1
|
Osawa S, Kato H, Kemmoku D, Yamaguchi S, Jiang L, Tsuchiya Y, Takakura H, Izawa T. Exercise training-driven exosomal miRNA-323-5p activity suppresses adipogenic conversion of 3T3-L1 cells via the DUSP3/ERK pathway. Biochem Biophys Res Commun 2024; 734:150447. [PMID: 39083976 DOI: 10.1016/j.bbrc.2024.150447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Adipose-derived stem cell (ASC)-released exosomes (ASCexos) have multiple biological activities. We examined the effect of ASCexos derived from the inguinal adipose tissue of exercise-trained rats (EX-ASCexos) on adipogenic conversion of 3T3-L1 cells and analyzed their microRNA (miRNA) expression profiles. Differentiation of 3T3-L1 cells into adipocytes was performed for 9 d with EX-ASCexos or ASCexos from sedentary control rats (SED-ASCexos), and the expression of proteins and miRNA involved in adipogenic differentiation were determined. EX-ASCexos but not SED-ASCexos attenuated 3T3-L1 adipocyte differentiation with increased phosph-Ser112PPARγ expression, the inactive form of PPARγ. These differentiated adipocytes were also accompanied by increased phosph-Thr202/Tyr204ERK and decreased dual-specificity phosphatase 3 (DUSP3) levels. The exosomal miRNAs miR-323-5p, miR-433-3p, and miR-874-3p were identified specifically in EX-ASCexos. Of these, miR-323-5p mimic replicated the EX-ASCexo-induced suppression of 3T3-L1 adipocyte differentiation and altered adipogenesis-related factor expression. In conclusion, exercise training-driven exosomal miR-323-5p suppressed 3T3-L1 adipogenesis by increasing phosph-Ser112PPARγ expression, while phosph-Thr202/Tyr204ERK accumulation inhibited DUSP3 expression.
Collapse
Affiliation(s)
- Seita Osawa
- Graduate School of Health and Sports Science, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe City, Kyoto, 610-0394, Japan; Japan Society for the Promotion of Sci., Tokyo, Japan
| | - Hisashi Kato
- Organization for Research Initiatives and Development, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe City, Kyoto, 610-0394, Japan
| | - Daigo Kemmoku
- Graduate School of Health and Sports Science, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe City, Kyoto, 610-0394, Japan
| | - Sachiko Yamaguchi
- Graduate School of Health and Sports Science, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe City, Kyoto, 610-0394, Japan
| | - Lureien Jiang
- Graduate School of Health and Sports Science, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe City, Kyoto, 610-0394, Japan
| | - Yoshifumi Tsuchiya
- Faculty of Health and Sports Science, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe City, Kyoto, 610-0394, Japan
| | - Hisashi Takakura
- Graduate School of Health and Sports Science, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe City, Kyoto, 610-0394, Japan
| | - Tetsuya Izawa
- Graduate School of Health and Sports Science, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe City, Kyoto, 610-0394, Japan.
| |
Collapse
|
2
|
Huang W, Jiang M, Wang X, Pan D, Chen W, Fan L. Non-Sugar Sweetener Rubusoside Alleviates Lipid Metabolism Disorder In Vivo and In Vitro by Targeting PPARγ/α, Lgals3, and Mknk2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39508235 DOI: 10.1021/acs.jafc.4c06018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Rubusoside─a high-sweetened, nonsugar sweetener─is mainly extracted from Rubus chingii var. suavissimus (S. Lee) L. T. Lu or Rubus suavissimus S. Lee (Chinese sweet leaf tea). We previously reported that rubusoside regulates lipid metabolism disorder in Syrian golden hamsters on a high-fat diet (HFD). This study aimed to reveal the underlying mechanisms through which rubusoside alleviates lipid metabolism disorder in vivo and in vitro. First, we analyzed the therapeutic properties of rubusoside in alleviating HFD-induced lipid metabolism disorder in C57BL/6J mice. Then, we analyzed the adipogenic effect of rubusoside in normal and Lgals3/Mknk2-overexpressing 3T3-L1 cells by exploring the mechanisms on peroxisome proliferator-activated receptor-γ/α (PPARγ/α), galectin-3 (Lgals3), mitogen-activated protein kinase interacting serine/threonine kinase-2 (Mknk2), p38 mitogen-activated protein kinase (p38MAPK), and extracellular regulated protein kinases 1/2 (ERK1/2) with RT-qPCR and Western blot. Our results showed a rubusoside-mediated reduction of HFD-induced weight gain, dyslipidemia, and decelerated hepatic steatosis and adipose tissue expansion in mice as well as improved adipogenesis in 3T3-L1 cells. Mechanistically, rubusoside up-regulated the PPARγ/α expression while down-regulating Lgals3 and Mknk2 expression in vivo and in vitro. Furthermore, rubusoside attenuated the adipogenic activity of PPARγ through increasing its site-specific phosphorylation mediated by p38MAPK and ERK1/2. Taken together, our findings suggest that rubusoside alleviates lipid metabolism disorder through multiple pathways and thus holds potential for future development.
Collapse
Affiliation(s)
- Wanfang Huang
- School of Pharmacy, Guangxi University of Chinese Medicine, No. 13, Wuhe Avenue, Nanning, Guangxi 530200, China
| | - Manjing Jiang
- School of Pharmacy, Guangxi University of Chinese Medicine, No. 13, Wuhe Avenue, Nanning, Guangxi 530200, China
| | - Xue Wang
- School of Pharmacy, Guangxi University of Chinese Medicine, No. 13, Wuhe Avenue, Nanning, Guangxi 530200, China
| | - Dongjin Pan
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, No. 13, Wuhe Avenue, Nanning, Guangxi 530200, China
| | - Wenya Chen
- School of Pharmacy, Guangxi University of Chinese Medicine, No. 13, Wuhe Avenue, Nanning, Guangxi 530200, China
| | - Lanlan Fan
- School of Pharmacy, Guangxi University of Chinese Medicine, No. 13, Wuhe Avenue, Nanning, Guangxi 530200, China
| |
Collapse
|
3
|
Ma Y, Du C, Liu Y, Feng M, Shou Y, Yu D, Jin Y. Aristolochic acid-induced dyslipidemia and hepatotoxicity: The potential role of FXR and AHR receptors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117266. [PMID: 39509784 DOI: 10.1016/j.ecoenv.2024.117266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/26/2024] [Accepted: 10/27/2024] [Indexed: 11/15/2024]
Abstract
Aristolochic acids (AAs) represent a class of nitrophenanthrene carboxylic acids naturally existing or accidentally mixed in herbal medicines or crops, which have long been recognized for causing nephropathy. Recently, the linkage between AAs and liver injury has become a concern; however, the current understanding of the mechanism or mode of action (MOA) is limited. In the present study, we investigated nuclear receptor-mediated MOA associated with AAs-induced liver injury including dyslipidemia and hepatotoxicity. Bioinformatic analysis of AAI-interacting genes indicated nuclear receptor-mediated metabolizing pathways; Transcriptomic profiling of AAs-exposed rats with liver injury suggested FXR-, NRF2-, and AHR- mediated pathways in the injured livers of the rats. Mechanistic investigation using HepG2 cells indicated AAI-induced hepatic lipid accumulation by elevating Triglyceride (TG) through inhibition of the FXR. In addition, AAI-induced hepatocellular damage by activating the AHR pathway, which further generated ROS and activated the NRF2 pathway. Together, these results provided new clues for researchers who are interested in chemical-induced liver injury.
Collapse
Affiliation(s)
- Yumei Ma
- School of Public Health, Qingdao University, Qingdao, China
| | - Chenlong Du
- Ningxia Hui Autonomous Region Center for Disease Control and Prevention, Yinchuan, China
| | - Yuzhen Liu
- Gaomi Municipal Center for Disease Control and Prevention, Weifang Institute of Preventive Medicine, Weifang, China
| | - Meiyao Feng
- Department of Environmental Health, Qingdao Municipal Center for Disease Control and Prevention, Qingdao Institute of Preventive Medicine, Qingdao, China
| | - Yingqing Shou
- School of Public Health, Qingdao University, Qingdao, China
| | - Dianke Yu
- School of Public Health, Qingdao University, Qingdao, China
| | - Yuan Jin
- School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
4
|
Williams CC, Chuck J, Munoz-Tello P, Kojetin DJ. A tethering mechanism underlies Pin1-catalyzed proline cis-trans isomerization at a noncanonical site. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604348. [PMID: 39091828 PMCID: PMC11291072 DOI: 10.1101/2024.07.19.604348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The prolyl isomerase Pin1 catalyzes the cis-trans isomerization of proline peptide bonds, a non-covalent post-translational modification that influences cellular and molecular processes, including protein-protein interactions. Pin1 is a two-domain enzyme containing a WW domain that recognizes phosphorylated serine/threonine-proline (pS/pT-P) canonical motifs and an enzymatic PPIase domain that catalyzes proline cis-trans isomerization of pS/pT-P motifs. Here, we show that Pin1 uses a tethering mechanism to bind and catalyze proline cis-trans isomerization of a noncanonical motif in the disordered N-terminal activation function-1 (AF-1) domain of the human nuclear receptor PPARγ. NMR reveals multiple Pin1 binding regions within the PPARγ AF-1, including a canonical motif that when phosphorylated by the kinase ERK2 (pS112-P113) binds the Pin1 WW domain with high affinity. NMR methods reveal that Pin1 also binds and accelerates cis-trans isomerization of a noncanonical motif containing a tryptophan-proline motif (W39-P40) previously shown to be involved in an interdomain interaction with the C-terminal ligand-binding domain (LBD). Cellular transcription studies combined with mutagenesis and Pin1 inhibitor treatment reveal a functional role for Pin1-mediated acceleration of cis-trans isomerization of the W39-P40 motif. Our data inform a refined model of the Pin1 catalytic mechanism where the WW domain binds a canonical pS/T-P motif and tethers Pin1 to the target, which enables the PPIase domain to exert catalytic cis-trans isomerization at a distal noncanonical site.
Collapse
Affiliation(s)
- Christopher C. Williams
- Skaggs Graduate School of Chemical and Biological Sciences at Scripps Research, Jupiter, United States
- Department of Integrative Structural and Computational Biology, Scripps Research and The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, United States
| | - Jonathan Chuck
- Skaggs Graduate School of Chemical and Biological Sciences at Scripps Research, Jupiter, United States
- Department of Integrative Structural and Computational Biology, Scripps Research and The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, United States
| | - Paola Munoz-Tello
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, United States
| | - Douglas J. Kojetin
- Department of Integrative Structural and Computational Biology, Scripps Research and The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, United States
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, United States
- Center for Applied AI in Protein Dynamics, Vanderbilt University, Nashville, Tennessee, United States
| |
Collapse
|
5
|
Boukouvala E, Krey G. The Peroxisome Proliferator-Activated Receptors of Ray-Finned Fish: Unique Structures, Elusive Functions. Biomolecules 2024; 14:634. [PMID: 38927038 PMCID: PMC11201486 DOI: 10.3390/biom14060634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
The Actinopterygian and specifically the Teleostean peroxisome proliferator-activated receptors (PPARs) present an impressive variability and complexity in their structures, both at the gene and protein levels. These structural differences may also reflect functional divergence from their mammalian homologs, or even between fish species. This review, taking advantage of the data generated from the whole-genome sequencing of several fish species, highlights the differences in the primary structure of the receptors, while discussing results from the literature pertaining to the functions of fish PPARs and their activation by natural and synthetic compounds.
