1
|
Roig SR, Cassinelli S, Navarro-Pérez M, Pérez-Verdaguer M, Estadella I, Capera J, Felipe A. S-acylation-dependent membrane microdomain localization of the regulatory Kvβ2.1 subunit. Cell Mol Life Sci 2022; 79:230. [PMID: 35396942 PMCID: PMC8994742 DOI: 10.1007/s00018-022-04269-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/19/2022] [Accepted: 03/19/2022] [Indexed: 12/13/2022]
Abstract
The voltage-dependent potassium (Kv) channel Kvβ family was the first identified group of modulators of Kv channels. Kvβ regulation of the α-subunits, in addition to their aldoketoreductase activity, has been under extensive study. However, scarce information about their specific α-subunit-independent biology is available. The expression of Kvβs is ubiquitous and, similar to Kv channels, is tightly regulated in leukocytes. Although Kvβ subunits exhibit cytosolic distribution, spatial localization, in close contact with plasma membrane Kv channels, is crucial for a proper immune response. Therefore, Kvβ2.1 is located near cell surface Kv1.3 channels within the immunological synapse during lymphocyte activation. The objective of this study was to analyze the structural elements that participate in the cellular distribution of Kvβs. It was demonstrated that Kvβ peptides, in addition to the cytoplasmic pattern, targeted the cell surface in the absence of Kv channels. Furthermore, Kvβ2.1, but not Kvβ1.1, targeted lipid raft microdomains in an S-acylation-dependent manner, which was concomitant with peptide localization within the immunological synapse. A pair of C-terminal cysteines (C301/C311) was mostly responsible for the specific palmitoylation of Kvβ2.1. Several insults altered Kvβ2.1 membrane localization. Therefore, growth factor-dependent proliferation enhanced surface targeting, whereas PKC activation impaired lipid raft expression. However, PSD95 stabilized Kvβ2.1 in these domains. This data shed light on the molecular mechanism by which Kvβ2.1 clusters into immunological synapses during leukocyte activation.
Collapse
Affiliation(s)
- Sara R Roig
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain.,Imaging Core Facility, Biozentrum University of Basel, 4056, Basel, Switzerland
| | - Silvia Cassinelli
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain
| | - María Navarro-Pérez
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain
| | - Mireia Pérez-Verdaguer
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain.,Department of Cell Biology, School of Medicine, University of Pittsburgh, 3500 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Irene Estadella
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain
| | - Jesusa Capera
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain.,Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, UK
| | - Antonio Felipe
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain.
| |
Collapse
|
2
|
Barros F, Domínguez P, de la Peña P. Cytoplasmic domains and voltage-dependent potassium channel gating. Front Pharmacol 2012; 3:49. [PMID: 22470342 PMCID: PMC3311039 DOI: 10.3389/fphar.2012.00049] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 03/05/2012] [Indexed: 12/20/2022] Open
Abstract
The basic architecture of the voltage-dependent K+ channels (Kv channels) corresponds to a transmembrane protein core in which the permeation pore, the voltage-sensing components and the gating machinery (cytoplasmic facing gate and sensor–gate coupler) reside. Usually, large protein tails are attached to this core, hanging toward the inside of the cell. These cytoplasmic regions are essential for normal channel function and, due to their accessibility to the cytoplasmic environment, constitute obvious targets for cell-physiological control of channel behavior. Here we review the present knowledge about the molecular organization of these intracellular channel regions and their role in both setting and controlling Kv voltage-dependent gating properties. This includes the influence that they exert on Kv rapid/N-type inactivation and on activation/deactivation gating of Shaker-like and eag-type Kv channels. Some illustrative examples about the relevance of these cytoplasmic domains determining the possibilities for modulation of Kv channel gating by cellular components are also considered.
Collapse
Affiliation(s)
- Francisco Barros
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo Oviedo, Asturias, Spain
| | | | | |
Collapse
|
3
|
Nerbonne JM. Molecular Analysis of Voltage‐Gated K
+
Channel Diversity and Functioning in the Mammalian Heart. Compr Physiol 2011. [DOI: 10.1002/cphy.cp020115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
4
|
PKC-induced intracellular trafficking of Ca(V)2 precedes its rapid recruitment to the plasma membrane. J Neurosci 2008; 28:2601-12. [PMID: 18322103 DOI: 10.1523/jneurosci.4314-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activation of protein kinase C (PKC) potentiates secretion in Aplysia peptidergic neurons, in part by inducing new sites for peptide release at growth cone terminals. The mechanisms by which ion channels are trafficked to such sites are, however, not well understood. We now show that PKC activation rapidly recruits new Ca(V)2 subunits to the plasma membrane, and that recruitment is blocked by latrunculin B, an inhibitor of actin polymerization. In contrast, inhibition of microtubule polymerization selectively prevents the appearance of Ca(V)2 subunits only at the distal edge of the growth cone. In resting neurons, Ca(V)2-containing organelles reside in the central region of growth cones, but are absent from distal lamellipodia. After activation of PKC, these organelles are transported on microtubules to the lamellipodium. The ability to traffic to the most distal sites of channel insertion inside the lamellipodium does, therefore, not require intact actin but requires intact microtubules. Only after activation of PKC do Ca(V)2 channels associate with actin and undergo insertion into the plasma membrane.
Collapse
|
5
|
Cantiello HF, Montalbetti N, Li Q, Chen XZ. The Cytoskeletal Connection to Ion Channels as a Potential Mechanosensory Mechanism: Lessons from Polycystin-2 (TRPP2). CURRENT TOPICS IN MEMBRANES 2007; 59:233-96. [PMID: 25168140 DOI: 10.1016/s1063-5823(06)59010-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Mechanosensitivity of ion channels, or the ability to transfer mechanical forces into a gating mechanism of channel regulation, is split into two main working (not mutually exclusive) hypotheses. One is that elastic and/or structural changes in membrane properties act as a transducing mechanism of channel regulation. The other hypothesis involves tertiary elements, such as the cytoskeleton which, itself by dynamic interactions with the ion channel, may convey conformational changes, including those ascribed to mechanical forces. This hypothesis is supported by numerous instances of regulatory changes in channel behavior by alterations in cytoskeletal structures/interactions. However, only recently, the molecular nature of these interactions has slowly emerged. Recently, a surge of evidence has emerged to indicate that transient receptor potential (TRP) channels are key elements in the transduction of a variety of environmental signals. This chapter describes the molecular linkage and regulatory elements of polycystin-2 (PC2), a TRP-type (TRPP2) nonselective cation channel whose mutations cause autosomal dominant polycystic kidney disease (ADPKD). The chapter focuses on the involvement of cytoskeletal structures in the regulation of PC2 and discusses how these connections are the transducing mechanism of environmental signals to its channel function.
