1
|
Mishra S, Rout M, Singh MK, Dehury B, Pati S. Illuminating the structural basis of human neurokinin 1 receptor (NK1R) antagonism through classical all-atoms molecular dynamics simulations. J Cell Biochem 2023; 124:1848-1869. [PMID: 37942587 DOI: 10.1002/jcb.30493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/26/2023] [Accepted: 10/16/2023] [Indexed: 11/10/2023]
Abstract
Advances in structural biology have bestowed insights into the pleiotropic effects of neurokinin 1 receptors (NK1R) in diverse patho-physiological processes, thereby highlighting the potential therapeutic value of antagonists directed against NK1R. Herein, we investigate the mode of antagonist recognition to discern the obscure atomic facets germane for the function and molecular determinants of NK1R. To commence discernment of potent antagonists and the conformational changes in NK1R, induced upon antagonist binding, state-of-the-art classical all-atoms molecular dynamics (MD) simulations in lipid mimetic bilayers have been utilized. MD simulations of structural ensembles reveals the involvement of TM5 and TM6 in tight anchoring of antagonists through a network of interhelical hydrogen-bonds, while, the extracellular loop 2 (ECL2) governs the overall size and nature of the pocket, thereby modulating NK1R. Consistent comparison between experiments and MD simulation results discerns the predominant role of TM3, TM4, and TM6 in lipid-NK1R interaction. Correlation between hydrophobic index and helicity of TM domains elucidates their importance in maintaining the structural stability in addition to regulating NK1R antagonism. Taken together, we anticipate that our computational study marks a comprehensive structural basis of NK1R antagonism in lipid bilayers, which may facilitate designing of new therapeutics against associated diseases targeting human neurokinin receptors.
Collapse
Affiliation(s)
- Sarbani Mishra
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha, India
| | - Madhusmita Rout
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha, India
| | - Mahender Kumar Singh
- Data Science Laboratory, National Brain Research Centre, Gurgaon, Haryana, India
| | - Budheswar Dehury
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha, India
| | - Sanghamitra Pati
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha, India
| |
Collapse
|
2
|
Thom C, Ehrenmann J, Vacca S, Waltenspühl Y, Schöppe J, Medalia O, Plückthun A. Structures of neurokinin 1 receptor in complex with G q and G s proteins reveal substance P binding mode and unique activation features. SCIENCE ADVANCES 2021; 7:eabk2872. [PMID: 34878828 PMCID: PMC8654284 DOI: 10.1126/sciadv.abk2872] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
The neurokinin 1 receptor (NK1R) is involved in inflammation and pain transmission. This pathophysiologically important G protein–coupled receptor is predominantly activated by its cognate agonist substance P (SP) but also by the closely related neurokinins A and B. Here, we report cryo–electron microscopy structures of SP-bound NK1R in complex with its primary downstream signal mediators, Gq and Gs. Our structures reveal how a polar network at the extracellular, solvent-exposed receptor surface shapes the orthosteric pocket and that NK1R adopts a noncanonical active-state conformation with an interface for G protein binding, which is distinct from previously reported structures. Detailed comparisons with antagonist-bound NK1R crystal structures reveal that insurmountable antagonists induce a distinct and long-lasting receptor conformation that sterically blocks SP binding. Together, our structures provide important structural insights into ligand and G protein promiscuity, the lack of basal signaling, and agonist- and antagonist-induced conformations in the neurokinin receptor family.
Collapse
|
3
|
Bell JD, Morgan TEF, Buijs N, Harkiss AH, Wellaway CR, Sutherland A. Synthesis and Photophysical Properties of Benzotriazole-Derived Unnatural α-Amino Acids. J Org Chem 2019; 84:10436-10448. [DOI: 10.1021/acs.joc.9b01685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jonathan D. Bell
- WestCHEM, School of Chemistry, The Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Timaeus E. F. Morgan
- WestCHEM, School of Chemistry, The Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Ned Buijs
- WestCHEM, School of Chemistry, The Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Alexander H. Harkiss
- WestCHEM, School of Chemistry, The Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Christopher R. Wellaway
- Medicinal Chemistry, GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| | - Andrew Sutherland
- WestCHEM, School of Chemistry, The Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, U.K
| |
Collapse
|
4
|
Schöppe J, Ehrenmann J, Klenk C, Rucktooa P, Schütz M, Doré AS, Plückthun A. Crystal structures of the human neurokinin 1 receptor in complex with clinically used antagonists. Nat Commun 2019; 10:17. [PMID: 30604743 PMCID: PMC6318301 DOI: 10.1038/s41467-018-07939-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/03/2018] [Indexed: 12/28/2022] Open
Abstract
Neurokinins (or tachykinins) are peptides that modulate a wide variety of human physiology through the neurokinin G protein-coupled receptor family, implicated in a diverse array of pathological processes. Here we report high-resolution crystal structures of the human NK1 receptor (NK1R) bound to two small-molecule antagonist therapeutics – aprepitant and netupitant and the progenitor antagonist CP-99,994. The structures reveal the detailed interactions between clinically approved antagonists and NK1R, which induce a distinct receptor conformation resulting in an interhelical hydrogen-bond network that cross-links the extracellular ends of helices V and VI. Furthermore, the high-resolution details of NK1R bound to netupitant establish a structural rationale for the lack of basal activity in NK1R. Taken together, these co-structures provide a comprehensive structural basis of NK1R antagonism and will facilitate the design of new therapeutics targeting the neurokinin receptor family. Neurokinin receptors are G protein-coupled receptors. Here the authors present three crystal structures of the neurokinin 1 receptor (NK1R) in complex with small-molecule antagonists including aprepitant and netupitant and observe that these clinically approved compounds induce a conformational change in the receptor.
Collapse
Affiliation(s)
- Jendrik Schöppe
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Janosch Ehrenmann
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Christoph Klenk
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Prakash Rucktooa
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, CB21 6DG, UK
| | - Marco Schütz
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland.,Heptares Therapeutics Zürich AG, Grabenstrasse 11a, 8952, Zürich, Switzerland
| | - Andrew S Doré
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, CB21 6DG, UK
| | - Andreas Plückthun
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland.
| |
Collapse
|
5
|
Abstract
The NK1 tachykinin G-protein-coupled receptor (GPCR) binds substance P, the first neuropeptide to be discovered in mammals. Through activation of NK1R, substance P modulates a wide variety of physiological and disease processes including nociception, inflammation, and depression. Human NK1R (hNK1R) modulators have shown promise in clinical trials for migraine, depression, and emesis. However, the only currently approved drugs targeting hNK1R are inhibitors for chemotherapy-induced nausea and vomiting (CINV). To better understand the molecular basis of ligand recognition and selectivity, we solved the crystal structure of hNK1R bound to the inhibitor L760735, a close analog of the drug aprepitant. Our crystal structure reveals the basis for antagonist interaction in the deep and narrow orthosteric pocket of the receptor. We used our structure as a template for computational docking and molecular-dynamics simulations to dissect the energetic importance of binding pocket interactions and model the binding of aprepitant. The structure of hNK1R is a valuable tool in the further development of tachykinin receptor modulators for multiple clinical applications.
Collapse
|
6
|
Gadais C, Ballet S. The Neurokinins: Peptidomimetic Ligand Design and Therapeutic Applications. Curr Med Chem 2018; 27:1515-1561. [PMID: 30209994 DOI: 10.2174/0929867325666180913095918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 12/15/2022]
Abstract
The neurokinins are indisputably essential neurotransmitters in numerous pathoand physiological events. Being widely distributed in the Central Nervous System (CNS) and peripheral tissues, their discovery rapidly promoted them to drugs targets. As a necessity for molecular tools to understand the biological role of this class, endogenous peptides and their receptors prompted the scientific community to design ligands displaying either agonist and antagonist activity at the three main neurokinin receptors, called NK1, NK2 and NK3. Several strategies were implemented for this purpose. With a preference to small non-peptidic ligands, many research groups invested efforts in synthesizing and evaluating a wide range of scaffolds, but only the NK1 antagonist Aprepitant (EMENDT) and its prodrug Fosaprepitant (IVEMENDT) have been approved by the Food Drug Administration (FDA) for the treatment of Chemotherapy-Induced and Post-Operative Nausea and Vomiting (CINV and PONV, respectively). While non-peptidic drugs showed limitations, especially in side effect control, peptidic and pseudopeptidic compounds progressively regained attention. Various strategies were implemented to modulate affinity, selectivity and activity of the newly designed ligands. Replacement of canonical amino acids, incorporation of conformational constraints, and fusion with non-peptidic moieties gave rise to families of ligands displaying individual or dual NK1, NK2 and NK3 antagonism, that ultimately were combined with non-neurokinin ligands (such as opioids) to target enhanced biological impact.
Collapse
Affiliation(s)
- Charlène Gadais
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussels, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussels, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
7
|
Mendive-Tapia L, Subiros-Funosas R, Zhao C, Albericio F, Read ND, Lavilla R, Vendrell M. Preparation of a Trp-BODIPY fluorogenic amino acid to label peptides for enhanced live-cell fluorescence imaging. Nat Protoc 2017; 12:1588-1619. [PMID: 28703788 DOI: 10.1038/nprot.2017.048] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fluorescent peptides are valuable tools for live-cell imaging because of the high specificity of peptide sequences for their biomolecular targets. When preparing fluorescent versions of peptides, labels must be introduced at appropriate positions in the sequences to provide suitable reporters while avoiding any impairment of the molecular recognition properties of the peptides. This protocol describes the preparation of the tryptophan (Trp)-based fluorogenic amino acid Fmoc-Trp(C2-BODIPY)-OH and its incorporation into peptides for live-cell fluorescence imaging-an approach that is applicable to most peptide sequences. Fmoc-Trp(C2-BODIPY)-OH contains a BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) fluorogenic core, which works as an environmentally sensitive fluorophore, showing high fluorescence in lipophilic conditions. It is attached to Trp via a spacer-free C-C linkage, resulting in a labeled amino acid that can mimic the molecular interactions of Trp, enabling wash-free imaging. This protocol covers the chemical synthesis of the fluorogenic amino acid Fmoc-Trp(C2-BODIPY)-OH (3-4 d), the preparation of the labeled antimicrobial peptide BODIPY-cPAF26 by solid-phase synthesis (6-7 d) and its spectral and biological characterization as a live-cell imaging probe for different fungal pathogens. As an example, we include a procedure for using BODIPY-cPAF26 for wash-free imaging of fungal pathogens, including real-time visualization of Aspergillus fumigatus (5 d for culturing, 1-2 d for imaging).