Collapse
Affiliation(s)
- Evridiki Boukouvala
- Veterinary Research Institute, Hellenic Agricultural Organization-DIMITRA (ELGO-DIMITRA), 57001 Thermi, Thessaloniki, Greece;
| | - Grigorios Krey
- Fisheries Research Institute, Hellenic Agricultural Organization-DIMITRA (ELGO-DIMITRA), 64007 Nea Peramos, Kavala, Greece
| |
Collapse
|
6
|
Benvie AM, Lee D, Jiang Y, Berry DC. Platelet-derived growth factor receptor beta is required for embryonic specification and confinement of the adult white adipose lineage. iScience 2024; 27:108682. [PMID: 38235323 PMCID: PMC10792241 DOI: 10.1016/j.isci.2023.108682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/31/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024] Open
Abstract
White adipose tissue (WAT) development and adult homeostasis rely on distinct adipocyte progenitor cells (APCs). While adult APCs are defined early during embryogenesis and generate adipocytes after WAT organogenesis, the mechanisms underlying adult adipose lineage determination and preservation remain undefined. Here, we uncover a critical role for platelet-derived growth factor receptor beta (Pdgfrβ) in identifying the adult APC lineage. Without Pdgfrβ, APCs lose their adipogenic competency to incite fibrotic tissue replacement and inflammation. Through lineage tracing analysis, we reveal that the adult APC lineage is lost and develops into macrophages when Pdgfrβ is deleted embryonically. Moreover, to maintain the APC lineage, Pdgfrβ activation stimulates p38/MAPK phosphorylation to promote APC proliferation and maintains the APC state by phosphorylating peroxisome proliferator activated receptor gamma (Pparγ) at serine 112. Together, our findings identify a role for Pdgfrβ acting as a rheostat for adult adipose lineage confinement to prevent unintended lineage switches.
Collapse
Affiliation(s)
- Abigail M. Benvie
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Derek Lee
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Yuwei Jiang
- Department of Physiology and Biophysics, University of Illinois College of Medicine at Chicago, Chicago, IL 60612, USA
| | - Daniel C. Berry
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
7
|
Caruso JA, Wang X, Murrow LM, Rodriguez CI, Chen-Tanyolac C, Vu L, Chen YY, Gascard P, Gartner ZJ, Kerlikowske K, Tlsty TD. Loss of PPARγ activity characterizes early protumorigenic stromal reprogramming and dictates the therapeutic window of opportunity. Proc Natl Acad Sci U S A 2023; 120:e2303774120. [PMID: 37816052 PMCID: PMC10589683 DOI: 10.1073/pnas.2303774120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/31/2023] [Indexed: 10/12/2023] Open
Abstract
Although robustly expressed in the disease-free (DF) breast stroma, CD36 is consistently absent from the stroma surrounding invasive breast cancers (IBCs). In this study, we primarily observed CD36 expression in adipocytes and intralobular capillaries within the DF breast. Larger vessels concentrated in interlobular regions lacked CD36 and were instead marked by the expression of CD31. When evaluated in perilesional capillaries surrounding ductal carcinoma in situ, a nonobligate IBC precursor, CD36 loss was more commonly observed in lesions associated with subsequent IBC. Peroxisome proliferator-activated receptor γ (PPARγ) governs the expression of CD36 and genes involved in differentiation, metabolism, angiogenesis, and inflammation. Coincident with CD36 loss, we observed a dramatic suppression of PPARγ and its target genes in capillary endothelial cells (ECs) and pericytes, which typically surround and support the stability of the capillary endothelium. Factors present in conditioned media from malignant cells repressed PPARγ and its target genes not only in cultured ECs and pericytes but also in adipocytes, which require PPARγ for proper differentiation. In addition, we identified a role for PPARγ in opposing the transition of pericytes toward a tumor-supportive myofibroblast phenotype. In mouse xenograft models, early intervention with rosiglitazone, a PPARγ agonist, demonstrated significant antitumor effects; however, following the development of a palpable tumor, the antitumor effects of rosiglitazone were negated by the repression of PPARγ in the mouse stroma. In summary, PPARγ activity in healthy tissues places several stromal cell types in an antitumorigenic state, directly inhibiting EC proliferation, maintaining adipocyte differentiation, and suppressing the transition of pericytes into tumor-supportive myofibroblasts.
Collapse
Affiliation(s)
- Joseph A Caruso
- Department of Pathology, University of California, San Francisco, CA 94143
| | - Xianhong Wang
- Department of Pathology, University of California, San Francisco, CA 94143
| | - Lyndsay M Murrow
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143
| | | | | | - Lisa Vu
- Department of Medicine and Epidemiology and Biostatistics, University of California, San Francisco, CA 94143
| | - Yunn-Yi Chen
- Department of Pathology, University of California, San Francisco, CA 94143
| | - Philippe Gascard
- Department of Pathology, University of California, San Francisco, CA 94143
| | - Zev J Gartner
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143
| | - Karla Kerlikowske
- Department of Medicine and Epidemiology and Biostatistics, University of California, San Francisco, CA 94143
| | - Thea D Tlsty
- Department of Pathology, University of California, San Francisco, CA 94143
| |
Collapse
|
8
|
Liu J, Li X, Wang H, Ren Y, Li Y, Guo F. Bavachinin selectively modulates PPAR γ and maintains bone homeostasis in Type 2 Diabetes. Phytother Res 2023; 37:4457-4472. [PMID: 37308719 DOI: 10.1002/ptr.7912] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/25/2023] [Accepted: 05/19/2023] [Indexed: 06/14/2023]
Abstract
Full peroxisome proliferator-activated receptor (PPAR) γ agonists, Thiazolidinediones (TZDs), effectively prevent the process of Type 2 Diabetes Mellitus (T2DM), but their side effects have curtailed use in the clinic, including weight gain and bone loss. Here, we identified that a selective PPAR γ modulator, Bavachinin (BVC), isolated from the seeds of Psoralea Corylifolia L., could potently regulate bone homeostasis. MC3T3-E1 pre-osteoblast cells and C3H10T1/2 mesenchymal stem cells were assessed for osteogenic differentiation activities, and receptor activator of NF-κB ligand (RANKL)-induced RAW 264.7 cells were assessed osteoclasts formation. Leptin receptor-deficient mice and diet-induced obesity mice were applied to evaluate the effect of BVC on bone homeostasis in vivo. Compared to full PPAR γ agonist rosiglitazone, BVC significantly increased the osteogenesis differentiation activities under normal and high glucose conditions in MC3T3-E1 cells. Moreover, BVC could alleviate osteoclast differentiation in RANKL-induced RAW 264.7 cells. In vivo, synthesized BVC prodrug (BN) has been applied to improve water solubility, increase the extent of oral absorption of BVC and prolong its residence time in blood circulation. BN could prevent weight gain, ameliorate lipid metabolism disorders, improve insulin sensitivity, and maintain bone mass and bone biomechanical properties. BVC, a unique PPAR γ selective modulator, could maintain bone homeostasis, and its prodrug (BN) exhibits insulin sensitizer activity while circumventing the side effects of the TZDs, including bone loss and undesirable weight gain.
Collapse
Affiliation(s)
- Jingwen Liu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Xiaoye Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Hong Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yan Ren
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Fujiang Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|
9
|
Sarkar S, Das AK, Bhattacharya S, Gachhui R, Sil PC. Isorhamnetin exerts anti-tumor activity in DEN + CCl 4-induced HCC mice. Med Oncol 2023; 40:188. [PMID: 37226027 DOI: 10.1007/s12032-023-02050-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/06/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most prevalent type of liver cancer and the main cause of cancer death globally. The use of medicinal herbs as chemotherapeutic agents in cancer treatment is receiving attention as they possess no or minimum side effects. Isorhamnetin (IRN), a flavonoid, has been under attention for its anti-inflammatory and anti-proliferative properties in a number of cancers, including colorectal, skin, and lung cancers. However, the in vivo mechanism of isorhamnetin to suppress liver cancer has yet to be explored. METHODS AND RESULT HCC was induced by N-diethylnitrosamine (DEN) and carbon tetrachloride (CCL4) in Swiss albino mice. Isorhamnetin (100 mg/kg body weight) was given to examine its anti-tumor properties in HCC mice model. Histological analysis and liver function assays were performed to assess changes in liver anatomy. Probable molecular pathways were explored using immunoblot, qPCR, ELISA, and immunohistochemistry techniques. Isorhamnetin inhibited various pro-inflammatory cytokines to suppress cancer-inducing inflammation. Additionally, it regulated Akt and MAPKs to suppress Nrf2 signaling. Isorhamnetin activated PPAR-γ and autophagy while suppressing cell cycle progression in DEN + CCl4-administered mice. Additionally, isorhamnetin regulated various signaling pathways to suppress cell proliferation, metabolism, and epithelial-mesenchymal transition in HCC. CONCLUSION Regulating diverse cellular signaling pathways makes isorhamnetin a better anti-cancer chemotherapeutic candidate in HCC. Importantly, the anti-TNF-α properties of isorhamnetin could prove it a valuable therapeutic agent in sorafenib-resistant HCC patients. Additionally, anti-TGF-β properties of isorhamnetin could be utilized to reduce the EMT-inducing side effects of doxorubicin.
Collapse
Affiliation(s)
- Sayanta Sarkar
- Department of Life Sciences & Biotechnology, Jadavpur University, 188, Raja SC Mullick Road, Kolkata, 700032, India
| | - Abhishek Kumar Das
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, West Bengal, 700054, India
| | - Semantee Bhattacharya
- Indian Association for the Cultivation of Science, 2A & 2B, Raja Subodh Chandra Mallick Rd, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Ratan Gachhui
- Department of Life Sciences & Biotechnology, Jadavpur University, 188, Raja SC Mullick Road, Kolkata, 700032, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, West Bengal, 700054, India.
| |
Collapse
|
10
|
Maciejewska-Skrendo A, Massidda M, Tocco F, Leźnicka K. The Influence of the Differentiation of Genes Encoding Peroxisome Proliferator-Activated Receptors and Their Coactivators on Nutrient and Energy Metabolism. Nutrients 2022; 14:nu14245378. [PMID: 36558537 PMCID: PMC9782515 DOI: 10.3390/nu14245378] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/27/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Genetic components may play an important role in the regulation of nutrient and energy metabolism. In the presence of specific genetic variants, metabolic dysregulation may occur, especially in relation to the processes of digestion, assimilation, and the physiological utilization of nutrients supplied to the body, as well as the regulation of various metabolic pathways and the balance of metabolic changes, which may consequently affect the effectiveness of applied reduction diets and weight loss after training. There are many well-documented studies showing that the presence of certain polymorphic variants in some genes can be associated with specific changes in nutrient and energy metabolism, and consequently, with more or less desirable effects of applied caloric reduction and/or exercise intervention. This systematic review focused on the role of genes encoding peroxisome proliferator-activated receptors (PPARs) and their coactivators in nutrient and energy metabolism. The literature review prepared showed that there is a link between the presence of specific alleles described at different polymorphic points in PPAR genes and various human body characteristics that are crucial for the efficacy of nutritional and/or exercise interventions. Genetic analysis can be a valuable element that complements the work of a dietitian or trainer, allowing for the planning of a personalized diet or training that makes the best use of the innate metabolic characteristics of the person who is the subject of their interventions.
Collapse
Affiliation(s)
- Agnieszka Maciejewska-Skrendo
- Faculty of Physical Culture, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland
- Institute of Physical Culture Sciences, University of Szczecin, 71-065 Szczecin, Poland
- Correspondence:
| | - Myosotis Massidda
- Department of Medical Sciences and Public Health, Faculty of Medicine and Surgery, Sport and Exercise Sciences Degree Courses, University of Cagliari, 72-09124 Cagliari, Italy
| | - Filippo Tocco
- Department of Medical Sciences and Public Health, Faculty of Medicine and Surgery, Sport and Exercise Sciences Degree Courses, University of Cagliari, 72-09124 Cagliari, Italy
| | - Katarzyna Leźnicka
- Faculty of Physical Culture, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland
| |
Collapse
|
11
|
Galigniana NM, Ruiz MC, Piwien-Pilipuk G. FK506 binding protein 51: Its role in the adipose organ and beyond. J Cell Biochem 2022. [PMID: 36502528 DOI: 10.1002/jcb.30351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 02/17/2024]
Abstract
There is a great body of evidence that the adipose organ plays a central role in the control not only of energy balance, but importantly, in the maintenance of metabolic homeostasis. Interest in the study of different aspects of its physiology grew in the last decades due to the pandemic of obesity and the consequences of metabolic syndrome. It was not until recently that the first evidence for the role of the high molecular weight immunophilin FK506 binding protein (FKBP) 51 in the process of adipocyte differentiation have been described. Since then, many new facets have been discovered of this stress-responsive FKBP51 as a central node for precise coordination of many cell functions, as shown for nuclear steroid receptors, autophagy, signaling pathways as Akt, p38 MAPK, and GSK3, as well as for insulin signaling and the control of glucose homeostasis. Thus, the aim of this review is to integrate and discuss the recent advances in the understanding of the many roles of FKBP51 in the adipose organ.