Collapse
Affiliation(s)
- Horacio F Cantiello
- Renal Unit, Massachusetts General Hospital East, Charlestown, Massachusetts 02129; Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115; Laboratorio de Canales Iónicos, Departamento de Fisicoquímica y Química Analítica, Facultad de Farmacia y Bioquímica, Buenos Aires 1113, Argentina
| | - Nicolás Montalbetti
- Laboratorio de Canales Iónicos, Departamento de Fisicoquímica y Química Analítica, Facultad de Farmacia y Bioquímica, Buenos Aires 1113, Argentina
| | - Qiang Li
- Department of Physiology, University of Alberta, Edmonton T6G 2H7, Canada
| | - Xing-Zhen Chen
- Department of Physiology, University of Alberta, Edmonton T6G 2H7, Canada
| |
Collapse
|
6
|
Imbrici P, D'Adamo MC, Kullmann DM, Pessia M. Episodic ataxia type 1 mutations in the KCNA1 gene impair the fast inactivation properties of the human potassium channels Kv1.4-1.1/Kvbeta1.1 and Kv1.4-1.1/Kvbeta1.2. Eur J Neurosci 2007; 24:3073-83. [PMID: 17156368 DOI: 10.1111/j.1460-9568.2006.05186.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Episodic ataxia type 1 (EA1) is an autosomal dominant neurological disorder characterized by constant muscle rippling movements (myokymia) and episodic attacks of ataxia. Several heterozygous point mutations have been found in the coding sequence of the voltage-gated potassium channel gene KCNA1 (hKv1.1), which alter the delayed-rectifier function of the channel. Shaker-like channels of different cell types may be formed by unique hetero-oligomeric complexes comprising Kv1.1, Kv1.4 and Kvbeta1.x subunits. Here we show that the human Kvbeta1.1 and Kvbeta1.2 subunits modulated the functional properties of tandemly linked Kv1.4-1.1 wild-type channels expressed in Xenopus laevis oocytes by (i) increasing the rate and amount of N-type inactivation, (ii) slowing the recovery rate from inactivation, (iii) accelerating the cumulative inactivation of the channel and (iv) negatively shifting the voltage dependence of inactivation. To date, the role of the human Kv1.4-1.1, Kv1.4-1.1/Kvbeta1.1 and Kv1.4-1.1/Kvbeta1.2 channels in the aetiopathogenesis of EA1 has not been investigated. Here we also show that the EA1 mutations E325D, V404I and V408A, which line the ion-conducting pore, and I177N, which resides within the S1 segment, alter the fast inactivation and repriming properties of the channels by decreasing both the rate and degree of N-type inactivation and by accelerating the recovery from fast inactivation. Furthermore, the E325D, V404I and I177N mutations shifted the voltage dependence of the steady-state inactivation to more positive potentials. The results demonstrate that the human Kvbeta1.1 and Kvbeta1.2 subunits regulate the proportion of wild-type Kv1.4-1.1 channels that are available to open. Furthermore, EA1 mutations alter heteromeric channel availability which probably modifies the integration properties and firing patterns of neurones controlling cognitive processes and body movements.
Collapse
Affiliation(s)
- Paola Imbrici
- University of Perugia School of Medicine, Department of Internal Medicine, Section of Human Physiology, Via del Giochetto, I-06126 Perugia, Italy
| | | | | | | |
Collapse
|
7
|
Gasque G, Labarca P, Darszon A. Cholesterol-depleting compounds modulate K+-currents in Drosophila Kenyon cells. FEBS Lett 2005; 579:5129-34. [PMID: 16154131 DOI: 10.1016/j.febslet.2005.08.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 08/10/2005] [Accepted: 08/11/2005] [Indexed: 11/16/2022]
Abstract
Sterol-enriched lipid rafts have been involved in Drosophila membrane signalling such as Hedgehog targeting and glutamate receptor ligand-affinity regulation. Here, we show that the voltage-dependent K(+) currents expressed by the intrinsic neurons of the Mushroom bodies are upward-modulated by compounds that remove sterols from the plasma membrane. Modulation seems to rely on a fast-exchanging sterol-pool, which more strongly affects the slowly inactivating current. Our results provide the first evidence that sterols influence the operation of voltage-gated ion channels in Drosophila neurons and strengthen the importance of lipid rafts in this biological model.
Collapse
Affiliation(s)
- Gabriel Gasque
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, México
| | | | | |
Collapse
|
8
|
Abstract
The heart is a rhythmic electromechanical pump, the functioning of which depends on action potential generation and propagation, followed by relaxation and a period of refractoriness until the next impulse is generated. Myocardial action potentials reflect the sequential activation and inactivation of inward (Na(+) and Ca(2+)) and outward (K(+)) current carrying ion channels. In different regions of the heart, action potential waveforms are distinct, owing to differences in Na(+), Ca(2+), and K(+) channel expression, and these differences contribute to the normal, unidirectional propagation of activity and to the generation of normal cardiac rhythms. Changes in channel functioning, resulting from inherited or acquired disease, affect action potential repolarization and can lead to the generation of life-threatening arrhythmias. There is, therefore, considerable interest in understanding the mechanisms that control cardiac repolarization and rhythm generation. Electrophysiological studies have detailed the properties of the Na(+), Ca(2+), and K(+) currents that generate cardiac action potentials, and molecular cloning has revealed a large number of pore forming (alpha) and accessory (beta, delta, and gamma) subunits thought to contribute to the formation of these channels. Considerable progress has been made in defining the functional roles of the various channels and in identifying the alpha-subunits encoding these channels. Much less is known, however, about the functioning of channel accessory subunits and/or posttranslational processing of the channel proteins. It has also become clear that cardiac ion channels function as components of macromolecular complexes, comprising the alpha-subunits, one or more accessory subunit, and a variety of other regulatory proteins. In addition, these macromolecular channel protein complexes appear to interact with the actin cytoskeleton and/or the extracellular matrix, suggesting important functional links between channel complexes, as well as between cardiac structure and electrical functioning. Important areas of future research will be the identification of (all of) the molecular components of functional cardiac ion channels and delineation of the molecular mechanisms involved in regulating the expression and the functioning of these channels in the normal and the diseased myocardium.
Collapse
Affiliation(s)
- Jeanne M Nerbonne
- Dept. of Molecular Biology and Pharmacology, Washington University Medical School, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | | |
Collapse
|
9
|
Karas K, Brauer P, Petzel D. Actin redistribution in mosquito malpighian tubules after a blood meal and cyclic AMP stimulation. JOURNAL OF INSECT PHYSIOLOGY 2005; 51:1041-54. [PMID: 15993891 DOI: 10.1016/j.jinsphys.2005.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Revised: 05/05/2005] [Accepted: 05/05/2005] [Indexed: 05/03/2023]
Abstract
Fluid secretion by mosquito Malpighian tubules is critical to maintaining fluid and electrolyte balance after a blood meal. Endogenous cAMP levels increase in Malpighian tubules after a blood meal. Here, we determined if corresponding changes in intracellular actin distribution occur after a blood meal or dibutyryl-cAMP (db-cAMP) stimulation and whether altering actin turnover inhibits secretion. In untreated Malpighian tubules, beta-actin immunostaining was more intense in the apical region of adult Malpighian tubules than in the cytoplasm. Stimulation by a blood meal or db-cAMP significantly decreased beta-actin immunostaining in the non-apical region of the cell. Db-cAMP had similar effects in larvae and pupae Malpighian tubules. In contrast, no detectable shift in F-actin distribution was detected; however, F-actin bundles within the cytoplasm increased in size after treatment with db-cAMP. Pretreatment of Malpighian tubules with agents perturbing actin fiber assembly and disassembly decreased basal secretion rates and inhibited the stimulatory effects of db-cAMP. Our results show (1) beta-actin redistributes toward the apical membrane after a blood meal and this correlates temporally with increase urine flow rate and intracellular cAMP levels, (2) Malpighian tubules from all developmental stages exhibit this same response to db-cAMP-stimulation, and (3) dynamic assembly and disassembly of beta-actin is required for db-cAMP-stimulated secretion.
Collapse
Affiliation(s)
- Katherine Karas
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE 68178, USA
| | | | | |
Collapse
|
10
|
Abstract
Voltage-gated potassium channels are important determinants of membrane excitability. This family of ion channels is composed of several classes of proteins, including the pore-forming Kvalpha subunits and the recently identified auxiliary Kvbeta subunits. A combination of a large number of genes that encode various alpha subunits and beta subunits and the selective formation of alpha-alpha and alpha-beta heteromultimeric channels provides rich molecular diversity that allows for regulated functional heterogeneity in both excitable tissues and nonexcitable tissues. Because the Kvbeta subunits can either upregulate or downregulate potassium currents, depending on the specific subunit combination, it is essential to understand their function at the molecular level. Furthermore, targeted changes of the Kvbeta expression or disruption of certain alpha-beta interactions could serve as a molecular basis for designing drugs and therapy to regulate excitability clinically.
