1
|
Yumura S, Moritsugu K, Kitagawa D, Sawa M, Kinoshita T. The discrepancies in amino acid sequence of the phosphate-binding loop lead to distinctive binding modes of a covalent inhibitor for MAP2K1 and MAP2K6: Structural insights for producing selective inhibitors. Bioorg Med Chem Lett 2025; 125-126:130277. [PMID: 40378928 DOI: 10.1016/j.bmcl.2025.130277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/09/2025] [Accepted: 05/12/2025] [Indexed: 05/19/2025]
Abstract
Mitogen-activated protein kinase kinase 6 (MAP2K6) plays a crucial role in activating the p38 MAPK pathway, and dysregulation of this pathway is associated with serious diseases including autoimmune diseases. 5Z-7-oxozeaenol (5Z7O), a covalent-binding inhibitor, inhibits MAP2K6 approximately ten times more strongly than MAP2K1, a common off-target kinase of MAP2K6. Here, we determined the crystal structure of the 5Z7O-MAP2K6 complex and carefully compared it with that of the 5Z7O-MAP2K1 complex previously reported. The binding orientation of 5Z7O is slightly different between the MAP2K1 and MAP2K6 complexes, resulting in different hydrogen-bond networks and thereby the higher potency of 5Z7O for MAP2K6 than MAP2K1. 5Z7O formed hydrogen bonds with the arginine residue in the catalytic HRD motif of MAP2K6 and asparagine residue in the solvent-accessible region but not with the corresponding residues of MAP2K1. Structural comparison implied that these differences in hydrogen bonding were attributable to differences in the phosphate-binding loop (P-loop) between MAP2K6 and MAP2K1. Molecular dynamics simulation revealed the above-mentioned and further structural features of MAP2K1 and MAP2K6. These distinct structural features are potentially useful for producing selective inhibitors for MAP2K1 and MAP2K6.
Collapse
Affiliation(s)
- Seigo Yumura
- Graduate School of Science, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Kei Moritsugu
- Graduate School of Science, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Daisuke Kitagawa
- Carna Biosciences, Inc., 1-5-5 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Masaaki Sawa
- Carna Biosciences, Inc., 1-5-5 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Takayoshi Kinoshita
- Graduate School of Science, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan.
| |
Collapse
|
2
|
Worcester M, Nejad S, O’Donnell D, Arian S, Mishra P, Naeini AE, Li S, Yang K, Anbir A, Guevara M, Yuan NY, O’Leary S, Kaul M, Zandi R, Kuhlman TE. Human Stress Response Specificity through Bioresonance Selectivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.05.641735. [PMID: 40161696 PMCID: PMC11952327 DOI: 10.1101/2025.03.05.641735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
In all eukaryotes, the mitogen activated protein kinase (MAPK) cascade, a multilayered interconnected network of enzymes, connects external stimuli to gene regulation, dictating cellular fate. However, mechanisms for encoding information in this complex, fluctuating network to activate specific responses remain elusive. Here, we demonstrate that the central human stress regulator protein p38 MAPK encodes information regarding experienced stresses as different frequency oscillations of its activation state. These oscillations are used to drive specific responses through frequency-dependent resonance of oscillating biochemical phosphorylation reactions between p38 and downstream targets. These interactions closely mirror those of electronic alternating current (AC) circuits and their components, providing a unique framework through which to understand signal transduction in the MAPK cascade. Finally, we demonstrate how this understanding of bioresonance allows us to induce specific genetic responses simply by exposing cells to sugar to force activation state oscillations of p38 at predetermined frequencies.
Collapse
Affiliation(s)
- Michael Worcester
- Department of Physics and Astronomy, University of California, Riverside; Riverside, CA, 92521, USA
| | - Shayan Nejad
- Department of Physics and Astronomy, University of California, Riverside; Riverside, CA, 92521, USA
| | - Devin O’Donnell
- Biophysics Program, University of California, Riverside; Riverside, CA, 92521, USA
| | - Surya Arian
- Microbiology Program, University of California, Riverside; Riverside, CA, 92521, USA
| | - Pratyasha Mishra
- Biophysics Program, University of California, Riverside; Riverside, CA, 92521, USA
| | - Arya Eimagh Naeini
- Department of Physics and Astronomy, University of California, Riverside; Riverside, CA, 92521, USA
| | - Siyu Li
- Department of Physics and Astronomy, California State Polytechnic University, Pomona; Pomona, CA, 91768, USA
| | - Kevin Yang
- Department of Physics and Astronomy, University of California, Riverside; Riverside, CA, 92521, USA
| | - Aisa Anbir
- Biophysics Program, University of California, Riverside; Riverside, CA, 92521, USA
| | - Matthew Guevara
- Department of Biochemistry, University of California, Riverside; Riverside, CA, 92521, USA
| | - Nina Y. Yuan
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside; Riverside, CA, 92521, USA
| | - Seán O’Leary
- Department of Biochemistry, University of California, Riverside; Riverside, CA, 92521, USA
| | - Marcus Kaul
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside; Riverside, CA, 92521, USA
| | - Roya Zandi
- Department of Physics and Astronomy, University of California, Riverside; Riverside, CA, 92521, USA
- Biophysics Program, University of California, Riverside; Riverside, CA, 92521, USA
| | - Thomas E. Kuhlman
- Department of Physics and Astronomy, University of California, Riverside; Riverside, CA, 92521, USA
- Biophysics Program, University of California, Riverside; Riverside, CA, 92521, USA
- Microbiology Program, University of California, Riverside; Riverside, CA, 92521, USA
- Department of Biochemistry, University of California, Riverside; Riverside, CA, 92521, USA
| |
Collapse
|
3
|
Ji Y, Gao B, Zhao D, Zhang L, Wu H, Xie Y, Shi Q, Wang Y, Guo W. The role of 20-hydroxyecdysone and juvenile hormone in insecticidal activity of Bacillus thuringiensis regulated by DUOX-ROS immunity in Spodoptera exigua. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106222. [PMID: 40015833 DOI: 10.1016/j.pestbp.2024.106222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 03/01/2025]
Abstract
Insect midgut bacteria can be transferred to the blood cavity due to Bt infection and proliferate, becoming pathogens and enhancing Bt insecticidal activity. Dual oxidase (DUOX)-reactive oxygen species (ROS) signaling pathway plays a key role in regulating microbial homeostasis and resisting pathogen infection. However, the functions of MEKK and MKK associated with DUOX-ROS immunity are rarely studied in insects, moreover, the regulatory mechanisms underlying DUOX-ROS immunity via 20-Hydroxyecdysone (20E) and juvenile hormone (JH) are underexplored. In this study, we investigated that Spodoptera exigua MAPK kinase kinase 4 (SeMEKK4) and MAPK kinase 6 (SeMKK6) were required for Sep38β expression, and RNAi-mediated knockdown of SeMEKK4 and SeMKK6 significantly decreased ROS level and increased bacterial load in the midgut of S. exigua larvae, thereby enhancing Bt insecticidal activity. Furthermore, 20E and JH titers were elevated in insects infected with Bt. 20E upregulated the expression of SeMEKK4, SeMKK6, and Sep38β through SeEcR and SeUSP receptors, and activated the expression of SeDUOX to increase ROS level and decrease bacterial load in the midgut, which was not conducive to the enhancement of Bt insecticide activity. JH showed an opposite effect on midgut-related DUOX-ROS immunity via SeMet1 and SeMet2, and it was noteworthy that JH played a dominant role in negatively regulating DUOX-ROS immunity post Bt infection, which enhanced Bt insecticidal activity. This is an adjustment strategy for insects to cope with Bt infection, providing a new perspective for pest management.
Collapse
Affiliation(s)
- Yujie Ji
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bo Gao
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dan Zhao
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Lu Zhang
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Han Wu
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yifan Xie
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qiuyu Shi
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yao Wang
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Guo
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
4
|
Xu C, Tai H, Chu Y, Liu Y, He J, Wang Y, Su B, Li S. Gossypetin targets the liver-brain axis to alleviate pre-existing liver fibrosis and hippocampal neuroinflammation in mice. Front Pharmacol 2024; 15:1385330. [PMID: 38860164 PMCID: PMC11163038 DOI: 10.3389/fphar.2024.1385330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/24/2024] [Indexed: 06/12/2024] Open
Abstract
Liver fibrosis occurs in response to chronic damage and inflammation to the liver. Leaving untreated, it can lead to decreased liver function and can eventually progress to cirrhosis, a more advanced and irreversible state of liver damage. Clinical investigations showed that chronic liver disease associated with neurological symptoms including anxiety, depression, and cognitive decline. However, few therapeutic options are available for treating liver and related brain pathologies simultaneously. In this study, we aim to find therapeutic candidates that target the liver-brain axis. Gossypetin, a flavonoid from sedum, shows promising capability in treating liver and brain pathologies in CCl4-induced mouse model. Short term of gossypetin administration is sufficient to ameliorate impaired liver function and pre-existing liver fibrosis, suppress MKK3/6-p38 MAPK and p53 activation, and abolish the activation of hepatic stellate cells and Kupffer cells. Although we observe no neuronal loss in the brain of mice with liver fibrosis, we do observe astrogliosis and microglial activation in certain brain regions, especially the hippocampus. Brief gossypetin administration also shows potential in alleviating neuroinflammation in these regions. These results suggest that gossypetin can target the liver-brain axis and be a promising candidate for treating chronic liver fibrosis patients with neurological symptoms.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bingyin Su
- Development and Regeneration Key Lab of Sichuan Province, Department of Histology and Embryology, Department of Pathology, Chengdu Medical College, Chengdu, China
| | - Shurong Li
- Development and Regeneration Key Lab of Sichuan Province, Department of Histology and Embryology, Department of Pathology, Chengdu Medical College, Chengdu, China
| |
Collapse
|
5
|
Zhang Q, Dai Z, Chen Y, Li Q, Guo Y, Zhu Z, Tu M, Cai L, Lu X. Endosome associated trafficking regulator 1 promotes tumor growth and invasion of glioblastoma multiforme via inhibiting TNF signaling pathway. J Neurooncol 2024; 166:113-127. [PMID: 38191954 DOI: 10.1007/s11060-023-04527-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024]
Abstract
PURPOSE Endosome associated trafficking regulator 1 (ENTR1) is a novel endosomal protein, which can affect multiple cellular biological behavior by remodeling plasma membrane structures. However, little is known regarding its function and underlying mechanisms in glioblastoma multiforme. METHODS Expression profile and clinical signature were obtained from The Public Database of human tumor. Immunohistochemical staining and western blotting assays were used to measure ENTR1 expression level. Human primary GBM tumor cells and human GBM cell lines A172, U87 and U251 were used to clarify the precise role of ENTR1. CCK-8 assays, wound healing and transwell invasion assays were designed to investigate cell viability, invasion and migration of GBM cells, respectively. Underlying molecular mechanisms of ENTR1 were determined via RNA-seq analysis. Tumor formation assay was used to validate the influence of ENTR1 in vivo. RESULTS Compared with normal brain tissues, ENTR1 was highly expressed in gliomas and correlated with malignant grades of gliomas and poor overall survival time. The proliferation and invasion of GBM cells could be weaken and the sensitivity to temozolomide (TMZ) chemotherapy increased after knocking down ENTR1. Overexpression of ENTR1 could reverse this effect. RNA-seq analysis showed that tumor necrosis factor (TNF) signaling pathway might be a putative regulatory target of ENTR1. Tumor formation assay validated that ENTR1 was a significant factor in tumor growth. CONCLUSION Our results indicated that ENTR1 played an important role in cell proliferation, invasion and chemotherapeutic sensitivity of GBM, suggesting that ENTR1 might be a novel prognostic marker and significant therapeutic target for GBM.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Zhang'an Dai
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yingyu Chen
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Qun Li
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yuhang Guo
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Department of Neurosurgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Zhangzhang Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Ming Tu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Lin Cai
- Department of Neurosurgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Xianghe Lu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
6
|
Gladkikh BP, Danilov DV, D’yachenko VS, Butov GM. 1,3-Dichloroadamantyl-Containing Ureas as Potential Triple Inhibitors of Soluble Epoxide Hydrolase, p38 MAPK and c-Raf. Int J Mol Sci 2023; 25:338. [PMID: 38203510 PMCID: PMC10779153 DOI: 10.3390/ijms25010338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Soluble epoxide hydrolase (sEH) is an enzyme involved in the metabolism of bioactive lipid signaling molecules. sEH converts epoxyeicosatrienoic acids (EET) to virtually inactive dihydroxyeicosatrienoic acids (DHET). The first acids are "medicinal" molecules, the second increase the inflammatory infiltration of cells. Mitogen-activated protein kinases (p38 MAPKs) are key protein kinases involved in the production of inflammatory mediators, including tumor necrosis factor-α (TNF-α) and cyclooxygenase-2 (COX-2). p38 MAPK signaling plays an important role in the regulation of cellular processes, especially inflammation. The proto-oncogenic serine/threonine protein kinase Raf (c-Raf) is a major component of the mitogen-activated protein kinase (MAPK) pathway: ERK1/2 signaling. Normal cellular Raf genes can also mutate and become oncogenes, overloading the activity of MEK1/2 and ERK1/2. The development of multitarget inhibitors is a promising strategy for the treatment of socially dangerous diseases. We synthesized 1,3-disubstituted ureas and diureas containing a dichloroadamantyl moiety. The results of computational methods show that soluble epoxide hydrolase inhibitors can act on two more targets in different signaling pathways of mitogen-activated protein kinases p38 MAPK and c-Raf. The two chlorine atoms in the adamantyl moiety may provide additional Cl-π interactions in the active site of human sEH. Molecular dynamics studies have shown that the stability of ligand-protein complexes largely depends on the "spacer effect." The compound containing a bridge between the chloroadamantyl fragment and the ureide group forms more stable ligand-protein complexes with sEH and p38 MAPK, which indicates a better conformational ability of the molecule in the active sites of these targets. In turn, a compound containing two chlorine atoms forms a more stable complex with c-Raf, probably due to the presence of additional halogen bonds of chlorine atoms with amino acid residues.