Collapse
Affiliation(s)
- Natalia M Galigniana
- Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires, Argentina
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Marina C Ruiz
- Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires, Argentina
| | - Graciela Piwien-Pilipuk
- Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires, Argentina
| |
Collapse
|
12
|
The Role of Transcription Factor PPAR-γ in the Pathogenesis of Psoriasis, Skin Cells, and Immune Cells. Int J Mol Sci 2022; 23:ijms23179708. [PMID: 36077103 PMCID: PMC9456565 DOI: 10.3390/ijms23179708] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/22/2022] Open
Abstract
The peroxisome proliferator-activated receptor PPAR-γ is one of three PPAR nuclear receptors that act as ligand-activated transcription factors. In immune cells, the skin, and other organs, PPAR-γ regulates lipid, glucose, and amino acid metabolism. The receptor translates nutritional, pharmacological, and metabolic stimuli into the changes in gene expression. The activation of PPAR-γ promotes cell differentiation, reduces the proliferation rate, and modulates the immune response. In the skin, PPARs also contribute to the functioning of the skin barrier. Since we know that the route from identification to the registration of drugs is long and expensive, PPAR-γ agonists already approved for other diseases may also represent a high interest for psoriasis. In this review, we discuss the role of PPAR-γ in the activation, differentiation, and proliferation of skin and immune cells affected by psoriasis and in contributing to the pathogenesis of the disease. We also evaluate whether the agonists of PPAR-γ may become one of the therapeutic options to suppress the inflammatory response in lesional psoriatic skin and decrease the influence of comorbidities associated with psoriasis.
Collapse
|
13
|
Guo Y, Zuo W, Yin L, Gu T, Wang S, Fang Z, Wang B, Dong H, Hou W, Zuo Z, Deng J. Pioglitazone Attenuates Ischemic Stroke Aggravation By Blocking PPARγ Reduction and Inhibiting Chronic Inflammation in Diabetic Mice. Eur J Neurosci 2022; 56:4948-4961. [PMID: 35945686 DOI: 10.1111/ejn.15789] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/03/2022] [Indexed: 11/28/2022]
Abstract
Diabetes can cause vascular remodeling and is associated with worse outcome after ischemic stroke. Pioglitazone is a commonly used anti-diabetic agent. However, it is not known whether pioglitazone use before ischemia could reduce brain ischemic injury. Pioglitazone was administered to 5-week-old db+ or db/db mice. Cerebral vascular remodeling was examined at the age of 9 weeks. Expression of peroxisome proliferator-activated receptor-γ (PPARγ), p-PPARγ (S112 and S273), nucleotide-binding domain (NOD)-like receptor protein 3 (Nlrp3), interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) was evaluated in the somatosensory cortex of mice. Neurological outcome was evaluated 24 h after brain ischemia. Results showed that early pioglitazone treatment provided a long-lasting effect of euglycemia but enhanced hyperlipidemia in the db/db mice. Diabetic mice exhibited increased vascular tortuosity, narrower middle cerebral artery (MCA) width and IgG leakage in the brain. These changes were blocked by early pioglitazone treatment. In diabetic animals, PPARγ expression was reduced and p-PPARγ at S273 but not S112, Nlrp3, IL-1β and TNF-α were increased in the somatosensory cortex. PPARγ decrease and Nlrp3 increase were mainly in the neurons of the diabetic brain, which was reversed by early pioglitazone treatment. Pioglitazone attenuated the aggravated neurological outcome after stroke in diabetic mice. But this protective effect was abolished through restoring cerebral inflammation by intracerebroventricular administration of IL-1β and TNF-α in pioglitazone treated diabetic mice before MCAO. In summary, early pioglitazone treatment attenuates cerebral vascular remodeling and ischemic brain injury possibly via blocking chronic neuroinflammation in the db/db mice.
Collapse
Affiliation(s)
- Yaru Guo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wenqiang Zuo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lu Yin
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tingting Gu
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shiquan Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zongping Fang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Bairen Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hailong Dong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wugang Hou
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, United States
| | - Jiao Deng
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China.,Department of Anesthesiology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
14
|
Sim SW, Jang Y, Park TS, Park BC, Lee YM, Jun HS. Molecular mechanisms of aberrant neutrophil differentiation in glycogen storage disease type Ib. Cell Mol Life Sci 2022; 79:246. [PMID: 35437689 PMCID: PMC11071875 DOI: 10.1007/s00018-022-04267-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/04/2022] [Accepted: 03/21/2022] [Indexed: 11/25/2022]
Abstract
Glycogen storage disease type Ib (GSD-Ib), characterized by impaired glucose homeostasis, neutropenia, and neutrophil dysfunction, is caused by a deficiency in glucose-6-phosphate transporter (G6PT). Neutropenia in GSD-Ib has been known to result from enhanced apoptosis of neutrophils. However, it has also been raised that neutrophil maturation arrest in the bone marrow would contribute to neutropenia. We now show that G6pt-/- mice exhibit severe neutropenia and impaired neutrophil differentiation in the bone marrow. To investigate the role of G6PT in myeloid progenitor cells, the G6PT gene was mutated using CRISPR/Cas9 system, and single cell-derived G6PT-/- human promyelocyte HL-60 cell lines were established. The G6PT-/- HL-60s exhibited impaired neutrophil differentiation, which is associated with two mechanisms: (i) abnormal lipid metabolism causing a delayed metabolic reprogramming and (ii) reduced nuclear transcriptional activity of peroxisome proliferator-activated receptor-γ (PPARγ) in G6PT-/- HL-60s. In this study, we demonstrated that G6PT is essential for neutrophil differentiation of myeloid progenitor cells and regulates PPARγ activity.
Collapse
Affiliation(s)
- Sang Wan Sim
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, 339-700, Republic of Korea
| | - Yuyeon Jang
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, 339-700, Republic of Korea
| | - Tae Sub Park
- Graduate School of International Agricultural Technology, and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Gangwon, 25354, Republic of Korea
| | - Byung-Chul Park
- Graduate School of International Agricultural Technology, and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Gangwon, 25354, Republic of Korea
| | - Young Mok Lee
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT, 06030, USA.
| | - Hyun Sik Jun
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, 339-700, Republic of Korea.
| |
Collapse
|
15
|
Zhao Y, Castro LFC, Monroig Ó, Cao X, Sun Y, Gao J. A zebrafish pparγ gene deletion reveals a protein kinase network associated with defective lipid metabolism. Funct Integr Genomics 2022; 22:435-450. [PMID: 35290539 DOI: 10.1007/s10142-022-00839-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 11/25/2022]
Abstract
Peroxisome proliferator-activated receptor γ (Pparγ) is a master regulator of adipogenesis. Chronic pathologies such as obesity, cardiovascular diseases, and diabetes involve the dysfunction of this transcription factor. Here, we generated a zebrafish mutant in pparγ (KO) with CRISPR/Cas9 technology and revealed its regulatory network. We uncovered the hepatic phenotypes of these male and female KO, and then the male wild-type zebrafish (WT) and KO were fed with a high-fat (HF) or standard diet (SD). We next conducted an integrated analyze of the proteomics and phosphoproteomics profiles. Compared with WT, the KO showed remarkable hyalinization and congestion lesions in the liver of males. Strikingly, pparγ deletion protected against the influence of high-fat diet feeding on lipid deposition in zebrafish. Some protein kinases critical for lipid metabolism, including serine/threonine-protein kinase TOR (mTOR), ribosomal protein S6 kinase (Rps6kb1b), and mitogen-activated protein kinase 14A (Mapk14a), were identified to be highly phosphorylated in KO based on differential proteome and phosphoproteome analysis. Our study supplies a pparγ deletion animal model and provides a comprehensive description of pparγ-induced expression level alterations of proteins and their phosphorylation, which are vital to understand the defective lipid metabolism risks posed to human health.
Collapse
Affiliation(s)
- Yan Zhao
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430070, China
| | - L Filipe C Castro
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- FCUP - Faculty of Sciences, Department of Biology, University of Porto, Porto, Portugal
| | - Óscar Monroig
- Instituto de Acuicultura Torre de La Sal (IATS-CSIC), Ribera de Cabanes, 12595, Castellón, Spain
| | - Xiaojuan Cao
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, China Zebrafish Resource Center, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430070, China
| | - Jian Gao
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China.
| |
Collapse
|
16
|
Characterization of a Read-through Fusion Transcript, BCL2L2-PABPN1, Involved in Porcine Adipogenesis. Genes (Basel) 2022; 13:genes13030445. [PMID: 35327999 PMCID: PMC8955228 DOI: 10.3390/genes13030445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 12/29/2022] Open
Abstract
cis-Splicing of adjacent genes (cis-SAGe) has been involved in multiple physiological and pathological processes in humans. However, to the best of our knowledge, there is no report of cis-SAGe in adipogenic regulation. In this study, a cis-SAGe product, BCL2L2–PABPN1 (BP), was characterized in fat tissue of pigs with RT-PCR and RACE method. BP is an in-frame fusion product composed of 333 aa and all the functional domains of both parents. BP is highly conserved among species and rich in splicing variants. BP was found to promote proliferation and inhibit differentiation of primary porcine preadipocytes. A total of 3074/44 differentially expressed mRNAs (DEmRs)/known miRNAs (DEmiRs) were identified in porcine preadipocytes overexpressing BP through RNA-Seq analysis. Both DEmRs and target genes of DEmiRs were involved in various fat-related pathways with MAPK and PI3K-Akt being the top enriched. PPP2CB, EGFR, Wnt5A and EHHADH were hub genes among the fat-related pathways identified. Moreover, ssc-miR-339-3p was found to be critical for BP regulating adipogenesis through integrated analysis of mRNA and miRNA data. The results highlight the role of cis-SAGe in adipogenesis and contribute to further revealing the mechanisms underlying fat deposition, which will be conductive to human obesity control.
Collapse
|
17
|
Zhao X, Liu H, Pan Y, Liu Y, Zhang F, Ao H, Zhang J, Xing K, Wang C. Identification of Potential Candidate Genes From Co-Expression Module Analysis During Preadipocyte Differentiation in Landrace Pig. Front Genet 2022; 12:753725. [PMID: 35178067 PMCID: PMC8843850 DOI: 10.3389/fgene.2021.753725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Preadipocyte differentiation plays an important role in lipid deposition and affects fattening efficiency in pigs. In the present study, preadipocytes isolated from the subcutaneous adipose tissue of three Landrace piglets were induced into mature adipocytes in vitro. Gene clusters associated with fat deposition were investigated using RNA sequencing data at four time points during preadipocyte differentiation. Twenty-seven co-expression modules were subsequently constructed using weighted gene co-expression network analysis. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses revealed three modules (blue, magenta, and brown) as being the most critical during preadipocyte differentiation. Based on these data and our previous differentially expressed gene analysis, angiopoietin-like 4 (ANGPTL4) was identified as a key regulator of preadipocyte differentiation and lipid metabolism. After inhibition of ANGPTL4, the expression of adipogenesis-related genes was reduced, except for that of lipoprotein lipase (LPL), which was negatively regulated by ANGPTL4 during preadipocyte differentiation. Our findings provide a new perspective to understand the mechanism of fat deposition.