Collapse
Affiliation(s)
- J Xu
- Department of Physiology, School of Medicine, The Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
11
|
Chérel I. Regulation of K+ channel activities in plants: from physiological to molecular aspects. JOURNAL OF EXPERIMENTAL BOTANY 2004; 55:337-51. [PMID: 14739260 DOI: 10.1093/jxb/erh028] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Plant voltage-gated channels belonging to the Shaker family participate in sustained K+ transport processes at the cell and whole plant levels, such as K+ uptake from the soil solution, long-distance K+ transport in the xylem and phloem, and K+ fluxes in guard cells during stomatal movements. The attention here is focused on the regulation of these transport systems by protein-protein interactions. Clues to the identity of the regulatory mechanisms have been provided by electrophysiological approaches in planta or in heterologous systems, and through analogies with their animal counterparts. It has been shown that, like their animal homologues, plant voltage-gated channels can assemble as homo- or heterotetramers associating polypeptides encoded by different Shaker genes, and that they can bind auxiliary subunits homologous to those identified in mammals. Furthermore, several regulatory processes (involving, for example, protein kinases and phosphatases, G proteins, 14-3-3s, or syntaxins) might be common to plant and animal Shakers. However, the molecular identification of plant channel partners is still at its beginning. This paper reviews current knowledge on plant K+ channel regulation at the physiological and molecular levels, in the light of the corresponding knowledge in animal cells, and discusses perspectives for the deciphering of regulatory networks in the future.
Collapse
Affiliation(s)
- Isabelle Chérel
- Biochimie et Physiologie Moléculaire des Plantes, UMR 5004, Agro-M/INRA/CNRS/UM2, Montpellier, France.
| |
Collapse
|
12
|
Sokolova O, Accardi A, Gutierrez D, Lau A, Rigney M, Grigorieff N. Conformational changes in the C terminus of Shaker K+ channel bound to the rat Kvbeta2-subunit. Proc Natl Acad Sci U S A 2003; 100:12607-12. [PMID: 14569011 PMCID: PMC240665 DOI: 10.1073/pnas.2235650100] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2003] [Indexed: 11/18/2022] Open
Abstract
We studied the structure of the C terminus of the Shaker potassium channel. The 3D structures of the full-length and a C-terminal deletion (Delta C) mutant of Shaker were determined by electron microscopy and single-particle analysis. The difference map between the full-length and the truncated channels clearly shows a compact density, located on the sides of the T1 domain, that corresponds to a large part of the C terminus. We also expressed and purified both WT and Delta C Shaker, assembled with the rat KvBeta2-subunit. By using a difference map between the full-length and truncated Shaker alpha-beta complexes, a conformational change was identified that shifts a large part of the C terminus away from the membrane domain and into close contact with the Beta-subunit. This conformational change, induced by the binding of the KvBeta2-subunit, suggests a possible mechanism for the modulation of the K+ voltage-gated channel function by its Beta-subunit.
Collapse
Affiliation(s)
| | | | | | | | | | - Nikolaus Grigorieff
- Howard Hughes Medical Institute and Department of Biochemistry, Brandeis University, 415 South Street, Waltham, MA 02454-9110
| |
Collapse
|
13
|
Wang Z, Eldstrom JR, Jantzi J, Moore ED, Fedida D. Increased focal Kv4.2 channel expression at the plasma membrane is the result of actin depolymerization. Am J Physiol Heart Circ Physiol 2003; 286:H749-59. [PMID: 14551056 DOI: 10.1152/ajpheart.00398.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Voltage-dependent potassium channel trafficking and localization are regulated by proteins of the cytoskeleton, but the mechanisms by which these occur are still unclear. Using human embryonic kidney (HEK) cells as a heterologous expression system, we tested the role of the actin cytoskeleton in modulating the function of Kv4.2 channels. Pretreatment (>or=1 h) of HEK cells with 5 microM cytochalasin D to disrupt the actin microfilaments greatly augmented whole cell Kv4.2 currents at potentials positive to -20 mV. However, no changes in the voltage dependence of activation and inactivation of macroscopic currents were observed to account for this increase. Similarly, single channel recordings failed to reveal any significant changes in the single channel conductance, open probability, and kinetics. However, the mean patch current was increased from 0.9 +/- 0.2 pA in control to 6.7 +/- 3.0 pA in the presence of cytochalasin D. Imaging experiments revealed a clear increase in the surface expression of the channels and the appearance of "bright spot" features, suggesting that large numbers of channels were being grouped at specific sites. Our data provide clear evidence that increased numbers and altered distribution of Kv4.2 channels at the cell surface are primarily the result of reorganization of the actin cytoskeleton.
Collapse
Affiliation(s)
- Zhuren Wang
- Department of Physiology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | | | | | | | | |
Collapse
|
14
|
Fraser SP, Salvador V, Manning EA, Mizal J, Altun S, Raza M, Berridge RJ, Djamgoz MBA. Contribution of functional voltage-gated Na+ channel expression to cell behaviors involved in the metastatic cascade in rat prostate cancer: I. Lateral motility. J Cell Physiol 2003; 195:479-87. [PMID: 12704658 DOI: 10.1002/jcp.10312] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Previous work suggested that functional voltage-gated Na(+) channels (VGSCs) are expressed specifically in strongly metastatic cells of rat and human prostate cancer (PCa), thereby raising the possibility that VGSC activity could be involved in cellular behavior(s) related to the metastatic cascade. In the present study, the possible role of VGSCs in the lateral motility of rat PCa cells was investigated in vitro by testing the effect of modulators that either block or enhance VGSC activity. Two rat PCa cell lines of markedly different metastatic ability were used in a comparative approach: the strongly metastatic MAT-LyLu and the weakly metastatic AT-2 cell line, only the former being known to express functional VGSCs. Using both electrophysiological recording and a motility assay, the effects of two VGSC blockers (tetrodotoxin and phenytoin) and four potential openers (veratridine, aconitine, ATX II, and brevetoxin) were monitored on (a) Na(+) channel activity and (b) cell motility over 48 h. Tetrodotoxin (at 1 microM) and phenytoin (at 50 microM) both decreased the motility index of the MAT-LyLu cell line by 47 and 11%, respectively. Veratridine (at 20 microM) and brevetoxin (at 10 nM) had no effect on the motility of either cell line, whilst aconitine (at 100 microM) and ATX II (at 25 pM) significantly increased the motility of the MAT-LyLu cell line by 15 and 9%, respectively. Importantly, at the concentrations used, none of these drugs had effects on the proliferation or viability of either cell line. The results, taken together, would suggest strongly that functional VGSC expression enhances cellular motility of PCa cells. The relevance of these findings to the metastatic process in PCa is discussed.
Collapse
Affiliation(s)
- S P Fraser
- Imperial College of Science, Technology, and Medicine, Department of Biological Sciences, Sir Alexander Fleming Building, Imperial College Road, London, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Fergus DJ, Martens JR, England SK. Kv channel subunits that contribute to voltage-gated K+ current in renal vascular smooth muscle. Pflugers Arch 2003; 445:697-704. [PMID: 12632190 DOI: 10.1007/s00424-002-0994-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2002] [Accepted: 11/07/2002] [Indexed: 11/29/2022]
Abstract
The rat renal arterial vasculature displays differences in K(+) channel current phenotypes along its length. Small arcuate to cortical radial arteries express a delayed rectifier phenotype, while the predominant Kv current in larger arcuate and interlobar arteries is composed of both transient and sustained components. We sought to determine whether Kvalpha subunits in the rat renal interlobar and arcuate arteries form heterotetramers, which may account for the unique currents, and whether modulatory Kvbeta subunits are present in renal vascular smooth muscle cells. RT-PCR indicated the presence of several different Kvalpha subunit isoform transcripts. Co-immunoprecipitation with immunoblotting and immunohistochemical evidence suggests that a portion of the K(+) current phenotype is a heteromultimer containing delayed-rectifier Kv1.2 and A-type Kv1.4 channel subunits. RT-PCR and immunoblot analyses also demonstrated the presence of both Kvbeta1.2 and Kvbeta1.3 in renal arteries. These results suggest that heteromultimeric formation of Kvalpha subunits and the presence of modulatory Kvbeta subunits are important factors in mediating Kv currents in the renal microvasculature and suggest a potentially critical role for these channel subunits in blood pressure regulation.
