1
|
Kim JW, Kim YJ. Cholesin and GPR146 in Modulating Cholesterol Biosynthesis. Pharmacology 2024:1-7. [PMID: 39008961 DOI: 10.1159/000540351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Cholesterol homeostasis in the human body is a crucial process that involves a delicate balance between dietary cholesterol absorption in the intestine and de novo cholesterol synthesis in the liver. Both pathways contribute significantly to the overall pool of cholesterol in the body, influencing plasma cholesterol levels and impacting cardiovascular health. Elevated absorption of cholesterol in the intestines has a suppressive impact on the synthesis of cholesterol in the liver, serving to preserve cholesterol balance. Nonetheless, the precise mechanisms driving this phenomenon remain largely unclear. SUMMARY This review aimed to discuss the previously unrecognized role of cholesin and GPR146 in the regulation of cholesterol biosynthesis, providing a novel conceptual framework for understanding cholesterol homeostasis. KEY MESSAGES The discovery of cholesin, a novel protein implicated in the regulation of cholesterol homeostasis, represents a significant advancement in our understanding of cholesterol biosynthesis and its associated pathways. The cholesin-GPR146 axis could have profound implications across various therapeutic areas concerning abnormal cholesterol metabolism, offering new hope for patients and improving overall healthcare outcomes.
Collapse
Affiliation(s)
- Jong-Won Kim
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yu Ji Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Medical School, Jeonbuk National University, Research Institute of Clinical Medicine of Jeonbuk National University - Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| |
Collapse
|
2
|
de Carvalho CC, Murray IP, Nguyen H, Nguyen T, Cantu DC. Acyltransferase families that act on thioesters: Sequences, structures, and mechanisms. Proteins 2024; 92:157-169. [PMID: 37776148 DOI: 10.1002/prot.26599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/11/2023] [Accepted: 09/19/2023] [Indexed: 10/01/2023]
Abstract
Acyltransferases (AT) are enzymes that catalyze the transfer of acyl group to a receptor molecule. This review focuses on ATs that act on thioester-containing substrates. Although many ATs can recognize a wide variety of substrates, sequence similarity analysis allowed us to classify the ATs into fifteen distinct families. Each AT family is originated from enzymes experimentally characterized to have AT activity, classified according to sequence similarity, and confirmed with tertiary structure similarity for families that have crystallized structures available. All the sequences and structures of the AT families described here are present in the thioester-active enzyme (ThYme) database. The AT sequences and structures classified into families and available in the ThYme database could contribute to enlightening the understanding acyl transfer to thioester-containing substrates, most commonly coenzyme A, which occur in multiple metabolic pathways, mostly with fatty acids.
Collapse
Affiliation(s)
- Caio C de Carvalho
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada, USA
| | - Ian P Murray
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada, USA
| | - Hung Nguyen
- Department of Computer Science and Software Engineering, Auburn University, Auburn, Alabama, USA
| | - Tin Nguyen
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada, USA
- Department of Computer Science and Software Engineering, Auburn University, Auburn, Alabama, USA
| | - David C Cantu
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada, USA
| |
Collapse
|
3
|
Morito K, Ali H, Kishino S, Tanaka T. Fatty Acid Metabolism in Peroxisomes and Related Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1470:31-55. [PMID: 38811487 DOI: 10.1007/5584_2024_802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
One of the functions of peroxisomes is the oxidation of fatty acids (FAs). The importance of this function in our lives is evidenced by the presence of peroxisomal disorders caused by the genetic deletion of proteins involved in these processes. Unlike mitochondrial oxidation, peroxisomal oxidation is not directly linked to ATP production. What is the role of FA oxidation in peroxisomes? Recent studies have revealed that peroxisomes supply the building blocks for lipid synthesis in the endoplasmic reticulum and facilitate intracellular carbon recycling for membrane quality control. Accumulation of very long-chain fatty acids (VLCFAs), which are peroxisomal substrates, is a diagnostic marker in many types of peroxisomal disorders. However, the relationship between VLCFA accumulation and various symptoms of these disorders remains unclear. Recently, we developed a method for solubilizing VLCFAs in aqueous media and found that VLCFA toxicity could be mitigated by oleic acid replenishment. In this chapter, we present the physiological role of peroxisomal FA oxidation and the knowledge obtained from VLCFA-accumulating peroxisome-deficient cells.
Collapse
Affiliation(s)
- Katsuya Morito
- Laboratory of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Hanif Ali
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
| | | | - Tamotsu Tanaka
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan.
| |
Collapse
|
4
|
Ferreira MJ, Rodrigues TA, Pedrosa AG, Gales L, Salvador A, Francisco T, Azevedo JE. The mammalian peroxisomal membrane is permeable to both GSH and GSSG - Implications for intraperoxisomal redox homeostasis. Redox Biol 2023; 63:102764. [PMID: 37257275 DOI: 10.1016/j.redox.2023.102764] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/14/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023] Open
Abstract
Despite the large amounts of H2O2 generated in mammalian peroxisomes, cysteine residues of intraperoxisomal proteins are maintained in a reduced state. The biochemistry behind this phenomenon remains unexplored, and simple questions such as "is the peroxisomal membrane permeable to glutathione?" or "is there a thiol-disulfide oxidoreductase in the organelle matrix?" still have no answer. We used a cell-free in vitro system to equip rat liver peroxisomes with a glutathione redox sensor. The organelles were then incubated with glutathione solutions of different redox potentials and the oxidation/reduction kinetics of the redox sensor was monitored. The data suggest that the mammalian peroxisomal membrane is promptly permeable to both reduced and oxidized glutathione. No evidence for the presence of a robust thiol-disulfide oxidoreductase in the peroxisomal matrix could be found. Also, prolonged incubation of organelle suspensions with glutaredoxin 1 did not result in the internalization of the enzyme. To explore a potential role of glutathione in intraperoxisomal redox homeostasis we performed kinetic simulations. The results suggest that even in the absence of a glutaredoxin, glutathione is more important in protecting cysteine residues of matrix proteins from oxidation by H2O2 than peroxisomal catalase itself.
Collapse
Affiliation(s)
- Maria J Ferreira
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Tony A Rodrigues
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Ana G Pedrosa
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Luís Gales
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Armindo Salvador
- Coimbra Chemistry Center-Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535, Coimbra, Portugal; CNC-Center for Neuroscience and Cell Biology, 3004-504, Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - Tânia Francisco
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - Jorge E Azevedo
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
5
|
Cruz-Castillo AU, Rodríguez-Valdez LM, Correa-Basurto J, Nogueda-Torres B, Andrade-Ochoa S, Nevárez-Moorillón GV. Terpenic Constituents of Essential Oils with Larvicidal Activity against Aedes Aegypti: A QSAR and Docking Molecular Study. Molecules 2023; 28:molecules28062454. [PMID: 36985426 PMCID: PMC10054420 DOI: 10.3390/molecules28062454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
Aedes aegypti is a vector for the arbovirus responsible for yellow fever, Zika and Chikungunya virus. Essential oils and their constituents are known for their larvicidal properties and are strong candidates for mosquito control. This work aimed to develop a quantitative structure-activity study and molecular screening for the search and design of new larvicidal agents. Twenty-five monoterpenes with previously evaluated larvicidal activity were built and optimized using computational tools. QSAR models were constructed through genetic algorithms from the larvicidal activity and the calculation of theoretical descriptors for each molecule. Docking studies on acetylcholinesterase (AChE) and sterol carrier protein (SCP-2) were also carried out. Results demonstrate that the epoxide groups in the structure of terpenes hinder larvicidal activity, while lipophilicity plays an important role in enhancing biological activity. Larvicidal activity correlates with the interaction of the sterol-carrier protein. Of the 25 compounds evaluated, carvacrol showed the highest larvicidal activity with an LC50 of 8.8 µg/mL. The information included in this work contributes to describing the molecular, topological, and quantum mechanical properties related to the larvicidal activity of monoterpenes and their derivatives.
Collapse
Affiliation(s)
- Adrián Ulises Cruz-Castillo
- Campus Coyoacán, Universidad del Valle de México, Calzada De Tlalpan No. 3016 y 3058, Ex Hacienda Coapa, Delegación Coyoacán, Ciudad de México 04910, Mexico
| | - Luz María Rodríguez-Valdez
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N Campus Universitario II, Chihuahua 31125, Mexico
| | - José Correa-Basurto
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón S/N Col. Santo Tomas, Ciudad de México 11340, Mexico
| | - Benjamín Nogueda-Torres
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N Col. Santo Tomas, Ciudad de México 11340, Mexico
| | - Sergio Andrade-Ochoa
- Campus Coyoacán, Universidad del Valle de México, Calzada De Tlalpan No. 3016 y 3058, Ex Hacienda Coapa, Delegación Coyoacán, Ciudad de México 04910, Mexico
| | | |
Collapse
|
6
|
Orlowska K, Fling RR, Nault R, Sink WJ, Schilmiller AL, Zacharewski T. Dioxin-elicited decrease in cobalamin redirects propionyl-CoA metabolism to the β-oxidation-like pathway resulting in acrylyl-CoA conjugate buildup. J Biol Chem 2022; 298:102301. [PMID: 35931118 PMCID: PMC9418907 DOI: 10.1016/j.jbc.2022.102301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022] Open
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental contaminant that induces diverse biological and toxic effects, including reprogramming intermediate metabolism, mediated by the aryl hydrocarbon receptor. However, the specific reprogramming effects of TCDD are unclear. Here, we performed targeted LC-MS analysis of hepatic extracts from mice gavaged with TCDD. We detected an increase in S-(2-carboxyethyl)-L-cysteine, a conjugate from the spontaneous reaction between the cysteine sulfhydryl group and highly reactive acrylyl-CoA, an intermediate in the cobalamin (Cbl)-independent β-oxidation-like metabolism of propionyl-CoA. TCDD repressed genes in both the canonical Cbl-dependent carboxylase and the alternate Cbl-independent β-oxidation-like pathways as well as inhibited methylmalonyl-CoA mutase (MUT) at lower doses. Moreover, TCDD decreased serum Cbl levels and hepatic cobalt levels while eliciting negligible effects on gene expression associated with Cbl absorption, transport, trafficking, or derivatization to 5'-deoxy-adenosylcobalamin (AdoCbl), the required MUT cofactor. Additionally, TCDD induced the gene encoding aconitate decarboxylase 1 (Acod1), the enzyme responsible for decarboxylation of cis-aconitate to itaconate, and dose-dependently increased itaconate levels in hepatic extracts. Our results indicate MUT inhibition is consistent with itaconate activation to itaconyl-CoA, a MUT suicide inactivator that forms an adduct with adenosylcobalamin. This adduct in turn inhibits MUT activity and reduces Cbl levels. Collectively, these results suggest the decrease in MUT activity is due to Cbl depletion following TCDD treatment, which redirects propionyl-CoA metabolism to the alternate Cbl-independent β-oxidation-like pathway. The resulting hepatic accumulation of acrylyl-CoA likely contributes to TCDD-elicited hepatotoxicity and the multihit progression of steatosis to steatohepatitis with fibrosis.
Collapse
Affiliation(s)
- Karina Orlowska
- Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan, USA,Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Russ R. Fling
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA,Microbiology & Molecular Genetics, Michigan Sptate University, East Lansing, Michigan, USA
| | - Rance Nault
- Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan, USA,Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Warren J. Sink
- Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan, USA,Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Anthony L. Schilmiller
- Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, Michigan, USA
| | - Tim Zacharewski
- Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA.
| |
Collapse
|
7
|
Cell Type-Selective Loss of Peroxisomal β-Oxidation Impairs Bipolar Cell but Not Photoreceptor Survival in the Retina. Cells 2022; 11:cells11010161. [PMID: 35011723 PMCID: PMC8750404 DOI: 10.3390/cells11010161] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Retinal degeneration is a common feature in peroxisomal disorders leading to blindness. Peroxisomes are present in the different cell types of the retina; however, their precise contribution to retinal integrity is still unclear. We previously showed that mice lacking the central peroxisomal β-oxidation enzyme, multifunctional protein 2 (MFP2), develop an early onset retinal decay including photoreceptor cell death. To decipher the function of peroxisomal β-oxidation in photoreceptors, we generated cell type selective Mfp2 knockout mice, using the Crx promotor targeting photoreceptors and bipolar cells. Surprisingly, Crx-Mfp2−/− mice maintained photoreceptor length and number until the age of 1 year. A negative electroretinogram was indicative of preserved photoreceptor phototransduction, but impaired downstream bipolar cell signaling from the age of 6 months. The photoreceptor ribbon synapse was affected, containing free-floating ribbons and vesicles with altered size and density. The bipolar cell interneurons sprouted into the ONL and died. Whereas docosahexaenoic acid levels were normal in the neural retina, levels of lipids containing very long chain polyunsaturated fatty acids were highly increased. Crx-Pex5−/− mice, in which all peroxisomal functions are inactivated in photoreceptors and bipolar cells, developed the same phenotype as Crx-Mfp2−/− mice. In conclusion, the early photoreceptor death in global Mfp2−/− mice is not driven cell autonomously. However, peroxisomal β-oxidation is essential for the integrity of photoreceptor ribbon synapses and of bipolar cells.
