproterenol increased the beating rate, which was blocked with CGP20712A (beta(1)-selective blocker). These findings indicated that cell transplantation therapy for the patients with heart failure might possibly be achieved using the regenerated cardiomyocytes from autologous bone marrow cells in the near future.
Collapse
Affiliation(s)
- Keiichi Fukuda
- Institute for Advanced Cardiac Therapeutics, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, Japan (E-mail,
| |
Collapse
|
24
|
β-Adrenergic Receptor-Stimulated Cardiac Myocyte Apoptosis: Role of β1 Integrins. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2011:179057. [PMID: 21776383 PMCID: PMC3135092 DOI: 10.1155/2011/179057] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 01/28/2011] [Accepted: 03/16/2011] [Indexed: 02/03/2023]
Abstract
Increased sympathetic nerve activity to the myocardium is a central feature in patients with heart failure. Accumulation of catecholamines plays an important role in the pathogenesis of heart disease. Acting via β-adrenergic receptors (β-AR), catecholamines (norepinephrine and isoproterenol) increase cardiac myocyte apoptosis in vitro and in vivo. Specifically, β1-AR and β2-AR coupled to Gαs exert a proapoptotic action, while β2-AR coupled to Gi exerts an antiapoptotic action. β1 integrin signaling protects cardiac myocytes against β-AR-stimulated apoptosis in vitro and in vivo. Interaction of matrix metalloproteinase-2 (MMP-2) with β1 integrins interferes with the survival signals initiated by β1 integrins. This paper will discuss background information on β-AR and integrin signaling and summarize the role of β1 integrins in β-AR-stimulated cardiac myocyte apoptosis.
Collapse
|
25
|
Jensen BC, O'Connell TD, Simpson PC. Alpha-1-adrenergic receptors: targets for agonist drugs to treat heart failure. J Mol Cell Cardiol 2010; 51:518-28. [PMID: 21118696 DOI: 10.1016/j.yjmcc.2010.11.014] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Accepted: 11/12/2010] [Indexed: 12/19/2022]
Abstract
Evidence from cell, animal, and human studies demonstrates that α1-adrenergic receptors mediate adaptive and protective effects in the heart. These effects may be particularly important in chronic heart failure, when catecholamine levels are elevated and β-adrenergic receptors are down-regulated and dysfunctional. This review summarizes these data and proposes that selectively activating α1-adrenergic receptors in the heart might represent a novel and effective way to treat heart failure. This article is part of a special issue entitled "Key Signaling Molecules in Hypertrophy and Heart Failure."
Collapse
Affiliation(s)
- Brian C Jensen
- Cardiology Division, VA Medical Center, San Francisco, CA, USA.
| | | | | |
Collapse
|
26
|
Altered adrenergic receptor signaling following traumatic brain injury contributes to working memory dysfunction. Neuroscience 2010; 172:293-302. [PMID: 20974230 DOI: 10.1016/j.neuroscience.2010.10.048] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 10/07/2010] [Accepted: 10/16/2010] [Indexed: 11/21/2022]
Abstract
The prefrontal cortex is highly vulnerable to traumatic brain injury (TBI) and its structural and/or functional alterations as a result of TBI can give rise to persistent working memory (WM) dysfunction. Using a rodent model of TBI, we have described profound WM deficits following TBI that are associated with increases in prefrontal catecholamine (both dopamine and norepinephrine) content. In this study, we examined if enhanced norepinephrine signaling contributes to TBI-associated WM dysfunction. We demonstrate that administration of α1 adrenoceptor antagonists, but not α2A agonist, at 14 days post-injury significantly improved WM performance. mRNA analysis revealed increased levels of α1A, but not α1B or α1D, adrenoceptor in the medial prefrontal cortex (mPFC) of brain-injured rats. As α1A and 1B adrenoceptor promoters contain putative cAMP response element (CRE) sequences, we therefore examined if CRE-binding protein (CREB) actively engages these sequences in order to increase receptor gene transcription following TBI. Our results show that the phosphorylation of CREB is enhanced in the mPFC at time points during which increased α1A mRNA expression was observed. Chromatin immunoprecipitation (ChIP) assays using mPFC tissue from injured animals indicated increased phospho-CREB binding to the CRE sites of α1A, but not α1B, promoter compared to that observed in uninjured controls. To address the translatability of our findings, we tested the efficacy of the FDA-approved α1 antagonist Prazosin and observed that this drug improves WM in injured animals. Taken together, these studies suggest that enhanced CREB-mediated expression of α1 adrenoceptor contributes to TBI-associated WM dysfunction, and therapies aimed at reducing α1 signaling may be useful in the treatment of TBI-associated WM deficits in humans.
Collapse
|
27
|
Jensen BC, Swigart PM, Laden ME, DeMarco T, Hoopes C, Simpson PC. The alpha-1D Is the predominant alpha-1-adrenergic receptor subtype in human epicardial coronary arteries. J Am Coll Cardiol 2009; 54:1137-45. [PMID: 19761933 DOI: 10.1016/j.jacc.2009.05.056] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 05/13/2009] [Accepted: 05/19/2009] [Indexed: 11/15/2022]
Abstract
OBJECTIVES The goal was to identify alpha-1-adrenergic receptor (AR) subtypes in human coronary arteries. BACKGROUND The alpha1-ARs regulate human coronary blood flow. The alpha1-ARs exist as 3 molecular subtypes, alpha1A, alpha1B, and alpha1D, and the alpha1D subtype mediates coronary vasoconstriction in the mouse. However, the alpha1A is thought to be the only subtype in human coronary arteries. METHODS We obtained human epicardial coronary arteries and left ventricular (LV) myocardium from 19 transplant recipients and 6 unused donors (age 19 to 70 years; 68% male; 32% with coronary artery disease). We cultured coronary rings and human coronary smooth muscle cells. We assayed alpha1- and beta-AR subtype messenger ribonucleic acid (mRNA) by quantitative real-time reverse transcription polymerase chain reaction and subtype proteins by radioligand binding and extracellular signal-regulated kinase (ERK) activation. RESULTS The alpha1D subtype was 85% of total coronary alpha1-AR mRNA and 75% of total alpha1-AR protein, and alpha1D stimulation activated ERK. In contrast, the alpha1D was low in LV myocardium. Total coronary alpha1-AR levels were one-third of beta-ARs, which were 99% the beta2 subtype. CONCLUSIONS The alpha1D subtype is predominant and functional in human epicardial coronary arteries, whereas the alpha1A and alpha1B are present at very low levels. This distribution is similar to the mouse, where myocardial alpha1A- and alpha1B-ARs mediate beneficial functional responses and coronary alpha1Ds mediate vasoconstriction. Thus, alpha1D-selective antagonists might mediate coronary vasodilation, without the negative cardiac effects of nonselective alpha1-AR antagonists in current use. Furthermore, it could be possible to selectively activate beneficial myocardial alpha1A- and/or alpha1B-AR signaling without causing coronary vasoconstriction.
