1
|
Xie Q, Namba MD, Dasari R, Buck LA, Side CM, Goldberg SL, Park K, Jackson JG, Barker JM. Chemogenetic Activation of Medial Prefrontal Cortex Projections to the Nucleus Accumbens Shell Suppresses Cocaine-Primed Reinstatement in EcoHIV Infected Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.20.629781. [PMID: 39975137 PMCID: PMC11838193 DOI: 10.1101/2024.12.20.629781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
HIV is highly comorbid with cocaine use disorder (CUD). Relapse is a major challenge in the treatment of CUD, and people living with HIV (PLWH) exhibit shorter time to relapse. One driver of relapse may be re-exposure to cocaine, which can be modeled in rodents using cocaine-primed reinstatement. This process involves neuroadaptations within the medial prefrontal cortex (mPFC) and nucleus accumbens (NAc) shell, regions that mediate cocaine reward learning and relapse-related behavior. HIV infection interacts with cocaine to alter corticostriatal circuits, which may further dysregulate cocaine seeking. To investigate the impact of HIV infection on cocaine reward learning and reinstatement and the role of mPFC-NAc circuits, we utilized the EcoHIV mouse model, a chimeric form of HIV-1 which can infect wild-type mice. Our findings demonstrate that EcoHIV infection enhances cocaine-primed reinstatement. We also observed increased cocaine-induced expression of the cellular activation marker cFos in the NAshell in EcoHIV-infected mice. Given the role of the mPFC-NAshell circuit in cocaine-seeking behaviors, we further demonstrated that chemogenetic activation of this circuit could reverse the behavioral deficits induced by EcoHIV. We propose that HIV infection contributes to neuroadaptations in the mPFC-NAshell circuit, and enhancing its activity may inhibit relapse-related behavior. These findings indicate that key neuronal circuits underlying cocaine reinstatement are similarly implicated in HIV infection and suggest potential strategies for managing relapse in PLWH.
Collapse
Affiliation(s)
- Qiaowei Xie
- Department of Pharmacology and Physiology
- Graduate Program in Pharmacology and Physiology Drexel University College of Medicine
| | | | | | | | | | | | - Kyewon Park
- University of Pennsylvania Center for AIDS Research
| | | | | |
Collapse
|
2
|
Duffy BC, King KM, Nepal B, Nonnemacher MR, Kortagere S. Acute Administration of HIV-1 Tat Protein Drives Glutamatergic Alterations in a Rodent Model of HIV-Associated Neurocognitive Disorders. Mol Neurobiol 2024; 61:8467-8480. [PMID: 38514527 DOI: 10.1007/s12035-024-04113-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024]
Abstract
HIV-1-associated neurocognitive disorders (HAND) are a major comorbidity of HIV-1 infection, marked by impairment of executive function varying in severity. HAND affects nearly half of people living with HIV (PLWH), with mild forms predominating since the use of anti-retroviral therapies (ART). The HIV-1 transactivator of transcription (Tat) protein is found in the cerebrospinal fluid of patients adherent to ART, and its administration or expression in animals causes cognitive symptoms. Studies of Tat interaction with the N-methyl-D-aspartate receptor (NMDAR) suggest that glutamate toxicity contributes to Tat-induced impairments. To identify changes in regional glutamatergic circuitry underlying cognitive impairment, we injected recombinant Tat86 or saline to medial prefrontal cortex (mPFC) of male Sprague-Dawley rats. Rats were assessed with behavioral tasks that involve intact functioning of mPFC including the novel object recognition (NOR), spatial object recognition (SOR), and temporal order (TO) tasks at 1 and 2 postoperative weeks. Following testing, mPFC tissue was collected and analyzed by RT-PCR. Results showed Tat86 in mPFC-induced impairment in SOR, and upregulation of Grin1 and Grin2a transcripts. To further understand the mechanism of Tat toxicity, we assessed the effects of full-length Tat101 on gene expression in mPFC by RNA sequencing. The results of RNAseq suggest that glutamatergic effects of Tat86 are maintained with Tat101, as Grin2a was upregulated in Tat101-injected tissue, among other differentially expressed genes. Spatial learning and memory impairment and Grin2a upregulation suggest that exposure to Tat protein drives adaptation in mPFC, altering the function of circuitry supporting spatial learning and memory.
Collapse
Affiliation(s)
- Brenna C Duffy
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Kirsten M King
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Binod Nepal
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA.
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA.
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Donadoni M, Cakir S, Bellizzi A, Swingler M, Sariyer IK. Modeling HIV-1 infection and NeuroHIV in hiPSCs-derived cerebral organoid cultures. J Neurovirol 2024; 30:362-379. [PMID: 38600307 PMCID: PMC11464638 DOI: 10.1007/s13365-024-01204-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024]
Abstract
The human immunodeficiency virus (HIV) epidemic is an ongoing global health problem affecting 38 million people worldwide with nearly 1.6 million new infections every year. Despite the advent of combined antiretroviral therapy (cART), a large percentage of people with HIV (PWH) still develop neurological deficits, grouped into the term of HIV-associated neurocognitive disorders (HAND). Investigating the neuropathology of HIV is important for understanding mechanisms associated with cognitive impairment seen in PWH. The major obstacle for studying neuroHIV is the lack of suitable in vitro human culture models that could shed light into the HIV-CNS interactions. Recent advances in induced pluripotent stem cell (iPSC) culture and 3D brain organoid systems have allowed the generation of 2D and 3D culture methods that possess a potential to serve as a model of neurotropic viral diseases, including HIV. In this study, we first generated and characterized several hiPSC lines from healthy human donor skin fibroblast cells. hiPSCs were then used for the generation of microglia-containing human cerebral organoids (hCOs). Once fully characterized, hCOs were infected with HIV-1 in the presence and absence of cART regimens and viral infection was studied by cellular, molecular/biochemical, and virological assays. Our results revealed that hCOs were productively infected with HIV-1 as evident by viral p24-ELISA in culture media, RT-qPCR and RNAscope analysis of viral RNA, as well as ddPCR analysis of proviral HIV-1 in genomic DNA samples. More interestingly, replication and gene expression of HIV-1 were also greatly suppressed by cART in hCOs as early as 7 days post-infections. Our results suggest that hCOs derived from hiPSCs support HIV-1 replication and gene expression and may serve as a unique platform to better understand neuropathology of HIV infection in the brain.
Collapse
Affiliation(s)
- Martina Donadoni
- Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Senem Cakir
- Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Anna Bellizzi
- Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Michael Swingler
- Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Ilker K Sariyer
- Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Fernandes JP, Branton WG, Cohen EA, Koopman G, Kondova I, Gelman BB, Power C. Caspase cleavage of gasdermin E causes neuronal pyroptosis in HIV-associated neurocognitive disorder. Brain 2024; 147:717-734. [PMID: 37931057 PMCID: PMC10834258 DOI: 10.1093/brain/awad375] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 11/08/2023] Open
Abstract
Despite effective antiretroviral therapies, 20-30% of persons with treated HIV infection develop a neurodegenerative syndrome termed HIV-associated neurocognitive disorder (HAND). HAND is driven by HIV expression coupled with inflammation in the brain but the mechanisms underlying neuronal damage and death are uncertain. The inflammasome-pyroptosis axis coordinates an inflammatory type of regulated lytic cell death that is underpinned by the caspase-activated pore-forming gasdermin proteins. The mechanisms driving neuronal pyroptosis were investigated herein in models of HAND, using multi-platform molecular and morphological approaches that included brain tissues from persons with HAND and simian immunodeficiency virus (SIV)-infected non-human primates as well as cultured human neurons. Neurons in the frontal cortices from persons with HAND showed increased cleaved gasdermin E (GSDME), which was associated with β-III tubulin degradation and increased HIV levels. Exposure of cultured human neurons to the HIV-encoded viral protein R (Vpr) elicited time-dependent cleavage of GSDME and Ninjurin-1 (NINJ1) induction with associated cell lysis that was inhibited by siRNA suppression of both proteins. Upstream of GSDME cleavage, Vpr exposure resulted in activation of caspases-1 and 3. Pretreatment of Vpr-exposed neurons with the caspase-1 inhibitor, VX-765, reduced cleavage of both caspase-3 and GSDME, resulting in diminished cell death. To validate these findings, we examined frontal cortical tissues from SIV-infected macaques, disclosing increased expression of GSDME and NINJ1 in cortical neurons, which was co-localized with caspase-3 detection in animals with neurological disease. Thus, HIV infection of the brain triggers the convergent activation of caspases-1 and -3, which results in GSDME-mediated neuronal pyroptosis in persons with HAND. These findings demonstrate a novel mechanism by which a viral infection causes pyroptotic death in neurons while also offering new diagnostic and therapeutic strategies for HAND and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Jason P Fernandes
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - William G Branton
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB T6G 2R7, Canada
| | - Eric A Cohen
- Laboratory of Human Retrovirology, Institut de Recherches Cliniques Montreal (IRCM), Montreal, QC H2W 1R7, Canada
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Gerrit Koopman
- Department of Virology, Biomedical Primate Research Centre (BPRC), Rijswijk 2280 GH, The Netherlands
| | - Ivanela Kondova
- Department of Animal Science, Biomedical Primate Research Centre (BPRC), Rijswijk 2280 GH, The Netherlands
| | - Benjamin B Gelman
- Departments of Pathology and Neurobiology, University of Texas Medical Branch, Galveston, TX 77555-0569, USA
| | - Christopher Power
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB T6G 2R7, Canada
| |
Collapse
|
5
|
McMillan RE, Wang E, Carlin AF, Coufal NG. Human microglial models to study host-virus interactions. Exp Neurol 2023; 363:114375. [PMID: 36907350 PMCID: PMC10521930 DOI: 10.1016/j.expneurol.2023.114375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/13/2023] [Accepted: 03/02/2023] [Indexed: 03/14/2023]
Abstract
Microglia, the resident macrophage of the central nervous system, are increasingly recognized as contributing to diverse aspects of human development, health, and disease. In recent years, numerous studies in both mouse and human models have identified microglia as a "double edged sword" in the progression of neurotropic viral infections: protecting against viral replication and cell death in some contexts, while acting as viral reservoirs and promoting excess cellular stress and cytotoxicity in others. It is imperative to understand the diversity of human microglial responses in order to therapeutically modulate them; however, modeling human microglia has been historically challenging due to significant interspecies differences in innate immunity and rapid transformation upon in vitro culture. In this review, we discuss the contribution of microglia to the neuropathogenesis of key neurotropic viral infections: human immunodeficiency virus 1 (HIV-1), Zika virus (ZIKV), Japanese encephalitis virus (JEV), West Nile virus (WNV), Herpes simplex virus (HSV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We pay special attention to recent work with human stem cell-derived microglia and propose strategies to leverage these powerful models to further uncover species- and disease-specific microglial responses and novel therapeutic interventions for neurotropic viral infections.
Collapse
Affiliation(s)
- Rachel E McMillan
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, United States of America; Department of Pathology and Medicine, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States of America
| | - Ellen Wang
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States of America; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92093, United States of America
| | - Aaron F Carlin
- Department of Pathology and Medicine, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States of America.
| | - Nicole G Coufal
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States of America; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92093, United States of America.
| |
Collapse
|
6
|
Cisplatin-induced changes in calcitonin gene-related peptide or TNF-α release in rat dorsal root ganglia in vitro model of neurotoxicity are not reverted by rosiglitazone. Neurotoxicology 2022; 93:211-221. [DOI: 10.1016/j.neuro.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/24/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
|
7
|
Periyasamy P, Thangaraj A, Kannan M, Oladapo A, Buch S. The Epigenetic Role of miR-124 in HIV-1 Tat- and Cocaine-Mediated Microglial Activation. Int J Mol Sci 2022; 23:ijms232315017. [PMID: 36499350 PMCID: PMC9738975 DOI: 10.3390/ijms232315017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
HIV-1 and drug abuse have been indissolubly allied as entwined epidemics. It is well-known that drug abuse can hasten the progression of HIV-1 and its consequences, especially in the brain, causing neuroinflammation. This study reports the combined effects of HIV-1 Transactivator of Transcription (Tat) protein and cocaine on miR-124 promoter DNA methylation and its role in microglial activation and neuroinflammation. The exposure of mouse primary microglial cells to HIV-1 Tat (25 ng/mL) and/or cocaine (10 μM) resulted in the significantly decreased expression of primary (pri)-miR-124-1, pri-miR-124-2, and mature miR-124 with a concomitant upregulation in DNMT1 expression as well as global DNA methylation. Our bisulfite-converted genomic DNA sequencing also revealed significant promoter DNA methylation in the pri-miR-124-1 and pri-miR-124-2 in HIV-1 Tat- and cocaine-exposed mouse primary microglial cells. We also found the increased expression of proinflammatory cytokines such as IL1β, IL6 and TNF in the mouse primary microglia exposed to HIV-1 Tat and cocaine correlated with microglial activation. Overall, our findings demonstrate that the exposure of mouse primary microglia to both HIV-1 Tat and cocaine could result in intensified microglial activation via the promoter DNA hypermethylation of miR-124, leading to the exacerbated release of proinflammatory cytokines, ultimately culminating in neuroinflammation.