Collapse
|
8
|
Fang SM. Genome-wide identification and analysis of the thiolase family in insects. PeerJ 2020; 8:e10393. [PMID: 33240678 PMCID: PMC7682436 DOI: 10.7717/peerj.10393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/29/2020] [Indexed: 12/30/2022] Open
Abstract
Thiolases are important enzymes involved in lipid metabolism in both prokaryotes and eukaryotes, and are essential for a range of metabolic pathways, while, little is known for this important family in insects. To shed light on the evolutionary models and functional diversities of the thiolase family, 137 thiolase genes were identified in 20 representative insect genomes. They were mainly classified into five classes, namely cytosolic thiolase (CT-thiolase), T1-thiolase, T2-thiolase, trifunctional enzyme thiolase (TFE-thiolase), and sterol carrier protein 2 thiolase (SCP2-thiolase). The intron number and exon/intron structures of the thiolase genes reserve large diversification. Subcellular localization prediction indicated that all the thiolase proteins were mitochondrial, cytosolic, or peroxisomal enzymes. Four highly conserved sequence fingerprints were found in the insect thiolase proteins, including CxS-, NEAF-, GHP-, and CxGGGxG-motifs. Homology modeling indicated that insect thiolases share similar 3D structures with mammals, fishes, and microorganisms. In Bombyx mori, microarray data and reverse transcription-polymerase chain reaction (RT-PCR) analysis suggested that some thiolases might be involved in steroid metabolism, juvenile hormone (JH), and sex pheromone biosynthesis pathways. In general, sequence and structural characteristics were relatively conserved among insects, bacteria and vertebrates, while different classes of thiolases might have differentiation in specific functions and physiological processes. These results will provide an important foundation for future functional validation of insect thiolases.
Collapse
Affiliation(s)
- Shou-Min Fang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, China.,College of Life Science, China West Normal University, Nanchong, Sichuan, China
| |
Collapse
|
9
|
Valença I, Ferreira AR, Correia M, Kühl S, van Roermund C, Waterham HR, Máximo V, Islinger M, Ribeiro D. Prostate Cancer Proliferation Is Affected by the Subcellular Localization of MCT2 and Accompanied by Significant Peroxisomal Alterations. Cancers (Basel) 2020; 12:cancers12113152. [PMID: 33121137 PMCID: PMC7693163 DOI: 10.3390/cancers12113152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Fatty acid β-oxidation is a dominant bioenergetic pathway in prostate cancer. It has recently been suggested that the specific targeting of monocarboxylate transporter 2 (MCT2) to peroxisomes contributed to an increase in β-oxidation rates and maintenance of the redox balance in prostate cancer cells. Here we provide evidence demonstrating that prostate cancer streamlines peroxisome metabolism by upregulating distinct pathways involved in lipid metabolism. Importantly, we show that the localization of MCT2 at peroxisomes is required for prostate cancer cell proliferation. Our results emphasize the importance of peroxisomes for prostate cancer development and highlight different cellular mechanisms that may be further explored as possible targets for prostate cancer therapy. Abstract Reprogramming of lipid metabolism directly contributes to malignant transformation and progression. The increased uptake of circulating lipids, the transfer of fatty acids from stromal adipocytes to cancer cells, the de novo fatty acid synthesis, and the fatty acid oxidation support the central role of lipids in many cancers, including prostate cancer (PCa). Fatty acid β-oxidation is the dominant bioenergetic pathway in PCa and recent evidence suggests that PCa takes advantage of the peroxisome transport machinery to target monocarboxylate transporter 2 (MCT2) to peroxisomes in order to increase β-oxidation rates and maintain the redox balance. Here we show evidence suggesting that PCa streamlines peroxisome metabolism by upregulating distinct pathways involved in lipid metabolism. Moreover, we show that MCT2 is required for PCa cell proliferation and, importantly, that its specific localization at the peroxisomal membranes is essential for this role. Our results highlight the importance of peroxisomes in PCa development and uncover different cellular mechanisms that may be further explored as possible targets for PCa therapy.
Collapse
Affiliation(s)
- Isabel Valença
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (I.V.); (A.R.F.)
| | - Ana Rita Ferreira
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (I.V.); (A.R.F.)
| | - Marcelo Correia
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; (M.C.); (V.M.)
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Sandra Kühl
- Neuroanatomy, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany; (S.K.); (M.I.)
| | - Carlo van Roermund
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam UMC—Location AMC, 1105 AZ Amsterdam, The Netherlands; (C.v.R.); (H.R.W.)
| | - Hans R. Waterham
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam UMC—Location AMC, 1105 AZ Amsterdam, The Netherlands; (C.v.R.); (H.R.W.)
| | - Valdemar Máximo
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; (M.C.); (V.M.)
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
- Department of Pathology, Medical Faculty, University of Porto, 4200-319 Porto, Portugal
| | - Markus Islinger
- Neuroanatomy, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany; (S.K.); (M.I.)
| | - Daniela Ribeiro
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (I.V.); (A.R.F.)
- Correspondence:
| |
Collapse
|
10
|
Van Veldhoven PP, de Schryver E, Young SG, Zwijsen A, Fransen M, Espeel M, Baes M, Van Ael E. Slc25a17 Gene Trapped Mice: PMP34 Plays a Role in the Peroxisomal Degradation of Phytanic and Pristanic Acid. Front Cell Dev Biol 2020; 8:144. [PMID: 32266253 PMCID: PMC7106852 DOI: 10.3389/fcell.2020.00144] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/20/2020] [Indexed: 12/04/2022] Open
Abstract
Mice lacking PMP34, a peroxisomal membrane transporter encoded by Slc25a17, did not manifest any obvious phenotype on a Swiss Webster genetic background, even with various treatments designed to unmask impaired peroxisomal functioning. Peroxisomal α- and β-oxidation rates in PMP34 deficient fibroblasts or liver slices were not or only modestly affected and in bile, no abnormal bile acid intermediates were detected. Peroxisomal content of cofactors like CoA, ATP, NAD+, thiamine-pyrophosphate and pyridoxal-phosphate, based on direct or indirect data, appeared normal as were tissue plasmalogen and very long chain fatty acid levels. However, upon dietary phytol administration, the knockout mice displayed hepatomegaly, liver inflammation, and an induction of peroxisomal enzymes. This phenotype was partially mediated by PPARα. Hepatic triacylglycerols and cholesterylesters were elevated and both phytanic acid and pristanic acid accumulated in the liver lipids, in females to higher extent than in males. In addition, pristanic acid degradation products were detected, as wells as the CoA-esters of all these branched fatty acids. Hence, PMP34 is important for the degradation of phytanic/pristanic acid and/or export of their metabolites. Whether this is caused by a shortage of peroxisomal CoA affecting the intraperoxisomal formation of pristanoyl-CoA (and perhaps of phytanoyl-CoA), or the SCPx-catalyzed thiolytic cleavage during pristanic acid β-oxidation, could not be proven in this model, but the phytol-derived acyl-CoA profile is compatible with the latter possibility. On the other hand, the normal functioning of other peroxisomal pathways, and especially bile acid formation, seems to exclude severe transport problems or a shortage of CoA, and other cofactors like FAD, NAD(P)+, TPP. Based on our findings, PMP34 deficiency in humans is unlikely to be a life threatening condition but could cause elevated phytanic/pristanic acid levels in older adults.
Collapse
Affiliation(s)
| | - Evelyn de Schryver
- LIPIT, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Stephen G. Young
- Departments of Medicine and Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - An Zwijsen
- Laboratory of Developmental Signaling, Department Human Genetics, VIB-KU Leuven, Leuven, Belgium
| | - Marc Fransen
- LIPIT, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Marc Espeel
- Department of Anatomy, Embryology, Histology and Medical Physics, Ghent University, Ghent, Belgium
| | - Myriam Baes
- Laboratory of Cell Metabolism, Faculty of Pharmaceutical Sciences, KU Leuven, Leuven, Belgium
| | - Elke Van Ael
- LIPIT, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Zhang X, Yang H, Zhang J, Gao F, Dai L. HSD17B4, ACAA1, and PXMP4 in Peroxisome Pathway Are Down-Regulated and Have Clinical Significance in Non-small Cell Lung Cancer. Front Genet 2020; 11:273. [PMID: 32265992 PMCID: PMC7103649 DOI: 10.3389/fgene.2020.00273] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/06/2020] [Indexed: 12/25/2022] Open
Abstract
To explore the potential functions and clinical significances of peroxisomes during lung cancer development and progression, we investigated the expressional profiles of peroxisome pathway genes and their correlations with clinical features in non-small cell lung cancer (NSCLC). The RNA-seq data of NSCLC including lung squamous carcinoma (LUSC) and lung adenocarcinoma (LUAD) patients with their clinical information were downloaded from The Cancer Genome Atlas (TCGA). Gene expression comparisons between tumor and normal samples were performed with edgeR package in R software and the results of the 83 peroxisome pathway genes were extracted. Through Venn diagram analysis, 38 common differentially expressed peroxisome pathway genes (C-DEPGs) in NSCLC were identified. Principal components analysis (PCA) was performed and the 38 C-DEPGs could discriminate NSCLC tumors from the non-tumor controls well. Through Kaplan-Meier survival and Cox regression analyses, 11 of the C-DEPGs were shown to have prognostic effects on NSCLC overall survival (OS) and were considered as key C-DEPGs (K-DEPGs). Through Oncomine, Human Protein Atlas (HPA) and the Clinical Proteomic Tumor Analysis Consortium (CPTAC), three K-DEPGs (HSD17B4, ACAA1, and PXMP4) were confirmed to be down-regulated in NSCLC at both mRNA and protein level. Their dy-regulation mechanisms were revealed through their correlations with their copy number variations and methylation status. Their potential functions in NSCLC were explored through their NSCLC-specific co-expression network analysis, their correlations with immune infiltrations, immunomodulator gene expressions, MKI67 expression and their associations with anti-cancer drug sensitivity. Our findings suggested that HSD17B4, ACAA1, and PXMP4 might be new markers for NSCLC diagnosis and prognosis and might provide new clues for NSCLC treatment.
Collapse
Affiliation(s)
- Xiuzhi Zhang
- Department of Pathology, Henan Medical College, Zhengzhou, China.,Institute of Cancer Research, Henan Medical College, Zhengzhou, China.,Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hongmei Yang
- Department of Pathology, Henan Medical College, Zhengzhou, China.,Institute of Cancer Research, Henan Medical College, Zhengzhou, China
| | - Jinzhong Zhang
- Institute of Cancer Research, Henan Medical College, Zhengzhou, China
| | - Fenglan Gao
- Department of Pathology, Henan Medical College, Zhengzhou, China
| | - Liping Dai
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Wanders RJA, Vaz FM, Waterham HR, Ferdinandusse S. Fatty Acid Oxidation in Peroxisomes: Enzymology, Metabolic Crosstalk with Other Organelles and Peroxisomal Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1299:55-70. [PMID: 33417207 DOI: 10.1007/978-3-030-60204-8_5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Peroxisomes play a central role in metabolism as exemplified by the fact that many genetic disorders in humans have been identified through the years in which there is an impairment in one or more of these peroxisomal functions, in most cases associated with severe clinical signs and symptoms. One of the key functions of peroxisomes is the β-oxidation of fatty acids which differs from the oxidation of fatty acids in mitochondria in many respects which includes the different substrate specificities of the two organelles. Whereas mitochondria are the main site of oxidation of medium-and long-chain fatty acids, peroxisomes catalyse the β-oxidation of a distinct set of fatty acids, including very-long-chain fatty acids, pristanic acid and the bile acid intermediates di- and trihydroxycholestanoic acid. Peroxisomes require the functional alliance with multiple subcellular organelles to fulfil their role in metabolism. Indeed, peroxisomes require the functional interaction with lysosomes, lipid droplets and the endoplasmic reticulum, since these organelles provide the substrates oxidized in peroxisomes. On the other hand, since peroxisomes lack a citric acid cycle as well as respiratory chain, oxidation of the end-products of peroxisomal fatty acid oxidation notably acetyl-CoA, and different medium-chain acyl-CoAs, to CO2 and H2O can only occur in mitochondria. The same is true for the reoxidation of NADH back to NAD+. There is increasing evidence that these interactions between organelles are mediated by tethering proteins which bring organelles together in order to allow effective exchange of metabolites. It is the purpose of this review to describe the current state of knowledge about the role of peroxisomes in fatty acid oxidation, the transport of metabolites across the peroxisomal membrane, its functional interaction with other subcellular organelles and the disorders of peroxisomal fatty acid β-oxidation identified so far in humans.