Collapse
Affiliation(s)
- Daniel J Fergus
- Department of Physiology and Biophysics, 5-660 Bowen Science Building, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
16
|
Gartzke J, Lange K. Cellular target of weak magnetic fields: ionic conduction along actin filaments of microvilli. Am J Physiol Cell Physiol 2002; 283:C1333-46. [PMID: 12372794 DOI: 10.1152/ajpcell.00167.2002] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The interaction of weak electromagnetic fields (EMF) with living cells is a most important but still unresolved biophysical problem. For this interaction, thermal and other types of noise appear to cause severe restrictions in the action of weak signals on relevant components of the cell. A recently presented general concept of regulation of ion and substrate pathways through microvilli provides a possible theoretical basis for the comprehension of physiological effects of even extremely low magnetic fields. The actin-based core of microfilaments in microvilli is proposed to represent a cellular interaction site for magnetic fields. Both the central role of F-actin in Ca2+ signaling and its polyelectrolyte nature eliciting specific ion conduction properties render the microvillar actin filament bundle an ideal interaction site for magnetic and electric fields. Ion channels at the tip of microvilli are connected with the cytoplasm by a bundle of microfilaments forming a diffusion barrier system. Because of its polyelectrolyte nature, the microfilament core of microvilli allows Ca2+ entry into the cytoplasm via nonlinear cable-like cation conduction through arrays of condensed ion clouds. The interaction of ion clouds with periodically applied EMFs and field-induced cation pumping through the cascade of potential barriers on the F-actin polyelectrolyte follows well-known physical principles of ion-magnetic field (MF) interaction and signal discrimination as described by the stochastic resonance and Brownian motor hypotheses. The proposed interaction mechanism is in accord with our present knowledge about Ca2+ signaling as the biological main target of MFs and the postulated extreme sensitivity for coherent excitation by very low field energies within specific amplitude and frequency windows. Microvillar F-actin bundles shielded by a lipid membrane appear to function like electronic integration devices for signal-to-noise enhancement; the influence of coherent signals on cation transduction is amplified, whereas that of random noise is reduced.
Collapse
Affiliation(s)
- Joachim Gartzke
- Bundesanstalt für Arbeitsschutz und Arbeitsmedizin, D-10317 Berlin, Germany.
| | | |
Collapse
|
17
|
Hattan D, Nesti E, Cachero TG, Morielli AD. Tyrosine phosphorylation of Kv1.2 modulates its interaction with the actin-binding protein cortactin. J Biol Chem 2002; 277:38596-606. [PMID: 12151401 DOI: 10.1074/jbc.m205005200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tyrosine phosphorylation evokes functional changes in a variety of ion channels. Modulation of the actin cytoskeleton also affects the function of some channels. Little is known about how these avenues of ion channel regulation may interact. We report that the potassium channel Kv1.2 associates with the actin-binding protein cortactin and that the binding is modulated by tyrosine phosphorylation. Immunocytochemical and biochemical analyses show that Kv1.2 and cortactin co-localize to the cortical actin cytoskeleton at the leading edges of the cell. Binding assays using purified recombinant proteins reveal a 19-amino acid span within the carboxyl terminus of Kv1.2 that is necessary for direct cortactin binding. Phosphorylation of specific tyrosines within the C terminus of Kv1.2 attenuates that binding. In HEK293 cells, activation of the M1 muscarinic acetylcholine receptor evokes tyrosine phosphorylation-dependent suppression of Kv1.2 ionic current. We show that M1 receptor activation also reduces the interaction of cortactin with Kv1.2 and that mutant Kv1.2 channels deficient for cortactin binding exhibit strongly attenuated ionic current. These results demonstrate a dynamic, phosphorylation-dependent interaction between Kv1.2 and the actin cytoskeleton-binding protein cortactin and suggest a role for that interaction in the regulation of Kv1.2 ionic current.
Collapse
Affiliation(s)
- David Hattan
- Department of Pharmacology, University of Vermont College of Medicine, Burlington, Vermont 04505, USA
| | | | | | | |
Collapse
|
18
|
Abstract
1. The aim of the present article is to review the intracellular signal transduction pathways that are influenced by the peptide angiotensin (Ang) II, acting via its type 1 (AT1) receptor, in neurons. 2. The AT1 receptors couple to a wide variety of signalling pathways in peripheral tissues, such as kidney, heart and vascular smooth muscle. A similar diversity of signalling mechanisms exists for AT1 receptors in neurons. 3. We outline the known neuronal AT1 receptor signalling pathways as they relate to function. Pathways that couple activation of AT1 receptors to short-term changes in neuronal membrane ionic currents and firing rate will be reviewed. These are different from the pathways that elicit longer-term changes in enzyme activity and gene expression and, ultimately, increases in noradrenaline synthesis. 4. Novel AT1 receptor signalling pathways discovered through gene expression profiling and their potential functional significance have been discussed.
Collapse
Affiliation(s)
- Colin Sumners
- Department of Physiology, College of Medicine and McKnight Brain Institute, University of Florida, Gainesville, Florida 32610, USA.
| | | | | |
Collapse
|
19
|
Mason HS, Latten MJ, Godoy LD, Horowitz B, Kenyon JL. Modulation of Kv1.5 currents by protein kinase A, tyrosine kinase, and protein tyrosine phosphatase requires an intact cytoskeleton. Mol Pharmacol 2002; 61:285-93. [PMID: 11809852 DOI: 10.1124/mol.61.2.285] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The regulation of cardiac delayed rectifier potassium (Kv) currents by cAMP-dependent protein kinase (PKA) contributes to the control of blood pressure and heart rate. We investigated the modulation by PKA and protein phosphatases of cloned Kv1.5 channels expressed in Xenopus laevis oocytes. Exposure of oocytes to activators of PKA (100 nM forskolin, 1 mM 8-bromo-cAMP, or 1 mM 3-isobutyl-1-methylxanthine) had no effect on the amplitude of Kv1.5 currents. Inhibition of PKA by injection of protein kinase A inhibitor peptide or exposure to myristoylated protein kinase A inhibitor peptide (M-PKI; 100 nM) reduced currents mediated by Kv1.5. M-PKI also reduced the amplitude of currents mediated by mutated Kv1.5 channels in which the COOH terminal PKA phosphorylation sites and PSD-95, Disc-large, and ZO-1-binding domain were removed. The reduction of Kv1.5 currents by M-PKI was attenuated by inhibition of actin polymerization by 1 microM cytochalasins B and D, but was not affected by 10 microM phalloidin (stabilizes actin filaments) or 50 microM colchicine (disrupts microtubules). Treatment of oocytes with antisense oligonucleotides against alpha-actinin-2 abolished the reduction in Kv1.5 current by M-PKI. These observations suggest that Kv1.5 currents are activated by endogenous PKA in "resting" oocytes and that inhibition of PKA activity reveals the action of endogenous phosphatases. Indeed, injection of alkaline phosphatase reduced currents mediated by Kv1.5. Further preincubation of oocytes with 1 mM sodium orthovanadate (a protein tyrosine phosphatase inhibitor) abolished the reduction in Kv1.5 currents by M-PKI. We conclude that currents encoded by Kv1.5 are regulated by PKA and protein tyrosine phosphatase and that this regulation requires an intact actin cytoskeleton and alpha-actinin-2.
Collapse
Affiliation(s)
- H S Mason
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557-0046, USA
| | | | | | | | | |
Collapse
|
20
|
Lange K. Role of microvillar cell surfaces in the regulation of glucose uptake and organization of energy metabolism. Am J Physiol Cell Physiol 2002; 282:C1-26. [PMID: 11742794 DOI: 10.1152/ajpcell.2002.282.1.c1] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Experimental evidence suggesting a type of glucose uptake regulation prevailing in resting and differentiated cells was surveyed. This type of regulation is characterized by transport-limited glucose metabolism and depends on segregation of glucose transporters on microvilli of differentiated or resting cells. Earlier studies on glucose transport regulation and a recently presented general concept of influx regulation for ions and metabolic substrates via microvillar structures provide the basic framework for this theory. According to this concept, glucose uptake via transporters on microvilli is regulated by changes in the structural organization of the microfilament bundle, which is acting as a diffusion barrier between the microvillar tip compartment and the cytoplasm. Both microvilli formation and the switch of glucose metabolism from "metabolic regulation" to "transport limitation" occur during differentiation. The formation of microvillar cell surfaces creates the essential preconditions to establish the characteristic functions of specialized tissue cells including the coordination between glycolysis and oxidative phosphorylation, regulation of cellular functions by external signals, and Ca(2+) signaling. The proposed concept integrates various aspects of glucose uptake regulation into a ubiquitous cellular mechanism involved in regulation of transmembrane ion and substrate fluxes.