Collapse
Affiliation(s)
- Lorena Mendive-Tapia
- Department of Inorganic and Organic Chemistry, University of Barcelona, Barcelona, Spain
| | - Ramon Subiros-Funosas
- Medical Research Council/University of Edinburgh Centre for Inflammation Research, The University of Edinburgh, Edinburgh, UK
| | - Can Zhao
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, UK
| | - Fernando Albericio
- Department of Inorganic and Organic Chemistry, University of Barcelona, Barcelona, Spain.,Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Nick D Read
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, UK
| | - Rodolfo Lavilla
- Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain.,Laboratory of Organic Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Marc Vendrell
- Medical Research Council/University of Edinburgh Centre for Inflammation Research, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
8
|
Harris A, Cox S, Burns D, Norey C. Miniaturization of Fluorescence Polarization Receptor-Binding Assays Using CyDye-Labeled Ligands. ACTA ACUST UNITED AC 2016; 8:410-20. [PMID: 14567793 DOI: 10.1177/1087057103256319] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fluorescence polarization (FP) is an established technique for the study of biological interactions and is frequently used in the high-throughput screening (HTS) of potential new drug targets. This work describes the miniaturization of FP receptor assays to 1536-well formats for use in HTS. The FP assays were initially developed in 384-well microplates using CyDye-labeled nonpeptide and peptide ligands. Receptor expression levels varied from ∼1 to 10 pmols receptor per mg protein, and ligand concentrations were in the 0.5- to 1.0-nM range. The FP assays were successfully miniaturized to 1536-well formats using Cy3B-labeled ligands, significantly reducing reagent consumption, particularly the receptor source, without compromising assay reliability. Z' factor values determined for the FP receptor assays in both 384- and 1536-well formats were found to be > 0.5, indicating the assays to be robust, reliable, and suitable for HTS purposes.
Collapse
Affiliation(s)
- Alison Harris
- Amersham Biosciences, UK Limited, The Maynard Centre, Buckinghamshire, UK
| | | | | | | |
Collapse
|
9
|
Use of Fluorescence Indicators in Receptor Ligands. Methods Mol Biol 2016; 1335:115-30. [PMID: 26260598 DOI: 10.1007/978-1-4939-2914-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Fluorescence techniques can provide insights into the environment of fluorescence indicators incorporated within a ligand as it is bound to its receptor. Fluorescence indicators of different sizes and chemical characteristics can provide insights into the nature of the binding environment, the surrounding structures, and even into conformational changes associated with receptor activation. Methods for determining fluorescence spectral analysis, fluorescence quenching, fluorescence anisotropy, fluorescence lifetimes, and red edge excitation shifts of the ligand probes are described. The applications of these techniques to the CCK1 receptor occupied by alexa(488)-CCK and aladan-CCK, as examples of probes developed (1) by derivatization of an existing peptide and (2) by incorporation during peptide synthesis, are utilized as examples. These methods represent powerful tools to expand our understanding of the structure and molecular basis of ligand activation of G protein-coupled receptors.
Collapse
|
10
|
Abbate V, Reelfs O, Kong X, Pourzand C, Hider RC. Dual selective iron chelating probes with a potential to monitor mitochondrial labile iron pools. Chem Commun (Camb) 2016; 52:784-7. [PMID: 26567874 DOI: 10.1039/c5cc06170a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mitochondria-targeted peptides incorporating dual fluorescent and selective iron chelators have been designed as novel biosensors for the mitochondrial labile iron pool. The probes were demonstrated to specifically co-localize with mitochondria and their fluorescence emission was found to be sensitive to the presence of iron.
Collapse
Affiliation(s)
- Vincenzo Abbate
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| | - Olivier Reelfs
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Xiaole Kong
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| | - Charareh Pourzand
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Robert C Hider
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
11
|
McCarron ST, Chambers JJ. Modular chemical probes for visualizing and tracking endogenous ion channels. Neuropharmacology 2015; 98:41-7. [PMID: 25866020 DOI: 10.1016/j.neuropharm.2015.03.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 03/26/2015] [Accepted: 03/27/2015] [Indexed: 12/24/2022]
Abstract
Fluorescently labeled, small molecule ligands designed for the labeling and tracking of neuronal receptors have become an increasingly popular tool in neurobiology. The small size of these probes allows for subcellular imaging of proteins in their native state with minimal perturbation of the system. Several factors such as the selectivity of the pharmacophore, the size and composition of linkers used, and the fluorescence stability of the fluorophore can all influence the effectiveness of the small molecule probe. Here we discuss a few key molecular targets of this technology including the NMDA receptor, serotonin transporter, dopamine transporter, and adenosine receptor due to their involvement in numerous neurodegenerative diseases. Future iterations of these probes will allow for a better understanding of many important neurological proteins as well as the development of new and potent therapeutic drugs. This review will cover probe design considerations and discuss examples of specific small molecule fluorescent ligands that have been used to study a multitude of neuronal receptors through fluorescent imaging. This article is part of the Special Issue entitled 'Fluorescent Tools in Neuropharmacology'.
Collapse
Affiliation(s)
- Stephen T McCarron
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - James J Chambers
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA; Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
12
|
Valentin-Hansen L, Park M, Huber T, Grunbeck A, Naganathan S, Schwartz TW, Sakmar TP. Mapping substance P binding sites on the neurokinin-1 receptor using genetic incorporation of a photoreactive amino acid. J Biol Chem 2014; 289:18045-54. [PMID: 24831006 DOI: 10.1074/jbc.m113.527085] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Substance P (SP) is a neuropeptide that mediates numerous physiological responses, including transmission of pain and inflammation through the neurokinin-1 (NK1) receptor, a G protein-coupled receptor. Previous mutagenesis studies and photoaffinity labeling using ligand analogues suggested that the binding site for SP includes multiple domains in the N-terminal (Nt) segment and the second extracellular loop (ECLII) of NK1. To map precisely the NK1 residues that interact with SP, we applied a novel receptor-based targeted photocross-linking approach. We used amber codon suppression to introduce the photoreactive unnatural amino acid p-benzoyl-l-phenylalanine (BzF) at 11 selected individual positions in the Nt tail (residues 11-21) and 23 positions in the ECLII (residues 170(C-10)-193(C+13)) of NK1. The 34 NK1 variants were expressed in mammalian HEK293 cells and retained the ability to interact with a fluorescently labeled SP analog. Notably, 10 of the receptor variants with BzF in the Nt tail and 4 of those with BzF in ECLII cross-linked efficiently to SP, indicating that these 14 sites are juxtaposed to SP in the ligand-bound receptor. These results show that two distinct regions of the NK1 receptor possess multiple determinants for SP binding and demonstrate the utility of genetically encoded photocross-linking to map complex multitopic binding sites on G protein-coupled receptors in a cell-based assay format.
Collapse
Affiliation(s)
- Louise Valentin-Hansen
- From the Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, The Panum Institute, Blegdamsvej 3, 2200 Copenhagen, Denmark, Section for Metabolic Receptology and Enteroendocrinology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark, and
| | - Minyoung Park
- Section for Metabolic Receptology and Enteroendocrinology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark, and Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York 10065
| | - Thomas Huber
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York 10065
| | - Amy Grunbeck
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York 10065
| | - Saranga Naganathan
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York 10065
| | - Thue W Schwartz
- From the Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, The Panum Institute, Blegdamsvej 3, 2200 Copenhagen, Denmark, Section for Metabolic Receptology and Enteroendocrinology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark, and
| | - Thomas P Sakmar
- Section for Metabolic Receptology and Enteroendocrinology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark, and Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York 10065
| |
Collapse
|
13
|
Speight LC, Samanta M, Petersson EJ. Minimalist Approaches to Protein Labelling: Getting the Most Fluorescent Bang for Your Steric Buck. Aust J Chem 2014. [DOI: 10.1071/ch13554] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fluorescence methods allow one to monitor protein conformational changes, protein–protein associations, and proteolysis in real time, at the single molecule level and in living cells. The information gained in such experiments is a function of the spectroscopic techniques used and the strategic placement of fluorophore labels within the protein structure. There is often a trade-off between size and utility for fluorophores, whereby large size can be disruptive to the protein’s fold or function, but valuable characteristics, such as visible wavelength absorption and emission or brightness, require sizable chromophores. Three major types of fluorophore readouts are commonly used: (1) Förster resonance energy transfer (FRET); (2) photoinduced electron transfer (PET); and (3) environmental sensitivity. This review focuses on those probes small enough to be incorporated into proteins during ribosomal translation, which allows the probes to be placed on the interiors of proteins as they are folded during synthesis. The most broadly useful method for doing so is site-specific unnatural amino acid (UAA) mutagenesis. We discuss the use of UAA probes in applications relying on FRET, PET, and environmental sensitivity. We also briefly review other methods of protein labelling and compare their relative merits to UAA mutagenesis. Finally, we discuss small probes that have thus far been used only in synthetic peptides, but which have unusual value and may be candidates for incorporation using UAA methods.