Collapse
|
28
|
Jensen BC, Swigart PM, De Marco T, Hoopes C, Simpson PC. {alpha}1-Adrenergic receptor subtypes in nonfailing and failing human myocardium. Circ Heart Fail 2009; 2:654-63. [PMID: 19919991 DOI: 10.1161/circheartfailure.108.846212] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND alpha1-adrenergic receptors (alpha1-ARs) play adaptive roles in the heart and protect against the development of heart failure. The 3 alpha1-AR subtypes, alpha1A, alpha1B, and alpha1D, have distinct physiological roles in mouse heart, but very little is known about alpha1 subtypes in human heart. Here, we test the hypothesis that the alpha1A and alpha1B subtypes are present in human myocardium, similar to the mouse, and are not downregulated in heart failure. METHODS AND RESULTS Hearts from transplant recipients and unused donors were failing (n=12; mean ejection fraction, 24%) or nonfailing (n=9; mean ejection fraction, 59%) and similar in age ( approximately 44 years) and sex ( approximately 70% male). We measured the alpha1-AR subtypes in multiple regions of both ventricles by quantitative real-time reverse-transcription polymerase chain reaction and radioligand binding. All 3 alpha1-AR subtype mRNAs were present, and alpha1A mRNA was most abundant ( approximately 65% of total alpha1-AR mRNA). However, only alpha1A and alpha1B binding were present, and the alpha1B was most abundant (60% of total). In failing hearts, alpha1A and alpha1B binding was not downregulated, in contrast with beta1-ARs. CONCLUSIONS Our data show for the first time that the alpha1A and alpha1B subtypes are both present in human myocardium, but alpha1D binding is not, and the alpha1 subtypes are not downregulated in heart failure. Because alpha1 subtypes in the human heart are similar to those in the mouse, where adaptive and protective effects of alpha1 subtypes are most convincing, it might become feasible to treat heart failure with a drug targeting the alpha1A and/or alpha1B.
Collapse
Affiliation(s)
- Brian C Jensen
- Cardiology Section and Research Service, San Francisco VA Medical Center, San Francisco, Calif, USA
| | | | | | | | | |
Collapse
|
29
|
Cao XJ, Li YF. Alteration of messenger RNA and protein levels of cardiac alpha(1)-adrenergic receptor and angiotensin II receptor subtypes during aging in rats. Can J Cardiol 2009; 25:415-20. [PMID: 19584972 DOI: 10.1016/s0828-282x(09)70509-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Structural and functional alterations in the senescent heart have been associated with an activated sympathetic nervous system and a regional cardiac renin-angiotensin system. To date, however, limited information related to their expression alteration during the whole procress of growth and development has been reported. OBJECTIVES To examine the expression of alpha(1)-adrenergic receptor (alpha(1)-AR) and angiotensin II receptor (ATR) subtypes in the left ventricle of hearts from young adult, middle-aged, presenescent and senescent rats. METHODS Semiquantitative reverse transcriptase polymerase chain reaction and Western blot were used to quantitate the messenger RNA and protein of alpha(1)-AR and ATR subtypes, respectively, in the left ventricles of three- (young adult), 12- (middle age), 18- (presenescent) and 24-month-old (senescent) Wistar rats. RESULTS AND CONCLUSIONS alpha(1A)-AR expression decreased gradually with age, and alpha(1D)-AR expression was repressed in middle age and presenescence, while the expression of alpha(1B)-AR remained unchanged during senescence. AT(1)R expression was unaffected by aging from young adulthood to presenescence, but exhibited a remarkable upregulation in senescence. There were no significant discrepancies of cardiac AT(2)R expression among the four age groups, but both messenger RNA and protein had a tendency to upregulate during aging. The results suggest that there are considerable changes of expression of cardiac alpha(1)-AR and ATR subtypes during growth and development. The change of cardiac alpha(1)-AR and ATR expression during aging is a protective response to senescence by keeping normal myocardial contractility, while the upregulation of AT(1)R and AT(2)R promotes age-related myocardium hypertrophy and cardiac remodelling.
Collapse
Affiliation(s)
- Xiao-jing Cao
- The Cardiology Department, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | | |
Collapse
|
30
|
Muramatsu I, Morishima S, Suzuki F, Yoshiki H, Anisuzzaman ASM, Tanaka T, Rodrigo MC, Myagmar BE, Simpson PC. Identification of alpha 1L-adrenoceptor in mice and its abolition by alpha 1A-adrenoceptor gene knockout. Br J Pharmacol 2008; 155:1224-34. [PMID: 18806813 DOI: 10.1038/bjp.2008.360] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE The alpha(1L)-adrenoceptor has pharmacological properties that distinguish it from three classical alpha(1)-adrenoceptors (alpha(1A), alpha(1B) and alpha(1D)). The purpose of this was to identify alpha(1L)-adrenoceptors in mice and to examine their relationship to classical alpha(1)-adrenoceptors. EXPERIMENTAL APPROACH Radioligand binding and functional bioassay experiments were performed on the cerebral cortex, vas deferens and prostate of wild-type (WT) and alpha(1A)-, alpha(1B)- and alpha(1D)-adrenoceptor gene knockout (AKO, BKO and DKO) mice. KEY RESULTS The radioligand [(3)H]-silodosin bound to intact segments of the cerebral cortex, vas deferens and prostate of WT, BKO and DKO but not of AKO mice. The binding sites were composed of two components with high and low affinities for prazosin or RS-17053, indicating the pharmacological profiles of alpha(1A)-adrenoceptors and alpha(1L)-adrenoceptors. In membrane preparations of WT mouse cortex, however, [(3)H]-silodosin bound to a single population of prazosin high-affinity sites, suggesting the presence of alpha(1A)-adrenoceptors alone. In contrast, [(3)H]-prazosin bound to two components having alpha(1A)-adrenoceptor and alpha(1B)-adrenoceptor profiles in intact segments of WT and DKO mouse cortices, but AKO mice lacked alpha(1A)-adrenoceptor profiles and BKO mice lacked alpha(1B)-adrenoceptor profiles. Noradrenaline produced contractions through alpha(1L)-adrenoceptors with low affinity for prazosin in the vas deferens and prostate of WT, BKO and DKO mice. However, the contractions were abolished or markedly attenuated in AKO mice. CONCLUSIONS AND IMPLICATIONS alpha(1L)-Adrenoceptors were identified as binding and functional entities in WT, BKO and DKO mice but not in AKO mice, suggesting that the alpha(1L)-adrenoceptor is one phenotype derived from the alpha(1A)-adrenoceptor gene.
Collapse
Affiliation(s)
- I Muramatsu
- Division of Pharmacology, Department of Biochemistry and Bioinformative Sciences, University of Fukui School of Medicine, Eiheiji, Fukui, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Amirahmadi F, Turnbull L, Du XJ, Graham RM, Woodcock EA. Heightened alpha1A-adrenergic receptor activity suppresses ischaemia/reperfusion-induced Ins(1,4,5)P3 generation in the mouse heart: a comparison with ischaemic preconditioning. Clin Sci (Lond) 2008; 114:157-64. [PMID: 17696883 DOI: 10.1042/cs20070110] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Reperfusion of ischaemic rat or mouse hearts causes NE [noradrenaline ('norepinephrine')] release, stimulation of alpha(1)-ARs (alpha(1)-adrenergic receptors), PLC (phospholipase C) activation, Ins(1,4,5)P(3) generation and the development of arrhythmias. In the present study, we examined the effect of increased alpha(1A)-AR drive on these responses. In hearts from non-transgenic mice (alpha(1A)-WT), Ins(1,4,5)P(3) generation was observed after 2 min of reperfusion following 30 min of zero-flow ischaemia. No Ins(1,4,5)P(3) response was observed in hearts from transgenic mice with 66-fold overexpression of alpha(1A)-AR (alpha(1A)-TG). This was despite the fact that alpha(1A)-TG hearts had 8-10-fold higher PLC responses to NE than alpha(1A)-WT under normoxic conditions. The immediate phospholipid precursor of Ins(1,4,5)P(3), PtdIns(4,5)P(2), responded to ischaemia and reperfusion similarly in alpha(1A)-WT and alpha(1A)-TG mice. Thus the lack of Ins(1,4,5)P(3) generation in alpha(1A)-TG mice is not caused by limited availability of PtdIns(4,5)P(2). Overall, alpha(1)-AR-mediated PLC activity was markedly enhanced in alpha(1A)-WT mice under reperfusion conditions, but responses in alpha(1A)-TG mice were not significantly different in normoxia and post-ischaemic reperfusion. Ischaemic preconditioning prevented Ins(1,4,5)P(3) generation after 30 min of ischaemic insult in alpha(1A)-WT mice. However, the precursor lipid PtdIns(4,5)P(2) was also reduced by preconditioning, whereas heightened alpha(1A)-AR activity did not influence PtdIns(4,5)P(2) responses in reperfusion. Thus preconditioning and alpha(1A)-AR overexpression have different effects on early signalling responses, even though both prevented Ins(1,4,5)P(3) generation. These studies demonstrate a selective inhibitory action of heightened alpha(1A)-AR activity on immediate post-receptor signalling responses in early post-ischaemic reperfusion.