Collapse
Affiliation(s)
- Ronald J A Wanders
- Departments of Clinical Chemistry and Pediatrics, Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory Genetic Metabolic Diseases and Emma Children's hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| | - Frédéric M Vaz
- Departments of Clinical Chemistry and Pediatrics, Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory Genetic Metabolic Diseases and Emma Children's hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Hans R Waterham
- Departments of Clinical Chemistry and Pediatrics, Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory Genetic Metabolic Diseases and Emma Children's hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Sacha Ferdinandusse
- Departments of Clinical Chemistry and Pediatrics, Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory Genetic Metabolic Diseases and Emma Children's hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
13
|
MicroRNA-15a Regulates the Differentiation of Intramuscular Preadipocytes by Targeting ACAA1, ACOX1 and SCP2 in Chickens. Int J Mol Sci 2019; 20:ijms20164063. [PMID: 31434294 PMCID: PMC6720712 DOI: 10.3390/ijms20164063] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022] Open
Abstract
Our previous studies showed that microRNA-15a (miR-15a) was closely related to intramuscular fat (IMF) deposition in chickens; however, its regulatory mechanism remains unclear. Here, we evaluated the expression characteristics of miR-15a and its relationship with the expression of acetyl-CoA acyltransferase 1 (ACAA1), acyl-CoA oxidase 1 (ACOX1) and sterol carrier protein 2 (SCP2) by qPCR analysis in Gushi chicken breast muscle at 6, 14, 22, and 30 weeks old, where we performed transfection tests of miR-15a mimics in intramuscular preadipocytes and verified the target gene of miR-15a in chicken fibroblasts (DF1). The miR-15a expression level at 30 weeks increased 13.5, 4.5, and 2.7-fold compared with the expression levels at 6, 14, and 22 weeks, respectively. After 6 days of induction, miR-15a over-expression significantly promoted intramuscular adipogenic differentiation and increased cholesterol and triglyceride accumulation in adipocytes. Meanwhile, 48 h after transfection with miR-15a mimics, the expression levels of ACAA1, ACOX1 and SCP2 genes decreased by 56.52%, 31.18% and 37.14% at the mRNA level in intramuscular preadipocytes. In addition, the co-transfection of miR-15a mimics and ACAA1, ACOX1 and SCP2 3′UTR (untranslated region) dual-luciferase vector significantly inhibited dual-luciferase activity in DF1 cells. Taken together, our data demonstrate that miR-15a can reduce fatty acid oxidation by targeting ACAA1, ACOX1, and SCP2, which subsequently indirectly promotes the differentiation of chicken intramuscular preadipocytes.
Collapse
|
14
|
Baboota RK, Shinde AB, Lemaire K, Fransen M, Vinckier S, Van Veldhoven PP, Schuit F, Baes M. Functional peroxisomes are required for β-cell integrity in mice. Mol Metab 2019; 22:71-83. [PMID: 30795913 PMCID: PMC6437690 DOI: 10.1016/j.molmet.2019.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/25/2019] [Accepted: 02/04/2019] [Indexed: 12/24/2022] Open
Abstract
Objectives Peroxisomes play a crucial role in lipid and reactive oxygen species metabolism, but their importance for pancreatic β-cell functioning is presently unknown. To examine the contribution of peroxisomal metabolism to β-cell homeostasis in mice, we inactivated PEX5, the import receptor for peroxisomal matrix proteins, in an inducible and β-cell restricted manner (Rip-Pex5−/− mice). Methods After tamoxifen-induced recombination of the Pex5 gene at the age of 6 weeks, mice were fed either normal chow or a high-fat diet for 12 weeks and were subsequently phenotyped. Results Increased levels of very long chain fatty acids and reduced levels of plasmalogens in islets confirmed impairment of peroxisomal fatty acid oxidation and ether lipid synthesis, respectively. The Rip-Pex5−/− mice fed on either diet exhibited glucose intolerance associated with impaired insulin secretion. Ultrastructural and biochemical analysis revealed a decrease in the density of mature insulin granules and total pancreatic insulin content, which was further accompanied by mitochondrial disruptions, reduced complex I activity and massive vacuole overload in β-cells. RNAseq analysis suggested that cell death pathways were affected in islets from HFD-fed Rip-Pex5−/− mice. Consistent with this change we observed increased β-cell apoptosis in islets and a decrease in β-cell mass. Conclusions Our data indicate that normal peroxisome metabolism in β-cells is crucial to preserve their structure and function. Pex5 deletion in β-cells impairs glucose tolerance and reduces β-cell mass. Pex5-deficient β-cells display increased apoptosis. Peroxisomal loss causes mitochondrial deterioration and cytoplasmic vacuolization.
Collapse
Affiliation(s)
- Ritesh Kumar Baboota
- KU Leuven - University of Leuven, Department of Pharmaceutical and Pharmacological Sciences, Laboratory of Cell Metabolism, B-3000, Leuven, Belgium
| | - Abhijit Babaji Shinde
- KU Leuven - University of Leuven, Department of Pharmaceutical and Pharmacological Sciences, Laboratory of Cell Metabolism, B-3000, Leuven, Belgium
| | - Katleen Lemaire
- KU Leuven - University of Leuven, Department of Cellular and Molecular Medicine, Gene Expression Unit, B-3000, Leuven, Belgium
| | - Marc Fransen
- KU Leuven - University of Leuven, Department of Cellular and Molecular Medicine, Laboratory for Lipid Biochemistry and Protein Interactions, KU Leuven, B-3000, Leuven, Belgium
| | - Stefan Vinckier
- VIB-KULeuven Centre for Cancer Biology, Laboratory of Angiogenesis and Vascular Metabolism, B-3000, Leuven, Belgium
| | - Paul P Van Veldhoven
- KU Leuven - University of Leuven, Department of Cellular and Molecular Medicine, Laboratory for Lipid Biochemistry and Protein Interactions, KU Leuven, B-3000, Leuven, Belgium
| | - Frans Schuit
- KU Leuven - University of Leuven, Department of Cellular and Molecular Medicine, Gene Expression Unit, B-3000, Leuven, Belgium
| | - Myriam Baes
- KU Leuven - University of Leuven, Department of Pharmaceutical and Pharmacological Sciences, Laboratory of Cell Metabolism, B-3000, Leuven, Belgium.
| |
Collapse
|
15
|
The peroxisomal zebrafish SCP2-thiolase (type-1) is a weak transient dimer as revealed by crystal structures and native mass spectrometry. Biochem J 2019; 476:307-332. [PMID: 30573650 DOI: 10.1042/bcj20180788] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/12/2018] [Accepted: 12/20/2018] [Indexed: 12/19/2022]
Abstract
The SCP2 (sterol carrier protein 2)-thiolase (type-1) functions in the vertebrate peroxisomal, bile acid synthesis pathway, converting 24-keto-THC-CoA and CoA into choloyl-CoA and propionyl-CoA. This conversion concerns the β-oxidation chain shortening of the steroid fatty acyl-moiety of 24-keto-THC-CoA. This class of dimeric thiolases has previously been poorly characterized. High-resolution crystal structures of the zebrafish SCP2-thiolase (type-1) now reveal an open catalytic site, shaped by residues of both subunits. The structure of its non-dimerized monomeric form has also been captured in the obtained crystals. Four loops at the dimer interface adopt very different conformations in the monomeric form. These loops also shape the active site and their structural changes explain why a competent active site is not present in the monomeric form. Native mass spectrometry studies confirm that the zebrafish SCP2-thiolase (type-1) as well as its human homolog are weak transient dimers in solution. The crystallographic binding studies reveal the mode of binding of CoA and octanoyl-CoA in the active site, highlighting the conserved geometry of the nucleophilic cysteine, the catalytic acid/base cysteine and the two oxyanion holes. The dimer interface of SCP2-thiolase (type-1) is equally extensive as in other thiolase dimers; however, it is more polar than any of the corresponding interfaces, which correlates with the notion that the enzyme forms a weak transient dimer. The structure comparison of the monomeric and dimeric forms suggests functional relevance of this property. These comparisons provide also insights into the structural rearrangements that occur when the folded inactive monomers assemble into the mature dimer.
Collapse
|
16
|
Torres-Salas P, Bernal V, López-Gallego F, Martínez-Crespo J, Sánchez-Murcia PA, Barrera V, Morales-Jiménez R, García-Sánchez A, Mañas-Fernández A, Seoane JM, Sagrera Polo M, Miranda JD, Calvo J, Huertas S, Torres JL, Alcalde-Bascones A, González-Barrera S, Gago F, Morreale A, González-Barroso MDM. Engineering Erg10 Thiolase from Saccharomyces cerevisiae as a Synthetic Toolkit for the Production of Branched-Chain Alcohols. Biochemistry 2018; 57:1338-1348. [PMID: 29360348 DOI: 10.1021/acs.biochem.7b01186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thiolases catalyze the condensation of acyl-CoA thioesters through the Claisen condensation reaction. The best described enzymes usually yield linear condensation products. Using a combined computational/experimental approach, and guided by structural information, we have studied the potential of thiolases to synthesize branched compounds. We have identified a bulky residue located at the active site that blocks proper accommodation of substrates longer than acetyl-CoA. Amino acid replacements at such a position exert effects on the activity and product selectivity of the enzymes that are highly dependent on a protein scaffold. Among the set of five thiolases studied, Erg10 thiolase from Saccharomyces cerevisiae showed no acetyl-CoA/butyryl-CoA branched condensation activity, but variants at position F293 resulted the most active and selective biocatalysts for this reaction. This is the first time that a thiolase has been engineered to synthesize branched compounds. These novel enzymes enrich the toolbox of combinatorial (bio)chemistry, paving the way for manufacturing a variety of α-substituted synthons. As a proof of concept, we have engineered Clostridium's 1-butanol pathway to obtain 2-ethyl-1-butanol, an alcohol that is interesting as a branched model compound.
Collapse
Affiliation(s)
- Pamela Torres-Salas
- Centro de Tecnología de Repsol, REPSOL S. A. Calle Agustín de Betancourt , s/n, 28935 Móstoles, Madrid, Spain
| | - Vicente Bernal
- Centro de Tecnología de Repsol, REPSOL S. A. Calle Agustín de Betancourt , s/n, 28935 Móstoles, Madrid, Spain
| | - Fernando López-Gallego
- Centro de Tecnología de Repsol, REPSOL S. A. Calle Agustín de Betancourt , s/n, 28935 Móstoles, Madrid, Spain.,CIC biomaGUNE , Paseo de Miramón 182, 20014 San Sebastián, Spain.,ARAID Foundation , Zaragoza, Spain
| | - Javier Martínez-Crespo
- Centro de Tecnología de Repsol, REPSOL S. A. Calle Agustín de Betancourt , s/n, 28935 Móstoles, Madrid, Spain
| | - Pedro A Sánchez-Murcia
- Departamento de Ciencias Biomédicas and "Unidad Asociada IQM-CSIC", Universidad de Alcalá , E-28805 Alcalá de Henares, Madrid, Spain
| | - Victor Barrera
- Centro de Tecnología de Repsol, REPSOL S. A. Calle Agustín de Betancourt , s/n, 28935 Móstoles, Madrid, Spain
| | - Rocío Morales-Jiménez
- Centro de Tecnología de Repsol, REPSOL S. A. Calle Agustín de Betancourt , s/n, 28935 Móstoles, Madrid, Spain
| | - Ana García-Sánchez
- Centro de Tecnología de Repsol, REPSOL S. A. Calle Agustín de Betancourt , s/n, 28935 Móstoles, Madrid, Spain
| | - Aurora Mañas-Fernández
- Centro de Tecnología de Repsol, REPSOL S. A. Calle Agustín de Betancourt , s/n, 28935 Móstoles, Madrid, Spain
| | - José M Seoane
- Centro de Tecnología de Repsol, REPSOL S. A. Calle Agustín de Betancourt , s/n, 28935 Móstoles, Madrid, Spain
| | - Marta Sagrera Polo
- Centro de Investigaciones Biológicas (CSIC) , Calle Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Juande D Miranda
- Centro de Tecnología de Repsol, REPSOL S. A. Calle Agustín de Betancourt , s/n, 28935 Móstoles, Madrid, Spain
| | - Javier Calvo
- CIC biomaGUNE , Paseo de Miramón 182, 20014 San Sebastián, Spain
| | - Sonia Huertas
- Centro de Tecnología de Repsol, REPSOL S. A. Calle Agustín de Betancourt , s/n, 28935 Móstoles, Madrid, Spain
| | - José L Torres
- Centro de Tecnología de Repsol, REPSOL S. A. Calle Agustín de Betancourt , s/n, 28935 Móstoles, Madrid, Spain
| | - Ana Alcalde-Bascones
- Centro de Tecnología de Repsol, REPSOL S. A. Calle Agustín de Betancourt , s/n, 28935 Móstoles, Madrid, Spain
| | - Sergio González-Barrera
- Centro de Tecnología de Repsol, REPSOL S. A. Calle Agustín de Betancourt , s/n, 28935 Móstoles, Madrid, Spain
| | - Federico Gago
- Departamento de Ciencias Biomédicas and "Unidad Asociada IQM-CSIC", Universidad de Alcalá , E-28805 Alcalá de Henares, Madrid, Spain
| | - Antonio Morreale
- Centro de Tecnología de Repsol, REPSOL S. A. Calle Agustín de Betancourt , s/n, 28935 Móstoles, Madrid, Spain
| | | |
Collapse
|
17
|
McIntosh AL, Storey SM, Huang H, Kier AB, Schroeder F. Sex-dependent impact of Scp-2/Scp-x gene ablation on hepatic phytol metabolism. Arch Biochem Biophys 2017; 635:17-26. [PMID: 29051070 DOI: 10.1016/j.abb.2017.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/10/2017] [Accepted: 10/14/2017] [Indexed: 12/19/2022]
Abstract
While prior studies focusing on male mice suggest a role for sterol carrier protein-2/sterol carrier protein-x (SCP-2/SCP-x; DKO) on hepatic phytol metabolism, its role in females is unresolved. This issue was addressed using female and male wild-type (WT) and DKO mice fed a phytoestrogen-free diet without or with 0.5% phytol. GC/MS showed that hepatic: i) phytol was absent and its branched-chain fatty acid (BCFA) metabolites were barely detectable in WT control-fed mice; ii) accumulation of phytol as well as its peroxisomal metabolite BCFAs (phytanic acid » pristanic and 2,3-pristenic acids) was increased by dietary phytol in WT females, but only slightly in WT males; iii) accumulation of phytol and BCFA was further increased by DKO in phytol-fed females, but much more markedly in males. Livers of phytol-fed WT female mice as well as phytol-fed DKO female and male mice also accumulated increased proportion of saturated straight-chain fatty acids (LCFA) at the expense of unsaturated LCFA. Liver phytol accumulation was not due to increased SCP-2 binding/transport of phytol since SCP-2 bound phytanic acid, but not its precursor phytol. Thus, the loss of Scp-2/Scp-x contributed to a sex-dependent hepatic accumulation of dietary phytol and BCFA.