Collapse
|
14
|
Sridharan R, Zuber J, Connelly SM, Mathew E, Dumont ME. Fluorescent approaches for understanding interactions of ligands with G protein coupled receptors. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1838:15-33. [PMID: 24055822 PMCID: PMC3926105 DOI: 10.1016/j.bbamem.2013.09.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 09/03/2013] [Accepted: 09/08/2013] [Indexed: 11/18/2022]
Abstract
G protein coupled receptors are responsible for a wide variety of signaling responses in diverse cell types. Despite major advances in the determination of structures of this class of receptors, the underlying mechanisms by which binding of different types of ligands specifically elicits particular signaling responses remain unclear. The use of fluorescence spectroscopy can provide important information about the process of ligand binding and ligand dependent conformational changes in receptors, especially kinetic aspects of these processes that can be difficult to extract from X-ray structures. We present an overview of the extensive array of fluorescent ligands that have been used in studies of G protein coupled receptors and describe spectroscopic approaches for assaying binding and probing the environment of receptor-bound ligands with particular attention to examples involving yeast pheromone receptors. In addition, we discuss the use of fluorescence spectroscopy for detecting and characterizing conformational changes in receptors induced by the binding of ligands. Such studies have provided strong evidence for diversity of receptor conformations elicited by different ligands, consistent with the idea that GPCRs are not simple on and off switches. This diversity of states constitutes an underlying mechanistic basis for biased agonism, the observation that different stimuli can produce different responses from a single receptor. It is likely that continued technical advances will allow fluorescence spectroscopy to play an important role in continued probing of structural transitions in G protein coupled receptors. This article is part of a Special Issue entitled: Structural and biophysical characterisation of membrane protein-ligand binding.
Collapse
Affiliation(s)
- Rajashri Sridharan
- Department of Biochemistry and Biophysics, P.O. Box 712, University of Rochester Medical Center, Rochester, NY 14642
| | - Jeffrey Zuber
- Department of Biochemistry and Biophysics, P.O. Box 712, University of Rochester Medical Center, Rochester, NY 14642
| | - Sara M. Connelly
- Department of Biochemistry and Biophysics, P.O. Box 712, University of Rochester Medical Center, Rochester, NY 14642
| | - Elizabeth Mathew
- Department of Biochemistry and Biophysics, P.O. Box 712, University of Rochester Medical Center, Rochester, NY 14642
| | - Mark E. Dumont
- Department of Biochemistry and Biophysics, P.O. Box 712, University of Rochester Medical Center, Rochester, NY 14642
- Department of Pediatrics, P.O. Box 777, University of Rochester Medical Center, Rochester, NY 14642
| |
Collapse
|
15
|
Krueger AT, Imperiali B. Fluorescent Amino Acids: Modular Building Blocks for the Assembly of New Tools for Chemical Biology. Chembiochem 2013; 14:788-99. [DOI: 10.1002/cbic.201300079] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Indexed: 12/16/2022]
|
16
|
Harikumar KG, Cawston EE, Miller LJ. Fluorescence polarization screening for allosteric small molecule ligands of the cholecystokinin receptor. Assay Drug Dev Technol 2011; 9:394-402. [PMID: 21395402 DOI: 10.1089/adt.2010.0310] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The success in screening for drug candidates is highly dependent on the power of the strategy implemented. In this work, we report and characterize a novel fluorescent benzodiazepine antagonist of the type 1 cholecystokinin receptor (3-(3-(7-fluoro-1-(2-isopropyl(4-methoxyphenyl)amino)-2-oxoethyl)-2,4-dioxo-5-phenyl-2,3,4,5-tetrahydro-1H-benzo[b][1,4]-diazepin-3-yl)ureido)benzoic acid) that can be used as a receptor ligand in a fluorescence polarization assay, which is ideally suited for the identification of small molecule allosteric modulators of this physiologically important receptor. By binding directly to the small molecule-docking region within the helical bundle of this receptor, this indicator can be displaced by many small molecule candidate drugs, even those that might not affect the binding of an orthosteric cholecystokinin-like peptide ligand. The biological, pharmacological, and fluorescence properties of this reagent are described, and proof-of-concept is provided in a fluorescence polarization assay utilizing this fluorescent benzodiazepine ligand.
Collapse
Affiliation(s)
- Kaleeckal G Harikumar
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona, USA
| | | | | |
Collapse
|
17
|
Fuller AA, Seidl FJ, Bruno PA, Plescia MA, Palla KS. Use of the environmentally sensitive fluorophore 4-N,N-dimethylamino-1,8-naphthalimide to study peptoid helix structures. Biopolymers 2011; 96:627-38. [DOI: 10.1002/bip.21605] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
18
|
Shafer AM, Nakaie CR, Deupi X, Bennett VJ, Voss JC. Characterization of a conformationally sensitive TOAC spin-labeled substance P. Peptides 2008; 29:1919-29. [PMID: 18775458 DOI: 10.1016/j.peptides.2008.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 07/31/2008] [Accepted: 08/01/2008] [Indexed: 11/23/2022]
Abstract
To probe the binding of a peptide agonist to a G-protein coupled receptor in native membranes, the spin-labeled amino acid analogue 4-amino-4-carboxy-2,2,6,6-tetramethylpiperidino-1-oxyl (TOAC) was substituted at either position 4 or 9 within the substance P peptide (RPKPQQFFGLM-NH2), a potent agonist of the neurokinin-1 receptor. The affinity of the 4-TOAC analog is comparable to the native peptide while the affinity of the 9-TOAC derivative is approximately 250-fold lower. Both peptides activate receptor signaling, though the potency of the 9-TOAC peptide is substantially lower. The utility of these modified ligands for reporting conformational dynamics during the neurokinin-1 receptor activation was explored using EPR spectroscopy, which can determine the real-time dynamics of the TOAC nitroxides in solution. While the binding of both the 4-TOAC substance P and 9-TOAC substance P peptides to isolated cell membranes containing the neurokinin-1 receptor is detected, a bound signal for the 9-TOAC peptide is only obtained under conditions that maintain the receptor in its high-affinity binding state. In contrast, 4-TOAC substance P binding is observed by solution EPR under both low- and high-affinity receptor states, with evidence of a more strongly immobilized peptide in the presence of GDP. In addition, to better understand the conformational consequences of TOAC substitution into substance P as it relates to receptor binding and activation, atomistic models for both the 4- and 9-TOAC versions of the peptide were constructed, and the molecular dynamics calculated via simulated annealing to explore the influence of the TOAC substitutions on backbone structure.
Collapse
Affiliation(s)
- Aaron M Shafer
- Department of Biochemistry & Molecular Medicine, University of California, Davis, CA 95616, United States
| | | | | | | | | |
Collapse
|
19
|
Vermeire K, Lisco A, Grivel JC, Scarbrough E, Dey K, Duffy N, Margolis L, Bell TW, Schols D. Design and cellular kinetics of dansyl-labeled CADA derivatives with anti-HIV and CD4 receptor down-modulating activity. Biochem Pharmacol 2007; 74:566-78. [PMID: 17603023 DOI: 10.1016/j.bcp.2007.05.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 05/11/2007] [Accepted: 05/14/2007] [Indexed: 11/22/2022]
Abstract
A new class of anti-retrovirals, cyclotriazadisulfonamide (CADA) and its derivatives, specifically down-regulate CD4, the main receptor of HIV, and prevent HIV infection in vitro. In this work, several CADA derivatives, chemically labeled with a fluorescent dansyl group, were evaluated for their biological features and cellular uptake kinetics. We identified a derivative KKD-016 with antiviral and CD4 down-modulating capabilities similar to those of the parental compound CADA. By using flow cytometry, we demonstrated that the dose-dependent cellular uptake of this derivative correlated with CD4 down-modulation. The uptake and activity of the dansyl-labeled compounds were not dependent on the level of expression of CD4 at the cell surface. Removal of the CADA compounds from the cell culture medium resulted in their release from the cells followed by a complete restoration of CD4 expression. The inability of several fluorescent CADA derivatives to down-modulate CD4 was not associated with their lower cellular uptake and was not reversed by facilitating their cell penetration by a surfactant. These results prove the successful integration of the dansyl fluorophore into the chemical structure of a CD4 down-modulating anti-HIV compound, and show the feasibility of tracking a receptor and its down-modulator simultaneously. These fluorescent CADA analogs with reversible CD4 down-regulating potency can now be applied in further studies on receptor modulation, and in the exploration of their potentials as preventive and therapeutic anti-HIV drugs.
Collapse
Affiliation(s)
- Kurt Vermeire
- Rega Institute for Medical Research, Department of Microbiology and Immunology, Katholieke Universiteit Leuven, Leuven, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Zoffmann S, Bertrand S, Do QT, Bertrand D, Rognan D, Hibert M, Galzi JL. Topological analysis of the complex formed between neurokinin A and the NK2 tachykinin receptor. J Neurochem 2007; 101:506-16. [PMID: 17402972 DOI: 10.1111/j.1471-4159.2007.04473.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neurokinin A stimulates physiological responses in the peripheral and central nervous systems upon interacting primarily with the tachykinin NK2 receptor (NK2R). In this study, the structure of NKA bound to the NK2R is characterised by use of fluorescence resonance energy transfer. Four fluorescent NKA analogues with Texas red introduced at amino acid positions 1, 4, 7 and 10 were prepared. When bound to a NK2R carrying enhanced green fluorescent protein at the N-terminus, all peptides reduce green fluorescent protein fluorescence from 10% to 50% due to energy transfer. The derived donor-acceptor distances are 46, 55, 59 and 69 A for the fluorophore linked to positions 1-10, respectively. The monotonic increase in distance clearly indicates that the peptide adopts an extended structure when bound to its receptor. The present data are used, in combination with rhodopsin structure, fluorescence studies, photoaffinity labelling and site-directed mutagenesis data to design a computer model of the NKA-NK2R complex. We propose that the N-terminus of NKA is exposed and accessible to the extracellular medium. Subsequent amino acids of the NKA peptide become progressively more buried residues up to approximately one-third of the transmembrane-spanning domain.