Collapse
Affiliation(s)
- Xitong Zhao
- Beijing Shunxin Agriculture Co., Ltd., Beijing, China.,China Agricultural University, Beijing, China
| | - Huatao Liu
- China Agricultural University, Beijing, China
| | - Yongjie Pan
- Beijing Shunxin Agriculture Co., Ltd., Beijing, China
| | - Yibing Liu
- China Agricultural University, Beijing, China
| | | | - Hong Ao
- Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jibin Zhang
- City of Hope National Medical Center, Duarte, CA, United States
| | - Kai Xing
- Beijing University of Agriculture, Beijing, China
| | | |
Collapse
|
18
|
Thorne JL, Cioccoloni G. Nuclear Receptors and Lipid Sensing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:83-105. [DOI: 10.1007/978-3-031-11836-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
19
|
Jack A, Mohd MA, Kamaruddin NN, Mohd Din LH, Hajri NA, Tengku Muhammad TS. Acaudina molpadioides mediates lipid uptake by suppressing PCSK9 transcription and increasing LDL receptor in human liver cells. Saudi J Biol Sci 2021; 28:7105-7116. [PMID: 34867013 PMCID: PMC8626262 DOI: 10.1016/j.sjbs.2021.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 11/09/2022] Open
Abstract
Acaudina molpadioides has been long used as traditional medicinal resources and reported to demonstrate various important bioactivities such as anticoagulation, antithrombosis, anti-hyperglycemia and anticancer. However, its lipid lowering activity is yet to be fully explored. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is an enzyme that enhances the lysosomal degradation of hepatic low density lipoprotein receptor (LDLR) resulting in excessive accumulation of the plasma levels of LDL-cholesterols (LDL-C) which subsequently accelerate atherosclerosis. In the present study, A. molpadioides fractions were subjected to promoter-reporter luciferase assay to determine its role as PCSK9 inhibitors. It was found both fractions (EFA and EFB) reduced the transcriptional activity of PCSK9 promoter. Among the seven 5′end deletion constructs of PCSK9 promoter, fragments D1 (−1,711/−94), D3 (−709/−94) and D4 (−440/−94), were suppressed in the presence of both fractions whereas D2 (−1,214/−94), and, D6 (−351/−94) as well as D7 (−335/−94) were inhibited only by EFA and EFB, respectively. Further transcription factor binding sites prediction using MatInspector software discovered various potential cis-regulatory elements namely, PPAR, KLFs, RBPJ-kappa and SREBP that may potentially be involved in ameliorating the transcriptional activity of PCSK9. Immunofluorescence staining was used to evaluate the effects of both fractions on LDL-C and LDLR. Results showed that levels of LDL-C uptake in EFA-treated cells were 69.1% followed by EFB at 32.6%, as compared to untreated control after 24 h treatment. The LDLR protein distribution was induced by 62.41% and 32.2%, which corresponded to an increase in LDL-C uptake in both EFA and EFB treatment, respectively. Hence, the inhibition of PCSK9 by bioactive compounds in EFA and EFB could be another promising therapeutic agent in reducing the cholesterol levels and atherosclerosis by targeting PCSK9.
Collapse
Affiliation(s)
- Allicia Jack
- Nutrition & Food Safety Programme, Food Science & Technology Research Centre, Malaysian Agricultural Research & Development Institute (MARDI), Persiaran MARDI-UPM, 43400 Serdang, Selangor, Malaysia.,Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Muzaida Aminah Mohd
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | | | - Lukman Hakim Mohd Din
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Nor Azwin Hajri
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | | |
Collapse
|
20
|
Nathanael J, Suardana P, Vianney YM, Dwi Putra SE. The role of FoxO1 and its modulation with small molecules in the development of diabetes mellitus: A review. Chem Biol Drug Des 2021; 99:344-361. [PMID: 34862852 DOI: 10.1111/cbdd.13989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/11/2021] [Accepted: 11/21/2021] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus type 2 (T2D) is one of the metabolic disorders suffered by a global human being. Certain factors, such as lifestyle and heredity, can increase a person's tendency for T2D. Various genes and proteins play a role in the development of insulin resistance and ultimately diabetes in which one central protein that is discussed in this review is FoxO1. In this review, we regard FoxO1 activation as detrimental, promote high plasma glucose level, and induce insulin resistance. Indeed, many contrasting studies arise since FoxO1 is an important protein to alleviate oxidative stress and promote cell survival, for example, also by preventing hyperglycemic-induced cell death. Inter-relation to PPARG, another important protein in metabolism, is also discussed. Ultimately, we discussed contrasting approaches of targeting FoxO1 to combat diabetes mellitus by small molecules.
Collapse
Affiliation(s)
- Joshua Nathanael
- Department of Biotechnology, Faculty of Biotechnology, University of Surabaya, Surabaya, East Java, Indonesia
| | - Putu Suardana
- Department of Biotechnology, Faculty of Biotechnology, University of Surabaya, Surabaya, East Java, Indonesia
| | - Yoanes Maria Vianney
- Department of Biotechnology, Faculty of Biotechnology, University of Surabaya, Surabaya, East Java, Indonesia
| | - Sulistyo Emantoko Dwi Putra
- Department of Biotechnology, Faculty of Biotechnology, University of Surabaya, Surabaya, East Java, Indonesia
| |
Collapse
|
21
|
Deficiency of Cathelicidin Attenuates High-Fat Diet Plus Alcohol-Induced Liver Injury through FGF21/Adiponectin Regulation. Cells 2021; 10:cells10123333. [PMID: 34943840 PMCID: PMC8699208 DOI: 10.3390/cells10123333] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/20/2022] Open
Abstract
Alcohol consumption and obesity are known risk factors of steatohepatitis. Here, we report that the deficiency of CRAMP (cathelicidin-related antimicrobial peptide—gene name: Camp) is protective against a high-fat diet (HFD) plus acute alcohol (HFDE)-induced liver injury. HFDE markedly induced liver injury and steatosis in WT mice, which were attenuated in Camp–/– mice. Neutrophil infiltration was lessened in the liver of Camp–/– mice. HFDE feeding dramatically increased epididymal white adipose tissue (eWAT) mass and induced adipocyte hypertrophy in WT mice, whereas these effects were attenuated by the deletion of Camp. Furthermore, Camp–/– mice had significantly increased eWAT lipolysis, evidenced by up-regulated expression of lipolytic enzymes, adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL). The depletion of Camp also increased uncoupling protein 1 (UCP1)-dependent thermogenesis in the brown adipose tissue (BAT) of mice. HFDE fed Camp–/– mice had elevated protein levels of fibroblast growth factor 21 (FGF21) in the eWAT, with an increased adiponectin production, which had been shown to alleviate hepatic fat deposition and inflammation. Collectively, we have demonstrated that Camp–/– mice are protected against HFD plus alcohol-induced liver injury and steatosis through FGF21/adiponectin regulation. Targeting CRAMP could be an effective approach for prevention/treatment of high-fat diet plus alcohol consumption-induced steatohepatitis.
Collapse
|
22
|
Nuclear Receptors in Myocardial and Cerebral Ischemia-Mechanisms of Action and Therapeutic Strategies. Int J Mol Sci 2021; 22:ijms222212326. [PMID: 34830207 PMCID: PMC8617737 DOI: 10.3390/ijms222212326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Nearly 18 million people died from cardiovascular diseases in 2019, of these 85% were due to heart attack and stroke. The available therapies although efficacious, have narrow therapeutic window and long list of contraindications. Therefore, there is still an urgent need to find novel molecular targets that could protect the brain and heart against ischemia without evoking major side effects. Nuclear receptors are one of the promising targets for anti-ischemic drugs. Modulation of estrogen receptors (ERs) and peroxisome proliferator-activated receptors (PPARs) by their ligands is known to exert neuro-, and cardioprotective effects through anti-apoptotic, anti-inflammatory or anti-oxidant action. Recently, it has been shown that the expression of aryl hydrocarbon receptor (AhR) is strongly increased after brain or heart ischemia and evokes an activation of apoptosis or inflammation in injury site. We hypothesize that activation of ERs and PPARs and inhibition of AhR signaling pathways could be a promising strategy to protect the heart and the brain against ischemia. In this Review, we will discuss currently available knowledge on the mechanisms of action of ERs, PPARs and AhR in experimental models of stroke and myocardial infarction and future perspectives to use them as novel targets in cardiovascular diseases.
Collapse
|
23
|
Qiu JF, Ma N, He ZY, Zhong XN, Zhang JQ, Bai J, Deng JM, Tang XJ, Luo ZL, Huang M, Liang Q, Wei YL, Tang MJ, Li MH. Erythromycin inhibits cigarette smoke-induced inflammation through regulating the PPARγ/NF-κB signaling pathway in macrophages. Int Immunopharmacol 2021; 96:107775. [PMID: 34162143 DOI: 10.1016/j.intimp.2021.107775] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/22/2021] [Accepted: 05/05/2021] [Indexed: 11/18/2022]
Abstract
Chronic obstructive pulmonary disease is characterized by chronic inflammation of the airway and lungs. Accumulating evidence has suggested that erythromycin (EM) plays a protective role against cigarette smoke-induced oxidative stress and the inflammatory response. However, the underlying mechanisms remain relatively unclear. The present study aimed to investigate the role of EM in inhibiting cigarette smoke-induced inflammation in human macrophages and its potential mechanism. A Cell Counting Kit-8 assay was used to determine the optimum concentration of EM and cigarette smoke extract (CSE) and it was found that 0.1 and 1% CSE and 0.1, 1.0 and 10 μg/ml EM exerted no significant effect on the cell proliferation activity, whereas 2 and 3% CSE exerted a significant inhibitory effect over the cell proliferation activity. We observed that 10 μmol/ml GW9662 (A PPARγ antagonist) and the presence of 1% CSE could promote the expression and activation of NF-κB p65. And this increased the expression of IL-6, IL-8 and reactive oxygen species (ROS). At the same time, 10 μmol/ml GW9662 and 1% CSE was found to inhibit the expression and activation of peroxisome proliferator activated receptors γ (PPARγ); However, 1 μg/ml EM was discovered to reverse these effects. Co-immunoprecipitation subsequently discovered an interaction between PPARγ and NF-κB p65. In conclusion, the present study suggested that EM may reduce the damage of PPARγ by inhibiting oxidative stress and reducing the expression of ROS and finally relieving cigarette smoke-induced inflammation through the PPARγ/NF-κB signaling pathway in macrophages.
Collapse
Affiliation(s)
- Ju-Feng Qiu
- Department of Respiratory medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, China; Department of critical care medicine, First Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Nan Ma
- Department of Respiratory medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhi-Yi He
- Department of Respiratory medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiao-Ning Zhong
- Department of Respiratory medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jian-Quan Zhang
- Department of Respiratory medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jing Bai
- Department of Respiratory medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jing-Min Deng
- Department of Respiratory medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiao-Juan Tang
- Department of Respiratory medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhou-Ling Luo
- Department of Respiratory medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Mei Huang
- Department of Respiratory medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Quan Liang
- Department of Respiratory medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yan-Ling Wei
- Department of Respiratory medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ming-Jiao Tang
- Department of rehabilitation medicine, First Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Mei-Hua Li
- Department of Respiratory medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
24
|
Cataldi S, Costa V, Ciccodicola A, Aprile M. PPARγ and Diabetes: Beyond the Genome and Towards Personalized Medicine. Curr Diab Rep 2021; 21:18. [PMID: 33866450 DOI: 10.1007/s11892-021-01385-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/25/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Full and partial synthetic agonists targeting the transcription factor PPARγ are contained in FDA-approved insulin-sensitizing drugs and used for the treatment of metabolic syndrome-related dysfunctions. Here, we discuss the association between PPARG genetic variants and drug efficacy, as well as the role of alternative splicing and post-translational modifications as contributors to the complexity of PPARγ signaling and to the effects of synthetic PPARγ ligands. RECENT FINDINGS PPARγ regulates the transcription of several target genes governing adipocyte differentiation and glucose and lipid metabolism, as well as insulin sensitivity and inflammatory pathways. These pleiotropic functions confer great relevance to PPARγ in physiological regulation of whole-body metabolism, as well as in the etiology of metabolic disorders. Accordingly, PPARG gene mutations, nucleotide variations, and post-translational modifications have been associated with adipose tissue disorders and the related risk of insulin resistance and type 2 diabetes (T2D). Moreover, PPARγ alternative splicing isoforms-generating dominant-negative isoforms mainly expressed in human adipose tissue-have been related to impaired PPARγ activity and adipose tissue dysfunctions. Thus, multiple regulatory levels that contribute to PPARγ signaling complexity may account for the beneficial as well as adverse effects of PPARγ agonists. Further targeted analyses, taking into account all these aspects, are needed for better deciphering the role of PPARγ in human pathophysiology, especially in insulin resistance and T2D. The therapeutic potential of full and partial PPARγ synthetic agonists underlines the clinical significance of this nuclear receptor. PPARG mutations, polymorphisms, alternative splicing isoforms, and post-translational modifications may contribute to the pathogenesis of metabolic disorders, also influencing the responsiveness of pharmacological therapy. Therefore, in the context of the current evidence-based trend to personalized diabetes management, we highlight the need to decipher the intricate regulation of PPARγ signaling to pave the way to tailored therapies in patients with insulin resistance and T2D.
