1
|
Sennett ML, Agak GW, Thiboutot DM, Nelson AM. Transcriptomic Analyses Predict Enhanced Metabolic Activity and Therapeutic Potential of mTOR Inhibitors in Acne-Prone Skin. JID INNOVATIONS 2024; 4:100306. [PMID: 39310809 PMCID: PMC11415809 DOI: 10.1016/j.xjidi.2024.100306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/11/2024] [Accepted: 07/18/2024] [Indexed: 09/25/2024] Open
Abstract
Current acne therapies center on preventing new lesions in patients with acne. These therapies were historically found to be beneficial yet were chosen without knowledge of the specific changes in the skin that favor lesion development. A major challenge in developing new treatments is the incomplete understanding of nonlesional (NL), acne-prone skin's molecular characteristics. To address this, we compared RNA-sequencing data from NL skin of 49 patients with acne (denoted as NL acne [NLA]) with those from 19 healthy controls with no acne history. We found 77 differentially expressed genes in NLA (log fold change > 1; P < .05), including genes associated with innate immunity and epidermal barrier function. Notably, K RT 6C, K RT 16, S100A8, S100A9, and lactotransferrin were upregulated, and LCE4A, LCE6A, and CTSE were downregulated. Gene set enrichment analysis revealed that metabolic pathways were enriched in NLA skin, whereas keratinization was negatively enriched. To identify compounds that could shift the gene expression signature of NLA skin toward healthy control skin, we performed connectivity mapping with the Library of Integrated Network-Based Signatures. We identified 187 compounds, particularly mTOR inhibitors, that could potentially normalize the gene expression profile of acne-prone skin to that of healthy skin. Our findings indicate that NLA skin has distinct differences in epidermal differentiation, cellular metabolism, and innate immunity that may promote lesion formation and suggest that mTOR inhibitors could restore NLA skin toward a healthier state, potentially reversing the predisposition to lesion development.
Collapse
Affiliation(s)
- Mackenzie L. Sennett
- Department of Dermatology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - George W. Agak
- Division of Dermatology, University of California Los Angeles, Los Angeles, California, USA
| | - Diane M. Thiboutot
- Department of Dermatology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Amanda M. Nelson
- Department of Dermatology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
2
|
Wang Z, Zhao F, Xu C, Zhang Q, Ren H, Huang X, He C, Ma J, Wang Z. Metabolic reprogramming in skin wound healing. BURNS & TRAUMA 2024; 12:tkad047. [PMID: 38179472 PMCID: PMC10762507 DOI: 10.1093/burnst/tkad047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 01/06/2024]
Abstract
Metabolic reprogramming refers to the ability of a cell to alter its metabolism in response to different stimuli and forms of pressure. It helps cells resist external stress and provides them with new functions. Skin wound healing involves the metabolic reprogramming of nutrients, such as glucose, lipids, and amino acids, which play vital roles in the proliferation, differentiation, and migration of multiple cell types. During the glucose metabolic process in wounds, glucose transporters and key enzymes cause elevated metabolite levels. Glucose-mediated oxidative stress drives the proinflammatory response and promotes wound healing. Reprogramming lipid metabolism increases the number of fibroblasts and decreases the number of macrophages. It enhances local neovascularization and improves fibrin stability to promote extracellular matrix remodelling, accelerates wound healing, and reduces scar formation. Reprogramming amino acid metabolism affects wound re-epithelialization, collagen deposition, and angiogenesis. However, comprehensive reviews on the role of metabolic reprogramming in skin wound healing are lacking. Therefore, we have systematically reviewed the metabolic reprogramming of glucose, lipids, and amino acids during skin wound healing. Notably, we identified their targets with potential therapeutic value and elucidated their mechanisms of action.
Collapse
Affiliation(s)
- Zitong Wang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Feng Zhao
- Department of Stem Cells and Regenerative Medicine, Shenyang Key Laboratory of Stem Cell and Regenerative Medicine, China Medical University, No. 77 Puhe Road, Shenyang, 110013, China
| | - Chengcheng Xu
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Qiqi Zhang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Haiyue Ren
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Xing Huang
- Department of General Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Cai He
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Jiajie Ma
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Zhe Wang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang, 110004, China
| |
Collapse
|
3
|
Rashidpour A, Wu Y, Almajano MP, Fàbregas A, Metón I. Chitosan-Based Sustained Expression of Sterol Regulatory Element-Binding Protein 1a Stimulates Hepatic Glucose Oxidation and Growth in Sparus aurata. Mar Drugs 2023; 21:562. [PMID: 37999386 PMCID: PMC10672111 DOI: 10.3390/md21110562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023] Open
Abstract
The administration of a single dose of chitosan nanoparticles driving the expression of sterol regulatory element-binding protein 1a (SREBP1a) was recently associated with the enhanced conversion of carbohydrates into lipids. To address the effects of the long-lasting expression of SREBP1a on the growth and liver intermediary metabolism of carnivorous fish, chitosan-tripolyphosphate (TPP) nanoparticles complexed with a plasmid expressing the N terminal active domain of hamster SREBP1a (pSG5-SREBP1a) were injected intraperitoneally every 4 weeks (three doses in total) to gilthead sea bream (Sparus aurata) fed high-protein-low-carbohydrate and low-protein-high-carbohydrate diets. Following 70 days of treatment, chitosan-TPP-pSG5-SREBP1a nanoparticles led to the sustained upregulation of SREBP1a in the liver of S. aurata. Independently of the diet, SREBP1a overexpression significantly increased their weight gain, specific growth rate, and protein efficiency ratio but decreased their feed conversion ratio. In agreement with an improved conversion of dietary carbohydrates into lipids, SREBP1a expression increased serum triglycerides and cholesterol as well as hepatic glucose oxidation via glycolysis and the pentose phosphate pathway, while not affecting gluconeogenesis and transamination. Our findings support that the periodical administration of chitosan-TPP-DNA nanoparticles to overexpress SREBP1a in the liver enhanced the growth performance of S. aurata through a mechanism that enabled protein sparing by enhancing dietary carbohydrate metabolisation.
Collapse
Affiliation(s)
- Ania Rashidpour
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Yuanbing Wu
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028 Barcelona, Spain
| | - María Pilar Almajano
- Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain
| | - Anna Fàbregas
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Isidoro Metón
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028 Barcelona, Spain
| |
Collapse
|
4
|
de Klerk JA, Beulens JWJ, Mei H, Bijkerk R, van Zonneveld AJ, Koivula RW, Elders PJM, 't Hart LM, Slieker RC. Altered blood gene expression in the obesity-related type 2 diabetes cluster may be causally involved in lipid metabolism: a Mendelian randomisation study. Diabetologia 2023; 66:1057-1070. [PMID: 36826505 PMCID: PMC10163084 DOI: 10.1007/s00125-023-05886-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/17/2023] [Indexed: 02/25/2023]
Abstract
AIMS/HYPOTHESIS The aim of this study was to identify differentially expressed long non-coding RNAs (lncRNAs) and mRNAs in whole blood of people with type 2 diabetes across five different clusters: severe insulin-deficient diabetes (SIDD), severe insulin-resistant diabetes (SIRD), mild obesity-related diabetes (MOD), mild diabetes (MD) and mild diabetes with high HDL-cholesterol (MDH). This was to increase our understanding of different molecular mechanisms underlying the five putative clusters of type 2 diabetes. METHODS Participants in the Hoorn Diabetes Care System (DCS) cohort were clustered based on age, BMI, HbA1c, C-peptide and HDL-cholesterol. Whole blood RNA-seq was used to identify differentially expressed lncRNAs and mRNAs in a cluster compared with all others. Differentially expressed genes were validated in the Innovative Medicines Initiative DIabetes REsearCh on patient straTification (IMI DIRECT) study. Expression quantitative trait loci (eQTLs) for differentially expressed RNAs were obtained from a publicly available dataset. To estimate the causal effects of RNAs on traits, a two-sample Mendelian randomisation analysis was performed using public genome-wide association study (GWAS) data. RESULTS Eleven lncRNAs and 175 mRNAs were differentially expressed in the MOD cluster, the lncRNA AL354696.2 was upregulated in the SIDD cluster and GPR15 mRNA was downregulated in the MDH cluster. mRNAs and lncRNAs that were differentially expressed in the MOD cluster were correlated among each other. Six lncRNAs and 120 mRNAs validated in the IMI DIRECT study. Using two-sample Mendelian randomisation, we found 52 mRNAs to have a causal effect on anthropometric traits (n=23) and lipid metabolism traits (n=10). GPR146 showed a causal effect on plasma HDL-cholesterol levels (p = 2×10-15), without evidence for reverse causality. CONCLUSIONS/INTERPRETATION Multiple lncRNAs and mRNAs were found to be differentially expressed among clusters and particularly in the MOD cluster. mRNAs in the MOD cluster showed a possible causal effect on anthropometric traits, lipid metabolism traits and blood cell fractions. Together, our results show that individuals in the MOD cluster show aberrant RNA expression of genes that have a suggested causal role on multiple diabetes-relevant traits.
