1
|
Wang Y, Zhang Y, Wang Y. Overexpression of Apolipoprotein A-I Alleviates Insulin Resistance in MASLD Mice Through the PPARα Pathway. Int J Mol Sci 2025; 26:1051. [PMID: 39940822 PMCID: PMC11817368 DOI: 10.3390/ijms26031051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Insulin resistance (IR) is one of the important causes of metabolic dysfunction-associated steatotic liver disease (MASLD). Apolipoprotein A-I (apoA-I) is secreted primarily by hepatocytes and plays an essential role in reverse cholesterol transport. Our previous studies revealed that apoA-I can mitigate the progression of metabolic dysfunction-associated steatohepatitis (MASH). However, there is no clear evidence to explain the relationship between apoA-I and IR. Here, we investigated the effects of apoA-I overexpression on IR in both HepG2 cells and mice. In vitro experiment results revealed that apoA-I overexpression can promote cellular glucose uptake in oleic acid-induced IR in HepG2 cells. High-fat, high-cholesterol, and high-fructose diets were used to induce IR in mice. The results showed that apoA-I overexpression improved glucose tolerance, reduced serum insulin levels, and ameliorated IR in diet-induced MASLD mice. Moreover, apoA-I promoted the expression of peroxisome proliferator-activated receptor α (PPARα) in the nucleus both in vitro and in vivo. In conclusion, apoA-I could alleviate MASLD by reducing IR in mice and might exert this effect through the PPARα pathway.
Collapse
Affiliation(s)
| | - Yudian Zhang
- Municipal Laboratory for Liver Protection and Regulation of Regeneration, Department of Cell Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China;
| | - Yutong Wang
- Municipal Laboratory for Liver Protection and Regulation of Regeneration, Department of Cell Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China;
| |
Collapse
|
2
|
Asgharzadeh F, Memarzia A, Alikhani V, Beigoli S, Boskabady MH. Peroxisome proliferator-activated receptors: Key regulators of tumor progression and growth. Transl Oncol 2024; 47:102039. [PMID: 38917593 PMCID: PMC11254173 DOI: 10.1016/j.tranon.2024.102039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/30/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024] Open
Abstract
One of the main causes of death on the globe is cancer. Peroxisome-proliferator-activated receptors (PPARs) are nuclear hormone receptors, including PPARα, PPARδ and PPARγ, which are important in regulating cancer cell proliferation, survival, apoptosis, and tumor growth. Activation of PPARs by endogenous or synthetic compounds regulates tumor progression in various tissues. Although each PPAR isotype suppresses or promotes tumor development depending on the specific tissues or ligands, the mechanism is still unclear. PPARs are receiving interest as possible therapeutic targets for a number of disorders. Numerous clinical studies are being conducted on PPARs as possible therapeutic targets for cancer. Therefore, this review will focus on the existing and future uses of PPARs agonists and antagonists in treating malignancies. PubMed, Science Direct, and Scopus databases were searched regarding the effect of PPARs on various types of cancers until the end of May 2023. The results of the review articles showed the therapeutic influence of PPARs on a wide range of cancer on in vitro, in vivo and clinical studies. However, further experimental and clinical studies are needed to be conducted on the influence of PPARs on various cancers.
Collapse
Affiliation(s)
- Fereshteh Asgharzadeh
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arghavan Memarzia
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vida Alikhani
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Sima Beigoli
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Zhang-Sun ZY, Xu XZ, Escames G, Lei WR, Zhao L, Zhou YZ, Tian Y, Ren YN, Acuña-Castroviejo D, Yang Y. Targeting NR1D1 in organ injury: challenges and prospects. Mil Med Res 2023; 10:62. [PMID: 38072952 PMCID: PMC10712084 DOI: 10.1186/s40779-023-00495-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Nuclear receptor subfamily 1, group D, member 1 (NR1D1, also known as REV-ERBα) belongs to the nuclear receptor (NR) family, and is a heme-binding component of the circadian clock that consolidates circadian oscillators. In addition to repressing the transcription of multiple clock genes associated with circadian rhythms, NR1D1 has a wide range of downstream target genes that are intimately involved in many physiopathological processes, including autophagy, immunity, inflammation, metabolism and aging in multiple organs. This review focuses on the pivotal role of NR1D1 as a key transcription factor in the gene regulatory network, with particular emphasis on the milestones of the latest discoveries of NR1D1 ligands. NR1D1 is considered as a promising drug target for treating diverse diseases and may contribute to research on innovative biomarkers and therapeutic targets for organ injury-related diseases. Further research on NR1D1 ligands in prospective human trials may pave the way for their clinical application in many organ injury-related disorders.
Collapse
Affiliation(s)
- Zi-Yin Zhang-Sun
- Department of Cardiology, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine , Northwest University, Xi'an, 710069, China
| | - Xue-Zeng Xu
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Germaine Escames
- Biomedical Research Center, Department of Physiology, Faculty of Medicine, Institute of Biotechnology, Technological Park of Health Sciences, University of Granada, 18016, Granada, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Ibs.Granada, San Cecilio University Hospital, 18016, Granada, Spain
| | - Wang-Rui Lei
- Department of Cardiology, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine , Northwest University, Xi'an, 710069, China
| | - Lin Zhao
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Ya-Zhe Zhou
- Department of Cardiology, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine , Northwest University, Xi'an, 710069, China
| | - Ye Tian
- Department of Cardiology, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine , Northwest University, Xi'an, 710069, China
| | - Ya-Nan Ren
- Department of Cardiology, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine , Northwest University, Xi'an, 710069, China
| | - Darío Acuña-Castroviejo
- Biomedical Research Center, Department of Physiology, Faculty of Medicine, Institute of Biotechnology, Technological Park of Health Sciences, University of Granada, 18016, Granada, Spain.
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Ibs.Granada, San Cecilio University Hospital, 18016, Granada, Spain.
- UGC of Clinical Laboratories, San Cecilio Clinical University Hospital, 18016, Granada, Spain.
| | - Yang Yang
- Department of Cardiology, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine , Northwest University, Xi'an, 710069, China.
| |
Collapse
|
4
|
Yagai T, Nakamura T. Mechanistic insights into the peroxisome proliferator-activated receptor alpha as a transcriptional suppressor. Front Med (Lausanne) 2022; 9:1060244. [PMID: 36507526 PMCID: PMC9732035 DOI: 10.3389/fmed.2022.1060244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/08/2022] [Indexed: 11/27/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent hepatic disorders that 20-30% of the world population suffers from. The feature of NAFLD is excess lipid accumulation in the liver, exacerbating multiple metabolic syndromes such as hyperlipidemia, hypercholesterolemia, hypertension, and type 2 diabetes. Approximately 20-30% of NAFLD cases progress to more severe chronic hepatitis, known as non-alcoholic steatohepatitis (NASH), showing deterioration of hepatic functions and liver fibrosis followed by cirrhosis and cancer. Previous studies uncovered that several metabolic regulators had roles in disease progression as key factors. Peroxisome proliferator-activated receptor alpha (PPARα) has been identified as one of the main players in hepatic lipid homeostasis. PPARα is abundantly expressed in hepatocytes, and is a ligand-dependent nuclear receptor belonging to the NR1C nuclear receptor subfamily, orchestrating lipid/glucose metabolism, inflammation, cell proliferation, and carcinogenesis. PPARα agonists are expected to be novel prescription drugs for NASH treatment, and some of them (e.g., Lanifibranor) are currently under clinical trials. These potential novel drugs are developed based on the knowledge of PPARα-activating target genes related to NAFLD and NASH. Intriguingly, PPARα is known to suppress the expression of subsets of target genes under agonist treatment; however, the mechanisms of PPARα-mediated gene suppression and functions of these genes are not well understood. In this review, we summarize and discuss the mechanisms of target gene repression by PPARα and the roles of repressed target genes on hepatic lipid metabolism, fibrosis and carcinogenesis related to NALFD and NASH, and provide future perspectives for PPARα pharmaceutical potentials.
Collapse
Affiliation(s)
- Tomoki Yagai
- Department of Metabolic Bioregulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Takahisa Nakamura
- Department of Metabolic Bioregulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
5
|
Heaven MR, Herren AW, Flint DL, Pacheco NL, Li J, Tang A, Khan F, Goldman JE, Phinney BS, Olsen ML. Metabolic Enzyme Alterations and Astrocyte Dysfunction in a Murine Model of Alexander Disease With Severe Reactive Gliosis. Mol Cell Proteomics 2022; 21:100180. [PMID: 34808356 PMCID: PMC8717607 DOI: 10.1016/j.mcpro.2021.100180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/30/2022] Open
Abstract
Alexander disease (AxD) is a rare and fatal neurodegenerative disorder caused by mutations in the gene encoding glial fibrillary acidic protein (GFAP). In this report, a mouse model of AxD (GFAPTg;Gfap+/R236H) was analyzed that contains a heterozygous R236H point mutation in murine Gfap as well as a transgene with a GFAP promoter to overexpress human GFAP. Using label-free quantitative proteomic comparisons of brain tissue from GFAPTg;Gfap+/R236H versus wild-type mice confirmed upregulation of the glutathione metabolism pathway and indicated proteins were elevated in the peroxisome proliferator-activated receptor (PPAR) signaling pathway, which had not been reported previously in AxD. Relative protein-level differences were confirmed by a targeted proteomics assay, including proteins related to astrocytes and oligodendrocytes. Of particular interest was the decreased level of the oligodendrocyte protein, 2-hydroxyacylsphingosine 1-beta-galactosyltransferase (Ugt8), since Ugt8-deficient mice exhibit a phenotype similar to GFAPTg;Gfap+/R236H mice (e.g., tremors, ataxia, hind-limb paralysis). In addition, decreased levels of myelin-associated proteins were found in the GFAPTg;Gfap+/R236H mice, consistent with the role of Ugt8 in myelin synthesis. Fabp7 upregulation in GFAPTg;Gfap+/R236H mice was also selected for further investigation due to its uncharacterized association to AxD, critical function in astrocyte proliferation, and functional ability to inhibit the anti-inflammatory PPAR signaling pathway in models of amyotrophic lateral sclerosis (ALS). Within Gfap+ astrocytes, Fabp7 was markedly increased in the hippocampus, a brain region subjected to extensive pathology and chronic reactive gliosis in GFAPTg;Gfap+/R236H mice. Last, to determine whether the findings in GFAPTg;Gfap+/R236H mice are present in the human condition, AxD patient and control samples were analyzed by Western blot, which indicated that Type I AxD patients have a significant fourfold upregulation of FABP7. However, immunohistochemistry analysis showed that UGT8 accumulates in AxD patient subpial brain regions where abundant amounts of Rosenthal fibers are located, which was not observed in the GFAPTg;Gfap+/R236H mice.
Collapse
Affiliation(s)
| | - Anthony W Herren
- University of California at Davis Proteomics Core, Davis, California, USA
| | | | - Natasha L Pacheco
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jiangtao Li
- Graduate Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, Virginia, USA; School of Neuroscience, Virginia Tech, Blacksburg, Virginia, USA
| | - Alice Tang
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - Fatima Khan
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - James E Goldman
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - Brett S Phinney
- University of California at Davis Proteomics Core, Davis, California, USA
| | - Michelle L Olsen
- School of Neuroscience, Virginia Tech, Blacksburg, Virginia, USA.
| |
Collapse
|
6
|
Guido ME, Monjes NM, Wagner PM, Salvador GA. Circadian Regulation and Clock-Controlled Mechanisms of Glycerophospholipid Metabolism from Neuronal Cells and Tissues to Fibroblasts. Mol Neurobiol 2021; 59:326-353. [PMID: 34697790 DOI: 10.1007/s12035-021-02595-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/07/2021] [Indexed: 12/26/2022]
Abstract
Along evolution, living organisms developed a precise timekeeping system, circadian clocks, to adapt life to the 24-h light/dark cycle and temporally regulate physiology and behavior. The transcriptional molecular circadian clock and metabolic/redox oscillator conforming these clocks are present in organs, tissues, and even in individual cells, where they exert circadian control over cellular metabolism. Disruption of the molecular clock may cause metabolic disorders and higher cancer risk. The synthesis and degradation of glycerophospholipids (GPLs) is one of the most highly regulated metabolisms across the 24-h cycle in terms of total lipid content and enzyme expression and activity in the nervous system and individual cells. Lipids play a plethora of roles (membrane biogenesis, energy sourcing, signaling, and the regulation of protein-chromatin interaction, among others), making control of their metabolism a vital checkpoint in the cellular organization of physiology. An increasing body of evidence clearly demonstrates an orchestrated and sequential series of events occurring in GPL metabolism across the 24-h day in diverse retinal cell layers, immortalized fibroblasts, and glioma cells. Moreover, the clock gene Per1 and other circadian-related genes are tightly involved in the regulation of GPL synthesis in quiescent cells. However, under proliferation, the metabolic oscillator continues to control GPL metabolism of brain cancer cells even after molecular circadian clock disruption, reflecting the crucial role of the temporal metabolism organization in cell preservation. The aim of this review is to examine the control exerted by circadian clocks over GPL metabolism, their synthesizing enzyme expression and activities in normal and tumorous cells of the nervous system and in immortalized fibroblasts.
Collapse
Affiliation(s)
- Mario E Guido
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina.
- Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina.
| | - Natalia M Monjes
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina
- Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina
| | - Paula M Wagner
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina
- Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina
| | - Gabriela A Salvador
- INIBIBB-UNS-CONICET, Departamento de Biología, Bioquímica y Farmacia, UNS, Bahía Blanca, Argentina
| |
Collapse
|
7
|
Loupy KM, Cler KE, Marquart BM, Yifru TW, D'Angelo HM, Arnold MR, Elsayed AI, Gebert MJ, Fierer N, Fonken LK, Frank MG, Zambrano CA, Maier SF, Lowry CA. Comparing the effects of two different strains of mycobacteria, Mycobacterium vaccae NCTC 11659 and M. vaccae ATCC 15483, on stress-resilient behaviors and lipid-immune signaling in rats. Brain Behav Immun 2021; 91:212-229. [PMID: 33011306 PMCID: PMC7749860 DOI: 10.1016/j.bbi.2020.09.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/17/2020] [Accepted: 09/26/2020] [Indexed: 12/11/2022] Open
Abstract
Stress-related disorders, such as posttraumatic stress disorder (PTSD), are highly prevalent and often difficult to treat. In rodents, stress-related, anxiety-like defensive behavioral responses may be characterized by social avoidance, exacerbated inflammation, and altered metabolic states. We have previously shown that, in rodents, subcutaneous injections of a heat-killed preparation of the soil-derived bacterium Mycobacterium vaccae NCTC 11659 promotes stress resilience effects that are associated with immunoregulatory signaling in the periphery and the brain. In the current study, we sought to determine whether treatment with a heat-killed preparation of the closely related M. vaccae type strain, M. vaccae ATCC 15483, would also promote stress-resilience in adult male rats, likely due to biologically similar characteristics of the two strains. Here we show that immunization with either M. vaccae NCTC 11659 or M. vaccae ATCC 15483 prevents stress-induced increases in hippocampal interleukin 6 mRNA expression, consistent with previous studies showing that M. vaccae NCTC 11659 prevents stress-induced increases in peripheral IL-6 secretion, and prevents exaggeration of anxiety-like defensive behavioral responses assessed 24 h after exposure to inescapable tail shock stress (IS) in adult male rats. Analysis of mRNA expression, protein abundance, and flow cytometry data demonstrate overlapping but also unique effects of treatment with the two M. vaccae strains on immunological and metabolic signaling in the host. These data support the hypothesis that treatment with different M. vaccae strains may immunize the host against stress-induced dysregulation of physiology and behavior.
Collapse
Affiliation(s)
- Kelsey M Loupy
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Kristin E Cler
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Brandon M Marquart
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Tumim W Yifru
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Heather M D'Angelo
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Mathew R Arnold
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Ahmed I Elsayed
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Matthew J Gebert
- Department of Ecology and Evolutionary Biology, Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, Boulder, CO 80309, USA; Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Noah Fierer
- Department of Ecology and Evolutionary Biology, Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, Boulder, CO 80309, USA; Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Laura K Fonken
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX 78712, USA
| | - Matthew G Frank
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Cristian A Zambrano
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Steven F Maier
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Christopher A Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA; Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO 80045, USA; Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO 80045, USA; inVIVO Planetary Health, of the Worldwide Universities Network (WUN), West New York, NJ 07093, USA.
| |
Collapse
|
8
|
Bi X, Kuwano T, Lee PC, Millar JS, Li L, Shen Y, Soccio RE, Hand NJ, Rader DJ. ILRUN, a Human Plasma Lipid GWAS Locus, Regulates Lipoprotein Metabolism in Mice. Circ Res 2020; 127:1347-1361. [PMID: 32912065 PMCID: PMC7644615 DOI: 10.1161/circresaha.120.317175] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RATIONALE Single-nucleotide polymorphisms near the ILRUN (inflammation and lipid regulator with ubiquitin-associated-like and NBR1 [next to BRCA1 gene 1 protein]-like domains) gene are genome-wide significantly associated with plasma lipid traits and coronary artery disease (CAD), but the biological basis of this association is unknown. OBJECTIVE To investigate the role of ILRUN in plasma lipid and lipoprotein metabolism. METHODS AND RESULTS ILRUN encodes a protein that contains a ubiquitin-associated-like domain, suggesting that it may interact with ubiquitinylated proteins. We generated mice globally deficient for Ilrun and found they had significantly lower plasma cholesterol levels resulting from reduced liver lipoprotein production. Liver transcriptome analysis uncovered altered transcription of genes downstream of lipid-related transcription factors, particularly PPARα (peroxisome proliferator-activated receptor alpha), and livers from Ilrun-deficient mice had increased PPARα protein. Human ILRUN was shown to bind to ubiquitinylated proteins including PPARα, and the ubiquitin-associated-like domain of ILRUN was found to be required for its interaction with PPARα. CONCLUSIONS These findings establish ILRUN as a novel regulator of lipid metabolism that promotes hepatic lipoprotein production. Our results also provide functional evidence that ILRUN may be the casual gene underlying the observed genetic associations with plasma lipids at 6p21 in human.
Collapse
Affiliation(s)
- Xin Bi
- Division of Translational Medicine and Human Genetics, Department of Medicine; University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics; University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Takashi Kuwano
- Division of Translational Medicine and Human Genetics, Department of Medicine; University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul C. Lee
- Division of Translational Medicine and Human Genetics, Department of Medicine; University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John S. Millar
- Division of Translational Medicine and Human Genetics, Department of Medicine; University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Li Li
- Penn Cardiovascular Institute; University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yachen Shen
- Department of Medicine; University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Raymond E. Soccio
- Department of Medicine; University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas J. Hand
- Department of Genetics; University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel J. Rader
- Division of Translational Medicine and Human Genetics, Department of Medicine; University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics; University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
9
|
Nazir S, Jankowski V, Bender G, Zewinger S, Rye KA, van der Vorst EP. Interaction between high-density lipoproteins and inflammation: Function matters more than concentration! Adv Drug Deliv Rev 2020; 159:94-119. [PMID: 33080259 DOI: 10.1016/j.addr.2020.10.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 09/20/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023]
Abstract
High-density lipoprotein (HDL) plays an important role in lipid metabolism and especially contributes to the reverse cholesterol transport pathway. Over recent years it has become clear that the effect of HDL on immune-modulation is not only dependent on HDL concentration but also and perhaps even more so on HDL function. This review will provide a concise general introduction to HDL followed by an overview of post-translational modifications of HDL and a detailed overview of the role of HDL in inflammatory diseases. The clinical potential of HDL and its main apolipoprotein constituent, apoA-I, is also addressed in this context. Finally, some conclusions and remarks that are important for future HDL-based research and further development of HDL-focused therapies are discussed.
Collapse
|
10
|
La Fountaine MF, Cirnigliaro CM, Hobson JC, Lombard AT, Specht AF, Dyson-Hudson TA, Bauman WA. Fenofibrate therapy to lower serum triglyceride concentrations in persons with spinal cord injury: A preliminary analysis of its safety profile. J Spinal Cord Med 2020; 43:704-709. [PMID: 30870136 PMCID: PMC7534379 DOI: 10.1080/10790268.2019.1581694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Context: Fenofibrate is used to treat elevated serum triglyceride (TG) concentrations (e.g. ≥150 mg/dl). The lipoprotein profile of most individuals with spinal cord injury (SCI) would not satisfy conventional criteria to initiate lipid-lowering therapies. Serum TG concentrations of 115 and 137 mg/dl were recently identified as potential intervention thresholds for persons with a SCI proximal to the 4th and below the 5th thoracic vertebrae, respectively. Fenofibrate therapy has not been tested for safety in persons with SCI. Methods: An open-label trial was performed in 15 persons with SCI to determine the safety profile of 4 months of once-daily fenofibrate (145 mg tablet) treatment when initiated using modified intervention thresholds. Fasting blood tests and a review of systems were performed monthly to determine changes in liver and kidney function, as well as overall health status. Results: Fifteen subjects participated and 4 had an adverse event (e.g. 2 with gastrointestinal distress; 2 with elevated liver enzymes). Three subjects discontinued the trial within the first month and one participant remained in the trial with no further adverse events. Two participants were discontinued from fenofibrate after 2 months after not responding to treatment, as per protocol, and 10 participants completed the 4-month trial without experiencing an adverse event. Conclusion: In persons with SCI, 4 months of fenofibrate therapy initiated at lower threshold serum TG concentrations did not result in an increased incidence of adverse events compared to that reported in the general population. Fenofibrate therapy appears to be well tolerated in persons with SCI.
Collapse
Affiliation(s)
- Michael F. La Fountaine
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical, Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA,Department of Physical Therapy, School of Health and Medical Sciences, Seton Hall University, South Orange, New Jersey, USA,Departments of Medical Sciences and Neurology, Seton Hall-Hackensack Meridian School of Medicine, South Orange, New Jersey, USA,The Institute for Advanced Study of Rehabilitation and Sports Science, School of Health and Medical Sciences, Seton Hall University, South Orange, New Jersey, USA,Correspondence to: Michael F. La Fountaine, National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY10468, USA; Ph: (718) 584-9000, ext. 3121.
| | - Christopher M. Cirnigliaro
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical, Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA
| | - Joshua C. Hobson
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical, Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA,Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, USA
| | - Alexander T. Lombard
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical, Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA
| | - Adam F. Specht
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical, Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA
| | - Trevor A. Dyson-Hudson
- Kessler Foundation, West Orange, New Jersey, USA,Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - William A. Bauman
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical, Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA,Departments of Medicine and Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
11
|
Determination of genetic changes of Rev-erb beta and Rev-erb alpha genes in Type 2 diabetes mellitus by next-generation sequencing. Gene 2020; 763:145058. [PMID: 32798635 DOI: 10.1016/j.gene.2020.145058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/07/2020] [Accepted: 08/12/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND The nuclear receptors Rev-erb alpha and Rev-erb beta are transcription factors that regulate the function of genes in glucose and lipid metabolism, and they also form a link between circadian rhythm and metabolism. We evaluated the variations in Rev-erb alpha and Rev-erb beta genes together with biochemical parameters as risk factors in type 2 diabetic (T2DM) patients. METHODS Molecular analyses of Rev-erb alpha and Rev-erb beta genes were performed on genomic DNA by using next-generation sequencing in 42 T2DM patients (21 obese and 21 non-obese) and 66 healthy controls. RESULTS We found 26 rare mutations in the study groups, including 13 missense mutations, 9 silent mutations, 3 5'UTR variations, and a 3'UTR variation, of which 9 were novel variations (5 missense and 3 silent and 1 5'UTR). Six common variations were also found in the Rev-erb genes; Rev-erb beta Chr3:24003765 A > G, Rev-erb beta rs924403442 (Chr3:24006717) G > T, Rev-erb alpha Chr17:38253751 T > C, Rev-erb alpha rs72836608 C > A, Rev-erb alpha rs2314339 C > T and Rev-erb alpha rs2102928 C > T. Of these, Rev-erb beta Chr3:24003765 A > G was a novel missense mutation (p.Q197R), while others were identified as intronic variants. T2DM patients with Rev-erb beta rs924403442 T allele had lower body surface area (BSA) than noncarriers (GG genotype) (p = 0.039). Rev-erb alpha rs72836608 A allele and Rev-erb alpha rs2314339 CC genotype were associated with decreased serum HDL-cholesterol levels in T2DM patients (p = 0.025 and p = 0.027, respectively). In our study, different effects of Rev-erbs polymorphisms were found according to gender and presence of obesity. Rev-erb alpha rs72836608 (C > A) and rs2314339 (C > T) and Rev-erb alpha rs2102928 (C > T) were associated with low HDL-C levels in male T2DM patients. In female patients, Rev-erb alpha rs2102928 (C > T) was associated with high microalbuminuria and Rev-erb beta rs9244403442 G > T was associated with low HDL and high BSA values. In addition, Rev-erb alpha Chr17: 38,253,751 (T > C), rs72836608 (C > A), and rs2314339 (C > T) and Rev-erb beta Chr3:24003765 (A > G) were associated with increased serum GGT levels in obese T2DM patients. In non-obese patients, Rev-erbs SNPs had no effect on serum GGT levels. CONCLUSION Our findings indicate that variations in the Rev-erb alpha and Rev-erb beta genes can affect metabolic changes in T2DM and these effects may vary depending on gender and obesity.
Collapse
|
12
|
Srivastava RAK, Cefalu AB, Srivastava NS, Averna M. NPC1L1 and ABCG5/8 induction explain synergistic fecal cholesterol excretion in ob/ob mice co-treated with PPAR-α and LXR agonists. Mol Cell Biochem 2020; 473:247-262. [DOI: 10.1007/s11010-020-03826-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/04/2020] [Indexed: 12/15/2022]
|
13
|
La Fountaine MF, Cirnigliaro CM, Hobson JC, Lombard AT, Specht AF, Dyson-Hudson TA, Kirshblum SC, Bauman WA. A Four Month Randomized Controlled Trial on the Efficacy of Once-daily Fenofibrate Monotherapy in Persons with Spinal Cord Injury. Sci Rep 2019; 9:17166. [PMID: 31748594 PMCID: PMC6868213 DOI: 10.1038/s41598-019-53753-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/05/2019] [Indexed: 11/24/2022] Open
Abstract
An open-label, randomized clinical trial of once-daily fenofibrate monotherapy administered for 2- (Mo2) and 4- (Mo4) months using modified intervention thresholds for triglyceride (TG) was performed in persons with chronic spinal cord injury (SCI). Fenofibrate (145 mg tablet) was self-administered daily in 10 persons with SCI for 4 months with monthly blood testing to quantify the lipoprotein profile (e.g., serum TG, LDL-C, and HDL-C concentrations). Eight SCI participants were control subjects. In comparison to the control group, the treatment group at Mo2 had a 40% (±12%; p < 0.05) reduction in serum TG concentration, a 28% (±21%; p < 0.05) increase in HDL-C and 14% (±20%; p < 0.05) decline in LDL-C. In the same comparison at Mo4, the treatment group maintained a 40% (±20%; p < 0.05) reduction in serum TG concentration, had an 18% in reduction in LDL-C (±12%; p < 0.05) and a 23% (±23%; p < 0.05) increase in HDL-C. Fenofibrate monotherapy for Mo2 and Mo4 initiated in persons with SCI resulted in a robust and favorable change in the serum lipoprotein profile and ratios, suggesting reduced risk for cardiovascular disease.