Collapse
Affiliation(s)
- Avery L McIntosh
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466, United States
| | - Stephen M Storey
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466, United States
| | - Huan Huang
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466, United States
| | - Ann B Kier
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX 77843-4467, United States
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466, United States.
| |
Collapse
|
18
|
Harijan RK, Kiema TR, Syed SM, Qadir I, Mazet M, Bringaud F, Michels PAM, Wierenga RK. Crystallographic substrate binding studies of Leishmania mexicana SCP2-thiolase (type-2): unique features of oxyanion hole-1. Protein Eng Des Sel 2017; 30:225-233. [PMID: 28062645 DOI: 10.1093/protein/gzw080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/15/2016] [Indexed: 12/26/2022] Open
Abstract
C Structures of the C123A variant of the dimeric Leishmania mexicana SCP2-thiolase (type-2) (Lm-thiolase), complexed with acetyl-CoA and acetoacetyl-CoA, respectively, are reported. The catalytic site of thiolase contains two oxyanion holes, OAH1 and OAH2, which are important for catalysis. The two structures reveal for the first time the hydrogen bond interactions of the CoA-thioester oxygen atom of the substrate with the hydrogen bond donors of OAH1 of a CHH-thiolase. The amino acid sequence fingerprints ( xS, EAF, G P) of three catalytic loops identify the active site geometry of the well-studied CNH-thiolases, whereas SCP2-thiolases (type-1, type-2) are classified as CHH-thiolases, having as corresponding fingerprints xS, DCF and G P. In all thiolases, OAH2 is formed by the main chain NH groups of two catalytic loops. In the well-studied CNH-thiolases, OAH1 is formed by a water (of the Wat-Asn(NEAF) dyad) and NE2 (of the GHP-histidine). In the two described liganded Lm-thiolase structures, it is seen that in this CHH-thiolase, OAH1 is formed by NE2 of His338 (HDCF) and His388 (GHP). Analysis of the OAH1 hydrogen bond networks suggests that the GHP-histidine is doubly protonated and positively charged in these complexes, whereas the HDCF histidine is neutral and singly protonated.
Collapse
Affiliation(s)
- Rajesh K Harijan
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, FIN-90014, Finland.,Present address: Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Tiila-Riikka Kiema
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, FIN-90014, Finland
| | - Shahan M Syed
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, FIN-90014, Finland
| | - Imran Qadir
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, FIN-90014, Finland
| | - Muriel Mazet
- Centre de Résonance Magnétique des Systèmes Biologiques (RMSB), UMR5536, Université de Bordeaux, CNRS, 146 rue Léo Saignat, 33076 Bordeaux, France.,Present address: Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), UMR5234, Université de Bordeaux, CNRS, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Frédéric Bringaud
- Centre de Résonance Magnétique des Systèmes Biologiques (RMSB), UMR5536, Université de Bordeaux, CNRS, 146 rue Léo Saignat, 33076 Bordeaux, France.,Present address: Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), UMR5234, Université de Bordeaux, CNRS, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Paul A M Michels
- Centre for Immunity, Infection and Evolution and Centre for Translational and Chemical Biology, School of Biological Sciences, The King's Buildings, The University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Rik K Wierenga
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, FIN-90014, Finland
| |
Collapse
|
19
|
Slopianka M, Herrmann A, Pavkovic M, Ellinger-Ziegelbauer H, Ernst R, Mally A, Keck M, Riefke B. Quantitative targeted bile acid profiling as new markers for DILI in a model of methapyrilene-induced liver injury in rats. Toxicology 2017; 386:1-10. [PMID: 28529062 DOI: 10.1016/j.tox.2017.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/08/2017] [Accepted: 05/17/2017] [Indexed: 12/11/2022]
Abstract
Recently, bile acids (BAs) were reported as promising markers for drug-induced liver injury (DILI). BAs have been suggested to correlate with hepatocellular and hepatobiliary damage; however a clear connection of BA patterns with different types of DILI remains to be established. To investigate if BAs can improve the assessment of liver injury, 20 specific BAs were quantitatively profiled via LC-MS/MS in plasma and liver tissue in a model of methapyrilene-induced liver injury in rats. Methapyrilene, a known hepatotoxin was dosed daily over 14-days at doses of 30 and 80mg/kg, followed by a recovery phase of 10days. Conventional preclinical safety endpoints were related to BA perturbations and to hepatic gene expression profiling for a mechanistic interpretation of effects. Histopathological signs of hepatocellular and hepatobiliary damage with significant changes of clinical chemistry markers were accompanied by significantly increased levels of indivdual BAs in plasma and liver tissue. BA perturbations were already evident at the earliest time point after 30mg/kg treatment, and thereby indicating better sensitivity than clinical chemistry parameters. Furthermore, the latter markers suggested recovery of liver injury, whereas BA levels in plasma and liver remained significantly elevated during the recovery phase, in line with persistent histopathological findings of bile duct hyperplasia (BDH) and bile pigment deposition. Gene expression profiling revealed downregulation of genes involved in BA synthesis (AMACR, BAAT, ACOX2) and hepatocellular uptake (NTCP, OATs), and upregulation for efflux transporters (MRP2, MRP4), suggesting an adaptive hepatocellular protection mechanism against cytotoxic bile acid accumulation. In summary, our data suggests that specific BAs with high reliability such as cholic acid (CA) and chenodeoxycholic acid (CDCA) followed by glycocholic acid (GCA), taurocholic acid (TCA) and deoxycholic acid (DCA) can serve as additional biomarkers for hepatocellular/hepatobiliary damage in the liver in rat toxicity studies.
Collapse
Affiliation(s)
- Markus Slopianka
- Bayer AG, Investigational Toxicology, Muellerstraße 178, 13353 Berlin, Germany; University Wuerzburg, Department of Toxicology, Versbacher Straße 9, 97078 Wuerzburg, Germany.
| | - Anne Herrmann
- Bayer AG, Investigational Toxicology, Muellerstraße 178, 13353 Berlin, Germany.
| | - Mira Pavkovic
- Bayer AG, Biomarker Research, Aprather Weg 18a, 42096 Wuppertal, Germany.
| | | | - Rainer Ernst
- Bayer AG, Pathology and Clinical Pathology, Muellerstraße 178, Building S116, 13353 Berlin, Germany.
| | - Angela Mally
- University Wuerzburg, Department of Toxicology, Versbacher Straße 9, 97078 Wuerzburg, Germany.
| | - Matthias Keck
- Bayer AG, Investigational Toxicology, Muellerstraße 178, 13353 Berlin, Germany.
| | - Bjoern Riefke
- Bayer AG, Investigational Toxicology, Muellerstraße 178, 13353 Berlin, Germany.
| |
Collapse
|
20
|
Landrock D, Milligan S, Martin GG, McIntosh AL, Landrock KK, Schroeder F, Kier AB. Effect of Fabp1/Scp-2/Scp-x Ablation on Whole Body and Hepatic Phenotype of Phytol-Fed Male Mice. Lipids 2017; 52:385-397. [PMID: 28382456 PMCID: PMC5500168 DOI: 10.1007/s11745-017-4249-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/28/2017] [Indexed: 11/29/2022]
Abstract
Liver fatty acid binding protein (Fabp1) and sterol carrier protein-2/sterol carrier protein-x (SCP-2/SCP-x) genes encode proteins that enhance hepatic uptake, cytosolic transport, and peroxisomal oxidation of toxic branched-chain fatty acids derived from dietary phytol. Since male wild-type (WT) mice express markedly higher levels of these proteins than females, the impact of ablating both genes (TKO) was examined in phytol-fed males. In WT males, high phytol diet alone had little impact on whole body weight and did not alter the proportion of lean tissue mass (LTM) versus fat tissue mass (FTM). TKO conferred on dietary phytol the ability to induce weight loss as well as reduce liver weight, FTM, and even more so LTM. Concomitantly TKO induced hepatic lipid accumulation, preferentially threefold increased phospholipid (PL) at the expense of decreased triacylglycerol (TG) and total cholesterol. Increased PL was associated with upregulation of membrane fatty acid transport/translocase proteins (FATP 2,4), cytosolic fatty acid/fatty acyl-CoA binding proteins (FABP2, ACBP), and the rate limiting enzyme in PL synthesis (Gpam). Decreased TG and cholesterol levels were not attributable to altered levels in respective synthetic enzymes or nuclear receptors. These data suggest that the higher level of Fabp1 and Scp2/Scpx gene products in WT males was protective against deleterious effects of dietary phytol, but TKO significantly exacerbated phytol effects in males.
Collapse
Affiliation(s)
- Danilo Landrock
- Department of Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TVMC, College Station, TX, 77843-4467, USA
| | - Sherrelle Milligan
- Department of Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TVMC, College Station, TX, 77843-4467, USA
| | - Gregory G Martin
- Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4466, USA
| | - Avery L McIntosh
- Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4466, USA
| | - Kerstin K Landrock
- Department of Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TVMC, College Station, TX, 77843-4467, USA
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4466, USA
| | - Ann B Kier
- Department of Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TVMC, College Station, TX, 77843-4467, USA.
| |
Collapse
|
21
|
Morvay PL, Baes M, Van Veldhoven PP. Differential activities of peroxisomes along the mouse intestinal epithelium. Cell Biochem Funct 2017; 35:144-155. [PMID: 28370438 DOI: 10.1002/cbf.3255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/10/2017] [Accepted: 01/26/2017] [Indexed: 02/01/2023]
Abstract
The presence of peroxisomes in mammalian intestine has been revealed formerly by catalase staining combined with electron microscopy. Despite the central role of intestine in lipid uptake and the established importance of peroxisomes in different lipid-related pathways, few data are available on the physiological role of peroxisomes in intestinal metabolism, more specifically, α-, β-oxidation, and etherlipid synthesis. Hence, the peroxisomal compartment was analyzed in more detail in mouse intestine. On the basis of immunohistochemistry, the organelles are mainly confined to the epithelial cells. The expression of the classical peroxisome marker catalase was highest in the proximal part of jejunum and decreased along the tract. PEX14 showed a similar profile, but was still substantial expressed in large intestinal epithelium. Immunoblotting of epithelial cells, isolated from the different segments, showed also such gradient for some enzymes, ie, catalase, ACOX1, and D-specific multifunctional protein 2, and for the ABCD1 transporter, being high in small and low or absent in large intestine. Other peroxisomal enzymes (PHYH, HACL1, and ACAA1), the ABCD2 and ABCD3 transporters, and peroxins PEX13 and PEX14, however, did not follow this pattern, displaying rather constant signals throughout the intestinal epithelium. The small intestine displayed the highest peroxisomal β-oxidation activity and is particularly active on dicarboxylic acids. Etherlipid synthesis was high in the large intestine, and colonic cells had the highest content of plasmalogens. Overall, these data suggest that peroxisomes exert different functions according to the intestinal segment.