Collapse
|
8
|
Seth P. Insights Into the Role of Mortalin in Alzheimer’s Disease, Parkinson’s Disease, and HIV-1-Associated Neurocognitive Disorders. Front Cell Dev Biol 2022; 10:903031. [PMID: 35859895 PMCID: PMC9292388 DOI: 10.3389/fcell.2022.903031] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Mortalin is a chaperone protein that regulates physiological functions of cells. Its multifactorial role allows cells to survive pathological conditions. Pharmacological, chemical, and siRNA-mediated downregulation of mortalin increases oxidative stress, mitochondrial dysfunction leading to unregulated inflammation. In addition to its well-characterized function in controlling oxidative stress, mitochondrial health, and maintaining physiological balance, recent evidence from human brain autopsies and cell culture–based studies suggests a critical role of mortalin in attenuating the damage seen in several neurodegenerative diseases. Overexpression of mortalin provides an important line of defense against accumulated proteins, inflammation, and neuronal loss, a key characteristic feature observed in neurodegeneration. Neurodegenerative diseases are a group of progressive disorders, sharing pathological features in Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and HIV-associated neurocognitive disorder. Aggregation of insoluble amyloid beta-proteins and neurofibrillary tangles in Alzheimer’s disease are among the leading cause of neuropathology in the brain. Parkinson’s disease is characterized by the degeneration of dopamine neurons in substantia nigra pars compacta. A substantial synaptic loss leading to cognitive decline is the hallmark of HIV-associated neurocognitive disorder (HAND). Brain autopsies and cell culture studies showed reduced expression of mortalin in Alzheimer’s, Parkinson’s, and HAND cases and deciphered the important role of mortalin in brain cells. Here, we discuss mortalin and its regulation and describe how neurotoxic conditions alter the expression of mortalin and modulate its functions. In addition, we also review the neuroprotective role of mortalin under neuropathological conditions. This knowledge showcases the importance of mortalin in diverse brain functions and offers new opportunities for the development of therapeutic targets that can modulate the expression of mortalin using chemical compounds.
Collapse
Affiliation(s)
- Pankaj Seth
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Gurgaon, India
| |
Collapse
|
9
|
Sonti S, Tyagi K, Pande A, Daniel R, Sharma AL, Tyagi M. Crossroads of Drug Abuse and HIV Infection: Neurotoxicity and CNS Reservoir. Vaccines (Basel) 2022; 10:vaccines10020202. [PMID: 35214661 PMCID: PMC8875185 DOI: 10.3390/vaccines10020202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 01/27/2023] Open
Abstract
Drug abuse is a common comorbidity in people infected with HIV. HIV-infected individuals who abuse drugs are a key population who frequently experience suboptimal outcomes along the HIV continuum of care. A modest proportion of HIV-infected individuals develop HIV-associated neurocognitive issues, the severity of which further increases with drug abuse. Moreover, the tendency of the virus to go into latency in certain cellular reservoirs again complicates the elimination of HIV and HIV-associated illnesses. Antiretroviral therapy (ART) successfully decreased the overall viral load in infected people, yet it does not effectively eliminate the virus from all latent reservoirs. Although ART increased the life expectancy of infected individuals, it showed inconsistent improvement in CNS functioning, thus decreasing the quality of life. Research efforts have been dedicated to identifying common mechanisms through which HIV and drug abuse lead to neurotoxicity and CNS dysfunction. Therefore, in order to develop an effective treatment regimen to treat neurocognitive and related symptoms in HIV-infected patients, it is crucial to understand the involved mechanisms of neurotoxicity. Eventually, those mechanisms could lead the way to design and develop novel therapeutic strategies addressing both CNS HIV reservoir and illicit drug use by HIV patients.
Collapse
Affiliation(s)
- Shilpa Sonti
- Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA; (S.S.); (A.L.S.)
| | - Kratika Tyagi
- Department of Biotechnology, Banasthali Vidyapith, Vanasthali, Jaipur 304022, Rajasthan, India;
| | - Amit Pande
- Cell Culture Laboratory, ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, Nainital 263136, Uttarakhand, India;
| | - Rene Daniel
- Farber Hospitalist Service, Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Adhikarimayum Lakhikumar Sharma
- Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA; (S.S.); (A.L.S.)
| | - Mudit Tyagi
- Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA; (S.S.); (A.L.S.)
- Correspondence: ; Tel.: +1-215-503-5157 or +1-703-909-9420
| |
Collapse
|
10
|
Cirino TJ, McLaughlin JP. Mini review: Promotion of substance abuse in HIV patients: Biological mediation by HIV-1 Tat protein. Neurosci Lett 2021; 753:135877. [PMID: 33838257 DOI: 10.1016/j.neulet.2021.135877] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 11/29/2022]
Abstract
Despite successful viral suppression by combinatorial anti-retroviral therapy, HIV infection continues to negatively impact the quality of life of patients by promoting neuropathy and HIV-Associated Neurocognitive Disorders (HAND), where substance use disorder (SUD) is highly comorbid and known to worsen health outcomes. While substance abuse exacerbates the progression of HIV, emerging evidence also suggests the virus may potentiate the rewarding effect of abused substances. As HIV does not infect neurons, these effects are theorized to be mediated by viral proteins. Key among these proteins are HIV-1 Tat, which can continue to be produced under viral suppression in patients. This review will recap the behavioral evidence for HIV-1 Tat mediation of a potentiation of cocaine, opioid and alcohol reward, and explore the neurochemical dysfunction associated by Tat as potential mechanisms underlying changes in reward. Targeting rampant oxidative stress, inflammation and excitotoxicity associated with HIV and Tat protein exposure may prove useful in combating persistent substance abuse comorbid with HIV in the clinic.
Collapse
Affiliation(s)
- Thomas J Cirino
- Department of Neurology, School of Medicine, University of California at San Francisco, San Francisco, CA, 94158, USA
| | - Jay P McLaughlin
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
11
|
Priyanka, Wadhwa R, Chaudhuri R, Nag TC, Seth P. Novel role of mortalin in attenuating HIV-1 Tat-mediated astrogliosis. J Neuroinflammation 2020; 17:276. [PMID: 32951595 PMCID: PMC7504834 DOI: 10.1186/s12974-020-01912-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/29/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND In human immunodeficiency virus-1 (HIV-1) infection, activation of astrocytes induces imbalance in physiological functions due to perturbed astrocytic functions that unleashes toxicity on neurons. This leads to inflammatory response finally culminating into neurocognitive dysfunction. In neuroAIDS, HIV-1 protein, transactivator of transcription (Tat) is detected in the cerebrospinal fluid of infected patients. Mortalin, a multifunctional protein, has anti-inflammatory role following its activation in various stress conditions. Recent studies demonstrate downregulation of mortalin in neurodegenerative diseases. Here, we explored the mechanisms of mortalin in modulating HIV-1 Tat-mediated neuroinflammation. METHODS Expression of mortalin in autopsy section in normal and diseased individuals were examined using immunohistochemistry. To decipher the role of mortalin in HIV-1 Tat-induced activation, human fetal brain-derived astrocytes were transiently transfected with Tat and mortalin using expression vectors. HIV-1 Tat-mediated damage was analyzed using RT-PCR and western blotting. Modulatory role of mortalin was examined by coexpressing it with Tat, followed by examination of mitochondrial morphodynamics using biochemical assay and confocal and electron microscopy. Extracellular ATP release was monitored using luciferase assay. Neuroinflammation in astrocytes was examined using flow cytometry, dye based study, immunocytochemistry, immunoprecipitation, and western blotting. Indirect neuronal damage was also analyzed. RESULTS HIV-1 Tat downregulates the expression of mortalin in astrocytes, and this is corroborated with autopsy sections of HIV-1 patients. We found that overexpression of mortalin with Tat reduced inflammation and also rescued astrocytic-mediated neuronal death. Using bioinformatics, we discovered that binding of mortalin with Tat leads to Tat degradation and rescues the cell from neuroinflammation. Blocking of proteosomal pathway rescued the Tat degradation and revealed the ubiquitination of Tat. CONCLUSION Overall, our data demonstrated the protective role of mortalin in combating HIV-1 Tat-mediated damage. We also showed that mortalin could degrade Tat through direct binding with HIV-1 Tat. Overexpression of mortalin in the presence of Tat could significantly reduce cytotoxic effects of Tat in astrocytes. Indirect neuronal death was also found to be rescued. Our in vitro findings were validated as we found attenuated expression of mortalin in the autopsy sections of HIV-1 patients.
Collapse
Affiliation(s)
- Priyanka
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, NH-8, Nainwal Road, Manesar, Gurgaon, Haryana, 122052, India
| | - Renu Wadhwa
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational and Environmental (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 305-8565, Japan
| | - Rituparna Chaudhuri
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, NH-8, Nainwal Road, Manesar, Gurgaon, Haryana, 122052, India
| | | | - Pankaj Seth
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, NH-8, Nainwal Road, Manesar, Gurgaon, Haryana, 122052, India.
| |
Collapse
|
12
|
Nitrosative Stress Is Associated with Dopaminergic Dysfunction in the HIV-1 Transgenic Rat. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 189:1375-1385. [PMID: 31230667 DOI: 10.1016/j.ajpath.2019.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 02/12/2019] [Accepted: 03/07/2019] [Indexed: 02/07/2023]
Abstract
Advances in antiretroviral therapy have resulted in significantly decreased HIV-related mortality. HIV-associated neurocognitive disorders, however, continue to be a major problem in infected patients. The neuropathology underlying HIV-associated neurocognitive disorders has not been well characterized, and evidence suggests different contributing mechanisms. One potential mechanism is the induction of oxidative stress. Using the HIV-1 transgenic (Tg) rat model of HIV, we found increased striatal NADPH oxidase-4 and neuronal nitric oxide synthase expression in the adult (7- to 9-month-old) Tg rat compared with control rats but not in the young (1-month-old) Tg rats. This was accompanied by increased 3-nitrotyrosine (3-NT) immunostaining in the adult Tg rats, which worsened significantly in the old Tg rats (18 to 20 months old). There was, however, no concurrent induction of the antioxidant systems because there was no change in the expression of the nuclear factor-erythroid 2-related factor 2 and its downstream targets (thioredoxin and glutathione antioxidant systems). Colocalization of 3-NT staining with neurofilament proteins and evidence of decreased tyrosine hydroxylase and dopamine transporter expression in the old rats support dopaminergic involvement. We conclude that the HIV-1 Tg rat brain shows evidence of nitrosative stress without appropriate oxidation-reduction adaptation, whereas 3-NT modification of striatal neurofilament proteins likely points to the ensuing dopaminergic neuronal loss and dysfunction in the aging HIV-1 Tg rat.
Collapse
|
13
|
Faia C, Plaisance-Bonstaff K, Peruzzi F. In vitro models of HIV-1 infection of the Central Nervous System. DRUG DISCOVERY TODAY. DISEASE MODELS 2020; 32:5-11. [PMID: 33692833 PMCID: PMC7938360 DOI: 10.1016/j.ddmod.2019.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Neurocognitive disorders associated with HIV-1 infection affect more than half of persons living with HIV (PLWH) under retroviral therapy. Understanding the molecular mechanisms and the complex cellular network communication underlying neurological dysfunction is critical for the development of an effective therapy. As with other neurological disorders, challenges to studying HIV infection of the brain include limited access to clinical samples and proper reproducibility of the complexity of brain networks in cellular and animal models. This review focuses on cellular models used to investigate various aspects of neurological dysfunction associated with HIV infection.