Collapse
Affiliation(s)
- Fatemeh Amirahmadi
- Cellular Biochemistry Laboratory, Baker Heart Research Institute, PO Box 6492, St. Kilda Road Central, Melbourne, VIC 8008, Australia
| | | | | | | | | |
Collapse
|
32
|
Nagaoka Y, Ahmed M, Hossain M, Bhuiyan MA, Ishiguro M, Nakamura T, Watanabe M, Nagatomo T. Amino Acids of the Human α1d-Adrenergic Receptor Involved in Antagonist Binding. J Pharmacol Sci 2008; 106:114-20. [DOI: 10.1254/jphs.fp0071412] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
33
|
Woodcock EA. Roles of alpha1A- and alpha1B-adrenoceptors in heart: insights from studies of genetically modified mice. Clin Exp Pharmacol Physiol 2007; 34:884-8. [PMID: 17645635 DOI: 10.1111/j.1440-1681.2007.04707.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
1. Several mouse strains have been prepared in which different subtypes of the alpha1-adrenoceptor (AR) are overexpressed or deleted. The phenotypes of the animals generated vary depending on whether the receptors are expressed specifically in heart or generally throughout the animal, but some overall conclusions can be drawn. 2. Heightened activity of alpha1B-AR by overexpressing the receptors leads to depressed contractile responses to beta-AR activation, which may be related to activation of the inhibitory G-protein Gi. In contrast, alpha1A-AR cause substantially heightened contractility when overexpressed in heart. 3. Overexpressed alpha1B-AR predispose hearts to hypertrophy and worsen heart failure caused by pressure overload, whereas increased alpha1A-AR expression does not influence hypertrophic responses and, furthermore, improves outcomes after pressure overload or myocardial infarction. 4. Alpha1A-adrenoceptors mediate a preconditioning action to improve functional recovery after acute ischaemic insult, whereas alpha1B-AR are ineffective. Both subtypes appear to protect from inositol 1,4,5-trisphosphate generation and arrhythmogenesis in early postischaemic reperfusion. 5. Although some of the protective effects of heightened alpha1A-AR drive may be related to the enhanced contractility, it is also possible that alpha1A-AR protect from cardiomyocyte apoptotic responses.
Collapse
Affiliation(s)
- Elizabeth A Woodcock
- Cellular Biochemistry Laboratory, Baker Heart Research Institute, Melbourne, Victoria, Australia.
| |
Collapse
|
34
|
Michelotti GA, Brinkley DM, Morris DP, Smith MP, Louie RJ, Schwinn DA. Epigenetic regulation of human alpha1d-adrenergic receptor gene expression: a role for DNA methylation in Sp1-dependent regulation. FASEB J 2007; 21:1979-93. [PMID: 17384146 PMCID: PMC2279228 DOI: 10.1096/fj.06-7118com] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A growing body of evidence implicates alpha1-adrenergic receptors (alpha1ARs) as potent regulators of growth pathways. The three alpha1AR subtypes (alpha1aAR, alpha1bAR, alpha1dAR) display highly restricted tissue expression that undergoes subtype switching with many pathological stimuli, the mechanistic basis of which remains unknown. To gain insight into transcriptional pathways governing cell-specific regulation of the human alpha1dAR subtype, we cloned and characterized the alpha1dAR promoter region in two human cellular models that display disparate levels of endogenous alpha1dAR expression (SK-N-MC and DU145). Results reveal that alpha1dAR basal expression is regulated by Sp1-dependent binding of two promoter-proximal GC boxes, the mutation of which attenuates alpha1dAR promoter activity 10-fold. Mechanistically, chromatin immunoprecipitation data demonstrate that Sp1 binding correlates with expression of the endogenous gene in vivo, correlating highly with alpha1dAR promoter methylation-dependent silencing of both episomally expressed reporter constructs and the endogenous gene. Further, analysis of methylation status of proximal GC boxes using sodium bisulfite sequencing reveals differential methylation of proximal GC boxes in the two cell lines examined. Together, the data support a mechanism of methylation-dependent disruption of Sp1 binding in a cell-specific manner resulting in repression of basal alpha1dAR expression.
Collapse
MESH Headings
- Azacitidine/analogs & derivatives
- Azacitidine/pharmacology
- Base Sequence
- Cell Line, Tumor
- Chromatin/chemistry
- DNA (Cytosine-5-)-Methyltransferases/antagonists & inhibitors
- DNA Methylation
- Decitabine
- Gene Expression Regulation
- Gene Silencing
- Humans
- Immunoprecipitation
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Promoter Regions, Genetic/genetics
- Protein Binding
- RNA, Messenger/biosynthesis
- Receptors, Adrenergic, alpha-1/biosynthesis
- Receptors, Adrenergic, alpha-1/genetics
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
- Sp1 Transcription Factor/metabolism
- Sulfites/pharmacology
- Transcription, Genetic
Collapse
Affiliation(s)
- Gregory A Michelotti
- Department of Pharmacology/Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Wang SY, Song Y, Xu M, He QH, Han QD, Zhang YY. Internalization and distribution of three alpha1-adrenoceptor subtypes in HEK293A cells before and after agonist stimulation. Acta Pharmacol Sin 2007; 28:359-66. [PMID: 17302998 DOI: 10.1111/j.1745-7254.2007.00509.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
AIM To examine the subcellular distribution of the 3 alpha1-adrenoceptor (alpha1-AR) subtypes and their internalization and trafficking upon agonist stimulation in human embryonic kidney 293A cells. METHODS Confocal real-time imaging, enzyme linked immunosorbent assay (ELISA) and whole cell [3H]-prazosin binding assay were applied to detect the distribution and localization of the 3 alpha1-AR subtypes. RESULTS alpha1A-AR was found both on the cell surface and in the cytoplasm; alpha1BAR, however, was predominantly detected on the cell surface, while alpha1D-AR was detected mainly in the intracellular compartments. After stimulation with phenylephrine, localization changes were detected by confocal microscopy for alpha1A- and alpha1B-AR,but the localization of alpha1D-AR were unaffected. Phenylephrine stimulation promoted a more rapid internalization of alpha1B-AR than alpha1A-AR. alpha1D-AR internalization was detected only by ELISA. Whole cell [3H]-prazosin binding assay showed that alpha1A-AR functional receptors were detected both on the cell surface and in the cytoplasm; alpha1B-AR, however, were detected predominantly on the cell surface, while alpha1D-AR were detected mainly in intracellular compartments. Phenylephrine stimulation promoted internalization of alpha1A- and alpha1B-AR. CONCLUSION Phenylephrine stimulation induced changes in the localization of the 3 alpha1-AR.