Collapse
Affiliation(s)
- Sannah Zoffmann
- IFR 85, UMR-CNRS7175, Département Récepteurs et Protéines Membranaires, Ecole Supérieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, Illkirch, France
| | | | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Summerer D, Chen S, Wu N, Deiters A, Chin JW, Schultz PG. A genetically encoded fluorescent amino acid. Proc Natl Acad Sci U S A 2006; 103:9785-9. [PMID: 16785423 PMCID: PMC1502531 DOI: 10.1073/pnas.0603965103] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability to introduce fluorophores selectively into proteins provides a powerful tool to study protein structure, dynamics, localization, and biomolecular interactions both in vitro and in vivo. Here, we report a strategy for the selective and efficient biosynthetic incorporation of a low-molecular-weight fluorophore into proteins at defined sites. The fluorescent amino acid 2-amino-3-(5-(dimethylamino)naphthalene-1-sulfonamide)propanoic acid (dansylalanine) was genetically encoded in Saccharomyces cerevisiae by using an amber nonsense codon and corresponding orthogonal tRNA/aminoacyl-tRNA synthetase pair. This environmentally sensitive fluorophore was selectively introduced into human superoxide dismutase and used to monitor unfolding of the protein in the presence of guanidinium chloride. The strategy described here should be applicable to a number of different fluorophores in both prokaryotic and eukaryotic organisms, and it should facilitate both biochemical and cellular studies of protein structure and function.
Collapse
Affiliation(s)
- Daniel Summerer
- *Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, SR202, La Jolla, CA 92037
| | - Shuo Chen
- *Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, SR202, La Jolla, CA 92037
| | - Ning Wu
- Beth Israel Deaconess Medical Center, Division of Signal Transduction, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115
| | - Alexander Deiters
- Department of Chemistry, North Carolina State University, Campus Box 8240, Raleigh, NC 27695; and
| | - Jason W. Chin
- Division of Protein and Nucleic Acid Chemistry, Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom
| | - Peter G. Schultz
- *Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, SR202, La Jolla, CA 92037
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
23
|
Pagliardini S, Adachi T, Ren J, Funk GD, Greer JJ. Fluorescent tagging of rhythmically active respiratory neurons within the pre-Bötzinger complex of rat medullary slice preparations. J Neurosci 2006; 25:2591-6. [PMID: 15758169 PMCID: PMC6725154 DOI: 10.1523/jneurosci.4930-04.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Elucidation of the neuronal mechanisms underlying respiratory rhythmogenesis is a major focal point in respiratory physiology. An area of the ventrolateral medulla, the pre-Bötzinger complex (preBotC), is a critical site. Attention is now focused on understanding the cellular and network properties within the preBotC that underlie this critical function. The inability to clearly identify key "rhythm-generating" neurons within the heterogeneous population of preBotC neurons has been a significant limitation. Here we report an advancement allowing precise targeting of neurons expressing neurokinin-1 receptors (NK1Rs), which are hypothesized to be essential for respiratory rhythmogenesis. The internalization of tetramethylrhodamine conjugated substance P in rhythmically active medullary slice preparations provided clear visualization of NK1R-expressing neurons for subsequent whole-cell patch-clamp recordings. Among labeled neurons, 82% were inspiratory modulated, and 25% had pacemaker properties. We propose that this approach can be used to greatly expedite progress toward understanding the neuronal processes underlying the control of breathing.
Collapse
Affiliation(s)
- Silvia Pagliardini
- Department of Physiology, Centre for Neuroscience, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | | | | | | | | |
Collapse
|
24
|
Cha JH, Zou MF, Adkins EM, Rasmussen SGF, Loland CJ, Schoenenberger B, Gether U, Newman AH. Rhodamine-labeled 2beta-carbomethoxy-3beta-(3,4-dichlorophenyl)tropane analogues as high-affinity fluorescent probes for the dopamine transporter. J Med Chem 2006; 48:7513-6. [PMID: 16302792 DOI: 10.1021/jm050431y] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Novel fluorescent ligands were synthesized to identify a high-affinity probe that would enable visualization of the dopamine transporter (DAT) in living cells. Fluorescent tags were extended from the N- or 2-position of 2beta-carbomethoxy-3beta-(3,4-dichlorophenyl)tropane, using an ethylamino linker. The resulting 2-substituted (5) and N-substituted (9) rhodamine-labeled ligands provided the highest DAT binding affinities expressed in COS-7 cells (Ki= 27 and 18 nM, respectively) in the series. Visualization of the DAT with 5 and 9 was demonstrated by confocal fluorescence laser scanning microscopy in stably transfected HEK293 cells.
Collapse
Affiliation(s)
- Joo Hwan Cha
- Medicinal Chemistry Section, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
David R, Machova Z, Beck-Sickinger AG. Semisynthesis and application of carboxyfluorescein-labelled biologically active human interleukin-8. Biol Chem 2004; 384:1619-30. [PMID: 14719805 DOI: 10.1515/bc.2003.180] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Human interleukin 8 (hIL-8), a neutrophil-activating and chemotactic cytokine, is known to play an important role in the pathogenesis of a large number of neutrophil-driven inflammatory diseases. This cytokine belongs to the family of CXC chemokines, mediating the response through binding to the seven-transmembrane helical G protein-coupled receptors CXCR1 and CXCR2. For the first time, we employed the expressed protein ligation (EPL) strategy to chemokine synthesis and subsequent modification. The ligation site was chosen with respect to the position of four cysteine residues within the hIL-8 sequence. Ligation with synthetic peptides that carry cysteine at their N-termini resulted in full-length hIL-8 and the specifically carboxyfluorescein-labelled analogue [K69(CF)]hIL-8(1-77). [K69(CF)]hIL-8(1-77) was fully active as shown by inhibition of cAMP production. Furthermore, this analogue was used to study receptor internalisation in human promyelotic HL60 cells that express CXCR1 and CXCR2 receptors. Binding and quenching studies were performed on HL60 membranes and suggest that the C-terminus of IL-8 is accessible to solvent in the receptor-bound state. Thus, we introduce here a powerful approach that allows the site-specific incorporation of chemical modifications into the sequence of chemokines, which opens new avenues for studying IL-8 function.
Collapse
Affiliation(s)
- Ralf David
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, D-04103 Leipzig, Germany
| | | | | |
Collapse
|
26
|
Rasmussen SGF, Adkins EM, Carroll FI, Maresch MJ, Gether U. Structural and functional probing of the biogenic amine transporters by fluorescence spectroscopy. Eur J Pharmacol 2004; 479:13-22. [PMID: 14612134 DOI: 10.1016/j.ejphar.2003.08.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Fluorescence spectroscopy techniques have proven extremely powerful for probing the molecular structure and function of membrane proteins. In this review, it will be described how we have applied a series of these techniques to the biogenic amine transporters, which are responsible for the clearance of dopamine, norepinephrine, and serotonin from the synaptic cleft. In our studies, we have focused on the serotonin transporter (SERT) for which we have established a purification procedure upon expression of the transporter in Sf-9 insect cells. Importantly, the purified transporter displays pharmacological properties in detergent micelles similar to that observed in membranes suggesting that the overall tertiary structure is preserved upon purification. Using this purified SERT preparation and the fluorescent cocaine analogue RTI-233 as a molecular reporter, we have been able to characterize the microenvironment of the cocaine-binding pocket. In current follow-up studies, we are attempting to map the relative position of this binding pocket using fluorescence resonance energy transfer (FRET) between RTI-233 and an acceptor fluorophore covalently attached to endogenous cysteines in the transporter. Finally, it will be described how we recently initiated the implementation of single-molecule confocal fluorescence spectroscopy techniques in our studies of the SERT.
Collapse
Affiliation(s)
- Søren G F Rasmussen
- The Molecular Neuropharmacology Group, Department of Pharmacology 18-6, The Panum Institute, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | | | | | | | | |
Collapse
|
27
|
Shafer A, Voss J. The Use of Spin-Labeled Ligands as Biophysical Probes to Report Real-Time Endocytosis of G Protein-Coupled Receptors in Living Cells. Sci Signal 2004; 2004:pl9. [PMID: 15138329 DOI: 10.1126/stke.2322004pl9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Recycling and degradation of plasma membrane receptors and transporters are fundamental mechanisms for regulating cell signaling and metabolic processes. For many membrane proteins, endocytosis reduces the number of molecules available for transport or signal transduction, providing an attenuation response. Fluorescent reporters attached to either the receptor or ligand have been used to monitor the trafficking of internalization; however, these approaches provide poor resolution for the early endocytic response. Here, we describe the use of a spin-labeled ligand for a heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptor for measuring the kinetics of endocytosis in real time. Included are protocols for designing a nitroxide-labeled ligand and measuring receptor endocytosis in live cells using electron paramagnetic resonance (EPR) spectroscopy. Methods for the evaluation of the receptor binding and activation properties of modified ligands and the generation of a cell line stably expressing high receptor levels are also provided.