Collapse
Affiliation(s)
- Boris P. Gladkikh
- Department of Technology of Organic and Petrochemical Synthesis, Volgograd State Technical University, Volgograd 400005, Russia; (B.P.G.); (D.V.D.); (G.M.B.)
| | - Dmitry V. Danilov
- Department of Technology of Organic and Petrochemical Synthesis, Volgograd State Technical University, Volgograd 400005, Russia; (B.P.G.); (D.V.D.); (G.M.B.)
| | - Vladimir S. D’yachenko
- Department of Technology of Organic and Petrochemical Synthesis, Volgograd State Technical University, Volgograd 400005, Russia; (B.P.G.); (D.V.D.); (G.M.B.)
- Department of Chemistry, Technology and Equipment of Chemical Industry, Volzhsky Polytechnic Institute (Branch), Volgograd State Technical University (VSTU), Volzhsky 404121, Russia
| | - Gennady M. Butov
- Department of Technology of Organic and Petrochemical Synthesis, Volgograd State Technical University, Volgograd 400005, Russia; (B.P.G.); (D.V.D.); (G.M.B.)
- Department of Chemistry, Technology and Equipment of Chemical Industry, Volzhsky Polytechnic Institute (Branch), Volgograd State Technical University (VSTU), Volzhsky 404121, Russia
| |
Collapse
|
7
|
Yeo JH, Roh DH. The mTOR inhibitor rapamycin suppresses trigeminal neuropathic pain and p-MKK4/p-p38 mitogen-activated protein kinase-mediated microglial activation in the trigeminal nucleus caudalis of mice with infraorbital nerve injury. Front Mol Neurosci 2023; 16:1172366. [PMID: 37122619 PMCID: PMC10140572 DOI: 10.3389/fnmol.2023.1172366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Neuropathic pain caused by trigeminal nerve injury is a typical refractory orofacial chronic pain accompanied by the development of hyperalgesia and allodynia. We previously demonstrated that the mammalian target of rapamycin (mTOR) inhibitor rapamycin suppressed orofacial formalin injection-induced nociception; however, the underlying mechanism is unclear, and it is unknown whether it can reduce trigeminal neuropathic pain. In mice, left infraorbital nerve and partial nerve ligation (ION-pNL) was performed using a silk suture (8-0). Fourteen days after surgery, neuropathic pain behavior was examined on a whisker pad and rapamycin (0.1, 0.3, and 1.0 mg/kg) was administered intraperitoneally. Mechanical and cold sensitivities in the orofacial region were quantified using von Frey filaments and acetone solution, respectively. Changes in mTOR and related proteins, such as p-MKK3/6, p-MKK4, p-JNK, p-ERK, p-p38 MAPK, GFAP, and Iba-1, in the trigeminal nucleus caudalis (TNC) or the trigeminal ganglia (TG) tissues were examined via western blot analysis or immunohistochemistry. Mice demonstrated significant mechanical and cold allodynia 2 weeks following ION-pNL injury, both of which were significantly reduced 1 h after the administration of high-dose rapamycin (1.0 mg/kg). In the TG tissue, ION-pNL surgery or rapamycin treatment did not change p-mTOR and p-4EBP1, but rapamycin reduced the increase of p-S6 and S6 induced by ION-pNL. In the TNC tissue, neither ION-pNL surgery nor rapamycin treatment altered p-mTOR, p-S6, and p-4EBP1 expressions, whereas rapamycin significantly decreased the ION-pNL-induced increase in Iba-1 expression. In addition, rapamycin suppressed the increase in p-p38 MAPK and p-MKK4 expressions but not p-MKK3/6 expression. Moreover, p-p38 MAPK-positive cells were colocalized with increased Iba-1 in the TNC. Our findings indicate that rapamycin treatment reduces both mechanical and cold orofacial allodynia in mice with trigeminal neuropathic pain, which is closely associated with the modulation of p-MKK4/p-p38 MAPK-mediated microglial activation in the TNC.
Collapse
|
8
|
Di Rocco A, Camero S, Benedetti A, Lozanoska-Ochser B, Megiorni F, Marchese C, Stramucci L, Ciccarelli C, Bouché M, Bossi G, Marampon F, Zani BM. Anti‑oncogenic and pro‑myogenic action of the MKK6/p38/AKT axis induced by targeting MEK/ERK in embryonal rhabdomyosarcoma. Oncol Rep 2022; 48:151. [PMID: 35801577 PMCID: PMC9350981 DOI: 10.3892/or.2022.8363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/16/2022] [Indexed: 11/05/2022] Open
Abstract
Insights into the molecular and cellular biology of embryonal rhabdomyosarcoma (ERMS), an aggressive paediatric tumour, are required in order to identify new targets for novel treatments that may benefit patients with this disease. The present study examined the functional effects of MKK3 and MKK6, two upstream kinases of p38, and found that the ectopic expression of MKK6 led to rapid p38 activation and the myogenic differentiation of ERMS cells, whereas MKK3 failed to induce differentiation, while maintaining the proliferation state. Myogenin and myosin heavy chain were induced in MKK6‑overexpressing ERMS cells and were inhibited by the p38 inhibitor, SB203580. The expression of Myc and ERK‑PO4 increased under the effect of SB203580, whereas it decreased in MKK6‑overexpressing cells. AKT activation was part of the myogenic program triggered by MKK6 overexpression alone. To the best of our knowledge, the present study demonstrates, for the first time, that the endogenous MKK6 pathway may be recovered by MEK/ERK inhibition (U0126 and trametinib) and that it concomitantly induces the reversal of the oncogenic pattern and the induction of the myogenic differentiation of ERMS cell lines. The effects of MEK/ERK inhibitors markedly increase the potential clinical applications in ERMS, particularly on account of the MEK inhibitor‑induced early MKK6/p38 axis activation and of their anti‑oncogenic effects. The findings presented herein lend further support to the antitumour effects of MKK6; MKK6 may thus represent a novel target for advanced personalised treatments against ERMS.
Collapse
Affiliation(s)
- Agnese Di Rocco
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Simona Camero
- Department of Maternal and Child Health and Urological Sciences, Sapienza University of Rome, I‑00161 Rome, Italy
| | - Anna Benedetti
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics (AHFMO), Unit of Histology, Sapienza University of Rome, I‑00161 Rome, Italy
| | - Biliana Lozanoska-Ochser
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics (AHFMO), Unit of Histology, Sapienza University of Rome, I‑00161 Rome, Italy
| | - Francesca Megiorni
- Department of Experimental Medicine, Sapienza University of Rome, I‑00161 Rome, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University of Rome, I‑00161 Rome, Italy
| | - Lorenzo Stramucci
- Department of Diagnostic Research and Technological Innovation, IRCSS‑Regina Elena National Cancer Institute, I‑00144 Rome, Italy
| | - Carmela Ciccarelli
- Department of Life, Health and Environmental Sciences (MESVA), University of L'Aquila, I‑67100 L'Aquila, Italy
| | - Marina Bouché
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics (AHFMO), Unit of Histology, Sapienza University of Rome, I‑00161 Rome, Italy
| | - Gianluca Bossi
- Department of Diagnostic Research and Technological Innovation, IRCSS‑Regina Elena National Cancer Institute, I‑00144 Rome, Italy
| | - Francesco Marampon
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, I‑00161 Rome, Italy
| | - Bianca Maria Zani
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics (AHFMO), Unit of Histology, Sapienza University of Rome, I‑00161 Rome, Italy
| |
Collapse
|
9
|
Maik-Rachline G, Wortzel I, Seger R. Alternative Splicing of MAPKs in the Regulation of Signaling Specificity. Cells 2021; 10:cells10123466. [PMID: 34943973 PMCID: PMC8699841 DOI: 10.3390/cells10123466] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK) cascades transmit signals from extracellular stimuli to a variety of distinct cellular processes. The MAPKKs in each cascade specifically phosphorylate and activate their cognate MAPKs, indicating that this step funnels various signals into a seemingly linear pathway. Still, the effects of these cascades vary significantly, depending on the identity of the extracellular signals, which gives rise to proper outcomes. Therefore, it is clear that the specificity of the signals transmitted through the cascades is tightly regulated in order to secure the desired cell fate. Indeed, many regulatory components or processes that extend the specificity of the cascades have been identified. Here, we focus on a less discussed mechanism, that is, the role of distinct components in each tier of the cascade in extending the signaling specificity. We cover the role of distinct genes, and the alternatively spliced isoforms of MAPKKs and MAPKs, in the signaling specificity. The alternatively spliced MEK1b and ERK1c, which form an independent signaling route, are used as the main example. Unlike MEK1/2 and ERK1/2, this route’s functions are limited, including mainly the regulation of mitotic Golgi fragmentation. The unique roles of the alternatively spliced isoforms indicate that these components play an essential role in determining the proper cell fate in response to distinct stimulations.
Collapse
|
10
|
Gao L, Tang Z, Li T, Wang J. Combination of kaempferol and azithromycin attenuates Staphylococcus aureus-induced osteomyelitis via anti-biofilm effects and by inhibiting the phosphorylation of ERK1/2 and SAPK. Pathog Dis 2021; 79:6381690. [PMID: 34610107 DOI: 10.1093/femspd/ftab048] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 10/01/2021] [Indexed: 12/15/2022] Open
Abstract
Osteomyelitis is bacterial infection of bone, commonly caused by Staphylococcus aureus. This work aims to study the potential of azithromycin and kaempferol against chronic osteomyelitis induced by azithromycin-resistant Staphylococcus aureus (ARSA). It was noticed that rats tolerated the treatments with no diarrhoea or weight loss; also, no deaths were observed in rats. The treatment by azithromycin alone failed to inhibit bacterial growth and also had no effect on the infection condition of bone, although the treatment decreased the levels of interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α), but did not improve the oxidative stress levels. Kaempferol monotherapy slightly inhibited bacterial growth and bone infection; the treatment also inhibited the levels of IL-6 and (TNF-α). The treatment also improved the antioxidant status. However, the combined treatment of azithromycin and kaempferol significantly suppressed bacterial growth and bone infection and modulated oxidative stress. In vitro, the combined treatment inhibited the levels of IL-6 and TNF-α, and also suppressed the phosphorylation of ERK1/2 and stress-activated protein kinase (SAPK). The combined treatment also showed anti-biofilm activity in ARSA. The combination attenuates ARSA-induced osteomyelitis in rats compared with their treatments alone by reducing oxidative stress, inhibiting the phosphorylation of ERK1/2 and SAPK and inhibiting biofilm formation.
Collapse
Affiliation(s)
- Lei Gao
- Department of Orthopaedic Surgery, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, China
| | - Zhipeng Tang
- Clinical Lab, He Bei General Hospital, Shi Jia Zhuang, 050051, China
| | - Tianbo Li
- Department of Orthopaedic Surgery, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, China
| | - Jiangning Wang
- Department of Orthopaedic Surgery, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, China
| |
Collapse
|
11
|
Yang Z, Sun H, Ma W, Wu K, Peng G, Ou T, Wu S. Down-regulation of Polo-like kinase 4 (PLK4) induces G1 arrest via activation of the p38/p53/p21 signalling pathway in bladder cancer. FEBS Open Bio 2021; 11:2631-2646. [PMID: 34342940 PMCID: PMC8409300 DOI: 10.1002/2211-5463.13262] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 06/22/2021] [Accepted: 08/02/2021] [Indexed: 12/24/2022] Open
Abstract
Polo-like kinase 4 (PLK4) has been reported to contribute to tumor growth, invasion, and metastasis. However, the role of PLK4 in human bladder cancer (BC) remains unclear. Here, we demonstrate the regulatory function of PLK4 in human BC progression. PLK4 is overexpressed in BC cell lines and tissues, and its overexpression correlated with poor prognosis. Our transcriptome analysis combined with subsequent functional assays indicated that PLK4 inhibition can suppress BC cell growth and induce cell cycle arrest at G1 phase via activation of the p38/p53/p21 pathway in vitro and in vivo. Overall, our data suggest that PLK4 is a critical regulator of BC cell proliferation, and thus it may have potential as a novel molecular target for BC treatment.