Collapse
Affiliation(s)
- Shu-Yi Wang
- Institute of Vascular Medicine, Peking University Third Hospital and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100083, China
| | | | | | | | | | | |
Collapse
|
36
|
Huang Y, Wright CD, Merkwan CL, Baye NL, Liang Q, Simpson PC, O'Connell TD. An α1A-Adrenergic–Extracellular Signal-Regulated Kinase Survival Signaling Pathway in Cardiac Myocytes. Circulation 2007; 115:763-72. [PMID: 17283256 DOI: 10.1161/circulationaha.106.664862] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background—
In α1-AR knockout (α1ABKO) mice that lacked cardiac myocyte α1-adrenergic receptor (α1-AR) binding, aortic constriction induced apoptosis, dilated cardiomyopathy, and death. However, it was unclear whether these effects were attributable to a lack of cardiac myocyte α1-ARs and whether the α1A, α1B, or both subtypes mediated protection. Therefore, we investigated α1A and α1B subtype–specific survival signaling in cultured cardiac myocytes to test for a direct protective effect of α1-ARs in cardiac myocytes.
Methods and Results—
We cultured α1ABKO myocytes and reconstituted α1-AR signaling with adenoviruses expressing α1-GFP fusion proteins. Myocyte death was induced by norepinephrine, doxorubicin, or H
2
O
2
and was measured by annexin V/propidium iodide staining. In α1ABKO myocytes, all 3 stimuli significantly increased apoptosis and necrosis. Reconstitution of the α1A subtype, but not the α1B, rescued α1ABKO myocytes from cell death induced by each stimulus. To address the mechanism, we examined α1-AR activation of extracellular signal-regulated kinase (ERK). In α1ABKO hearts, aortic constriction failed to activate ERK, and in α1ABKO myocytes, expression of a constitutively active MEK1 rescued α1ABKO myocytes from norepinephrine-induced death. In addition, only the α1A-AR activated ERK in α1ABKO myocytes, and expression of a dominant-negative MEK1 completely blocked α1A survival signaling in α1ABKO myocytes.
Conclusions—
Our results demonstrate a direct protective effect of the α1A subtype in cardiac myocytes and define an α1A-ERK signaling pathway that is required for myocyte survival. Absence of the α1A-ERK pathway can explain the failure to activate ERK after aortic constriction in α1ABKO mice and can contribute to the development of apoptosis, dilated cardiomyopathy, and death.
Collapse
Affiliation(s)
- Yuan Huang
- Cardiovascular Research Institute, Sanford Research/USD, and Department of Medicine, The University of South Dakota School of Medicine, Sioux Falls, SD 57105, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Hein P, Michel MC. Signal transduction and regulation: are all alpha1-adrenergic receptor subtypes created equal? Biochem Pharmacol 2006; 73:1097-106. [PMID: 17141737 DOI: 10.1016/j.bcp.2006.11.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 10/30/2006] [Accepted: 11/01/2006] [Indexed: 02/06/2023]
Abstract
The current manuscript reviews the evidence whether and how subtypes of alpha(1)-adrenergic receptors, i.e. alpha(1A)-, alpha(1B)- and alpha(1D)-adrenergic receptors, differentially couple to signal transduction pathways and exhibit differential susceptibility to regulation. In both regards studies in tissues or cells natively expressing the subtypes are hampered because the relative expression of the subtypes is poorly controlled and the observed effects may be cell-type specific. An alternative approach, i.e. transfection of multiple subtypes into the same host cell line overcomes this limitation, but it often remains unclear whether results in such artificial systems are representative for the physiological situation. The overall evidence suggests that indeed subtype-intrinsic and cell type-specific factors interact to direct alpha(1)-adrenergic receptor signaling and regulation. This may explain why so many apparently controversial findings have been reported from various tissues and cells. One of the few consistent themes is that alpha(1D)-adrenergic receptors signal less effectively upon agonist stimulation than the other subtypes, most likely because they exhibit spontaneous internalization.
Collapse
Affiliation(s)
- Peter Hein
- Department of Pharmacology, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
38
|
Faber JE, Szymeczek CL, Salvi SS, Zhang H. Enhanced α1-adrenergic trophic activity in pulmonary artery of hypoxic pulmonary hypertensive rats. Am J Physiol Heart Circ Physiol 2006; 291:H2272-81. [PMID: 16798826 DOI: 10.1152/ajpheart.00404.2006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mechanisms that induce the excessive proliferation of vascular wall cells in hypoxic pulmonary hypertension (PH) are not fully understood. Alveolar hypoxia causes sympathoexcitation, and norepinephrine can stimulate α1-adrenoceptor (α1-AR)-dependent hypertrophy/hyperplasia of smooth muscle cells and adventitial fibroblasts. Adrenergic trophic activity is augmented in systemic arteries by injury and altered shear stress, which are key pathogenic stimuli in hypoxic PH, and contributes to neointimal formation and flow-mediated hypertrophic remodeling. Here we examined whether norepinephrine stimulates growth of the pulmonary artery (PA) and whether this is augmented in PH. PA from normoxic and hypoxic rats [9 days of 0.1 fraction of inspired O2 (FiO2)] was studied in organ culture, where wall tension, Po2, and Pco2 were maintained at values present in normal and hypoxic PH rats. Norepinephrine treatment for 72 h increased DNA and protein content modestly in normoxic PA (+10%, P < 0.05). In hypoxic PA, these effects were augmented threefold ( P < 0.05), and protein synthesis was increased 34-fold ( P < 0.05). Inferior thoracic vena cava from normoxic or hypoxic rats was unaffected. Norepinephrine-induced growth in hypoxic PA was dose dependent, had efficacy greater than or equal to endothelin-1, required the presence of wall tension, and was inhibited by α1A-AR antagonist. In hypoxic pulmonary vasculature, α1A-AR was downregulated the least among α1-AR subtypes. These data demonstrate that norepinephrine has trophic activity in the PA that is augmented by PH. If evident in vivo in the pulmonary vasculature, adrenergic-induced growth may contribute to the vascular hyperplasia that participates in hypoxic PH.
Collapse
MESH Headings
- Adrenergic alpha-1 Receptor Agonists
- Adrenergic alpha-1 Receptor Antagonists
- Animals
- DNA/analysis
- DNA/metabolism
- Dose-Response Relationship, Drug
- Endothelin-1/pharmacology
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Hypoxia/complications
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Norepinephrine/pharmacology
- Organ Culture Techniques
- Proteins/analysis
- Proteins/metabolism
- Pulmonary Artery/drug effects
- Pulmonary Artery/pathology
- Rats
- Rats, Sprague-Dawley
- Receptors, Adrenergic, alpha-1/physiology
- Time Factors
Collapse
Affiliation(s)
- James E Faber
- Dept. of Cell and Molecular Physiology, 6309 MBRB, Univ. of North Carolina, Chapel Hill, NC 27599-7545, USA.