Collapse
Affiliation(s)
- Celeste Faia
- Louisiana State University Health Sciences Center and S Stanley Scott Cancer Center
- Department of Microbiology Immunology and Parasitology
| | | | - Francesca Peruzzi
- Louisiana State University Health Sciences Center and S Stanley Scott Cancer Center
- Department of Microbiology Immunology and Parasitology
- Department of Medicine
- Corresponding author: Francesca Peruzzi, 1700 Tulane Ave, New Orleans, LA 70112, Tel: (504) 210-2978,
| |
Collapse
|
14
|
Williams ME, Zulu SS, Stein DJ, Joska JA, Naudé PJW. Signatures of HIV-1 subtype B and C Tat proteins and their effects in the neuropathogenesis of HIV-associated neurocognitive impairments. Neurobiol Dis 2019; 136:104701. [PMID: 31837421 DOI: 10.1016/j.nbd.2019.104701] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/18/2019] [Accepted: 12/08/2019] [Indexed: 11/16/2022] Open
Abstract
HIV-associated neurocognitive impairments (HANI) are a spectrum of neurological disorders due to the effects of HIV-1 on the central nervous system (CNS). The HIV-1 subtypes; HIV-1 subtype B (HIV-1B) and HIV-1 subtype C (HIV-1C) are responsible for the highest prevalence of HANI and HIV infections respectively. The HIV transactivator of transcription (Tat) protein is a major contributor to the neuropathogenesis of HIV. The effects of the Tat protein on cells of the CNS is determined by the subtype-associated amino acid sequence variations. The extent to which the sequence variation between Tat-subtypes contribute to underlying mechanisms and neurological outcomes are not clear. In this review of the literature, we discuss how amino acid variations between HIV-1B Tat (TatB) and HIV-1C Tat (TatC) proteins contribute to the potential underlying neurobiological mechanisms of HANI. Tat-C is considered to be a more effective transactivator, whereas Tat-B may exert increased neurovirulence, including neuronal apoptosis, monocyte infiltration into the brain, (neuro)inflammation, oxidative stress and blood-brain barrier damage. These findings support the premise that Tat variants from different HIV-1 subtypes may direct neurovirulence and neurological outcomes in HANI.
Collapse
Affiliation(s)
- Monray E Williams
- Department of Psychiatry and Mental Health and Neuroscience Institute, Brain Behaviour Unit, University of Cape Town, Cape Town, South Africa.
| | - Simo S Zulu
- Department of Psychiatry and Mental Health and Neuroscience Institute, Brain Behaviour Unit, University of Cape Town, Cape Town, South Africa
| | - Dan J Stein
- Department of Psychiatry and Mental Health and Neuroscience Institute, Brain Behaviour Unit, University of Cape Town, Cape Town, South Africa; SAMRC Unit on Risk and Resilience in Mental Disorders and Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - John A Joska
- Division of Neuropsychiatry, Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Petrus J W Naudé
- Department of Psychiatry and Mental Health and Neuroscience Institute, Brain Behaviour Unit, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
15
|
Abstract
Nullbasic is a mutant form of the HIV-1 transcriptional activator protein (Tat) that strongly inhibits HIV-1 transcription and replication in lymphocytes in vitro To investigate Nullbasic inhibition in vivo, we employed an NSG mouse model where animals were engrafted with primary human CD4+ cells expressing a Nullbasic-ZsGreen1 (NB-ZSG) fusion protein or ZSG. NB-ZSG and ZSG were delivered by using a retroviral vector where CD4+ cells were transduced either prior to (preinfection) or following (postinfection) HIV-1 infection. The transduced cells were analyzed in vitro up to 10 days postinfection (dpi) and in vivo up to 39 dpi. Compared to ZSG, NB-ZSG strongly inhibited HIV-1 replication both in vitro and in vivo using preinfection treatment. In vitro, HIV-1 mRNA levels in cells were reduced by up to 60-fold. In vivo, HIV-1 RNA was undetectable in plasma samples during the course of the experiment, and HIV-1 mRNA levels in resident CD4+ cells in organ tissue were reduced up to 2,800-fold. Postinfection treatment of HIV-1-infected cells with NB-ZSG attenuated HIV-1 infection for up to 14 days. In vitro, a 25-fold reduction of viral mRNA in cells was observed but diminished to a <2-fold reduction by 10 dpi. In vivo, HIV-1 RNA was undetectable in plasma of NB-ZSG mice at 14 dpi but afterwards was not significantly different between NB-ZSG mice and control mice. However, we observed higher levels of CD4+ cells in NB-ZSG mice than in control mice, suggesting that NB-ZSG imparted a survival advantage to HIV-1-infected animals.IMPORTANCE HIV-1 infection is effectively controlled by antiviral therapy that inhibits virus replication and reduces viral loads below detectable levels in patients. However, therapy interruption leads to viral rebound due to latently infected cells, which serve as a source of continued viral infection. Interest in strategies leading to a functional cure for HIV-1 infection by long-term or permanent viral suppression is growing. Here, we show that a mutant form of the HIV-1 Tat protein, referred to as Nullbasic, inhibits HIV-1 transcription in infected CD4+ cells in vivo Analysis shows that stable expression of Nullbasic in CD4+ cells could lead to durable anti-HIV-1 activity. Nullbasic, as a gene therapy candidate, could be a part of a functional-cure strategy to suppress HIV-1 transcription and replication.
Collapse
|
16
|
Srinivas N, Rosen EP, Gilliland WM, Kovarova M, Remling-Mulder L, De La Cruz G, White N, Adamson L, Schauer AP, Sykes C, Luciw P, Garcia JV, Akkina R, Kashuba ADM. Antiretroviral concentrations and surrogate measures of efficacy in the brain tissue and CSF of preclinical species. Xenobiotica 2018; 49:1192-1201. [PMID: 30346892 DOI: 10.1080/00498254.2018.1539278] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
1. Antiretroviral concentrations in cerebrospinal fluid (CSF) are used as surrogate for brain tissue, although sparse data support this. We quantified antiretrovirals in brain tissue across preclinical models, compared them to CSF, and calculated 90% inhibitory quotients (IQ90) for nonhuman primate (NHP) brain tissue. Spatial distribution of efavirenz was performed by mass-spectrometry imaging (MSI). 2. HIV or RT-SHIV-infected and uninfected animals from two humanized mouse models (hemopoietic-stem cell/RAG2-, n = 36; bone marrow-liver-thymus/BLT, n =13) and an NHP model (rhesus macaque, n =18) were dosed with six antiretrovirals. Brain tissue, CSF (NHPs), and plasma were collected at necropsy. Drug concentrations were measured by LC-MS/MS. Rapid equilibrium dialysis determined protein binding in NHP brain. 3. Brain tissue penetration of most antiretrovirals were >10-fold lower (p < 0.02) in humanized mice than NHPs. NHP CSF concentrations were >13-fold lower (p <0.02) than brain tissue with poor agreement except for efavirenz (r = 0.91, p = 0.001). Despite 97% brain tissue protein binding, efavirenz achieved IQ90>1 in all animals and 2-fold greater white versus gray matter concentration. 4. Brain tissue penetration varied across animal models for all antiretrovirals except raltegravir, and extrapolating brain tissue concentrations between models should be avoided. With the exception of efavirenz, CSF is not a surrogate for brain tissue concentrations.
Collapse
Affiliation(s)
- Nithya Srinivas
- a Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , NC , USA
| | - Elias P Rosen
- a Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , NC , USA
| | - William M Gilliland
- a Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , NC , USA
| | - Martina Kovarova
- b School of Medicine , University of North Carolina at Chapel Hill , Chapel Hill , NC , USA
| | | | - Gabriela De La Cruz
- b School of Medicine , University of North Carolina at Chapel Hill , Chapel Hill , NC , USA
| | - Nicole White
- a Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , NC , USA
| | - Lourdes Adamson
- d School of Medicine , University of California at Davis , Davis , CA , USA
| | - Amanda P Schauer
- a Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , NC , USA
| | - Craig Sykes
- a Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , NC , USA
| | - Paul Luciw
- d School of Medicine , University of California at Davis , Davis , CA , USA
| | - J Victor Garcia
- b School of Medicine , University of North Carolina at Chapel Hill , Chapel Hill , NC , USA
| | - Ramesh Akkina
- c School of Medicine , Colorado State University , Fort Collins , CO , USA
| | - Angela D M Kashuba
- a Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , NC , USA
| |
Collapse
|
17
|
Ohene-Nyako M, Persons AL, Napier TC. Region-specific changes in markers of neuroplasticity revealed in HIV-1 transgenic rats by low-dose methamphetamine. Brain Struct Funct 2018; 223:3503-3513. [PMID: 29931627 DOI: 10.1007/s00429-018-1701-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 06/15/2018] [Indexed: 12/15/2022]
Abstract
Methamphetamine abuse co-occurring with HIV infection presents neuropathology in brain regions that mediate reward and motivation. A neuronal signaling cascade altered acutely by meth and some HIV-1 proteins is the mitogen-activated protein kinase (MAPK) pathway. It remains unknown if chronic co-exposure to meth and HIV-1 proteins converge on MAPK in vivo. To make this determination, we studied young adult Fischer 344 HIV-1 transgenic (Tg) and non-Tg rats that self-administered meth (0.02-0.04 mg/kg/0.05 ml iv infusion, 2 h/day for 21 days) and their saline-yoked controls. One day following the operant task, rats were killed. Brain regions involved in reward-motivation [i.e., nucleus accumbens (NA) and ventral pallidum (VP)], were assayed for a MAPK cascade protein, extracellular signal-regulated kinase (ERK), and a downstream transcription factor, ΔFosB. In the NA, activated (phosphorylated; p) ERK-to-ERK ratio (pERK/ERK) was increased in meth-exposed Tg rats versus saline Tg controls, and versus meth non-Tg rats. ΔFosB was increased in meth Tg rats versus saline and meth non-Tg rats. Assessment of two targets of ΔFosB-regulated transcription revealed (1) increased dopamine D1 receptor (D1R) immunoreactivity in the NA shell of Tg-meth rats versus saline Tg controls, but (2) no changes in the AMPA receptor subunit, GluA2. No changes related to genotype or meth occurred for ERK, ΔFosB or D1R protein in the VP. Results reveal a region-specific activation of ERK, and increases in ΔFosB and D1R expression induced by HIV-1 proteins and meth. Such effects may contribute to the neuronal and behavioral pathology associated with meth/HIV comorbidity.
Collapse
Affiliation(s)
- Michael Ohene-Nyako
- Department of Pharmacology, Rush University, Chicago, IL, USA.,Center for Compulsive Behavior and Addiction, Rush University, Chicago, IL, USA
| | - Amanda L Persons
- Department of Physician Assistant Studies, Rush University, Chicago, IL, USA.,Department of Psychiatry, Rush University Medical Center, 1735 W. Harrison Street, Cohn Research Building Suite #424, Chicago, IL, 60612, USA.,Center for Compulsive Behavior and Addiction, Rush University, Chicago, IL, USA
| | - T Celeste Napier
- Department of Psychiatry, Rush University Medical Center, 1735 W. Harrison Street, Cohn Research Building Suite #424, Chicago, IL, 60612, USA. .,Center for Compulsive Behavior and Addiction, Rush University, Chicago, IL, USA.
| |
Collapse
|
18
|
Langford D, Oh Kim B, Zou W, Fan Y, Rahimain P, Liu Y, He JJ. Doxycycline-inducible and astrocyte-specific HIV-1 Tat transgenic mice (iTat) as an HIV/neuroAIDS model. J Neurovirol 2017; 24:168-179. [PMID: 29143286 DOI: 10.1007/s13365-017-0598-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/08/2017] [Accepted: 11/01/2017] [Indexed: 12/18/2022]
Abstract
HIV-1 Tat is known to be neurotoxic and important for HIV/neuroAIDS pathogenesis. However, the overwhelming majority of the studies involved use of recombinant Tat protein. To understand the contributions of Tat protein to HIV/neuroAIDS and the underlying molecular mechanisms of HIV-1 Tat neurotoxicity in the context of a whole organism and independently of HIV-1 infection, a doxycycline-inducible astrocyte-specific HIV-1 Tat transgenic mouse (iTat) was created. Tat expression in the brains of iTat mice was determined to be in the range of 1-5 ng/ml and led to astrocytosis, loss of neuronal dendrites, and neuroinflammation. iTat mice have allowed us to define the direct effects of Tat on astrocytes and the molecular mechanisms of Tat-induced GFAP expression/astrocytosis, astrocyte-mediated Tat neurotoxicity, Tat-impaired neurogenesis, Tat-induced loss of neuronal integrity, and exosome-associated Tat release and uptake. In this review, we will provide an overview about the creation and characterization of this model and its utilities for our understanding of Tat neurotoxicity and the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Dianne Langford
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Byung Oh Kim
- School of Food Science & Biotechnology and College of Agriculture & Life Sciences, Kyungpook National University, Daegu, 702-701, South Korea
| | - Wei Zou
- The 1st Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Yan Fan
- Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| | - Pejman Rahimain
- Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| | - Ying Liu
- Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| | - Johnny J He
- Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA.