Collapse
Affiliation(s)
- Ziyi Yang
- Shenzhen University Health Science Center, Shenzhen, Guangdong province, China.,Institute of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, 518000, Guangdong province, China
| | - Haiyan Sun
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, 518000, Guangdong province, China
| | - Wenlong Ma
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, 518000, Guangdong province, China
| | - Kai Wu
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, 518000, Guangdong province, China
| | - Guoyu Peng
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, 518000, Guangdong province, China
| | - Tong Ou
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, 518000, Guangdong province, China
| | - Song Wu
- Shenzhen University Health Science Center, Shenzhen, Guangdong province, China.,Institute of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, 518000, Guangdong province, China
| |
Collapse
|
12
|
Kumar GS, Page R, Peti W. The interaction of p38 with its upstream kinase MKK6. Protein Sci 2021; 30:908-913. [PMID: 33554397 DOI: 10.1002/pro.4039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023]
Abstract
Mitogen-activated protein kinase (MAPK; p38, ERK, and JNK) cascades are evolutionarily conserved signaling pathways that regulate the cellular response to a variety of extracellular stimuli, such as growth factors and interleukins. The MAPK p38 is activated by its specific upstream MAPK kinases, MKK6 and MKK3. However, a comprehensive molecular understanding of how these cognate upstream kinases bind and activate p38 is still missing. Here, we combine NMR spectroscopy and isothermal titration calorimetry to define the binding interface between full-length MKK6 and p38. It was shown that p38 engages MKK6 not only via its hydrophobic docking groove, but also influences helix αF, a secondary structural element that plays a key role in organizing the kinase core. It was also shown that, unlike MAPK phosphatases, the p38 conserved docking (CD) site is much less affected by MKK6 binding. Finally, it was demonstrated that these interactions with p38 are conserved independent of the MKK6 activation state. Together, the results revealed differences between specificity markers of p38 regulation by upstream kinases, which do not effectively engage the CD site, and downstream phosphatases, which require the CD site for productive binding.
Collapse
Affiliation(s)
- Ganesan Senthil Kumar
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Rebecca Page
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Wolfgang Peti
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
13
|
Okrit F, Chantranuwatana P, Werawatganon D, Chayanupatkul M, Sanguanrungsirikul S. Changes of vitamin D receptors (VDR) and MAPK activation in cytoplasmic and nuclear fractions following exposure to cigarette smoke with or without filter in rats. Heliyon 2021; 7:e05927. [PMID: 33553726 PMCID: PMC7851787 DOI: 10.1016/j.heliyon.2021.e05927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 12/22/2019] [Accepted: 01/06/2021] [Indexed: 11/29/2022] Open
Abstract
Cigarette smoke (CS) is a major cause of obstructive lung disease which is associated with significant disability and mortality. Vitamin D receptor (VDR) together with, mitogen activated protein kinases (MAPKs; ERK, JNK and p38) are the cellular transmission signals that mechanistically respond to CS and are recently found to have a role in lung pathogenesis. There are a few in vitro studies on subcellular VDR distribution involved MAPK but in vivo effects of cigarette smoke exposure with and without filter on this complex remain unclear. This study investigated subcellular VDR distribution and MAPK expression at early stages of both types of cigarette smoke exposure (CSE) in a rat model. Male Wistar rats were randomly divided into no-filter, filter and control groups. After 7 and 14 days of CSE, lung tissues were obtained to determine histopathology and protein expression. Cytoplasmic and nuclear VDR distribution significantly decreased on both CSE groups and corresponded with immunohistochemistry detection. The ratio of phosphorylated ERK to total ERK significantly increased in cytoplasm of both CSE on day 7. In particular, nuclear ERK MAPK significantly escalated in the filter group on day 14. In consistent with changes in intracellular markers, histopathological examination in both CSE groups showed significant increases in tracheal and peribronchiolar epithelial proliferation, alveolar macrophages and an increased trend of parenchymal infiltration. In summary, the evidence of lung injuries along with VDR depletion and MAPK activation observed in both CSE types indicated that there was no benefit of using cigarette filter to prevent protein damage or protect cells against cigarette smoke exposure in this model.
Collapse
Affiliation(s)
- Fatist Okrit
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | - Duangporn Werawatganon
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Maneerat Chayanupatkul
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | | |
Collapse
|
14
|
p38β (MAPK11) mediates gemcitabine-associated radiosensitivity in sarcoma experimental models. Radiother Oncol 2020; 156:136-144. [PMID: 33310004 DOI: 10.1016/j.radonc.2020.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND PURPOSE Gemcitabine is an antitumour agent currently used in the treatment of several types of cancer with known properties as a radiosensitizer. p38MAPK signalling pathway has been shown to be a major determinant in the cellular response to gemcitabine in different experimental models. However, the molecular mechanism implicated in gemcitabine-associated radiosensitivity remains unknown. MATERIALS AND METHODS The human sarcoma cell lines A673 and HT1080, and a mouse cell line derived from a 3-methylcholanthrene induced sarcoma were used as experimental models. Modulation of p38MAPKs was performed by pharmacological approaches (SB203580) and genetic interference using lentiviral vectors coding for specific shRNAs. Viability was assessed by MTT. Gene expression was evaluated by western blot and RT-qPCR. Induction of apoptosis was monitored by caspase 3/7 activity. Response to ionizing radiation was evaluated by clonogenic assays. RESULTS Our data demonstrate that chemical inhibition of p38MAPK signalling pathway blocks gemcitabine radiosensitizing potential. Genetic interference of MAPK14 (p38α), the most abundantly expressed and best characterized p38MAPK, despite promoting resistance to gemcitabine, it does not affect its radiosensitizing potential. Interestingly, specific knockdown of MAPK11 (p38β) induces a total loss of the radiosensitivity associated to gemcitabine, as well as a marked increase in the resistance to the drug. CONCLUSION The present work identifies p38β as a major determinant of the radiosensitizing potential of gemcitabine without implication of p38α, suggesting that p38β status should be analysed in those cases in which gemcitabine is combined with ionizing radiation.
Collapse
|
15
|
Vind AC, Genzor AV, Bekker-Jensen S. Ribosomal stress-surveillance: three pathways is a magic number. Nucleic Acids Res 2020; 48:10648-10661. [PMID: 32941609 PMCID: PMC7641731 DOI: 10.1093/nar/gkaa757] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/28/2020] [Accepted: 09/06/2020] [Indexed: 12/15/2022] Open
Abstract
Cells rely on stress response pathways to uphold cellular homeostasis and limit the negative effects of harmful environmental stimuli. The stress- and mitogen-activated protein (MAP) kinases, p38 and JNK, are at the nexus of numerous stress responses, among these the ribotoxic stress response (RSR). Ribosomal impairment is detrimental to cell function as it disrupts protein synthesis, increase inflammatory signaling and, if unresolved, lead to cell death. In this review, we offer a general overview of the three main translation surveillance pathways; the RSR, Ribosome-associated Quality Control (RQC) and the Integrated Stress Response (ISR). We highlight recent advances made in defining activation mechanisms for these pathways and discuss their commonalities and differences. Finally, we reflect on the physiological role of the RSR and consider the therapeutic potential of targeting the sensing kinase ZAKα for treatment of ribotoxin exposure.
Collapse
Affiliation(s)
- Anna Constance Vind
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Aitana Victoria Genzor
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Simon Bekker-Jensen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| |
Collapse
|
16
|
Han J, Wu J, Silke J. An overview of mammalian p38 mitogen-activated protein kinases, central regulators of cell stress and receptor signaling. F1000Res 2020; 9. [PMID: 32612808 PMCID: PMC7324945 DOI: 10.12688/f1000research.22092.1] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
The p38 family is a highly evolutionarily conserved group of mitogen-activated protein kinases (MAPKs) that is involved in and helps co-ordinate cellular responses to nearly all stressful stimuli. This review provides a succinct summary of multiple aspects of the biology, role, and substrates of the mammalian family of p38 kinases. Since p38 activity is implicated in inflammatory and other diseases, we also discuss the clinical implications and pharmaceutical approaches to inhibit p38.
Collapse
Affiliation(s)
- Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jianfeng Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - John Silke
- The Walter and Eliza Hall Institute, IG Royal Parade, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3050, Australia
| |
Collapse
|
17
|
Rahman SMT, Zhou W, Deiters A, Haugh JM. Optical control of MAP kinase kinase 6 (MKK6) reveals that it has divergent roles in pro-apoptotic and anti-proliferative signaling. J Biol Chem 2020; 295:8494-8504. [PMID: 32371393 DOI: 10.1074/jbc.ra119.012079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/21/2020] [Indexed: 12/24/2022] Open
Abstract
The selective pressure imposed by extrinsic death signals and stressors adds to the challenge of isolating and interpreting the roles of proteins in stress-activated signaling networks. By expressing a kinase with activating mutations and a caged lysine blocking the active site, we can rapidly switch on catalytic activity with light and monitor the ensuing dynamics. Applying this approach to MAP kinase 6 (MKK6), which activates the p38 subfamily of MAPKs, we found that decaging active MKK6 in fibroblasts is sufficient to trigger apoptosis in a p38-dependent manner. Both in fibroblasts and in a murine melanoma cell line expressing mutant B-Raf, MKK6 activation rapidly and potently inhibited the pro-proliferative extracellular signal-regulated kinase (ERK) pathway; to our surprise, this negative cross-regulation was equally robust when all p38 isoforms were inhibited. These results position MKK6 as a new pleiotropic signal transducer that promotes both pro-apoptotic and anti-proliferative signaling, and they highlight the utility of caged, light-activated kinases for dissecting stress-activated signaling networks.
Collapse
Affiliation(s)
- Shah Md Toufiqur Rahman
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Wenyuan Zhou
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jason M Haugh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
18
|
Circ_016719 plays a critical role in neuron cell apoptosis induced by I/R via targeting miR-29c/Map2k6. Mol Cell Probes 2020; 49:101478. [DOI: 10.1016/j.mcp.2019.101478] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 10/30/2019] [Accepted: 11/03/2019] [Indexed: 02/04/2023]
|
19
|
Liu K, Zhang C, Li B, Xie W, Zhang J, Nie X, Tan P, Zheng L, Wu S, Qin Y, Cui J, Zhi F. Mutual Stabilization between TRIM9 Short Isoform and MKK6 Potentiates p38 Signaling to Synergistically Suppress Glioblastoma Progression. Cell Rep 2019; 23:838-851. [PMID: 29669288 DOI: 10.1016/j.celrep.2018.03.096] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 03/06/2018] [Accepted: 03/20/2018] [Indexed: 02/02/2023] Open
Abstract
p38 signaling is broadly involved in controlling inflammation and stress-induced cell death; however, the mechanisms controlling its activity have seldom been studied. Here, we report that TRIM9 short isoform (TRIM9s) potentiates p38 signaling by stabilizing MKK6. Mechanistic studies revealed that TRIM9s promotes the K63-linked ubiquitination of MKK6 at Lys82, thus inhibiting the degradative K48-linked ubiquitination of MKK6 at the same lysine. MKK6 could also stabilize TRIM9s by promoting the phosphorylation of TRIM9s at Ser76/80 via p38, thereby blocking the ubiquitin-proteasome pathway. Further functional analyses showed that p38 signaling plays a critical role in suppressing glioblastoma progression. Co-reduction of MKK6 and TRIM9s is significantly associated with overall poor survival of glioblastoma patients. We identify a positive feedback loop in p38 signaling generated by MKK6-TRIM9s, which suppresses glioblastoma progression, and we provide insights into the mechanisms by which TRIM9s and MKK6 potentiate p38 signaling through mutual stabilization.
Collapse
Affiliation(s)
- Kunpeng Liu
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Chuanxia Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Bowen Li
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213000, China; Modern Medical Research Center, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, China
| | - Weihong Xie
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Jindong Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Xichen Nie
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Peng Tan
- Institute of Biosciences and Technology, Texas A&M University, Health Science Center, Houston, TX 77030, USA
| | - Limin Zheng
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Song Wu
- Department of Urology Institute of Shenzhen University, Shenzhen Luohu People's Hospital, Shenzhen 518000, China.
| | - Yunfei Qin
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China; Guangdong Provincial Key Laboratory of Liver Disease, Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China.
| | - Jun Cui
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China; Department of Urology Institute of Shenzhen University, Shenzhen Luohu People's Hospital, Shenzhen 518000, China.
| | - Feng Zhi
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213000, China; Modern Medical Research Center, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, China.
| |
Collapse
|
20
|
Inactivation of Cyclic AMP Response Element Transcription Caused by Constitutive p38 Activation Is Mediated by Hyperphosphorylation-Dependent CRTC2 Nucleocytoplasmic Transport. Mol Cell Biol 2019; 39:MCB.00554-18. [PMID: 30782776 DOI: 10.1128/mcb.00554-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/01/2019] [Indexed: 01/05/2023] Open
Abstract
The p38 signal transduction pathway can be activated transiently or constitutively, depending on the contexts in which the activation occurs. However, the biological consequence of constitutive activation of p38 is largely unknown. After screening 300 transcriptional cofactors, we identified CRTC2 as a downstream substrate of constitutively activated p38. Constitutive, rather than transient, activation of p38 led to hyperphosphorylation of CRTC2, resulting in CRTC2 cytosolic relocation and subsequent inactivation of cyclic AMP response element (CRE)-mediated transcription. Interestingly, the cytosolic translocation of CRTC2 depended on phosphorylation accumulation at multiple sites (≥11 phosphoserine/phosphothreonine residues) but not on specific sites. The hyperphosphorylation-driven nucleocytoplasmic transport of CRTC2 may not be a rare case of nuclear export of proteins, as we also observed that constitutively activated p38 promoted FOS nuclear export in a hyperphosphorylation-dependent manner. Collectively, our study uncovered a previously unknown mechanism of inactivation of selected transcription, which results from hyperphosphorylation-driven nucleocytoplasmic transport of cofactors or transcription factors mediated by constitutively active kinase.