Collapse
Affiliation(s)
- Aaron Shafer
- Stanford University Medical Center, Department of Molecular and Cellular Physiology, 157 Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA
| | | |
Collapse
|
28
|
Meini S, Bellucci F, Catalani C, Cucchi P, Patacchini R, Rotondaro L, Altamura M, Giuliani S, Giolitti A, Maggi CA. Mutagenesis at the human tachykinin NK2 receptor to define the binding site of a novel class of antagonists. Eur J Pharmacol 2004; 488:61-9. [PMID: 15044036 DOI: 10.1016/j.ejphar.2004.02.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Revised: 02/04/2004] [Accepted: 02/10/2004] [Indexed: 10/26/2022]
Abstract
The pharmacological profile of novel antagonists endowed with high affinity for the human tachykinin NK(2) receptor is presented. MEN13918 (Ngamma[Nalpha[Nalpha(benzo[b]thiophen-2-yl)carbonyl]-1-aminocyclohexan-1-carboxy]-d-phenylalanyl]-3-cis-aminocyclohexan-1-carboxylic-acid-N-(1S,2R)-2-aminocyclohexyl)amide trifluoroacetate salt) and MEN14268 (Nalpha[Nalpha(benzo[b]thiophen-2-yl)carbonyl)-1-aminocyclopentane-1-carboxyl]-d-phenylalanine-N-[3(morpholin-4-yl)propyl]amide trifluoroacetate salt) were more potent in blocking neurokinin A (NKA, His-Lys-Thr-Asp-Ser-Phe-Val-Gly-Leu-Met-NH(2)) induced contraction in human, which induced greater contraction in human (pK(B) 9.1 and 8.3) than rat (pK(B) 6.8 and <6) urinary bladder smooth muscle preparation in vitro. In agreement with functional data, in membrane preparations of CHO cells stably expressing the human NK(2) receptors, both MEN13918 and MEN14268 potently inhibited the binding of agonist ([(125)I]NKA, K(i) 0.2 and 2.8 nM) and antagonist ([(3)H]nepadutant, K(i) 0.1 and 2.2 nM, [(3)H]SR48968 K(i) 0.4 and 6.9 nM) radioligands. Using site-directed mutagenesis and radioligands binding we identified six residues in the transmembrane (TM) helices that are critical determinants for the studied antagonists affinity. To visualize these experimental findings, we constructed a homology model based on the X-ray crystal structure of bovine rhodopsin and suggested a possible binding mode of these newly discovered antagonist ligands to the human tackykinin NK(2) receptor. Both MEN13918 and MEN14268 bind amongst TM4 (Cys167Gly), TM5 (Tyr206Ala), TM6 (Tyr266Ala, Phe270Ala), and TM7 (Tyr289Phe, Tyr289Thr). MEN13918 and MEN14268 diverging binding profile at Y289 mutations in TM7 (Tyr289Phe, Tyr289Thr) suggests a relation of their different chemical moieties with this residue. Moreover, the different influence on binding of these two ligands by mutations located deep along the inner side of TM6 (Phe270Ala, Tyr266Ala, Trp263Ala) indicates a nonequivalent positioning, although occupying the same binding crevice. Furthermore, binding data indicate the Ile202Phe mutation, which mimics the wild-type rat NK(2) receptor sequence, as a species selectivity determinant. In summary, data with mutant receptors describe, for these new tachykinin NK(2) receptor antagonists, a binding site which is partially overlapping either with that of the cyclized peptide antagonist nepadutant (cyclo-[[Asn(beta-d-GlcNAc)-Asp-Trp-Phe-Dpr-Leu]cyclo(2beta-5beta)] or the nonpeptide antagonist SR48968 ((S)-N-methyl-N[4-(4-acetylamino-4-phenylpiperidino)-2-(3,4-dichlorophenyl)butyl]benzamide).
Collapse
Affiliation(s)
- Stefania Meini
- Department of Pharmacology, Menarini Ricerche S.p.A., Florence, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Bhogal N, Blaney FE, Ingley PM, Rees J, Findlay JBC. Evidence for the Proximity of the Extreme N-Terminus of the Neurokinin-2 (NK2) Tachykinin Receptor to Cys167 in the Putative Fourth Transmembrane Helix. Biochemistry 2004; 43:3027-38. [PMID: 15023054 DOI: 10.1021/bi035475s] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neurokinin-2 receptor (NK(2)R) binding of [(3)H]-SR48968, a piperidinyl antagonist, is inhibited by methanethiosulfonate ethylammonium (MTSEA) in a time- and concentration-dependent manner. By the systematic alanine replacement of putative loop and transmembrane region cysteine residues (Cys(4), Cys(81), Cys(167), Cys(262), Cys(281), Cys(308), and Cys(309)), we have determined that MTSEA perturbs [(3)H]-SR48968 binding by modifying Cys(167) in transmembrane helix 4. Data were substantiated using glycine, serine, and threonine substitutions of Cys(167). MTSEA preferentially modifies cysteine residues that are in proximity to a negatively charged environment. Hence, aspartate and glutamate residues were systematically substituted with leucine or valine, respectively, and the inhibitory effects of MTSEA on [(3)H]-SR48968 binding were reevaluated to determine those acidic residues close to the MTSEA binding crevice. Most significantly, substitution of Asp(5) in the receptor's extreme N-terminus abolished the effects of MTSEA on [(3)H]-SR48968 binding. Therefore, our data would suggest close association of the extreme N-terminus with the extracellular surfaces of helices 4 and 3 in the NK(2)R in forming a binding crevice for MTSEA. The inhibition of SR48968 binding appears to result from loss of the SR48968 binding conformation of Gln(166) induced by MTSEA when it is coupled to Cys(167). Hence, it is proposed that there is mutually exclusive hydrogen bonding of SR48968 and MTSEA to Gln(166).
Collapse
Affiliation(s)
- Nirmala Bhogal
- School of Biochemistry and Molecular Biology, University of Leeds, UK.
| | | | | | | | | |
Collapse
|
30
|
Shafer AM, Bennett VJ, Kim P, Voss JC. Probing the binding pocket and endocytosis of a G protein-coupled receptor in live cells reported by a spin-labeled substance P agonist. J Biol Chem 2003; 278:34203-10. [PMID: 12821667 DOI: 10.1074/jbc.m212712200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To probe the molecular nature of the binding pocket of a G protein-coupled receptor and the events immediately following the binding and activation, we have modified the substance P peptide, a potent agonist for the neurokinin-1 receptor, with a nitroxide spin probe specifically attached at Lys-3. The agonist properties and binding affinity of the spin-labeled substance P are similar to the native peptide. Using electron paramagnetic resonance (EPR) spectroscopy, the substance P analogue is capable of reporting the microenvironment found in the binding pocket of the receptor. The EPR spectrum of bound peptide indicates that the Lys-3 portion of the agonist is highly flexible. In addition, we detect a slight increase in the mobility of the bound peptide in the presence of a non-hydrolyzable analogue of GTP, indicative of the alternate conformational states described for this class of receptor. The down-regulation of neurokinin-tachykinin receptors is accomplished by a rapid internalization of the activated protein. Thus, it was also of interest to establish whether spin-labeled substance P could serve as a real time reporter for endocytosis. Our findings show the receptor agonist is efficiently endocytosed and the loss of EPR signal upon internalization provides a real time monitor of endocytosis. The rapid loss of signal suggests that endosomal trafficking vesicles maintain a reductive environment. Whereas the reductive capacity of the lysosome has been established, our findings indicate this capacity in early endosomes as well.
Collapse
Affiliation(s)
- Aaron M Shafer
- Department of Biological Chemistry, University of California, Davis, California 95616, USA
| | | | | | | |
Collapse
|
31
|
Berque-Bestel I, Soulier JL, Giner M, Rivail L, Langlois M, Sicsic S. Synthesis and characterization of the first fluorescent antagonists for human 5-HT4 receptors. J Med Chem 2003; 46:2606-20. [PMID: 12801225 DOI: 10.1021/jm0307887] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fluorescent antagonists for human 5-HT(4) receptors were synthesized based on ML10302 1, a potent 5-HT(4) receptor agonist and on piperazine analogue 2. These molecules were derived with three fluorescent moieties, dansyl, naphthalimide, and NBD (7-nitrobenz-2-oxa-1,3-diazol-4-yl), through alkyl chains. The synthesized molecules were evaluated in binding assays on the recently cloned human 5-HT(4(e)) receptor isoform stably expressed in C6 glial cells with [(3)H]GR113808 as the radioligand. The affinity values depended upon the basal structure together with the alkyl chain length. The derivatives based on ML10302 were more potent ligands than the derivatives based on piperazine analogue. For ML10302-based ligands, dansyl and NBD derivatives attached through a chain length of one carbon atom 17a and 32, respectively, led to affinities close to the affinity of ML10302. The most potent compounds 17a, 28, and 32 produced an inhibition of the 5-HT stimulated cyclic AMP synthesis in the same cellular system with nanomolar K(b) values. Fluorescent properties of 17a, 28, and 32 were more particularly studied. Interactions of the fluorescent ligand 28 with the h5-HT(4(e)) receptor were indicated using h5-HT(4(e)) receptor transfected C6 glial cell membranes and entire cells. Ligand 28 was also used in fluorescence microscopy experiments in order to label h5-HT(4(e)) receptor transfected C6 glial cells, and subcellular localization of these receptors was more precisely determined using confocal microscopy.
Collapse
Affiliation(s)
- Isabelle Berque-Bestel
- Biocis, UMR C8076 (CNRS), Faculté de Pharmacie, 5, rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France
| | | | | | | | | | | |
Collapse
|
32
|
Bandari PS, Qian J, Yehia G, Joshi DD, Maloof PB, Potian J, Oh HS, Gascon P, Harrison JS, Rameshwar P. Hematopoietic growth factor inducible neurokinin-1 type: a transmembrane protein that is similar to neurokinin 1 interacts with substance P. REGULATORY PEPTIDES 2003; 111:169-78. [PMID: 12609765 DOI: 10.1016/s0167-0115(02)00288-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Neurokinin 1 (NK-1) is a member of seven transmembrane G protein-coupled receptors. NK-1 interacts with peptides belonging to the tachykinin family and showed preference for substance P (SP). NK-1 is induced in bone marrow (BM) stroma. NK-1-SP interactions could lead to changes in the functions of lymphohematopoietic stem cell (LHSC). This report describes the cloning and characterization of a cDNA clone isolated after screening of three cDNA libraries with an NK-1-specific probe. Based on its expression, the cDNA clone was designated hematopoietic growth factor inducible neurokinin-1 type (HGFIN). Computational analyses predicted that HGFIN is transmembrane with the carboxyl terminal extracellular. Proteomic studies with purified HGFIN and SP showed noncovalent interactions. HGFIN-SP interactions were supported by transient expression of HGFIN in CHO cells. Transient expression of HGFIN in unstimulated BM fibroblasts led to the induction of endogenous NK-1. Since NK-1 expression in BM fibroblasts requires cell stimulation, these studies suggest that there might be intracellular crosstalk between NK-1 and HGFIN. Northern analyses with total RNA from different BM cell subsets showed that HGFIN was preferentially expressed in differentiated cells. This suggests that HGFIN might be involved in the maturation of LHSC. HGFIN was detected in several other tissues, but not in brain where NK-1 is constitutively expressed.