| |
Collapse
|
19
|
Hu XT. HIV-1 Tat-Mediated Calcium Dysregulation and Neuronal Dysfunction in Vulnerable Brain Regions. Curr Drug Targets 2016; 17:4-14. [PMID: 26028040 DOI: 10.2174/1389450116666150531162212] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/26/2015] [Indexed: 01/08/2023]
Abstract
Despite the success of combined antiretroviral therapy, more than half of HIV-1-infected patients in the USA show HIV-associated neurological and neuropsychiatric deficits. This is accompanied by anatomical and functional alterations in vulnerable brain regions of the mesocorticolimbic and nigrostriatal systems that regulate cognition, mood and motivation-driven behaviors, and could occur at early stages of infection. Neurons are not infected by HIV, but HIV-1 proteins (including but not limited to the HIV-1 trans-activator of transcription, Tat) induce Ca(2+) dysregulation, indicated by abnormal and excessive Ca(2+) influx and increased intracellular Ca(2+) release that consequentially elevate cytosolic free Ca(2+) levels ([Ca(2+)]in). Such alterations in intracellular Ca(2+) homeostasis significantly disturb normal functioning of neurons, and induce dysregulation, injury, and death of neurons or non-neuronal cells, and associated tissue loss in HIV-vulnerable brain regions. This review discusses certain unique mechanisms, particularly the over-activation and/or upregulation of the ligand-gated ionotropic glutamatergic NMDA receptor (NMDAR), the voltage-gated L-type Ca(2+) channel (L-channel) and the transient receptor potential canonical (TRPC) channel (a non-selective cation channel that is also permeable for Ca(2+)), which may underlie the deleterious effects of Tat on intracellular Ca(2+) homeostasis and neuronal hyper-excitation that could ultimately result in excitotoxicity. This review also seeks to provide summarized information for future studies focusing on comprehensive elucidation of molecular mechanisms underlying the pathophysiological effects of Tat (as well as some other HIV-1 proteins and immunoinflammatory molecules) on neuronal function, particularly in HIV-vulnerable brain regions.
Collapse
Affiliation(s)
- Xiu-Ti Hu
- Department of Pharmacology, Rush University Medical Center, Cohn Research Building, Rm. 414, 1735 W. Harrison Street, Chicago, IL 60612, USA.
| |
Collapse
|
20
|
Fan Y, He JJ. HIV-1 Tat Induces Unfolded Protein Response and Endoplasmic Reticulum Stress in Astrocytes and Causes Neurotoxicity through Glial Fibrillary Acidic Protein (GFAP) Activation and Aggregation. J Biol Chem 2016; 291:22819-22829. [PMID: 27609520 DOI: 10.1074/jbc.m116.731828] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 08/31/2016] [Indexed: 12/18/2022] Open
Abstract
HIV-1 Tat is a major culprit for HIV/neuroAIDS. One of the consistent hallmarks of HIV/neuroAIDS is reactive astrocytes or astrocytosis, characterized by increased cytoplasmic accumulation of the intermediate filament glial fibrillary acidic protein (GFAP). We have shown that that Tat induces GFAP expression in astrocytes and that GFAP activation is indispensable for astrocyte-mediated Tat neurotoxicity. However, the underlying molecular mechanisms are not known. In this study, we showed that Tat expression or GFAP expression led to formation of GFAP aggregates and induction of unfolded protein response (UPR) and endoplasmic reticulum (ER) stress in astrocytes. In addition, we demonstrated that GFAP up-regulation and aggregation in astrocytes were necessary but also sufficient for UPR/ER stress induction in Tat-expressing astrocytes and for astrocyte-mediated Tat neurotoxicity. Importantly, we demonstrated that inhibition of Tat- or GFAP-induced UPR/ER stress by the chemical chaperone 4-phenylbutyrate significantly alleviated astrocyte-mediated Tat neurotoxicity in vitro and in the brain of Tat-expressing mice. Taken together, these results show that HIV-1 Tat expression leads to UPR/ER stress in astrocytes, which in turn contributes to astrocyte-mediated Tat neurotoxicity, and raise the possibility of developing HIV/neuroAIDS therapeutics targeted at UPR/ER stress.
Collapse
Affiliation(s)
- Yan Fan
- From the Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Johnny J He
- From the Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107
| |
Collapse
|
21
|
Saxena D, Spino M, Tricta F, Connelly J, Cracchiolo BM, Hanauske AR, D’Alliessi Gandolfi D, Mathews MB, Karn J, Holland B, Park MH, Pe’ery T, Palumbo PE, Hanauske-Abel HM. Drug-Based Lead Discovery: The Novel Ablative Antiretroviral Profile of Deferiprone in HIV-1-Infected Cells and in HIV-Infected Treatment-Naive Subjects of a Double-Blind, Placebo-Controlled, Randomized Exploratory Trial. PLoS One 2016; 11:e0154842. [PMID: 27191165 PMCID: PMC4871512 DOI: 10.1371/journal.pone.0154842] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 04/18/2016] [Indexed: 01/19/2023] Open
Abstract
UNLABELLED Antiretrovirals suppress HIV-1 production yet spare the sites of HIV-1 production, the HIV-1 DNA-harboring cells that evade immune detection and enable viral resistance on-drug and viral rebound off-drug. Therapeutic ablation of pathogenic cells markedly improves the outcome of many diseases. We extend this strategy to HIV-1 infection. Using drug-based lead discovery, we report the concentration threshold-dependent antiretroviral action of the medicinal chelator deferiprone and validate preclinical findings by a proof-of-concept double-blind trial. In isolate-infected primary cultures, supra-threshold concentrations during deferiprone monotherapy caused decline of HIV-1 RNA and HIV-1 DNA; did not allow viral breakthrough for up to 35 days on-drug, indicating resiliency against viral resistance; and prevented, for at least 87 days off-drug, viral rebound. Displaying a steep dose-effect curve, deferiprone produced infection-independent deficiency of hydroxylated hypusyl-eIF5A. However, unhydroxylated deoxyhypusyl-eIF5A accumulated particularly in HIV-infected cells; they preferentially underwent apoptotic DNA fragmentation. Since the threshold, ascertained at about 150 μM, is achievable in deferiprone-treated patients, we proceeded from cell culture directly to an exploratory trial. HIV-1 RNA was measured after 7 days on-drug and after 28 and 56 days off-drug. Subjects who attained supra-threshold concentrations in serum and completed the protocol of 17 oral doses, experienced a zidovudine-like decline of HIV-1 RNA on-drug that was maintained off-drug without statistically significant rebound for 8 weeks, over 670 times the drug's half-life and thus clearance from circulation. The uniform deferiprone threshold is in agreement with mapping of, and crystallographic 3D-data on, the active site of deoxyhypusyl hydroxylase (DOHH), the eIF5A-hydroxylating enzyme. We propose that deficiency of hypusine-containing eIF5A impedes the translation of mRNAs encoding proline cluster ('polyproline')-containing proteins, exemplified by Gag/p24, and facilitated by the excess of deoxyhypusine-containing eIF5A, releases the innate apoptotic defense of HIV-infected cells from viral blockade, thus depleting the cellular reservoir of HIV-1 DNA that drives breakthrough and rebound. TRIAL REGISTRATION ClinicalTrial.gov NCT02191657.
Collapse
Affiliation(s)
- Deepti Saxena
- Department of Pediatrics, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Michael Spino
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
- ApoPharma Inc., Toronto, Ontario, Canada
| | | | | | - Bernadette M. Cracchiolo
- Department of Obstetrics, Gynecology and Women’s Health, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Axel-Rainer Hanauske
- Oncology Center and Medical Clinic III, Asklepios Klinik St. Georg, Hamburg, Germany
| | | | - Michael B. Mathews
- Department of Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Bart Holland
- Department of Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Myung Hee Park
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, Maryland, United States of America
| | - Tsafi Pe’ery
- Department of Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Paul E. Palumbo
- Department of Pediatrics, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
- * E-mail: (PEP); (HMHA)
| | - Hartmut M. Hanauske-Abel
- Department of Pediatrics, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
- Department of Obstetrics, Gynecology and Women’s Health, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
- * E-mail: (PEP); (HMHA)
| |
Collapse
|
22
|
Miltonprabu S, Nazimabashir, Manoharan V. Hepatoprotective effect of grape seed proanthocyanidins on Cadmium-induced hepatic injury in rats: Possible involvement of mitochondrial dysfunction, inflammation and apoptosis. Toxicol Rep 2015; 3:63-77. [PMID: 28959524 PMCID: PMC5615429 DOI: 10.1016/j.toxrep.2015.11.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/24/2015] [Accepted: 11/28/2015] [Indexed: 01/14/2023] Open
Abstract
The present study was undertaken to evaluate the possible ameliorative role of grape seed proanthocyanidins (GSP) against Cadmium (Cd) induced hepatic inflammation, apoptosis and hepatic mitochondrial toxicity in rats. Male Wistar rats were distributed in four experimental groups: control, GSP, Cd and Cd + GSP. Exposure to a hepatotoxic dose of Cd (5 mg/kg BW) caused liver damage, coupled with enhanced reactive oxygen species (ROS) generation, increased inflammation and apoptosis in liver with increased DNA damage in hepatocytes of rats. Mitochondria were isolated from the hepatic tissues of rats from each group. Our results showed significant decrease in the tri-carboxylic acid cycle enzymes, increased mitochondrial swelling, inhibition of cytochrome c oxidase activity and complex I-III, II-III and IV mediated electron transfer, decreased mitochondrial ATPases, a reduction in calcium content and mitochondrial oxygen consumption in Cd treated rats. All these molecular changes caused by Cd were alleviated by the pre-supplementation with GSP (100 mg/kg BW). The ultra structural changes in the liver also support our findings. From our results, it is clearly indicated that the free radical scavenging, metal chelating and antioxidant potentials of GSP might be the possible reason, responsible for the rescue action against Cd induced mitochondrial damage in the liver of rats.
Collapse
Affiliation(s)
- Selvaraj Miltonprabu
- Department of Zoology, Faculty of Science Annamalai University, Annamalainagar, 608002 Tamilnadu, India
| | - Nazimabashir
- Department of Zoology, Faculty of Science Annamalai University, Annamalainagar, 608002 Tamilnadu, India
| | - Vaihundam Manoharan
- Department of Zoology, Faculty of Science Annamalai University, Annamalainagar, 608002 Tamilnadu, India
| |
Collapse
|
23
|
Stevens PR, Gawryluk JW, Hui L, Chen X, Geiger JD. Creatine protects against mitochondrial dysfunction associated with HIV-1 Tat-induced neuronal injury. Curr HIV Res 2015; 12:378-87. [PMID: 25613139 DOI: 10.2174/1570162x13666150121101544] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/12/2014] [Accepted: 12/10/2014] [Indexed: 11/22/2022]
Abstract
HIV-1 infected individuals live longer but experience a prevalence rate of over 50% for HIV-1 associated neurocognitive disorders (HAND) for which no effective treatment is available. Viral and cellular factors secreted by HIV-1 infected cells lead to neuronal injury and HIV-1 Tat continues to be implicated in the pathogenesis of HAND. Here we tested the hypothesis that creatine protected against HIV-1 Tat-induced neuronal injury by preventing mitochondrial bioenergetic crisis and/or redox catastrophe. Creatine blocked HIV-1 Tat(1-72)-induced increases in neuron cell death and synaptic area loss. Creatine protected against HIV-1 Tat-induced decreases in ATP. Creatine and creatine plus HIV-1 Tat increased cellular levels of creatine, and creatine plus HIV-1 Tat further decreased ratios of phosphocreatine to creatine observed with creatine or HIV-1 Tat treatments alone. Additionally, creatine protected against HIV-1 Tat-induced mitochondrial hypopolarization and HIV-1 Tat-induced mitochondrial permeability transition pore opening. Thus, creatine may be a useful adjunctive therapy against HAND.