Collapse
Affiliation(s)
- Michael F La Fountaine
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA.
- Department of Physical Therapy, School of Health and Medical Sciences, Seton Hall University, South Orange, NJ, USA.
- Departments of Medical Sciences and Neurology, Seton Hall-Hackensack Meridian School of Medicine, Nutley, NJ, USA.
- The Institute for Advanced Study of Rehabilitation and Sports Science, School of Health and Medical Sciences, Seton Hall University, South Orange, NJ, USA.
| | - Christopher M Cirnigliaro
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Joshua C Hobson
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| | - Alexander T Lombard
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Adam F Specht
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Trevor A Dyson-Hudson
- Kessler Foundation, West Orange, NJ, USA
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Steven C Kirshblum
- Kessler Foundation, West Orange, NJ, USA
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ, USA
- Kessler Institute for Rehabilitation, West Orange, NJ, USA
| | - William A Bauman
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
- Departments of Medicine and Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
14
|
Tayyeb JZ, Popeijus HE, Mensink RP, Konings MCJM, Mulders KHR, Plat J. The effects of short-chain fatty acids on the transcription and secretion of apolipoprotein A-I in human hepatocytes in vitro. J Cell Biochem 2019; 120:17219-17227. [PMID: 31106471 PMCID: PMC6767783 DOI: 10.1002/jcb.28982] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/21/2019] [Accepted: 04/01/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Apolipoprotein-I (ApoA-I), the major component of high-density lipoprotein (HDL) particles, mediates cholesterol efflux by which it facilitates the removal of excess cholesterol from peripheral tissues. Therefore, elevating ApoA-I production leading to the production of new pre-β-HDL particles is thought to be beneficial in the prevention of cardiovascular diseases. Recently, we observed that amoxicillin treatment led to decreased HDL concentrations in healthy human volunteers. We questioned whether this antibiotic effect was directly or indirectly, via changed short-chain fatty acids (SCFA) concentrations through an altered gut microflora. Therefore, we here evaluated the effects of amoxicillin and various SCFA on hepatic ApoA-I expression, secretion, and the putative underlying pathways. METHODS AND RESULTS Human hepatocytes (HepG2) were exposed to increasing dose of amoxicillin or SCFA for 48 hours. ApoA-I messenger RNA (mRNA) transcription and secreted protein were analyzed using quantitative polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. To study underlying mechanisms, changes in mRNA expression of KEAP1, CPT1, and PPARα, as well as a PPARα transactivation assay, were analyzed. Amoxicillin dose-dependently decreased ApoA-I mRNA transcription as well as ApoA-I protein secretion. SCFA treatment resulted in a dose-dependent stimulation of ApoA-I mRNA transcription, however, the ApoA-I protein secretion was decreased. Furthermore, SCFA treatment increased PPARα transactivation, PPARα and CPT1 mRNA transcription, whereas KEAP1 mRNA transcription was decreased. CONCLUSION Direct treatment of HepG2 cells with amoxicillin has either direct effects on lowering ApoA-I transcription and secretion or indirect effects via modified SCFA concentrations because SCFA were found to stimulate hepatic ApoA-I expression. Furthermore, BET inhibition and PPARα activation were identified as possible mechanisms behind the observed effects on ApoA-I transcription.
Collapse
Affiliation(s)
- Jehad Z Tayyeb
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Herman E Popeijus
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Ronald P Mensink
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Maurice C J M Konings
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Kim H R Mulders
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Jogchum Plat
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
15
|
Madureira TV, Pinheiro I, Malhão F, Castro LFC, Rocha E, Urbatzka R. Silencing of PPARαBb mRNA in brown trout primary hepatocytes: effects on molecular and morphological targets under the influence of an estrogen and a PPARα agonist. Comp Biochem Physiol B Biochem Mol Biol 2018; 229:1-9. [PMID: 30528668 DOI: 10.1016/j.cbpb.2018.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 12/01/2018] [Indexed: 12/23/2022]
Abstract
The crosstalk between peroxisome proliferator-activated receptor α (PPARα) and estrogenic pathways are shared from fish to humans. Salmonid fish had an additional genome duplication, and two PPARα isoforms (PPARαBa and PPARαBb) were previously identified. Since a negative regulation between estrogen signaling and PPARα was described, a post-transcriptional gene silencing for PPARαBb was designed in primary brown trout hepatocytes. The aims of the study were to: (i) decipher the effects of PPARαBb knock-down on peroxisome morphology and on mRNA expression of potential target genes, and (ii) to assess the cross-interferences caused by an estrogenic compound (17α-ethinylestradiol - EE2) and a PPARα agonist (Wy-14,643 - Wy) using the established knock-down model. A knock-down efficiency of 70% was achieved for PPARαBb and its silencing significantly reduced the volume density of peroxisomes, but did not alter mRNA levels of the studied genes. Exposure to Wy did not change peroxisome morphology or mRNA expression, but under silencing conditions Wy rescued the volume density of peroxisomes to control levels, and increased acyl-coenzyme A oxidase 1-3l (Acox1-3l) mRNA. Exposure to EE2 caused a reduction of peroxisome volume density, but under silencing conditions this effect was abolished and ApoA1 mRNA level was diminished. The morphological alterations of peroxisomes by WY and EE2 demonstrated that obtained results are PPARαBb dependent, and suggest the regulation of unknown downstream targets of PPARαBb. In summary, PPARαBb is involved in the control of peroxisome size and/or number, which opens future opportunities to explore its regulation and molecular targets.
Collapse
Affiliation(s)
- Tânia Vieira Madureira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (U.Porto), Laboratory of Histology and Embryology, Rua Jorge Viterbo Ferreira 228, P 4050-313 Porto, Portugal
| | - Ivone Pinheiro
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (U.Porto), Laboratory of Histology and Embryology, Rua Jorge Viterbo Ferreira 228, P 4050-313 Porto, Portugal
| | - Fernanda Malhão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (U.Porto), Laboratory of Histology and Embryology, Rua Jorge Viterbo Ferreira 228, P 4050-313 Porto, Portugal
| | - L Filipe C Castro
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Department of Biology, University of Porto (U.Porto), Rua do Campo Alegre, P 4169-007 Porto, Portugal
| | - Eduardo Rocha
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (U.Porto), Laboratory of Histology and Embryology, Rua Jorge Viterbo Ferreira 228, P 4050-313 Porto, Portugal
| | - Ralph Urbatzka
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
16
|
Rodriguez‐Cuenca S, Carobbio S, Barceló‐Coblijn G, Prieur X, Relat J, Amat R, Campbell M, Dias AR, Bahri M, Gray SL, Vidal‐Puig A. P465L-PPARγ mutation confers partial resistance to the hypolipidaemic action of fibrates. Diabetes Obes Metab 2018; 20:2339-2350. [PMID: 29790245 PMCID: PMC6589924 DOI: 10.1111/dom.13370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/04/2018] [Accepted: 05/12/2018] [Indexed: 12/13/2022]
Abstract
AIMS Familial partial lipodystrophic syndrome 3 (FPLD3) is associated with mutations in the transcription factor PPARγ. One of these mutations, the P467L, confers a dominant negative effect. We and others have previously investigated the pathophysiology associated with this mutation using a humanized mouse model that recapitulates most of the clinical symptoms observed in patients who have been phenotyped under different experimental conditions. One of the key clinical manifestations observed, both in humans and mouse models, is the ectopic accumulation of fat in the liver. With this study we aim to dissect the molecular mechanisms that contribute to the excessive accumulation of lipids in the liver and characterize the negative effect of this PPARγ mutation on the activity of PPARα in vivo when activated by fibrates. MATERIAL AND METHODS P465L-PPAR mutant and wild-type mice were divided into 8 experimental groups, 4 different conditions per genotype. Briefly, mice were fed a chow diet or a high-fat diet (HFD 45% Kcal from fat) for a period of 28 days and treated with WY14643 or vehicle for five days before culling. At the end of the experiment, tissues and plasma were collected. We performed extensive gene expression, fatty acid composition and histological analysis in the livers. The serum collected was used to measure several metabolites and to perform basic lipoprotein profile. RESULTS P465L mice showed increased levels of insulin and free fatty acids (FFA) as well as increased liver steatosis. They also exhibit decreased levels of very low density lipoproteins (VLDL) when fed an HFD. We also provide evidence of impaired expression of a number of well-established PPARα target genes in the P465L mutant livers. CONCLUSION Our data demonstrate that P465L confers partial resistance to the hypolipidemic action of fibrates. These results show that the fatty liver phenotype observed in P465L mutant mice is not only the consequence of dysfunctional adipose tissue, but also involves defective liver metabolism. All in all, the deleterious effects of P465L-PPARγ mutation may be magnified by their collateral negative effect on PPARα function.
Collapse
Affiliation(s)
- Sergio Rodriguez‐Cuenca
- University of Cambridge Metabolic Research Laboratories, Level 4Wellcome Trust‐MRC Institute of Metabolic ScienceCambridgeUK
| | - Stefania Carobbio
- University of Cambridge Metabolic Research Laboratories, Level 4Wellcome Trust‐MRC Institute of Metabolic ScienceCambridgeUK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome CampusHinxtonUK
| | - Gwendolyn Barceló‐Coblijn
- Institut d'Investigació Sanitària Illes Balears (IdISBa, Balearic Islands Health Research Institute)PalmaSpain
| | - Xavier Prieur
- Département des Sciences de la Vie, L'Institut du Thorax, INSERM, CNRSUniversité de NantesNantesFrance
| | - Joana Relat
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Science, Food and Nutrition Torribera Campus. University of Barcelona (UB), Santa Coloma de Gramenet (Spain); INSA‐UB, Nutrition and Food Safety Research InstituteUniversity of BarcelonaBarcelonaSpain
| | - Ramon Amat
- Cell Signaling Unit, Departament de Ciències Experimentals i de la SalutUniversitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Mark Campbell
- University of Cambridge Metabolic Research Laboratories, Level 4Wellcome Trust‐MRC Institute of Metabolic ScienceCambridgeUK
| | - Ana Rita Dias
- University of Cambridge Metabolic Research Laboratories, Level 4Wellcome Trust‐MRC Institute of Metabolic ScienceCambridgeUK
| | - Myriam Bahri
- University of Cambridge Metabolic Research Laboratories, Level 4Wellcome Trust‐MRC Institute of Metabolic ScienceCambridgeUK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome CampusHinxtonUK
| | - Sarah L. Gray
- Northern Medical ProgramUniversity of Northern British ColumbiaPrince GeorgeCanada
| | - Antonio Vidal‐Puig
- University of Cambridge Metabolic Research Laboratories, Level 4Wellcome Trust‐MRC Institute of Metabolic ScienceCambridgeUK
| |
Collapse
|
17
|
Bougarne N, Weyers B, Desmet SJ, Deckers J, Ray DW, Staels B, De Bosscher K. Molecular Actions of PPARα in Lipid Metabolism and Inflammation. Endocr Rev 2018; 39:760-802. [PMID: 30020428 DOI: 10.1210/er.2018-00064] [Citation(s) in RCA: 482] [Impact Index Per Article: 68.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 07/10/2018] [Indexed: 12/13/2022]
Abstract
Peroxisome proliferator-activated receptor α (PPARα) is a nuclear receptor of clinical interest as a drug target in various metabolic disorders. PPARα also exhibits marked anti-inflammatory capacities. The first-generation PPARα agonists, the fibrates, have however been hampered by drug-drug interaction issues, statin drop-in, and ill-designed cardiovascular intervention trials. Notwithstanding, understanding the molecular mechanisms by which PPARα works will enable control of its activities as a drug target for metabolic diseases with an underlying inflammatory component. Given its role in reshaping the immune system, the full potential of this nuclear receptor subtype as a versatile drug target with high plasticity becomes increasingly clear, and a novel generation of agonists may pave the way for novel fields of applications.