Collapse
Affiliation(s)
- Juliette A de Klerk
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands
| | - Joline W J Beulens
- Amsterdam Public Health Institute, Amsterdam UMC, Amsterdam, the Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Epidemiology and Data Science, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Leiden University Medical Center, Leiden, the Netherlands
| | - Roel Bijkerk
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands
| | - Anton Jan van Zonneveld
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands
| | - Robert W Koivula
- Department of Clinical Sciences, Lund University, Genetic and Molecular Epidemiology, CRC, Skåne University Hospital Malmö, Malmö, Sweden
| | - Petra J M Elders
- Amsterdam Public Health Institute, Amsterdam UMC, Amsterdam, the Netherlands
- Department of General Practice and Elderly Care Medicine, Amsterdam Public Health Research Institute, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands
| | - Leen M 't Hart
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
- Amsterdam Public Health Institute, Amsterdam UMC, Amsterdam, the Netherlands
- Department of Epidemiology and Data Science, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Roderick C Slieker
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.
- Amsterdam Public Health Institute, Amsterdam UMC, Amsterdam, the Netherlands.
- Department of Epidemiology and Data Science, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands.
| |
Collapse
|
5
|
Heisler DB, Johnson KA, Ma DH, Ohlson MB, Zhang L, Tran M, Corley CD, Abrams ME, McDonald JG, Schoggins JW, Alto NM, Radhakrishnan A. A concerted mechanism involving ACAT and SREBPs by which oxysterols deplete accessible cholesterol to restrict microbial infection. eLife 2023; 12:e83534. [PMID: 36695568 PMCID: PMC9925056 DOI: 10.7554/elife.83534] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/25/2023] [Indexed: 01/26/2023] Open
Abstract
Most of the cholesterol in the plasma membranes (PMs) of animal cells is sequestered through interactions with phospholipids and transmembrane domains of proteins. However, as cholesterol concentration rises above the PM's sequestration capacity, a new pool of cholesterol, called accessible cholesterol, emerges. The transport of accessible cholesterol between the PM and the endoplasmic reticulum (ER) is critical to maintain cholesterol homeostasis. This pathway has also been implicated in the suppression of both bacterial and viral pathogens by immunomodulatory oxysterols. Here, we describe a mechanism of depletion of accessible cholesterol from PMs by the oxysterol 25-hydroxycholesterol (25HC). We show that 25HC-mediated activation of acyl coenzyme A: cholesterol acyltransferase (ACAT) in the ER creates an imbalance in the equilibrium distribution of accessible cholesterol between the ER and PM. This imbalance triggers the rapid internalization of accessible cholesterol from the PM, and this depletion is sustained for long periods of time through 25HC-mediated suppression of SREBPs and continued activation of ACAT. In support of a physiological role for this mechanism, 25HC failed to suppress Zika virus and human coronavirus infection in ACAT-deficient cells, and Listeria monocytogenes infection in ACAT-deficient cells and mice. We propose that selective depletion of accessible PM cholesterol triggered by ACAT activation and sustained through SREBP suppression underpins the immunological activities of 25HC and a functionally related class of oxysterols.
Collapse
Affiliation(s)
- David B Heisler
- Department of Microbiology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Kristen A Johnson
- Department of Molecular Genetics, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Duo H Ma
- Department of Microbiology, The University of Texas Southwestern Medical CenterDallasUnited States
- Department of Molecular Genetics, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Maikke B Ohlson
- Department of Microbiology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Lishu Zhang
- Department of Microbiology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Michelle Tran
- Department of Molecular Genetics, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Chase D Corley
- Department of Molecular Genetics, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Michael E Abrams
- Department of Microbiology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Jeffrey G McDonald
- Department of Molecular Genetics, The University of Texas Southwestern Medical CenterDallasUnited States
| | - John W Schoggins
- Department of Microbiology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Neal M Alto
- Department of Microbiology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Arun Radhakrishnan
- Department of Molecular Genetics, The University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
6
|
Celik C, Lee SYT, Yap WS, Thibault G. Endoplasmic reticulum stress and lipids in health and diseases. Prog Lipid Res 2023; 89:101198. [PMID: 36379317 DOI: 10.1016/j.plipres.2022.101198] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/14/2022]
Abstract
The endoplasmic reticulum (ER) is a complex and dynamic organelle that regulates many cellular pathways, including protein synthesis, protein quality control, and lipid synthesis. When one or multiple ER roles are dysregulated and saturated, the ER enters a stress state, which, in turn, activates the highly conserved unfolded protein response (UPR). By sensing the accumulation of unfolded proteins or lipid bilayer stress (LBS) at the ER, the UPR triggers pathways to restore ER homeostasis and eventually induces apoptosis if the stress remains unresolved. In recent years, it has emerged that the UPR works intimately with other cellular pathways to maintain lipid homeostasis at the ER, and so does at cellular levels. Lipid distribution, along with lipid anabolism and catabolism, are tightly regulated, in part, by the ER. Dysfunctional and overwhelmed lipid-related pathways, independently or in combination with ER stress, can have reciprocal effects on other cellular functions, contributing to the development of diseases. In this review, we summarize the current understanding of the UPR in response to proteotoxic stress and LBS and the breadth of the functions mitigated by the UPR in different tissues and in the context of diseases.
Collapse
Affiliation(s)
- Cenk Celik
- School of Biological Sciences, Nanyang Technological University, Singapore
| | | | - Wei Sheng Yap
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Guillaume Thibault
- School of Biological Sciences, Nanyang Technological University, Singapore; Mechanobiology Institute, National University of Singapore, Singapore; Institute of Molecular and Cell Biology, A*STAR, Singapore.
| |
Collapse
|
7
|
Zhou F, Sun X. Cholesterol Metabolism: A Double-Edged Sword in Hepatocellular Carcinoma. Front Cell Dev Biol 2021; 9:762828. [PMID: 34869352 PMCID: PMC8635701 DOI: 10.3389/fcell.2021.762828] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) represents a leading cause of cancer-related deaths globally. The rising incidence of metabolic syndrome and its hepatic manifestation, nonalcoholic fatty liver disease (NAFLD), have emerged as the fastest-growing cause of HCC in recent years. Cholesterol, a major lipid component of the cell membrane and lipoprotein particles, is primarily produced and metabolized by the liver. Numerous studies have revealed an increased cholesterol biosynthesis and uptake, reduced cholesterol exportation and excretion in HCC, which all contribute to lipotoxicity, inflammation, and fibrosis, known HCC risk factors. In contrast, some clinical studies have shown that higher cholesterol is associated with a reduced risk of HCC. These contradictory observations imply that the relationship between cholesterol and HCC is far more complex than initially anticipated. Understanding the role of cholesterol and deciphering the underlying molecular events in HCC development is highly relevant to developing new therapies. Here, we discuss the current understanding of cholesterol metabolism in the pathogenesis of NAFLD-associated HCC, and the underlying mechanisms, including the roles of cholesterol in the disruption of normal function of specific cell types and signaling transduction. We also review the clinical progression in evaluating the association of cholesterol with HCC. The therapeutic effects of lowering cholesterol will also be summarized. We also interpret reasons for the contradictory observations from different preclinical and human studies of the roles of cholesterol in HCC, aiming to provide a critical assessment of the potential of cholesterol as a therapeutic target.