Collapse
Affiliation(s)
- Persis S Bandari
- Department of Obstetrics, Gynecology and Women's Health, UMDNJ-New Jersey Medical School, Newark, NJ, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ulfers AL, Piserchio A, Mierke DF. Extracellular domains of the neurokinin-1 receptor: structural characterization and interactions with substance P. Biopolymers 2003; 66:339-49. [PMID: 12539262 DOI: 10.1002/bip.10312] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The technical difficulties associated with the structure determination of membrane proteins have limited the structural information available for the ligand binding to G-protein coupled receptors (GPCRs). Here, we describe a reductionist approach to GPCR structure determination in which the extracellular domains of the receptor are examined by high-resolution NMR in the presence of a membrane mimetic. The resulting structural features are then incorporated into a molecular model of the receptor, utilizing the x-ray structure of rhodopsin to generate the topological orientation of the transmembrane helices. The results of our study of the neurokinin-1 receptor (NK-1R) and its interactions with substance P (SP) are detailed here. The structure of the N-terminus, NK-1R(1-39), and of the third extracellular loop, NK-1R(264-290), in the presence of dodecylphosphocholine micelles is described. Our findings provide a structural basis for the interpretation of the results from other methods including mutagenesis, fluorescence, and photoaffinity labeling experiments, resulting in an experimentally based, high-resolution model of SP binding to NK-1R.
Collapse
Affiliation(s)
- Amy L Ulfers
- Department of Molecular Pharmacology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | | | | |
Collapse
|
34
|
Abstract
Neuropeptide Y (NPY) is a 36 amino acids peptide amide that was isolated for the first time almost 20 years ago from porcine brain. NPY displays a multiplicity of physiological effects that are transmitted by at least six G-protein coupled receptors (GPCRs) named Y(1), Y(2), Y(3), Y(4), Y(5), and y(6). Because of the difficulty in obtaining high-resolution crystallographic structures from GPCRs that all belong to seven transmembrane helices proteins, a variety of biophysical methods have been applied in order to characterize the interaction of ligand and receptor. In this review article we present the most relevant outcomes of the studies performed in this field by our group and others. The use of photoaffinity labeling allowed the molecular characterization of the Y(2) receptor. The concerted application of molecular modeling and mutagenesis studies led to a model for the interaction of the natural agonist and nonpeptide antagonists with the Y(1) receptor. The three-dimensional (3D) structure and dynamics of micelle-bound NPY and their implications for receptor selection have been studied by NMR. The characterization of the tertiary and quaternary structure of the NPY dimer in solution at millimolar concentrations has been performed by NMR and extended to physiologically relevant concentrations by fluorescence resonance energy transfer (FRET) experiments performed with fluorescence-labeled analogues.
Collapse
Affiliation(s)
- A Bettio
- Institute of Biochemistry, University of Leipzig, Talstrasse 33, D-04103, Leipzig, Germany
| | | |
Collapse
|
35
|
Bettio A, Dinger MC, Beck-Sickinger AG. The neuropeptide Y monomer in solution is not folded in the pancreatic-polypeptide fold. Protein Sci 2002; 11:1834-44. [PMID: 12070335 PMCID: PMC2373651 DOI: 10.1110/ps.0204902] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Fluorescence-labelled analogs of NPY, a 36-amino acid peptide amide, were synthesized by solid-phase peptide synthesis and used for fluorescence-resonance energy transfer studies to investigate the conformation. Energy-transfer efficiency measurements in different media at the concentration of 10 microM are in agreement with a model of the NPY structure proposed by NMR studies (performed at millimolar concentration) in which the C-terminal part of the molecule adopts an alpha-helical conformation while the N-terminal part is flexible. According to this model, the alpha-helix is stabilized by intermolecular hydrophobic interactions because of the formation of dimers. The decrease of the peptide concentration causes a shift of the dimerization equilibrium toward the monomeric form. Energy-transfer efficiency measurements performed at lower concentrations do not support the hypothesis of the folding back of the N-terminal tail onto the C-terminal alpha-helix to yield the so-called "PP-fold" conformation. This structure is observed in the crystal structure of avian pancreatic polypeptide, a member of the NPY peptide hormone family, and it has been considered to be the bioactive one. Our results complete the structural characterization of NPY in solution at concentration ranges in which NMR experiments are not feasible. Furthermore, these results open the way to study the conformation of the receptor-bound ligand.
Collapse
Affiliation(s)
- Andrea Bettio
- Institute of Biochemistry, University of Leipzig, Talstrasse 33, D-04103 Leipzig, Germany
| | | | | |
Collapse
|
36
|
Abstract
Peptide recognition by G-protein coupled receptors (GPCRs) is reviewed with an emphasis on the indirect approach used to determine the receptor-bound conformation of peptide ligands. This approach was developed in response to the lack of detailed structural information available for these receptors. Recent advances in the structural determination of rhodopsin (the GPCR of the visual system) by crystallography have provided a scaffold for homology modeling of the inactive state of a wide variety of GPCRs that interact with peptide messages. Additionally, the ability to mutate GPCRs and assay compounds of similar chemical structure to test a common binding site on the receptor provides a firm experimental basis for structure-activity studies. Recognition motifs, common in other well-studied systems such as proteolytic enzymes and major histocompatibility class receptors (MHC) are reviewed briefly to provide a basis of comparison. Finally, the development of true peptidomimetics is contrasted with nonpeptide ligands, discovered through combinatorial chemistry. In many systems, the evidence suggests that the peptide ligands bind at the interface between the transmembrane segments and the extracellular loops, while nonpeptide antagonists bind within the transmembrane segments. Plausible models of GPCRs and the mechanism by which they activate G-proteins on binding peptides are beginning to emerge.
Collapse
Affiliation(s)
- G R Marshall
- Center for Computational Biology, 700 S. Euclid Avenue, Washington University, St. Louis, MO 63110, USA.
| |
Collapse
|
37
|
Knight SMG, Umezawa N, Lee HS, Gellman SH, Kay BK. A fluorescence polarization assay for the identification of inhibitors of the p53-DM2 protein-protein interaction. Anal Biochem 2002; 300:230-6. [PMID: 11779115 DOI: 10.1006/abio.2001.5468] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Improper function of the tumor suppressor protein p53 is a contributing factor in many human cancers. In normal cells, p53 acts to arrest the cell cycle in response to DNA damage or nucleotide depletion. One mechanism of regulating the amount of p53 in the cell is through the action of the Double Minute 2 protein, DM2 (also known as MDM2), which ubiquitinates p53 and targets it for proteosomal degradation. In a number of human cancers, the DM2 gene is amplified or overexpressed, leading to inadequate levels of p53 for cell cycle arrest or apoptosis. With the goal of restoring p53 function in cancers that overexpress DM2, we are developing inhibitors of the p53-DM2 protein-protein interaction that structurally mimic the N-terminal segment of p53 that binds to DM2. To assist this effort, we have devised a fluorescence polarization assay that quantifies the interaction between the N-terminal regions of both proteins in 384-well microtiter plates. Using this assay, we have demonstrated that a peptide with a nonhydrolyzable beta-amino acid substitution binds DM2 with an affinity comparable to a p53 peptide that is composed of only alpha-amino acids.
Collapse
Affiliation(s)
- Stephen M G Knight
- Department of Pharmacology, University of Wisconsin-Madison, Madison, Wisconsin 53706-1532, USA
| | | | | | | | | |
Collapse
|
38
|
Joshi DD, Dang A, Yadav P, Qian J, Bandari PS, Chen K, Donnelly R, Castro T, Gascon P, Haider A, Rameshwar P. Negative feedback on the effects of stem cell factor on hematopoiesis is partly mediated through neutral endopeptidase activity on substance P: a combined functional and proteomic study. Blood 2001; 98:2697-706. [PMID: 11675340 DOI: 10.1182/blood.v98.9.2697] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hematopoietic regulation is a complex but dynamic process regulated by intercellular and intracellular interactions within the bone marrow (BM) microenvironment. Through neurokinin-1 (NK-1) and NK-2 receptors, peptides (eg, substance P [SP]) encoded by the preprotachykinin-I gene mediate distinct hematopoietic effects. Cytokines, associated with hematopoietic stimulation, and SP regulate the expression of each other in BM mesenchymal and immune cells. Neutral endopeptidase (NEP) uses SP as a substrate to produce SP(1-4), which inhibits the proliferation of matured myeloid progenitor. This study determines whether the degradation of SP to SP(1-4) by endogenous NEP in BM stroma could be a feedback on hematopoietic stimulation by stem cell factor (SCF). SP(1-4) induced the production of transforming growth factor (TGF)-beta and tumor necrosis factor-alpha in BM stroma. TGF-beta production accounted for part of the inhibitory effects by SP(1-4) on the proliferation of early (granulocyte-macrophage colony-forming units) and late (long-term culture-initiating cells) hematopoietic progenitors. Enzyme-linked immunosorbent assays and/or protein-chip arrays indicated a timeline change of SP to SP(1-4) in BM stroma stimulated with SCF, which correlated with increase in NEP messenger RNA. Since SP and its fragment, SP(1-4), interact with the same receptor to mediate opposing hematopoietic effects, 2 interactive studies were done to understand the dual responses of NK-1: (1) a 3-dimensional molecular model of NK-1 and SP and (2) screening of a random dodecapeptide library for SP(1-4) interacting sites. The effects of SP(1-4) on hematopoietic progenitors and the timeline change of SP to SP(1-4), together with the 3-dimensional model, provide a partial explanation for the feedback on the stimulatory effects of SCF and SP on hematopoiesis.