Collapse
Affiliation(s)
- Nadia Bougarne
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Basiel Weyers
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Sofie J Desmet
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Julie Deckers
- Department of Internal Medicine, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation, VIB Center for Inflammation Research, Ghent (Zwijnaarde), Belgium
| | - David W Ray
- Division of Metabolism and Endocrinology, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
| | - Bart Staels
- Université de Lille, U1011-European Genomic Institute for Diabetes, Lille, France
- INSERM, U1011, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Karolien De Bosscher
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| |
Collapse
|
18
|
Srivastava N, Cefalu AB, Averna M, Srivastava RAK. Lack of Correlation of Plasma HDL With Fecal Cholesterol and Plasma Cholesterol Efflux Capacity Suggests Importance of HDL Functionality in Attenuation of Atherosclerosis. Front Physiol 2018; 9:1222. [PMID: 30271349 PMCID: PMC6142045 DOI: 10.3389/fphys.2018.01222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/14/2018] [Indexed: 11/13/2022] Open
Abstract
A number of clinical findings suggested HDL-raising as a plausible approach to treat residual risk of CVD. However, lack of CVD risk reduction by elevated HDL cholesterol (HDL-C) through cholesterol ester transfer protein (CETP) inhibition and enhanced risk reduction in apolipoprotein A-I Milano (apoAI-M) individuals with low HDL-C shifted the focus from HDL-C level to HDL function. In the present study, we investigated correlations between HDL-C, HDL function, fecal cholesterol excretion, and ex vivo plasma cholesterol efflux capacity (CEC) in animal models using two HDL modulators, LXR and PPAR-α agonists. In C57Bl mice, LXR agonist, T1317, raised HDL-C by 30%, while PPAR-α agonist, fenofibrate, reduced HDL-C by 30%, but fecal cholesterol showed twofold increase in both cases. CEC showed a 30–40% increase. Combination of LXR and PPAR-α agonists showed no changes in HDL-C, but, interestingly, fecal cholesterol increased by 4.5-fold, and CEC by 40%, suggesting existence of additional pathway for fecal cholesterol excretion. Regression analysis showed a lack of correlation between HDL-C and fecal cholesterol and CEC, while fecal cholesterol showed significant correlation with CEC, a measure of HDL function. ABCA1 and G1, the two important players in RCT showed greater induction with LXR agonist than PPAR-α agonist. HDL-C increased by 40 and 80% in LXR and PPAR-α treated apoA-I transgenic mice, respectively, with 80% increase in fecal cholesterol. A fivefold increase in fecal cholesterol with no correlation with either plasma HDL-C or CEC following co-treatment with LXR and PPAR-α agonists suggested existence of an HDL-independent pathway for body cholesterol elimination. In hyperlipidemic diabetic ob/ob mice also combination of LXR and PPAR-α agonists showed marked increases in fecal cholesterol content (10–20-fold), while HDL-C rise was only 40%, further suggesting HDL-independent elimination of body cholesterol in mice treated with combination of LXR and PPAR-α agonists. Atherosclerosis attenuation by LXR and PPAR-α agonists in LDLr-deficient mice was associated with increased fecal cholesterol, but not HDL-C. However, fecal cholesterol counts showed inverse correlation with aortic cholesteryl ester content. These data suggest: (a) lack of correlation between HDL-C and fecal or aortic cholesterol content; (b) HDL function (CEC) correlated with fecal cholesterol content; (c) association of reduced aortic lipids in LDLr−/− mice with increased fecal cholesterol, but not with HDL-C, and (d) existence of an HDL-independent pathway for fecal cholesterol excretion following co-treatment with LXR and PPAR-α agonists.
Collapse
Affiliation(s)
- Neelam Srivastava
- Department of Internal Medicine, University of Palermo, Palermo, Italy
| | - Angelo B Cefalu
- Department of Internal Medicine, University of Palermo, Palermo, Italy
| | - Maurizio Averna
- Department of Internal Medicine, University of Palermo, Palermo, Italy
| | | |
Collapse
|
19
|
Haas MJ, Jurado-Flores M, Hammoud R, Plazarte G, Onstead-Haas L, Wong NC, Mooradian AD. Regulation of apolipoprotein A-I gene expression by the histamine H1 receptor: Requirement for NF-κB. Life Sci 2018; 208:102-110. [DOI: 10.1016/j.lfs.2018.07.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/27/2018] [Accepted: 07/12/2018] [Indexed: 01/22/2023]
|
20
|
Brożyna AA, Jóźwicki W, Skobowiat C, Jetten A, Slominski AT. RORα and RORγ expression inversely correlates with human melanoma progression. Oncotarget 2018; 7:63261-63282. [PMID: 27542227 PMCID: PMC5325362 DOI: 10.18632/oncotarget.11211] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 07/18/2016] [Indexed: 12/21/2022] Open
Abstract
The retinoic acid-related orphan receptors (RORs) regulate several physiological and pathological processes, including immune functions, development and cancer. To study the potential role of RORs in melanoma progression, we analysed RORα and RORγ expression in nevi and primary melanomas and non-lesional skin and metastases in relation to melanoma clinico-pathomorphological features. The expression of RORα and RORγ was lower in melanomas than in nevi and decreased during melanoma progression, with lowest levels found in primary melanomas at stages III and IV and in melanoma metastases. Their expression correlated with pathomorphological pTNM parameters being low in aggressive tumors and being high in tumors showing histological markers of good prognosis. Higher nuclear levels of RORα and RORγ and of cytoplasmic RORγ correlated with significantly longer overall and disease free survival time. Highly pigmented melanomas showed significantly lower level of nuclear RORs. This study shows that human melanoma development and aggressiveness is associated with decreased expression of RORα and RORγ, suggesting that RORs could be important in melanoma progression and host responses against the tumor. Furthermore, it suggests that RORα and RORγ might constitute a novel druggable target in anti-melanoma management using tumor suppressor gene therapy restoring their normal functions.
Collapse
Affiliation(s)
- Anna A Brożyna
- Department of Tumor Pathology and Pathomorphology, Oncology Centre-Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland.,Department of Tumor Pathology and Pathomorphology, Faculty of Health Sciences, Nicolaus Copernicus University Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Wojciech Jóźwicki
- Department of Tumor Pathology and Pathomorphology, Oncology Centre-Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland.,Department of Tumor Pathology and Pathomorphology, Faculty of Health Sciences, Nicolaus Copernicus University Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Cezary Skobowiat
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Nicolaus Copernicus University Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Anton Jetten
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Andrzej T Slominski
- Department of Dermatology, Cancer Chemoprevention Program, University of Alabama at Birmingham, AL, USA.,Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, AL, USA.,Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL, USA
| |
Collapse
|
21
|
Haas MJ, Plazarte M, Chamseddin A, Onstead-Haas L, Wong NCW, Plazarte G, Mooradian AD. Inhibition of hepatic apolipoprotein A-I gene expression by histamine. Eur J Pharmacol 2018; 823:49-57. [PMID: 29378195 DOI: 10.1016/j.ejphar.2018.01.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/17/2018] [Accepted: 01/23/2018] [Indexed: 01/12/2023]
Abstract
In a recent high throughput analysis to identify drugs that alter hepatic apolipoprotein A-I (apo A-I) expression, histamine receptor one (H1) antagonists emerged as potential apo A-1 inducing drugs. Thus the present study was undertaken to identify some of the underlying molecular mechanisms of the effect of antihistaminic drugs on apo AI production. Apo A-I levels were measured by enzyme immunoassay and Western blots. Apo A-I mRNA levels were measured by reverse transcription real-time PCR using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA as the internal control. The effects of histamine and antihistamines on apo A-I gene were determined by transient transfection of plasmids containing the apo A-I gene promoter. Histamine repressed while (H1) receptor antagonist azelastine increased apo A-I protein and mRNA levels within 48 h in a dose-dependent manner. Azelastine and histamine increased and suppressed, respectively, apo A-I gene promoter activity through a peroxisome proliferator activated receptor α response element. Treatment of HepG2 cells with other H1 receptor antagonists including fexofenadine, cetirizine, and diphenhydramine increased apo A-I levels in a dose-dependent manner while treatment with H2 receptor antagonists including cimetidine, famotidine, and ranitidine had no effect. We conclude that H1 receptor signaling is a novel pathway of apo A1 gene expression and therefore could be an important therapeutic target for enhancing de-novo apo A-1 synthesis.
Collapse
Affiliation(s)
- Michael J Haas
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida Jacksonville College of Medicine, 653-1 West 8th Street L14, Jacksonville, FL 32209, United States.
| | - Monica Plazarte
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida Jacksonville College of Medicine, 653-1 West 8th Street L14, Jacksonville, FL 32209, United States
| | - Ayham Chamseddin
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida Jacksonville College of Medicine, 653-1 West 8th Street L14, Jacksonville, FL 32209, United States
| | - Luisa Onstead-Haas
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida Jacksonville College of Medicine, 653-1 West 8th Street L14, Jacksonville, FL 32209, United States
| | - Norman C W Wong
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Gabriela Plazarte
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida Jacksonville College of Medicine, 653-1 West 8th Street L14, Jacksonville, FL 32209, United States
| | - Arshag D Mooradian
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida Jacksonville College of Medicine, 653-1 West 8th Street L14, Jacksonville, FL 32209, United States
| |
Collapse
|
22
|
Mangat R, Borthwick F, Haase T, Jacome M, Nelson R, Kontush A, Vine DF, Proctor SD. Intestinal lymphatic HDL miR‐223 and ApoA‐I are reduced during insulin resistance and restored with niacin. FASEB J 2018; 32:1602-1612. [DOI: 10.1096/fj.201600298rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Rabban Mangat
- Metabolic and Cardiovascular Diseases Laboratory, Group on the Molecular Cell Biology of Lipids University of Alberta Edmonton Alberta Canada
- Alberta Diabetes Institute University of Alberta Edmonton Alberta Canada
- Mazankowski Alberta Heart Institute University of Alberta Edmonton Alberta Canada
| | - Faye Borthwick
- Metabolic and Cardiovascular Diseases Laboratory, Group on the Molecular Cell Biology of Lipids University of Alberta Edmonton Alberta Canada
- Alberta Diabetes Institute University of Alberta Edmonton Alberta Canada
- Mazankowski Alberta Heart Institute University of Alberta Edmonton Alberta Canada
| | - Tina Haase
- Metabolic and Cardiovascular Diseases Laboratory, Group on the Molecular Cell Biology of Lipids University of Alberta Edmonton Alberta Canada
- Alberta Diabetes Institute University of Alberta Edmonton Alberta Canada
- Mazankowski Alberta Heart Institute University of Alberta Edmonton Alberta Canada
| | - Miriam Jacome
- Metabolic and Cardiovascular Diseases Laboratory, Group on the Molecular Cell Biology of Lipids University of Alberta Edmonton Alberta Canada
- Alberta Diabetes Institute University of Alberta Edmonton Alberta Canada
- Mazankowski Alberta Heart Institute University of Alberta Edmonton Alberta Canada
| | - Randy Nelson
- Metabolic and Cardiovascular Diseases Laboratory, Group on the Molecular Cell Biology of Lipids University of Alberta Edmonton Alberta Canada
- Alberta Diabetes Institute University of Alberta Edmonton Alberta Canada
- Mazankowski Alberta Heart Institute University of Alberta Edmonton Alberta Canada
| | - Anatol Kontush
- National Institute for Health and Medical Research University of Pierre and Marie Curie, Salpétrière University Hospital Paris France
| | - Donna F. Vine
- Metabolic and Cardiovascular Diseases Laboratory, Group on the Molecular Cell Biology of Lipids University of Alberta Edmonton Alberta Canada
- Alberta Diabetes Institute University of Alberta Edmonton Alberta Canada
- Mazankowski Alberta Heart Institute University of Alberta Edmonton Alberta Canada
| | - Spencer D. Proctor
- Metabolic and Cardiovascular Diseases Laboratory, Group on the Molecular Cell Biology of Lipids University of Alberta Edmonton Alberta Canada
- Alberta Diabetes Institute University of Alberta Edmonton Alberta Canada
- Mazankowski Alberta Heart Institute University of Alberta Edmonton Alberta Canada
| |
Collapse
|
23
|
Haas MJ, Onstead-Haas L, Kurban W, Shah H, Plazarte M, Chamseddin A, Mooradian AD. High-Throughput Analysis Identifying Drugs That Regulate Apolipoprotein A-I Synthesis. Assay Drug Dev Technol 2017; 15:362-371. [DOI: 10.1089/adt.2017.782] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Michael J. Haas
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida College of Medicine—Jacksonville, Jacksonville, Florida
| | - Luisa Onstead-Haas
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida College of Medicine—Jacksonville, Jacksonville, Florida
| | - William Kurban
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida College of Medicine—Jacksonville, Jacksonville, Florida
| | - Harshit Shah
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida College of Medicine—Jacksonville, Jacksonville, Florida
| | - Monica Plazarte
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida College of Medicine—Jacksonville, Jacksonville, Florida
| | - Ayham Chamseddin
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida College of Medicine—Jacksonville, Jacksonville, Florida
| | - Arshag D. Mooradian
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida College of Medicine—Jacksonville, Jacksonville, Florida
| |
Collapse
|
24
|
Gellrich L, Merk D. Therapeutic Potential of Peroxisome Proliferator-Activated Receptor Modulation in Non-Alcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis. NUCLEAR RECEPTOR RESEARCH 2017. [DOI: 10.11131/2017/101310] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
25
|
Madureira TV, Pinheiro I, Malhão F, Lopes C, Urbatzka R, Castro LFC, Rocha E. Cross-interference of two model peroxisome proliferators in peroxisomal and estrogenic pathways in brown trout hepatocytes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 187:153-162. [PMID: 28415051 DOI: 10.1016/j.aquatox.2017.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 03/16/2017] [Accepted: 04/04/2017] [Indexed: 06/07/2023]
Abstract
Peroxisome proliferators cause species-specific effects, which seem to be primarily transduced by peroxisome proliferator-activated receptor alpha (PPARα). Interestingly, PPARα has a close interrelationship with estrogenic signaling, and this latter has already been promptly activated in brown trout primary hepatocytes. Thus, and further exploring this model, we assess here the reactivity of two PPARα agonists in direct peroxisomal routes and, in parallel the cross-interferences in estrogen receptor (ER) mediated paths. To achieve these goals, three independent in vitro studies were performed using single exposures to clofibrate - CLF (50, 500 and 1000μM), Wy-14,643 - Wy (50 and 150μM), GW6471 - GW (1 and 10μM), and mixtures, including PPARα agonist or antagonist plus an ER agonist or antagonist. Endpoints included gene expression analysis of peroxisome/lipidic related genes (encoding apolipoprotein AI - ApoAI, fatty acid binding protein 1 - Fabp1, catalase - Cat, 17 beta-hydroxysteroid dehydrogenase 4 - 17β-HSD4, peroxin 11 alpha - Pex11α, PPARαBb, PPARαBa and urate oxidase - Uox) and those encoding estrogenic targets (ERα, ERβ-1 and vitellogenin A - VtgA). A quantitative morphological approach by using a pre-validated catalase immunofluorescence technique allowed checking possible changes in peroxisomes. Our results show a low responsiveness of trout hepatocytes to model PPARα agonists in direct target receptor pathways. Additionally, we unveiled interferences in estrogenic signaling caused by Wy, leading to an up-regulation VtgA and ERα at 150μM; these effects seem counteracted with a co-exposure to an ER antagonist. The present data stress the potential of this in vitro model for further exploring the physiological/toxicological implications related with this nuclear receptor cross-regulation.