Collapse
Affiliation(s)
- Fangli Zhou
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoli Sun
- Department of Pharmacology, Mays Cancer Center, Transplant Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
8
|
Zhang CL, Wang HL, Li PC, Hong CD, Chen AQ, Qiu YM, Zeng AP, Zhou YF, Hu B, Li YN. Mfsd2a overexpression alleviates vascular dysfunction in diabetic retinopathy. Pharmacol Res 2021; 171:105755. [PMID: 34229049 DOI: 10.1016/j.phrs.2021.105755] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 11/30/2022]
Abstract
Diabetic retinopathy (DR) is one of the common complications in diabetic patients. Nowadays, VEGF pathway is subject to extensive research. However, about 27% of the patients have a poor visual outcome, with 50% still having edema after two years' treatment of diabetic macular edema (DME) with ranibizumab. Docosahexaenoic acid (DHA), the primary ω-3 long-chain polyunsaturated fatty acid (LC-PUFA), reduces abnormal neovascularization and alleviates neovascular eye diseases. A study reported that fish oil reduced the incidence of retinopathy of prematurity (ROP) by about 27.5% in preterm infants. Although ω-3 LC-PUFAs protects against pathological retinal neovascularization, the treatment effectiveness is low. It is interesting to investigate why DHA therapy fails in some patients. In human vitreous humor samples, we found that the ratio of DHA and DHA-derived metabolites to total fatty acids was higher in vitreous humor from DR patients than that from macular hole patients; however, the ratio of DHA metabolites to DHA and DHA-derived metabolites was lower in the diabetic vitreous humor. The expression of Mfsd2a, the LPC-DHA transporter, was reduced in the oxygen-induced retinopathy (OIR) model and streptozotocin (STZ) model. In vitro, Mfsd2a overexpression inhibited endothelial cell proliferation, migration and vesicular transcytosis. Moreover, Mfsd2a overexpression in combination with the DHA diet obviously reduced abnormal retinal neovascularization and vascular leakage, which is more effective than Mfsd2a overexpression alone. These results suggest that DHA therapy failure in some DR patients is linked to low expression of Mfsd2a, and the combination of Mfsd2a overexpression and DHA therapy may be an effective treatment.
Collapse
Affiliation(s)
- Chun-Lin Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hai-Ling Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Peng-Cheng Li
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Can-Dong Hong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - An-Qi Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yan-Mei Qiu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ai-Ping Zeng
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yi-Fan Zhou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Ya-Nan Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
9
|
Biancur DE, Kapner KS, Yamamoto K, Banh RS, Neggers JE, Sohn ASW, Wu W, Manguso RT, Brown A, Root DE, Aguirre AJ, Kimmelman AC. Functional Genomics Identifies Metabolic Vulnerabilities in Pancreatic Cancer. Cell Metab 2021; 33:199-210.e8. [PMID: 33152323 PMCID: PMC7790858 DOI: 10.1016/j.cmet.2020.10.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/31/2020] [Accepted: 10/19/2020] [Indexed: 12/28/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a deadly cancer characterized by complex metabolic adaptations that promote survival in a severely hypoxic and nutrient-limited tumor microenvironment (TME). Modeling microenvironmental influences in cell culture has been challenging, and technical limitations have hampered the comprehensive study of tumor-specific metabolism in vivo. To systematically interrogate metabolic vulnerabilities in PDA, we employed parallel CRISPR-Cas9 screens using in vivo and in vitro systems. This work revealed striking overlap of in vivo metabolic dependencies with those in vitro. Moreover, we identified that intercellular nutrient sharing can mask dependencies in pooled screens, highlighting a limitation of this approach to study tumor metabolism. Furthermore, metabolic dependencies were similar between 2D and 3D culture, although 3D culture may better model vulnerabilities that influence certain oncogenic signaling pathways. Lastly, our work demonstrates the power of genetic screening approaches to define in vivo metabolic dependencies and pathways that may have therapeutic utility.
Collapse
Affiliation(s)
- Douglas E Biancur
- Department of Radiation Oncology, Perlmutter Cancer Center, New York University Medical Center, New York, NY 10016, USA
| | - Kevin S Kapner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Keisuke Yamamoto
- Department of Radiation Oncology, Perlmutter Cancer Center, New York University Medical Center, New York, NY 10016, USA
| | - Robert S Banh
- Department of Radiation Oncology, Perlmutter Cancer Center, New York University Medical Center, New York, NY 10016, USA
| | - Jasper E Neggers
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Albert S W Sohn
- Department of Radiation Oncology, Perlmutter Cancer Center, New York University Medical Center, New York, NY 10016, USA
| | - Warren Wu
- Department of Pathology and Perlmutter Cancer Center, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | | - Adam Brown
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - David E Root
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Andrew J Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Alec C Kimmelman
- Department of Radiation Oncology, Perlmutter Cancer Center, New York University Medical Center, New York, NY 10016, USA.
| |
Collapse
|
10
|
Transcriptional regulation mechanism of sterol regulatory element binding proteins on Δ6 fatty acyl desaturase in razor clam Sinonovacula constricta. Br J Nutr 2020; 124:881-889. [PMID: 32517818 DOI: 10.1017/s0007114520002068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The razor clam, Sinonovacula constricta, contains high levels of long-chain PUFA (LC-PUFA), which are critical for human health. In addition, S. constricta is the first marine mollusc demonstrated to possess Δ6 fatty acyl desaturase (Fad) and complete LC-PUFA biosynthetic ability, providing a good representative to investigate the molecular mechanism of sterol regulatory element binding proteins (SREBP) in regulating Δ6 Fad for LC-PUFA biosynthesis in marine molluscs. Herein, S. constricta SREBP and Δ6 Fad promoter were cloned and characterised. Subsequently, dual luciferase and electrophoretic mobility shift assays were conducted to explore the SREBP binding elements in the core regulatory region of S. constricta Δ6 Fad promoter. Results showed that S. constricta SREBP had a very conservative basic helix-loop-helix-leucine zipper motif, while S. constricta Δ6 Fad promoter exhibited very poor identity with teleost Fads2 promoters, indicating their differentiation during evolution. A 454 bp region harbouring a core sequence in S. constricta Δ6 Fad promoter was predicted to be essential for the transcriptional activation by SREBP. This was the first report on the regulatory mechanism of LC-PUFA biosynthesis in marine molluscs, which would facilitate optimising the LC-PUFA biosynthetic pathway of bivalves in further studies.
Collapse
|
11
|
Danesi F, Larsen BD, Di Nunzio M, Nielsen R, de Biase D, Valli V, Mandrup S, Bordoni A. Co-Administration of Propionate or Protocatechuic Acid Does Not Affect DHA-Specific Transcriptional Effects on Lipid Metabolism in Cultured Hepatic Cells. Nutrients 2020; 12:nu12102952. [PMID: 32993128 PMCID: PMC7599819 DOI: 10.3390/nu12102952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/08/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
Long-chain n-3 polyunsaturated fatty acids (n-3 LC-PUFAs) are collectively recognized triglyceride-lowering agents, and their preventive action is likely mediated by changes in gene expression. However, as most studies employ fish oil, which contains a mixture of n-3 LC-PUFAs, the docosahexaenoic acid (DHA)-specific transcriptional effects on lipid metabolism are still unclear. The aim of the present study was to further elucidate the DHA-induced transcriptional effects on lipid metabolism in the liver, and to investigate the effects of co-administration with other bioactive compounds having effects on lipid metabolism. To this purpose, HepG2 cells were treated for 6 or 24 h with DHA, the short-chain fatty acid propionate (PRO), and protocatechuic acid (PCA), the main human metabolite of cyanidin-glucosides. Following supplementation, we mapped the global transcriptional changes. PRO and PCA alone had a very slight effect on the transcriptome; on the contrary, supplementation of DHA highly repressed the steroid and fatty acid biosynthesis pathways, this transcriptional modulation being not affected by co-supplementation. Our results confirm that DHA effect on lipid metabolism are mediated at least in part by modulation of the expression of specific genes. PRO and PCA could contribute to counteracting dyslipidemia through other mechanisms.
Collapse
Affiliation(s)
- Francesca Danesi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, 47521 Cesena, Italy; (F.D.); (M.D.N.); (V.V.)