Collapse
Affiliation(s)
- D D Joshi
- Information System and Technology-Academic Computer Center and the Department of Pathology and Laboratory Science, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, NJ 07103, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Mierke DF, Giragossian C. Peptide hormone binding to G-protein-coupled receptors: structural characterization via NMR techniques. Med Res Rev 2001; 21:450-71. [PMID: 11579442 DOI: 10.1002/med.1018] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
G-protein-coupled receptors (GPCRs) allow cells to respond to calcium, hormones, and neurotransmitters. Not surprisingly, they currently make up the largest family of validated drug targets. Rational drug design for molecular regulators targeting GPCRs has been limited to theoretical-based computational approaches. X-ray crystallography of intact GPCRs has provided the topological orientation of the seven transmembrane helices, but limited structural information of the extracellular and intracellular loops and protein termini. In this review we detail an NMR-based approach which provides the high-resolution structural features on the extracellular domains of GPCRs and the ligand/receptor complexes formed upon titration of the peptide hormone. The results provide important contact points and a high-resolution description of the ligand/receptor interactions, which may be useful for the rational design of therapeutic agents targeting GPCRs. Recent results from our investigation of the cholecystokinin peptide hormone system are used to highlight this approach.
Collapse
Affiliation(s)
- D F Mierke
- Department of Molecular Pharmacology, Division of Biology & Medicine, Brown University, Providence, Rhode Island 02912, USA.
| | | |
Collapse
|
40
|
Pellegrini M, Bremer AA, Ulfers AL, Boyd ND, Mierke DF. Molecular characterization of the substance P*neurokinin-1 receptor complex: development of an experimentally based model. J Biol Chem 2001; 276:22862-7. [PMID: 11294871 DOI: 10.1074/jbc.m101057200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Molecular models for the interaction of substance P (SP) with its G protein-coupled receptor, the neurokinin-1 receptor (NK-1R), have been developed. The ligand.receptor complex is based on experimental data from a series of photoaffinity labeling experiments and spectroscopic structural studies of extracellular domains of the NK-1R. Using the ligand/receptor contact points derived from incorporation of photolabile probes (p-benzoylphenylalanine (Bpa)) into SP at positions 3, 4, and 8 and molecular dynamics simulations, the topological arrangement of SP within the NK-1R is explored. The model incorporates the structural features, determined by high resolution NMR studies, of the second extracellular loop (EC2), containing contact points Met(174) and Met(181), providing important experimentally based conformational preferences for the simulations. Extensive molecular dynamics simulations were carried out to probe the nature of the two contact points identified for the Bpa(3)SP analogue (Bremer, A. A., Leeman, S. E., and Boyd, N. D. (2001) J. Biol. Chem. 276, 22857-22861), examining modes of ligand binding in which the contact points are fulfilled sequentially or simultaneously. The resulting ligand.receptor complex has the N terminus of SP projecting toward transmembrane helix (TM) 1 and TM2, exposed to the solvent. The C terminus of SP is located in proximity to TM5 and TM6, deeper into the central core of the receptor. The central portion of the ligand, adopting a helical loop conformation, is found to align with the helices of the central regions EC2 and EC3, forming important interactions with both of these extracellular domains. The model developed here allows for atomic insight into the biochemical data currently available and guides targeting of future experiments to probe specific ligand/receptor interactions and thereby furthers our understanding of the functioning of this important neuropeptide system.
Collapse
Affiliation(s)
- M Pellegrini
- Department of Molecular Pharmacology, Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | | | |
Collapse
|
41
|
Bennett VJ, Simmons MA. Analysis of fluorescently labeled substance P analogs: binding, imaging and receptor activation. BMC CHEMICAL BIOLOGY 2001; 1:1. [PMID: 11418083 PMCID: PMC33344 DOI: 10.1186/1472-6769-1-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2001] [Accepted: 06/13/2001] [Indexed: 11/10/2022]
Abstract
BACKGROUND: Substance P (SP) is a peptide neurotransmitter found in central and peripheral nerves. SP is involved in the control of smooth muscle, inflammation and nociception. The amino acid sequence of SP is Arg-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Met-NH2. Five different forms of fluorescently labeled SP have recently been synthesized, in which Alexa 488, BODIPY Fl, fluorescein, Oregon Green 488 or tetramethylrhodamine has been covalently linked to SP at Lys3. Here, these novel analogs are characterized as to their ligand binding, receptor activation and fluorescence labeling properties. RESULTS: Competition binding studies, using radiolabeled [125I] SP, revealed that all of the labeled forms of SP, except for Alexa 488-SP, effectively competed with radiolabeled SP for binding at the rat SP receptor. With the exception of Alexa 488-SP, all of the SP analogs produced Ca++ elevations and fluorescence labeling of the SP receptor expressed in Chinese hamster ovary cells. In SP-responsive neurons, BODIPY Fl-SP and Oregon Green 488-SP were as effective as unlabeled SP in producing a reduction of the M-type K+ current. Fluorescein-SP produced variable results, while tetramethylrhodamine-SP was less potent and Alexa 488-SP was less effective on intact neurons. CONCLUSIONS: The above results show that fluorescent labeling of SP altered the biological activity and the binding properties of the parent peptide. Oregon Green 488 and BODIPY FL-SP are the most useful fluorophores for labeling SP without affecting its biological activity. Given these results, these probes can now be utilized in further investigations of the mechanisms of SPR function, including receptor localization, internalization and recycling.
Collapse
Affiliation(s)
- Vicki J Bennett
- Department of Neurobiology and Pharmacology, Northeastern Ohio Universities College of Medicine, Rootstown, OH 44272 and The Neuropharmacology Lab, Department of Neurobiology and Pharmacology, Marshall University School of Medicine, Huntington, WV 25704, USA
| | - Mark A Simmons
- Department of Neurobiology and Pharmacology, Northeastern Ohio Universities College of Medicine, Rootstown, OH 44272 and The Neuropharmacology Lab, Department of Neurobiology and Pharmacology, Marshall University School of Medicine, Huntington, WV 25704, USA
| |
Collapse
|
42
|
Rasmussen SG, Carroll FI, Maresch MJ, Jensen AD, Tate CG, Gether U. Biophysical characterization of the cocaine binding pocket in the serotonin transporter using a fluorescent cocaine analogue as a molecular reporter. J Biol Chem 2001; 276:4717-23. [PMID: 11062247 DOI: 10.1074/jbc.m008067200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To explore the biophysical properties of the binding site for cocaine and related compounds in the serotonin transporter SERT, a high affinity cocaine analogue (3beta-(4-methylphenyl)tropane-2beta-carboxylic acid N-(N-methyl-N-(4-nitrobenzo-2-oxa-1,3-diazol-7-yl)ethanolamine ester hydrochloride (RTI-233); K(I) = 14 nm) that contained the environmentally sensitive fluorescent moiety 7-nitrobenzo-2-oxa-1,3-diazole (NBD) was synthesized. Specific binding of RTI-233 to the rat serotonin transporter, purified from Sf-9 insect cells, was demonstrated by the competitive inhibition of fluorescence using excess serotonin, citalopram, or RTI-55 (2beta-carbomethoxy-3beta-(4-iodophenyl)tropane). Moreover, specific binding was evidenced by measurement of steady-state fluorescence anisotropy, showing constrained mobility of bound RTI-233 relative to RTI-233 free in solution. The fluorescence of bound RTI-233 displayed an emission maximum (lambda(max)) of 532 nm, corresponding to a 4-nm blue shift as compared with the lambda(max) of RTI-233 in aqueous solution and corresponding to the lambda(max) of RTI-233 in 80% dioxane. Collisional quenching experiments revealed that the aqueous quencher potassium iodide was able to quench the fluorescence of RTI-233 in the binding pocket (K(SV =) 1.7 m(-)(1)), although not to the same extent as free RTI-233 (K(SV =) 7.2 m(-)(1)). Conversely, the hydrophobic quencher 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) quenched the fluorescence of bound RTI-233 more efficiently than free RTI-233. These data are consistent with a highly hydrophobic microenvironment in the binding pocket for cocaine-like uptake inhibitors. However, in contrast to what has been observed for small-molecule binding sites in, for example, G protein-coupled receptors, the bound cocaine analogue was still accessible for aqueous quenching and, thus, partially exposed to solvent.
Collapse
Affiliation(s)
- S G Rasmussen
- Division of Cellular and Molecular Physiology, Department of Medical Physiology, The Panum Institute, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | | | | | | | | | | |
Collapse
|
43
|
Zoffmann S, Turcatti G, Galzi J, Dahl M, Chollet A. Synthesis and characterization of fluorescent and photoactivatable MIP-1alpha ligands and interactions with chemokine receptors CCR1 and CCR5. J Med Chem 2001; 44:215-22. [PMID: 11170631 DOI: 10.1021/jm000982i] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photoaffinity and fluorescent analogues of the 70-amino acid chemokine macrophage inflammatory protein-1alpha (MIP-1alpha) were designed, synthesized, characterized, and applied to probe MIP-1alpha interactions with the chemokine receptors CCR1 and CCR5. The photoactivatable MIP-1alpha ligand, BP-MIP-1alpha, and the fluorescent ligand, Flu-MIP-1alpha were prepared by selective chemical coupling of p-benzoylphenylthiocarbamyl or fluoresceinthiocarbamyl, respectively, at the N-terminus of MIP-1alpha. Both ligands BP-MIP-1alpha and Flu-MIP-1alpha retained high binding affinity and agonist potency at CCR1 and CCR5. Photoaffinity labeling of CCR1 and CCR5 receptors stably expressed in CHO cells resulted in specific covalent attachment of [(125)I]BP-MIP-1alpha and production of protein complexes of 54 and 48 kDa, respectively, on SDS-PAGE. This represents the first photo-cross-linking between a chemokine and its receptor. Flu-MIP-1alpha selectively labeled CCR1 or CCR5 receptors expressed in CHO cells and was used to characterize receptor binding domains. When bound to CCR1 or CCR5 receptors, the fluorescence signal of Flu-MIP-1alpha was quenched by collision with iodide indicating that the N-terminal end of MIP-1alpha is accessible to the solvent. These data strongly suggest that the N-terminal end of MIP-1alpha interacts with domains of CCR1 or CCR5 receptors located at the extracellular surface. The photoactivatable BP-MIP-1alpha described here should prove valuable for the identification of contact sites on receptors by photoaffinity labeling experiments.