Collapse
Affiliation(s)
- Simona Cataldi
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", CNR, Via P. Castellino 111, 80131, Naples, Italy
| | - Valerio Costa
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", CNR, Via P. Castellino 111, 80131, Naples, Italy
| | - Alfredo Ciccodicola
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", CNR, Via P. Castellino 111, 80131, Naples, Italy.
- Department of Science and Technology, University of Naples "Parthenope", 80131, Naples, Italy.
| | - Marianna Aprile
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", CNR, Via P. Castellino 111, 80131, Naples, Italy
| |
Collapse
|
25
|
Mooli RGR, Rodriguez J, Takahashi S, Solanki S, Gonzalez FJ, Ramakrishnan SK, Shah YM. Hypoxia via ERK Signaling Inhibits Hepatic PPARα to Promote Fatty Liver. Cell Mol Gastroenterol Hepatol 2021; 12:585-597. [PMID: 33798787 PMCID: PMC8258975 DOI: 10.1016/j.jcmgh.2021.03.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Fatty liver or nonalcoholic fatty liver disease (NAFLD) is the most common liver disease associated with comorbidities such as insulin resistance and cardiovascular and metabolic diseases. Chronic activation of hypoxic signaling, in particular, hypoxia-inducible factor (HIF)2α, promotes NAFLD progression by repressing genes involved in fatty acid β-oxidation through unclear mechanisms. Therefore, we assessed the precise mechanism by which HIF2α promotes fatty liver and its physiological relevance in metabolic homeostasis. METHODS Primary hepatocytes from VHL (VhlΔHep) and PPARα (Ppara-null) knockout mice that were loaded with fatty acids, murine dietary protocols to induce hepatic steatosis, and fasting-refeeding dietary regimen approaches were used to test our hypothesis. RESULTS Inhibiting autophagy using chloroquine did not decrease lipid contents in VhlΔHep primary hepatocytes. Inhibition of ERK using MEK inhibitor decreased lipid contents in primary hepatocytes from a genetic model of constitutive HIF activation and primary hepatocytes loaded with free fatty acids. Moreover, MEK-ERK inhibition potentiated ligand-dependent activation of PPARα. We also show that MEK-ERK inhibition improved diet-induced hepatic steatosis, which is associated with the induction of PPARα target genes. During fasting, fatty acid β-oxidation is induced by PPARα, and refeeding inhibits β-oxidation. Our data show that ERK is involved in the post-prandial repression of hepatic PPARα signaling. CONCLUSIONS Overall, our results demonstrate that ERK activated by hypoxia signaling plays a crucial role in fatty acid β-oxidation genes by repressing hepatocyte PPARα signaling.
Collapse
Affiliation(s)
- Raja Gopal Reddy Mooli
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jessica Rodriguez
- Department of Molecular and Integrative Physiology, Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Shogo Takahashi
- Departments of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, District of Columbia; National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sumeet Solanki
- Department of Molecular and Integrative Physiology, Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Frank J Gonzalez
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sadeesh K Ramakrishnan
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Molecular and Integrative Physiology, Internal Medicine, University of Michigan, Ann Arbor, Michigan.
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, Internal Medicine, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
26
|
Shao M, Hepler C, Zhang Q, Shan B, Vishvanath L, Henry GH, Zhao S, An YA, Wu Y, Strand DW, Gupta RK. Pathologic HIF1α signaling drives adipose progenitor dysfunction in obesity. Cell Stem Cell 2021; 28:685-701.e7. [PMID: 33539723 DOI: 10.1016/j.stem.2020.12.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 10/19/2020] [Accepted: 12/15/2020] [Indexed: 01/06/2023]
Abstract
Adipose precursor cells (APCs) exhibit regional variation in response to obesity, for unclear reasons. Here, we reveal that HIFα-induced PDGFRβ signaling within murine white adipose tissue (WAT) PDGFRβ+ cells drives inhibitory serine 112 (S112) phosphorylation of PPARγ, the master regulator of adipogenesis. Levels of PPARγ S112 phosphorylation in WAT PDGFRβ+ cells are depot dependent, with levels of PPARγ phosphorylation in PDGFRβ+ cells inversely correlating with their capacity for adipogenesis upon high-fat-diet feeding. HIFα suppression in PDGFRβ+ progenitors promotes subcutaneous and intra-abdominal adipogenesis, healthy WAT remodeling, and improved metabolic health in obesity. These metabolic benefits are mimicked by treatment of obese mice with the PDGFR antagonist Imatinib, which promotes adipocyte hyperplasia and glucose tolerance in a progenitor cell PPARγ-dependent manner. Our studies unveil a mechanism underlying depot-specific responses of APCs to high-fat feeding and highlight the potential for APCs to be targeted pharmacologically to improve metabolic health in obesity.
Collapse
Affiliation(s)
- Mengle Shao
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chelsea Hepler
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qianbin Zhang
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bo Shan
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lavanya Vishvanath
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gervaise H Henry
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shangang Zhao
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yu A An
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yibo Wu
- YCI Laboratory for Next-Generation Proteomics, RIKEN Center of Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Douglas W Strand
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rana K Gupta
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
27
|
Cardiolipin-mediated PPARγ S112 phosphorylation impairs IL-10 production and inflammation resolution during bacterial pneumonia. Cell Rep 2021; 34:108736. [PMID: 33567272 PMCID: PMC7947928 DOI: 10.1016/j.celrep.2021.108736] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/17/2020] [Accepted: 01/20/2021] [Indexed: 12/20/2022] Open
Abstract
Bacterial pneumonia is a global healthcare burden, and unwarranted inflammation is suggested as an important cause of mortality. Optimum levels of the anti-inflammatory cytokine IL-10 are essential to reduce inflammation and improve survival in pneumonia. Elevated levels of the mitochondrial-DAMP cardiolipin (CL), reported in tracheal aspirates of pneumonia patients, have been shown to block IL-10 production from lung MDSCs. Although CL-mediated K107 SUMOylation of PPARγ has been suggested to impair this IL-10 production, the mechanism remains elusive. We identify PIAS2 to be the specific E3-SUMOligase responsible for this SUMOylation. Moreover, we identify a concomitant CL-mediated PPARγ S112 phosphorylation, mediated by JNK-MAPK, to be essential for PIAS2 recruitment. Furthermore, using a clinically tested peptide inhibitor targeting JNK-MAPK, we blocked these post-translational modifications (PTMs) of PPARγ and rescued IL-10 expression, improving survival in murine pneumonia models. Thus, we explore the mechanism of mito-DAMP-mediated impaired lung inflammation resolution and propose a therapeutic strategy targeting PPARγ PTMs.
Collapse
|
28
|
Li Y, Cui X, Wang X, Shen D, Yin A, You L, Wen J, Ji C, Guo X. Human milk derived peptide AOPDM1 attenuates obesity by restricting adipogenic differentiation through MAPK signalling. Biochim Biophys Acta Gen Subj 2020; 1865:129836. [PMID: 33370564 DOI: 10.1016/j.bbagen.2020.129836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/13/2020] [Accepted: 12/21/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Emerging evidence revealed peptides within breast milk may be an abundant source of potential candidates for metabolism regulation. Our previous work identified numerous peptides existed in breast milk, but its function has not been validated. Thus, our study aims to screen for novel peptides that have the potential to antagonize obesity and diabetes. METHODS A function screen was designed to identify the candidate peptide and then the peptide effect was validated by assessing lipid storage. Afterwards, the in vivo study was performed in two obese models: high-fat diet (HFD)-induced obese mice and obese ob/ob mice. For mechanism study, a RNA-seq analysis was conducted to explore the pathway that account for the biological function of peptide. RESULTS By performing a small scale screening, a peptide (AVPVQALLLNQ) termed AOPDM1 (anti-obesity peptide derived from breast milk 1) was identified to reduce lipid storage in adipocytes. Further study showed AOPDM1 suppressed adipocyte differentiation by sustaining ERK activity at later stage of differentiation which down-regulated PPARγ expression. In vivo, AOPDM1 effectively reduced fat mass and improved glucose metabolism in high-fat diet (HFD)-induced obese mice and obese ob/ob mice. CONCLUSIONS We identified a novel peptide AOPDM1 derived from breast milk could restrict adipocyte differentiation and ameliorate obesity through regulating MAPK pathway. GENERAL SIGNIFICANCE Our findings may provide a potential candidate for the discovery of therapeutic drugs for obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Yun Li
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China; Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Xianwei Cui
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Xing Wang
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Dan Shen
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Anwen Yin
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China; Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Lianghui You
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Juan Wen
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Chenbo Ji
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China.
| | - Xirong Guo
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China; Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China.
| |
Collapse
|
29
|
Ardenkjær-Larsen J, Rupar K, Sinkevičiūtė G, Petersen PSS, Villarroel J, Lundh M, Barrès R, Rabiee A, Emanuelli B. Insulin-induced serine 22 phosphorylation of retinoid X receptor alpha is dispensable for adipogenesis in brown adipocytes. Adipocyte 2020; 9:142-152. [PMID: 32249683 PMCID: PMC7153655 DOI: 10.1080/21623945.2020.1747352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Insulin action initiates a series of phosphorylation events regulating cellular differentiation, growth and metabolism. We have previously discovered, in a mass spectrometry-based phosphoproteomic study, that insulin/IGF-1 signalling induces phosphorylation of retinoid x receptor alpha (RXRα) at S22 in mouse brown pre-adipocytes. Here, we show that insulin induces the phosphorylation of RXRα at S22 in both brown precursor and mature adipocytes through a pathway involving ERK, downstream of IRS-1 and −2. We also found that RXRα S22 phosphorylation is promoted by insulin and upon re-feeding in brown adipose tissue in vivo, and that insulin-stimulated S22 phosphorylation of RXRα is dampened by diet-induced obesity. We used Rxra knockout cells re-expressing wild type (WT) or S22A non-phosphorylatable forms of RXRα to further characterize the role of S22 in brown adipocytes. Knockout of Rxra in brown pre-adipocytes resulted in decreased lipid accumulation and adipogenic gene expression during differentiation, and re-expression of RxraWT alleviated these effects. However, we observed no significant difference in cells re-expressing the RxraS22A mutant as compared with the cells re-expressing RxraWT. Furthermore, comparison of gene expression during adipogenesis in the WT and S22A re-expressing cells by RNA sequencing revealed similar transcriptomic profiles. Thus, our data propose a dispensable role for RXRα S22 phosphorylation in adipogenesis and transcription in differentiating brown pre-adipocytes.