- Interdepartmental Center for Agri-food Industrial Research (CIRI Agrifood), University of Bologna, 47521 Cesena, Italy
| | - Bjørk D. Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Syddansk Universitet, 5230 Odense M, Denmark; (B.D.L.); (R.N.); (S.M.)
| | - Mattia Di Nunzio
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, 47521 Cesena, Italy; (F.D.); (M.D.N.); (V.V.)
- Interdepartmental Center for Agri-food Industrial Research (CIRI Agrifood), University of Bologna, 47521 Cesena, Italy
| | - Ronni Nielsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Syddansk Universitet, 5230 Odense M, Denmark; (B.D.L.); (R.N.); (S.M.)
| | - Dario de Biase
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40138 Bologna, Italy;
| | - Veronica Valli
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, 47521 Cesena, Italy; (F.D.); (M.D.N.); (V.V.)
| | - Susanne Mandrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Syddansk Universitet, 5230 Odense M, Denmark; (B.D.L.); (R.N.); (S.M.)
| | - Alessandra Bordoni
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, 47521 Cesena, Italy; (F.D.); (M.D.N.); (V.V.)
- Interdepartmental Center for Agri-food Industrial Research (CIRI Agrifood), University of Bologna, 47521 Cesena, Italy
- Correspondence: ; Tel.: +39-0547-338955
| |
Collapse
|
12
|
Ruiz CF, Montal ED, Haley JA, Bott AJ, Haley JD. SREBP1 regulates mitochondrial metabolism in oncogenic KRAS expressing NSCLC. FASEB J 2020; 34:10574-10589. [PMID: 32568455 DOI: 10.1096/fj.202000052r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/08/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022]
Abstract
Cancer cells require extensive metabolic reprograming in order to provide the bioenergetics and macromolecular precursors needed to sustain a malignant phenotype. Mutant KRAS is a driver oncogene that is well-known for its ability to regulate the ERK and PI3K signaling pathways. However, it is now appreciated that KRAS can promote the tumor growth via upregulation of anabolic metabolism. We recently reported that oncogenic KRAS promotes a gene expression program of de novo lipogenesis in non-small cell lung cancer (NSCLC). To define the mechanism(s) responsible, we focused on the lipogenic transcription factor SREBP1. We observed that KRAS increases SREBP1 expression and genetic knockdown of SREBP1 significantly inhibited the cell proliferation of mutant KRAS-expressing cells. Unexpectedly, lipogenesis was not significantly altered in cells subject to SREBP1 knockdown. Carbon tracing metabolic studies showed a significant decrease in oxidative phosphorylation and RNA-seq data revealed a significant decrease in mitochondrial encoded subunits of the electron transport chain (ETC). Taken together, these data support a novel role, distinct from lipogenesis, of SREBP1 on mitochondrial function in mutant KRAS NSCLC.
Collapse
Affiliation(s)
- Christian F Ruiz
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Emily D Montal
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John A Haley
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Alex J Bott
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - John D Haley
- Department of Pathology, Stony Brook University School of Medicine, Stony Brook, NY, USA
| |
Collapse
|
13
|
Dorotea D, Koya D, Ha H. Recent Insights Into SREBP as a Direct Mediator of Kidney Fibrosis via Lipid-Independent Pathways. Front Pharmacol 2020; 11:265. [PMID: 32256356 PMCID: PMC7092724 DOI: 10.3389/fphar.2020.00265] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/24/2020] [Indexed: 12/17/2022] Open
Abstract
Sterol regulatory-element binding proteins (SREBPs) are classical regulators of cellular lipid metabolism in the kidney and other tissues. SREBPs are currently recognized as versatile transcription factors involved in a myriad of cellular processes. Meanwhile, SREBPs have been recognized to mediate lipotoxicity, contributing to the progression of kidney diseases. SREBP1 has been shown to bind to the promoter region of TGFβ, a major pro-fibrotic signaling mechanism in the kidney. Conversely, TGFβ activates SREBP1 transcriptional activity suggesting a positive feedback loop of SREBP1 in TGFβ signaling. Public ChIP-seq data revealed numerous non-lipid transcriptional targets of SREBPs that plausibly play roles in progressive kidney disease and fibrosis. This review provides new insights into SREBP as a mediator of kidney fibrosis via lipid-independent pathways.
Collapse
Affiliation(s)
- Debra Dorotea
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, South Korea
| | - Daisuke Koya
- Department of Internal Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
14
|
Beneficial Effects of SREBP Decoy Oligodeoxynucleotide in an Animal Model of Hyperlipidemia. Int J Mol Sci 2020; 21:ijms21020552. [PMID: 31952262 PMCID: PMC7014099 DOI: 10.3390/ijms21020552] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 12/15/2022] Open
Abstract
Hyperlipidemia is a chronic disorder that plays an important role in the development of cardiovascular diseases, type II diabetes, atherosclerosis, hypertension, and non-alcoholic fatty liver disease. Hyperlipidemias have created a worldwide health crisis and impose a substantial burden not only on personal health but also on societies and economies. Transcription factors in the sterol regulatory element binding protein (SREBP) family are key regulators of the lipogenic genes in the liver. SREBPs regulate lipid homeostasis by controlling the expression of a range of enzymes required for the synthesis of endogenous cholesterol, fatty acids, triacylglycerol, and phospholipids. Thereby, SREBPs have been considered as targets for the treatment of metabolic diseases. The aim of this study was to investigate the beneficial functions and the possible underlying molecular mechanisms of SREBP decoy ODN, which is a novel inhibitor of SREBPs, in high-fat diet (HFD)-fed hyperlipidemic mice. Our studies using HFD-induced hyperlipidemia animal model revealed that SREBB decoy ODN inhibited the increased expression of fatty acid synthetic pathway, such as SREBP-1c, FAS, SCD-1, ACC1, and HMGCR. In addition, SREBP decoy ODN decreased pro-inflammatory cytokines, including TNF-α, IL-1β, IL-8, and IL-6 expression. These results suggest that SREBP decoy ODN exerts its anti-hyperlipidemia effects in HFD-induced hyperlipidemia mice by regulating their lipid metabolism and inhibiting lipogenesis through inactivation of the SREPB pathway.
Collapse
|
15
|
Yu H, Liang H, Ren M, Ji K, Yang Q, Ge X, Xi B, Pan L. Effects of dietary fenugreek seed extracts on growth performance, plasma biochemical parameters, lipid metabolism, Nrf2 antioxidant capacity and immune response of juvenile blunt snout bream (Megalobrama amblycephala). FISH & SHELLFISH IMMUNOLOGY 2019; 94:211-219. [PMID: 31499200 DOI: 10.1016/j.fsi.2019.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/01/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Dietary administration of some plant-derived substances have been proved of great economic value in aquaculture. In order to investigate the effects of dietary fenugreek seed extracts (FSE) on juvenile blunt snout bream (Megalobrama amblycephala), a feeding trial was conducted for 8 weeks. The results showed that final weight (FW), weight gain (WG), feed conversion ratio (FCR) and specific growth rate (SGR) were not significantly affected by dietary FSE levels. The whole body lipid contents of fish fed with 0.04%, 0.08% and 0.16% FSE diets were significantly lowered compared to the control group. Dietary FSE diets significantly affected plasma complement component 3 (C3), immunoglobulin M (IgM), albumin (ALB) and total protein (TP). The relative expressions of acetyl CoA carboxylase (ACC), fatty acid synthase (FAS) and sterol regulatory element binding protein-1 (SREBP1) mRNA in the liver of fish decreased significantly with increasing dietary FSE levels from 0% up to 0.04%. FSE supplementation diets lowered the liver pro-inflammatory genes expressions by regulating tumor necrosis factor-α (TNF-α) and interleukin 8 (IL-8) mRNA levels and increased anti-inflammatory genes expression by regulating transforming growth factor (TGF-β) and interleukin 10 (IL-10). FSE diets increased growth factor-1 (IGF-1) and target of rapamycin (TOR) mRNA levels from 0% up to 0.04%, 0.04% FSE diets significantly increased growth factor-1 (IGF-1) mRNA levels and S6 kinase-polypeptide 1 (S6K1) mRNA levels compared to the control group. 0.04% FSE diets significantly increased superoxide dismutase (SOD) activities and 0.08% FSE diets significantly increased catalase (CAT) and glutathione peroxidase (GPx) activities, 0.16% FSE diets significantly increased total antioxidant capacity (T-AOC) activities compared to the control group. Additionally, compared to the control group, 0.04% dietary FSE significantly up-regulated nuclear factor erythroid 2-related factor 2 (Nrf2) mRNA levels and glutathione peroxidase-1 (GPx1) mRNA levels, at the same time, 0.02%, 0.04%, 0.08%, 0.16% FSE diets significantly down-regulated kelch-like ECH-associated protein 1 (Keap1) mRNA levels. However, no significant effects were observed on copper zinc superoxide dismutase (Cu/Zn-SOD) and manganese superoxide dismutase (Mn-SOD). Our study indicated that dietary FSE could improve plasma biochemical parameters, regulate lipid metabolism related genes, promote Nrf2 antioxidant capacity and enhance immune response of juvenile blunt snout bream.