Collapse
Affiliation(s)
- S Zoffmann
- Serono Pharmaceutical Research Institute, 14 chemin des Aulx, CH-1228 Plan-les-Ouates, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
44
|
|
45
|
Vedani A, Briem H, Dobler M, Dollinger H, McMasters DR. Multiple-conformation and protonation-state representation in 4D-QSAR: the neurokinin-1 receptor system. J Med Chem 2000; 43:4416-27. [PMID: 11087566 DOI: 10.1021/jm000986n] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Using a 4D-QSAR approach (software Quasar) allowing for multiple-conformation, orientation, and protonation-state ligand representation as well as for the simulation of local induced-fit phenomena, we have validated a family of receptor surrogates for the neurokinin-1 (NK-1) receptor system. The evolution was based on a population of 500 receptor models and simulated during 40 000 crossover steps, corresponding to 80 generations. It yielded a cross-validated r(2) of 0.887 for the 50 ligands of the training set (represented by a total of 218 conformers and protomers) and a predictive r(2) of 0.834 for the 15 ligands of the test set (70 conformers and protomers). A series of five "scramble tests" (with an average predictive r(2) of -0.438) demonstrates the sensitivity of the surrogate toward the biological data, for which it should establish a QSAR. On the basis of this model, the activities of 12 new compounds - four of which have been synthesized and tested in the meantime - are predicted. For most of the NK-1 antagonists, the genetic algorithm selected a single entity - out of the up to 12 conformers or protomers - to preferably bind to the receptor surrogate. Moreover, the evolution converged at an identical protonation scheme for all NK-1 antagonists. This indicates that 4D-QSAR techniques may, indeed, reduce the bias associated with the choice of the bioactive conformation as each ligand molecule can be represented by an ensemble of conformations, orientations, and protonation states.
Collapse
Affiliation(s)
- A Vedani
- Biographics Laboratory 3R, Missionsstrasse 60, CH-4055 Basel, Switzerland. www.biograf.ch
| | | | | | | | | |
Collapse
|
46
|
Augé S, Bersch B, Tropis M, Milon A. Characterization of substance P-membrane interaction by transferred nuclear Overhauser effect. Biopolymers 2000; 54:297-306. [PMID: 10935970 DOI: 10.1002/1097-0282(20001015)54:5<297::aid-bip10>3.0.co;2-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Substance P, one of the mammalian tachykinins, is known to interact strongly with lipid bilayers and this interaction may play a role in the receptor-peptide recognition process. The conformation of substance P bound to vesicles consisting of perdeuterated phosphatidylcholine has been investigated by means of two-dimensional transferred nuclear Overhauser (trNOE) spectroscopy. Nuclear magnetic resonance data analysis resulted in a unique conformational family characterized by a well-defined conformation of the last seven C-terminal amino acids, which consists of a sequence of nonstandard turns following each other in a helix-like manner. The absence of short- or medium-range trNOE in the N-terminal part indicates its structural flexibility.
Collapse
Affiliation(s)
- S Augé
- Institut de Pharmacologie et de Biologie Structurale, CNRS, 205 rte de Narbonne, 31077 Toulouse, France
| | | | | | | |
Collapse
|
47
|
Abstract
The structural characterization of peptide hormones and their interaction with G-protein (guanine nucleotide-binding regulatory protein) coupled receptors by high-resolution nmr is described. The general approaches utilized can be categorized into three different classes based on their target: the ligand, the receptor, and the ligand/receptor complex. Examples of these different approaches, aimed at facilitating the rational design of peptides and peptidomimetics with improved pharmacological profiles, based on work carried out in our own laboratory, are given. In the ligand-based approach, the high-resolution structures of bradykinin analogues allowing for the development of a structure-activity relationship for activation of the B1 receptor are described. Studies targeting the receptor are to a large extent theoretical, based on computational molecular modeling. However, experimentally based structural features provided by high-resolution nmr can be used to great advantage, providing insight into the mechanism of receptor function, as illustrated here with results from parathyroid hormone. A similar combination of theoretical methods, supplemented by high-resolution structures from nmr has been utilized to probe the formation and stabilization of the ligand/receptor complex both for parathyroid hormone and cholecystokinin. In each of these three approaches, the importance of well-designed peptide mimetics and accurate structural analysis by high-resolution nmr, will be highlighted.
Collapse
Affiliation(s)
- M Pellegrini
- Department of Molecular Pharmacology, Physiology & Biotechnology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | | |
Collapse
|
48
|
Perrine SA, Whitehead TL, Hicks RP, Szarek JL, Krause JE, Simmons MA. Solution structures in SDS micelles and functional activity at the bullfrog substance P receptor of ranatachykinin peptides. J Med Chem 2000; 43:1741-53. [PMID: 10794691 DOI: 10.1021/jm000093v] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A set of novel tachykinin-like peptides has been isolated from bullfrog brain and gut. These compounds, ranatachykinin A (RTKA), ranatachykinin B (RTKB), and ranatachykinin C (RTKC), were named for their source, Rana catesbeiana, and their homology to the tachykinin peptide family. We present the first report of the micelle-bound structures and pharmacological actions of the RTKs. Generation of three-dimensional structures of the RTKs in a membrane-model environment using (1)H NMR chemical shift assignments, two-dimensional NMR techniques, and molecular dynamics and simulated annealing procedures allowed for the determination of possible prebinding ligand conformations. RTKA, RTKB, and RTKC were determined to be helical from the midregion to the C-terminus (residues 4-10), with a large degree of flexibility in the N-terminus and minor dynamic fraying at the end of the C-terminus. The pharmacological effects of the RTKs were studied by measuring the elevation of intracellular Ca(2+) in Chinese hamster ovarian cells stably transfected with the bullfrog substance P receptor (bfSPR). All of the RTKs tested elicited Ca(2+) elevations with a rank order of maximal effect of RTKA >/= SP > RTKC >/= RTKB. A high concentration (1 microM) of the neuropeptides produced varying degrees of desensitization to a subsequent challenge with the same or different peptide, while a low concentration (1 pM) produced sensitization at the bfSPR. Our data suggest differences in amino acid side chains and their charged states at the C-terminal sequence or differences in secondary structure at the N-terminus, which do not overlap according to the findings in this paper, may explain the differing degree and type of receptor activation seen at the bfSPR.
Collapse
Affiliation(s)
- S A Perrine
- Department of Pharmacology, Marshall University School of Medicine and Huntington VA Medical Center, 1542 Spring Valley Drive, Huntington, West Virginia 25704, USA
| | | | | | | | | | | |
Collapse
|
49
|
Madsen BW, Beglan CL, Spivak CE. Fluorescein-labeled naloxone binding to mu opioid receptors on live Chinese hamster ovary cells using confocal fluorescent microscopy. J Neurosci Methods 2000; 97:123-31. [PMID: 10788666 DOI: 10.1016/s0165-0270(00)00175-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A general method of confocal laser scanning microscopy was used to demonstrate specific binding of fluorescein-labeled naloxone (FNAL, 10-50 nM) to stably transfected mu opioid receptors on live Chinese hamster ovary cells. Nonspecific binding was visually indistinguishable from autofluorescence in cells with intact cell membranes. Fluorescent labeling of cell perimeters, not present in control nontransfected cells, reversed in transfected cells upon washout of FNAL or following the addition of either unlabeled naloxone (25 microM) or the mu specific antagonist CTOP (1 microM). The addition of the delta and kappa specific agonists DPDPE (1 microM) and U50488 (1 microM), respectively, failed to reverse the labeling. Further evidence of specific binding was obtained from kinetic experiments, where it was observed that only transfected cells showed a time-dependent exponential change in fluorescence that permitted estimation of association and dissociation binding rate constants of (5.8+/-0.5, mean+/-S.E.M.)x10(5) M(-1) s(-1) and (3.3+/-0.6)x10(-3) s(-1), respectively and a kinetically derived dissociation constant of 5.7+/-1.4 nM. These estimates were comparable to those obtained under similar conditions in radioligand binding experiments using [3H]-naloxone.
Collapse
MESH Headings
- Animals
- Artifacts
- Binding, Competitive
- CHO Cells
- Cloning, Molecular
- Contrast Media/metabolism
- Contrast Media/pharmacology
- Cricetinae
- Fluorescein/metabolism
- Fluorescein/pharmacology
- Kinetics
- Microscopy, Confocal/methods
- Microscopy, Fluorescence/methods
- Naloxone/metabolism
- Naloxone/pharmacology
- Narcotic Antagonists/metabolism
- Narcotic Antagonists/pharmacology
- Radioligand Assay
- Receptors, Opioid, mu/analysis
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Sensitivity and Specificity
- Transfection
- Tritium
Collapse
Affiliation(s)
- B W Madsen
- Department of Pharmacology, University of Western Australia, Nedlands, Australia
| | | | | |
Collapse
|
50
|
Abstract
G protein-coupled, seven-transmembrane segment receptors (GPCRs or 7TM receptors), with more than 1000 different members, comprise the largest superfamily of proteins in the body. Since the cloning of the first receptors more than a decade ago, extensive experimental work has uncovered multiple aspects of their function and challenged many traditional paradigms. However, it is only recently that we are beginning to gain insight into some of the most fundamental questions in the molecular function of this class of receptors. How can, for example, so many chemically diverse hormones, neurotransmitters, and other signaling molecules activate receptors believed to share a similar overall tertiary structure? What is the nature of the physical changes linking agonist binding to receptor activation and subsequent transduction of the signal to the associated G protein on the cytoplasmic side of the membrane and to other putative signaling pathways? The goal of the present review is to specifically address these questions as well as to depict the current awareness about GPCR structure-function relationships in general.
Collapse
Affiliation(s)
- U Gether
- Department of Medical Physiology, Panum Institute, University of Copenhagen, Denmark.
| |
Collapse
|