Collapse
|
21
|
Grimsey NJ, Lin Y, Narala R, Rada CC, Mejia-Pena H, Trejo J. G protein-coupled receptors activate p38 MAPK via a non-canonical TAB1-TAB2- and TAB1-TAB3-dependent pathway in endothelial cells. J Biol Chem 2019; 294:5867-5878. [PMID: 30760523 DOI: 10.1074/jbc.ra119.007495] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/07/2019] [Indexed: 01/03/2023] Open
Abstract
Endothelial dysfunction is induced by inflammatory mediators including multiple G protein-coupled receptor (GPCR) agonists. However, the GPCR signaling pathways that promote endothelial dysfunction are incompletely understood. We previously showed that thrombin promotes endothelial barrier disruption through autophosphorylation and activation of p38 mitogen-activated protein kinase (MAPK) via a non-canonical transforming growth factor-β-activated protein kinase-1-binding protein-1 (TAB1) and TAB2-dependent pathway rather than the canonical three-tiered kinase cascade. Here, we sought to determine whether other GPCR agonists stimulate p38 MAPK activation via this non-canonical pathway in human endothelial cells derived from different vascular beds. Using primary human umbilical vein endothelial cells (HUVECs), HUVEC-derived EA.hy926 cells, and human dermal microvascular endothelial cells (HDMECs), we found that both non-canonical and canonical p38 activation pathways components are expressed in these various endothelial cell types, including TAB3, a structurally-related TAB2 homolog. Moreover, multiple GPCRs agonists, including thrombin, histamine, prostaglandin E2, and ADP, stimulated robust p38 autophosphorylation, whereas phosphorylation of the upstream MAPKs MAP kinase kinase 3 (MKK3) and MKK6, was virtually undetectable, indicating that non-canonical p38 activation may exist for other GPCRs. Indeed, in EA.hy926 cells, thrombin- and histamine-stimulated p38 activation depended on TAB1-TAB2, whereas in primary HUVECs, both TAB1-TAB2 and TAB1-TAB3 were required for p38 activation. In HDMECs, thrombin-induced p38 activation depended on TAB1-TAB3, but histamine-induced p38 activation required TAB1-TAB2. Moreover, thrombin- and histamine-stimulated interleukin-6 production required both TAB1-TAB2 and TAB1-TAB3 in HUVEC. We conclude that multiple GPCR agonists utilize non-canonical TAB1-TAB2 and TAB1-TAB3-dependent p38 activation to promote endothelial inflammatory responses.
Collapse
Affiliation(s)
- Neil J Grimsey
- From the Department of Pharmacology, University of California, San Diego, La Jolla, California 92093
| | - Ying Lin
- From the Department of Pharmacology, University of California, San Diego, La Jolla, California 92093
| | - Rachan Narala
- From the Department of Pharmacology, University of California, San Diego, La Jolla, California 92093
| | - Cara C Rada
- From the Department of Pharmacology, University of California, San Diego, La Jolla, California 92093; Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Hilda Mejia-Pena
- From the Department of Pharmacology, University of California, San Diego, La Jolla, California 92093
| | - JoAnn Trejo
- From the Department of Pharmacology, University of California, San Diego, La Jolla, California 92093.
| |
Collapse
|
22
|
Li Z, Li N, Shen L. MAP2K6 is associated with radiation resistance and adverse prognosis for locally advanced nasopharyngeal carcinoma patients. Cancer Manag Res 2018; 10:6905-6912. [PMID: 30588096 PMCID: PMC6296680 DOI: 10.2147/cmar.s184689] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Although radiotherapy is the primary therapeutic option for nasopharyngeal carcinoma (NPC), local recurrence and distant metastasis caused by radioresistance are still the major barriers for some NPC patients who cannot benefit from radiotherapy. In this study, we analyzed the association between MAP2K6 expression and radioresistance in patients with locally advanced NPC. METHODS We collected 120 NPC patients who received radiotherapy in the Xiangya Hospital of Central South University from August 2008 to July 2012. The clinical data and tissue samples of patients were collected. Detection of MAP2K6 was performed using immunohistochemical staining. RESULTS The rates of two groups were 19.4% and 4.2%, and significant difference was observed between MAP2K6 high expression group and low expression group (χ2=5.817, P=0.016). The Kaplan-Meier analysis suggested a significant difference in the survival rate between two groups (P<0.05). The results from multivariate Cox regression indicated that the MAP2K6 was independently related to adverse prognosis in NCP patients (HR =3.40, 95% CI =1.13-10.26, P=0.030). CONCLUSION The present study indicated that MAP2K6 was correlated with radioresistance, and the elevated expression of MAP2K6 predicted poor prognosis in NPC patients. MAP2K6 may be a new therapy target for radioresistance of NPC.
Collapse
Affiliation(s)
- Zhanzhan Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China,
| | - Na Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China,
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China,
| |
Collapse
|
23
|
Tamamori-Adachi M, Koga A, Susa T, Fujii H, Tsuchiya M, Okinaga H, Hisaki H, Iizuka M, Kitajima S, Okazaki T. DNA damage response induced by Etoposide promotes steroidogenesis via GADD45A in cultured adrenal cells. Sci Rep 2018; 8:9636. [PMID: 29941883 PMCID: PMC6018231 DOI: 10.1038/s41598-018-27938-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 06/12/2018] [Indexed: 11/17/2022] Open
Abstract
Glucocorticoid production is regulated by adrenocorticotropic hormone (ACTH) via the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway in the adrenal cortex, but the changes in steroidogenesis associated with aging are unknown. In this study, we show that cell-autonomous steroidogenesis is induced by non-ACTH- mediated genotoxic stress in human adrenocortical H295R cells. Low-dose etoposide (EP) was used to induce DNA damage as a genotoxic stress, leading to cellular senescence. We found that steroidogenesis was promoted in cells stained with γH2AX, a marker of DNA damaged cells. Among stress-associated and p53-inducible genes, the expression of GADD45A and steroidogenesis-related genes was significantly upregulated. Immunofluorescence analysis revealed that GADD45A accumulated in the nuclei. Metabolite assay using cultured media showed that EP-treated cells were induced to produce and secrete considerable amounts of glucocorticoid. Knockdown of GADD45A using small interfering RNA markedly inhibited the EP-induced upregulation of steroidogenesis-related gene expression, and glucocorticoid production. A p38MAPK inhibitor, but not a PKA inhibitor, suppressed EP-stimulated steroidogenesis. These results suggest that DNA damage itself promotes steroidogenesis via one or more unprecedented non-ACTH-mediated pathway. Specifically, GADD45A plays a crucial role in the steroidogenic processes triggered by EP-stimulated genotoxic stress. Our study sheds new light on an alternate mechanism of steroidogenesis in the adrenal cortex.
Collapse
Affiliation(s)
- Mimi Tamamori-Adachi
- Department of Biochemistry, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan.
| | - Akane Koga
- Department of Biochemistry, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan.,Department of Practical Pharmacy, Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Takao Susa
- Department of Biochemistry, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Hiroko Fujii
- Department of Biochemistry, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan.,Department of General Medicine, National Defense Medical College, 3-2, Namiki, Tokorozawa City, Saitama, 359-8513, Japan
| | - Masao Tsuchiya
- Department of Practical Pharmacy, Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Hiroko Okinaga
- Department of Internal Medicine, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Harumi Hisaki
- Department of Biochemistry, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Masayoshi Iizuka
- Department of Biochemistry, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Shigetaka Kitajima
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8605, Japan
| | - Tomoki Okazaki
- Department of Biochemistry, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| |
Collapse
|
24
|
Schwartz M, Böckmann S, Borchert P, Hinz B. SB202190 inhibits endothelial cell apoptosis via induction of autophagy and heme oxygenase-1. Oncotarget 2018; 9:23149-23163. [PMID: 29796178 PMCID: PMC5955409 DOI: 10.18632/oncotarget.25234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 03/29/2018] [Indexed: 12/20/2022] Open
Abstract
Activation of the p38 mitogen-activated protein kinase (MAPK) pathway has been implicated in various detrimental events finally leading to endothelial dysfunction. The present study therefore investigates the impact of the p38 MAPK inhibitor SB202190 on the expression of the cytoprotective enzyme heme oxygenase-1 (HO-1) as well as metabolic activity, apoptosis and autophagy of endothelial cells. Using human umbilical vein endothelial cells (HUVEC) SB202190 was found to cause a time- and concentration-dependent induction of HO-1 protein. Induction of HO-1 protein expression was mimicked by SB203580, another p38 MAPK inhibitor, but not by SB202474, an inactive structural analogue of p38 MAPK inhibitors. HO-1 induction by both SB202190 and SB203580 was also demonstrated by analysis of mRNA expression. On the functional level, SB202190 was shown to increase metabolic activity and autophagy of HUVEC along with diminishing basal apoptosis. Treatment of cells with tin protoporphyrin IX (SnPPIX), a well-characterised HO-1 enzymatic inhibitor, or HO-1 siRNA left SB202190-modulated metabolic activity and autophagy virtually unaltered but caused a significant reversal of the anti-apoptotic action of SB202190. Conversely, however, HO-1 expression by SB202190 became completely suppressed by the autophagy inhibitor bafilomycin A1. Bafilomycin A1 likewise fully reversed effects of SB202190 on metabolic activity and apoptosis, albeit significantly inducing apoptosis per se. Collectively, this work demonstrates SB202190 to confer upstream induction of autophagy followed by HO-1 induction resulting in potential protective effects against apoptosis. On the other hand, our data oppose HO-1 to contribute to SB202190-mediated increases in metabolic activity and autophagy, respectively.
Collapse
Affiliation(s)
- Margit Schwartz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| | - Sabine Böckmann
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| | - Philipp Borchert
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
25
|
Sajda T, Sinha AA. Autoantibody Signaling in Pemphigus Vulgaris: Development of an Integrated Model. Front Immunol 2018; 9:692. [PMID: 29755451 PMCID: PMC5932349 DOI: 10.3389/fimmu.2018.00692] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/21/2018] [Indexed: 01/10/2023] Open
Abstract
Pemphigus vulgaris (PV) is an autoimmune skin blistering disease effecting both cutaneous and mucosal epithelia. Blister formation in PV is known to result from the binding of autoantibodies (autoAbs) to keratinocyte antigens. The primary antigenic targets of pathogenic autoAbs are known to be desmoglein 3, and to a lesser extent, desmoglein 1, cadherin family proteins that partially comprise the desmosome, a protein structure responsible for maintaining cell adhesion, although additional autoAbs, whose role in blister formation is still unclear, are also known to be present in PV patients. Nevertheless, there remain large gaps in knowledge concerning the precise mechanisms through which autoAb binding induces blister formation. Consequently, the primary therapeutic interventions for PV focus on systemic immunosuppression, whose side effects represent a significant health risk to patients. In an effort to identify novel, disease-specific therapeutic targets, a multitude of studies attempting to elucidate the pathogenic mechanisms downstream of autoAb binding, have led to significant advancements in the understanding of autoAb-mediated blister formation. Despite this enhanced characterization of disease processes, a satisfactory explanation of autoAb-induced acantholysis still does not exist. Here, we carefully review the literature investigating the pathogenic disease mechanisms in PV and, taking into account the full scope of results from these studies, provide a novel, comprehensive theory of blister formation in PV.
Collapse
Affiliation(s)
- Thomas Sajda
- Department of Dermatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Animesh A Sinha
- Department of Dermatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
26
|
Qi MY, Song JW, Zhang Z, Huang S, Jing Q. P38 activation induces the dissociation of tristetraprolin from Argonaute 2 to increase ARE-mRNA stabilization. Mol Biol Cell 2018; 29:988-1002. [PMID: 29444957 PMCID: PMC5896936 DOI: 10.1091/mbc.e17-02-0105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
ARE-mRNAs are actively degraded with tristetraprolin (TTP) in resting cells while they turn into stable messengers in activated cells. P38 plays a crucial role in stabilizing ARE-mRNA. Here we reveal that P38 activation represses the interaction between TTP and Ago2, thus restraining TTP from being targeted into processing bodies and stabilizing ARE-mRNA.