Collapse
Affiliation(s)
- Heng Yu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Hualiang Liang
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China
| | - Mingchun Ren
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China.
| | - Ke Ji
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Qiang Yang
- Jiangsu Tianshen Co., Ltd, Huai'an, 223003, China
| | - Xianping Ge
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China
| | - Bingwen Xi
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China
| | - Liangkun Pan
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China
| |
Collapse
|
16
|
Silva-Marrero JI, Villasante J, Rashidpour A, Palma M, Fàbregas A, Almajano MP, Viegas I, Jones JG, Miñarro M, Ticó JR, Baanante IV, Metón I. The Administration of Chitosan-Tripolyphosphate-DNA Nanoparticles to Express Exogenous SREBP1a Enhances Conversion of Dietary Carbohydrates into Lipids in the Liver of Sparus aurata. Biomolecules 2019; 9:biom9080297. [PMID: 31344838 PMCID: PMC6724022 DOI: 10.3390/biom9080297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/16/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022] Open
Abstract
In addition to being essential for the transcription of genes involved in cellular lipogenesis, increasing evidence associates sterol regulatory element binding proteins (SREBPs) with the transcriptional control of carbohydrate metabolism. The aim of this study was to assess the effect of overexpression SREBP1a, a potent activator of all SREBP-responsive genes, on the intermediary metabolism of Sparus aurata, a glucose-intolerant carnivorous fish. Administration of chitosan-tripolyphosphate nanoparticles complexed with a plasmid driving expression of the N-terminal transactivation domain of SREBP1a significantly increased SREBP1a mRNA and protein in the liver of S. aurata. Overexpression of SREBP1a enhanced the hepatic expression of key genes in glycolysis-gluconeogenesis (glucokinase and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase), fatty acid synthesis (acetyl-CoA carboxylase 1 and acetyl-CoA carboxylase 2), elongation (elongation of very long chain fatty acids protein 5) and desaturation (fatty acid desaturase 2) as well as reduced nicotinamide adenine dinucleotide phosphate production (glucose-6-phosphate 1-dehydrogenase) and cholesterol synthesis (3-hydroxy-3-methylglutaryl-coenzyme A reductase), leading to increased blood triglycerides and cholesterol levels. Beyond reporting the first study addressing in vivo effects of exogenous SREBP1a in a glucose-intolerant model, our findings support that SREBP1a overexpression caused multigenic effects that favoured hepatic glycolysis and lipogenesis and thus enabled protein sparing by improving dietary carbohydrate conversion into fatty acids and cholesterol.
Collapse
Affiliation(s)
- Jonás I Silva-Marrero
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Juliana Villasante
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028 Barcelona, Spain
- Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain
| | - Ania Rashidpour
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Mariana Palma
- Center for Functional Ecology (CFE), Department Life Sciences, University of Coimbra, Calçada Martins de Freitas, 3000-456 Coimbra, Portugal
| | - Anna Fàbregas
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028 Barcelona, Spain
| | - María Pilar Almajano
- Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain
| | - Ivan Viegas
- Center for Functional Ecology (CFE), Department Life Sciences, University of Coimbra, Calçada Martins de Freitas, 3000-456 Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal
| | - John G Jones
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal
| | - Montserrat Miñarro
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Josep R Ticó
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Isabel V Baanante
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Isidoro Metón
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028 Barcelona, Spain.
| |
Collapse
|
17
|
Zhou YJ, Chang YN, You JQ, Li SZ, Zhuang W, Cao CJ. Cold-pressed Canola Oil Reduces Hepatic Steatosis by Modulating Oxidative Stress and Lipid Metabolism in KM Mice Compared with Refined Bleached Deodorized Canola Oil. J Food Sci 2019; 84:1900-1908. [PMID: 31183867 DOI: 10.1111/1750-3841.14504] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 01/15/2019] [Accepted: 02/14/2019] [Indexed: 12/15/2022]
Abstract
The quality of canola oil is affected by different extraction methods. The effect of cold-pressed canola oil (CPCO) diet and traditional refined bleached deodorized canola oil (RBDCO) diet on lipid accumulation and hepatic steatosis in mice were investigated. The body weight, peroxisome proliferator-activated receptor-α concentration, serum lipid profile, insulin sensitivity, and oxidative stress were increased in mice fed with CPCO diet, which had higher unsaturated fatty acid, tocopherols, phytosterols, and phospholipids but lower saturated fatty acid than RBDCO, after 12 weeks,. Moreover, CPCO significantly increased tocopherols and phytosterols content in liver and reduced liver cholesterol contents and lipid vacuoles accumulation than RBDCO. Also, serum proinflammatory cytokines, 3-hydroxy-3-methylglutary coenzyme A reductase expression level, lipogenic enzymes, and transcriptional factors such as sterol regulatory element-binding proteins 1c, acetyl-CoA carboxylase, and fatty acid synthase in the liver were also markedly downregulated from CPCO diet mice. Overall, CPCO can reduce lipid accumulation and hepatic steatosis by regulating oxidative stress and lipid metabolism in Kun Ming mice compared with RBDCO. PRACTICAL APPLICATION: The results suggested that more bioactive components were contained in cold-pressed canola oil (CPCO) rather than refined bleached deodorized canola oil (RBDCO). CPCO could lower the risk of obesity and hyperlipidemia, reduce lipid accumulation, and prevent hepatic steatosis. It could be considered as a kind of better edible oil than RBDCO.
Collapse
Affiliation(s)
- Ying-Jun Zhou
- The State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China Univ. of Science and Technology, Xuhui District, Shanghai, China
| | - Ya-Ning Chang
- The State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China Univ. of Science and Technology, Xuhui District, Shanghai, China
| | - Jia-Qi You
- The State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China Univ. of Science and Technology, Xuhui District, Shanghai, China
| | - Sui-Zi Li
- The State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China Univ. of Science and Technology, Xuhui District, Shanghai, China
| | - Wei Zhuang
- The State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China Univ. of Science and Technology, Xuhui District, Shanghai, China
| | - Cheng-Jia Cao
- The State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China Univ. of Science and Technology, Xuhui District, Shanghai, China
| |
Collapse
|
18
|
USP15 Participates in Hepatitis C Virus Propagation through Regulation of Viral RNA Translation and Lipid Droplet Formation. J Virol 2019; 93:JVI.01708-18. [PMID: 30626683 DOI: 10.1128/jvi.01708-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/23/2018] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) utilizes cellular factors for efficient propagation. Ubiquitin is covalently conjugated to the substrate to alter its stability or to modulate signal transduction. In this study, we examined the importance of ubiquitination for HCV propagation. We found that inhibition of deubiquitinating enzymes (DUBs) or overexpression of nonspecific DUBs impaired HCV replication, suggesting that ubiquitination regulates HCV replication. To identify specific DUBs involved in HCV propagation, we set up RNA interference (RNAi) screening against DUBs and successfully identified ubiquitin-specific protease 15 (USP15) as a novel host factor for HCV propagation. Our studies showed that USP15 is involved in translation of HCV RNA and production of infectious HCV particles. In addition, deficiency of USP15 in human hepatic cell lines (Huh7 and Hep3B/miR-122 cells) but not in a nonhepatic cell line (293T cells) impaired HCV propagation, suggesting that USP15 participates in HCV propagation through the regulation of hepatocyte-specific functions. Moreover, we showed that loss of USP15 had no effect on innate immune responses in vitro and in vivo We also found that USP15-deficient Huh7 cells showed reductions in the amounts of lipid droplets (LDs), and the addition of palmitic acids restored the production of infectious HCV particles. Taken together, these data suggest that USP15 participates in HCV propagation by regulating the translation of HCV RNA and the formation of LDs.IMPORTANCE Although ubiquitination has been shown to play important roles in the HCV life cycle, the roles of deubiquitinating enzymes (DUBs), which cleave ubiquitin chains from their substrates, in HCV propagation have not been investigated. Here, we identified USP15 as a DUB regulating HCV propagation. USP15 showed no interaction with viral proteins and no participation in innate immune responses. Deficiency of USP15 in Huh7 cells resulted in suppression of the translation of HCV RNA and reduction in the amounts of lipid droplets, and the addition of fatty acids partially restored the production of infectious HCV particles. These data suggest that USP15 participates in HCV propagation in hepatic cells through the regulation of viral RNA translation and lipid metabolism.