Collapse
Affiliation(s)
- Petruta L Morvay
- Lipid Biochemistry and Protein Interactions (LIPIT), KU Leuven, Leuven, Belgium
| | | | | |
Collapse
|
22
|
Milligan S, Martin GG, Landrock D, McIntosh AL, Mackie JT, Schroeder F, Kier AB. Impact of dietary phytol on lipid metabolism in SCP2/SCPX/L-FABP null mice. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:291-304. [PMID: 27940000 PMCID: PMC5266609 DOI: 10.1016/j.bbalip.2016.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/15/2016] [Accepted: 12/04/2016] [Indexed: 12/20/2022]
Abstract
In vitro studies suggest that liver fatty acid binding protein (L-FABP) and sterol carrier protein-2/sterol carrier protein-x (SCP2/SCPx) gene products facilitate uptake and metabolism and detoxification of dietary-derived phytol in mammals. However, concomitant upregulation of L-FABP in SCP2/SCPx null mice complicates interpretation of their physiological phenotype. Therefore, the impact of ablating both the L-FABP gene and SCP2/SCPx gene (L-FABP/SCP2/SCPx null or TKO) was examined in phytol-fed female wild-type (WT) and TKO mice. TKO increased hepatic total lipid accumulation, primarily phospholipid, by mechanisms involving increased hepatic levels of proteins in the phospholipid synthetic pathway. Concomitantly, TKO reduced expression of proteins in targeting fatty acids towards the triacylglycerol synthetic pathway. Increased hepatic lipid accumulation was not associated with any concomitant upregulation of membrane fatty acid transport/translocase proteins involved in fatty acid uptake (FATP2, FATP4, FATP5 or GOT) or cytosolic proteins involved in fatty acid intracellular targeting (ACBP). In addition, TKO exacerbated dietary phytol-induced whole body weight loss, especially lean tissue mass. Since individually ablating SCPx or SCP2/SCPx elicited concomitant upregulation of L-FABP, these findings with TKO mice help to resolve the contributions of SCP2/SCPx gene ablation on dietary phytol-induced whole body and hepatic lipid phenotype independent of concomitant upregulation of L-FABP.
Collapse
Affiliation(s)
- Sherrelle Milligan
- Department of Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4467, USA
| | - Gregory G Martin
- Department of Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4467, USA
| | - Danilo Landrock
- Department of Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4467, USA
| | - Avery L McIntosh
- Department of Physiology/Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4466, USA
| | - John T Mackie
- Department of Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4467, USA
| | - Friedhelm Schroeder
- Department of Physiology/Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4466, USA
| | - Ann B Kier
- Department of Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4467, USA.
| |
Collapse
|
23
|
Cerqueira NMFSA, Oliveira EF, Gesto DS, Santos-Martins D, Moreira C, Moorthy HN, Ramos MJ, Fernandes PA. Cholesterol Biosynthesis: A Mechanistic Overview. Biochemistry 2016; 55:5483-5506. [PMID: 27604037 DOI: 10.1021/acs.biochem.6b00342] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cholesterol is an essential component of cell membranes and the precursor for the synthesis of steroid hormones and bile acids. The synthesis of this molecule occurs partially in a membranous world (especially the last steps), where the enzymes, substrates, and products involved tend to be extremely hydrophobic. The importance of cholesterol has increased in the past half-century because of its association with cardiovascular diseases, which are considered one of the leading causes of death worldwide. In light of the current need for new drugs capable of controlling the levels of cholesterol in the bloodstream, it is important to understand how cholesterol is synthesized in the organism and identify the main enzymes involved in this process. Taking this into account, this review presents a detailed description of several enzymes involved in the biosynthesis of cholesterol. In this regard, the structure and catalytic mechanism of the enzymes involved in cholesterol biosynthesis, from the initial two-carbon acetyl-CoA building block, will be reviewed and their current pharmacological importance discussed. We believe that this review may contribute to a deeper level of understanding of cholesterol metabolism and that it will serve as a useful resource for future studies of the cholesterol biosynthesis pathway.
Collapse
Affiliation(s)
- Nuno M F S A Cerqueira
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - Eduardo F Oliveira
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - Diana S Gesto
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - Diogo Santos-Martins
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - Cátia Moreira
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - Hari N Moorthy
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - Maria J Ramos
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - P A Fernandes
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| |
Collapse
|
24
|
Bar-Even A. Formate Assimilation: The Metabolic Architecture of Natural and Synthetic Pathways. Biochemistry 2016; 55:3851-63. [PMID: 27348189 DOI: 10.1021/acs.biochem.6b00495] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Formate may become an ideal mediator between the physicochemical and biological realms, as it can be produced efficiently from multiple available sources, such as electricity and biomass, and serve as one of the simplest organic compounds for providing both carbon and energy to living cells. However, limiting the realization of formate as a microbial feedstock is the low diversity of formate-fixing enzymes and thereby the small number of naturally occurring formate-assimilation pathways. Here, the natural enzymes and pathways supporting formate assimilation are presented and discussed together with proposed synthetic routes that could permit growth on formate via existing as well as novel formate-fixing reactions. By considering such synthetic routes, the diversity of metabolic solutions for formate assimilation can be expanded dramatically, such that different host organisms, cultivation conditions, and desired products could be matched with the most suitable pathway. Astute application of old and new formate-assimilation pathways may thus become a cornerstone in the development of sustainable strategies for microbial production of value-added chemicals.
Collapse
Affiliation(s)
- Arren Bar-Even
- Max Planck Institute of Molecular Plant Physiology , Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
25
|
Harijan RK, Mazet M, Kiema TR, Bouyssou G, Alexson SEH, Bergmann U, Moreau P, Michels PAM, Bringaud F, Wierenga RK. The SCP2-thiolase-like protein (SLP) of Trypanosoma brucei is an enzyme involved in lipid metabolism. Proteins 2016; 84:1075-96. [PMID: 27093562 DOI: 10.1002/prot.25054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 04/03/2016] [Accepted: 04/08/2016] [Indexed: 11/06/2022]
Abstract
Bioinformatics studies have shown that the genomes of trypanosomatid species each encode one SCP2-thiolase-like protein (SLP), which is characterized by having the YDCF thiolase sequence fingerprint of the Cβ2-Cα2 loop. SLPs are only encoded by the genomes of these parasitic protists and not by those of mammals, including human. Deletion of the Trypanosoma brucei SLP gene (TbSLP) increases the doubling time of procyclic T. brucei and causes a 5-fold reduction of de novo sterol biosynthesis from glucose- and acetate-derived acetyl-CoA. Fluorescence analyses of EGFP-tagged TbSLP expressed in the parasite located the TbSLP in the mitochondrion. The crystal structure of TbSLP (refined at 1.75 Å resolution) confirms that TbSLP has the canonical dimeric thiolase fold. In addition, the structures of the TbSLP-acetoacetyl-CoA (1.90 Å) and TbSLP-malonyl-CoA (2.30 Å) complexes reveal that the two oxyanion holes of the thiolase active site are preserved. TbSLP binds malonyl-CoA tightly (Kd 90 µM), acetoacetyl-CoA moderately (Kd 0.9 mM) and acetyl-CoA and CoA very weakly. TbSLP possesses low malonyl-CoA decarboxylase activity. Altogether, the data show that TbSLP is a mitochondrial enzyme involved in lipid metabolism. Proteins 2016; 84:1075-1096. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rajesh K Harijan
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, FIN-90014, Finland.,Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, 10461, USA
| | - Muriel Mazet
- Centre De Résonance Magnétique Des Systèmes Biologiques (RMSB), UMR5536, Université De Bordeaux, CNRS, 146 Rue Léo Saignat, Bordeaux, 33076, France.,Laboratoire De Microbiologie Fondamentale Et Pathogénicité (MFP), UMR5234, Université De Bordeaux, CNRS, 146 Rue Léo Saignat, Bordeaux, 33076, France
| | - Tiila R Kiema
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, FIN-90014, Finland
| | - Guillaume Bouyssou
- Laboratoire De Biogenèse Membranaire, UMR-5200, Université De Bordeaux, CNRS, Bâtiment A3 - 1er Étage, INRA Bordeaux Aquitaine BP81, 71 Avenue Edouard Bourlaux, Villenave D'Ornon Cedex, 33883, France
| | - Stefan E H Alexson
- Karolinska Institutet, Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska University Hospital, Stockholm, SE 141 86, Sweden
| | - Ulrich Bergmann
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, FIN-90014, Finland
| | - Patrick Moreau
- Laboratoire De Biogenèse Membranaire, UMR-5200, Université De Bordeaux, CNRS, Bâtiment A3 - 1er Étage, INRA Bordeaux Aquitaine BP81, 71 Avenue Edouard Bourlaux, Villenave D'Ornon Cedex, 33883, France
| | - Paul A M Michels
- Centre for Immunity, Infection and Evolution and Centre for Translational and Chemical Biology, School of Biological Sciences, the King's Buildings, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, United Kingdom
| | - Frédéric Bringaud
- Centre De Résonance Magnétique Des Systèmes Biologiques (RMSB), UMR5536, Université De Bordeaux, CNRS, 146 Rue Léo Saignat, Bordeaux, 33076, France.,Laboratoire De Microbiologie Fondamentale Et Pathogénicité (MFP), UMR5234, Université De Bordeaux, CNRS, 146 Rue Léo Saignat, Bordeaux, 33076, France
| | - Rik K Wierenga
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, FIN-90014, Finland
| |
Collapse
|
26
|
Wanders RJA, Waterham HR, Ferdinandusse S. Metabolic Interplay between Peroxisomes and Other Subcellular Organelles Including Mitochondria and the Endoplasmic Reticulum. Front Cell Dev Biol 2016; 3:83. [PMID: 26858947 PMCID: PMC4729952 DOI: 10.3389/fcell.2015.00083] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/10/2015] [Indexed: 01/02/2023] Open
Abstract
Peroxisomes are unique subcellular organelles which play an indispensable role in several key metabolic pathways which include: (1.) etherphospholipid biosynthesis; (2.) fatty acid beta-oxidation; (3.) bile acid synthesis; (4.) docosahexaenoic acid (DHA) synthesis; (5.) fatty acid alpha-oxidation; (6.) glyoxylate metabolism; (7.) amino acid degradation, and (8.) ROS/RNS metabolism. The importance of peroxisomes for human health and development is exemplified by the existence of a large number of inborn errors of peroxisome metabolism in which there is an impairment in one or more of the metabolic functions of peroxisomes. Although the clinical signs and symptoms of affected patients differ depending upon the enzyme which is deficient and the extent of the deficiency, the disorders involved are usually (very) severe diseases with neurological dysfunction and early death in many of them. With respect to the role of peroxisomes in metabolism it is clear that peroxisomes are dependent on the functional interplay with other subcellular organelles to sustain their role in metabolism. Indeed, whereas mitochondria can oxidize fatty acids all the way to CO2 and H2O, peroxisomes are only able to chain-shorten fatty acids and the end products of peroxisomal beta-oxidation need to be shuttled to mitochondria for full oxidation to CO2 and H2O. Furthermore, NADH is generated during beta-oxidation in peroxisomes and beta-oxidation can only continue if peroxisomes are equipped with a mechanism to reoxidize NADH back to NAD+, which is now known to be mediated by specific NAD(H)-redox shuttles. In this paper we describe the current state of knowledge about the functional interplay between peroxisomes and other subcellular compartments notably the mitochondria and endoplasmic reticulum for each of the metabolic pathways in which peroxisomes are involved.
Collapse
Affiliation(s)
- Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Laboratory Division, Departments of Paediatrics and Clinical Chemistry, Academic Medical Center, Emma Children's Hospital, University of Amsterdam Amsterdam, Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Laboratory Division, Departments of Paediatrics and Clinical Chemistry, Academic Medical Center, Emma Children's Hospital, University of Amsterdam Amsterdam, Netherlands
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Laboratory Division, Departments of Paediatrics and Clinical Chemistry, Academic Medical Center, Emma Children's Hospital, University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|
27
|
Martin GG, Landrock D, Landrock KK, Howles PN, Atshaves BP, Kier AB, Schroeder F. Relative contributions of L-FABP, SCP-2/SCP-x, or both to hepatic biliary phenotype of female mice. Arch Biochem Biophys 2015; 588:25-32. [PMID: 26541319 PMCID: PMC4683591 DOI: 10.1016/j.abb.2015.10.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/20/2015] [Accepted: 10/28/2015] [Indexed: 01/01/2023]
Abstract
Both sterol carrier protein-2/sterol carrier protein-x (SCP-2/SCP-x) and liver fatty acid binding protein (L-FABP) have been proposed to function in hepatobiliary bile acid metabolism/accumulation. To begin to address this issue, the impact of ablating L-FABP (LKO) or SCP-2/SCP-x (DKO) individually or both together (TKO) was examined in female mice. Biliary bile acid levels were decreased in LKO, DKO, and TKO mice; however, hepatic bile acid concentration was decreased in LKO mice only. In contrast, biliary phospholipid level was decreased only in TKO mice, while biliary cholesterol levels were unaltered regardless of phenotype. The loss of either or both genes increased hepatic expression of the major bile acid synthetic enzymes (CYP7A1 and/or CYP27A1). Loss of L-FABP and/or SCP-2/SCP-x genes significantly altered the molecular composition of biliary bile acids, but not the proportion of conjugated/unconjugated bile acids or overall bile acid hydrophobicity index. These data suggested that L-FABP was more important in hepatic retention of bile acids, while SCP-2/SCP-x more broadly affected biliary bile acid and phospholipid levels.