Collapse
|
21
|
Rea R, Spauschus A, Eunson LH, Hanna MG, Kullmann DM. Variable K(+) channel subunit dysfunction in inherited mutations of KCNA1. J Physiol 2002; 538:5-23. [PMID: 11773313 PMCID: PMC2290030 DOI: 10.1113/jphysiol.2001.013242] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Mutations of KCNA1, which codes for the K(+) channel subunit hKv1.1, are associated with the human autosomal dominant disease episodic ataxia type 1 (EA1). Five recently described mutations are associated with a broad range of phenotypes: neuromyotonia alone or with seizures, EA1 with seizures, or very drug-resistant EA1. Here we investigated the consequences of each mutation for channel assembly, trafficking, gating and permeation. We related data obtained from co-expression of mutant and wild-type hKv1.1 to the results of expressing mutant-wild-type fusion proteins, and combined electrophysiological recordings in Xenopus oocytes with a pharmacological discrimination of the contribution of mutant and wild-type subunits to channels expressed at the membrane. We also applied confocal laser scanning microscopy to measure the level of expression of either wild-type or mutant subunits tagged with green fluorescent protein (GFP). R417stop truncates most of the C-terminus and is associated with severe drug-resistant EA1. Electrophysiological and pharmacological measurements indicated that the mutation impairs both tetramerisation of R417stop with wild-type subunits, and membrane targeting of heterotetramers. This conclusion was supported by confocal laser scanning imaging of enhanced GFP (EGFP)-tagged hKv1.1 subunits. Co-expression of R417stop with wild-type hKv1.2 subunits yielded similar results to co-expression with wild-type hKv1.1. Mutations associated with typical EA1 (V404I) or with neuromyotonia alone (P244H) significantly affected neither tetramerisation nor trafficking, and only altered channel kinetics. Two other mutations associated with a severe phenotype (T226R, A242P) yielded an intermediate result. The phenotypic variability of KCNA1 mutations is reflected in a wide range of disorders of channel assembly, trafficking and kinetics.
Collapse
Affiliation(s)
- Ruth Rea
- University Department of Clinical Neurology, Institute of Neurology, UCL, Queen Square, London WC1N 3BG, UK
| | | | | | | | | |
Collapse
|
22
|
Manganas LN, Akhtar S, Antonucci DE, Campomanes CR, Dolly JO, Trimmer JS. Episodic ataxia type-1 mutations in the Kv1.1 potassium channel display distinct folding and intracellular trafficking properties. J Biol Chem 2001; 276:49427-34. [PMID: 11679591 DOI: 10.1074/jbc.m109325200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Episodic ataxia type 1 (EA-1) is a neurological disorder arising from mutations in the Kv1.1 potassium channel alpha-subunit. EA-1 patients exhibit substantial phenotypic variability resulting from at least 14 distinct EA-1 point mutations. We found that EA-1 missense mutations generate mutant Kv1.1 subunits with folding and intracellular trafficking properties indistinguishable from wild-type Kv1.1. However, the single identified EA-1 nonsense mutation exhibits intracellular aggregation and detergent insolubility. This phenotype can be transferred to co-assembled Kv1 alpha- and Kv beta-subunits associated with Kv1.1 in neurons. These results suggest that as in many neurodegenerative disorders, intracellular aggregation of misfolded Kv1.1-containing channels may contribute to the pathophysiology of EA-1.
Collapse
Affiliation(s)
- L N Manganas
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York 11794, USA
| | | | | | | | | | | |
Collapse
|
23
|
Davis MJ, Wu X, Nurkiewicz TR, Kawasaki J, Gui P, Hill MA, Wilson E. Regulation of ion channels by protein tyrosine phosphorylation. Am J Physiol Heart Circ Physiol 2001; 281:H1835-62. [PMID: 11668044 DOI: 10.1152/ajpheart.2001.281.5.h1835] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ion channels are regulated by protein phosphorylation and dephosphorylation of serine, threonine, and tyrosine residues. Evidence for the latter process, tyrosine phosphorylation, has increased substantially since this topic was last reviewed. In this review, we present a comprehensive summary and synthesis of the literature regarding the mechanism and function of ion channel regulation by protein tyrosine kinases and phosphatases. Coverage includes the majority of voltage-gated, ligand-gated, and second messenger-gated channels as well as several types of channels that have not yet been cloned, including store-operated Ca2+ channels, nonselective cation channels, and epithelial Na+ and Cl- channels. Additionally, we discuss the critical roles that channel-associated scaffolding proteins may play in localizing protein tyrosine kinases and phosphatases to the vicinity of ion channels.
Collapse
Affiliation(s)
- M J Davis
- Department of Medical Physiology, Cardiovascular Research Institute, Texas A&M University System Health Science Center, College Station, Texas 77845, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Giese KP, Peters M, Vernon J. Modulation of excitability as a learning and memory mechanism: a molecular genetic perspective. Physiol Behav 2001; 73:803-10. [PMID: 11566213 DOI: 10.1016/s0031-9384(01)00517-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Gene targeting has contributed substantially to the investigation of the neurobiological basis of mammalian learning and memory (L&M). These experiments start with an hypothesis as to a mechanism underlying L&M, then genes of interest are manipulated, and the impact on neuronal physiology and L&M is studied. Previous gene targeting studies have focussed mainly on the role of synaptic plasticity in L&M. Some of those reports provide evidence that processes other than, or additional to, long-term potentiation (LTP) are required for L&M. Accordingly, it is possible that altered neuronal excitability is an essential mechanism. The properties of ion channels determine neuronal excitability and so genetic alteration of ion channel properties is an appropriate method for testing whether the modulation of excitability affects L&M. K(v)beta 1.1-deficient mice were the first mutants used to study the role of altered excitability in mammalian L&M. K(v)beta 1.1 is a regulatory subunit with a restricted expression pattern in the brain, and it confers fast inactivation on otherwise noninactivating K(+) channel subunits. In hippocampal pyramidal neurones Kv beta 1.1-deficiency results in a reduced slow after-hyperpolarisation (sAHP), modulation of which is thought to contribute to L&M. The L&M phenotype of the mutants supports this sAHP hypothesis. It is expected that further gene targeting studies on excitability will lead to valuable insights into the processes of L&M.
Collapse
Affiliation(s)
- K P Giese
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK.
| | | | | |
Collapse
|
25
|
Li P, Gao XG, Arellano RO, Renugopalakrishnan V. Glycosylated and phosphorylated proteins--expression in yeast and oocytes of Xenopus: prospects and challenges--relevance to expression of thermostable proteins. Protein Expr Purif 2001; 22:369-80. [PMID: 11482998 DOI: 10.1006/prep.2001.1431] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphorylation and glycosylation are important posttranslational events in the biosynthesis of proteins. The different degrees of phosphorylation and glycosylation of proteins have been an intriguing phenomenon. Advances in genetic engineering have made it possible to control the degree of glycosylation and phosphorylation of proteins. Structural biology of phosphorylated and glycosylated proteins has been advancing at a much slower pace due to difficulties in using high-resolution NMR studies in solution phase. Major difficulties have arisen from the inherent mobilities of phosphorylated and glycosylated side chains. This paper reviews molecular and structural biology of phosphorylated and glycosylated proteins expressed in eukaryotic expression systems which are especially suited for large-scale production of these proteins. In our laboratory, we have observed that eukaryotic expression systems are particularly suited for the expression of thermostable light-activated proteins, e.g., bacteriorhodopsins and plastocyanins.