Collapse
Affiliation(s)
- Mei-Yan Qi
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing-Wen Song
- Department of Cardiology, Changhai Hospital, Shanghai 200433, China
| | - Zhuo Zhang
- Department of Cardiology, Changhai Hospital, Shanghai 200433, China.,Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
| | - Shuang Huang
- Department of Cardiology, Changhai Hospital, Shanghai 200433, China
| | - Qing Jing
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Department of Cardiology, Changhai Hospital, Shanghai 200433, China
| |
Collapse
|
27
|
Tomita K, Kabashima A, Freeman BL, Bronk SF, Hirsova P, Ibrahim SH. Mixed Lineage Kinase 3 Mediates the Induction of CXCL10 by a STAT1-Dependent Mechanism During Hepatocyte Lipotoxicity. J Cell Biochem 2017; 118:3249-3259. [PMID: 28262979 PMCID: PMC5550329 DOI: 10.1002/jcb.25973] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 01/10/2023]
Abstract
Saturated fatty acids (SFA) and their toxic metabolites contribute to hepatocyte lipotoxicity in nonalcoholic steatohepatitis (NASH). We previously reported that hepatocytes, under lipotoxic stress, express the potent macrophage chemotactic ligand C-X-C motif chemokine 10 (CXCL10), and release CXCL10-enriched extracellular vesicles (EV) by a mixed lineage kinase (MLK) 3-dependent mechanism. In the current study, we sought to examine the signaling pathway responsible for CXCL10 induction during hepatocyte lipotoxicity. Here, we demonstrate a role for signal transducer and activator of transcription (STAT) 1 in regulating CXCL10 expression. Huh7 and HepG2 cells were treated with lysophosphatidylcholine (LPC), the toxic metabolite of the SFA palmitate. In LPC-treated hepatocytes, CXCL10 induction is mediated by a mitogen activated protein kinase (MAPK) signaling cascade consisting of a relay kinase module of MLK3, MKK3/6, and p38. P38 in turn induces STAT1 Ser727 phosphorylation and CXCL10 upregulation in hepatocytes, which is reduced by genetic or pharmacological inhibition of this MAPK signaling cascade. The binding and activity of STAT1 at the CXCL10 gene promoter were identified by chromatin immunoprecipitation and luciferase gene expression assays. Promoter activation was attenuated by MLK3/STAT1 inhibition or by deletion of the consensus STAT1 binding sites within the CXCL10 promoter. In lipotoxic hepatocytes, MLK3 activates a MAPK signaling cascade, resulting in the activating phosphorylation of STAT1, and CXCL10 transcriptional upregulation. Hence, this kinase relay module and/or STAT1 inhibition may serve as a therapeutic target to reduce CXCL10 release, thereby attenuating NASH pathogenesis. J. Cell. Biochem. 118: 3249-3259, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kyoko Tomita
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Ayano Kabashima
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Brittany L. Freeman
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Steven F. Bronk
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Petra Hirsova
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Samar H. Ibrahim
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
- Division of Pediatric Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
28
|
Thamodaran V, Bruce AW. p38 (Mapk14/11) occupies a regulatory node governing entry into primitive endoderm differentiation during preimplantation mouse embryo development. Open Biol 2017; 6:rsob.160190. [PMID: 27605380 PMCID: PMC5043583 DOI: 10.1098/rsob.160190] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/12/2016] [Indexed: 12/31/2022] Open
Abstract
During mouse preimplantation embryo development, the classically described second cell-fate decision involves the specification and segregation, in blastocyst inner cell mass (ICM), of primitive endoderm (PrE) from pluripotent epiblast (EPI). The active role of fibroblast growth factor (Fgf) signalling during PrE differentiation, particularly in the context of Erk1/2 pathway activation, is well described. However, we report that p38 family mitogen-activated protein kinases (namely p38α/Mapk14 and p38β/Mapk11; referred to as p38-Mapk14/11) also participate in PrE formation. Specifically, functional p38-Mapk14/11 are required, during early-blastocyst maturation, to assist uncommitted ICM cells, expressing both EPI and earlier PrE markers, to fully commit to PrE differentiation. Moreover, functional activation of p38-Mapk14/11 is, as reported for Erk1/2, under the control of Fgf-receptor signalling, plus active Tak1 kinase (involved in non-canonical bone morphogenetic protein (Bmp)-receptor-mediated PrE differentiation). However, we demonstrate that the critical window of p38-Mapk14/11 activation precedes the E3.75 timepoint (defined by the initiation of the classical ‘salt and pepper’ expression pattern of mutually exclusive EPI and PrE markers), whereas appropriate lineage maturation is still achievable when Erk1/2 activity (via Mek1/2 inhibition) is limited to a period after E3.75. We propose that active p38-Mapk14/11 act as enablers, and Erk1/2 as drivers, of PrE differentiation during ICM lineage specification and segregation.
Collapse
Affiliation(s)
- Vasanth Thamodaran
- Laboratory of Developmental Biology and Genetics (LDB&G), Department of Molecular Biology, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Alexander W Bruce
- Laboratory of Developmental Biology and Genetics (LDB&G), Department of Molecular Biology, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 37005 České Budějovice, Czech Republic
| |
Collapse
|
29
|
Fang Y, Zhang C, Wu T, Wang Q, Liu J, Dai P. Transcriptome Sequencing Reveals Key Pathways and Genes Associated with Cisplatin Resistance in Lung Adenocarcinoma A549 Cells. PLoS One 2017; 12:e0170609. [PMID: 28114404 PMCID: PMC5256872 DOI: 10.1371/journal.pone.0170609] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/07/2017] [Indexed: 11/19/2022] Open
Abstract
Acquired resistance to cisplatin-based chemotherapy frequently occurs in patients with non-small cell lung cancer, and the underlying molecular mechanisms are not well understood. The aim of this study was to investigate whether a distinct gene expression pattern is associated with acquired resistance to cisplatin in human lung adenocarcinoma. Whole-transcriptome sequencing was performed to compare the genome-wide gene expression patterns of the human lung adenocarcinoma A549 cisplatin-resistant cell line A549/DDP with those of its progenitor cell line A549. A total of 1214 differentially expressed genes (DEGs) were identified, 656 of which were upregulated and 558 were downregulated. Functional annotation of the DEGs in the Kyoto Encyclopedia of Genes and Genomes database revealed that most of the identified genes were enriched in the PI3K/AKT, mitogen-activated protein kinase, actin cytoskeleton regulation, and focal adhesion pathways in A549/DDP cells. These results support previous studies demonstrating that the pathways regulating cell proliferation and invasion confer resistance to chemotherapy. Furthermore, the results proved that cell adhesion and cytoskeleton regulation is associated with cisplatin resistance in human lung cancer. Our study provides new promising biomarkers for lung cancer prognosis and potential therapeutic targets for lung cancer treatment.
Collapse
Affiliation(s)
- Yani Fang
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi’an, PR China
| | - Cheng Zhang
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi’an, PR China
| | - Tong Wu
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi’an, PR China
| | - Qi Wang
- Shaanxi Lifegen Co. Ltd., Xi’an, PR China
| | - Jinhui Liu
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi’an, PR China
| | - Penggao Dai
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi’an, PR China
- * E-mail:
| |
Collapse
|
30
|
Wamsley JJ, Issaeva N, An H, Lu X, Donehower LA, Yarbrough WG. LZAP is a novel Wip1 binding partner and positive regulator of its phosphatase activity in vitro. Cell Cycle 2016; 16:213-223. [PMID: 28027003 DOI: 10.1080/15384101.2016.1261767] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The phosphatase Wip1 attenuates the DNA damage response (DDR) by removing phosphorylation marks from a number of DDR proteins (p53, MDM2, Chk1/2, p38). Wip1 also dephosphorylates and inactivates RelA. Notably, LZAP, a putative tumor suppressor, has been linked to dephosphorylation of several of these substrates, including RelA, p38, Chk1, and Chk2. LZAP has no known catalytic activity or functional motifs, suggesting that it exerts its effects through interaction with other proteins. Here we show that LZAP binds Wip1 and stimulates its phosphatase activity. LZAP had been previously shown to bind many Wip1 substrates (RelA, p38, Chk1/2), and our results show that LZAP also binds the previously identified Wip1 substrate, MDM2. This work identifies 2 novel Wip1 substrates, ERK1 and HuR, and demonstrates that HuR is a binding partner of LZAP. Pleasingly, LZAP potentiated Wip1 catalytic activity toward each substrate tested, regardless of whether full-length substrates or phosphopeptides were utilized. Since this effect was observed on ERK1, which does not bind LZAP, as well as for each of 7 peptides tested, we hypothesize that LZAP binding to the substrate is not required for this effect and that LZAP directly binds Wip1 to augment its phosphatase activity.
Collapse
Affiliation(s)
- J Jacob Wamsley
- a Department of Surgery, Division of Otolaryngology , Yale University , New Haven , CT , USA
| | - Natalia Issaeva
- a Department of Surgery, Division of Otolaryngology , Yale University , New Haven , CT , USA.,b Yale Cancer Center, Yale University , New Haven , CT , USA
| | - Hanbing An
- c Department of Surgery , Vanderbilt University , Nashville , TN , USA
| | - Xinyuan Lu
- d Department of Medicine , University of California San Francisco , San Francisco , CA , USA
| | - Lawrence A Donehower
- e Department of Molecular Virology and Microbiology , Baylor College of Medicine , Houston , TX , USA
| | - Wendell G Yarbrough
- a Department of Surgery, Division of Otolaryngology , Yale University , New Haven , CT , USA.,b Yale Cancer Center, Yale University , New Haven , CT , USA.,f Department of Pathology , Yale University , New Haven , CT , USA
| |
Collapse
|
31
|
Chatterjee B, Wolff DW, Jothi M, Mal M, Mal AK. p38α MAPK disables KMT1A-mediated repression of myogenic differentiation program. Skelet Muscle 2016; 6:28. [PMID: 27551368 PMCID: PMC4993004 DOI: 10.1186/s13395-016-0100-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 07/26/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Master transcription factor MyoD can initiate the entire myogenic gene expression program which differentiates proliferating myoblasts into multinucleated myotubes. We previously demonstrated that histone methyltransferase KMT1A associates with and inhibits MyoD in proliferating myoblasts, and must be removed to allow differentiation to proceed. It is known that pro-myogenic signaling pathways such as PI3K/AKT and p38α MAPK play critical roles in enforcing associations between MyoD and transcriptional activators, while removing repressors. However, the mechanism which displaces KMT1A from MyoD, and the signals responsible, remain unknown. METHODS To investigate the role of p38α on MyoD-mediated differentiation, we utilized C2C12 myoblast cells as an in vitro model. p38α activity was either augmented via overexpression of a constitutively active upstream kinase or blocked via lentiviral delivery of a specific p38α shRNA or treatment with p38α/β inhibitor SB203580. Overexpression of KMT1A in these cells via lentiviral delivery was also used as a system wherein terminal differentiation is impeded by high levels of KMT1A. RESULTS The association of KMT1A and MyoD persisted, and differentiation was blocked in C2C12 myoblasts specifically after pharmacologic or genetic blockade of p38α. Conversely, forced activation of p38α was sufficient to activate MyoD and overcome the differentiation blockade in KMT1A-overexpressing C2C12 cells. Consistent with this finding, KMT1A phosphorylation during C2C12 differentiation correlated strongly with the activation of p38α. This phosphorylation was prevented by the inhibition of p38α. Biochemical studies further revealed that KMT1A can be a direct substrate for p38α. Importantly, chromatin immunoprecipitation (ChIP) studies show that the removal of KMT1A-mediated transcription repressive histone tri-methylation (H3K9me3) from the promoter of the Myogenin gene, a critical regulator of muscle differentiation, is dependent on p38α activity in C2C12 cells. Elevated p38α activity was also sufficient to remove this repressive H3K9me3 mark. Moreover, ChIP studies from C2C12 cells show that p38α activity is necessary and sufficient to establish active H3K9 acetylation on the Myogenin promoter. CONCLUSIONS Activation of p38α displaces KMT1A from MyoD to initiate myogenic gene expression upon induction of myoblasts differentiation.
Collapse
Affiliation(s)
- Biswanath Chatterjee
- Department of Cell Stress Biology, CGP-L3-319, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York 14263 USA ; Present Address: Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, 11529 Taiwan
| | - David W Wolff
- Department of Cell Stress Biology, CGP-L3-319, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York 14263 USA
| | - Mathivanan Jothi
- Department of Cell Stress Biology, CGP-L3-319, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York 14263 USA ; Present Address: Department of Biotechnology, Bharathiar University, Coimbatore, 641046 Tamilnadu India
| | - Munmun Mal
- Department of Cell Stress Biology, CGP-L3-319, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York 14263 USA
| | - Asoke K Mal
- Department of Cell Stress Biology, CGP-L3-319, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York 14263 USA
| |
Collapse
|
32
|
Kim D, Dai J, Park YH, Fai LY, Wang L, Pratheeshkumar P, Son YO, Kondo K, Xu M, Luo J, Shi X, Zhang Z. Activation of Epidermal Growth Factor Receptor/p38/Hypoxia-inducible Factor-1α Is Pivotal for Angiogenesis and Tumorigenesis of Malignantly Transformed Cells Induced by Hexavalent Chromium. J Biol Chem 2016; 291:16271-81. [PMID: 27226640 PMCID: PMC4965575 DOI: 10.1074/jbc.m116.715797] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 05/18/2016] [Indexed: 01/25/2023] Open
Abstract
Hexavalent chromium (Cr(VI))-containing compounds are well established environmental carcinogens. Most mechanistic investigations of Cr(VI)-induced carcinogenesis focus on oxidative stress and various cellular responses, leading to malignant cell transformation or the first stage of metal-induced carcinogenesis. The development of malignantly transformed cells into tumors that require angiogenesis is the second stage. This study focuses on the second stage, in particular, the role of EGF receptor (EGFR) signaling in angiogenesis and tumorigenesis of Cr(VI)-transformed cells. Our preliminary studies have shown that EGFR is constitutively activated in Cr(VI)-transformed cells, in lung tissue from Cr(VI)-exposed animals, and in lung tumor tissue from a non-smoking worker occupationally exposed to Cr(VI) for 19 years. Using in vitro and in vivo models, the present study has investigated the role of EGFR in angiogenesis of Cr(VI)-transformed cells. The results show that Cr(VI)-transformed cells are angiogenic. Hypoxia-inducible factor-1α, pro-angiogenic protein matrix metalloproteinase 1, and VEGF are all highly expressed in Cr(VI)-transformed cells, in lung tissue from animals exposed to Cr(VI), and in lung tumor tissue from a non-smoking worker occupationally exposed to Cr(VI) for 19 years. p38 MAPK is also activated in Cr(VI)-transformed cells and in human lung tumor tissue. Inhibition of EGFR reduces p38 MAPK, resulting in decreased expression of hypoxia-inducible factor-1α, metalloproteinase 1, and VEGF, leading to suppressions of angiogenesis and tumorigenesis. Overall, the present study has demonstrated that EGFR plays an important role in angiogenesis and tumorigenesis of Cr(VI)-transformed cells.