Collapse
Affiliation(s)
| | | | | | | | - Jonathan D Geiger
- Department of Basic Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, 504 Hamline St., Grand Forks, North Dakota 58203, USA.
| |
Collapse
|
24
|
Adjunctive and long-acting nanoformulated antiretroviral therapies for HIV-associated neurocognitive disorders. Curr Opin HIV AIDS 2015; 9:585-90. [PMID: 25226025 DOI: 10.1097/coh.0000000000000111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW We are pleased to review current and future strategies being developed to modulate neuroinflammation while reducing residual viral burden in the central nervous system. This has been realized by targeted long-acting antiretroviral nano and adjunctive therapies being developed for HIV-infected people. Our ultimate goal is to eliminate virus from its central nervous system reservoirs and, in so doing, reverse the cognitive and motor dysfunctions. RECENT FINDINGS Herein, we highlight our laboratories' development of adjunctive and nanomedicine therapies for HIV-associated neurocognitive disorders. An emphasis is placed on drug-drug interactions that target both the viral life cycle and secretory proinflammatory neurotoxic factors and signaling pathways. SUMMARY Antiretroviral therapy has improved the quality and duration of life for people living with HIV-1. A significant long-term comorbid illness is HIV-associated neurocognitive disorders. Symptoms, although reduced in severity, are common. Disease occurs, in part, through continued low-level viral replication, inducing secondary glial neuroinflammatory activities. Our recent works and those of others have seen disease attenuated in animal models through the use of adjunctive and long-acting reservoir-targeted nanoformulated antiretroviral therapy. The translation of these inventions from animals to humans is the focus of this review.
Collapse
|
25
|
Fields JA, Dumaop W, Crews L, Adame A, Spencer B, Metcalf J, He J, Rockenstein E, Masliah E. Mechanisms of HIV-1 Tat neurotoxicity via CDK5 translocation and hyper-activation: role in HIV-associated neurocognitive disorders. Curr HIV Res 2015; 13:43-54. [PMID: 25760044 PMCID: PMC4455959 DOI: 10.2174/1570162x13666150311164201] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 12/13/2014] [Accepted: 01/29/2015] [Indexed: 12/16/2022]
Abstract
The advent of more effective antiretroviral therapies has reduced the frequency of HIV dementia, however the prevalence of milder HIV associated neurocognitive disorders [HAND] is actually rising. Neurodegenerative mechanisms in HAND might include toxicity by secreted HIV-1 proteins such as Tat, gp120 and Nef that could activate neuro-inflammatory pathways, block autophagy, promote excitotoxicity, oxidative stress, mitochondrial dysfunction and dysregulation of signaling pathways. Recent studies have shown that Tat could interfere with several signal transduction mechanisms involved in cytoskeletal regulation, cell survival and cell cycle re-entry. Among them, Tat has been shown to hyper-activate cyclin-dependent kinase [CDK] 5, a member of the Ser/Thr CDKs involved in cell migration, angiogenesis, neurogenesis and synaptic plasticity. CDK5 is activated by binding to its regulatory subunit, p35 or p39. For this manuscript we review evidence showing that Tat, via calcium dysregulation, promotes calpain-1 cleavage of p35 to p25, which in turn hyper-activates CDK5 resulting in abnormal phosphorylation of downstream targets such as Tau, collapsin response mediator protein-2 [CRMP2], doublecortin [DCX] and MEF2. We also present new data showing that Tat interferes with the trafficking of CDK5 between the nucleus and cytoplasm. This results in prolonged presence of CDK5 in the cytoplasm leading to accumulation of aberrantly phosphorylated cytoplasmic targets [e.g.: Tau, CRMP2, DCX] that impair neuronal function and eventually lead to cell death. Novel therapeutic approaches with compounds that block Tat mediated hyper-activation of CDK5 might be of value in the management of HAND.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Eliezer Masliah
- Department of Neurosciences, School of Medicine, University of California San Diego, 9500 Gilman Dr., MTF 348, La Jolla, CA 92093-0624, USA.
| |
Collapse
|
26
|
Arafa MH, Mohammad NS, Atteia HH. Fenugreek seed powder mitigates cadmium-induced testicular damage and hepatotoxicity in male rats. ACTA ACUST UNITED AC 2014; 66:293-300. [DOI: 10.1016/j.etp.2014.04.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 03/27/2014] [Accepted: 04/07/2014] [Indexed: 12/14/2022]
|
27
|
Paris JJ, Fenwick J, McLaughlin JP. Progesterone protects normative anxiety-like responding among ovariectomized female mice that conditionally express the HIV-1 regulatory protein, Tat, in the CNS. Horm Behav 2014; 65:445-53. [PMID: 24726788 PMCID: PMC4067900 DOI: 10.1016/j.yhbeh.2014.04.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/21/2014] [Accepted: 04/02/2014] [Indexed: 02/03/2023]
Abstract
Increased anxiety is co-morbid with human immunodeficiency virus (HIV) infection. Actions of the neurotoxic HIV-1 regulatory protein, Tat, may contribute to affective dysfunction. We hypothesized that Tat expression would increase anxiety-like behavior of female GT-tg bigenic mice that express HIV-1 Tat protein in the brain in a doxycycline-dependent manner. Furthermore, given reports that HIV-induced anxiety may occur at lower rates among women, and that the neurotoxic effects of Tat are ameliorated by sex steroids in vitro, we hypothesized that 17β-estradiol and/or progesterone would ameliorate Tat-induced anxiety-like effects. Among naturally-cycling proestrous and diestrous mice, Tat-induction via 7days of doxycycline treatment significantly increased anxiety-like responding in an open field, elevated plus maze and a marble-burying task, compared to treatment with saline. Proestrous mice demonstrated less anxiety-like behavior than diestrous mice in the open field and elevated plus maze, but these effects did not significantly interact with Tat-induction. Among ovariectomized mice, doxycycline-induced Tat protein significantly increased anxiety-like behavior in an elevated plus maze and a marble burying task compared to saline-treated mice, but not an open field (where anxiety-like responding was already maximal). Co-administration of progesterone (4mg/kg), but not 17β-estradiol (0.09mg/kg), with doxycycline significantly ameliorated anxiety-like responding in the elevated plus maze and marble burying tasks. When administered together, 17β-estradiol partially antagonized the protective effects of progesterone on Tat-induced anxiety-like behavior. These findings support evidence of steroid-protection over HIV-1 proteins, and extend them by demonstrating the protective capacity of progesterone on Tat-induced anxiety-like behavior of ovariectomized female mice.
Collapse
Affiliation(s)
- Jason J Paris
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port Saint Lucie, FL 34987, USA.
| | - Jason Fenwick
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port Saint Lucie, FL 34987, USA.
| | - Jay P McLaughlin
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port Saint Lucie, FL 34987, USA.
| |
Collapse
|
28
|
Barreto ICG, Viegas P, Ziff EB, Konkiewitz EC. Animal models for depression associated with HIV-1 infection. J Neuroimmune Pharmacol 2014; 9:195-208. [PMID: 24338381 DOI: 10.1007/s11481-013-9518-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 12/02/2013] [Indexed: 01/12/2023]
Abstract
Antiretroviral therapy has greatly extended the lifespan of people living with human immunodeficiency virus (PLHIV). As a result, the long-term effects of HIV infection, in particular those originating in the central nervous system (CNS), such as HIV associated depression, have gained importance. Animal models for HIV infection have proved very useful for understanding the disease and developing treatment strategies. However, HIV associated depression remains poorly understood and so far there is neither a fully satisfactory animal model, nor a pathophysiologically guided treatment for this condition. Here we review the neuroimmunological, neuroendocrine, neurotoxic and neurodegenerative basis for HIV depression and discuss strategies for employing HIV animal models, in particular humanized mice which are susceptible to HIV infection, for the study of HIV depression.
Collapse
Affiliation(s)
- Isabella Cristina Gomes Barreto
- Faculdade de Ciências da Saude, Universidade Federal da Grande Dourados, Unidade II, Rodovia MS 162 (Dourados - Itaum), Km 12, Dourados, Mato Grosso do Sul, Brazil
| | | | | | | |
Collapse
|
29
|
Paris JJ, Carey AN, Shay CF, Gomes SM, He JJ, McLaughlin JP. Effects of conditional central expression of HIV-1 tat protein to potentiate cocaine-mediated psychostimulation and reward among male mice. Neuropsychopharmacology 2014; 39:380-8. [PMID: 23945478 PMCID: PMC3870789 DOI: 10.1038/npp.2013.201] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 07/12/2013] [Accepted: 08/12/2013] [Indexed: 02/06/2023]
Abstract
As a major neuropathogenic factor associated with human immunodeficiency virus (HIV) infection, HIV-1 Tat protein is known to synergize with psychostimulant drugs of abuse to cause neurotoxicity and exacerbate the progression of central nervous system pathology. However, the functional consequences of the interaction between HIV-1 Tat and abused drugs on behavior are little known. We tested the hypothesis that HIV-1 Tat expression in brain would modulate the psychostimulant effects of cocaine. Using the GT-tg bigenic mouse model, where brain-selective Tat expression is induced by activation of a doxycycline (Dox) promotor, we tested the effects of Tat on cocaine (10 mg/kg, s.c.) induced locomotion and conditioned place preference (CPP). Compared with uninduced littermates or C57BL/6J controls, cocaine-induced hyperlocomotion was sustained for a significantly longer duration among Tat-induced mice. Moreover, although all groups displayed similar saline-CPP, Tat-induced GT-tg mice demonstrated a three-fold increase in cocaine-CPP over the response of either uninduced littermates or Dox-treated C57BL/6J control mice. Induction of Tat also increased the magnitude of a previously established cocaine-CPP after an additional cycle of cocaine place-conditioning. Despite Tat-induced potentiation, extinction of place preference occurred within 21 days, commensurate with cocaine-extinction among saline-treated littermates and C57BL/6J controls. Re-exposure to cocaine produced reinstatement of an equivalent place preference in Tat-induced GT-tg or C57BL/6J mice; however, induction of Tat protein after the extinction of CPP also produced reinstatement without additional exposure to cocaine. Together, these data suggest that central HIV-1 Tat expression can potentiate the psychostimulant behavioral effects of cocaine in mice.
Collapse
Affiliation(s)
- Jason J Paris
- Department of Pharmacology and Neuroscience, Torrey Pines Institute for Molecular Studies, Port Saint Lucie, FL, USA
| | - Amanda N Carey
- Department of Psychology, Northeastern University, Boston, MA, USA,Department of Psychology, Simmons College, Boston, MA, USA
| | | | - Stacey M Gomes
- Department of Pharmacology and Neuroscience, Torrey Pines Institute for Molecular Studies, Port Saint Lucie, FL, USA,Department of Psychology, Northeastern University, Boston, MA, USA
| | - Johnny J He
- Department of Cell Biology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Jay P McLaughlin
- Department of Pharmacology and Neuroscience, Torrey Pines Institute for Molecular Studies, Port Saint Lucie, FL, USA,Department of Psychology, Northeastern University, Boston, MA, USA,Department of Biology, Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port Saint Lucie, FL 34987, USA, Tel: +772 345 4715, Fax: +772 345 3649, E-mail:
| |
Collapse
|
30
|
Cabral GA, Jamerson M. Marijuana use and brain immune mechanisms. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 118:199-230. [PMID: 25175866 DOI: 10.1016/b978-0-12-801284-0.00008-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The recreational smoking of marijuana, or Cannabis sativa, has become widespread, including among adolescents. Marijuana contains a class of compounds known as phytocannabinoids that include cannabidiol (CBD) and Δ(9)-tetrahydrocannabinol (THC). THC is the major psychoactive component in marijuana, but also exhibits immunosuppressive activity. CBD, while not psychotropic, also modulates immune function, but its mechanism of action appears to differ from that of THC. Since both compounds are highly lipophilic, they readily passage the blood-brain barrier and access the central nervous system. Since CBD is not psychotropic, it has been considered as a candidate therapeutic compound for ablating neuropathological processes characterized by hyperinflammation. However, an unresolved question centers around the impact of these compounds on immune-competent cells within the CNS in relation to susceptibility to infection. There are accumulating data indicating that THC inhibits the migratory capability of macrophage-like cells resident in the CNS, such as microglia, toward nodes of microbial invasion. Furthermore, phytocannabinoids have been reported to exert developmental and long-term effects on the immune system suggesting that exposure to these substances during an early stage in life has the potential to alter the fundamental neuroimmune response to select microbial agents in the adult.