| | | | | | | |
Collapse
|
39
|
O’Connell TD, Swigart PM, Rodrigo M, Ishizaka S, Joho S, Turnbull L, Tecott LH, Baker AJ, Foster E, Grossman W, Simpson PC. Alpha1-adrenergic receptors prevent a maladaptive cardiac response to pressure overload. J Clin Invest 2006; 116:1005-15. [PMID: 16585965 PMCID: PMC1421341 DOI: 10.1172/jci22811] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Accepted: 01/10/2006] [Indexed: 01/06/2023] Open
Abstract
An alpha1-adrenergic receptor (alpha1-AR) antagonist increased heart failure in the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT), but it is unknown whether this adverse result was due to alpha1-AR inhibition or a nonspecific drug effect. We studied cardiac pressure overload in mice with double KO of the 2 main alpha1-AR subtypes in the heart, alpha 1A (Adra1a) and alpha 1B (Adra1b). At 2 weeks after transverse aortic constriction (TAC), KO mouse survival was only 60% of WT, and surviving KO mice had lower ejection fractions and larger end-diastolic volumes than WT mice. Mechanistically, final heart weight and myocyte cross-sectional area were the same after TAC in KO and WT mice. However, KO hearts after TAC had increased interstitial fibrosis, increased apoptosis, and failed induction of the fetal hypertrophic genes. Before TAC, isolated KO myocytes were more susceptible to apoptosis after oxidative and beta-AR stimulation, and beta-ARs were desensitized. Thus, alpha1-AR deletion worsens dilated cardiomyopathy after pressure overload, by multiple mechanisms, indicating that alpha1-signaling is required for cardiac adaptation. These results suggest that the adverse cardiac effects of alpha1-antagonists in clinical trials are due to loss of alpha1-signaling in myocytes, emphasizing concern about clinical use of alpha1-antagonists, and point to a revised perspective on sympathetic activation in heart failure.
Collapse
Affiliation(s)
- Timothy D. O’Connell
- Cardiology Division, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA.
Cardiovascular Research Institute and Department of Medicine, UCSF, San Francisco, California, USA.
Cardiology Division, Department of Medicine, UCSF, San Francisco, California, USA.
Department of Radiology, UCSF, San Francisco, California, USA.
Department of Psychiatry, UCSF, San Francisco, California, USA
| | - Philip M. Swigart
- Cardiology Division, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA.
Cardiovascular Research Institute and Department of Medicine, UCSF, San Francisco, California, USA.
Cardiology Division, Department of Medicine, UCSF, San Francisco, California, USA.
Department of Radiology, UCSF, San Francisco, California, USA.
Department of Psychiatry, UCSF, San Francisco, California, USA
| | - M.C. Rodrigo
- Cardiology Division, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA.
Cardiovascular Research Institute and Department of Medicine, UCSF, San Francisco, California, USA.
Cardiology Division, Department of Medicine, UCSF, San Francisco, California, USA.
Department of Radiology, UCSF, San Francisco, California, USA.
Department of Psychiatry, UCSF, San Francisco, California, USA
| | - Shinji Ishizaka
- Cardiology Division, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA.
Cardiovascular Research Institute and Department of Medicine, UCSF, San Francisco, California, USA.
Cardiology Division, Department of Medicine, UCSF, San Francisco, California, USA.
Department of Radiology, UCSF, San Francisco, California, USA.
Department of Psychiatry, UCSF, San Francisco, California, USA
| | - Shuji Joho
- Cardiology Division, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA.
Cardiovascular Research Institute and Department of Medicine, UCSF, San Francisco, California, USA.
Cardiology Division, Department of Medicine, UCSF, San Francisco, California, USA.
Department of Radiology, UCSF, San Francisco, California, USA.
Department of Psychiatry, UCSF, San Francisco, California, USA
| | - Lynne Turnbull
- Cardiology Division, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA.
Cardiovascular Research Institute and Department of Medicine, UCSF, San Francisco, California, USA.
Cardiology Division, Department of Medicine, UCSF, San Francisco, California, USA.
Department of Radiology, UCSF, San Francisco, California, USA.
Department of Psychiatry, UCSF, San Francisco, California, USA
| | - Laurence H. Tecott
- Cardiology Division, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA.
Cardiovascular Research Institute and Department of Medicine, UCSF, San Francisco, California, USA.
Cardiology Division, Department of Medicine, UCSF, San Francisco, California, USA.
Department of Radiology, UCSF, San Francisco, California, USA.
Department of Psychiatry, UCSF, San Francisco, California, USA
| | - Anthony J. Baker
- Cardiology Division, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA.
Cardiovascular Research Institute and Department of Medicine, UCSF, San Francisco, California, USA.
Cardiology Division, Department of Medicine, UCSF, San Francisco, California, USA.
Department of Radiology, UCSF, San Francisco, California, USA.
Department of Psychiatry, UCSF, San Francisco, California, USA
| | - Elyse Foster
- Cardiology Division, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA.
Cardiovascular Research Institute and Department of Medicine, UCSF, San Francisco, California, USA.
Cardiology Division, Department of Medicine, UCSF, San Francisco, California, USA.
Department of Radiology, UCSF, San Francisco, California, USA.
Department of Psychiatry, UCSF, San Francisco, California, USA
| | - William Grossman
- Cardiology Division, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA.
Cardiovascular Research Institute and Department of Medicine, UCSF, San Francisco, California, USA.
Cardiology Division, Department of Medicine, UCSF, San Francisco, California, USA.
Department of Radiology, UCSF, San Francisco, California, USA.
Department of Psychiatry, UCSF, San Francisco, California, USA
| | - Paul C. Simpson
- Cardiology Division, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA.
Cardiovascular Research Institute and Department of Medicine, UCSF, San Francisco, California, USA.
Cardiology Division, Department of Medicine, UCSF, San Francisco, California, USA.
Department of Radiology, UCSF, San Francisco, California, USA.
Department of Psychiatry, UCSF, San Francisco, California, USA
| |
Collapse
|
40
|
Xiao RP, Zhu W, Zheng M, Cao C, Zhang Y, Lakatta EG, Han Q. Subtype-specific alpha1- and beta-adrenoceptor signaling in the heart. Trends Pharmacol Sci 2006; 27:330-7. [PMID: 16697055 DOI: 10.1016/j.tips.2006.04.009] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2006] [Revised: 03/27/2006] [Accepted: 04/21/2006] [Indexed: 01/08/2023]
Abstract
Recent studies of adrenoceptors have revealed subtype-specific signaling, promiscuous G-protein coupling, time-dependent switching of intracellular signaling pathways, intermolecular interactions within or between adrenoceptor subfamilies, and G-protein-independent signaling pathways. These findings have extended the classical linear paradigm of G-protein-coupled receptor signaling to a complex "signalome" in which an individual adrenoceptor initiates multiple signaling pathways in a temporally and spatially regulated manner. In particular, persistent stimulation of beta-adrenoceptor subtypes causes a time-dependent switch of signaling pathways and elicits different, even opposing, functional roles of these receptors in regulating cardiac structure and function. Recent progress in the understanding of subtype-specific functions and signaling mechanisms of cardiac adrenoceptor subtypes, particularly beta(1)-adrenoceptors, beta(2)-adrenoceptors, alpha(1A)-adrenoceptors and alpha(1B)-adrenoceptors, might have important pathogenic and therapeutic implications for heart disease.