Collapse
Affiliation(s)
- Gregory G Martin
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466, USA
| | - Danilo Landrock
- Department of Pathobiology, Texas A&M University, College Station, TX 77843-4467, USA
| | - Kerstin K Landrock
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466, USA
| | - Philip N Howles
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Barbara P Atshaves
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Ann B Kier
- Department of Pathobiology, Texas A&M University, College Station, TX 77843-4467, USA
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466, USA.
| |
Collapse
|
28
|
Janardan N, Harijan RK, Kiema TR, Wierenga RK, Murthy MRN. Structural characterization of a mitochondrial 3-ketoacyl-CoA (T1)-like thiolase fromMycobacterium smegmatis. ACTA ACUST UNITED AC 2015; 71:2479-93. [DOI: 10.1107/s1399004715019331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/12/2015] [Indexed: 11/10/2022]
Abstract
Thiolases catalyze the degradation and synthesis of 3-ketoacyl-CoA molecules. Here, the crystal structures of a T1-like thiolase (MSM-13 thiolase) fromMycobacterium smegmatisin apo and liganded forms are described. Systematic comparisons of six crystallographically independent unliganded MSM-13 thiolase tetramers (dimers of tight dimers) from three different crystal forms revealed that the two tight dimers are connected to a rigid tetramerization domainviaflexible hinge regions, generating an asymmetric tetramer. In the liganded structure, CoA is bound to those subunits that are rotated towards the tip of the tetramerization loop of the opposing dimer, suggesting that this loop is important for substrate binding. The hinge regions responsible for this rotation occur near Val123 and Arg149. The Lα1–covering loop–Lα2 region, together with the Nβ2–Nα2 loop of the adjacent subunit, defines a specificity pocket that is larger and more polar than those of other tetrameric thiolases, suggesting that MSM-13 thiolase has a distinct substrate specificity. Consistent with this finding, only residual activity was detected with acetoacetyl-CoA as the substrate in the degradative direction. No activity was observed with acetyl-CoA in the synthetic direction. Structural comparisons with other well characterized thiolases suggest that MSM-13 thiolase is probably a degradative thiolase that is specific for 3-ketoacyl-CoA molecules with polar, bulky acyl chains.
Collapse
|
29
|
Kumar A, Shiloach J, Betenbaugh MJ, Gallagher EJ. The beta-3 adrenergic agonist (CL-316,243) restores the expression of down-regulated fatty acid oxidation genes in type 2 diabetic mice. Nutr Metab (Lond) 2015; 12:8. [PMID: 25784953 PMCID: PMC4362840 DOI: 10.1186/s12986-015-0003-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/05/2015] [Indexed: 02/07/2023] Open
Abstract
Background The hallmark of Type 2 diabetes (T2D) is hyperglycemia, although there are multiple other metabolic abnormalities that occur with T2D, including insulin resistance and dyslipidemia. To advance T2D prevention and develop targeted therapies for its treatment, a greater understanding of the alterations in metabolic tissues associated with T2D is necessary. The aim of this study was to use microarray analysis of gene expression in metabolic tissues from a mouse model of pre-diabetes and T2D to further understand the metabolic abnormalities that may contribute to T2D. We also aimed to uncover the novel genes and pathways regulated by the insulin sensitizing agent (CL-316,243) to identify key pathways and target genes in metabolic tissues that can reverse the diabetic phenotype. Methods Male MKR mice on an FVB/n background and age matched wild-type (WT) FVB/n mice were used in all experiments. Skeletal muscle, liver and fat were isolated from prediabetic (3 week old) and diabetic (8 week old) MKR mice. Male MKR mice were treated with CL-316,243. Skeletal muscle, liver and fat were isolated after the treatment period. RNA was isolated from the metabolic tissues and subjected to microarray and KEGG database analysis. Results Significant decreases in the expression of mitochondrial and peroxisomal fatty acid oxidation genes were found in the skeletal muscle and adipose tissue of adult MKR mice, and the liver of pre-diabetic MKR mice, compared to WT controls. After treatment with CL-316,243, the circulating glucose and insulin concentrations in the MKR mice improved, an increase in the expression of peroxisomal fatty acid oxidation genes was observed in addition to a decrease in the expression of retinaldehyde dehydrogenases. These genes were not previously known to be regulated by CL-316,243 treatment. Conclusions This study uncovers novel genes that may contribute to pharmacological reversal of insulin resistance and T2D and may be targets for treatment. In addition, it explains the lower free fatty acid levels in MKR mice after treatment with CL-316,243 and furthermore, it provides biomarker genes such as ACAA1 and HSD17b4 which could be further probed in a future study. Electronic supplementary material The online version of this article (doi:10.1186/s12986-015-0003-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amit Kumar
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg 14A, Bethesda, MD 20892 USA ; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2686 USA
| | - Joseph Shiloach
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg 14A, Bethesda, MD 20892 USA
| | - Michael J Betenbaugh
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2686 USA
| | - Emily J Gallagher
- Division of Endocrinology, Diabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1055, New York, NY 10029 USA
| |
Collapse
|
30
|
Onwukwe GU, Kursula P, Koski MK, Schmitz W, Wierenga RK. Human Δ3,Δ2-enoyl-CoA isomerase, type 2: a structural enzymology study on the catalytic role of its ACBP domain and helix-10. FEBS J 2015; 282:746-68. [DOI: 10.1111/febs.13179] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Goodluck U. Onwukwe
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine; University of Oulu; Finland
| | - Petri Kursula
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine; University of Oulu; Finland
- Department of Biomedicine; University of Bergen; Norway
| | - M. Kristian Koski
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine; University of Oulu; Finland
| | - Werner Schmitz
- Theodor Boveri Institute of Biosciences (Biocenter); University of Würzburg; Germany
| | - Rik K. Wierenga
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine; University of Oulu; Finland
| |
Collapse
|
31
|
Kiema TR, Harijan RK, Strozyk M, Fukao T, Alexson SEH, Wierenga RK. The crystal structure of human mitochondrial 3-ketoacyl-CoA thiolase (T1): insight into the reaction mechanism of its thiolase and thioesterase activities. ACTA ACUST UNITED AC 2014; 70:3212-25. [PMID: 25478839 DOI: 10.1107/s1399004714023827] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 10/28/2014] [Indexed: 11/10/2022]
Abstract
Crystal structures of human mitochondrial 3-ketoacyl-CoA thiolase (hT1) in the apo form and in complex with CoA have been determined at 2.0 Å resolution. The structures confirm the tetrameric quaternary structure of this degradative thiolase. The active site is surprisingly similar to the active site of the Zoogloea ramigera biosynthetic tetrameric thiolase (PDB entries 1dm3 and 1m1o) and different from the active site of the peroxisomal dimeric degradative thiolase (PDB entries 1afw and 2iik). A cavity analysis suggests a mode of binding for the fatty-acyl tail in a tunnel lined by the Nβ2-Nα2 loop of the adjacent subunit and the Lα1 helix of the loop domain. Soaking of the apo hT1 crystals with octanoyl-CoA resulted in a crystal structure in complex with CoA owing to the intrinsic acyl-CoA thioesterase activity of hT1. Solution studies confirm that hT1 has low acyl-CoA thioesterase activity for fatty acyl-CoA substrates. The fastest rate is observed for the hydrolysis of butyryl-CoA. It is also shown that T1 has significant biosynthetic thiolase activity, which is predicted to be of physiological importance.
Collapse
Affiliation(s)
- Tiila Riikka Kiema
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, PO Box 3000, FIN-90014 Oulu, Finland
| | - Rajesh K Harijan
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, PO Box 3000, FIN-90014 Oulu, Finland
| | - Malgorzata Strozyk
- Karolinska Institutet, Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska University Hospital, SE-141 86 Stockholm, Sweden
| | - Toshiyuki Fukao
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Yanagido 1-1, Gifu 501-1194, Japan
| | - Stefan E H Alexson
- Karolinska Institutet, Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska University Hospital, SE-141 86 Stockholm, Sweden
| | - Rik K Wierenga
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, PO Box 3000, FIN-90014 Oulu, Finland
| |
Collapse
|
32
|
Anbazhagan P, Harijan RK, Kiema TR, Janardan N, Murthy M, Michels PA, Juffer AH, Wierenga RK. Phylogenetic relationships and classification of thiolases and thiolase-like proteins of Mycobacterium tuberculosis and Mycobacterium smegmatis. Tuberculosis (Edinb) 2014; 94:405-12. [DOI: 10.1016/j.tube.2014.03.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 03/10/2014] [Indexed: 10/25/2022]
|
33
|
Disturbances in cholesterol, bile acid and glucose metabolism in peroxisomal 3-ketoacylCoA thiolase B deficient mice fed diets containing high or low fat contents. Biochimie 2013; 98:86-101. [PMID: 24287293 DOI: 10.1016/j.biochi.2013.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 11/15/2013] [Indexed: 12/29/2022]
Abstract
The peroxisomal 3-ketoacyl-CoA thiolase B (ThB) catalyzes the thiolytic cleavage of straight chain 3-ketoacyl-CoAs. Up to now, the ability of ThB to interfere with lipid metabolism was studied in mice fed a laboratory chow enriched or not with the synthetic agonist Wy14,643, a pharmacological activator of the nuclear hormone receptor PPARα. The aim of the present study was therefore to determine whether ThB could play a role in obesity and lipid metabolism when mice are chronically fed a synthetic High Fat Diet (HFD) or a Low Fat Diet (LFD) as a control diet. To investigate this possibility, wild-type (WT) mice and mice deficient for Thb (Thb(-/-)) were subjected to either a synthetic LFD or a HFD for 25 weeks, and their responses were compared. First, when fed a normal regulatory laboratory chow, Thb(-/-) mice displayed growth retardation as well as a severe reduction in the plasma level of Growth Hormone (GH) and Insulin Growth Factor-I (IGF-I), suggesting alterations in the GH/IGF-1 pathway. When fed the synthetic diets, the corrected energy intake to body mass was significantly higher in Thb(-/-) mice, yet those mice were protected from HFD-induced adiposity. Importantly, Thb(-/-) mice also suffered from hypoglycemia, exhibited reduction in liver glycogen stores and circulating insulin levels under the LFD and the HFD. Thb deficiency was also associated with higher levels of plasma HDL (High Density Lipoproteins) cholesterol and increased liver content of cholesterol under both the LFD and the HFD. As shown by the plasma lathosterol to cholesterol ratio, a surrogate marker for cholesterol biosynthesis, whole body cholesterol de novo synthesis was increased in Thb(-/-) mice. By comparing liver RNA from WT mice and Thb(-/-) mice using oligonucleotide microarray and RT-qPCR, a coordinated decrease in the expression of critical cholesterol synthesizing genes and an increased expression of genes involved in bile acid synthesis (Cyp7a1, Cyp17a1, Akr1d1) were observed in Thb(-/-) mice. In parallel, the elevation of the lathosterol to cholesterol ratio as well as the increased expression of cholesterol synthesizing genes were observed in the kidney of Thb(-/-) mice fed the LFD and the HFD. Overall, the data indicate that ThB is not fully interchangeable with the thiolase A isoform. The present study also reveals that modulating the expression of the peroxisomal ThB enzyme can largely reverberate not only throughout fatty acid metabolism but also cholesterol, bile acid and glucose metabolism.
Collapse
|
34
|
Crystal structures of SCP2-thiolases of Trypanosomatidae, human pathogens causing widespread tropical diseases: the importance for catalysis of the cysteine of the unique HDCF loop. Biochem J 2013; 455:119-30. [PMID: 23909465 DOI: 10.1042/bj20130669] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Thiolases are essential CoA-dependent enzymes in lipid metabolism. In the present study we report the crystal structures of trypanosomal and leishmanial SCP2 (sterol carrier protein, type-2)-thiolases. Trypanosomatidae cause various widespread devastating (sub)-tropical diseases, for which adequate treatment is lacking. The structures reveal the unique geometry of the active site of this poorly characterized subfamily of thiolases. The key catalytic residues of the classical thiolases are two cysteine residues, functioning as a nucleophile and an acid/base respectively. The latter cysteine residue is part of a CxG motif. Interestingly, this cysteine residue is not conserved in SCP2-thiolases. The structural comparisons now show that in SCP2-thiolases the catalytic acid/base is provided by the cysteine residue of the HDCF motif, which is unique for this thiolase subfamily. This HDCF cysteine residue is spatially equivalent to the CxG cysteine residue of classical thiolases. The HDCF cysteine residue is activated for acid/base catalysis by two main chain NH-atoms, instead of two water molecules, as present in the CxG active site. The structural results have been complemented with enzyme activity data, confirming the importance of the HDCF cysteine residue for catalysis. The data obtained suggest that these trypanosomatid SCP2-thiolases are biosynthetic thiolases. These findings provide promise for drug discovery as biosynthetic thiolases catalyse the first step of the sterol biosynthesis pathway that is essential in several of these parasites.