Collapse
Affiliation(s)
- P Li
- Shanghai Research Center of Biotechnology, Chinese Academy of Sciences, Shanghai 200233, People's Republic of China
| | | | | | | |
Collapse
|
26
|
Affiliation(s)
- J B Shabb
- Department of Biochemistry and Molecular Biology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9037, USA.
| |
Collapse
|
27
|
Direct interaction of a brain voltage-gated K+ channel with syntaxin 1A: functional impact on channel gating. J Neurosci 2001. [PMID: 11245681 DOI: 10.1523/jneurosci.21-06-01964.2001] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Presynaptic voltage-gated K(+) (Kv) channels play a physiological role in the regulation of transmitter release by virtue of their ability to shape presynaptic action potentials. However, the possibility of a direct interaction of these channels with the exocytotic apparatus has never been examined. We report the existence of a physical interaction in brain synaptosomes between Kvalpha1.1 and Kvbeta subunits with syntaxin 1A, occurring, at least partially, within the context of a macromolecular complex containing syntaxin, synaptotagmin, and SNAP-25. The interaction was altered after stimulation of neurotransmitter release. The interaction with syntaxin was further characterized in Xenopus oocytes by both overexpression and antisense knock-down of syntaxin. Direct physical interaction of syntaxin with the channel protein resulted in an increase in the extent of fast inactivation of the Kv1.1/Kvbeta1.1 channel. Syntaxin also affected the channel amplitude in a biphasic manner, depending on its concentration. At low syntaxin concentrations there was a significant increase in amplitudes, with no detectable change in cell-surface channel expression. At higher concentrations, however, the amplitudes decreased, probably because of a concomitant decrease in cell-surface channel expression, consistent with the role of syntaxin in regulation of vesicle trafficking. The observed physical and functional interactions between syntaxin 1A and a Kv channel may play a role in synaptic efficacy and neuronal excitability.
Collapse
|
28
|
Oudit GY, Kassiri Z, Sah R, Ramirez RJ, Zobel C, Backx PH. The molecular physiology of the cardiac transient outward potassium current (I(to)) in normal and diseased myocardium. J Mol Cell Cardiol 2001; 33:851-72. [PMID: 11343410 DOI: 10.1006/jmcc.2001.1376] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
G. Y. Oudit, Z. Kassiri, R. Sah, R. J. Ramirez, C. Zobel and P. H. Backx. The Molecular Physiology of the Cardiac Transient Outward Potassium Current (I(to)) in Normal and Diseased Myocardium. Journal of Molecular and Cellular Cardiology (2001) 33, 851-872. The Ca(2+)-independent transient outward potassium current (I(to)) plays an important role in early repolarization of the cardiac action potential. I(to)has been clearly demonstrated in myocytes from different cardiac regions and species. Two kinetic variants of cardiac I(to)have been identified: fast I(to), called I(to,f), and slow I(to), called I(to,s). Recent findings suggest that I(to,f)is formed by assembly of K(v4.2)and/or K(v4.3)alpha pore-forming voltage-gated subunits while I(to,s)is comprised of K(v1.4)and possibly K(v1.7)subunits. In addition, several regulatory subunits and pathways modulating the level and biophysical properties of cardiac I(to)have been identified. Experimental findings and data from computer modeling of cardiac action potentials have conclusively established an important physiological role of I(to)in rodents, with its role in large mammals being less well defined due to complex interplay between a multitude of cardiac ionic currents. A central and consistent electrophysiological change in cardiac disease is the reduction in I(to)density with a loss of heterogeneity of I(to)expression and associated action potential prolongation. Alterations of I(to)in rodent cardiac disease have been linked to repolarization abnormalities and alterations in intracellular Ca(2+)homeostasis, while in larger mammals the link with functional changes is far less certain. We review the current literature on the molecular basis for cardiac I(to)and the functional consequences of changes in I(to)that occur in cardiovascular disease.
Collapse
Affiliation(s)
- G Y Oudit
- Department of Medicine and Physiology, Toronto General Hospital, 101 College Street, Toronto, M5G 2C4, Canada
| | | | | | | | | | | |
Collapse
|
29
|
Laniado ME, Fraser SP, Djamgoz MB. Voltage-gated K(+) channel activity in human prostate cancer cell lines of markedly different metastatic potential: distinguishing characteristics of PC-3 and LNCaP cells. Prostate 2001; 46:262-74. [PMID: 11241548 DOI: 10.1002/1097-0045(20010301)46:4<262::aid-pros1032>3.0.co;2-f] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Although ion channels are known to contribute to a variety of basic cellular behaviors involved in the metastatic cascade, their role in metastasis per se has only recently been questioned. The hypothesis tested was whether K(+) channels were different between strongly metastatic PC-3 and weakly metastatic LNCaP human prostate cancer cell lines. METHODS The whole-cell configuration of the patch clamp recording technique was used to record voltage-gated currents from LNCaP and PC-3 cell lines. The responses to different voltage-clamp protocols, sensitivity to external Ca(2+), and addition of drugs and toxins were explored. RESULTS Voltage-gated K(+) current density was significantly larger in LNCaP than PC-3 cells. In addition, the K(+) currents in a sub-population of PC-3 cells were Ca(2+)-sensitive. These properties reflected the differential metastatic character of the cells, the PC-3 cells appearing potentially more "excitable". CONCLUSIONS Prostate cancer cells of varying metastatic ability can be distinguished by their ion channel characteristics. The possible contribution(s) of K(+) channel activity to development of malignancy needs exploration.
Collapse
Affiliation(s)
- M E Laniado
- Department of Surgery, Imperial College School of Medicine at Hammersmith Hospital, London, UK
| | | | | |
Collapse
|
30
|
Abstract
The recently presented theory of microvillar Ca(2+)signaling [Lange, K. (1999) J. Cell. Physiol.180, 19-35], combined with Manning's theory of "condensed counterions" in linear polyelectrolytes [Manning, G. S. (1969). J. Chem. Phys.51, 924-931] and the finding of cable-like ion conductance in actin filaments [Lin, E. C. & Cantiello, H. F. (1993). Biophys. J.65, 1371-1378], allows a systematic interpretation of the role of the actin cytoskeleton in ion channel regulation. Ion conduction through actin filament bundles of microvilli exhibits unique nonlinear transmission properties some of which closely resemble that of electronic semiconductors: (1) bundles of microfilaments display significant resistance to cation conduction and (2) this resistance is decreased by supply of additional energy either as thermal, mechanical or electromagnetic field energy. Other transmission properties, however, are unique for ionic conduction in polyelectrolytes. (1) Current pulses injected into the filaments were transformed into oscillating currents or even into several discrete charge pulses closely resembling that of single-channel recordings. Discontinuous transmission is due to the existence of counterion clouds along the fixed anionic charge centers of the polymer, each acting as an "ionic capacitor". (2) The conductivity of linear polyelectrolytes strongly decreases with the charge number of the counterions; thus, Ca(2+)and Mg(2+)are effective modulator of charge transfer through linear polyelectrolytes. Field-dependent formation of divalent cation plugs on either side of the microvillar conduction line may generate the characteristic gating behavior of cation channels. (3) Mechanical movement of actin filament bundles, e.g. bending of hair cell microvilli, generates charge translocations along the filament structure (mechano-electrical coupling). (4) Energy of external fields, by inducing molecular dipoles within the polyelectrolyte matrix, can be transformed into mechanical movement of the system (electro-mechanical coupling). Because ionic transmission through linear polyelectrolytes is very slow compared with electronic conduction, only low-frequency electromagnetic fields can interact with the condensed counterion systems of linear polyelectrolytes. The delineated characteristics of microvillar ion conduction are strongly supported by the phenomenon of electro-mechanical coupling (reverse transduction) in microvilli of the audioreceptor (hair) cells and the recently reported dynamics of Ca(2+)signaling in microvilli of audio- and photoreceptor cells. Due to the cell-specific expression of different types and combinations of ion channels and transporters in the microvillar tip membrane of differentiated cells, the functional properties of this cell surface organelle are highly variable serving a multitude of different cellular functions including receptor-mediated effects such as Ca(2+)signaling, regulation of glucose and amino acid transport, as well as modulation of membrane potential. Even mechanical channel activation involved in cell volume regulation can be deduced from the systematic properties of the microvillar channel concept. In addition, the specific ion conduction properties of microfilaments combined with their proposed role in Ca(2+)signaling make microvilli the most likely cellular site for the interaction with external electric and magnetic fields.