Collapse
Affiliation(s)
- Guy A Cabral
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.
| | - Melissa Jamerson
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
31
|
Nookala AR, Shah A, Noel RJ, Kumar A. HIV-1 Tat-mediated induction of CCL5 in astrocytes involves NF-κB, AP-1, C/EBPα and C/EBPγ transcription factors and JAK, PI3K/Akt and p38 MAPK signaling pathways. PLoS One 2013; 8:e78855. [PMID: 24244375 PMCID: PMC3823997 DOI: 10.1371/journal.pone.0078855] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 09/23/2013] [Indexed: 12/23/2022] Open
Abstract
The incidence of HIV-associated neurological disorders (HAND) has increased during recent years even though the highly active antiretroviral therapy (HAART) has significantly curtailed the virus replication and increased the life expectancy among HIV-1 infected individuals. These neurological deficits have been attributed to HIV proteins including HIV-1 Tat. HIV-1 Tat is known to up-regulate CCL5 expression in mouse astrocytes, but the mechanism of up-regulation is not known. The present study was undertaken with the objective of determining the mechanism(s) underlying HIV-1 Tat-mediated expression of CCL5 in astrocytes. SVGA astrocytes were transiently transfected with a plasmid encoding Tat, and expression of CCL5 was studied at the mRNA and protein levels using real time RT-PCR and multiplex cytokine bead array, respectively. HIV-1 Tat showed a time-dependent increase in the CCL5 expression with peak mRNA and protein levels, observed at 1 h and 48 h post-transfection, respectively. In order to explore the mechanism(s), pharmacological inhibitors and siRNA against different pathway(s) were used. Pre-treatment with SC514 (NF-κB inhibitor), LY294002 (PI3K inhibitor), AG490 (JAK2 inhibitor) and Janex-1 (JAK3 inhibitor) showed partial reduction of the Tat-mediated induction of CCL5 suggesting involvement of JAK, PI3K/Akt and NF-κB in CCL5 expression. These results were further confirmed by knockdown of the respective genes using siRNA. Furthermore, p38 MAPK was found to be involved since the knockdown of p38δ but not other isoforms showed partial reduction in CCL5 induction. This was further confirmed at transcriptional level that AP-1, C/EBPα and C/EBPγ were involved in CCL5 up-regulation.
Collapse
Affiliation(s)
- Anantha R. Nookala
- Division of Pharmacology and Toxicology, UMKC-School of Pharmacy, Kansas City, Missouri, United States of America
| | - Ankit Shah
- Division of Pharmacology and Toxicology, UMKC-School of Pharmacy, Kansas City, Missouri, United States of America
| | - Richard J. Noel
- Department of Biochemistry, Ponce School of Medicine and Health Sciences, Ponce, Puerto Rico, United States of America
| | - Anil Kumar
- Division of Pharmacology and Toxicology, UMKC-School of Pharmacy, Kansas City, Missouri, United States of America
- * E-mail:
| |
Collapse
|
32
|
Goodfellow VS, Loweth CJ, Ravula SB, Wiemann T, Nguyen T, Xu Y, Todd DE, Sheppard D, Pollack S, Polesskaya O, Marker DF, Dewhurst S, Gelbard HA. Discovery, synthesis, and characterization of an orally bioavailable, brain penetrant inhibitor of mixed lineage kinase 3. J Med Chem 2013; 56:8032-48. [PMID: 24044867 PMCID: PMC4032177 DOI: 10.1021/jm401094t] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Inhibition of mixed lineage kinase 3 (MLK3) is a potential strategy for treatment of Parkinson's disease and HIV-1 associated neurocognitive disorders (HAND), requiring an inhibitor that can achieve significant brain concentration levels. We report here URMC-099 (1) an orally bioavailable (F = 41%), potent (IC50 = 14 nM) MLK3 inhibitor with excellent brain exposure in mouse PK models and minimal interference with key human CYP450 enzymes or hERG channels. The compound inhibits LPS-induced TNFα release in microglial cells, HIV-1 Tat-induced release of cytokines in human monocytes and up-regulation of phospho-JNK in Tat-injected brains of mice. Compound 1 likely functions in HAND preclinical models by inhibiting multiple kinase pathways, including MLK3 and LRRK2 (IC50 = 11 nM). We compare the kinase specificity and BBB penetration of 1 with CEP-1347 (2). Compound 1 is well tolerated, with excellent in vivo activity in HAND models, and is under investigation for further development.
Collapse
Affiliation(s)
| | - Colin J. Loweth
- Califia Bio Inc, 11575 Sorrento Valley Road, San Diego, California
| | | | - Torsten Wiemann
- Califia Bio Inc, 11575 Sorrento Valley Road, San Diego, California
| | - Thong Nguyen
- Califia Bio Inc, 11575 Sorrento Valley Road, San Diego, California
| | | | - Daniel E. Todd
- BioFocus, Chesterford Research Park, Saffron Walden, Essex CB10 1XL, UK
| | - David Sheppard
- BioFocus, Chesterford Research Park, Saffron Walden, Essex CB10 1XL, UK
| | - Scott Pollack
- BioFocus, Chesterford Research Park, Saffron Walden, Essex CB10 1XL, UK
| | - Oksana Polesskaya
- University of Rochester Medical Center, School of Medicine and Dentistry, 601 Elmwood Ave Rochester, New York
| | - Daniel F. Marker
- University of Rochester Medical Center, School of Medicine and Dentistry, 601 Elmwood Ave Rochester, New York
| | - Stephen Dewhurst
- University of Rochester Medical Center, School of Medicine and Dentistry, 601 Elmwood Ave Rochester, New York
| | - Harris A. Gelbard
- University of Rochester Medical Center, School of Medicine and Dentistry, 601 Elmwood Ave Rochester, New York
| |
Collapse
|
33
|
Ma Q, Gelbard HA, Maggirwar SB, Dewhurst S, Gendelman HE, Peterson DR, DiFrancesco R, Hochreiter JS, Morse GD, Schifitto G. Pharmacokinetic interactions of CEP-1347 and atazanavir in HIV-infected patients. J Neurovirol 2013; 19:254-60. [PMID: 23737347 DOI: 10.1007/s13365-013-0172-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 05/03/2013] [Accepted: 05/07/2013] [Indexed: 12/01/2022]
Abstract
CEP-1347 is a potent inhibitor of mixed lineage kinase (MLK), which was investigated for ameliorating HIV-associated neurocognitive disorders. CEP-1347 and atazanavir pharmacokinetics were determined when CEP-1347 50 mg twice daily was administered to HIV-infected patients (n = 20) receiving combination antiretroviral therapy including atazanavir and ritonavir (ATV/RTV, 300/100 mg) once daily continuously. Co-administration of CEP-1347 and ATV/RTV resulted with significant changes in pharmacokinetics of ATV but not RTV. Specifically, an increase in ATV accumulation ratio of 15 % (p = 0.007) and a prolongation of T(½) from 12.7 to 15.9 h (p = 0.002) were observed. The results suggested that co-administration of CEP-1347 with ATV/RTV in HIV-infected patients might result in limited impact on ATV but not on RTV pharmacokinetics.
Collapse
Affiliation(s)
- Qing Ma
- Center for Human Experimental Therapeutics, Clinical and Translational Sciences Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Targeting the glutamatergic system for the treatment of HIV-associated neurocognitive disorders. J Neuroimmune Pharmacol 2013; 8:594-607. [PMID: 23553365 PMCID: PMC3661915 DOI: 10.1007/s11481-013-9442-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 02/08/2013] [Indexed: 12/22/2022]
Abstract
The accumulation of excess glutamate in the extracellular space as a consequence of CNS trauma, neurodegenerative diseases, infection, or deregulation of glutamate clearance results in neuronal damage by excessive excitatory neurotransmission. Glutamate excitotoxicity is thought to be one of several mechanisms by which HIV exerts neurotoxicity that culminates in HIV-associated neurocognitive disorders (HAND). Excess glutamate is released upon HIV infection of macrophage/microglial cells and has been associated with neurotoxicity mediated by gp120, transactivator of transcription (Tat) and other HIV proteins. Several strategies have been used over the years to try to prevent glutamate excitotoxicity. Since the main toxic effects of excess glutamate are thought to be due to excitotoxicity from over activation of glutamate receptors, antagonists of these receptors have been popular therapeutic targets. Early work to ameliorate the effects of excess extracellular glutamate focused on NMDA receptor antagonism, but unfortunately, potent blockade of this receptor has been fraught with side effects. One alternative to direct receptor blockade has been the inhibition of enzymes responsible for the production of glutamate such as glutaminase and glutamate carboxypeptidase II. Another approach has been to regulate the transporters responsible for modulation of extracellular glutamate such as excitatory amino acid transporters and the glutamate-cystine antiporter. There is preliminary experimental evidence that these approaches have potential therapeutic utility for the treatment of HAND. These efforts however, are at an early stage where the next steps are dependent on the identification of drug-like inhibitors as well as the development of predictive neuroAIDS animal models.
Collapse
|
35
|
Abstract
Dementias are a varied group of disorders typically associated with memory loss, impaired judgment and/or language and by symptoms affecting other cognitive and social abilities to a degree that interferes with daily functioning. Alzheimer's disease (AD) is the most common cause of a progressive dementia, followed by dementia with Lewy bodies (DLB), frontotemporal dementia (FTD), (VaD) and HIV-associated neurocognitive disorders (HAND). The pathogenesis of this group of disorders has been linked to the abnormal accumulation of proteins in the brains of affected individuals, which in turn has been related to deficits in protein clearance. Autophagy is a key cellular protein clearance pathway with proteolytic cleavage and degradation via the ubiquitin-proteasome pathway representing another important clearance mechanism. Alterations in the levels of autophagy and the proteins associated with the autophagocytic pathway have been reported in various types of dementias. This review will examine recent literature across these disorders and highlight a common theme of altered autophagy across the spectrum of the dementias.
Collapse
|
36
|
Huang GS, Hong MY. Functional and Molecular Characterization for the Damp-Obstructed Rat Model in Chinese Medicine. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 34:323-40. [PMID: 16552842 DOI: 10.1142/s0192415x06003862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Functional and molecular characterization was performed on the major organs of damp-obstructed rats by applying expression datasets of microarray experiments and real-time RT-PCR. Gene ontology repertoires, i.e. cellular component, molecular function, and biological process were used to classify differentially expressed genes in the major organs of rats upon treatment of dampness. As to the cellular component, over-expression of genes associated with the plasma membrane was observed in the stomach, spleen, kidney, heart, liver, and lung. Genes associated with translational machinery, endoplasmic recticulum membrane, Golgi apparatus, and nuclear envelope were down-regulated in the stomach. Concerning the molecular function, genes associated with oxidoreductase activity were up-regulated in the stomach, spleen, kidney, lung, and brain. Channel activity, membrane receptor, and electron transporter activity were up-regulated in stomach, kidney, and lung. Regarding the biological process, genes associated with signal transduction were up-regulated in the stomach, while genes associated with biosynthesis and ATP metabolism were down-regulated. In the spleen, melanin biosynthesis was up-regulated while hormone-related activities were down-regulated. In the kidney, genes associated with nucleotide biosynthesis and ATP metabolism were depressed. In the heart and liver, apoptosis was up-regulated while immune response and RAS signal transduction were down-regulated. Interestingly, genes associated with oncogenesis were up-regulated in the stomach and kidney. Functional fingerprints indicated that dampness weakened membrane structures, depressed metabolic activity (especially ATP metabolism), damaged matrix proteins, enhanced signal transduction, and revealed a positive association with oncogenesis. To quantify the functional impact at the molecular level, mRNA levels of key genes were determined by real-time RT-PCR. The results indicated that ATP storage in kidney, spleen, and stomach was depleted in damp-obstructed rats. We propose that oxidative stress, membrane integrity, melanin biosynthesis, ion channel activity, and ATP metabolism might be hallmarks for damp-obstructed rats. Our results also suggested dampness as a pathogenic factor in rats which is possibly associated with enhanced liabilities of cancer.
Collapse
Affiliation(s)
- G Steven Huang
- Institute of Nanotechnology, National Chiao Tung University, Hsinchu 300, Taiwan.
| | | |
Collapse
|
37
|
Chang JR, Mukerjee R, Bagashev A, Del Valle L, Chabrashvili T, Hawkins BJ, He JJ, Sawaya BE. HIV-1 Tat protein promotes neuronal dysfunction through disruption of microRNAs. J Biol Chem 2011; 286:41125-34. [PMID: 21956116 PMCID: PMC3220514 DOI: 10.1074/jbc.m111.268466] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 09/13/2011] [Indexed: 12/11/2022] Open
Abstract
Over the last decade, small noncoding RNA molecules such as microRNAs (miRNAs) have emerged as critical regulators in the expression and function of eukaryotic genomes. It has been suggested that viral infections and neurological disease outcome may also be shaped by the influence of small RNAs. This has prompted us to suggest that HIV infection alters the endogenous miRNA expression patterns, thereby contributing to neuronal deregulation and AIDS dementia. Therefore, using primary cultures and neuronal cell lines, we examined the impact of a viral protein (HIV-1 Tat) on the expression of miRNAs due to its characteristic features such as release from the infected cells and taken up by noninfected cells. Using microRNA array assay, we demonstrated that Tat deregulates the levels of several miRNAs. Interestingly, miR-34a was among the most highly induced miRNAs in Tat-treated neurons. Tat also decreases the levels of miR-34a target genes such as CREB protein as shown by real time PCR. The effect of Tat was neutralized in the presence of anti-miR-34a. Using in situ hybridization assay, we found that the levels of miR-34a increase in Tat transgenic mice when compared with the parental mice. Therefore, we conclude that deregulation of neuronal functions by HIV-1 Tat protein is miRNA-dependent.