Collapse
|
35
|
Houten SM, Denis S, Argmann CA, Jia Y, Ferdinandusse S, Reddy JK, Wanders RJA. Peroxisomal L-bifunctional enzyme (Ehhadh) is essential for the production of medium-chain dicarboxylic acids. J Lipid Res 2012; 53:1296-303. [PMID: 22534643 DOI: 10.1194/jlr.m024463] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
L-bifunctional enzyme (Ehhadh) is part of the classical peroxisomal fatty acid β-oxidation pathway. This pathway is highly inducible via peroxisome proliferator-activated receptor α (PPARα) activation. However, no specific substrates or functions for Ehhadh are known, and Ehhadh knockout (KO) mice display no appreciable changes in lipid metabolism. To investigate Ehhadh functions, we used a bioinformatics approach and found that Ehhadh expression covaries with genes involved in the tricarboxylic acid cycle and in mitochondrial and peroxisomal fatty acid oxidation. Based on these findings and the regulation of Ehhadh's expression by PPARα, we hypothesized that the phenotype of Ehhadh KO mice would become apparent after fasting. Ehhadh mice tolerated fasting well but displayed a marked deficiency in the fasting-induced production of the medium-chain dicarboxylic acids adipic and suberic acid and of the carnitine esters thereof. The decreased levels of adipic and suberic acid were not due to a deficient induction of ω-oxidation upon fasting, as Cyp4a10 protein levels increased in wild-type and Ehhadh KO mice.We conclude that Ehhadh is indispensable for the production of medium-chain dicarboxylic acids, providing an explanation for the coordinated induction of mitochondrial and peroxisomal oxidative pathways during fasting.
Collapse
Affiliation(s)
- Sander M Houten
- Department of Clinical Chemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
36
|
Okumoto K, Kametani Y, Fujiki Y. Two proteases, trypsin domain-containing 1 (Tysnd1) and peroxisomal lon protease (PsLon), cooperatively regulate fatty acid β-oxidation in peroxisomal matrix. J Biol Chem 2011; 286:44367-79. [PMID: 22002062 DOI: 10.1074/jbc.m111.285197] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular mechanisms underlying protein turnover and enzyme regulation in the peroxisomal matrix remain largely unknown. Trypsin domain-containing 1 (Tysnd1) and peroxisomal Lon protease (PsLon) are newly identified peroxisomal matrix proteins that harbor both a serine protease-like domain and a peroxisome-targeting signal 1 (PTS1) sequence. Tysnd1 processes several PTS1-containing proteins and cleaves N-terminal presequences from PTS2-containing protein precursors. Here we report that knockdown of Tysnd1, but not PsLon, resulted in accumulation of endogenous β-oxidation enzymes in their premature form. The protease activity of Tysnd1 was inactivated by intermolecular self-conversion of the 60-kDa form to 15- and 45-kDa chains, which were preferentially degraded by PsLon. Peroxisomal β-oxidation of a very long fatty acid was significantly decreased by knockdown of Tysnd1 and partially lowered by PsLon knockdown. Taken together, these data suggest that Tysnd1 is a key regulator of the peroxisomal β-oxidation pathway via proteolytic processing of β-oxidation enzymes. The proteolytic activity of oligomeric Tysnd1 is in turn controlled by self-cleavage of Tysnd1 and degradation of Tysnd1 cleavage products by PsLon.
Collapse
Affiliation(s)
- Kanji Okumoto
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | |
Collapse
|
37
|
The characterization and evolutionary relationships of a trypanosomal thiolase. Int J Parasitol 2011; 41:1273-83. [DOI: 10.1016/j.ijpara.2011.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/22/2011] [Accepted: 07/19/2011] [Indexed: 11/23/2022]
|
38
|
Janardan N, Paul A, Harijan RK, Wierenga RK, Murthy MRN. Cloning, expression, purification and preliminary X-ray diffraction studies of a putative Mycobacterium smegmatis thiolase. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:817-20. [PMID: 21795802 PMCID: PMC3144804 DOI: 10.1107/s1744309111019324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 05/21/2011] [Indexed: 11/10/2022]
Abstract
Thiolases are important in fatty-acid degradation and biosynthetic pathways. Analysis of the genomic sequence of Mycobacterium smegmatis suggests the presence of several putative thiolase genes. One of these genes appears to code for an SCP-x protein. Human SCP-x consists of an N-terminal domain (referred to as SCP2 thiolase) and a C-terminal domain (referred as sterol carrier protein 2). Here, the cloning, expression, purification and crystallization of this putative SCP-x protein from M. smegmatis are reported. The crystals diffracted X-rays to 2.5 Å resolution and belonged to the triclinic space group P1. Calculation of rotation functions using X-ray diffraction data suggests that the protein is likely to possess a hexameric oligomerization with 32 symmetry which has not been observed in the other six known classes of this enzyme.
Collapse
Affiliation(s)
- Neelanjana Janardan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560 012, India
| | - Anju Paul
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560 012, India
| | - Rajesh K. Harijan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560 012, India
| | - Rikkert K. Wierenga
- Department of Biochemistry, Biocenter Oulu, University of Oulu, FIN-90220 Oulu, Finland
| | - M. R. N. Murthy
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560 012, India
| |
Collapse
|
39
|
Lewis AS, Vaidya SP, Blaiss CA, Liu Z, Stoub TR, Brager DH, Chen X, Bender RA, Estep CM, Popov AB, Kang CE, Van Veldhoven PP, Bayliss DA, Nicholson DA, Powell CM, Johnston D, Chetkovich DM. Deletion of the hyperpolarization-activated cyclic nucleotide-gated channel auxiliary subunit TRIP8b impairs hippocampal Ih localization and function and promotes antidepressant behavior in mice. J Neurosci 2011; 31:7424-40. [PMID: 21593326 PMCID: PMC3169171 DOI: 10.1523/jneurosci.0936-11.2011] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 03/29/2011] [Accepted: 03/31/2011] [Indexed: 12/15/2022] Open
Abstract
Output properties of neurons are greatly shaped by voltage-gated ion channels, whose biophysical properties and localization within axodendritic compartments serve to significantly transform the original input. The hyperpolarization-activated current, I(h), is mediated by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and plays a fundamental role in influencing neuronal excitability by regulating both membrane potential and input resistance. In neurons such as cortical and hippocampal pyramidal neurons, the subcellular localization of HCN channels plays a critical functional role, yet mechanisms controlling HCN channel trafficking are not fully understood. Because ion channel function and localization are often influenced by interacting proteins, we generated a knock-out mouse lacking the HCN channel auxiliary subunit, tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b). Eliminating expression of TRIP8b dramatically reduced I(h) expression in hippocampal pyramidal neurons. Loss of I(h)-dependent membrane voltage properties was attributable to reduction of HCN channels on the neuronal surface, and there was a striking disruption of the normal expression pattern of HCN channels in pyramidal neuron dendrites. In heterologous cells and neurons, absence of TRIP8b increased HCN subunit targeting to and degradation by lysosomes. Mice lacking TRIP8b demonstrated motor learning deficits and enhanced resistance to multiple tasks of behavioral despair with high predictive validity for antidepressant efficacy. We observed similar resistance to behavioral despair in distinct mutant mice lacking HCN1 or HCN2. These data demonstrate that interaction with the auxiliary subunit TRIP8b is a major mechanism underlying proper expression of HCN channels and I(h) in vivo, and suggest that targeting I(h) may provide a novel approach to treatment of depression.
Collapse
Affiliation(s)
- Alan S. Lewis
- Davee Department of Neurology and Clinical Neurosciences
| | - Sachin P. Vaidya
- Center for Learning and Memory, University of Texas at Austin, Austin, Texas 78712
| | | | - Zhiqiang Liu
- Davee Department of Neurology and Clinical Neurosciences
| | - Travis R. Stoub
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois 60612
| | - Darrin H. Brager
- Center for Learning and Memory, University of Texas at Austin, Austin, Texas 78712
| | | | - Roland A. Bender
- Institute of Anatomy I, University of Hamburg Medical Center, D-20246 Hamburg, Germany, and
| | - Chad M. Estep
- Davee Department of Neurology and Clinical Neurosciences
| | | | | | - Paul P. Van Veldhoven
- Laboratorium voor Lipidenbiochemie en Proteïnen-Interactie, Departement Moleculaire Celbiologie, Katholieke Universiteit Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium
| | - Douglas A. Bayliss
- Departments of Pharmacology and
- Anesthesiology, University of Virginia, Charlottesville, Virginia 22908
| | - Daniel A. Nicholson
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois 60612
| | - Craig M. Powell
- Departments of Neurology and
- Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8813
| | - Daniel Johnston
- Center for Learning and Memory, University of Texas at Austin, Austin, Texas 78712
| | - Dane M. Chetkovich
- Davee Department of Neurology and Clinical Neurosciences
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| |
Collapse
|
40
|
Kashiwayama Y, Tomohiro T, Narita K, Suzumura M, Glumoff T, Hiltunen JK, Van Veldhoven PP, Hatanaka Y, Imanaka T. Identification of a substrate-binding site in a peroxisomal beta-oxidation enzyme by photoaffinity labeling with a novel palmitoyl derivative. J Biol Chem 2010; 285:26315-25. [PMID: 20566640 DOI: 10.1074/jbc.m110.104547] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Peroxisomes play an essential role in a number of important metabolic pathways including beta-oxidation of fatty acids and their derivatives. Therefore, peroxisomes possess various beta-oxidation enzymes and specialized fatty acid transport systems. However, the molecular mechanisms of these proteins, especially in terms of substrate binding, are still unknown. In this study, to identify the substrate-binding sites of these proteins, we synthesized a photoreactive palmitic acid analogue bearing a diazirine moiety as a photophore, and performed photoaffinity labeling of purified rat liver peroxisomes. As a result, an 80-kDa peroxisomal protein was specifically labeled by the photoaffinity ligand, and the labeling efficiency competitively decreased in the presence of palmitoyl-CoA. Mass spectrometric analysis identified the 80-kDa protein as peroxisomal multifunctional enzyme type 2 (MFE2), one of the peroxisomal beta-oxidation enzymes. Recombinant rat MFE2 was also labeled by the photoaffinity ligand, and mass spectrometric analysis revealed that a fragment of rat MFE2 (residues Trp(249) to Arg(251)) was labeled by the ligand. MFE2 mutants bearing these residues, MFE2(W249A) and MFE2(R251A), exhibited decreased labeling efficiency. Furthermore, MFE2(W249G), which corresponds to one of the disease-causing mutations in human MFE2, also exhibited a decreased efficiency. Based on the crystal structure of rat MFE2, these residues are located on the top of a hydrophobic cavity leading to an active site of MFE2. These data suggest that MFE2 anchors its substrate around the region from Trp(249) to Arg(251) and positions the substrate along the hydrophobic cavity in the proper direction toward the catalytic center.
Collapse
Affiliation(s)
- Yoshinori Kashiwayama
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Van Veldhoven PP. Biochemistry and genetics of inherited disorders of peroxisomal fatty acid metabolism. J Lipid Res 2010; 51:2863-95. [PMID: 20558530 DOI: 10.1194/jlr.r005959] [Citation(s) in RCA: 247] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In humans, peroxisomes harbor a complex set of enzymes acting on various lipophilic carboxylic acids, organized in two basic pathways, alpha-oxidation and beta-oxidation; the latter pathway can also handle omega-oxidized compounds. Some oxidation products are crucial to human health (primary bile acids and polyunsaturated FAs), whereas other substrates have to be degraded in order to avoid neuropathology at a later age (very long-chain FAs and xenobiotic phytanic acid and pristanic acid). Whereas total absence of peroxisomes is lethal, single peroxisomal protein deficiencies can present with a mild or severe phenotype and are more informative to understand the pathogenic factors. The currently known single protein deficiencies equal about one-fourth of the number of proteins involved in peroxisomal FA metabolism. The biochemical properties of these proteins are highlighted, followed by an overview of the known diseases.
Collapse
Affiliation(s)
- Paul P Van Veldhoven
- Katholieke Universiteit Leuven, Department of Molecular Cell Biology, LIPIT, Campus Gasthuisberg, Herestraat, Leuven, Belgium.
| |
Collapse
|
42
|
Alencastre IS, Rodrigues TA, Grou CP, Fransen M, Sá-Miranda C, Azevedo JE. Mapping the cargo protein membrane translocation step into the PEX5 cycling pathway. J Biol Chem 2009; 284:27243-51. [PMID: 19632994 DOI: 10.1074/jbc.m109.032565] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Newly synthesized peroxisomal matrix proteins are targeted to the organelle by PEX5, the peroxisomal cycling receptor. Over the last few years, valuable data on the mechanism of this process have been obtained using a PEX5-centered in vitro system. The data gathered until now suggest that cytosolic PEX5.cargo protein complexes dock at the peroxisomal docking/translocation machinery, where PEX5 becomes subsequently inserted in an ATP-independent manner. This PEX5 species is then monoubiquitinated at a conserved cysteine residue, a mandatory modification for the next step of the pathway, the ATP-dependent dislocation of the ubiquitin-PEX5 conjugate back into the cytosol. Finally, the ubiquitin moiety is removed, yielding free PEX5. Despite its usefulness, there are many unsolved mechanistic aspects that cannot be addressed with this in vitro system and that call for a cargo protein-centered perspective instead. Here we describe a robust peroxisomal in vitro import system that provides this perspective. The data obtained with it suggest that translocation of a cargo protein across the peroxisomal membrane, including its release into the organelle matrix, occurs prior to PEX5 ubiquitination.