Collapse
Affiliation(s)
- Rui-Ping Xiao
- Institute of Molecular Medicine, Peking University, Beijing 100871, China.
| | | | | | | | | | | | | |
Collapse
|
41
|
Ontsouka EC, Zbinden Y, Hammon HM, Blum JW. Ontogenesis of mRNA levels and binding sites of hepatic alpha-adrenoceptors in young cattle. Domest Anim Endocrinol 2006; 30:170-84. [PMID: 16182505 DOI: 10.1016/j.domaniend.2005.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Revised: 07/07/2005] [Accepted: 07/13/2005] [Indexed: 11/20/2022]
Abstract
Catecholamines affect hepatic glucose production through (alpha- and beta2-) adrenoceptors (AR). We studied mRNA abundance and binding of hepatic alpha-AR in pre-term (P0) calves and in full-term calves at day 0 (F0), day 5 (F5) and day 159 (F159) to test the hypothesis that gene expression and numbers of hepatic alpha-AR in calves are influenced by age and associated with beta2-AR and selected traits of glucose metabolism. mRNA levels of alpha1- and alpha2-AR were measured by real time RT-PCR. alpha1- and alpha2-AR numbers (maximal binding, Bmax) were determined by saturation binding of (3H)-prazosin and (3H)-RX821002, respectively. alpha1- and alpha2-AR subtypes were evaluated by competitive binding. alpha1A-AR mRNA levels were lower in P0 than in F0, F5 and F159 and alpha(2AD)-AR mRNA levels were lower in F159 than in P0, F0 and F5, while alpha2C-AR mRNA levels increased from P0 and F0 to F5 and F159. Bmax of alpha1-AR increased from P0 to F5, then decreased in F159. Bmax of alpha2-AR decreased from F0 to F159. Bmax of alpha1-AR was positively associated with mRNA levels of alpha1A-AR (r = 0.7), Bmax of beta2-AR (r = 0.5) and negatively with hepatic glycogen content (r = -0.6). Bmax of alpha2-AR was negatively associated with Bmax of beta2-AR (r = -0.4). In conclusion, mRNA levels and binding sites of alpha1- and alpha2-AR in calves exhibited developmental changes and were negatively associated with hepatic glycogen content.
Collapse
MESH Headings
- Adrenergic alpha-Antagonists/pharmacology
- Animals
- Animals, Newborn
- Binding, Competitive
- Blood Glucose/metabolism
- Cattle/blood
- Cattle/genetics
- Cattle/metabolism
- Female
- Glycogen/blood
- Idazoxan/analogs & derivatives
- Idazoxan/pharmacology
- Liver/drug effects
- Liver/metabolism
- Phosphoenolpyruvate/metabolism
- Prazosin/pharmacology
- Pregnancy
- Pyruvate Carboxylase/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Adrenergic, alpha/biosynthesis
- Receptors, Adrenergic, alpha/genetics
- Receptors, Adrenergic, alpha/metabolism
- Receptors, Adrenergic, beta/biosynthesis
- Receptors, Adrenergic, beta/genetics
- Receptors, Adrenergic, beta/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- E C Ontsouka
- Division of Nutrition and Physiology, Institute of Animal Genetics, Nutrition and Housing, Vetsuisse Faculty, University of Bern, CH-3012 Bern, Switzerland
| | | | | | | |
Collapse
|
42
|
Ma S, Morilak DA. Chronic intermittent cold stress sensitises the hypothalamic-pituitary-adrenal response to a novel acute stress by enhancing noradrenergic influence in the rat paraventricular nucleus. J Neuroendocrinol 2005; 17:761-9. [PMID: 16219005 DOI: 10.1111/j.1365-2826.2005.01372.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chronic intermittent cold stress sensitises activation of the hypothalamic-pituitary-adrenal (HPA) axis by novel acute stress. We have shown that enhanced noradrenergic function in limbic forebrain contributes to HPA sensitisation. In the present study, we investigated whether chronic intermittent cold also induced changes in noradrenergic function in the paraventricular nucleus (PVN), the primary mediator of the HPA stress response. Rats were exposed to chronic intermittent cold (7 days, 6 h per day, 4 degrees C). On the day after final cold exposure, there were no differences in baseline plasma ACTH, but the peak ACTH response to 30 min of acute immobilisation stress was greater in cold-stressed rats compared to controls. Bilateral microinjection of the alpha(1)-adrenergic receptor antagonist benoxathian into the PVN reduced acute stress-induced adrenocorticotrophic hormone (ACTH) levels by approximately 25% in controls. Furthermore, in cold-stressed rats, all of the sensitisation of the ACTH response was blocked by benoxathian, to a level comparable to benoxathian-treated controls. In a second study using microdialysis to measure norepinephrine release in the PVN, there were no differences in either baseline or acute stress-induced increases in norepinephrine release in the PVN of cold-stressed rats compared to controls. Thus, in a third study, we tested potential alterations in postsynaptic alpha(1)-receptor sensitivity after chronic cold stress. Dose-dependent activation of ACTH secretion by microinjection of the alpha(1)-adrenergic receptor agonist, phenylephrine, into the PVN was significantly enhanced in cold-stressed rats compared to controls. Thus, the sensitised HPA response to acute stress after chronic intermittent cold exposure is at least partly attributable to an enhanced response to alpha1-adrenergic receptor activation in the PVN. Chronic stress-induced plasticity in the acute stress response may be important for stress adaptation, but may also contribute to pathophysiological conditions associated with stress. Thus, understanding the neural mechanisms underlying such adaptations may help us understand the aetiology of such disorders, and contribute to the future development of more effective treatment or prevention strategies.
Collapse
Affiliation(s)
- S Ma
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | | |
Collapse
|
43
|
Benoit MJ, Rindt H, Allen BG. Cardiac-specific transgenic overexpression of alpha1B-adrenergic receptors induce chronic activation of ERK MAPK signalling. Biochem Cell Biol 2005; 82:719-27. [PMID: 15674439 DOI: 10.1139/o04-123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cardiomyocyte-specific overexpression of the wild-type alpha(1B)-adrenergic receptor (alpha(1B)-AR) produces a slowly progressing cardiomyopathy associated with clinical signs of heart failure and premature death around middle age (Lemire et al. 2001). In the heart, alpha(1)-AR activate the extracellular signal-regulated kinase (ERK) MAPK cascade. The aim of this project was to determine if cardiac-specific overexpression of the wild-type alpha(1B)-AR results in sustained activation of the ERK pathway. At 3 and 9 months, ERK activity was increased in alpha(1B)-AR overexpressing hearts relative to non-transgenic animals. Similarly, phosphorylation of MEK and p90(rsk) were also elevated. MAP kinase phosphatases (MKPs), which inactivate MAP kinases, are transcriptionally regulated. MKP2 mRNA levels were reduced at 3 months in alpha(1B)-AR overexpressing hearts. Interestingly, there was a general trend for reduced expression of MKP-1, -2, and -3 with increased age. In addition, expression of the modulatory calcineurin-interacting protein (MCIP) 1, an indicator of calcineurin activity, was elevated 3-fold in alpha(1B)-AR overexpressing hearts at both 3 and 9 months. These results indicate that the overexpression of the wild-type alpha(1B)-AR leads to chronic changes in the activation of signalling pathways previously shown to be associated with the hypertrophic response.
Collapse
Affiliation(s)
- Marie-Josée Benoit
- Department of Biochemistry, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | | | | |
Collapse
|
44
|
Lei B, Morris DP, Smith MP, Svetkey LP, Newman MF, Rotter JI, Buchanan TA, Beckstrom-Sternberg SM, Green ED, Schwinn DA. Novel human alpha1a-adrenoceptor single nucleotide polymorphisms alter receptor pharmacology and biological function. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2005; 371:229-39. [PMID: 15900517 PMCID: PMC2367253 DOI: 10.1007/s00210-005-1019-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Accepted: 12/21/2004] [Indexed: 11/26/2022]
Abstract
We identified nine naturally-occurring human single nucleotide polymorphisms (SNPs) in the alpha(1a)-adrenoceptor (alpha(1a)AR) coding region, seven of which result in amino acid change. Utilizing rat-1 fibroblasts stably expressing wild type alpha(1a)AR or each SNP at both high and low levels, we investigated the effect of these SNPs on receptor function. Compared with wild type, two SNPs (R166K, V311I) cause a decrease in binding affinity for agonists norepinephrine, epinephrine, and phenylephrine, and also shift the dose-response curve for norepinephrine stimulation of inositol phosphate (IP) production to the right (reduced potency) without altering maximal IP activity. In addition, SNP V311I and I200S display altered antagonist binding. Interestingly, a receptor with SNP G247R (located in the third intracellular loop) displays increased maximal receptor IP activity and stimulates cell growth. The increased receptor signaling for alpha(1a)AR G247R is not mediated by altered ligand binding or a deficiency in agonist-mediated desensitization, but appears to be related to enhanced receptor-G protein coupling. In conclusion, four naturally-occurring human alpha(1a)AR SNPs induce altered receptor pharmacology and/or biological activity. This finding has potentially important implications in many areas of medicine and can be used to guide alpha(1a)AR SNP choice for future clinical studies.