Collapse
Affiliation(s)
- J. Robert Chang
- From the Department of Neurology, Molecular Studies of Neurodegenerative Diseases Laboratory, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Ruma Mukerjee
- From the Department of Neurology, Molecular Studies of Neurodegenerative Diseases Laboratory, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Asen Bagashev
- From the Department of Neurology, Molecular Studies of Neurodegenerative Diseases Laboratory, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Luis Del Valle
- the Department of Medicine, Section of Hematology/Oncology, and Department of Pathology, Stanley S. Scott Cancer Center, Louisiana State University School of Medicine, New Orleans, Louisiana 70112
| | - Tinatin Chabrashvili
- From the Department of Neurology, Molecular Studies of Neurodegenerative Diseases Laboratory, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Brian J. Hawkins
- Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, University of Washington, Seattle, Washington 98109, and
| | - Johnny J. He
- the Center for AIDS Research, Department of Microbiology and Immunology, School of Medicine, University of Indiana, Indianapolis, Indiana 46202
| | - Bassel E. Sawaya
- From the Department of Neurology, Molecular Studies of Neurodegenerative Diseases Laboratory, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| |
Collapse
|
38
|
Lu SM, Tremblay MÈ, King IL, Qi J, Reynolds HM, Marker DF, Varrone JJP, Majewska AK, Dewhurst S, Gelbard HA. HIV-1 Tat-induced microgliosis and synaptic damage via interactions between peripheral and central myeloid cells. PLoS One 2011; 6:e23915. [PMID: 21912650 PMCID: PMC3166280 DOI: 10.1371/journal.pone.0023915] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 07/27/2011] [Indexed: 11/30/2022] Open
Abstract
Despite the ability of combination antiretroviral treatment (cART) to reduce viral burden to nearly undetectable levels in cerebrospinal fluid and serum, HIV-1 associated neurocognitive disorders (HAND) continue to persist in as many as half the patients living with this disease. There is growing consensus that the actual substrate for HAND is destruction of normal synaptic architecture but the sequence of cellular events that leads to this outcome has never been resolved. To address whether central vs. peripheral myeloid lineage cells contribute to synaptic damage during acute neuroinflammation we injected a single dose of the HIV-1 transactivator of transcription protein (Tat) or control vehicle into hippocampus of wild-type or chimeric C57Bl/6 mice genetically marked to distinguish infiltrating and resident immune cells. Between 8–24 hr after injection of Tat, invading CD11b+ and/or myeloperoxidase-positive leukocytes with granulocyte characteristics were found to engulf both microglia and synaptic structures, and microglia reciprocally engulfed invading leukocytes. By 24 hr, microglial processes were also seen ensheathing dendrites, followed by inclusion of synaptic elements in microglia 7 d after Tat injection, with a durable microgliosis lasting at least 28 d. Thus, central nervous system (CNS) exposure to Tat induces early activation of peripheral myeloid lineage cells with phagocytosis of synaptic elements and reciprocal microglial engulfment of peripheral leukocytes, and enduring microgliosis. Our data suggest that a single exposure to a foreign antigen such as HIV-1 Tat can lead to long-lasting disruption of normal neuroimmune homeostasis with deleterious consequences for synaptic architecture, and further suggest a possible mechanism for enduring neuroinflammation in the absence of productive viral replication in the CNS.
Collapse
Affiliation(s)
- Shao-Ming Lu
- Center for Neural Development and Disease, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Rao JS, Kim HW, Kellom M, Greenstein D, Chen M, Kraft AD, Harry GJ, Rapoport SI, Basselin M. Increased neuroinflammatory and arachidonic acid cascade markers, and reduced synaptic proteins, in brain of HIV-1 transgenic rats. J Neuroinflammation 2011; 8:101. [PMID: 21846384 PMCID: PMC3175175 DOI: 10.1186/1742-2094-8-101] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 08/16/2011] [Indexed: 12/23/2022] Open
Abstract
Background Cognitive impairment has been reported in human immune deficiency virus-1- (HIV-1-) infected patients as well as in HIV-1 transgenic (Tg) rats. This impairment has been linked to neuroinflammation, disturbed brain arachidonic acid (AA) metabolism, and synapto-dendritic injury. We recently reported upregulated brain AA metabolism in 7- to 9-month-old HIV-1 Tg rats. We hypothesized that these HIV-1 Tg rats also would show upregulated brain inflammatory and AA cascade markers and a deficit of synaptic proteins. Methods We measured protein and mRNA levels of markers of neuroinflammation and the AA cascade, as well as pro-apoptotic factors and synaptic proteins, in brains from 7- to 9-month-old HIV-1 Tg and control rats. Results Compared with control brain, HIV-1 Tg rat brain showed immunoreactivity to glycoprotein 120 and tat HIV-1 viral proteins, and significantly higher protein and mRNA levels of (1) the inflammatory cytokines interleukin-1β and tumor necrosis factor α, (2) the activated microglial/macrophage marker CD11b, (3) AA cascade enzymes: AA-selective Ca2+-dependent cytosolic phospholipase A2 (cPLA2)-IVA, secretory sPLA2-IIA, cyclooxygenase (COX)-2, membrane prostaglandin E2 synthase, 5-lipoxygenase (LOX) and 15-LOX, cytochrome p450 epoxygenase, and (4) transcription factor NF-κBp50 DNA binding activity. HIV-1 Tg rat brain also exhibited signs of cell injury, including significantly decreased levels of brain-derived neurotrophic factor (BDNF) and drebrin, a marker of post-synaptic excitatory dendritic spines. Expression of Ca2+-independent iPLA2-VIA and COX-1 was unchanged. Conclusions HIV-1 Tg rats show elevated brain markers of neuroinflammation and AA metabolism, with a deficit in several synaptic proteins. These changes are associated with viral proteins and may contribute to cognitive impairment. The HIV-1 Tg rat may be a useful model for understanding progression and treatment of cognitive impairment in HIV-1 patients.
Collapse
Affiliation(s)
- Jagadeesh Sridhara Rao
- Brain Physiology and Metabolism Section, National Institute on Aging, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Cannabinoids inhibit migration of microglial-like cells to the HIV protein Tat. J Neuroimmune Pharmacol 2011; 6:566-77. [PMID: 21735070 DOI: 10.1007/s11481-011-9291-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 06/27/2011] [Indexed: 12/12/2022]
Abstract
Microglia are a population of macrophage-like cells in the central nervous system (CNS) which, upon infection by the human immunodeficiency virus (HIV), secrete a plethora of inflammatory factors, including the virus-specified trans-activating protein Tat. Tat has been implicated in HIV neuropathogenesis since it elicits chemokines, cytokines, and a chemotactic response from microglia. It also harbors a β-chemokine receptor binding motif, articulating a mode by which it acts as a migration stimulus. Since select cannabinoids have anti-inflammatory properties, cross the blood-brain barrier, and target specific receptors, they have potential to serve as agents for dampening untoward neuroimmune responses. The aim of this study was to investigate the effect of select cannabinoids on the migration of microglial-like cells toward Tat. Using a mouse BV-2 microglial-like cell model, it was demonstrated that the exogenous cannabinoids Delta-9-tetrahydrocannabinol (THC) and CP55940 exerted a concentration-related reduction in the migration of BV-2 cells towards Tat. A similar inhibitory response was obtained when the endogenous cannabinoid 2-arachidonoylglycerol (2-AG) was used. The CB(2) receptor (CB2R) antagonist SR144528, but not the CB(1) receptor (CB1R) antagonist SR141716A, blocked this inhibition of migration. Similarly, CB2R knockdown with small interfering RNA reversed the cannabinoid-mediated inhibition. In addition, the level of the β-chemokine receptor CCR-3 was reduced and its intracellular compartmentation was altered. These results indicate that cannabinoid-mediated inhibition of BV-2 microglial-like cell migration to Tat is linked functionally to the CB2R. Furthermore, the results indicate that activation of the CB2R leads to altered expression and compartmentation of the β-chemokine receptor CCR-3.
Collapse
|
41
|
Cao S, Wu C, Yang Y, Sniderhan LF, Maggirwar SB, Dewhurst S, Lu Y. Lentiviral vector-mediated stable expression of sTNFR-Fc in human macrophage and neuronal cells as a potential therapy for neuroAIDS. J Neuroinflammation 2011; 8:48. [PMID: 21569583 PMCID: PMC3118348 DOI: 10.1186/1742-2094-8-48] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 05/14/2011] [Indexed: 01/23/2023] Open
Abstract
Background Human immunodeficiency virus type 1 (HIV-1) infection frequently causes neurologic disease, which is the result of viral replication and activation of macrophages and microglia in the CNS, and subsequent secretion of high levels of neurotoxic products, including tumor necrosis factor-α (TNF-α). We therefore hypothesized that a soluble TNF-α antagonist might have potential utility as a neuroprotective effecter molecule, and conducted proof-of-concept studies to test this hypothesis. Methods To develop novel therapeutics for the treatment of neuroAIDS, we constructed and characterized a soluble TNF receptor (sTNFR)-Fc fusion protein with the goal of neutralizing TNF-α, and tested the stability of expression of this gene following delivery by a lentiviral vector. Results High-titer lentiviral vectors were prepared, allowing efficient transduction of macrophage/glial and neuronal cell lines, as well as primary rat cerebellar neurons. Efficient, stable secretion of sTNFR-Fc was demonstrated in supernatants from transduced cell lines over 20 passages, using both western blot and ELISA. Biological activity of the secreted sTNFR-Fc was confirmed by TNF-specific in vitro protein binding and functional blocking assays. Finally, the secreted protein was shown to protect neuronal cells from TNF-α, HIV-1 Tat-, and gp120-mediated neurotoxicity. Conclusions These results demonstrate that lentiviral vector mediated expression of sTNFR-Fc may have potential as a novel therapy for neuroAIDS.
Collapse
Affiliation(s)
- Shengbo Cao
- Department of Public Health Sciences, University of Hawai'i, Honolulu, Hawai'i 96822, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Mitogen-activated protein kinase p38 in HIV infection and associated brain injury. J Neuroimmune Pharmacol 2011; 6:202-15. [PMID: 21286833 DOI: 10.1007/s11481-011-9260-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 01/23/2011] [Indexed: 02/05/2023]
Abstract
Infection with human immunodeficiency virus-1 (HIV-1) often leads to HIV-associated neurocognitive disorders (HAND) prior to the progression to acquired immunodeficiency syndrome (AIDS). At the cellular level, mitogen-activated protein kinases (MAPK) provide a family of signal transducers that regulate many processes in response to extracellular stimuli and environmental stress, such as viral infection. Recently, evidence has accumulated suggesting that p38 MAPK plays crucial roles in various pathological processes associated with HIV infection, ranging from macrophage activation to neurotoxicity and impairment of neurogenesis to lymphocyte apoptosis. Thus, p38 MAPK, which has generally been linked to stress-related signal transduction, may be an important mediator in the development of AIDS and HAND.