Collapse
Affiliation(s)
- Jacob Ardenkjær-Larsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kaja Rupar
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Goda Sinkevičiūtė
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Patricia S. S. Petersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Julia Villarroel
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Lundh
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Atefeh Rabiee
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brice Emanuelli
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
30
|
Dias MMG, Batista FAH, Tittanegro TH, de Oliveira AG, Le Maire A, Torres FR, Filho HVR, Silveira LR, Figueira ACM. PPARγ S273 Phosphorylation Modifies the Dynamics of Coregulator Proteins Recruitment. Front Endocrinol (Lausanne) 2020; 11:561256. [PMID: 33329381 PMCID: PMC7729135 DOI: 10.3389/fendo.2020.561256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/20/2020] [Indexed: 11/24/2022] Open
Abstract
The nuclear receptor PPARγ is essential to maintain whole-body glucose homeostasis and insulin sensitivity, acting as a master regulator of adipogenesis, lipid, and glucose metabolism. Its activation through natural or synthetic ligands induces the recruitment of coactivators, leading to transcription of target genes such as cytokines and hormones. More recently, post translational modifications, such as PPARγ phosphorylation at Ser273 by CDK5 in adipose tissue, have been linked to insulin resistance trough the dysregulation of expression of a specific subset of genes. Here, we investigate how this phosphorylation may disturb the interaction between PPARγ and some coregulator proteins as a new mechanism that may leads to insulin resistance. Through cellular and in vitro assays, we show that PPARγ phosphorylation inhibition increased the activation of the receptor, therefore the increased recruitment of PGC1-α and TIF2 coactivators, whilst decreases the interaction with SMRT and NCoR corepressors. Moreover, our results show a shift in the coregulators interaction domains preferences, suggesting additional interaction interfaces formed between the phosphorylated PPARγ and some coregulator proteins. Also, we observed that the CDK5 presence disturb the PPARγ-coregulator's synergy, decreasing interaction with PGC1-α, TIF2, and NCoR, but increasing coupling of SMRT. Finally, we conclude that the insulin resistance provoked by PPARγ phosphorylation is linked to a differential coregulators recruitment, which may promote dysregulation in gene expression.
Collapse
Affiliation(s)
- Marieli Mariano Gonçalves Dias
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Graduate Program in Functional and Molecular Biology, Institute of Biology, State University of Campinas (Unicamp), Campinas, Brazil
| | | | - Thais Helena Tittanegro
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - André Gustavo de Oliveira
- Mitochondrial Molecular Biology Laboratory, Obesity and Comorbidities Research Center (OCRC), Campinas, Brazil
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Albane Le Maire
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Centre de Biochimie Structurale CNRS, Université de Montpellier, Montpellier, France
| | - Felipe Rafael Torres
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Helder Veras Ribeiro Filho
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Leonardo Reis Silveira
- Mitochondrial Molecular Biology Laboratory, Obesity and Comorbidities Research Center (OCRC), Campinas, Brazil
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Ana Carolina Migliorini Figueira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Graduate Program in Functional and Molecular Biology, Institute of Biology, State University of Campinas (Unicamp), Campinas, Brazil
| |
Collapse
|
31
|
Hsiao WY, Jung SM, Tang Y, Haley JA, Li R, Li H, Calejman CM, Sanchez-Gurmaches J, Hung CM, Luciano AK, DeMambro V, Wellen KE, Rosen CJ, Zhu LJ, Guertin DA. The Lipid Handling Capacity of Subcutaneous Fat Is Programmed by mTORC2 during Development. Cell Rep 2020; 33:108223. [PMID: 33027655 PMCID: PMC7607535 DOI: 10.1016/j.celrep.2020.108223] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/12/2020] [Accepted: 09/11/2020] [Indexed: 02/08/2023] Open
Abstract
Overweight and obesity are associated with type 2 diabetes, non-alcoholic fatty liver disease, cardiovascular disease and cancer, but all fat is not equal, as storing excess lipid in subcutaneous white adipose tissue (SWAT) is more metabolically favorable than in visceral fat. Here, we uncover a critical role for mTORC2 in setting SWAT lipid handling capacity. We find that subcutaneous white preadipocytes differentiating without the essential mTORC2 subunit Rictor upregulate mature adipocyte markers but develop a striking lipid storage defect resulting in smaller adipocytes, reduced tissue size, lipid re-distribution to visceral and brown fat, and sex-distinct effects on systemic metabolic fitness. Mechanistically, mTORC2 promotes transcriptional upregulation of select lipid metabolism genes controlled by PPARγ and ChREBP, including genes that control lipid uptake, synthesis, and degradation pathways as well as Akt2, which encodes a major mTORC2 substrate and insulin effector. Further exploring this pathway may uncover new strategies to improve insulin sensitivity.
Collapse
Affiliation(s)
- Wen-Yu Hsiao
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Su Myung Jung
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Yuefeng Tang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - John A. Haley
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Rui Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Huawei Li
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Camila Martinez Calejman
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Joan Sanchez-Gurmaches
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA,Division of Endocrinology, Developmental Biology, Cincinnati Children’s Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Chien-Min Hung
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Amelia K. Luciano
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | - Kathryn E. Wellen
- Center for Clinical and Translational Research, Maine Medical Center, Scarborough, MN 04074, USA,Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Clifford J. Rosen
- Center for Clinical and Translational Research, Maine Medical Center, Scarborough, MN 04074, USA
| | - Lihua Julie Zhu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA,Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA,Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - David A. Guertin
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA,Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA,Lead Contact,Correspondence:
| |
Collapse
|
32
|
Redox Regulation of PPAR γ in Polarized Macrophages. PPAR Res 2020; 2020:8253831. [PMID: 32695149 PMCID: PMC7350077 DOI: 10.1155/2020/8253831] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 04/28/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022] Open
Abstract
The peroxisome proliferator-activated receptor (PPARγ) is a central mediator of cellular lipid metabolism and immune cell responses during inflammation. This is facilitated by its role as a transcription factor as well as a DNA-independent protein interaction partner. We addressed how the cellular redox milieu in the cytosol and the nucleus of lipopolysaccharide (LPS)/interferon-γ- (IFNγ-) and interleukin-4- (IL4-) polarized macrophages (MΦ) initiates posttranslational modifications of PPARγ, that in turn alter its protein function. Using the redox-sensitive GFP2 (roGFP2), we validated oxidizing and reducing conditions following classical and alternative activation of MΦ, while the redox status of PPARγ was determined via mass spectrometry. Cysteine residues located in the zinc finger regions (amino acid fragments AA 90-115, AA 116-130, and AA 160-167) of PPARγ were highly oxidized, accompanied by phosphorylation of serine 82 in response to LPS/IFNγ, whereas IL4-stimulation provoked minor serine 82 phosphorylation and less cysteine oxidation, favoring a reductive milieu. Mutating these cysteines to alanine to mimic a redox modification decreased PPARγ-dependent reporter gene transactivation supporting a functional shift of PPARγ associated with the MΦ phenotype. These data suggest distinct mechanisms for regulating PPARγ function based on the redox state of MΦ.
Collapse
|
33
|
Lactosylceramide induced by elastin-derived peptides decreases adipocyte differentiation. J Physiol Biochem 2020; 76:457-467. [PMID: 32592089 DOI: 10.1007/s13105-020-00755-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 06/22/2020] [Indexed: 12/14/2022]
Abstract
Elastin, the major protein of the extracellular matrix, is specially found in cardiovascular tissues and contributing to 30-50% of the dry weight of blood vessels. Elastin regulates cell signalling pathways involved in morphogenesis, injury response and inflammation. The function of elastin is frequently compromised in damaged or aged elastic tissues. Indeed, elastin degradation, observed during ageing, and the resulting production of elastin-derived peptides (EDPs), have crucial impacts on cardiovascular disease (atherosclerosis, thrombosis) or on metabolism disease progressions (type 2 diabetes or non-alcoholic steatohepatitis). In the present study, we analysed the EDP effects on 3T3 preadipocyte cell differentiation. In a first part, we treated 3T3-L1 cells with EDP and visualized the lipid droplet accumulation by the oil red O staining and measured the expression of various transcription factors and adipocyte-specific mRNAs by real-time RT-PCR. We demonstrated that the elastin receptor complex, ERC, is activated by EDPs and decreased adipocyte differentiation by a modulation of crucial adipogenesis transcriptional factor particularly PPARγ. In a second part, we identified the signalling pathway implicated in EDP-reduced cell differentiation. The flow cytometry and immunocytochemistry approaches showed that ERC activated by EDP produced a second messenger, lactosylceramide (Lac-Cer). Moreover, this Lac-Cer production favoured the phosphorylation of ERK1-2 (p-ERK1-2), to decrease adipocyte differentiation by a modulation of adipogenesis transcriptional factor PPARγ. To conclude, the EDP/Lac-Cer/p-ERK1-2 signalling pathway may be studied further as a critical target for treating complications associated with adipocyte dedifferentiation such as obesity and diabetes insulin resistance.
Collapse
|
34
|
Chu XY, Yang SZ, Zhu MQ, Zhang DY, Shi XC, Xia B, Yuan Y, Liu M, Wu JW. Isorhapontigenin Improves Diabetes in Mice via Regulating the Activity and Stability of PPARγ in Adipocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3976-3985. [PMID: 32178518 DOI: 10.1021/acs.jafc.0c00515] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Isorhapontigenin is a natural bioactive stilbene isolated from various plants and fruits. It has been reported to exhibit several physiological activities including anticancer and anti-inflammation activity in vitro and in experimental animal models. This study aimed to investigate whether isorhapontigenin exerts antidiabetic effects in vivo. To this end, diabetic db/db mice were treated with either 25 mg kg-1 of isorhapontigenin or vehicle intraperitoneally for a period of 5 weeks. The results show that isorhapontigenin treatment significantly reduced postprandial levels of glucose, insulin, as well as free fatty acid, three markers of diabetes. Further studies show that isorhapontigenin treatment markedly improves insulin sensitivity and glucose tolerance of db/db mice as shown by ITT and GTT. Together, these physiological results show that isorhapontigenin possesses antidiabetic properties in vivo. Mechanistically, the isorhapontigenin-mediated antidiabetic effect is caused by favorable changes in adipose tissue, including reductions in adipocyte diameter and improved adipose insulin sensitivity. Further studies with 3T3-L1 cells show that isorhapontigenin treatment promotes preadipocyte differentiation by upregulation of the activity of the master adipogenic regulator PPARγ and deceleration of its proteasomal degradation. Together, our results establish for the first time an important role of isorhapontigenin as a potential nutraceutical agent for diabetes treatment.
Collapse
Affiliation(s)
- Xin Yi Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shi Zhen Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Meng Qing Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dan Yang Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiao Chen Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bo Xia
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ye Yuan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Min Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiang Wei Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
35
|
Hamlett ED, Hjorth E, Ledreux A, Gilmore A, Schultzberg M, Granholm AC. RvE1 treatment prevents memory loss and neuroinflammation in the Ts65Dn mouse model of Down syndrome. Glia 2020; 68:1347-1360. [PMID: 31944407 DOI: 10.1002/glia.23779] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/23/2022]
Abstract
Inflammation can be resolved by pro-homeostatic lipids called specialized pro-resolving mediators (SPMs) upon activation of their receptors. Dysfunctional inflammatory resolution is now considered as a driver of chronic neuroinflammation and Alzheimer's disease (AD) pathogenesis. We have previously shown that SPM levels were reduced and also that SPM-binding receptors were increased in patients with AD compared to age-matched controls. Individuals with Down syndrome (DS) exhibit accelerated acquisition of AD neuropathology, dementia, and neuroinflammation at an earlier age than the general population. Beneficial effects of inducing resolution in DS have not been investigated previously. The effects of the SPM resolvin E1 (RvE1) in a DS mouse model (Ts65Dn) were investigated with regard to inflammation, neurodegeneration, and memory deficits. A moderate dose of RvE1 for 4 weeks in middle-aged Ts65Dn mice elicited a significant reduction in memory loss, along with reduced levels of serum pro-inflammatory cytokines, and reduced microglial activation in the hippocampus of Ts65Dn mice but had no effects in age-matched normosomic mice. There were no observable adverse side effects in Ts65Dn or in normosomic mice. These findings suggest that SPMs may represent a novel drug target for individuals with DS and others at risk of developing AD.