Collapse
MESH Headings
- Animals
- Cell Transformation, Neoplastic/chemically induced
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Chromium/toxicity
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Female
- Human Umbilical Vein Endothelial Cells
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Lung Neoplasms/chemically induced
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mice
- Mice, Inbred BALB C
- Neovascularization, Pathologic/chemically induced
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Occupational Exposure/adverse effects
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Donghern Kim
- From the Department of Toxicology and Cancer Biology
| | - Jin Dai
- From the Department of Toxicology and Cancer Biology
| | - Youn-Hee Park
- From the Department of Toxicology and Cancer Biology
| | | | - Lei Wang
- the Center for Research on Environmental Disease, and
| | | | - Young-Ok Son
- the Center for Research on Environmental Disease, and
| | - Kazuya Kondo
- the Department of Oncological Medical Services, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima 770-8509, Japan
| | - Mei Xu
- the Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky 40536 and
| | - Jia Luo
- the Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky 40536 and
| | - Xianglin Shi
- the Center for Research on Environmental Disease, and
| | - Zhuo Zhang
- From the Department of Toxicology and Cancer Biology,
| |
Collapse
|
33
|
Sreekanth GP, Chuncharunee A, Sirimontaporn A, Panaampon J, Noisakran S, Yenchitsomanus PT, Limjindaporn T. SB203580 Modulates p38 MAPK Signaling and Dengue Virus-Induced Liver Injury by Reducing MAPKAPK2, HSP27, and ATF2 Phosphorylation. PLoS One 2016; 11:e0149486. [PMID: 26901653 PMCID: PMC4764010 DOI: 10.1371/journal.pone.0149486] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/02/2016] [Indexed: 02/07/2023] Open
Abstract
Dengue virus (DENV) infection causes organ injuries, and the liver is one of the most important sites of DENV infection, where viral replication generates a high viral load. The molecular mechanism of DENV-induced liver injury is still under investigation. The mitogen activated protein kinases (MAPKs), including p38 MAPK, have roles in the hepatic cell apoptosis induced by DENV. However, the in vivo role of p38 MAPK in DENV-induced liver injury is not fully understood. In this study, we investigated the role of SB203580, a p38 MAPK inhibitor, in a mouse model of DENV infection. Both the hematological parameters, leucopenia and thrombocytopenia, were improved by SB203580 treatment and liver transaminases and histopathology were also improved. We used a real-time PCR microarray to profile the expression of apoptosis-related genes. Tumor necrosis factor α, caspase 9, caspase 8, and caspase 3 proteins were significantly lower in the SB203580-treated DENV-infected mice than that in the infected control mice. Increased expressions of cytokines including TNF-α, IL-6 and IL-10, and chemokines including RANTES and IP-10 in DENV infection were reduced by SB203580 treatment. DENV infection induced the phosphorylation of p38MAPK, and its downstream signals including MAPKAPK2, HSP27 and ATF-2. SB203580 treatment did not decrease the phosphorylation of p38 MAPK, but it significantly reduced the phosphorylation of MAPKAPK2, HSP27, and ATF2. Therefore, SB203580 modulates the downstream signals to p38 MAPK and reduces DENV-induced liver injury.
Collapse
Affiliation(s)
| | - Aporn Chuncharunee
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Aunchalee Sirimontaporn
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jutatip Panaampon
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sansanee Noisakran
- Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, Thailand
| | - Pa-thai Yenchitsomanus
- Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thawornchai Limjindaporn
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
34
|
Li H, Wang S, Qian Z, Wu Z, Lǚ K, Weng S, He J, Li C. MKK6 from pacific white shrimp Litopenaeus vannamei is responsive to bacterial and WSSV infection. Mol Immunol 2016; 70:72-83. [DOI: 10.1016/j.molimm.2015.12.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 12/08/2015] [Accepted: 12/15/2015] [Indexed: 11/16/2022]
|
35
|
Bollino D, Colunga A, Li B, Aurelian L. ΔPK oncolytic activity includes modulation of the tumour cell milieu. J Gen Virol 2015; 97:496-508. [PMID: 26602205 DOI: 10.1099/jgv.0.000353] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Oncolytic virotherapy is a unique cancer therapeutic that encompasses tumour cell lysis through both virus replication and programmed cell death (PCD) pathways. Nonetheless, clinical efficacy is relatively modest, likely related to the immunosuppressive tumour milieu. Our studies use the herpes simplex virus type 2 (HSV-2)-based oncolytic virus ΔPK that has documented anti-tumour activity associated with virus replication, PCD and cancer stem cell lysis. They are designed to examine whether ΔPK-mediated oncolysis includes the ability to reverse the immunosuppressive tumour microenvironment by altering the balance of cytokines directly secreted by the melanoma cells and to define its mechanism. Here, we show that melanoma cells secreted the immunosuppressive cytokine IL-10, and that secretion was inhibited by ΔPK through virus replication and c-Jun N-terminal kinase/c-Jun activation. ΔPK-induced IL-10 inhibition upregulated surface expression of MHC class I chain-related protein A, the ligand for the activating NKG2D receptor expressed on NK- and cytotoxic T-cells. Concomitantly, ΔPK also upregulated the secretion of inflammatory cytokines TNF-α, granulocyte macrophage colony-stimulating factor and IL-1β through autophagy-mediated activation of Toll-like receptor 2 pathways and pyroptosis, and it inhibited the expression of the negative immune checkpoint regulator cytotoxic T-lymphocyte antigen 4. Pharmacologic inhibition of these processes significantly reduces the oncolytic activity of ΔPK.
Collapse
Affiliation(s)
- Dominique Bollino
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Aric Colunga
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Baiquan Li
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Laure Aurelian
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
36
|
Liao H, Kang JL, Jiang WY, Deng C, Yuan J, Shuai R. Delivery of Constitutively Active Mutant MKK6(E) With TAT-OSBP Induces Apoptosis in Human Ovarian Carcinoma HO8910 Cells. Int J Gynecol Cancer 2015; 25:1548-56. [PMID: 26495757 DOI: 10.1097/igc.0000000000000538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Biologically active peptides and proteins are novel agents that show promise in the development of anticancer drugs. Their relatively low cell permeability and poor tumor selectivity, however, impede their widespread applicability. In this study, we evaluated the tumor selectivity, cellular internalization, and biological activity of a cell-permeable ovarian cancer cell-specific therapeutic protein consisting of TAT-OSBP and constitutively active MKK6(E), an upstream kinase of the p38 signaling pathway that mediates cellular apoptosis. OSBP, a 7-amino-acid peptide with high affinity for human ovarian cancer HO8910 cells, was conjugated to the cell-penetrating peptide (TAT) to form a tumor-selective peptide (TAT-OSBP), which was further conjugated with EGFP or MKK6(E). Flow cytometry and fluorescent microscopy were performed to evaluate the tumor-targeted penetration of TAT-OSBP-EGFP. The inhibitory effects of TAT-OSBP-MKK6(E) were determined by cell proliferation and apoptosis assays. The internalization efficiency of TAT-OSBP-EGFP was significantly higher than that of TAT-EGFP. TAT-OSBP-EGFP selectively penetrated HO8910 cells. TAT-OSBP-MKK6(E) fusion protein inhibited cancer cell growth to varying degrees, with the highest level of inhibition in HO8910 cells. Moreover, TAT-OSBP-MKK6(E) significantly induced apoptosis of HO8910 cells. However, there was no significant difference in apoptosis in the normal ovarian epithelial cells treated with either TAT-OSBP-MKK6(E) or TAT-MKK6(E). Our results demonstrate that TAT-OSBP-MKK6(E) is a novel artificially designed molecule, which induces apoptosis and selectively targets human ovarian carcinoma HO8910 cells. Our study provides novel insights that may aid in the development of a new generation of anticancer drugs.
Collapse
Affiliation(s)
- Hua Liao
- Department of Obstetrics and Gynecology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, PR China
| | | | | | | | | | | |
Collapse
|
37
|
Bardwell AJ, Bardwell L. Two hydrophobic residues can determine the specificity of mitogen-activated protein kinase docking interactions. J Biol Chem 2015; 290:26661-74. [PMID: 26370088 DOI: 10.1074/jbc.m115.691436] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Indexed: 11/06/2022] Open
Abstract
MAPKs bind to many of their upstream regulators and downstream substrates via a short docking motif (the D-site) on their binding partner. MAPKs that are in different families (e.g. ERK, JNK, and p38) can bind selectively to D-sites in their authentic substrates and regulators while discriminating against D-sites in other pathways. Here we demonstrate that the short hydrophobic region at the distal end of the D-site plays a critical role in determining the high selectivity of JNK MAPKs for docking sites in their cognate MAPK kinases. Changing just 1 or 2 key hydrophobic residues in this submotif is sufficient to turn a weak JNK-binding D-site into a strong one, or vice versa. These specificity-determining differences are also found in the D-sites of the ETS family transcription factors Elk-1 and Net. Moreover, swapping two hydrophobic residues between these D-sites switches the relative efficiency of Elk-1 and Net as substrates for ERK versus JNK, as predicted. These results provide new insights into docking specificity and suggest that this specificity can evolve rapidly by changes to just 1 or 2 amino acids.
Collapse
Affiliation(s)
- A Jane Bardwell
- From the Department of Developmental and Cell Biology, Center for Complex Biological Systems, University of California, Irvine, California 92697
| | - Lee Bardwell
- From the Department of Developmental and Cell Biology, Center for Complex Biological Systems, University of California, Irvine, California 92697
| |
Collapse
|
38
|
Smyk M, Roeder E, Cheung SW, Szafranski P, Stankiewicz P. A de novo 1.58 Mb deletion, including MAP2K6 and mapping 1.28 Mb upstream to SOX9, identified in a patient with Pierre Robin sequence and osteopenia with multiple fractures. Am J Med Genet A 2015; 167A:1842-50. [PMID: 26059046 DOI: 10.1002/ajmg.a.37057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 02/23/2015] [Indexed: 12/18/2022]
Abstract
Defects of long-range regulatory elements of dosage-sensitive genes represent an under-recognized mechanism underlying genetic diseases. Haploinsufficiency of SOX9, the gene essential for development of testes and differentiation of chondrocytes, results in campomelic dysplasia, a skeletal malformation syndrome often associated with sex reversal. Chromosomal rearrangements with breakpoints mapping up to 1.6 Mb up- and downstream to SOX9, and disrupting its distant cis-regulatory elements, have been described in patients with milder forms of campomelic dysplasia, Pierre Robin sequence, and sex reversal. We present an ∼1.58 Mb deletion mapping ∼1.28 Mb upstream to SOX9 that encompasses its putative long-range cis-regulatory element(s) and MAP2K6 in a patient with Pierre Robin sequence and osteopenia with multiple fractures. Low bone mass panel testing using massively parallel sequencing of 23 nuclear genes, including COL1A1 and COL1A2 was negative. Based on the previous mouse model of Map2k6, suggesting that Sox9 is likely a downstream target of the p38 MAPK pathway, and our previous chromosome conformation capture-on-chip (4C) data showing potential interactions between SOX9 promoter and MAP2K6, we hypothesize that deletion of MAP2K6 might have affected SOX9 expression and contributed to our patient's phenotype.