Collapse
MESH Headings
- Adrenergic alpha-Agonists/pharmacology
- Adrenergic alpha-Antagonists/pharmacology
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- Cell Division/genetics
- Cells, Cultured
- Dose-Response Relationship, Drug
- GTP-Binding Proteins/metabolism
- Humans
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Phosphoric Monoester Hydrolases/metabolism
- Polymorphism, Single Nucleotide
- Radioligand Assay
- Rats
- Receptors, Adrenergic, alpha-1/drug effects
- Receptors, Adrenergic, alpha-1/genetics
- Receptors, Adrenergic, alpha-1/metabolism
- Signal Transduction
- Transfection
Collapse
Affiliation(s)
- Beilei Lei
- Department of Anesthesiology, Duke University Medical Center, Box 3094 Durham, NC, 27710, USA
- Department of Pharmacology/Cancer Biology Duke University Medical Center, Durham, NC, USA
| | - Daniel P. Morris
- Department of Anesthesiology, Duke University Medical Center, Box 3094 Durham, NC, 27710, USA
- Department of Pharmacology/Cancer Biology Duke University Medical Center, Durham, NC, USA
| | - Michael P. Smith
- Department of Anesthesiology, Duke University Medical Center, Box 3094 Durham, NC, 27710, USA
- Department of Pharmacology/Cancer Biology Duke University Medical Center, Durham, NC, USA
| | - Laura P. Svetkey
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Mark F. Newman
- Department of Anesthesiology, Duke University Medical Center, Box 3094 Durham, NC, 27710, USA
| | - Jerome I. Rotter
- Department of Medicine, Cedars-Sinai Medical Center and the University of California, Los Angeles, CA, USA
- Department of Pediatrics, Cedars-Sinai Medical Center and the University of California, Los Angeles, CA, USA
- Department of Human Genetics, Cedars-Sinai Medical Center and the University of California, Los Angeles, CA, USA
| | - Thomas A. Buchanan
- Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Eric D. Green
- Genome Technology Branch and NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Debra A. Schwinn
- Department of Anesthesiology, Duke University Medical Center, Box 3094 Durham, NC, 27710, USA, e-mail: , Tel.: +1-919-6814781, Fax: +1-919-6814776
- Department of Pharmacology/Cancer Biology Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
45
|
Zhang Y, Yan J, Chen K, Song Y, Lu Z, Chen M, Han C, Zhang Y. Different roles of alpha1-adrenoceptor subtypes in mediating cardiomyocyte protein synthesis in neonatal rats. Clin Exp Pharmacol Physiol 2005; 31:626-33. [PMID: 15479171 DOI: 10.1111/j.1440-1681.2004.04063.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
1. Three different alpha1-adrenoceptor subtypes, designated alpha1A, alpha1B and alpha1D, have been cloned and identified pharmacologically in cardiomyocytes. In vitro studies have suggested that alpha1-adrenoceptors play an important role in facilitating cardiac hypertrophy. However, it remains controversial as to which subtype of alpha1-adrenoceptors is involved in this response. In the present study, we investigated the different role of each alpha1-adrenoceptor subtype in mediating cardiomyocyte protein synthesis, which is a most important characteristic of cardiac hypertrophy in cultured neonatal rat cardiomyocytes. 2. Cardiomyocyte hypertrophy was monitored by the following characteristic phenotypic changes: (i) an increase in protein synthesis; (ii) an increase in total protein content; and (iii) an increase in cardiomyocyte size. 3. The role of each alpha1-adrenoceptor subtype in mediating cardiomyocyte protein synthesis was investigated by the effect of specific alpha1-adrenoceptor subtype-selective antagonists on noradrenaline-induced [3H]-leucine incorporation. In addition, pKB values for alpha1-adrenoceptor subtype-selective antagonists were calculated and compared with the corresponding pKi values to further identify their effects. 4. Activation of alpha1-adrenoceptors by phenylephrine or noradrenaline in the presence of propranolol significantly increased [3H]-leucine incorporation, protein content and cell size. 5. Pre-incubating cardiomyocytes with 5-methyl-urapidil, RS 17053 or WB 4101 significantly inhibited noradrenaline-induced [3H]-leucine incorporation. However, there was no effect when cardiomyocytes were pre-incubated with BMY 7378. The correlation coefficients between pKB values for alpha1-adrenoceptor subtype-selective antagonists and pKi values obtained from cloned alpha1A-, alpha1B- or alpha1D-adrenoceptors were 0.92 (P <0.01), 0.66 (P >0.05) and 0.24 (P >0.05), respectively. 6. Our results suggest that the alpha1-adrenoceptor is dominantly responsible for adrenergic hypertrophy of cultured cardiomyocytes in neonatal rats. The efficiency in mediating cardiomyocyte protein synthesis is alpha1A > alpha1B >> alpha1D.
Collapse
Affiliation(s)
- Yongzhen Zhang
- Institute of Vascular Medicine, Peking University Third Hospital and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Iwai-Kanai E, Hasegawa K. Intracellular signaling pathways for norepinephrine- and endothelin-1-mediated regulation of myocardial cell apoptosis. Mol Cell Biochem 2005; 259:163-8. [PMID: 15124920 DOI: 10.1023/b:mcbi.0000021368.80389.b9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Accumulating data support the idea that apoptosis in cardiac myocytes, in part, contributes to the development of heart failure. Since a number of neurohormonal factors are activated in this state, these factors may be involved in the positive and negative regulation of apoptosis in cardiac myocytes. Norepinephrine is one such factor and induces apoptosis in cardiac myocytes via a beta-adrenergic receptor pathway. beta-adrenergic agonist-induced apoptosis in cardiac myocytes is dependent on the activation of the cAMP/protein kinase A pathway. Interestingly, the activation of this pathway protects PC12 cells from apoptosis, suggesting that cAMP/protein kinase A regulates apoptosis in a cell type-specific manner. Another neurohormonal factor activated in heart failure is endothelin-1, which acts as a potent survival factor against myocardial cell apoptosis. Intracellular signaling pathways for endothelin-1-mediated protection include activation of MEK-1 /ERK1/2 and PI3 kinase. In addition to these protective pathways common among cell types, endothelin- activates the calcium-activated phosphatase calcineurin, which is necessary for the nuclear import of NFAT transcription factors. These factors interact with the cardiac-restricted zinc finger protein GATA-4 and induce transcription and expression of anti-apoptotic molecule bcl-2. Thus, myocardial cell apoptosis is regulated by pathways unique to cardiac myocytes as well as by those common among cell types. It should be further determined whether agents that specifically block myocardial cell apoptosis will attenuate the progression of heart failure.