Collapse
Affiliation(s)
- K Lange
- Kladower Damm 25b, 14089 Berlin, Germany.
| |
Collapse
|
31
|
Abstract
A novel mechanism of cellular volume regulation is presented, which ensues from the recently introduced concept of transport and ion channel regulation via microvillar structures (Lange K, 1999, J Cell Physiol 180:19-35). According to this notion, the activity of ion channels and transporter proteins located on microvilli of differentiated cells is regulated by changes in the structural organization of the bundle of actin filaments in the microvillar shaft region. Cells with microvillar surfaces represent two-compartment systems consisting of the cytoplasm on the one side and the sum of the microvillar tip (or, entrance) compartments on the other side. The two compartments are separated by the microvillar actin filament bundle acting as diffusion barrier ions and other solutes. The specific organization of ion and water channels on the surface of microvillar cell types enables this two-compartment system to respond to hypo- and hyperosmotic conditions by activation of ionic fluxes along electrochemical gradients. Hypotonic exposure results in swelling of the cytoplasmic compartment accompanied by a corresponding reduction in the length of the microvillar diffusion barrier, allowing osmolyte efflux and regulatory volume decrease (RVD). Hypertonic conditions, which cause shortening of the diffusion barrier via swelling of the entrance compartment, allow osmolyte influx for regulatory volume increase (RVI). Swelling of either the cytoplasmic or the entrance compartment, by using membrane portions of the microvillar shafts for surface enlargement, activates ion fluxes between the cytoplasm and the entrance compartment by shortening of microvilli. The pool of available membrane lipids used for cell swelling, which is proportional to length and number of microvilli per cell, represents the sensor system that directly translates surface enlargements into activation of ion channels. Thus, the use of additional membrane components for osmotic swelling or other types of surface-expanding shape changes (such as the volume-invariant cell spreading or stretching) directly regulates influx and efflux activities of microvillar ion channels. The proposed mechanism of ion flux regulation also applies to the physiological main functions of epithelial cells and the auxiliary action of swelling-induced ATP release. Furthermore, the microvillar entrance compartment, as a finely dispersed ion-accessible peripheral space, represents a cellular sensor for environmental ionic/osmotic conditions able to detect concentration gradients with high lateral resolution. Volume regulation via microvillar surfaces is only one special aspect of the general property of mechanosensitivity of microvillar ionic pathways.
Collapse
|
32
|
Keren-Raifman T, Ivanina T, Bismuth Y, Dascal N. Expression cloning of KCRF, a potassium channel regulatory factor. Biochem Biophys Res Commun 2000; 274:852-8. [PMID: 10924366 DOI: 10.1006/bbrc.2000.3240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
By functional coexpression screening of a rat cDNA library in Xenopus oocytes, we have cloned a protein (KCRF: K Channel Regulatory Factor) that reduces currents of several K(+) channels: G protein-activated GIRK1/4 (K(ir)3.1/K(ir)3.4), inward rectifier IRK1 (K(ir)2.1), and voltage-dependent K(V)1.1/K(V)beta1.1. KCRF did not modulate two other K(+) channels: ROMK1 (K(ir)1.1) and GIRK1/2 (K(ir)3.1/K(ir)3.2) and the voltage-dependent L-type Ca(2+) channels. Western blot analysis showed that KCRF is ubiquitous in rat tissues. Biochemical and electrophysiological experiments revealed that coexpression of KCRF causes a decrease in the level of expression of IRK1 and K(V)1.1/K(V)beta1.1 proteins in the oocytes.
Collapse
Affiliation(s)
- T Keren-Raifman
- Department of Physiology and Pharmacology, Sackler School of Medicine, Ramat Aviv, 69978, Israel
| | | | | | | |
Collapse
|
33
|
Maruoka ND, Steele DF, Au BP, Dan P, Zhang X, Moore ED, Fedida D. alpha-actinin-2 couples to cardiac Kv1.5 channels, regulating current density and channel localization in HEK cells. FEBS Lett 2000; 473:188-94. [PMID: 10812072 DOI: 10.1016/s0014-5793(00)01521-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Voltage-gated K(+) (Kv) channels are particularly important in the physiology of excitable cells in the heart and the brain. PSD-95 is known to cluster Shaker channels and NMDA receptors and the latter is known to couple through alpha-actinin-2 to the post-synaptic cytoskeleton [Wyszynski et al. (1997) Nature 385, 439-442], but the mechanisms by which Kv channels are linked to the actin cytoskeleton and clustered at specific sites in the heart are unknown. Here we provide evidence that Kv1.5 channels, widely expressed in the cardiovascular system, bind with alpha-actinin-2. Human Kv1.5 interacts via its N-terminus/core region and can be immunoprecipitated with alpha-actinin-2 both after in vitro translation and from HEK cells expressing both proteins. The ion channels and alpha-actinin-2 co-localize at the membrane in HEK cells, where disruption of the actin cytoskeleton and antisense constructs to alpha-actinin-2 modulate the ion and gating current density.
Collapse
Affiliation(s)
- N D Maruoka
- Department of Physiology, University of British Columbia, 2146 Health Sciences Mall, Vancouver, BC, Canada
| | | | | | | | | | | | | |
Collapse
|
34
|
Wissmann R, Baukrowitz T, Kalbacher H, Kalbitzer HR, Ruppersberg JP, Pongs O, Antz C, Fakler B. NMR structure and functional characteristics of the hydrophilic N terminus of the potassium channel beta-subunit Kvbeta1.1. J Biol Chem 1999; 274:35521-5. [PMID: 10585425 DOI: 10.1074/jbc.274.50.35521] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rapid N-type inactivation of voltage-dependent potassium (Kv) channels controls membrane excitability and signal propagation in central neurons and is mediated by protein domains (inactivation gates) occluding the open channel pore from the cytoplasmic side. Inactivation domains (ID) are donated either by the pore-forming alpha-subunit or certain auxiliary beta-subunits. Upon coexpression, Kvbeta1.1 was found to endow non-inactivating members of the Kv1alpha family with fast inactivation via its unique N terminus. Here we investigated structure and functional properties of the Kvbeta1.1 N terminus (amino acids 1-62, betaN-(1-62)) using NMR spectroscopy and patch clamp recordings. betaN-(1-62) showed all hallmarks of N-type inactivation: it inactivated non-inactivating Kv1.1 channels when applied to the cytoplasmic side as a synthetic peptide, and its interaction with the alpha-subunit was competed with tetraethylammonium and displayed an affinity in the lower micromolar range. In aequous and physiological salt solution, betaN-(1-62) showed no well defined three-dimensional structure, it rather existed in a fast equilibrium of multiple weakly structured states. These structural and functional properties of betaN-(1-62) closely resemble those of the "unstructured" ID from Shaker B, but differ markedly from those of the compactly folded ID of the Kv3.4 alpha-subunit.
Collapse
Affiliation(s)
- R Wissmann
- Department of Physiology II, University of Tübingen, Ob dem Himmelreich 7, 72074 Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Kwak YG, Hu N, Wei J, George AL, Grobaski TD, Tamkun MM, Murray KT. Protein kinase A phosphorylation alters Kvbeta1.3 subunit-mediated inactivation of the Kv1.5 potassium channel. J Biol Chem 1999; 274:13928-32. [PMID: 10318802 DOI: 10.1074/jbc.274.20.13928] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human Kv1.5 potassium channel forms the IKur current in atrial myocytes and is functionally altered by coexpression with Kvbeta subunits. To explore the role of protein kinase A (PKA) phosphorylation in beta-subunit function, we examined the effect of PKA stimulation on Kv1.5 current following coexpression with either Kvbeta1.2 or Kvbeta1.3, both of which coassemble with Kv1.5 and induce fast inactivation. In Xenopus oocytes expressing Kv1.5 and Kvbeta1.3, activation of PKA reduced macroscopic inactivation with an increase in K+ current. Similar results were obtained using HEK 293 cells which lack endogenous K+ channel subunits. These effects did not occur when Kv1.5 was coexpressed with either Kvbeta1.2 or Kvbeta1.3 lacking the amino terminus, suggesting involvement of this region of Kvbeta1.3. Removal of a consensus PKA phosphorylation site on the Kvbeta1.3 NH2 terminus (serine 24), but not alternative sites in either Kvbeta1.3 or Kv1.5, resulted in loss of the functional effects of kinase activation. The effects of phosphorylation appeared to be electrostatic, as replacement of serine 24 with a negatively charged amino acid reduced beta-mediated inactivation, while substitution with a positively charged residue enhanced it. These results indicate that Kvbeta1.3-induced inactivation is reduced by PKA activation, and that phosphorylation of serine 24 in the subunit NH2 terminus is responsible.