Collapse
|
19
|
A systemic study of lipid metabolism regulation in salmon fingerlings and early juveniles fed plant oil. Br J Nutr 2018; 120:653-664. [PMID: 30064538 DOI: 10.1017/s0007114518001885] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In salmon farming, the scarcity of fish oil has driven a shift towards the use of plant-based oil from vegetable or seed, leading to fish feed low in long-chain PUFA (LC-PUFA) and cholesterol. Atlantic salmon has the capacity to synthesise both LC-PUFA and cholesterol, but little is known about the regulation of synthesis and how it varies throughout salmon life span. Here, we present a systemic view of lipid metabolism pathways based on lipid analyses and transcriptomic data from salmon fed contrasting diets of plant or fish oil from first feeding. We analysed four tissues (stomach, pyloric caeca, hindgut and liver) at three life stages (initial feeding 0·16 g, 2·5 g fingerlings and 10 g juveniles). The strongest response to diets higher in plant oil was seen in pyloric caeca of fingerlings, with up-regulation of thirty genes in pathways for cholesterol uptake, transport and biosynthesis. In juveniles, only eleven genes showed differential expression in pyloric caeca. This indicates a higher requirement of dietary cholesterol in fingerlings, which could result in a more sensitive response to plant oil. The LC-PUFA elongation and desaturation pathway was down-regulated in pyloric caeca, probably regulated by srebp1 genes. In liver, cholesterol metabolism and elongation and desaturation genes were both higher on plant oil. Stomach and hindgut were not notably affected by dietary treatment. Plant oil also had a higher impact on fatty acid composition of fingerlings compared with juveniles, suggesting that fingerlings have less metabolic regulatory control when primed with plant oil diet compared with juveniles.
Collapse
|
20
|
Electroacupuncture ameliorates poloxamer 407-induced hyperlipidemia through suppressing hepatic SREBP-2 expression in rats. Life Sci 2018; 203:20-26. [DOI: 10.1016/j.lfs.2018.04.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/05/2018] [Accepted: 04/12/2018] [Indexed: 01/07/2023]
|
21
|
Gianfrancesco MA, Paquot N, Piette J, Legrand-Poels S. Lipid bilayer stress in obesity-linked inflammatory and metabolic disorders. Biochem Pharmacol 2018; 153:168-183. [PMID: 29462590 DOI: 10.1016/j.bcp.2018.02.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/15/2018] [Indexed: 12/13/2022]
Abstract
The maintenance of the characteristic lipid compositions and physicochemical properties of biological membranes is essential for their proper function. Mechanisms allowing to sense and restore membrane homeostasis have been identified in prokaryotes for a long time and more recently in eukaryotes. A membrane remodeling can result from aberrant metabolism as seen in obesity. In this review, we describe how such lipid bilayer stress can account for the modulation of membrane proteins involved in the pathogenesis of obesity-linked inflammatory and metabolic disorders. We address the case of the Toll-like receptor 4 that is implicated in the obesity-related low grade inflammation and insulin resistance. The lipid raft-mediated TLR4 activation is promoted by an enrichment of the plasma membrane with saturated lipids or cholesterol increasing the lipid phase order. We discuss of the plasma membrane Na, K-ATPase that illustrates a new concept according to which direct interactions between specific residues and particular lipids determine both stability and activity of the pump in parallel with indirect effects of the lipid bilayer. The closely related sarco(endo)-plasmic Ca-ATPase embedded in the more fluid ER membrane seems to be more sensitive to a lipid bilayer stress as demonstrated by its inactivation in cholesterol-loaded macrophages or its inhibition mediated by an increased PtdCho/PtdEtn ratio in obese mice hepatocytes. Finally, we describe the model recently proposed for the activation of the conserved IRE-1 protein through alterations in the ER membrane lipid packing and thickness. Such IRE-1 activation could occur in response to abnormal lipid synthesis and membrane remodeling as observed in hepatocytes exposed to excess nutrients. Since the IRE-1/XBP1 branch also stimulates the lipid synthesis, this pathway could create a vicious cycle "lipogenesis-ER lipid bilayer stress-lipogenesis" amplifying hepatic ER pathology and the obesity-linked systemic metabolic defects.
Collapse
Affiliation(s)
- Marco A Gianfrancesco
- Laboratory of Immunometabolism and Nutrition, GIGA-I3, University of Liège, Liège, Belgium; Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, University Hospital of Liège, Liège, Belgium
| | - Nicolas Paquot
- Laboratory of Immunometabolism and Nutrition, GIGA-I3, University of Liège, Liège, Belgium; Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, University Hospital of Liège, Liège, Belgium
| | - Jacques Piette
- Laboratory of Virology and Immunology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
| | - Sylvie Legrand-Poels
- Laboratory of Immunometabolism and Nutrition, GIGA-I3, University of Liège, Liège, Belgium; Laboratory of Virology and Immunology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium.
| |
Collapse
|
22
|
Wen YA, Xiong X, Zaytseva YY, Napier DL, Vallee E, Li AT, Wang C, Weiss HL, Evers BM, Gao T. Downregulation of SREBP inhibits tumor growth and initiation by altering cellular metabolism in colon cancer. Cell Death Dis 2018; 9:265. [PMID: 29449559 PMCID: PMC5833501 DOI: 10.1038/s41419-018-0330-6] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/18/2018] [Accepted: 01/22/2018] [Indexed: 12/14/2022]
Abstract
Sterol regulatory element-binding proteins (SREBPs) belong to a family of transcription factors that regulate the expression of genes required for the synthesis of fatty acids and cholesterol. Three SREBP isoforms, SREBP1a, SREBP1c, and SREBP2, have been identified in mammalian cells. SREBP1a and SREBP1c are derived from a single gene through the use of alternative transcription start sites. Here we investigated the role of SREBP-mediated lipogenesis in regulating tumor growth and initiation in colon cancer. Knockdown of either SREBP1 or SREBP2 decreased levels of fatty acids as a result of decreased expression of SREBP target genes required for lipid biosynthesis in colon cancer cells. Bioenergetic analysis revealed that silencing SREBP1 or SREBP2 expression reduced the mitochondrial respiration, glycolysis, as well as fatty acid oxidation indicating an alteration in cellular metabolism. Consequently, the rate of cell proliferation and the ability of cancer cells to form tumor spheroids in suspension culture were significantly decreased. Similar results were obtained in colon cancer cells in which the proteolytic activation of SREBP was blocked. Importantly, knockdown of either SREBP1 or SREBP2 inhibited xenograft tumor growth in vivo and decreased the expression of genes associated with cancer stem cells. Taken together, our findings establish the molecular basis of SREBP-dependent metabolic regulation and provide a rationale for targeting lipid biosynthesis as a promising approach in colon cancer treatment.