Collapse
Affiliation(s)
- Tânia Vieira Madureira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U. Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (U. Porto), Laboratory of Histology and Embryology, Department of Microscopy, Rua Jorge Viterbo Ferreira 228, P 4050-313 Porto, Portugal.
| | - Ivone Pinheiro
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U. Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (U. Porto), Laboratory of Histology and Embryology, Department of Microscopy, Rua Jorge Viterbo Ferreira 228, P 4050-313 Porto, Portugal
| | - Fernanda Malhão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U. Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (U. Porto), Laboratory of Histology and Embryology, Department of Microscopy, Rua Jorge Viterbo Ferreira 228, P 4050-313 Porto, Portugal
| | - Célia Lopes
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U. Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (U. Porto), Laboratory of Histology and Embryology, Department of Microscopy, Rua Jorge Viterbo Ferreira 228, P 4050-313 Porto, Portugal
| | - Ralph Urbatzka
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U. Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - L Filipe C Castro
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U. Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Faculty of Sciences (FCUP), University of Porto (U. Porto), Department of Biology, Rua do Campo Alegre, P 4169-007 Porto, Portugal
| | - Eduardo Rocha
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U. Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (U. Porto), Laboratory of Histology and Embryology, Department of Microscopy, Rua Jorge Viterbo Ferreira 228, P 4050-313 Porto, Portugal
| |
Collapse
|
26
|
Wan X, Wang S, Xu J, Zhuang L, Xing K, Zhang M, Zhu X, Wang L, Gao P, Xi Q, Sun J, Zhang Y, Li T, Shu G, Jiang Q. Dietary protein-induced hepatic IGF-1 secretion mediated by PPARγ activation. PLoS One 2017; 12:e0173174. [PMID: 28257428 PMCID: PMC5336265 DOI: 10.1371/journal.pone.0173174] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 02/16/2017] [Indexed: 02/07/2023] Open
Abstract
Dietary protein or amino acid (AA) is a crucial nutritional factor to regulate hepatic insulin-like growth factor-1 (IGF-1) expression and secretion. However, the underlying intracellular mechanism by which dietary protein or AA induces IGF-1 expression remains unknown. We compared the IGF-1 gene expression and plasma IGF-1 level of pigs fed with normal crude protein (CP, 20%) and low-protein levels (LP, 14%). RNA sequencing (RNA-seq) was performed to detect transcript expression in the liver in response to dietary protein. The results showed that serum concentrations and mRNA levels of IGF-1 in the liver were higher in the CP group than in the LP group. RNA-seq analysis identified a total of 1319 differentially expressed transcripts (667 upregulated and 652 downregulated), among which the terms “oxidative phosphorylation”, “ribosome”, “gap junction”, “PPAR signaling pathway”, and “focal adhesion” were enriched. In addition, the porcine primary hepatocyte and HepG2 cell models also demonstrated that the mRNA and protein levels of IGF-1 and PPARγ increased with the increasing AA concentration in the culture. The PPARγ activator troglitazone increased IGF-1 gene expression and secretion in a dose dependent manner. Furthermore, inhibition of PPARγ effectively reversed the effects of the high AA concentration on the mRNA expression of IGF-1 and IGFBP-1 in HepG2 cells. Moreover, the protein levels of IGF-1 and PPARγ, as well as the phosphorylation of mTOR, significantly increased in HepG2 cells under high AA concentrations. mTOR phosphorylation can be decreased by the mTOR antagonist, rapamycin. The immunoprecipitation results also showed that high AA concentrations significantly increased the interaction of mTOR and PPARγ. In summary, PPARγ plays an important role in the regulation of IGF-1 secretion and gene expression in response to dietary protein.
Collapse
Affiliation(s)
- Xiaojuan Wan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Songbo Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Jingren Xu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Lu Zhuang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Kongping Xing
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Mengyuan Zhang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Xiaotong Zhu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Lina Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Ping Gao
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Qianyun Xi
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Jiajie Sun
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Yongliang Zhang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Tiejun Li
- Key Laboratory of Subtropical Agro-ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, PR China
| | - Gang Shu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Qingyan Jiang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- * E-mail:
| |
Collapse
|
27
|
Downing LE, Edgar D, Ellison PA, Ricketts ML. Mechanistic insight into nuclear receptor-mediated regulation of bile acid metabolism and lipid homeostasis by grape seed procyanidin extract (GSPE). Cell Biochem Funct 2017; 35:12-32. [DOI: 10.1002/cbf.3247] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/13/2016] [Accepted: 12/16/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Laura E. Downing
- Department of Agriculture, Nutrition and Veterinary Sciences; University of Nevada Reno; Reno Nevada USA
| | - Daniel Edgar
- Department of Biochemistry and Molecular Biology; University of Nevada Reno; Reno Nevada USA
| | - Patricia A. Ellison
- Department of Biochemistry and Molecular Biology; University of Nevada Reno; Reno Nevada USA
| | - Marie-Louise Ricketts
- Department of Agriculture, Nutrition and Veterinary Sciences; University of Nevada Reno; Reno Nevada USA
| |
Collapse
|
28
|
Morton AM, Furtado JD, Lee J, Amerine W, Davidson MH, Sacks FM. The effect of omega-3 carboxylic acids on apolipoprotein CIII−containing lipoproteins in severe hypertriglyceridemia. J Clin Lipidol 2016; 10:1442-1451.e4. [DOI: 10.1016/j.jacl.2016.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/02/2016] [Accepted: 09/05/2016] [Indexed: 10/21/2022]
|
29
|
Ramakrishnan SK, Russo L, Ghanem SS, Patel PR, Oyarce AM, Heinrich G, Najjar SM. Fenofibrate Decreases Insulin Clearance and Insulin Secretion to Maintain Insulin Sensitivity. J Biol Chem 2016; 291:23915-23924. [PMID: 27662905 DOI: 10.1074/jbc.m116.745778] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/22/2016] [Indexed: 01/18/2023] Open
Abstract
High fat diet reduces the expression of CEACAM1 (carcinoembryonic antigen-related cell adhesion molecule 1), a transmembrane glycoprotein that promotes insulin clearance and down-regulates fatty acid synthase activity in the liver upon its phosphorylation by the insulin receptor. Because peroxisome proliferator-activated receptor α (PPARα) transcriptionally suppresses CEACAM1 expression, we herein examined whether high fat down-regulates CEACAM1 expression in a PPARα-dependent mechanism. By activating PPARα, the lipid-lowering drug fenofibrate reverses dyslipidemia and improves insulin sensitivity in type 2 diabetes in part by promoting fatty acid oxidation. Despite reducing glucose-stimulated insulin secretion, fenofibrate treatment does not result in insulin insufficiency. To examine whether this is mediated by a parallel decrease in CEACAM1-dependent hepatic insulin clearance pathways, we fed wild-type and Pparα-/- null mice a high fat diet supplemented with either fenofibrate or Wy14643, a selective PPARα agonist, and examined their effect on insulin metabolism and action. We demonstrated that the decrease in insulin secretion by fenofibrate and Wy14643 is accompanied by reduction in insulin clearance in wild-type but not Pparα-/- mice, thereby maintaining normoinsulinemia and insulin sensitivity despite continuous high fat intake. Intact insulin secretion in L-CC1 mice with protected hepatic insulin clearance and CEACAM1 levels provides in vivo evidence that insulin secretion responds to changes in insulin clearance to maintain physiologic insulin and glucose homeostasis. These results also emphasize the relevant role of hepatic insulin extraction in regulating insulin sensitivity.
Collapse
Affiliation(s)
- Sadeesh K Ramakrishnan
- From the Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, Ohio 43614
| | - Lucia Russo
- From the Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, Ohio 43614
| | - Simona S Ghanem
- From the Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, Ohio 43614
| | - Payal R Patel
- From the Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, Ohio 43614
| | - Ana Maria Oyarce
- From the Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, Ohio 43614.,the Department of Pharmacology and Experimental Therapeutics College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, Ohio 43614, and
| | - Garrett Heinrich
- the Department of Pharmacology and Experimental Therapeutics College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, Ohio 43614, and
| | - Sonia M Najjar
- From the Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, Ohio 43614, .,the Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701
| |
Collapse
|
30
|
Wehmeier K, Onstead-Haas LM, Wong NCW, Mooradian AD, Haas MJ. Pro-inflammatory signaling by 24,25-dihydroxyvitamin D3 in HepG2 cells. J Mol Endocrinol 2016; 57:87-96. [PMID: 27234962 DOI: 10.1530/jme-16-0009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/27/2016] [Indexed: 12/31/2022]
Abstract
The vitamin D metabolite 24,25-dihydroxyvitamin D3 (24, 25[OH]2D3) was shown to induce nongenomic signaling pathways in resting zone chondrocytes and other cells involved in bone remodeling. Recently, our laboratory demonstrated that 24,25-[OH]2D3 but not 25-hydroxyvitamin D3, suppresses apolipoprotein A-I (apo A-I) gene expression and high-density lipoprotein (HDL) secretion in hepatocytes. Since 24,25-[OH]2D3 has low affinity for the vitamin D receptor (VDR) and little is known with regard to how 24,25-[OH]2D3 modulates nongenomic signaling in hepatocytes, we investigated the capacity of 24,25-[OH]2D3 to activate various signaling pathways relevant to apo A-I synthesis in HepG2 cells. Treatment with 24,25-[OH]2D3 resulted in decreased peroxisome proliferator-activated receptor alpha (PPARα) expression and retinoid-X-receptor alpha (RXRα) expression. Similarly, treatment of hepatocytes with 50 nM 24,25-[OH]2D3 for 1-3 h induced PKCα activation as well as c-jun-N-terminal kinase 1 (JNK1) activity and extracellular-regulated kinase 1/2 (ERK1/2) activity. These changes in kinase activity correlated with changes in c-jun phosphorylation, an increase in AP-1-dependent transcriptional activity, as well as repression of apo A-I promoter activity. Furthermore, treatment with 24,25-[OH]2D3 increased IL-1β, IL-6, and IL-8 expression by HepG2 cells. These observations suggest that 24,25-[OH]2D3 elicits several novel rapid nongenomic-mediated pro-inflammatory protein kinases targeting AP1 activity, increasing pro-inflammatory cytokine expression, potentially impacting lipid metabolism and hepatic function.
Collapse
Affiliation(s)
- Kent Wehmeier
- Division of EndocrinologyDiabetes, and Metabolism, Department of Medicine, University of Florida Jacksonville College of Medicine, Jacksonville, Florida, USA
| | - Luisa M Onstead-Haas
- Division of EndocrinologyDiabetes, and Metabolism, Department of Medicine, University of Florida Jacksonville College of Medicine, Jacksonville, Florida, USA
| | - Norman C W Wong
- Department of MedicineBiochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Arshag D Mooradian
- Division of EndocrinologyDiabetes, and Metabolism, Department of Medicine, University of Florida Jacksonville College of Medicine, Jacksonville, Florida, USA
| | - Michael J Haas
- Division of EndocrinologyDiabetes, and Metabolism, Department of Medicine, University of Florida Jacksonville College of Medicine, Jacksonville, Florida, USA
| |
Collapse
|
31
|
Mooradian AD, Haas MJ. Targeting high-density lipoproteins: increasing de novo production versus decreasing clearance. Drugs 2016; 75:713-22. [PMID: 25895465 DOI: 10.1007/s40265-015-0390-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Although cardiovascular mortality has been decreasing in industrialized countries, there continues to be a substantial residual risk; thus, novel therapeutic agents and new targets of therapy have been sought. One highly plausible therapeutic target is high-density lipoprotein (HDL). HDL is a key player in reverse cholesterol transport and possesses a slew of other cardioprotective properties; however, recent trials with agents known to increase HDL levels have generally not shown any reduction in cardiovascular events. Further analysis of these trials suggest that fibrates have consistently reduced some cardiovascular outcomes, at least in the subgroup of patients with high serum triglycerides and low HDL cholesterol (HDLc) levels. Since fibrates, unlike niacin or cholesterol ester transfer protein inhibitors, increase HDLc level mostly through the stimulation of apolipoprotein A-I production, it is suggested that the quality and functionality of HDL are enhanced when de novo synthesis rather than inhibition of turnover is the mechanism of increasing HDL level. In this communication, the evidence for and against the cardioprotective properties of HDL is reviewed and the contemporary clinical trials are discussed.