Collapse
Affiliation(s)
- Inês S Alencastre
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4150-180 Porto, Portugal
| | | | | | | | | | | |
Collapse
|
43
|
Ferdinandusse S, Denis S, Faust PL, Wanders RJA. Bile acids: the role of peroxisomes. J Lipid Res 2009; 50:2139-47. [PMID: 19357427 DOI: 10.1194/jlr.r900009-jlr200] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
It is well established that peroxisomes play a crucial role in de novo bile acid synthesis. Studies in patients with a peroxisomal disorder have been indispensable for the elucidation of the precise role of peroxisomes. Several peroxisomal disorders are associated with distinct bile acid abnormalities and each disorder has a characteristic pattern of abnormal bile acids that accumulate, which is often used for diagnostic purposes. The patients have also been important for determining the pathophysiological consequences of defects in bile acid biosynthesis. In this review, we will discuss all the peroxisomal steps involved in bile acid synthesis and the bile acid abnormalities in patients with peroxisomal disorders. We will show the results of bile acid measurements in several tissues from patients, including brain, and we will discuss the toxicity and the pathological effects of the abnormal bile acids.
Collapse
Affiliation(s)
- Sacha Ferdinandusse
- Laboratory of Genetic Metabolic Diseases, Academic Medical Center at the University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
44
|
Lopez D, Niesen M, Bedi M, McLean MP. Lauric acid dependent enhancement in hepatic SCPx protein requires an insulin deficient environment. Prostaglandins Leukot Essent Fatty Acids 2008; 78:131-5. [PMID: 18187312 DOI: 10.1016/j.plefa.2007.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2007] [Revised: 11/20/2007] [Accepted: 11/23/2007] [Indexed: 11/23/2022]
Abstract
Sterol carrier protein X (SCPx) is a peroxisomal protein with both lipid transfer and thiolase activity. Treating with the fatty acid, lauric acid, induced SCPx mRNA levels in rat liver and in rat hepatoma H4IIE cells but enhanced protein levels of SCPx and the thiolase produced as a post-translational modification of SCPx were only seen in H4IIE cells. Further investigation revealed that the presence of insulin can mask lauric acid effects on the SCPx gene especially at the protein level. These data are in agreement with the findings that diabetes, a medical condition characterized by high levels of fatty acids in an insulin deficient environment, enhances the hepatic expression of SCPx.
Collapse
Affiliation(s)
- Dayami Lopez
- Department of Molecular Medicine, School of Basic Biomedical Sciences, University of South Florida, College of Medicine, Tampa, FL 33612, USA.
| | | | | | | |
Collapse
|
45
|
Upham J, Acott PD, O'regan P, Sinal CJ, Crocker JFS, Geldenhuys L, Murphy MG. The pesticide adjuvant, Toximul™, alters hepatic metabolism through effects on downstream targets of PPARα. Biochim Biophys Acta Mol Basis Dis 2007; 1772:1057-64. [PMID: 17643967 DOI: 10.1016/j.bbadis.2007.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 06/01/2007] [Accepted: 06/08/2007] [Indexed: 11/23/2022]
Abstract
Previous studies demonstrated that chronic dermal exposure to the pesticide adjuvant (surfactant), Toximul (Tox), has significant detrimental effects on hepatic lipid metabolism. This study demonstrated that young mice dermally exposed to Tox for 12 days have significant increases in expression of peroxisomal acyl-CoA oxidase (mRNA and protein), bifunctional enzyme (mRNA) and thiolase (mRNA), as well as the P450 oxidizing enzymes Cyp4A10 and Cyp4A14 (mRNA and protein). Tox produced a similar pattern of increases in wild type adult female mice but did not induce these responses in PPARalpha-null mice. These data support the hypothesis that Tox, a heterogeneous blend of nonionic and anionic surfactants, modulates hepatic metabolism at least in part through activation of PPARalpha. Notably, all three groups of Tox-treated mice had increased relative liver weights due to significant accumulation of lipid. This could be endogenous in nature and/or a component(s) of Tox or a metabolite thereof. The ability of Tox and other hydrocarbon pollutants to induce fatty liver despite being PPARalpha agonists indicates a novel consequence of exposure to this class of chemicals, and may provide a new understanding of fatty liver in populations with industrial exposure.
Collapse
Affiliation(s)
- Jacqueline Upham
- Departments of Physiology and Biophysics, 5850 College Street, Sir Charles Tupper Medical Building, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5
| | | | | | | | | | | | | |
Collapse
|
46
|
MacDonald MJ, Smith AD, Hasan NM, Sabat G, Fahien LA. Feasibility of pathways for transfer of acyl groups from mitochondria to the cytosol to form short chain acyl-CoAs in the pancreatic beta cell. J Biol Chem 2007; 282:30596-606. [PMID: 17724028 DOI: 10.1074/jbc.m702732200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitochondria of pancreatic beta cells are believed to convert insulin secretagogues into products that are translocated to the cytosol where they participate in insulin secretion. We studied the hypothesis that short chain acyl-CoA (SC-CoAs) might be some of these products by discerning the pathways of SC-CoA formation in beta cells. Insulin secretagogues acutely stimulated 1.5-5-fold increases in acetoacetyl-CoA, succinyl-CoA, malonyl-CoA, hydroxymethylglutaryl-CoA (HMG-CoA), and acetyl-CoA in INS-1 832/13 cells as judged from liquid chromatography-tandem mass spectrometry measurements. Studies of 12 relevant enzymes in rat and human pancreatic islets and INS-1 832/13 cells showed the feasibility of at least two redundant pathways, one involving acetoacetate and the other citrate, for the synthesis SC-CoAs from secretagogue carbon in mitochondria and the transfer of their acyl groups to the cytosol where the acyl groups are converted to SC-CoAs. Knockdown of two key cytosolic enzymes in INS-1 832/13 cells with short hairpin RNA supported the proposed scheme. Lowering ATP citrate lyase 88% did not inhibit glucose-induced insulin release indicating citrate is not the only carrier of acyl groups to the cytosol. However, lowering acetoacetyl-CoA synthetase 80% partially inhibited glucose-induced insulin release indicating formation of SC-CoAs from acetoacetate in the cytosol is important for insulin secretion. The results indicate beta cells possess enzyme pathways that can incorporate carbon from glucose into acetyl-CoA, acetoacetyl-CoA, and succinyl-CoA and carbon from leucine into these three SC-CoAs plus HMG-CoA in their mitochondria and enzymes that can form acetyl-CoA, acetoacetyl-CoA, malonyl-CoA, and HMG-CoA in their cytosol.
Collapse
Affiliation(s)
- Michael J MacDonald
- Childrens Diabetes Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA.
| | | | | | | | | |
Collapse
|
47
|
Lopez D, Niesen M, Bedi M, Hale D, McLean MP. Activation of the SCPx promoter in mouse adrenocortical Y1 cells. Biochem Biophys Res Commun 2007; 357:549-53. [PMID: 17434450 DOI: 10.1016/j.bbrc.2007.03.194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 03/31/2007] [Indexed: 10/23/2022]
Abstract
Sterol carrier protein X (SCPx) is a peroxisomal protein with both lipid transfer and thiolase activity. Treatment of mouse adrenal Y1 cells with cAMP for 24h caused a significant induction of SCPx mRNA levels. Reporter gene studies demonstrated that treatment with cAMP and SF-1 was able to activate the SCPx promoter. Sequence analysis revealed the presence of three putative steroidogenic factor-1 (SF-1) binding motifs (designated SFB1, SFB2, and SFB3) and one CRE. Only SFB1 and SFB3 were able to bind recombinant SF-1 protein in electrophoretic mobility shift assays. The CRE was able to form a DNA/protein complex in the presence of Y1 nuclear extracts. Mutational analysis studies demonstrated that SFB3 is required for full activation of the SCPx promoter by cAMP treatment. Regulation of the SCPx gene by SF-1 and cAMP is similar to the regulatory mechanisms observed for other steroidogenic genes.
Collapse
Affiliation(s)
- Dayami Lopez
- Department of Molecular Medicine, University of South Florida, College of Medicine, Tampa, FL 33612, USA
| | | | | | | | | |
Collapse
|
48
|
Schroeder F, Atshaves BP, McIntosh AL, Gallegos AM, Storey SM, Parr RD, Jefferson JR, Ball JM, Kier AB. Sterol carrier protein-2: new roles in regulating lipid rafts and signaling. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1771:700-18. [PMID: 17543577 PMCID: PMC1989133 DOI: 10.1016/j.bbalip.2007.04.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 03/28/2007] [Accepted: 04/03/2007] [Indexed: 12/31/2022]
Abstract
Sterol carrier protein-2 (SCP-2) was independently discovered as a soluble protein that binds and transfers cholesterol as well as phospholipids (nonspecific lipid transfer protein, nsLTP) in vitro. Physiological functions of this protein are only now beginning to be resolved. The gene encoding SCP-2 also encodes sterol carrier protein-x (SCP-x) arising from an alternate transcription site. In vitro and in vivo SCP-x serves as a peroxisomal 3-ketoacyl-CoA thiolase in oxidation of branched-chain lipids (cholesterol to form bile acids; branched-chain fatty acid for detoxification). While peroxisomal SCP-2 facilitates branched-chain lipid oxidation, the role(s) of extraperoxisomal (up to 50% of total) are less clear. Studies using transfected fibroblasts overexpressing SCP-2 and hepatocytes from SCP-2/SCP-x gene-ablated mice reveal that SCP-2 selectively remodels the lipid composition, structure, and function of lipid rafts/caveolae. Studies of purified SCP-2 and in cells show that SCP-2 has high affinity for and selectively transfers many lipid species involved in intracellular signaling: fatty acids, fatty acyl CoAs, lysophosphatidic acid, phosphatidylinositols, and sphingolipids (sphingomyelin, ceramide, mono-di-and multi-hexosylceramides, gangliosides). SCP-2 selectively redistributes these signaling lipids between lipid rafts/caveolae and intracellular sites. These findings suggest SCP-2 serves not only in cholesterol and phospholipid transfer, but also in regulating multiple lipid signaling pathways in lipid raft/caveolae microdomains of the plasma membrane.
Collapse
Affiliation(s)
- Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Antonenkov VD, Ohlmeier S, Sormunen RT, Hiltunen JK. UK114, a YjgF/Yer057p/UK114 family protein highly conserved from bacteria to mammals, is localized in rat liver peroxisomes. Biochem Biophys Res Commun 2007; 357:252-7. [PMID: 17416349 DOI: 10.1016/j.bbrc.2007.03.136] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 03/22/2007] [Indexed: 11/25/2022]
Abstract
Mammalian UK114 belongs to a highly conserved family of proteins with unknown functions. Although it is believed that UK114 is a cytosolic or mitochondrial protein there is no detailed study of its intracellular localization. Using analytical subcellular fractionation, electron microscopic colloidal gold technique, and two-dimensional gel electrophoresis of peroxisomal matrix proteins combined with mass spectrometric analysis we show here that a large portion of UK114 is present in rat liver peroxisomes. The peroxisomal UK114 is a soluble matrix protein and it is not inducible by the peroxisomal proliferator clofibrate. The data predict involvement of UK114 in peroxisomal metabolism.
Collapse
Affiliation(s)
- Vasily D Antonenkov
- Department of Biochemistry, Biocenter Oulu, University of Oulu, Linnanmaa, P.O. Box 3000, FIN-90014 Oulu, Finland.
| | | | | | | |
Collapse
|
50
|
Atshaves BP, McIntosh AL, Landrock D, Payne HR, Mackie JT, Maeda N, Ball J, Schroeder F, Kier AB. Effect of SCP-x gene ablation on branched-chain fatty acid metabolism. Am J Physiol Gastrointest Liver Physiol 2007; 292:G939-51. [PMID: 17068117 DOI: 10.1152/ajpgi.00308.2006] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Despite the importance of peroxisomal oxidation in branched-chain lipid (phytol, cholesterol) detoxification, little is known regarding the factors regulating the peroxisomal uptake, targeting, and metabolism of these lipids. Although in vitro data suggest that sterol carrier protein (SCP)-x plays an important role in branched-chain lipid oxidation, the full physiological significance of this peroxisomal enzyme is not completely clear. To begin to resolve this issue, SCP-x-null mice were generated by gene ablation of SCP-x from the SCP-x/SCP-2 gene and fed a phytol-enriched diet to characterize the effects of lipid overload in a system with minimal 2/3-oxoacyl-CoA thiolytic activity. It was shown that SCP-x gene ablation 1) did not result in reduced expression of SCP-2 (previously thought to be derived in considerable part by posttranslational cleavage of SCP-x); 2) increased expression levels of key enzymes involved in alpha- and beta-oxidation; and 3) altered lipid distributions, leading to decreased hepatic fatty acid and triglyceride levels. In response to dietary phytol, lack of SCP-x resulted in 1) accumulation of phytol metabolites despite substantial upregulation of hepatic peroxisomal and mitochondrial enzymes; 2) reduced body weight gain and fat tissue mass; and 3) hepatic enlargement, increased mottling, and necrosis. In summary, the present work with SCP-x gene-ablated mice demonstrates, for the first time, a direct physiological relationship between lack of SCP-x and decreased ability to metabolize branched-chain lipids.
Collapse
Affiliation(s)
- Barbara P Atshaves
- Department of Physiology and Pharmacology, Texas A and M University, College Station, Texas 77843, USA
| | | | | | | | | | | | | | | | | |
Collapse
|