Collapse
Affiliation(s)
- Eric D Hamlett
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Erik Hjorth
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Aurélie Ledreux
- Knoebel Institute for Healthy Aging and the Department of Biological Sciences, University of Denver, Denver, Colorado
| | - Anah Gilmore
- Knoebel Institute for Healthy Aging and the Department of Biological Sciences, University of Denver, Denver, Colorado
| | - Marianne Schultzberg
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Ann Charlotte Granholm
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
- Knoebel Institute for Healthy Aging and the Department of Biological Sciences, University of Denver, Denver, Colorado
| |
Collapse
|
36
|
El Ouarrat D, Isaac R, Lee YS, Oh DY, Wollam J, Lackey D, Riopel M, Bandyopadhyay G, Seo JB, Sampath-Kumar R, Olefsky JM. TAZ Is a Negative Regulator of PPARγ Activity in Adipocytes and TAZ Deletion Improves Insulin Sensitivity and Glucose Tolerance. Cell Metab 2020; 31:162-173.e5. [PMID: 31708444 PMCID: PMC7784082 DOI: 10.1016/j.cmet.2019.10.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/17/2019] [Accepted: 10/09/2019] [Indexed: 12/30/2022]
Abstract
Insulin resistance is a major factor in obesity-linked type 2 diabetes. PPARγ is a master regulator of adipogenesis, and small molecule agonists, termed thiazolidinediones, are potent therapeutic insulin sensitizers. Here, we studied the role of transcriptional co-activator with PDZ-binding motif (TAZ) as a transcriptional co-repressor of PPARγ. We found that adipocyte-specific TAZ knockout (TAZ AKO) mice demonstrate a constitutively active PPARγ state. Obese TAZ AKO mice show improved glucose tolerance and insulin sensitivity compared to littermate controls. PPARγ response genes are upregulated in adipose tissue from TAZ AKO mice and adipose tissue inflammation was also decreased. In vitro and in vivo mechanistic studies revealed that the TAZ-PPARγ interaction is partially dependent on ERK-mediated Ser112 PPARγ phosphorylation. As adipocyte PPARγ Ser112 phosphorylation is increased in obesity, repression of PPARγ activity by TAZ could contribute to insulin resistance. These results identify TAZ as a new factor in the development of obesity-induced insulin resistance.
Collapse
Affiliation(s)
- Dalila El Ouarrat
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Roi Isaac
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yun Sok Lee
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Da Young Oh
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas, Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joshua Wollam
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Denise Lackey
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Matthew Riopel
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Gautam Bandyopadhyay
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jong Bae Seo
- Department of Biosciences, Mokpo National University, Muan-gun, Jeonnam, Republic of Korea
| | | | - Jerrold M Olefsky
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
37
|
Morris G, Puri BK, Walker AJ, Maes M, Carvalho AF, Bortolasci CC, Walder K, Berk M. Shared pathways for neuroprogression and somatoprogression in neuropsychiatric disorders. Neurosci Biobehav Rev 2019; 107:862-882. [PMID: 31545987 DOI: 10.1016/j.neubiorev.2019.09.025] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/13/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022]
Abstract
Activated immune-inflammatory, oxidative and nitrosative stress (IO&NS) pathways and consequent mitochondrial aberrations are involved in the pathophysiology of psychiatric disorders including major depression, bipolar disorder and schizophrenia. They offer independent and shared contributions to pathways underpinning medical comorbidities including insulin resistance, metabolic syndrome, obesity and cardiovascular disease - herein conceptualized as somatoprogression. This narrative review of human studies aims to summarize relationships between IO&NS pathways, neuroprogression and somatoprogression. Activated IO&NS pathways, implicated in the neuroprogression of psychiatric disorders, affect the pathogenesis of comorbidities including insulin resistance, dyslipidaemia, obesity and hypertension, and by inference, metabolic syndrome. These conditions activate IO&NS pathways, exacerbating neuroprogression in psychiatric disorders. The processes whereby proinflammatory cytokines, nitrosative and endoplasmic reticulum stress, NADPH oxidase isoforms, PPARγ inactivation, SIRT1 deficiency and intracellular signalling pathways impact lipid metabolism and storage are considered. Through associations between body mass index, chronic neuroinflammation and FTO expression, activation of IO&NS pathways arising from somatoprogression may contribute to neuroprogression. Early evidence highlights the potential of adjuvants targeting IO&NS pathways for treating somatoprogression and neuroprogression.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Basant K Puri
- Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - Adam J Walker
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Michael Maes
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Andre F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Chiara C Bortolasci
- Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia
| | - Ken Walder
- Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia
| | - Michael Berk
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia; Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
38
|
Abou-Ezzi G, Supakorndej T, Zhang J, Anthony B, Krambs J, Celik H, Karpova D, Craft CS, Link DC. TGF-β Signaling Plays an Essential Role in the Lineage Specification of Mesenchymal Stem/Progenitor Cells in Fetal Bone Marrow. Stem Cell Reports 2019; 13:48-60. [PMID: 31204302 PMCID: PMC6626889 DOI: 10.1016/j.stemcr.2019.05.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 01/17/2023] Open
Abstract
Mesenchymal stromal cells are key components of hematopoietic niches in the bone marrow. Here we abrogated transforming growth factor β (TGF-β) signaling in mesenchymal stem/progenitor cells (MSPCs) by deleting Tgfbr2 in mesenchymal cells using a doxycycline-repressible Sp7 (osterix)-Cre transgene. We show that loss of TGF-β signaling during fetal development results in a marked expansion of CXCL12-abundant reticular (CAR) cells and adipocytes in the bone marrow, while osteoblasts are significantly reduced. These stromal alterations are associated with significant defects in hematopoiesis, including a shift from lymphopoiesis to myelopoiesis. However, hematopoietic stem cell function is preserved. Interestingly, TGF-β signaling is dispensable for the maintenance of mesenchymal cells in the bone marrow after birth under steady-state conditions. Collectively, these data show that TGF-β plays an essential role in the lineage specification of fetal but not definitive MSPCs and is required for the establishment of normal hematopoietic niches in fetal and perinatal bone marrow.
Collapse
Affiliation(s)
- Grazia Abou-Ezzi
- Division of Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| | - Teerawit Supakorndej
- Division of Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| | - Jingzhu Zhang
- Division of Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| | - Bryan Anthony
- Division of Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| | - Joseph Krambs
- Division of Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| | - Hamza Celik
- Division of Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| | - Darja Karpova
- Division of Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| | - Clarissa S Craft
- Division of Bone and Mineral Diseases, Washington University, St. Louis, MO, USA
| | - Daniel C Link
- Division of Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA.
| |
Collapse
|
39
|
Korbecki J, Bobiński R, Dutka M. Self-regulation of the inflammatory response by peroxisome proliferator-activated receptors. Inflamm Res 2019; 68:443-458. [PMID: 30927048 PMCID: PMC6517359 DOI: 10.1007/s00011-019-01231-1] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/24/2019] [Accepted: 03/22/2019] [Indexed: 12/14/2022] Open
Abstract
The peroxisome proliferator-activated receptor (PPAR) family includes three transcription factors: PPARα, PPARβ/δ, and PPARγ. PPAR are nuclear receptors activated by oxidised and nitrated fatty acid derivatives as well as by cyclopentenone prostaglandins (PGA2 and 15d-PGJ2) during the inflammatory response. This results in the modulation of the pro-inflammatory response, preventing it from being excessively activated. Other activators of these receptors are nonsteroidal anti-inflammatory drug (NSAID) and fatty acids, especially polyunsaturated fatty acid (PUFA) (arachidonic acid, ALA, EPA, and DHA). The main function of PPAR during the inflammatory reaction is to promote the inactivation of NF-κB. Possible mechanisms of inactivation include direct binding and thus inactivation of p65 NF-κB or ubiquitination leading to proteolytic degradation of p65 NF-κB. PPAR also exert indirect effects on NF-κB. They promote the expression of antioxidant enzymes, such as catalase, superoxide dismutase, or heme oxygenase-1, resulting in a reduction in the concentration of reactive oxygen species (ROS), i.e., secondary transmitters in inflammatory reactions. PPAR also cause an increase in the expression of IκBα, SIRT1, and PTEN, which interferes with the activation and function of NF-κB in inflammatory reactions.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Molecular Biology, School of Medicine in Katowice, Medical University of Silesia, Medyków 18 Str., 40-752, Katowice, Poland. .,Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Bielsko-Biala, Willowa 2 Str., 43-309, Bielsko-Biała, Poland.
| | - Rafał Bobiński
- Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Bielsko-Biala, Willowa 2 Str., 43-309, Bielsko-Biała, Poland
| | - Mieczysław Dutka
- Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Bielsko-Biala, Willowa 2 Str., 43-309, Bielsko-Biała, Poland
| |
Collapse
|
40
|
Mao L, Wang M, Li Y, Liu Y, Wang J, Xue C. Eicosapentaenoic acid-containing phosphatidylcholine promotes osteogenesis:mechanism of up-regulating Runx2 and ERK-mediated phosphorylation of PPARγ at serine 112. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.10.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
41
|
Elucidating the Beneficial Role of PPAR Agonists in Cardiac Diseases. Int J Mol Sci 2018; 19:ijms19113464. [PMID: 30400386 PMCID: PMC6275024 DOI: 10.3390/ijms19113464] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/28/2018] [Accepted: 11/02/2018] [Indexed: 12/13/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that bind to DNA and regulate transcription of genes involved in lipid and glucose metabolism. A growing number of studies provide strong evidence that PPARs are the promising pharmacological targets for therapeutic intervention in various diseases including cardiovascular disorders caused by compromised energy metabolism. PPAR agonists have been widely used for decades as lipid-lowering and anti-inflammatory drugs. Existing studies are mainly focused on the anti-atherosclerotic effects of PPAR agonists; however, their role in the maintenance of cellular bioenergetics remains unclear. Recent studies on animal models and patients suggest that PPAR agonists can normalize lipid metabolism by stimulating fatty acid oxidation. These studies indicate the importance of elucidation of PPAR agonists as potential pharmacological agents for protection of the heart from energy deprivation. Here, we summarize and provide a comprehensive analysis of previous studies on the role of PPARs in the heart under normal and pathological conditions. In addition, the review discusses the PPARs as a therapeutic target and the beneficial effects of PPAR agonists, particularly bezafibrate, to attenuate cardiomyopathy and heart failure in patients and animal models.
Collapse
|
42
|
Mao L, Wang M, Li Y, Liu Y, Wang J, Xue C. Docosahexaenoic acid‐containing phosphatidylcholine induced osteoblastic differentiation by modulating key transcription factors. J Food Biochem 2018. [DOI: 10.1111/jfbc.12661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Lei Mao
- College of Food Science and Engineering Ocean University of China Qingdao China
| | - Meiling Wang
- College of Food Science and Engineering Ocean University of China Qingdao China
| | - Yuanyuan Li
- College of Food Science and Engineering Ocean University of China Qingdao China
| | - Yaxuan Liu
- College of Food Science and Engineering Ocean University of China Qingdao China
| | - Jingfeng Wang
- College of Food Science and Engineering Ocean University of China Qingdao China
| | - Changhu Xue
- College of Food Science and Engineering Ocean University of China Qingdao China
| |
Collapse
|
43
|
Peroxisome Proliferator-Activated Receptor gamma negatively regulates liver regeneration after partial hepatectomy via the HGF/c-Met/ERK1/2 pathways. Sci Rep 2018; 8:11894. [PMID: 30089804 PMCID: PMC6082852 DOI: 10.1038/s41598-018-30426-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/29/2018] [Indexed: 01/04/2023] Open
Abstract
Peroxisome Proliferator-Activated Receptor gamma (PPARγ) is a nuclear receptor demonstrated to play an important role in various biological processes. The aim of this study was to determine the effect of PPARγ on liver regeneration upon partial hepatectomy (PH) in mice. Mice were subjected to two-thirds PH. Before surgery, mice were either treated with the PPARγ agonist rosiglitazone, the PPARγ antagonist GW9662 alone, or with the c-met inhibitor SGX523. Liver-to-body-weight ratio, lab values, and proliferation markers were assessed. Components of the PPARγ-specific signaling pathway were identified by western blot and qRT-PCR. Our results show that liver regeneration is being inhibited by rosiglitazone and accelerated by GW9662. Inhibition of c-Met by SGX523 treatment abrogates GW9662-induced liver regeneration and hepatocyte proliferation. Hepatocyte growth factor (HGF) protein levels were significantly downregulated after rosiglitazone treatment. Activation of HGF/c-Met pathways by phosphorylation of c-Met and ERK1/2 were inhibited in rosiglitazone-treated mice. In turn, blocking phosphorylation of c-Met significantly abrogated the augmented effect of GW9662 on liver regeneration. Our data support the concept that PPARγ abrogates liver growth and hepatocellular proliferation by inhibition of the HGF/c-Met/ERK1/2 pathways. These pathways may represent potential targets in response to liver disease and could impact on the development of molecular therapies.