Collapse
Affiliation(s)
- Eri Iwai-Kanai
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Shogoin, Sakyo-ku, Kyoto, Japan
| | | |
Collapse
|
47
|
Peivandi AA, Huhn A, Lehr HA, Jin S, Troost J, Salha S, Weismüller T, Löffelholz K. Upregulation of Phospholipase D Expression and Activation in Ventricular Pressure-Overload Hypertrophy. J Pharmacol Sci 2005; 98:244-54. [PMID: 15988127 DOI: 10.1254/jphs.fpe04008x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Evidence for a role of phospholipase D (PLD) in cellular proliferation and differentiation is accumulating. We studied PLD activity and expression in normal and hypertrophic rat and human hearts. In rat heart, abdominal aortic banding (constriction to 50% of original lumen) caused hypertrophy in the left ventricle (as shown by weight index and ANP expression) by about 15% after 30 days without histological evidence of fibrosis or signs of decompensation and in the right ventricle after 100 days. The hypertrophy was accompanied by small increases of basal PLD activity and strong potentiation of stimulated PLD activity caused by 4beta-phorbol-12beta,13alpha-dibutyrate (PDB) and by phenylephrine. The mRNA expressions of both PLD1 and PLD2 determined by semiquantitative competitive RT-PCR were markedly enhanced after aortic banding. In the caveolar fraction of the rat heart, PLD2 protein determined by Western blot analysis was upregulated in parallel with the expression of caveolin-3. A similar induction of PLD mRNA and protein expression was observed in hypertrophied human hearts of individuals (39-45-year-old) who had died from non-cardiac causes. In conclusion, PLD1 and PLD2 expressions were strongly enhanced both in rat and human heart hypertrophy, which may be responsible for the coincident potentiation of the PLD activation by alpha-adrenoceptor and protein kinase C stimulation. These results are compatible with a significant role of PLD activation in cell signaling of ventricular pressure-overload hypertrophy.
Collapse
Affiliation(s)
- Ali A Peivandi
- Department of Cardiothoracic and Vascular Surgery, Johannes-Gutenberg-University of Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Morris DP, Price RR, Smith MP, Lei B, Schwinn DA. Cellular trafficking of human alpha1a-adrenergic receptors is continuous and primarily agonist-independent. Mol Pharmacol 2004; 66:843-54. [PMID: 15258254 DOI: 10.1124/mol.104.000430] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alpha1a-adrenergic receptors (alpha1aARs) are present intracellularly and at the cell surface in cultured and natural cell models, where they are subject to agonist-mediated desensitization and internalization. To explore alpha1aAR trafficking, a hemagglutinin (HA)-tagged alpha1aAR/enhanced green fluorescent protein (EGFP) fusion protein was expressed in rat-1 fibroblasts and tracked by EGFP fluorescence and antibody labeling of surface receptors. Confocal analysis of antibody-labeled surface receptors revealed unexpected constitutive internalization in the absence of agonist stimulation. In partial agreement, the inverse agonist prazosin also caused a modest 20 +/- 2% increase in surface receptor levels, suggesting a partial block of constitutive internalization caused by decreased basal activation. However, prazosin was unable to prevent internalization of antibody-tagged surface receptors observed by confocal microscopy or cause obvious redistribution of intracellular receptor to the surface, suggesting that the alpha1aAR is internalizing even in a basal-inactive state. In contrast to the alpha1aAR, surface labeling of an HA-tagged alpha1b-EGFP fusion protein did not result in any apparent constitutive internalization. Constitutive internalization of the alpha1aAR seems to occur alongside reversible agonist-induced internalization, and both seem to involve clathrin-mediated endocytosis but not degradation in lysozymes. Surface receptor density must be maintained by recycling, because the protein synthesis inhibitor cycloheximide has no effect on total or surface receptor density in agonist-treated or untreated cells for 6 h. Constitutive agonist-independent trafficking of alpha1aARs may provide a novel mechanism by which an internal pool of alpha1aARs are maintained and recycled to allow continuous agonist-induced signaling.
Collapse
Affiliation(s)
- Daniel P Morris
- Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
49
|
Fukuda K. Application of mesenchymal stem cells for the regeneration of cardiomyocyte and its use for cell transplantation therapy. Hum Cell 2004; 16:83-94. [PMID: 15005238 DOI: 10.1111/j.1749-0774.2003.tb00138.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We have isolated a cardiomyogenic cell line (CMG cell) from murine bone marrow mesenchymal stem cells. The cells showed a fibroblast-like morphology, but the morphology changed after 5-azacytidine exposure. They began spontaneous beating after 2 weeks, and expressed ANP and BNP. Electron microscopy revealed a cardiomyocyte-like ultrastructure. These cells had several types of action potentials; sinus node-like and ventricular cell-like action potentials. The isoform of contractile protein genes indicated that their muscle phenotype was similar to fetal ventricular cardiomyocytes. They expressed alpha1A, alpha1B, alpha1D, beta1, and beta2 adrenergic and M1 and M2 muscarinic receptors. Stimulation with phenylephrine, isoproterenol and carbachol increased ERK phosphorylation and second messengers. Isoproterenol increased the beating rate, which was blocked with CGP20712A (beta1-selective blocker). These findings indicated that cell transplantation therapy for the patients with heart failure might possibly be achieved using the regenerated cardiomyocytes from autologous bone marrow cells in the near future.
Collapse
Affiliation(s)
- Keiichi Fukuda
- Institute for Advanced Cardiac Therapeutics, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
50
|
Oriowo MA, Chandrasekhar B, Kadavil EA. α1-adrenoceptor subtypes mediating noradrenaline-induced contraction of pulmonary artery from pulmonary hypertensive rats. Eur J Pharmacol 2003; 482:255-63. [PMID: 14660030 DOI: 10.1016/j.ejphar.2003.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of monocrotaline-induced pulmonary hypertension on alpha(1)-adrenoceptor-mediated contractions of pulmonary artery segments was studied. In control and monocrotaline-treated rats, noradrenaline evoked concentration-dependent contractions of the pulmonary artery. There was no change in the potency and affinity of noradrenaline but the maximum response and receptor reserve were significantly reduced. Noradrenaline-induced contractions were competitively antagonized by prazosin, 2-(2-6dimethoxyphenoxyethyl)aminomethyl-1,4-benzodioxane hydrochloride (WB 4101) and 8-[2-[4-(2methoxyphenyl)-1-piperazinyl]ethyl]-8-azaspiro[4,5]decane-7,9 dione dihydrochloride (BMY 7378) with pA(2) values of 9.64+/-0.16, 9.45+/-0.10 and 8.30+/-0.14, respectively. These antagonists also competitively antagonized noradrenaline-induced contractions of pulmonary artery segments isolated from rats with monocrotaline-induced pulmonary hypertension. The pA(2) values were 9.66+/-0.11 (prazosin), 9.62+/-0.09 (WB 4101) and 8.47+/-0.15 (BMY 7378). Chloroethylclonidine (CEC) shifted noradrenaline concentration-response curve to the right and depressed the maximum response. There was no difference between the effects of CEC in both groups. It was therefore concluded that pulmonary hypertension significantly reduced noradrenaline-induced contractions of the rat pulmonary artery without affecting the sensitivity. Studies with receptor-selective antagonists confirmed that alpha(1)D-adrenoceptor subtype is the predominant receptor subtype in the pulmonary artery and this was maintained in this disease state.
Collapse
Affiliation(s)
- Mabayoje A Oriowo
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, P.O. Box 24923, 13110 Safat, Kuwait.
| | | | | |
Collapse
|