Collapse
Affiliation(s)
- Yang-An Wen
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40536-0509, USA
| | - Xiaopeng Xiong
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40536-0509, USA
| | - Yekaterina Y Zaytseva
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40536-0509, USA.,Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536-0509, USA
| | - Dana L Napier
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40536-0509, USA
| | - Emma Vallee
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40536-0509, USA
| | - Austin T Li
- Paul Laurence Dunbar High School, Lexington, KY, 40513, USA
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40536-0509, USA
| | - Heidi L Weiss
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40536-0509, USA
| | - B Mark Evers
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40536-0509, USA.,Department of Surgery, University of Kentucky, Lexington, KY, 40536-0509, USA
| | - Tianyan Gao
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40536-0509, USA. .,Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536-0509, USA.
| |
Collapse
|
23
|
The compositional and metabolic responses of gilthead seabream (Sparus aurata) to a gradient of dietary fish oil and associatedn-3 long-chain PUFA content. Br J Nutr 2017; 118:1010-1022. [DOI: 10.1017/s0007114517002975] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractThe replacement of fish oil (FO) with vegetable oil (VO) in feed formulations reduces the availability ofn-3 long-chain PUFA (LC-PUFA) to marine fish such as gilthead seabream. The aim of this study was to examine compositional and physiological responses to a dietary gradient ofn-3 LC-PUFA. Six iso-energetic and iso-nitrogenous diets (D1–D6) were fed to seabream, with the added oil being a blend of FO and VO to achieve a dietary gradient ofn-3 LC-PUFA. Fish were sampled after 4 months feeding, to determine biochemical composition, tissue fatty acid concentrations and lipid metabolic gene expression. The results indicated a disturbance to lipid metabolism, with fat in the liver increased and fat deposits in the viscera reduced. Tissue fatty acid profiles were altered towards the fatty acid compositions of the diets. There was evidence of endogenous modification of dietary PUFA in the liver which correlated with the expression of fatty acid desaturase 2 (fads2). Expression of sterol regulatory element binding protein 1 (srebp1), fads2and fatty acid synthase increased in the liver, whereas PPARα1 pathways appeared to be supressed by dietary VO in a concentration-dependent manner. The effects in lipogenic genes appear to become measurable in D1–D3, which agrees with the weight gain data suggesting that disturbances to energy metabolism and lipogenesis may be related to performance differences. These findings suggested that suppression ofβ-oxidation and stimulation ofsrebp1-mediated lipogenesis may play a role in contributing toward steatosis in fish fedn-3 LC-PUFA deficient diets.
Collapse
|
24
|
Gu L, Wang Y, Xu Y, Tian Q, Lei G, Zhao C, Gao Z, Pan Q, Zhao W, Nong L, Tan S. Lunasin functionally enhances LDL uptake via inhibiting PCSK9 and enhancing LDLR expression in vitro and in vivo. Oncotarget 2017; 8:80826-80840. [PMID: 29113347 PMCID: PMC5655242 DOI: 10.18632/oncotarget.20590] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/04/2017] [Indexed: 11/25/2022] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a serine protease which regulates serum low-density lipoprotein cholesterol (LDL-C) levels by promoting the degradation of the hepatic low-density lipoprotein receptor (LDLR), and has become an attractive therapeutic target for cholesterol lowering intervention. Lunasin, a 43-amino acid polypeptide initially isolated from soybean, has been previously proven to possess cholesterol lowering activity. Here we identified the down-regulation of PCSK9 expression by lunasin as one new mechanism that increased cell-surface LDLR level and enhanced LDL uptake in vitro and in vivo. Treatment of HepG2 cells with lunasin inhibited the expression of PCSK9 at mRNA and protein levels in a dose-and-time dependent manner via down-regulating hepatocyte nuclear factor-1α (HNF-1α), thereby contributing to increasing LDLR level and functionally enhancing LDL uptake. ApoE-/- mice receiving lunasin administration by intraperitoneal injection at doses of 0.125∼0.5 μmol/kg·day for 4 weeks had significantly lower PCSK9 and higher LDLR levels in hepatic tissue, as well as remarkably reduced total-cholesterol (T-CHO) and LDL-C in blood as compared to mice in vehicle control group. Furthermore, we identified that LDLR expression was up-regulated by lunasin via PI3K/Akt-mediated activation of SREBP-2 in HepG2 cells. Taken together, our findings suggest that lunasin inhibits PCSK9 expression by down-regulating HNF-1α and enhances LDLR expression via PI3K/Akt-mediated activation of SREBP-2 pathway, thereby functionally enhances LDL uptake in HepG2 cells and in ApoE-/- mice.
Collapse
Affiliation(s)
- Lili Gu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Yue Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Yaqiong Xu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Qinghua Tian
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Gaoxin Lei
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Cheng Zhao
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Zhan Gao
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Qin Pan
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Wenfeng Zhao
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Liu Nong
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Shuhua Tan
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
25
|
Skin-specific regulation of SREBP processing and lipid biosynthesis by glycerol kinase 5. Proc Natl Acad Sci U S A 2017; 114:E5197-E5206. [PMID: 28607088 DOI: 10.1073/pnas.1705312114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The recessive N-ethyl-N-nitrosourea-induced phenotype toku is characterized by delayed hair growth, progressive hair loss, and excessive accumulation of dermal cholesterol, triglycerides, and ceramides. The toku phenotype was attributed to a null allele of Gk5, encoding glycerol kinase 5 (GK5), a skin-specific kinase expressed predominantly in sebaceous glands. GK5 formed a complex with the sterol regulatory element-binding proteins (SREBPs) through their C-terminal regulatory domains, inhibiting SREBP processing and activation. In Gk5toku/toku mice, transcriptionally active SREBPs accumulated in the skin, but not in the liver; they were localized to the nucleus and led to elevated lipid synthesis and subsequent hair growth defects. Similar defective hair growth was observed in kinase-inactive GK5 mutant mice. Hair growth defects of homozygous toku mice were partially rescued by treatment with the HMG-CoA reductase inhibitor simvastatin. GK5 exists as part of a skin-specific regulatory mechanism for cholesterol biosynthesis, independent of cholesterol regulation elsewhere in the body.
Collapse
|
26
|
Differential lactate and cholesterol synthetic activities in XY and XX Sertoli cells. Sci Rep 2017; 7:41912. [PMID: 28150810 PMCID: PMC5288785 DOI: 10.1038/srep41912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 01/04/2017] [Indexed: 01/04/2023] Open
Abstract
SRY, a sex-determining gene, induces testis development in chromosomally female (XX) individuals. However, mouse XX Sertoli cells carrying Sry (XX/Sry Sertoli cells) are incapable of fully supporting germ cell development, even when the karyotype of the germ cells is XY. While it has therefore been assumed that XX/Sry Sertoli cells are not functionally equivalent to XY Sertoli cells, it has remained unclear which specific functions are affected. To elucidate the functional difference, we compared the gene expression of XY and XX/Sry Sertoli cells. Lactate and cholesterol metabolisms, essential for nursing the developing germ cells, were down-regulated in XX/Sry cells, which appears to be caused at least in part by the differential expression of histone modification enzymes SMCX/SMCY (H3K4me3 demethylase) and UTX/UTY (H3K27me3 demethylase) encoded by the sex chromosomes. We suggest that down-regulation of lactate and cholesterol metabolism that may be due to altered epigenetic modification affects the nursing functions of XX/Sry Sertoli cells.
Collapse
|
27
|
Monnerie H, Romer M, Jensen BK, Millar JS, Jordan-Sciutto KL, Kim SF, Grinspan JB. Reduced sterol regulatory element-binding protein (SREBP) processing through site-1 protease (S1P) inhibition alters oligodendrocyte differentiation in vitro. J Neurochem 2016; 140:53-67. [PMID: 27385127 DOI: 10.1111/jnc.13721] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 05/24/2016] [Accepted: 06/28/2016] [Indexed: 01/09/2023]
Abstract
The formation of the myelin membrane of the oligodendrocyte in the CNS is a fundamental process requiring the coordinated synthesis of many different components. The myelin membrane is particularly rich in lipids, however, the regulation of this lipid synthesis is not understood. In other cell types, including Schwann cells, the myelin-forming cells of the PNS, lipid synthesis is tightly regulated by the sterol regulatory element-binding protein (SREBP) family of transcription factors, but this has not been previously shown in oligodendrocytes. We investigated SREBPs' role during oligodendrocyte differentiation in vitro. Both SREBP-1 and SREBP-2 were expressed in oligodendrocyte precursor cells and differentiating oligodendrocytes. Using the selective site-1 protease (S1P) inhibitor PF-429242, which inhibits the cleavage of SREBP precursor forms into mature forms, we found that preventing SREBP processing inhibited process growth and reduced the expression level of myelin basic protein, a major component of myelin. Further, process extension deficits could be rescued by the addition of exogenous cholesterol. Blocking SREBP processing reduced mRNA transcription and protein levels of SREBP target genes involved in both the fatty acid and the cholesterol synthetic pathways. Furthermore, de novo levels and total levels of cholesterol synthesis were greatly diminished when SREBP processing was inhibited. Together these results indicate that SREBPs are important regulators of oligodendrocyte maturation and that perturbation of their activity may affect myelin formation and integrity. Cover Image for this issue: doi: 10.1111/jnc.13781.