Collapse
|
44
|
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a member of the nuclear receptor family and plays an important role in adipocyte differentiation, glucose homeostasis, and insulin sensitivity. Thiazolidinediones (TZDs), synthetic ligands of PPARγ, have been used for the treatment of diabetes mellitus for two decades. TZDs were expected to be amazing drugs not only for type 2 diabetes but also for metabolic syndrome and atherosclerotic vascular disease because they can reduce both insulin resistance and inflammation in experimental studies. However, serious unwanted effects pushed TZDs back to an optional second-tier drug for type 2 diabetes. Nevertheless, PPARγ is still one of the most important targets for the treatment of insulin resistance and diabetes mellitus, and novel strategies to modulate PPARγ activity to enhance its beneficial effects and reduce unwanted adverse effects are anticipated. Recent studies showed that post-translational modification (PTM) of PPARγ regulates PPARγ activity or stability and may be a novel way to optimize PPARγ activity with reduced adverse effects. In this review, we will focus on recent advances in PTM of PPARγ and the mechanisms regulating PPARγ function as well as in the development of PPARγ modulators or agonists.
Collapse
Affiliation(s)
- Sung Hee Choi
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea.,Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Sung Soo Chung
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Kyong Soo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| |
Collapse
|
45
|
Phloretin Promotes Adipogenesis via Mitogen-Activated Protein Kinase Pathways in Mouse Marrow Stromal ST2 Cells. Int J Mol Sci 2018; 19:ijms19061772. [PMID: 29904032 PMCID: PMC6032296 DOI: 10.3390/ijms19061772] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 12/19/2022] Open
Abstract
Phloretin, a glucose transporter (GLUT) inhibitor, has pleiotropic effects. The present study examined the effects of phloretin on the commitment of marrow stromal cells to adipocytes, using the mouse marrow stromal cell line ST2. Oil red O staining showed that treatment with phloretin 10–100 µM promoted lipid accumulation. Real-time PCR showed that phloretin significantly increased the expression of adipogenic markers, including PPARγ, C/EBPα, fatty acid synthase, fatty acid-binding protein 4, and adiponectin. Western blotting showed that phloretin inhibited ERK1/2 and JNK but activated p38 MAPK. Treatment with a MAPK/ERK kinase inhibitor and a JNK inhibitor enhanced adipogenesis, similar to phloretin. In contrast, a p38 MAPK inhibitor suppressed phloretin-induced adipogenesis. Although phloretin phosphorylated AMP-activated protein kinase (AMPK), co-incubation with an AMPK inhibitor did not block phloretin-induced adipogenesis. The 2-deoxyglucose colorimetric assay showed that phloretin and siRNA silencing of GLUT1 decreased glucose uptake. However, unlike phloretin treatment, GLUT1 silencing inhibited adipogenesis. In addition, phloretin enhanced adipogenesis in GLUT1 knocked-down cells. Taken together, phloretin induced adipogenesis of marrow stromal cells by inhibiting ERK1/2 and JNK and by activating p38 MAPK. The adipogenic effects of phloretin were independent of glucose uptake inhibition. Phloretin may affect energy metabolism by influencing adipogenesis and adiponectin expression.
Collapse
|
46
|
Functional Regulation of PPARs through Post-Translational Modifications. Int J Mol Sci 2018; 19:ijms19061738. [PMID: 29895749 PMCID: PMC6032173 DOI: 10.3390/ijms19061738] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/05/2018] [Accepted: 06/07/2018] [Indexed: 12/11/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear receptor superfamily and they are essential regulators of cell differentiation, tissue development, and energy metabolism. Given their central roles in sensing the cellular metabolic state and controlling metabolic homeostasis, PPARs became important targets of drug development for the management of metabolic disorders. The function of PPARs is mainly regulated through ligand binding, which induces structural changes, further affecting the interactions with co-activators or co-repressors to stimulate or inhibit their functions. In addition, PPAR functions are also regulated by various Post-translational modifications (PTMs). These PTMs include phosphorylation, SUMOylation, ubiquitination, acetylation, and O-GlcNAcylation, which are found at numerous modification sites. The addition of these PTMs has a wide spectrum of consequences on protein stability, transactivation function, and co-factor interaction. Moreover, certain PTMs in PPAR proteins have been associated with the status of metabolic diseases. In this review, we summarize the PTMs found on the three PPAR isoforms PPARα, PPARβ/δ, and PPARγ, and their corresponding modifying enzymes. We also discuss the functional roles of these PTMs in regulating metabolic homeostasis and provide a perspective for future research in this intriguing field.
Collapse
|
47
|
Abstract
Ulcerative colitis (UC) is a kind of inflammatory bowel disease that damages health seriously, and it is reported that butyrate could be used to treat UC. The underlying mechanism is that butyrate can activate G protein-coupled receptors to influence the downstream signaling pathways, thereby inhibiting the expression of cytokines and the differentiation and migration of immune cells. Besides, butyrate can activate peroxisome proliferator-activated receptor gamma, thus decreasing cell permeability and protecting the integrity of the intestinal mucosa. Butyrate can also inhibit the nuclear factor-kappa B signaling pathway, inhibiting the expression of cytokines, accelerating the apoptosis of T cells, and promoting the secretion of human defense peptides. Based on the recent research, we review the underlying mechanisms by which butyrate relieves UC to provide evidence for the clinical application of butyrate.
Collapse
Affiliation(s)
- Shu-Wen Ran
- Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health; Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agriculture University, Nanjing 210095, Jiangsu Province, China
| | - Chun-Long Mu
- Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health; Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agriculture University, Nanjing 210095, Jiangsu Province, China
| | - Wei-Yun Zhu
- Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health; Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agriculture University, Nanjing 210095, Jiangsu Province, China
| |
Collapse
|
48
|
Alassane-Kpembi I, Pinton P, Hupé JF, Neves M, Lippi Y, Combes S, Castex M, Oswald IP. Saccharomyces cerevisiae Boulardii Reduces the Deoxynivalenol-Induced Alteration of the Intestinal Transcriptome. Toxins (Basel) 2018; 10:E199. [PMID: 29762474 PMCID: PMC5983255 DOI: 10.3390/toxins10050199] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/02/2018] [Accepted: 05/11/2018] [Indexed: 12/15/2022] Open
Abstract
Type B trichothecene mycotoxin deoxynivalenol (DON) is one of the most frequently occurring food contaminants. By inducing trans-activation of a number of pro-inflammatory cytokines and increasing the stability of their mRNA, trichothecene can impair intestinal health. Several yeast products, especially Saccharomyces cerevisiae, have the potential for improving the enteric health of piglets, but little is known about the mechanisms by which the administration of yeast counteracts the DON-induced intestinal alterations. Using a pig jejunum explant model, a whole-transcriptome analysis was performed to decipher the early response of the small intestine to the deleterious effects of DON after administration of S. cerevisiae boulardii strain CNCM I-1079. Compared to the control condition, no differentially expressed gene (DE) was observed after treatment by yeast only. By contrast, 3619 probes-corresponding to 2771 genes-were differentially expressed following exposure to DON, and 32 signaling pathways were identified from the IPA software functional analysis of the set of DE genes. When the intestinal explants were treated with S. cerevisiae boulardii prior to DON exposure, the number of DE genes decreased by half (1718 probes corresponding to 1384 genes). Prototypical inflammation signaling pathways triggered by DON, including NF-κB and p38 MAPK, were reversed, although the yeast demonstrated limited efficacy toward some other pathways. S. cerevisiae boulardii also restored the lipid metabolism signaling pathway, and reversed the down-regulation of the antioxidant action of vitamin C signaling pathway. The latter effect could reduce the burden of DON-induced oxidative stress. Altogether, the results show that S. cerevisiae boulardii reduces the DON-induced alteration of intestinal transcriptome, and point to new mechanisms for the healing of tissue injury by yeast.
Collapse
Affiliation(s)
- Imourana Alassane-Kpembi
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-PURPAN, UPS, BP.93173 F-31027 Toulouse CEDEX 3, France.
- Hôpital d'Instruction des Armées-Centre Hospitalier Universitaire Cotonou Camp Guézo, Cotonou 01BP517, Benin.
| | - Philippe Pinton
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-PURPAN, UPS, BP.93173 F-31027 Toulouse CEDEX 3, France.
| | - Jean-François Hupé
- Lallemand SAS, 19 rue des Briquetiers, BP 59, 31702 Blagnac CEDEX, France.
| | - Manon Neves
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-PURPAN, UPS, BP.93173 F-31027 Toulouse CEDEX 3, France.
| | - Yannick Lippi
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-PURPAN, UPS, BP.93173 F-31027 Toulouse CEDEX 3, France.
| | - Sylvie Combes
- GenPhySE, Université de Toulouse, INRA, ENVT, 31320 Castanet Tolosan, France.
| | - Mathieu Castex
- Lallemand SAS, 19 rue des Briquetiers, BP 59, 31702 Blagnac CEDEX, France.
| | - Isabelle P Oswald
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-PURPAN, UPS, BP.93173 F-31027 Toulouse CEDEX 3, France.
| |
Collapse
|
49
|
Abstract
Thiazolidinediones (TZDs) are the only antidiabetic drugs that reverse insulin resistance. They have been a valuable asset in the treatment of type 2 diabetes, but their side effects have curtailed widespread use in the clinic. In this issue of the JCI, Kraakman and colleagues provide evidence that deacetylation of the nuclear receptor PPARγ improves the therapeutic index of TZDs. These findings should revitalize the quest to employ insulin sensitization as a first-line approach to managing type 2 diabetes.
Collapse
|
50
|
Liu P, Hsieh P, Lin H, Liu T, Wu H, Chen C, Chen Y. Grail is involved in adipocyte differentiation and diet-induced obesity. Cell Death Dis 2018; 9:525. [PMID: 29743578 PMCID: PMC5943410 DOI: 10.1038/s41419-018-0596-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/04/2018] [Accepted: 04/16/2018] [Indexed: 01/24/2023]
Abstract
Grail is a crucial regulator of various biological processes, including the development of T-cell anergy, antiviral innate immune response, and cancer. However, the role of Grail in adipogenesis and obesity remains unclear. Here, we demonstrated that Grail knockdown in vitro leads to a decrease in PPARγ expression, resulting in adipogenesis inhibition. However, Grail overexpression induced the same effects. Grail was shown to interact with PPARγ, targeting it for degradation and modulating its adipogenic activity. PPARγ expression was shown to be considerably reduced in Grail knockout (KO) mice fed normal diet or high-fat diet (HFD). The administration of both normal diet or HFD to Grail KO mice led to lower adipose mass and body weight than those in the wild-type mice. HFD-fed Grail KO mice had improved glucose and insulin tolerance. Taken together, our results indicate that Grail plays a pivotal role in adipogenesis and diet-induced obesity by regulating PPARγ activity.
Collapse
Affiliation(s)
- Peiyao Liu
- Department of Physiology & Biophysics, National Defense Medical Center, Taipei, Taiwan, 114, Republic of China
| | - Poshiuan Hsieh
- Department of Physiology & Biophysics, National Defense Medical Center, Taipei, Taiwan, 114, Republic of China.,Institute of Preventive Medicine, National Defense Medical Center, New Taipei City, Taiwan, 114, Republic of China
| | - Huitsu Lin
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City, Taiwan, 114, Republic of China
| | - Tejung Liu
- Department of Physical Medicine and Rehabilitation, Tri-Service General Hospital, Taipei, Taiwan, 114, Republic of China.,Department of Physical Medicine and Rehabilitation, School of Medicine, National Defense Medical Center, Taipei, Taiwan, 114, Republic of China.,Department of Physical Medicine and Rehabilitation, Taoyuan Armed Force General Hospital, Taoyuan, Taiwan, 114, Republic of China
| | - Hsuehling Wu
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City, Taiwan, 114, Republic of China
| | - Chengcheung Chen
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City, Taiwan, 114, Republic of China
| | - Yingchuan Chen
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City, Taiwan, 114, Republic of China.
| |
Collapse
|