Collapse
Affiliation(s)
- Marta Smyk
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | - Elizabeth Roeder
- Departments of Pediatrics and Molecular and Human Genetics, Baylor College of Medicine, San Antonio, Texas
| | - Sau Wai Cheung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Przemyslaw Szafranski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Paweł Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
39
|
Lee JH, Kim JE, Jang YJ, Lee CC, Lim TG, Jung SK, Lee E, Lim SS, Heo YS, Seo SG, Son JE, Kim JR, Lee CY, Lee HJ, Lee KW. Dehydroglyasperin C suppresses TPA-induced cell transformation through direct inhibition of MKK4 and PI3K. Mol Carcinog 2015; 55:552-62. [DOI: 10.1002/mc.22302] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 12/26/2014] [Accepted: 01/21/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Ji Hoon Lee
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence; Seoul National University; Seoul Republic of Korea
- Advanced Institutes of Convergence Technology; Seoul National University; Suwon Republic of Korea
| | - Jong-Eun Kim
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence; Seoul National University; Seoul Republic of Korea
- Advanced Institutes of Convergence Technology; Seoul National University; Suwon Republic of Korea
- Research Institute of Bio Food Industry, Institute of Green Bio Science and Technology; Seoul National University; Pyeongchang Republic of Korea
| | - Young Jin Jang
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence; Seoul National University; Seoul Republic of Korea
- Division of Creative Food Science for Health; Korea Food Research Institute; Seongnam Republic of Korea
| | - Charles C. Lee
- Department of Food Science and Technology; Cornell University; Ithaca NY 14456 USA
| | - Tae-Gyu Lim
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence; Seoul National University; Seoul Republic of Korea
- Advanced Institutes of Convergence Technology; Seoul National University; Suwon Republic of Korea
| | - Sung Keun Jung
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence; Seoul National University; Seoul Republic of Korea
- Division of Creative Food Science for Health; Korea Food Research Institute; Seongnam Republic of Korea
| | - Eunjung Lee
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence; Seoul National University; Seoul Republic of Korea
- Traditional Alcoholic Beverage Research Team; Korea Food Research Institute; Seongnam Republic of Korea
| | - Soon Sung Lim
- Department of Food Science and Nutrition; Hallym University; Chuncheon Republic of Korea
| | - Yong Seok Heo
- Department of Chemistry; Konkuk University; Seoul Republic of Korea
| | - Sang Gwon Seo
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence; Seoul National University; Seoul Republic of Korea
- Advanced Institutes of Convergence Technology; Seoul National University; Suwon Republic of Korea
| | - Joe Eun Son
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence; Seoul National University; Seoul Republic of Korea
- Advanced Institutes of Convergence Technology; Seoul National University; Suwon Republic of Korea
| | - Jong Rhan Kim
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence; Seoul National University; Seoul Republic of Korea
- Advanced Institutes of Convergence Technology; Seoul National University; Suwon Republic of Korea
| | - Chang Yong Lee
- Department of Food Science and Technology; Cornell University; Ithaca NY 14456 USA
- Department of Biochemistry; King Abdulaziz University; Jeddah SA
| | - Hyong Joo Lee
- Research Institute of Bio Food Industry, Institute of Green Bio Science and Technology; Seoul National University; Pyeongchang Republic of Korea
| | - Ki Won Lee
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence; Seoul National University; Seoul Republic of Korea
- Advanced Institutes of Convergence Technology; Seoul National University; Suwon Republic of Korea
- Research Institute of Bio Food Industry, Institute of Green Bio Science and Technology; Seoul National University; Pyeongchang Republic of Korea
- Institute on Aging; Seoul National University; Seoul Republic of Korea
| |
Collapse
|
40
|
Targeting MKK3 as a novel anticancer strategy: molecular mechanisms and therapeutical implications. Cell Death Dis 2015; 6:e1621. [PMID: 25633290 PMCID: PMC4669782 DOI: 10.1038/cddis.2014.591] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 01/10/2023]
Abstract
Mitogen-activated protein kinase kinase 3 (MAP2K3, MKK3) is a member of the dual specificity protein kinase group that belongs to the MAP kinase kinase family. This kinase is activated by mitogenic or stress-inducing stimuli and participates in the MAP kinase-mediated signaling cascade, leading to cell proliferation and survival. Several studies highlighted a critical role for MKK3 in tumor progression and invasion, and we previously identified MKK3 as transcriptional target of mutant (mut) p53 to sustain cell proliferation and survival, thus rendering MKK3 a promising target for anticancer therapies. Here, we found that targeting MKK3 with RNA interference, in both wild-type (wt) and mutp53-carrying cells, induced endoplasmic reticulum stress and autophagy that, respectively, contributed to stabilize wtp53 and degrade mutp53. MKK3 depletion reduced cancer cell proliferation and viability, whereas no significant effects were observed in normal cellular context. Noteworthy, MKK3 depletion in combination with chemotherapeutic agents increased tumor cell response to the drugs, in both wtp53 and mutp53 cancer cells, as demonstrated by enhanced poly (ADP-ribose) polymerase cleavage and reduced clonogenic ability in vitro. In addition, MKK3 depletion reduced tumor growth and improved biological response to chemotherapeutic in vivo. The overall results indicate MKK3 as a novel promising molecular target for the development of more efficient anticancer treatments in both wtp53- and mutp53-carrying tumors.
Collapse
|
41
|
Suhail TV, Singh P, Manna TK. Suppression of centrosome protein TACC3 induces G1 arrest and cell death through activation of p38-p53-p21 stress signaling pathway. Eur J Cell Biol 2015; 94:90-100. [PMID: 25613365 DOI: 10.1016/j.ejcb.2014.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 11/23/2014] [Accepted: 12/08/2014] [Indexed: 11/28/2022] Open
Abstract
The centrosome regulates diverse cellular processes, including cell proliferation and differentiation. TACC3, a member of the human transforming acidic coiled-coil protein family, is a key centrosomal protein that is up-regulated in many cancers. Previous studies have demonstrated that TACC3 is essential for the survival of vertebrates and is involved in cell cycle regulation in human cells. However, the details of the underlying mechanisms in its cell cycle regulatory activity remain poorly understood. In this study, we showed that suppression of TACC3 expression induced G1 cell cycle arrest and triggered cell death in human cells. TACC3 depletion-induced G1 arrest and cell death were significantly reduced in cells either lacking p53 or with pharmacologically-inhibited p38, indicating that G1 arrest and cell death induction both require p53 and p38. TACC3 depletion up-regulated the levels of p53 and p21 and induced the accumulation of p53 both in the nucleus and at the centrosome. Interestingly, TACC3 depletion led to the activation of p38 and stimulated the recruitment of activated p38 to the centrosome. Depletion of TACC3 up-regulated the phosphorylation of p53 at Serine 33, a site known to be phosphorylated by p38 under cellular stress and further induced the accumulation of phosphorylated p53 to the centrosome. Loss of TACC3 affected centrosome integrity by disrupting the localization of components of the γ-tubulin ring complex at the centrosome. The results demonstrate that TACC3 depletion induces G1 arrest and cell death by activating p38-p53-p21 signaling and triggering a centrosome-mediated cellular stress response.
Collapse
Affiliation(s)
- Thazhath V Suhail
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, CET Campus, Trivandrum 695016, Kerala, India
| | - Puja Singh
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, CET Campus, Trivandrum 695016, Kerala, India
| | - Tapas K Manna
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, CET Campus, Trivandrum 695016, Kerala, India.
| |
Collapse
|
42
|
Monocytic cell differentiation from band-stage neutrophils under inflammatory conditions via MKK6 activation. Blood 2014; 124:2713-24. [PMID: 25214442 DOI: 10.1182/blood-2014-07-588178] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During inflammation, neutrophils are rapidly mobilized from the bone marrow storage pool into peripheral blood (PB) to enter lesional sites, where most rapidly undergo apoptosis. Monocytes constitute a second wave of inflammatory immigrates, giving rise to long-lived macrophages and dendritic cell subsets. According to descriptive immunophenotypic and cell culture studies, neutrophils may directly "transdifferentiate" into monocytes/macrophages. We provide mechanistic data in human and murine models supporting the existence of this cellular pathway. First, the inflammatory signal-induced MKK6-p38MAPK cascade activates a monocyte differentiation program in human granulocyte colony-stimulating factor-dependent neutrophils. Second, adoptively transferred neutrophils isolated from G-CSF-pretreated mice rapidly acquired monocyte characteristics in response to inflammatory signals in vivo. Consistently, inflammatory signals led to the recruitment of osteoclast progenitor cell potential from ex vivo-isolated G-CSF-mobilized human blood neutrophils. Monocytic cell differentiation potential was retained in left-shifted band-stage neutrophils but lost in neutrophils from steady-state PB. MKK6-p38MAPK signaling in HL60 model cells led to diminishment of the transcription factor C/EBPα, which enabled the induction of a monocytic cell differentiation program. Gene profiling confirmed lineage conversion from band-stage neutrophils to monocytic cells. Therefore, inflammatory signals relayed by the MKK6-p38MAPK cascade induce monocytic cell differentiation from band-stage neutrophils.
Collapse
|
43
|
Liu J, Han L, Li B, Yang J, Huen MSY, Pan X, Tsao SW, Cheung ALM. F-box only protein 31 (FBXO31) negatively regulates p38 mitogen-activated protein kinase (MAPK) signaling by mediating lysine 48-linked ubiquitination and degradation of mitogen-activated protein kinase kinase 6 (MKK6). J Biol Chem 2014; 289:21508-21518. [PMID: 24936062 PMCID: PMC4118112 DOI: 10.1074/jbc.m114.560342] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 06/03/2014] [Indexed: 12/17/2022] Open
Abstract
The p38 MAPK signal transduction pathway plays an important role in inflammatory and stress responses. MAPKK6 (MKK6), a dual specificity protein kinase, is a p38 activator. Activation of the MKK6-p38 pathway is kept in check by multiple layers of regulations, including autoinhibition, dimerization, scaffold proteins, and Lys-63-linked polyubiquitination. However, the mechanisms underlying deactivation of MKK6-p38, which is crucial for maintaining the magnitude and duration of signal transduction, are not well understood. Lys-48-linked ubiquitination, which marks substrates for proteasomal degradation, is an important negative posttranslational regulatory machinery for signal pathway transduction. Here we report that the accumulation of F-box only protein 31 (FBXO31), a component of Skp1 · Cul1 · F-box protein E3 ligase, negatively regulated p38 activation in cancer cells upon genotoxic stresses. Our results show that FBXO31 binds to MKK6 and mediates its Lys-48-linked polyubiquitination and degradation, thereby functioning as a negative regulator of MKK6-p38 signaling and protecting cells from stress-induced cell apoptosis. Taken together, our findings uncover a new mechanism of deactivation of MKK6-p38 and substantiate a novel regulatory role of FBXO31 in stress response.
Collapse
Affiliation(s)
- Jia Liu
- From the Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China and
| | - Liang Han
- From the Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China and
| | - Bin Li
- From the Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China and
| | - Jie Yang
- From the Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China and
| | - Michael S Y Huen
- From the Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China and
| | - Xin Pan
- the Center for Molecular Medicine, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Sai Wah Tsao
- From the Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China and
| | - Annie L M Cheung
- From the Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China and
| |
Collapse
|
44
|
Zaidi SK, Shen WJ, Bittner S, Bittner A, McLean MP, Han J, Davis RJ, Kraemer FB, Azhar S. p38 MAPK regulates steroidogenesis through transcriptional repression of STAR gene. J Mol Endocrinol 2014; 53:1-16. [PMID: 24780837 PMCID: PMC4077990 DOI: 10.1530/jme-13-0287] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
STAR/StarD1, part of a protein complex, mediates the transport of cholesterol from the outer to inner mitochondrial membrane, which is the rate-limiting step for steroidogenesis, and where steroid hormone synthesis begins. Herein, we examined the role of oxidant-sensitive p38 MAPKs in the regulation of STAR gene transcription, using model steroidogenic cell lines. Our data indicate that oxidant activation of p38 MAPK exhibits a negative regulatory role in the induction of functional expression of STAR, as evidenced by enhanced induction of STAR (mRNA/protein) expression and increased steroidogenesis during pharmacological inhibition of p38 MAPK or in cells with increased transient overexpression of a dominant-negative (dn) form of p38 MAPKα or p38 MAPKβ. Studies with rat Star-promoter demonstrated that overexpression of p38 MAPKα-wt, -β, or -γ significantly reduced both basal and cAMP-sensitive promoter activity. In contrast, overexpression of p38 MAPKα-dn, -β, or -γ enhanced the Star promoter activity under basal conditions and in response to cAMP stimulation. Use of various constitutively active and dn constructs and designer knock-out cell lines demonstrated that MKK3 and MKK6, the upstream activators of p38 MAPKs, play a role in p38 MAPKα-mediated inhibition of Star promoter activity. In addition, our studies raised the possibility of CREB being a potential target of the p38 MAPK inhibitory effect on Star promoter activity. Collectively, these data provide novel mechanistic information about how oxidant-sensitive p38 MAPKs, particularly p38 MAPKα, contribute to the negative regulation of Star gene expression and inhibit steroidogenesis.