Collapse
Affiliation(s)
- Arshag D Mooradian
- Department of Medicine, University of Florida College of Medicine, 655 West 11th Street, Jacksonville, FL, 32209, USA,
| | | |
Collapse
|
32
|
Vaissière A, Berger S, Harrus D, Dacquet C, Le Maire A, Boutin JA, Ferry G, Royer CA. Molecular mechanisms of transcriptional control by Rev-erbα: An energetic foundation for reconciling structure and binding with biological function. Protein Sci 2015; 24:1129-46. [PMID: 25969949 DOI: 10.1002/pro.2701] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/17/2015] [Accepted: 04/20/2015] [Indexed: 11/12/2022]
Abstract
Rev-erbα and β are nuclear receptors that function as transcriptional repressors of genes involved in regulating circadian rhythms, glucose, and cholesterol metabolism and the inflammatory response. Given these key functions, Rev-erbs are important drug targets for treatment of a number of human pathologies, including cancer, heart disease, and type II diabetes. Transcriptional repression by the Rev-erbs involves direct competition with transcriptional activators for target sites, but also recruitment by the Rev-erbs of the NCoR corepressor protein. Interestingly, Rev-erbs do not appear to interact functionally with a very similar corepressor, Smrt. Transcriptional repression by Rev-erbs is thought to occur in response to the binding of heme, although structural, and ligand binding studies in vitro show that heme and corepressor binding are antagonistic. We carried out systematic studies of the ligand and corepressor interactions to address the molecular basis for corepressor specificity and the energetic consequences of ligand binding using a variety of biophysical approaches. Highly quantitative fluorescence anisotropy assays in competition mode revealed that the Rev-erb specificity for the NCoR corepressor lies in the first two residues of the β-strand in Interaction Domain 1 of NCoR. Our studies confirmed and quantitated the strong antagonism of heme and corepressor binding and significant stabilization of the corepressor complex by a synthetic ligand in vitro. We propose a model which reconciles the contradictory observations concerning the effects of heme binding in vitro and in live cells.
Collapse
Affiliation(s)
- Anaïs Vaissière
- Centre de Biochimie Structurale CNRS UMR 5048, INSERM UMR 1054, Université de Montpellier, 34090, Montpellier Cedex, France
| | - Sylvie Berger
- Biotechnologie, Pharmacologie Moléculaire et Cellulaire, PEX BCB, Institut de Recherches SERVIER, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France
| | - Deborah Harrus
- Centre de Biochimie Structurale CNRS UMR 5048, INSERM UMR 1054, Université de Montpellier, 34090, Montpellier Cedex, France
| | - Catherine Dacquet
- Pole d'Innovation Thérapeutique, Recherche et Découverte Métabolisme, Institut de Recherches SERVIER, 11, rue des Moulineaux, 92150, Suresnes, France
| | - Albane Le Maire
- Centre de Biochimie Structurale CNRS UMR 5048, INSERM UMR 1054, Université de Montpellier, 34090, Montpellier Cedex, France
| | - Jean A Boutin
- Biotechnologie, Pharmacologie Moléculaire et Cellulaire, PEX BCB, Institut de Recherches SERVIER, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France
| | - Gilles Ferry
- Biotechnologie, Pharmacologie Moléculaire et Cellulaire, PEX BCB, Institut de Recherches SERVIER, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France
| | - Catherine A Royer
- Centre de Biochimie Structurale CNRS UMR 5048, INSERM UMR 1054, Université de Montpellier, 34090, Montpellier Cedex, France
| |
Collapse
|
33
|
Abstract
OBJECTIVE Menopause is defined as the permanent cessation of menses. Although previous studies demonstrated a slight production of androgens and estrogens by postmenopausal ovaries, the impact of hormone production on lipid metabolism is still uncertain. The aim of this study was to evaluate whether the postmenopausal ovary is hormonally active and whether hormone status contributes to lipid metabolism. METHODS This was a prospective study of 87 women who were treated for gynecological diseases (29% had cervical cancer, 49% had endometrial cancer, 7% had fibroid tumors, and 15% had cervical intraepithelial neoplasia). They were categorized as early postmenopausal (n = 40; mean [SD], 56.8 [3.8] y) or late postmenopausal (n = 47; mean [SD], 66.6 [5.7] y) women. Serum specimens were collected from the peripheral and ovarian veins of participants undergoing bilateral oophorectomy. Sex steroid hormone levels and lipid profiles were determined. RESULTS Statistically significant differences in estradiol (E2) and testosterone were seen between the ovarian samples and the peripheral samples in all groups. E2 and estrone obtained from ovarian venous samples gradually decreased with age in postmenopausal women. There was a significant correlation between ovarian E2 and high-density lipoprotein cholesterol levels and the low-density lipoprotein-to-high-density lipoprotein ratio. However, there was no correlation between peripheral E2 levels and any of the lipid parameters examined. CONCLUSIONS Although this study investigates women with gynecological diseases, the postmenopausal ovary is hormonally active, and the E2 produced by postmenopausal ovaries may therefore contribute to the maintenance of lipid metabolism.
Collapse
|
34
|
Cocci P, Mosconi G, Arukwe A, Mozzicafreddo M, Angeletti M, Aretusi G, Palermo FA. Effects of Diisodecyl Phthalate on PPAR:RXR-Dependent Gene Expression Pathways in Sea Bream Hepatocytes. Chem Res Toxicol 2015; 28:935-47. [PMID: 25825955 DOI: 10.1021/tx500529x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Evidence that endocrine-disrupting chemicals (EDCs) may target metabolic disturbances, beyond interference with the functions of the endocrine systems has recently accumulated. Among EDCs, phthalate plasticizers like the diisodecyl phthalate (DiDP) are commonly found contaminants of aquatic environments and have been suggested to function as obesogens by activating peroxisome proliferator activated receptors (PPARs), a subset of nuclear receptors (NRs) that act as metabolic sensors, playing pivotal roles in lipid homeostasis. However, little is known about the modulation of PPAR signaling pathways by DiDP in fish. In this study, we have first investigated the ligand binding efficiency of DiDP to the ligand binding domains of PPARs and retinoid-X-receptor-α (RXRα) proteins in fish using a molecular docking approach. Furthermore, in silico predictions were integrated by in vitro experiments to show possible dose-relationship effects of DiDP on PPAR:RXR-dependent gene expression pathways using sea bream hepatocytes. We observed that DiDP shows high binding efficiency with piscine PPARs demonstrating a greater preference for RXRα. Our studies also demonstrated the coordinate increased expression of PPARs and RXRα, as well as their downstream target genes in vitro. Principal component analysis (PCA) showed the strength of relationship between transcription of most genes involved in fatty acid metabolism and PPAR mRNA levels. In particular, fatty acid binding protein (FABP) was highly correlated to all PPARs. The results of this study suggest that DiDP can be considered an environmental stressor that activates PPAR:RXR signaling to promote long-term changes in lipid homeostasis leading to potential deleterious physiological consequences in teleost fish.
Collapse
Affiliation(s)
- Paolo Cocci
- †School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino (MC), Italy
| | - Gilberto Mosconi
- †School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino (MC), Italy
| | - Augustine Arukwe
- ‡Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway
| | - Matteo Mozzicafreddo
- †School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino (MC), Italy
| | - Mauro Angeletti
- †School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino (MC), Italy
| | - Graziano Aretusi
- §Controllo Statistico, Pescara, Italy.,⊥Marine Protected Area Torre del Cerrano, 64025 Pineto (TE), Italy
| | - Francesco Alessandro Palermo
- †School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino (MC), Italy
| |
Collapse
|
35
|
Guo X, Liang XF, Fang L, Yuan X, Zhou Y, He S, Shen D. Effects of lipid-lowering pharmaceutical clofibrate on lipid and lipoprotein metabolism of grass carp (Ctenopharyngodon idellal Val.) fed with the high non-protein energy diets. FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:331-343. [PMID: 25213789 DOI: 10.1007/s10695-014-9986-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 09/07/2014] [Indexed: 06/03/2023]
Abstract
This study investigated the effects of clofibrate treatment on blood lipids, hepatic enzyme activities and relative expression of genes involved in lipid metabolism of grass carp fed with high non-protein energy diets. For that purpose, five diets were formulated: a commercial-like diet (Control), a high-carbohydrate diet (HC), a high-fat diet (HF) and two diets identical to the HC and HF diets, but supplemented with 1.25 g kg(-1) clofibrate (HC + Clo and HF + Clo diets). Grass carp fed the HC and HF diet exhibited increases in blood lipids and body fat compared with the control group after 4 weeks. In the clofibrate treatment groups, there was a marked decrease in triacylglycerol and cholesterol concentrations of plasma, and total lipids of the whole body, mesentery adipose tissue and liver tissue. Fish treated with clofibrate exhibited increased hepatic acyl-CoA oxidase activity, but did not show any changes in carnitine palmitoyltransferase (CPT) I activity compared with HC and HF diets without clofibrate. Clofibrate treatment had no effect on peroxisome proliferator-activated receptor alpha and CPT I mRNA expression. However, there was an increase in lipoprotein lipase expression in the clofibrate-treated groups. In addition, the relative mRNA expression levels of hepatic de novo lipogenic enzymes (fatty acid synthetase and acetyl coenzyme-A carboxylase) were significantly higher in the fish fed the HC diet than those of other groups, and clofibrate inhibited this increase. These results suggest that clofibrate has the hypolipidaemic effects and affects lipid metabolism in grass carp.
Collapse
Affiliation(s)
- Xiaoze Guo
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Hubei Collaborative Innovation Center for Freshwater Aquaculture, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China,
| | | | | | | | | | | | | |
Collapse
|
36
|
Corcoran J, Winter MJ, Lange A, Cumming R, Owen SF, Tyler CR. Effects of the lipid regulating drug clofibric acid on PPARα-regulated gene transcript levels in common carp (Cyprinus carpio) at pharmacological and environmental exposure levels. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 161:127-37. [PMID: 25749508 PMCID: PMC4372818 DOI: 10.1016/j.aquatox.2015.01.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/29/2015] [Accepted: 01/31/2015] [Indexed: 05/20/2023]
Abstract
In mammals, the peroxisome proliferator-activated receptor α (PPARα) plays a key role in regulating various genes involved in lipid metabolism, bile acid synthesis and cholesterol homeostasis, and is activated by a diverse group of compounds collectively termed peroxisome proliferators (PPs). Specific PPs have been detected in the aquatic environment; however little is known on their pharmacological activity in fish. We investigated the bioavailability and persistence of the human PPARα ligand clofibric acid (CFA) in carp, together with various relevant endpoints, at a concentration similar to therapeutic levels in humans (20mg/L) and for an environmentally relevant concentration (4μg/L). Exposure to pharmacologically-relevant concentrations of CFA resulted in increased transcript levels of a number of known PPARα target genes together with increased acyl-coA oxidase (Acox1) activity, supporting stimulation of lipid metabolism pathways in carp which are known to be similarly activated in mammals. Although Cu,Zn-superoxide dismutase (Sod1) activity was not affected, mRNA levels of several biotransformation genes were also increased, paralleling previous reports in mammals and indicating a potential role in hepatic detoxification for PPARα in carp. Importantly, transcription of some of these genes (and Acox1 activity) were affected at exposure concentrations comparable with those reported in effluent discharges. Collectively, these data suggest that CFA is pharmacologically active in carp and has the potential to invoke PPARα-related responses in fish exposed in the environment, particularly considering that CFA may represent just one of a number of PPAR-active compounds present to which wild fish may be exposed.