Collapse
Affiliation(s)
- Y G Kwak
- Department of Physiology and Biochemistry and Molecular Biology, Colorado State University, Ft. Collins, Colorado 80523, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Johnson BD. The company they keep: ion channels and their intracellular regulatory partners. ADVANCES IN SECOND MESSENGER AND PHOSPHOPROTEIN RESEARCH 1999; 33:203-28. [PMID: 10218120 DOI: 10.1016/s1040-7952(99)80011-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- B D Johnson
- Department of Physiology and Neurobiology, University of Connecticut, Storrs 06269, USA
| |
Collapse
|
37
|
Jing J, Chikvashvili D, Singer-Lahat D, Thornhill WB, Reuveny E, Lotan I. Fast inactivation of a brain K+ channel composed of Kv1.1 and Kvbeta1.1 subunits modulated by G protein beta gamma subunits. EMBO J 1999; 18:1245-56. [PMID: 10064591 PMCID: PMC1171215 DOI: 10.1093/emboj/18.5.1245] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Modulation of A-type voltage-gated K+ channels can produce plastic changes in neuronal signaling. It was shown that the delayed-rectifier Kv1.1 channel can be converted to A-type upon association with Kvbeta1.1 subunits; the conversion is only partial and is modulated by phosphorylation and microfilaments. Here we show that, in Xenopus oocytes, expression of Gbeta1gamma2 subunits concomitantly with the channel (composed of Kv1.1 and Kvbeta1.1 subunits), but not after the channel's expression in the plasma membrane, increases the extent of conversion to A-type. Conversely, scavenging endogenous Gbetagamma by co-expression of the C-terminal fragment of the beta-adrenergic receptor kinase reduces the extent of conversion to A-type. The effect of Gbetagamma co-expression is occluded by treatment with dihydrocytochalasin B, a microfilament-disrupting agent shown previously by us to enhance the extent of conversion to A-type, and by overexpression of Kvbeta1.1. Gbeta1gamma2 subunits interact directly with GST fusion fragments of Kv1.1 and Kvbeta1.1. Co-expression of Gbeta1gamma2 causes co-immunoprecipitation with Kv1.1 of more Kvbeta1.1 subunits. Thus, we suggest that Gbeta1gamma2 directly affects the interaction between Kv1.1 and Kvbeta1.1 during channel assembly which, in turn, disrupts the ability of the channel to interact with microfilaments, resulting in an increased extent of A-type conversion.
Collapse
Affiliation(s)
- J Jing
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, 69978 Ramat Avivl, Israel
| | | | | | | | | | | |
Collapse
|
38
|
Klee R, Heinemann U, Eder C. Changes in proton currents in murine microglia induced by cytoskeletal disruptive agents. Neurosci Lett 1998; 247:191-4. [PMID: 9655625 DOI: 10.1016/s0304-3940(98)00322-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Voltage-gated proton currents (IPR) were investigated in cultured murine microglia using the whole-cell configuration of the patch clamp technique. At a gradient of 1.5 between intracellular (pHi = 6.0) and extracellular pH (pHo = 7.5) values, outward IPR were detected at depolarizing potentials, while the activation threshold of IPR was -40 mV. Time-dependent activation of IPR was fitted by a single exponential with a time constant of 661 ms at +40 mV. An increase in the activation time constant of IPR was seen after exposure of microglia to the cytoskeletal disruptive agents cytochalasin D or colchicine. Moreover, the current density of IPR was significantly reduced by 49% in cells treated with cytochalasin D and by 27% in cells treated with colchicine for 24 h. In contrast, voltage-dependence of steady-state activation of IPR was unchanged after disruption of the cytoskeleton. Exposure of microglia to the cytoskeletal stabilizers phalloidin and taxol did not affect IPR of microglia.
Collapse
Affiliation(s)
- R Klee
- Department of Neurophysiology, Institute of Physiology, Humboldt University, Berlin, Germany
| | | | | |
Collapse
|
39
|
Levy M, Jing J, Chikvashvili D, Thornhill WB, Lotan I. Activation of a metabotropic glutamate receptor and protein kinase C reduce the extent of inactivation of the K+ channel Kv1.1/Kvbeta1.1 via dephosphorylation of Kv1.1. J Biol Chem 1998; 273:6495-502. [PMID: 9497384 DOI: 10.1074/jbc.273.11.6495] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Various brain K+ channels, which may normally exist as complexes of alpha (pore-forming) and beta (auxiliary) subunits, were subjected to regulation by metabotropic glutamate receptors. Kv1.1/Kvbeta1.1 is a voltage-dependent K+ channel composed of alpha and beta proteins that are widely expressed in the brain. Expression of this channel in Xenopus oocytes resulted in a current that had fast inactivating and noninactivating components. Previously we showed that basal and protein kinase A-induced phosphorylation of the alpha subunit at Ser-446 decreases the fraction of the noninactivating component. In this study we investigated the effect of protein kinase C (PKC) on the channel. We showed that a PKC-activating phorbol ester (phorbol 12-myristate 13-acetate (PMA)) increased the noninactivating fraction via activation of a PKC subtype that was inhibited by staurosporine and bisindolylmaleimide but not by calphostin C. However, it was not a PKC-induced phosphorylation but rather a dephosphorylation that mediated the effect. PMA reduced the basal phosphorylation of Ser-446 significantly in plasma membrane channels and failed to affect the inactivation of channels having an alpha subunit that was mutated at Ser-446. Also, the activation of coexpressed mGluR1a known to activate phospholipase C mimicked the effect of PMA on the inactivation via induction of dephosphorylation at Ser-446. Thus, this study identified a potential neuronal pathway initiated by activation of metabotropic glutamate receptor 1a coupled to a signaling cascade that possibly utilized PKC to induce dephosphorylation and thereby to decrease the extent of inactivation of a K+ channel.
Collapse
Affiliation(s)
- M Levy
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, 69978 Ramat Aviv, Israel
| | | | | | | | | |
Collapse
|
40
|
Interaction of muscle and brain sodium channels with multiple members of the syntrophin family of dystrophin-associated proteins. J Neurosci 1998. [PMID: 9412493 DOI: 10.1523/jneurosci.18-01-00128.1998] [Citation(s) in RCA: 241] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Syntrophins are cytoplasmic peripheral membrane proteins of the dystrophin-associated protein complex (DAPC). Three syntrophin isoforms, alpha1, beta1, and beta2, are encoded by distinct genes. Each contains two pleckstrin homology (PH) domains, a syntrophin-unique (SU) domain, and a PDZ domain. The name PDZ comes from the first three proteins found to contain repeats of this domain (PSD-95, Drosophila discs large protein, and the zona occludens protein 1). PDZ domains in other proteins bind to the C termini of ion channels and neurotransmitter receptors containing the consensus sequence (S/T)XV-COOH and mediate the clustering or synaptic localization of these proteins. Two voltage-gated sodium channels (NaChs), SkM1 and SkM2, of skeletal and cardiac muscle, respectively, have this consensus sequence. Because NaChs are sarcolemmal components like syntrophins, we have investigated possible interactions between these proteins. NaChs copurify with syntrophin and dystrophin from extracts of skeletal and cardiac muscle. Peptides corresponding to the C-terminal 10 amino acids of SkM1 and SkM2 are sufficient to bind detergent-solubilized muscle syntrophins, to inhibit the binding of native NaChs to syntrophin PDZ domain fusion proteins, and to bind specifically to PDZ domains from alpha1-, beta1-, and beta2-syntrophin. These peptides also inhibit binding of the syntrophin PDZ domain to the PDZ domain of neuronal nitric oxide synthase, an interaction that is not mediated by C-terminal sequences. Brain NaChs, which lack the (S/T)XV consensus sequence, also copurify with syntrophin and dystrophin, an interaction that does not appear to be mediated by the PDZ domain of syntrophin. Collectively, our data suggest that syntrophins link NaChs to the actin cytoskeleton and the extracellular matrix via dystrophin and the DAPC.
Collapse
|