Collapse
Affiliation(s)
- Syed Kashif Zaidi
- Geriatric ResearchEducation and Clinical Center (GRECC-182B), VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, California 94304, USADivision of EndocrinologyDivision of Gastroenterology and HepatologyStanford University, Stanford, California 94305, USADepartment of Obstetrics and GynecologyUniversity of South Florida College of Medicine, Tampa, Florida 33612, USAState Key Laboratory of Cellular Stress BiologySchool of Life Sciences, Xiamen University, Xiamen, Fujian 361005, ChinaProgram in Molecular MedicineUniversity of Massachusetts Medical School, Worcester, Massachusetts 01605, USAGeriatric ResearchEducation and Clinical Center (GRECC-182B), VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, California 94304, USADivision of EndocrinologyDivision of Gastroenterology and HepatologyStanford University, Stanford, California 94305, USADepartment of Obstetrics and GynecologyUniversity of South Florida College of Medicine, Tampa, Florida 33612, USAState Key Laboratory of Cellular Stress BiologySchool of Life Sciences, Xiamen University, Xiamen, Fujian 361005, ChinaProgram in Molecular MedicineUniversity of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Wen-Jun Shen
- Geriatric ResearchEducation and Clinical Center (GRECC-182B), VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, California 94304, USADivision of EndocrinologyDivision of Gastroenterology and HepatologyStanford University, Stanford, California 94305, USADepartment of Obstetrics and GynecologyUniversity of South Florida College of Medicine, Tampa, Florida 33612, USAState Key Laboratory of Cellular Stress BiologySchool of Life Sciences, Xiamen University, Xiamen, Fujian 361005, ChinaProgram in Molecular MedicineUniversity of Massachusetts Medical School, Worcester, Massachusetts 01605, USAGeriatric ResearchEducation and Clinical Center (GRECC-182B), VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, California 94304, USADivision of EndocrinologyDivision of Gastroenterology and HepatologyStanford University, Stanford, California 94305, USADepartment of Obstetrics and GynecologyUniversity of South Florida College of Medicine, Tampa, Florida 33612, USAState Key Laboratory of Cellular Stress BiologySchool of Life Sciences, Xiamen University, Xiamen, Fujian 361005, ChinaProgram in Molecular MedicineUniversity of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Stefanie Bittner
- Geriatric ResearchEducation and Clinical Center (GRECC-182B), VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, California 94304, USADivision of EndocrinologyDivision of Gastroenterology and HepatologyStanford University, Stanford, California 94305, USADepartment of Obstetrics and GynecologyUniversity of South Florida College of Medicine, Tampa, Florida 33612, USAState Key Laboratory of Cellular Stress BiologySchool of Life Sciences, Xiamen University, Xiamen, Fujian 361005, ChinaProgram in Molecular MedicineUniversity of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Alex Bittner
- Geriatric ResearchEducation and Clinical Center (GRECC-182B), VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, California 94304, USADivision of EndocrinologyDivision of Gastroenterology and HepatologyStanford University, Stanford, California 94305, USADepartment of Obstetrics and GynecologyUniversity of South Florida College of Medicine, Tampa, Florida 33612, USAState Key Laboratory of Cellular Stress BiologySchool of Life Sciences, Xiamen University, Xiamen, Fujian 361005, ChinaProgram in Molecular MedicineUniversity of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Mark P McLean
- Geriatric ResearchEducation and Clinical Center (GRECC-182B), VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, California 94304, USADivision of EndocrinologyDivision of Gastroenterology and HepatologyStanford University, Stanford, California 94305, USADepartment of Obstetrics and GynecologyUniversity of South Florida College of Medicine, Tampa, Florida 33612, USAState Key Laboratory of Cellular Stress BiologySchool of Life Sciences, Xiamen University, Xiamen, Fujian 361005, ChinaProgram in Molecular MedicineUniversity of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Jiahuai Han
- Geriatric ResearchEducation and Clinical Center (GRECC-182B), VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, California 94304, USADivision of EndocrinologyDivision of Gastroenterology and HepatologyStanford University, Stanford, California 94305, USADepartment of Obstetrics and GynecologyUniversity of South Florida College of Medicine, Tampa, Florida 33612, USAState Key Laboratory of Cellular Stress BiologySchool of Life Sciences, Xiamen University, Xiamen, Fujian 361005, ChinaProgram in Molecular MedicineUniversity of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Roger J Davis
- Geriatric ResearchEducation and Clinical Center (GRECC-182B), VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, California 94304, USADivision of EndocrinologyDivision of Gastroenterology and HepatologyStanford University, Stanford, California 94305, USADepartment of Obstetrics and GynecologyUniversity of South Florida College of Medicine, Tampa, Florida 33612, USAState Key Laboratory of Cellular Stress BiologySchool of Life Sciences, Xiamen University, Xiamen, Fujian 361005, ChinaProgram in Molecular MedicineUniversity of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Fredric B Kraemer
- Geriatric ResearchEducation and Clinical Center (GRECC-182B), VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, California 94304, USADivision of EndocrinologyDivision of Gastroenterology and HepatologyStanford University, Stanford, California 94305, USADepartment of Obstetrics and GynecologyUniversity of South Florida College of Medicine, Tampa, Florida 33612, USAState Key Laboratory of Cellular Stress BiologySchool of Life Sciences, Xiamen University, Xiamen, Fujian 361005, ChinaProgram in Molecular MedicineUniversity of Massachusetts Medical School, Worcester, Massachusetts 01605, USAGeriatric ResearchEducation and Clinical Center (GRECC-182B), VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, California 94304, USADivision of EndocrinologyDivision of Gastroenterology and HepatologyStanford University, Stanford, California 94305, USADepartment of Obstetrics and GynecologyUniversity of South Florida College of Medicine, Tampa, Florida 33612, USAState Key Laboratory of Cellular Stress BiologySchool of Life Sciences, Xiamen University, Xiamen, Fujian 361005, ChinaProgram in Molecular MedicineUniversity of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Salman Azhar
- Geriatric ResearchEducation and Clinical Center (GRECC-182B), VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, California 94304, USADivision of EndocrinologyDivision of Gastroenterology and HepatologyStanford University, Stanford, California 94305, USADepartment of Obstetrics and GynecologyUniversity of South Florida College of Medicine, Tampa, Florida 33612, USAState Key Laboratory of Cellular Stress BiologySchool of Life Sciences, Xiamen University, Xiamen, Fujian 361005, ChinaProgram in Molecular MedicineUniversity of Massachusetts Medical School, Worcester, Massachusetts 01605, USAGeriatric ResearchEducation and Clinical Center (GRECC-182B), VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, California 94304, USADivision of EndocrinologyDivision of Gastroenterology and HepatologyStanford University, Stanford, California 94305, USADepartment of Obstetrics and GynecologyUniversity of South Florida College of Medicine, Tampa, Florida 33612, USAState Key Laboratory of Cellular Stress BiologySchool of Life Sciences, Xiamen University, Xiamen, Fujian 361005, ChinaProgram in Molecular MedicineUniversity of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
45
|
Parray AA, Baba RA, Bhat HF, Wani L, Mokhdomi TA, Mushtaq U, Bhat SS, Kirmani D, Kuchay S, Wani MM, Khanday FA. MKK6 is upregulated in human esophageal, stomach, and colon cancers. Cancer Invest 2014; 32:416-22. [PMID: 25019214 DOI: 10.3109/07357907.2014.933236] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Expression analysis of MKK6 protein in solid tumors has never been investigated. Here, we report systematic analysis of MKK6 protein in different types of human tumor samples using western blotting and immunofluorescence techniques. We observed significant increase in the expression of MKK6 in Esophageal, Stomach, and Colon cancers as compared to controls. Results were alternately confirmed by Immunofluorescence studies. Upregulation of MKK6 protein is indicative of its role in human cancers and could possibly be used as a novel diagnostic or prognostic marker in these cancers.
Collapse
Affiliation(s)
- Arif Ali Parray
- Department of Biotechnology, University of Kashmir , Srinagar, Jammu and Kashmir , India , 1
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
van den Berg I, Fritz S, Rodriguez S, Rocha D, Boussaha M, Lund MS, Boichard D. Concordance analysis for QTL detection in dairy cattle: a case study of leg morphology. Genet Sel Evol 2014; 46:31. [PMID: 24884971 PMCID: PMC4046048 DOI: 10.1186/1297-9686-46-31] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 04/29/2014] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The present availability of sequence data gives new opportunities to narrow down from QTL (quantitative trait locus) regions to causative mutations. Our objective was to decrease the number of candidate causative mutations in a QTL region. For this, a concordance analysis was applied for a leg conformation trait in dairy cattle. Several QTL were detected for which the QTL status (homozygous or heterozygous for the QTL) was inferred for each individual. Subsequently, the inferred QTL status was used in a concordance analysis to reduce the number of candidate mutations. METHODS Twenty QTL for rear leg set side view were mapped using Bayes C. Marker effects estimated during QTL mapping were used to infer the QTL status for each individual. Subsequently, polymorphisms present in the QTL regions were extracted from the whole-genome sequences of 71 Holstein bulls. Only polymorphisms for which the status was concordant with the QTL status were kept as candidate causative mutations. RESULTS QTL status could be inferred for 15 of the 20 QTL. The number of concordant polymorphisms differed between QTL and depended on the number of QTL statuses that could be inferred and the linkage disequilibrium in the QTL region. For some QTL, the concordance analysis was efficient and narrowed down to a limited number of candidate mutations located in one or two genes, while for other QTL a large number of genes contained concordant polymorphisms. CONCLUSIONS For regions for which the concordance analysis could be performed, we were able to reduce the number of candidate mutations. For part of the QTL, the concordant analyses narrowed QTL regions down to a limited number of genes, of which some are known for their role in limb or skeletal development in humans and mice. Mutations in these genes are good candidates for QTN (quantitative trait nucleotides) influencing rear leg set side view.
Collapse
Affiliation(s)
- Irene van den Berg
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, 78350 Jouy-en-Josas, France.
| | | | | | | | | | | | | |
Collapse
|
47
|
Ma B, Wells A. The mitogen-activated protein (MAP) kinases p38 and extracellular signal-regulated kinase (ERK) are involved in hepatocyte-mediated phenotypic switching in prostate cancer cells. J Biol Chem 2014; 289:11153-11161. [PMID: 24619413 DOI: 10.1074/jbc.m113.540237] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The greatest challenge for the seeding of cancer in metastatic sites is integration into the ectopic microenvironment despite the lack of an orthotopic supportive environment and presence of pro-death signals concomitant with a localized "foreign-body" inflammatory response. In this metastatic location, many carcinoma cells display a reversion of the epithelial-to-mesenchymal transition that marks dissemination in the primary tumor mass. This mesenchymal to epithelial reverting transition (MErT) is thought to help seeding and colonization by protecting against cell death. We have previously shown that hepatocyte coculture induces the re-expression of E-cadherin via abrogation of autocrine EGFR signaling pathway in prostate cancer (PCa) cells and that this confers a survival advantage. Herein, we show that hepatocytes educate PCa to undergo MErT by modulating the activity of p38 and ERK1/2. Hepatocytes inhibited p38 and ERK1/2 activity in prostate cancer cells, which allowed E-cadherin re-expression. Introduction of constitutively active MEK6 and MEK1 to DU145 cells cocultured with hepatocytes abrogated E-cadherin re-expression. At least a partial phenotypic reversion can be achieved by suppression of p38 and ERK1/2 activation in DU145 cells even in the absence of hepatocytes. Interestingly, these mitogen-activated protein kinase activities were also triggered by re-expressed E-cadherin leading to p38 and ERK1/2 activity in PCa cells; these signals provide protection to PCa cells upon challenge with chemotherapy and cell death-inducing cytokines. We propose that distinct p38/ERK pathways are related to E-cadherin levels and function downstream of E-cadherin allowing, respectively, for hepatocyte-mediated MErT and tumor cell survival in the face of death signals.
Collapse
Affiliation(s)
- Bo Ma
- Department of Pathology, University of Pittsburgh and Pittsburgh Veterans Affairs Medical Center, Pittsburgh Pennsylvania 15261
| | - Alan Wells
- Department of Pathology, University of Pittsburgh and Pittsburgh Veterans Affairs Medical Center, Pittsburgh Pennsylvania 15261.
| |
Collapse
|
48
|
Protective effect of rutin against ultraviolet b-induced cyclooxygenase-2 expression in mouse epidermal cells. Food Sci Biotechnol 2013. [DOI: 10.1007/s10068-013-0233-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
49
|
Ebadi A, Razzaghi-Asl N, Khoshneviszadeh M, Miri R. Comparative amino acid decomposition analysis of potent type I p38α inhibitors. ACTA ACUST UNITED AC 2013; 21:41. [PMID: 23714278 PMCID: PMC3680208 DOI: 10.1186/2008-2231-21-41] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 05/25/2013] [Indexed: 12/21/2022]
Abstract
Background and purpose of the study p38α is a member of mitogen-activated protein kinases (MAPK) considered as a prominent target in development of anti-inflammatory agents. Any abnormality in the phosphorylation process leads to the different human diseases such as cancer, diabetes and inflammatory diseases. Several small molecule p38α inhibitors have been developed up to now. In this regard, structural elucidation of p38 inhibitors needs to be done enabling us in rational lead development strategies. Methods Various interactions of three potent inhibitors with p38α active site have been evaluated in terms of binding energies and bond lengths via density function theory and MD simulations. Results Our comparative study showed that both ab initio and MD simulation led to the relatively similar results in pharmacophore discrimination of p38α inhibitors. Conclusion The results of the present study may find their usefulness in pharmacophore based modification of p38α inhibitors.
Collapse
Affiliation(s)
- Ahmad Ebadi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, PO Box 3288-71345, Shiraz, Iran.
| | | | | | | |
Collapse
|
50
|
Akinleye A, Furqan M, Mukhi N, Ravella P, Liu D. MEK and the inhibitors: from bench to bedside. J Hematol Oncol 2013; 6:27. [PMID: 23587417 PMCID: PMC3626705 DOI: 10.1186/1756-8722-6-27] [Citation(s) in RCA: 223] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 04/05/2013] [Indexed: 01/16/2023] Open
Abstract
Four distinct MAP kinase signaling pathways involving 7 MEK enzymes have been identified. MEK1 and MEK2 are the prototype members of MEK family proteins. Several MEK inhibitors are in clinical trials. Trametinib is being evaluated by FDA for the treatment of metastatic melanoma with BRAF V600 mutation. Selumetinib has been studied in combination with docetaxel in phase II randomized trial in previously treated patients with advanced lung cancer. Selumetinib group had better response rate and progression-free survival. This review also summarized new MEK inhibitors in clinical development, including pimasertib, refametinib, PD-0325901, TAK733, MEK162 (ARRY 438162), RO5126766, WX-554, RO4987655 (CH4987655), GDC-0973 (XL518), and AZD8330.
Collapse
Affiliation(s)
- Akintunde Akinleye
- Department of Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY, 10595, USA
| | - Muhammad Furqan
- Department of Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY, 10595, USA
| | - Nikhil Mukhi
- Department of Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY, 10595, USA
| | - Pavan Ravella
- Department of Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY, 10595, USA
| | - Delong Liu
- Department of Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY, 10595, USA
- Division of Hematology and Oncology, New York Medical College and Westchester Medical Center, Valhalla, NY, USA
| |
Collapse
|