Collapse
Affiliation(s)
- Jenna Corcoran
- University of Exeter, Biosciences, College of Life & Environmental Sciences, Exeter EX4 4QD, UK.
| | - Matthew J Winter
- AstraZeneca Global Environment, Brixham Laboratory, Freshwater Quarry, Brixham TQ5 8BA, UK.
| | - Anke Lange
- University of Exeter, Biosciences, College of Life & Environmental Sciences, Exeter EX4 4QD, UK.
| | - Rob Cumming
- AstraZeneca Global Environment, Brixham Laboratory, Freshwater Quarry, Brixham TQ5 8BA, UK.
| | - Stewart F Owen
- AstraZeneca Global Environment, Brixham Laboratory, Freshwater Quarry, Brixham TQ5 8BA, UK.
| | - Charles R Tyler
- University of Exeter, Biosciences, College of Life & Environmental Sciences, Exeter EX4 4QD, UK.
| |
Collapse
|
37
|
Tseng HL, Yang SC, Yang SH, Shieh KR. Hepatic circadian-clock system altered by insulin resistance, diabetes and insulin sensitizer in mice. PLoS One 2015; 10:e0120380. [PMID: 25799429 PMCID: PMC4370469 DOI: 10.1371/journal.pone.0120380] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/21/2015] [Indexed: 01/20/2023] Open
Abstract
Circadian rhythms are intrinsic rhythms that are coordinated with the rotation of the Earth and are also generated by a set of circadian-clock genes at the intracellular level. Growing evidence suggests a strong link between circadian rhythms and energy metabolism; however, the fundamental mechanisms remain unclear. In the present study, neonatal streptozotocin (STZ)-treated mice were used to model the molecular and physiological progress from insulin resistance to diabetes. Two-day-old male C57BL/6 mice received a single injection of STZ and were tested for non-obese, hyperglycemic and hyperinsulinemic conditions in the early stage, insulin resistance in the middle stage, and diabetes in the late stage. Gene expression levels of the hepatic circadian-clock system were examined by real-time quantitative PCR. Most of the components of the hepatic circadian-clock gene expression system, such as the mRNAs of Bmal1 (brain and muscle Arnt-like protein-1), Per2 (period 2) and Cry1 (cryptochrome 1), were elevated, and circadian patterns were retained in the early and middle stages of insulin-resistant conditions. The insulin sensitizer, rosiglitazone, returns the physiological and molecular changes associated with the diabetic phenotype to normal levels through peroxisome proliferator-activated receptor γ (PPARγ) rather than PPARα. Early and chronic treatment with rosiglitazone has been shown to be effective to counter the diabetic condition. Over time, this effect acts to attenuate the increased gene expression levels of the hepatic circadian-clock system and delay the severity of diabetic conditions. Together, these results support an essential role for the hepatic circadian-clock system in the coordinated regulation and/or response of metabolic pathways.
Collapse
Affiliation(s)
- Huey-Ling Tseng
- Institute of Medical Sciences, School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Shu-Chuan Yang
- General Education Center, Tzu Chi College of Technology, Hualien, Taiwan
| | - Shih-Hsien Yang
- Institute of Medical Sciences, School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Rehabilitation Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Kun-Ruey Shieh
- Institute of Medical Sciences, School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan
- * E-mail:
| |
Collapse
|
38
|
Popeijus HE, van Otterdijk SD, van der Krieken SE, Konings M, Serbonij K, Plat J, Mensink RP. Fatty acid chain length and saturation influences PPARα transcriptional activation and repression in HepG2 cells. Mol Nutr Food Res 2014; 58:2342-9. [DOI: 10.1002/mnfr.201400314] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 09/12/2014] [Accepted: 09/21/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Herman E. Popeijus
- Department of Human Biology; NUTRIM School for Nutrition; Toxicology and Metabolism; Maastricht University; Maastricht The Netherlands
| | - Sanne D. van Otterdijk
- Department of Human Biology; NUTRIM School for Nutrition; Toxicology and Metabolism; Maastricht University; Maastricht The Netherlands
| | - Sophie E. van der Krieken
- Department of Human Biology; NUTRIM School for Nutrition; Toxicology and Metabolism; Maastricht University; Maastricht The Netherlands
| | - Maurice Konings
- Department of Human Biology; NUTRIM School for Nutrition; Toxicology and Metabolism; Maastricht University; Maastricht The Netherlands
| | - Kenrick Serbonij
- Department of Human Biology; NUTRIM School for Nutrition; Toxicology and Metabolism; Maastricht University; Maastricht The Netherlands
| | - Jogchum Plat
- Department of Human Biology; NUTRIM School for Nutrition; Toxicology and Metabolism; Maastricht University; Maastricht The Netherlands
| | - Ronald P. Mensink
- Department of Human Biology; NUTRIM School for Nutrition; Toxicology and Metabolism; Maastricht University; Maastricht The Netherlands
| |
Collapse
|
39
|
Direct and indirect suppression of interleukin-6 gene expression in murine macrophages by nuclear orphan receptor REV-ERBα. ScientificWorldJournal 2014; 2014:685854. [PMID: 25401152 PMCID: PMC4220616 DOI: 10.1155/2014/685854] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/05/2014] [Indexed: 11/17/2022] Open
Abstract
It is now evident that many nuclear hormone receptors can modulate target gene expression. REV-ERBα, one of the nuclear hormone receptors with the capacity to alter clock function, is critically involved in lipid metabolism, adipogenesis, and the inflammatory response. Recent studies suggest that REV-ERBα plays a key role in the mediation between clockwork and inflammation. The purpose of the current study was to investigate the role of REV-ERBα in the regulation of interleukin-6 (il6) gene expression in murine macrophages. REV-ERBα agonists, or overexpression of rev-erbα in the murine macrophage cell line RAW264 cells, suppressed the induction of il6 mRNA following a lipopolysaccharide (LPS) endotoxin challenge. Also, rev-erbα overexpression decreased LPS-stimulated nuclear factor κB (NFκB) activation in RAW264 cells. We showed that REV-ERBα represses il6 expression not only indirectly through an NFκB binding motif but also directly through a REV-ERBα binding motif in the murine il6 promoter region. Furthermore, peritoneal macrophages from mice lacking rev-erbα increased il6 mRNA expression. These data suggest that REV-ERBα regulates the inflammatory response of macrophages through the suppression of il6 expression. REV-ERBα may therefore be identified as a potent anti-inflammatory receptor and be a therapeutic target receptor of inflammatory diseases.
Collapse
|
40
|
Hu YW, Zhao JY, Li SF, Huang JL, Qiu YR, Ma X, Wu SG, Chen ZP, Hu YR, Yang JY, Wang YC, Gao JJ, Sha YH, Zheng L, Wang Q. RP5-833A20.1/miR-382-5p/NFIA-dependent signal transduction pathway contributes to the regulation of cholesterol homeostasis and inflammatory reaction. Arterioscler Thromb Vasc Biol 2014; 35:87-101. [PMID: 25265644 DOI: 10.1161/atvbaha.114.304296] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Cardiovascular disease caused by atherosclerosis is the number one cause of death in Western countries and threatens to become the major cause of morbidity and mortality worldwide. Long noncoding RNAs are emerging as new players in gene regulation, but how long noncoding RNAs operate in the development of atherosclerosis remains unclear. APPROACH AND RESULTS Using microarray analysis, we found that long noncoding RNA RP5-833A20.1 expression was upregulated, whereas nuclear factor IA (NFIA) expression was downregulated in human acute monocytic leukemia macrophage-derived foam cells. Moreover, we showed that long noncoding RNA RP5-833A20.1 may decreases NFIA expression by inducing hsa-miR-382-5p expression in vitro. We found that the RP5-833A20.1/hsa-miR-382-5p/NFIA pathway is essential to the regulation of cholesterol homeostasis and inflammatory responses in human acute monocytic leukemia macrophages. Lentivirus-mediated NFIA overexpression increased high-density lipoprotein cholesterol circulation, reduced low-density lipoprotein cholesterol, and very-low-density lipoprotein cholesterol circulation, decreased circulation of inflammatory cytokines, including interleukin-1β, interleukin-6, tumor necrosis factor-α, and C-reactive protein, enhanced reverse cholesterol transport, and promoted regression of atherosclerosis in apolipoprotein E-deficient mice. CONCLUSIONS Our findings indicated that the RP5-833A20.1/miR-382-5p/NFIA pathway was essential to the regulation of cholesterol homeostasis and inflammatory reactions and suggested that NFIA may represent a therapeutic target to ameliorate cardiovascular disease.
Collapse
Affiliation(s)
- Yan-Wei Hu
- From the Laboratory Medicine Center (Y.-W.H., J.-Y.Z., S.-F.L., J.-L.H., Y.-R.Q., S.-G.W., Z.-P.C., Y.-R.H., J.-Y.Y., Y.-C.W., J.-J.G., Y.-H.S., L.Z., Q.W.) and Department of Anesthesiology (X.M.), Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jia-Yi Zhao
- From the Laboratory Medicine Center (Y.-W.H., J.-Y.Z., S.-F.L., J.-L.H., Y.-R.Q., S.-G.W., Z.-P.C., Y.-R.H., J.-Y.Y., Y.-C.W., J.-J.G., Y.-H.S., L.Z., Q.W.) and Department of Anesthesiology (X.M.), Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shu-Fen Li
- From the Laboratory Medicine Center (Y.-W.H., J.-Y.Z., S.-F.L., J.-L.H., Y.-R.Q., S.-G.W., Z.-P.C., Y.-R.H., J.-Y.Y., Y.-C.W., J.-J.G., Y.-H.S., L.Z., Q.W.) and Department of Anesthesiology (X.M.), Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jin-Lan Huang
- From the Laboratory Medicine Center (Y.-W.H., J.-Y.Z., S.-F.L., J.-L.H., Y.-R.Q., S.-G.W., Z.-P.C., Y.-R.H., J.-Y.Y., Y.-C.W., J.-J.G., Y.-H.S., L.Z., Q.W.) and Department of Anesthesiology (X.M.), Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yu-Rong Qiu
- From the Laboratory Medicine Center (Y.-W.H., J.-Y.Z., S.-F.L., J.-L.H., Y.-R.Q., S.-G.W., Z.-P.C., Y.-R.H., J.-Y.Y., Y.-C.W., J.-J.G., Y.-H.S., L.Z., Q.W.) and Department of Anesthesiology (X.M.), Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xin Ma
- From the Laboratory Medicine Center (Y.-W.H., J.-Y.Z., S.-F.L., J.-L.H., Y.-R.Q., S.-G.W., Z.-P.C., Y.-R.H., J.-Y.Y., Y.-C.W., J.-J.G., Y.-H.S., L.Z., Q.W.) and Department of Anesthesiology (X.M.), Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shao-Guo Wu
- From the Laboratory Medicine Center (Y.-W.H., J.-Y.Z., S.-F.L., J.-L.H., Y.-R.Q., S.-G.W., Z.-P.C., Y.-R.H., J.-Y.Y., Y.-C.W., J.-J.G., Y.-H.S., L.Z., Q.W.) and Department of Anesthesiology (X.M.), Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhi-Ping Chen
- From the Laboratory Medicine Center (Y.-W.H., J.-Y.Z., S.-F.L., J.-L.H., Y.-R.Q., S.-G.W., Z.-P.C., Y.-R.H., J.-Y.Y., Y.-C.W., J.-J.G., Y.-H.S., L.Z., Q.W.) and Department of Anesthesiology (X.M.), Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ya-Rong Hu
- From the Laboratory Medicine Center (Y.-W.H., J.-Y.Z., S.-F.L., J.-L.H., Y.-R.Q., S.-G.W., Z.-P.C., Y.-R.H., J.-Y.Y., Y.-C.W., J.-J.G., Y.-H.S., L.Z., Q.W.) and Department of Anesthesiology (X.M.), Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jun-Yao Yang
- From the Laboratory Medicine Center (Y.-W.H., J.-Y.Z., S.-F.L., J.-L.H., Y.-R.Q., S.-G.W., Z.-P.C., Y.-R.H., J.-Y.Y., Y.-C.W., J.-J.G., Y.-H.S., L.Z., Q.W.) and Department of Anesthesiology (X.M.), Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan-Chao Wang
- From the Laboratory Medicine Center (Y.-W.H., J.-Y.Z., S.-F.L., J.-L.H., Y.-R.Q., S.-G.W., Z.-P.C., Y.-R.H., J.-Y.Y., Y.-C.W., J.-J.G., Y.-H.S., L.Z., Q.W.) and Department of Anesthesiology (X.M.), Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ji-Juan Gao
- From the Laboratory Medicine Center (Y.-W.H., J.-Y.Z., S.-F.L., J.-L.H., Y.-R.Q., S.-G.W., Z.-P.C., Y.-R.H., J.-Y.Y., Y.-C.W., J.-J.G., Y.-H.S., L.Z., Q.W.) and Department of Anesthesiology (X.M.), Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan-Hua Sha
- From the Laboratory Medicine Center (Y.-W.H., J.-Y.Z., S.-F.L., J.-L.H., Y.-R.Q., S.-G.W., Z.-P.C., Y.-R.H., J.-Y.Y., Y.-C.W., J.-J.G., Y.-H.S., L.Z., Q.W.) and Department of Anesthesiology (X.M.), Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lei Zheng
- From the Laboratory Medicine Center (Y.-W.H., J.-Y.Z., S.-F.L., J.-L.H., Y.-R.Q., S.-G.W., Z.-P.C., Y.-R.H., J.-Y.Y., Y.-C.W., J.-J.G., Y.-H.S., L.Z., Q.W.) and Department of Anesthesiology (X.M.), Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Qian Wang
- From the Laboratory Medicine Center (Y.-W.H., J.-Y.Z., S.-F.L., J.-L.H., Y.-R.Q., S.-G.W., Z.-P.C., Y.-R.H., J.-Y.Y., Y.-C.W., J.-J.G., Y.-H.S., L.Z., Q.W.) and Department of Anesthesiology (X.M.), Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
41
|
Abstract
The nuclear receptors REV-ERB (consisting of REV-ERBα and REV-ERBβ) and retinoic acid receptor-related orphan receptors (RORs; consisting of RORα, RORβ and RORγ) are involved in many physiological processes, including regulation of metabolism, development and immunity as well as the circadian rhythm. The recent characterization of endogenous ligands for these former orphan nuclear receptors has stimulated the development of synthetic ligands and opened up the possibility of targeting these receptors to treat several diseases, including diabetes, atherosclerosis, autoimmunity and cancer. This Review focuses on the latest developments in ROR and REV-ERB pharmacology indicating that these nuclear receptors are druggable targets and that ligands targeting these receptors may be useful in the treatment of several disorders.