Collapse
|
43
|
Stellwagen D. The contribution of TNFα to synaptic plasticity and nervous system function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 691:541-57. [PMID: 21153360 DOI: 10.1007/978-1-4419-6612-4_57] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- David Stellwagen
- Centre for Research in Neuroscience, McGill University, Montreal, QC, Canada.
| |
Collapse
|
44
|
Khiati A, Chaloin O, Muller S, Tardieu M, Horellou P. Induction of monocyte chemoattractant protein-1 (MCP-1/CCL2) gene expression by human immunodeficiency virus-1 Tat in human astrocytes is CDK9 dependent. J Neurovirol 2010; 16:150-67. [PMID: 20370601 DOI: 10.3109/13550281003735691] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Human immunodeficiency virus-1 (HIV-1) invades the brain early in infection and may cause HIV-associated dementia (HAD), which is characterized by reactive astrocytes, and macrophage and T-cell infiltrates. HIV-1 Tat protein is thought to contribute to HAD by transactivating host genes, such as that encoding monocyte chemoattractant protein-1 (MCP-1/CCL2), although its mechanisms of action are not fully understood. We investigated the molecular pathways involved in Tat-induced MCP-1/CCL2 gene expression in human astrocytes. We found that Tat induced MCP-1/CCL2 synthesis in human astrocytes infected with a lentivirus carrying the gene encoding Tat or treated with a biologically active synthetic Tat protein. The induction of MCP-1/CCL2 was independent of the nuclear factor kappaB (NF-kappaB) classical pathway, but was significantly inhibited by specific cyclin-dependent kinase 9 (cdk9) inhibitors, such as a dominant-negative mutant or siRNA. By contrast, broader-spectrum cdk inhibitors, such as roscovitine, 5,6-dichloro-1-beta-d-ribofuranosylbenzimidazole (DRB), and flavopiridol, inhibited MCP-1/CCL2 induction by Tat. We also analyzed the effects of roscovitine, DRB, and flavopiridol on Tat-induced HIV-1 long terminal repeat (LTR) expression following the infection of astrocytes and HeLa cells. Astrocytes showed no inhibition by roscovitine, 59% inhibition by DRB, and 80% inhibition by flavopiridol. In control HeLa cells, high levels of inhibition were observed with roscovitine, DRB, and flavopiridol. We have ascertained the direct implication of cdk9 in Tat-induced MCP-1 expression by performing ChIP assay. These results demonstrate that cdk9 is involved in Tat-induced HIV-1 LTR, MCP-1/CCL2 gene expression.
Collapse
Affiliation(s)
- Abdelkader Khiati
- INSERM U802 and Université Paris-Sud 11, Faculté de médecine Paris-Sud, Le Kremlin-Bicêtre, France
| | | | | | | | | |
Collapse
|
45
|
Gelbard HA, Dewhurst S, Maggirwar SB, Kiebala M, Polesskaya O, Gendelman HE. Rebuilding synaptic architecture in HIV-1 associated neurocognitive disease: a therapeutic strategy based on modulation of mixed lineage kinase. Neurotherapeutics 2010; 7:392-8. [PMID: 20880503 PMCID: PMC2948545 DOI: 10.1016/j.nurt.2010.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 07/28/2010] [Accepted: 08/04/2010] [Indexed: 12/13/2022] Open
Abstract
Work from our laboratories has validated mixed lineage kinase type 3 (MLK3) as an enzyme pathologically activated in the CNS by human immunodeficiency virus 1 (HIV-1) neurotoxins. In this review, we discuss MLK3 activation in the context of the neuropathogenesis of HIV-1 associated neurocognitive deficits (HAND). We use findings from the literature to substantiate the neuropathologic relevance of MLK3 to neurodegenerative disease, with an emphasis on Parkinson's disease that shares a number of important phenotypic and neuropathologic characteristics with HAND. We discuss signal transduction pathways downstream from MLK3 activation, with an emphasis on their involvement in microglia and neurons in preclinical models of HAND. Finally, we make a case for pharmacologic intervention targeted at inhibition of MLK3 as a strategy to reverse HAND, in light of the fact that combination antiretroviral therapy, despite successfully managing systemic infection of HIV-1, has been largely unsuccessful in eradicating HAND.
Collapse
Affiliation(s)
- Harris A Gelbard
- Center for Neural Development and Disease, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Kiebala M, Polesskaya O, Yao Z, Perry SW, Maggirwar SB. Nuclear factor-kappa B family member RelB inhibits human immunodeficiency virus-1 Tat-induced tumor necrosis factor-alpha production. PLoS One 2010; 5:e11875. [PMID: 20686703 PMCID: PMC2912378 DOI: 10.1371/journal.pone.0011875] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 07/06/2010] [Indexed: 12/02/2022] Open
Abstract
Human Immunodeficiency Virus-1 (HIV-1)-associated neurocognitive disorder (HAND) is likely neuroinflammatory in origin, believed to be triggered by inflammatory and oxidative stress responses to cytokines and HIV protein gene products such as the HIV transactivator of transcription (Tat). Here we demonstrate increased messenger RNA for nuclear factor-kappa B (NF-κB) family member, transcription factor RelB, in the brain of doxycycline-induced Tat transgenic mice, and increased RelB synthesis in Tat-exposed microglial cells. Since genetic ablation of RelB in mice leads to multi-organ inflammation, we hypothesized that Tat-induced, newly synthesized RelB inhibits cytokine production by microglial cells, possibly through the formation of transcriptionally inactive RelB/RelA complexes. Indeed, tumor necrosis factor-alpha (TNFα) production in monocytes isolated from RelB deficient mice was significantly higher than in monocytes isolated from RelB expressing controls. Moreover, RelB overexpression in microglial cells inhibited Tat-induced TNFα synthesis in a manner that involved transcriptional repression of the TNFα promoter, and increased phosphorylation of RelA at serine 276, a prerequisite for increased RelB/RelA protein interactions. The Rel-homology-domain within RelB was necessary for this interaction. Overexpression of RelA itself, in turn, significantly increased TNFα promoter activity, an effect that was completely blocked by RelB overexpression. We conclude that RelB regulates TNFα cytokine synthesis by competitive interference binding with RelA, which leads to downregulation of TNFα production. Moreover, because Tat activates both RelB and TNFα in microglia, and because Tat induces inflammatory TNFα synthesis via NF-κB, we posit that RelB serves as a cryoprotective, anti-inflammatory, counter-regulatory mechanism for pathogenic NF-κB activation. These findings identify a novel regulatory pathway for controlling HIV-induced microglial activation and cytokine production that may have important therapeutic implications for the management of HAND.
Collapse
Affiliation(s)
- Michelle Kiebala
- Department of Microbiology and Immunology, the University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Oksana Polesskaya
- Department of Microbiology and Immunology, the University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Zhenqiang Yao
- Department of Pathology and Laboratory Medicine, the University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Seth W. Perry
- Center for Neural Development and Disease, Department of Neurology, the University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Sanjay B. Maggirwar
- Department of Microbiology and Immunology, the University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
47
|
Abstract
Individuals suffering from human immunodeficiency virus type 1 (HIV-1) infection suffer from a wide range of neurological deficits. The most pronounced are the motor and cognitive deficits observed in many patients in the latter stages of HIV infection. Gross postmortem inspection shows cortical atrophy and widespread
neuronal loss. One of the more debilitating of the HIV-related syndromes is AIDS-related dementia, or HAD. Complete understanding of HIV neurotoxicity has been elusive. Both direct and indirect toxic mechanisms have been implicated in the neurotoxicity of the
HIV proteins, Tat and gp120. The glutamatergic system, nitric oxide, calcium, oxidative stress, apoptosis, and microglia have all been implicated in the pathogenesis of HIV-related neuronal degeneration. The aim of this review is to summarize the most
recent work and provide an overview to the current theories of HIV-related neurotoxicity and potential avenues of therapeutic interventions to prevent the neuronal loss and motor/cognitive deficits previously described.
Collapse
Affiliation(s)
- David R. Wallace
- Department of Pharmacology and Physiology and Department of Forensic Sciences, Center for Health Sciences, Oklahoma State University, Tulsa, OK 74107-1898, USA
- *David R. Wallace:
| |
Collapse
|
48
|
Cheng X, Yang L, He P, Li R, Shen Y. Differential activation of tumor necrosis factor receptors distinguishes between brains from Alzheimer's disease and non-demented patients. J Alzheimers Dis 2010; 19:621-30. [PMID: 20110607 DOI: 10.3233/jad-2010-1253] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We reported that tumor necrosis factor receptor I (TNFRI) is required for neuronal death induced by amyloid-beta protein in the Alzheimer's disease (AD) brain. However, whether TNF receptor subtypes are expressed and activated differentially in AD brains compared to non-demented brains remains unclear. Our studies on Western blot and ELISA measurements demonstrated that TNFRI levels are increased whereas TNFRII levels are decreased in AD brains compared to non-demented brains (p <0.05). Immunohistochemical results demonstrated that both TNFRI and TNFRII are expressed in neurons in AD and non-demented brains. However, in situ hybridization studies showed little change in the mRNA levels of either type of TNF receptor in the neurons of AD brains compared to non-demented brains. To examine whether different levels of TNF receptors in AD brains are correlated with the alteration of functional binding of TNF receptors, by using 125I-TNF-alpha binding technique, we found that, in AD brains, 125I-TNF-alpha binding affinity to TNFRI is increased, whereas binding affinity to TNFRII is decreased (p < 0.01). These studies reveal a novel observation of abnormal TNF receptor activation in AD brains. Differential TNF receptor protein levels and binding affinities suggest distinct pathogenic mechanisms of neurodegeneration in the AD brain.
Collapse
Affiliation(s)
- Xin Cheng
- Haldeman Laboratory of Molecular and Cellular Neurobiology, Sun Health Research Institute, Sun City, AZ, USA
| | | | | | | | | |
Collapse
|
49
|
Role of Tat protein in HIV neuropathogenesis. Neurotox Res 2009; 16:205-20. [PMID: 19526283 DOI: 10.1007/s12640-009-9047-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 03/09/2009] [Accepted: 03/09/2009] [Indexed: 12/13/2022]
Abstract
The Tat protein of the human immunodeficiency virus (HIV) has been implicated in the pathophysiology of the neurocognitive deficits associated with HIV infection. This is the earliest protein to be produced by the proviral DNA in the infected cell. The protein not only drives the regulatory regions of the virus but may also be actively released from the cell and then interact with the cell surface receptors of other uninfected cells in the brain leading to cellular dysfunction. It may also be taken up by these cells and can then activate a number of host genes. The Tat protein is highly potent and has the unique ability to travel along neuronal pathways. Importantly, its production is not impacted by the use of antiretroviral drugs once the proviral DNA has been formed. This article reviews the pleomorphic actions of Tat protein and the evidence supporting its central role in the neuropathogenesis of the HIV infection.
Collapse
|
50
|
Zhao P, Leonoudakis D, Abood ME, Beattie EC. Cannabinoid receptor activation reduces TNFalpha-induced surface localization of AMPAR-type glutamate receptors and excitotoxicity. Neuropharmacology 2009; 58:551-8. [PMID: 19654014 DOI: 10.1016/j.neuropharm.2009.07.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 07/28/2009] [Accepted: 07/29/2009] [Indexed: 01/08/2023]
Abstract
After injury or during neurodegenerative disease in the central nervous system (CNS), the concentration of tumor necrosis factor alpha (TNFalpha) rises above normal during the inflammatory response. In vitro and in vivo, addition of exogenous TNFalpha to neurons has been shown to induce rapid plasma membrane-delivery of AMPA-type glutamate receptors (AMPARs) potentiating glutamatergic excitotoxicity. Thus the discovery of drug targets reducing excess TNFalpha-induced AMPAR surface expression may help protect neurons after injury. In this study, we investigate the neuroprotective role of the CB1 cannabinoid receptor using quantitative immunofluorescent and real-time video microscopy to measure the steady-state plasma membrane AMPAR distribution and rate of AMPAR exocytosis after TNFalpha exposure in the presence or absence of CB1 agonists. The neuroprotective potential of CB1 activation with TNFalpha was measured in hippocampal neuron cultures challenged by an in vitro kainate (KA)-mediated model of Excitotoxic Neuroinflammatory Death (END). Here, we demonstrate that CB1 activation blocks the TNFalpha-induced increase in surface AMPARs and protects neurons from END. Thus, neuroprotective strategies which increase CB1 activity may help to reduce the END that occurs as a result of a majority of CNS insults.
Collapse
MESH Headings
- Animals
- Benzoxazines/pharmacology
- Cannabinoid Receptor Agonists
- Cell Death/drug effects
- Cell Death/physiology
- Cell Membrane/drug effects
- Cell Membrane/physiology
- Cells, Cultured
- Exocytosis/drug effects
- Exocytosis/physiology
- Hippocampus/drug effects
- Hippocampus/physiology
- Kainic Acid/toxicity
- Morpholines/pharmacology
- Naphthalenes/pharmacology
- Neurons/drug effects
- Neurons/physiology
- Neuroprotective Agents/pharmacology
- Neurotoxins/toxicity
- Rats
- Rats, Sprague-Dawley
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/metabolism
- Receptors, AMPA/metabolism
- Receptors, Cannabinoid/metabolism
- Time Factors
- Tumor Necrosis Factor-alpha/metabolism
- Video Recording
Collapse
Affiliation(s)
- Pingwei Zhao
- Forbes Norris ALS/MDA Research Center, California Pacific Medical Center Research Institute, 475 Brannan St., Suite 220, San Francisco, CA 94107, USA
| | | | | | | |
Collapse
|