Collapse
|
42
|
Pérez-Méndez Ó, Pacheco HG, Martínez-Sánchez C, Franco M. HDL-cholesterol in coronary artery disease risk: function or structure? Clin Chim Acta 2013; 429:111-22. [PMID: 24333390 DOI: 10.1016/j.cca.2013.12.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/29/2013] [Accepted: 12/01/2013] [Indexed: 12/29/2022]
Abstract
High-density lipoproteins (HDL) are inversely related with coronary artery disease (CAD) and HDL-cholesterol is the only standardized and reproducible parameter available to estimate plasma concentration of these lipoproteins. However, pharmacological interventions intended to increase HDL-cholesterol have not been consistently associated to an effective CAD risk reduction. Among patients with a myocardial infarction, 43 and 44% of men and women, respectively, had normal plasma levels of HDL-cholesterol, whereas genetic studies have failed to show a causal association between HDL-cholesterol and CAD risk. Instead, HDL functionality seems to be the target to be evaluated, but the existing methods are still poorly reproducible and far to be adapted to the clinical laboratory. HDL subclasses rise as a potential alternative for the evaluation of CAD risk; HDL subclasses are a surrogate of intravascular metabolism of these lipoproteins and probably of their functionality. Low levels of large HDL and increased proportions of small particles are the most remarkable features associated to an increased risk of type 2 diabetes mellitus (T2DM) or CAD. However, inflammation and other environmental factors are related with abnormal HDL structure, and, as a consequence, more prospective studies are needed to better support the clinical usefulness of HDL subclasses. New insights from proteome and lipidome profiles of HDL will provide potential HDL-related biomarkers in the coming years.
Collapse
Affiliation(s)
- Óscar Pérez-Méndez
- Department of Molecular Biology, National Institute of Cardiology "Ignacio Chávez", Mexico, DF, Mexico.
| | - Héctor González Pacheco
- Department of Emergency, National Institute of Cardiology "Ignacio Chávez", Mexico, DF, Mexico
| | - Carlos Martínez-Sánchez
- Department of Emergency, National Institute of Cardiology "Ignacio Chávez", Mexico, DF, Mexico
| | - Martha Franco
- Department of Molecular Biology, National Institute of Cardiology "Ignacio Chávez", Mexico, DF, Mexico
| |
Collapse
|
43
|
Sato S, Sakurai T, Ogasawara J, Takahashi M, Izawa T, Imaizumi K, Taniguchi N, Ohno H, Kizaki T. A Circadian Clock Gene, Rev-erbα, Modulates the Inflammatory Function of Macrophages through the Negative Regulation of Ccl2 Expression. THE JOURNAL OF IMMUNOLOGY 2013; 192:407-17. [DOI: 10.4049/jimmunol.1301982] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
44
|
Linz PE, Lovato LC, Byington RP, O'Connor PJ, Leiter LA, Weiss D, Force RW, Crouse JR, Ismail-Beigi F, Simmons DL, Papademetriou V, Ginsberg HN, Elam MB. Paradoxical reduction in HDL-C with fenofibrate and thiazolidinedione therapy in type 2 diabetes: the ACCORD Lipid Trial. Diabetes Care 2013; 37:686-93. [PMID: 24296848 PMCID: PMC3931389 DOI: 10.2337/dc13-0790] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 10/30/2013] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To determine the occurrence of extremely low HDL cholesterol (HDL-C) among participants in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) Lipid Trial and to examine the relationship of this finding with treatment with fenofibrate and thiazolidinedione (TZD). RESEARCH DESIGN AND METHODS The ACCORD Lipid Trial was a randomized, double-blind, placebo-controlled study conducted in patients with type 2 diabetes at 77 clinical centers across the U.S. and Canada in a 5,518-patient subset of the larger 10,251 ACCORD Glycemia Trial. Patients were enrolled from 11 January 2001 to 29 October 2005 and followed until the end of study visits between 1 March and 30 June 2009. Follow-up in the ACCORD Lipid Trial was 4-8 years (mean 4.7 years). Patients were treated with blinded fenofibrate or placebo on a background of simvastatin therapy. The main outcome measures for these descriptive, post hoc analyses was the occurrence of extremely low HDL-C (defined as <25 mg/dL [0.647 mmol/L]) during the trial. RESULTS Among ACCORD Lipid Trial participants, the occurrence of extremely low HDL-C ever during study follow-up was 106% higher among those randomized to fenofibrate (10.1% fenofibrate vs. 4.9% placebo, P < 0.001). The occurrence of low HDL-C was associated with concurrent treatment with fenofibrate and TZD (7.0% for both vs. 2.2% for neither at 48 months postrandomization). CONCLUSIONS Idiosyncratic and marked reduction in HDL-C can occur in some patients treated with both fenofibrate and TZD. Practitioners should recognize this important potential idiosyncratic reaction and take appropriate corrective action.
Collapse
|
45
|
Consoli A, Formoso G. Do thiazolidinediones still have a role in treatment of type 2 diabetes mellitus? Diabetes Obes Metab 2013; 15:967-77. [PMID: 23522285 DOI: 10.1111/dom.12101] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 11/23/2012] [Accepted: 03/15/2013] [Indexed: 12/17/2022]
Abstract
Thiazolidinediones have been introduced in the treatment of type 2 diabetes mellitus (T2DM) since the late 1990s. Although troglitazone was withdrawn from the market a few years later due to liver toxicity, both rosiglitazone and pioglitazone gained widespread use for T2DM treatment. In 2010, however, due to increased risk of cardiovascular events associated with its use, the European Medicines Agency recommended suspension of rosiglitazone use and the Food and Drug Administration severely restricted its use. Thus pioglitazone is the only thiazolidinedione still significantly employed for treating T2DM and it is the only molecule of this class still listed in the American Diabetes Association-European Association for the Study of Diabetes 2012 Position Statement. However, as for the other thiazolidinediones, use of pioglitazone is itself limited by several side effects, some of them potentially dangerous. This, together with the development of novel therapeutic strategies approved in the last couple of years, has made it questionable whether or not thiazolidinediones (namely pioglitazone) should still be used in the treatment of T2DM. This article will attempt to formulate an answer to this question by critically reviewing the available data on the numerous advantages and the potentially worrying shortcomings of pioglitazone treatment in T2DM.
Collapse
Affiliation(s)
- A Consoli
- Department of Medicine and Aging Sciences, G. d'Annunzio University, Chieti-Pescara, Italy; Aging Research Center (CeSI), G. d'Annunzio University Foundation, Chieti, Italy
| | | |
Collapse
|
46
|
Bakshi MV, Barjaktarovic Z, Azimzadeh O, Kempf SJ, Merl J, Hauck SM, Eriksson P, Buratovic S, Atkinson MJ, Tapio S. Long-term effects of acute low-dose ionizing radiation on the neonatal mouse heart: a proteomic study. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2013; 52:451-461. [PMID: 23880982 DOI: 10.1007/s00411-013-0483-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 07/11/2013] [Indexed: 06/02/2023]
Abstract
Epidemiological studies establish that children and young adults are especially susceptible to radiation-induced cardiovascular disease (CVD). The biological mechanisms behind the elevated CVD risk following exposure at young age remain unknown. The present study aims to elucidate the long-term effects of ionizing radiation by studying the murine cardiac proteome after exposure to low and moderate radiation doses. NMRI mice received single doses of total body (60)Co gamma-irradiation on postnatal day 10 and were sacrificed 7 months later. Changes in cardiac protein expression were quantified using isotope-coded protein label and tandem mass spectrometry. We identified 32, 31, 66, and 34 significantly deregulated proteins after doses of 0.02, 0.1, 0.5, and 1.0 Gy, respectively. The four doses shared 9 deregulated proteins. Bioinformatics analysis showed that most of the deregulated proteins belonged to a limited set of biological categories, including metabolic processes, inflammatory response, and cytoskeletal structure. The transcription factor peroxisome proliferator-activated receptor alpha was predicted as a common upstream regulator of several deregulated proteins. This study indicates that both adaptive and maladaptive responses to the initial radiation damage persist well into adulthood. It will contribute to the understanding of the long-term consequences of radiation-induced injury and developmental alterations in the neonatal heart.
Collapse
Affiliation(s)
- Mayur V Bakshi
- Institute of Radiation Biology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ehrenborg E, Skogsberg J. Peroxisome proliferator-activated receptor delta and cardiovascular disease. Atherosclerosis 2013; 231:95-106. [PMID: 24125418 DOI: 10.1016/j.atherosclerosis.2013.08.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 08/16/2013] [Accepted: 08/27/2013] [Indexed: 12/20/2022]
Abstract
Recent reports have shown that peroxisome proliferator-activated receptor delta (PPARD) plays an important role in different vascular processes suggesting that PPARD is a significant modulator of cardiovascular disease. This review will focus on PPARD in relation to cardiovascular risk factors based on cell, animal and human data. Mouse studies suggest that Ppard is an important metabolic modulator that may have implications for cardiovascular disease (CVD). Specific human PPARD gene variants show no clear association with CVD but interactions between variants and lifestyle factors might influence disease risk. During recent years, development of specific and potent PPARD agonists has also made it possible to study the effects of PPARD activation in humans. PPARD agonists seem to exert beneficial effects on dyslipidemia and insulin-resistant syndromes but safety issues have been raised due to the role that PPARD plays in cell proliferation. Thus, large long term outcome as well as detailed safety and tolerability studies are needed to evaluate whether PPARD agonists could be used to treat CVD in humans.
Collapse
Affiliation(s)
- Ewa Ehrenborg
- Atherosclerosis Research Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden.
| | | |
Collapse
|
48
|
Qiang JK, Wong YC, Siderowf A, Hurtig HI, Xie SX, Lee VMY, Trojanowski JQ, Yearout D, B Leverenz J, Montine TJ, Stern M, Mendick S, Jennings D, Zabetian C, Marek K, Chen-Plotkin AS. Plasma apolipoprotein A1 as a biomarker for Parkinson disease. Ann Neurol 2013; 74:119-27. [PMID: 23447138 DOI: 10.1002/ana.23872] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 02/04/2013] [Accepted: 02/15/2013] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To identify plasma-based biomarkers for Parkinson disease (PD) risk. METHODS In a discovery cohort of 152 PD patients, plasma levels of 96 proteins were measured by multiplex immunoassay; proteins associated with age at PD onset were identified by linear regression. Findings from discovery screening were then assessed in a second cohort of 187 PD patients, using a different technique. Finally, in a third cohort of at-risk, asymptomatic individuals enrolled in the Parkinson's Associated Risk Study (PARS, n = 134), plasma levels of the top candidate biomarker were measured, and dopamine transporter (DAT) imaging was performed, to evaluate the association of plasma protein levels with dopaminergic system integrity. RESULTS One of the best candidate protein biomarkers to emerge from discovery screening was apolipoprotein A1 (ApoA1; p = 0.001). Low levels of ApoA1 correlated with earlier PD onset, with a 26% decrease in risk of developing PD associated with each tertile increase in ApoA1 (Cox proportional hazards, p < 0.001, hazard ratio = 0.742). The association between plasma ApoA1 levels and age at PD onset was replicated in an independent cohort of PD patients (p < 0.001). Finally, in the PARS cohort of high-risk, asymptomatic subjects, lower plasma levels of ApoA1 were associated with greater putaminal DAT deficit (p = 0.037). INTERPRETATION Lower ApoA1 levels correlate with dopaminergic system vulnerability in symptomatic PD patients and in asymptomatic individuals with physiological reductions in dopamine transporter density consistent with prodromal PD. Plasma ApoA1 may be a new biomarker for PD risk.
Collapse
Affiliation(s)
- Judy K Qiang
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Tachibana K, Takeuchi K, Inada H, Sugimoto K, Ishimoto K, Yamashita M, Maegawa T, Yamasaki D, Osada S, Tanaka T, Rakugi H, Hamakubo T, Sakai J, Kodama T, Doi T. Human mannose-binding lectin 2 is directly regulated by peroxisome proliferator-activated receptors via a peroxisome proliferator responsive element. J Biochem 2013; 154:265-73. [PMID: 23711995 DOI: 10.1093/jb/mvt050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Human mannose-binding lectin (MBL) is encoded by the MBL2 gene and is a key player in innate immunity. However, the mechanism of the transcriptional regulation of MBL2 is largely unknown. The peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that play an important role in a number of biological responses, including lipid homeostasis, immune function and adipogenesis. In this study, we showed that PPARα and PPARγ up-regulate the expression of human MBL2. Using a luciferase assay, electrophoretic mobility-shift assay and chromatin immunoprecipitation assay, we demonstrated that PPARs regulate the expression of human MBL2 via the peroxisome proliferator responsive element (PPRE). On the other hand, MBL2 mRNA expression was not affected by the PPARα ligand both in vivo in rat liver and in vitro in rat H4IIE hepatoma cells. Thus, there is a species difference in regulation of MBL2 gene expression by PPARs between humans and rodents. We also show that the species differences in response to PPAR could be due in part to sequence-specific differences in the PPRE in the promoter region of MBL2. These results indicate that human, but not rat, MBL2 expression is regulated by PPARs via a PPRE.
Collapse
Affiliation(s)
- Keisuke Tachibana
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Mymin D, Dembinski T, Friesen MH. Iatrogenic Severe Depression of High-Density Lipoprotein Cholesterol. J Clin Pharmacol 2013; 49:865-71. [DOI: 10.1177/0091270009335766] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|