Collapse
Affiliation(s)
- Hubert Monnerie
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Micah Romer
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Brigid K Jensen
- Department of Neuroscience, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John S Millar
- Institute of Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kelly L Jordan-Sciutto
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sangwon F Kim
- Department of Psychiatry, Center for Neurobiology and Behavior, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Judith B Grinspan
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
28
|
Cloning and Characterization of Lxr and Srebp1, and Their Potential Roles in Regulation of LC-PUFA Biosynthesis in Rabbitfish Siganus canaliculatus. Lipids 2016; 51:1051-63. [DOI: 10.1007/s11745-016-4176-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 07/04/2016] [Indexed: 10/21/2022]
|
29
|
Monnerie H, Romer M, Jensen BK, Millar JS, Jordan-Sciutto KL, Kim SF, Grinspan JB. Reduced sterol regulatory element-binding protein (SREBP) processing through site-1 protease (S1P) inhibition alters oligodendrocyte differentiation in vitro. J Neurochem 2016. [PMID: 27385127 DOI: 10.1111/jnc.13781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The formation of the myelin membrane of the oligodendrocyte in the CNS is a fundamental process requiring the coordinated synthesis of many different components. The myelin membrane is particularly rich in lipids, however, the regulation of this lipid synthesis is not understood. In other cell types, including Schwann cells, the myelin-forming cells of the PNS, lipid synthesis is tightly regulated by the sterol regulatory element-binding protein (SREBP) family of transcription factors, but this has not been previously shown in oligodendrocytes. We investigated SREBPs' role during oligodendrocyte differentiation in vitro. Both SREBP-1 and SREBP-2 were expressed in oligodendrocyte precursor cells and differentiating oligodendrocytes. Using the selective site-1 protease (S1P) inhibitor PF-429242, which inhibits the cleavage of SREBP precursor forms into mature forms, we found that preventing SREBP processing inhibited process growth and reduced the expression level of myelin basic protein, a major component of myelin. Further, process extension deficits could be rescued by the addition of exogenous cholesterol. Blocking SREBP processing reduced mRNA transcription and protein levels of SREBP target genes involved in both the fatty acid and the cholesterol synthetic pathways. Furthermore, de novo levels and total levels of cholesterol synthesis were greatly diminished when SREBP processing was inhibited. Together these results indicate that SREBPs are important regulators of oligodendrocyte maturation and that perturbation of their activity may affect myelin formation and integrity. Cover Image for this issue: doi: 10.1111/jnc.13781.
Collapse
Affiliation(s)
- Hubert Monnerie
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Micah Romer
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Brigid K Jensen
- Department of Neuroscience, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John S Millar
- Institute of Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kelly L Jordan-Sciutto
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sangwon F Kim
- Department of Psychiatry, Center for Neurobiology and Behavior, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Judith B Grinspan
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
30
|
TRC8-dependent degradation of hepatitis C virus immature core protein regulates viral propagation and pathogenesis. Nat Commun 2016; 7:11379. [PMID: 27142248 PMCID: PMC4857398 DOI: 10.1038/ncomms11379] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/21/2016] [Indexed: 01/07/2023] Open
Abstract
Signal-peptide peptidase (SPP) is an intramembrane protease that participates in the production of the mature core protein of hepatitis C virus (HCV). Here we show that SPP inhibition reduces the production of infectious HCV particles and pathogenesis. The immature core protein produced in SPP-knockout cells or by treatment with an SPP inhibitor is quickly degraded by the ubiquitin–proteasome pathway. Oral administration of the SPP inhibitor to transgenic mice expressing HCV core protein (CoreTg) reduces the expression of core protein and ameliorates insulin resistance and liver steatosis. Moreover, the haploinsufficiency of SPP in CoreTg has similar effects. TRC8, an E3 ubiquitin ligase, is required for the degradation of the immature core protein. The expression of the HCV core protein alters endoplasmic reticulum (ER) distribution and induces ER stress in SPP/TRC8 double-knockout cells. These data suggest that HCV utilizes SPP cleavage to circumvent the induction of ER stress in host cells. A cellular protease, SPP, participates in production of the mature core protein of hepatitis C virus (HCV). Here, the authors show in mouse models that SPP inhibition reduces viral propagation and pathogenesis via proteasomal degradation of the immature core protein mediated by the E3 ubiquitin ligase TRC8.
Collapse
|
31
|
Kim C, Lee H, Kang H, Shin JJ, Tak H, Kim W, Gorospe M, Lee EK. RNA-binding protein HuD reduces triglyceride production in pancreatic β cells by enhancing the expression of insulin-induced gene 1. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:675-85. [PMID: 26945853 DOI: 10.1016/j.bbagrm.2016.02.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/26/2016] [Accepted: 02/29/2016] [Indexed: 01/12/2023]
Abstract
Although triglyceride (TG) accumulation in the pancreas leads to β-cell dysfunction and raises the chance to develop metabolic disorders such as type 2 diabetes (T2DM), the molecular mechanisms whereby intracellular TG levels are regulated in pancreatic β cells have not been fully elucidated. Here, we present evidence that the RNA-binding protein HuD regulates TG production in pancreatic β cells. Mouse insulinoma βTC6 cells stably expressing a small hairpin RNA targeting HuD (shHuD) (βTC6-shHuD) contained higher TG levels compared to control cells. Moreover, downregulation of HuD resulted in a decrease in insulin-induced gene 1 (INSIG1) levels but not in the levels of sterol regulatory element-binding protein 1c (SREBP1c), a key transcription factor for lipid production. We identified Insig1 mRNA as a direct target of HuD by using ribonucleoprotein immunoprecipitation (RIP) and biotin pulldown analyses. By associating with the 3'-untranslated region (3'UTR) of Insig1 mRNA, HuD promoted INSIG1 translation; accordingly, HuD downregulation reduced while ectopic HuD expression increased INSIG1 levels. We further observed that HuD downregulation facilitated the nuclear localization of SREBP1c, thereby increasing the transcriptional activity of SREBP1c and the expression of target genes involved in lipogenesis; likewise, we observed lower INSIG1 levels in the pancreatic islets of HuD-null mice. Taken together, our results indicate that HuD functions as a novel repressor of lipid synthesis in pancreatic β cells.
Collapse
Affiliation(s)
- Chongtae Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea
| | - Heejin Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea
| | - Hoin Kang
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea
| | - Jung Jae Shin
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, South Korea
| | - Hyosun Tak
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea
| | - Wook Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, South Korea
| | - Myriam Gorospe
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Eun Kyung Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea; Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea.
| |
Collapse
|
32
|
Vergnes L, Chin RG, de Aguiar Vallim T, Fong LG, Osborne TF, Young SG, Reue K. SREBP-2-deficient and hypomorphic mice reveal roles for SREBP-2 in embryonic development and SREBP-1c expression. J Lipid Res 2015; 57:410-21. [PMID: 26685326 DOI: 10.1194/jlr.m064022] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Indexed: 12/31/2022] Open
Abstract
Cholesterol and fatty acid biosynthesis are regulated by the sterol regulatory element-binding proteins (SREBPs), encoded by Srebf1 and Srebf2. We generated mice that were either deficient or hypomorphic for SREBP-2. SREBP-2 deficiency generally caused death during embryonic development. Analyses of Srebf2(-/-) embryos revealed a requirement for SREBP-2 in limb development and expression of morphogenic genes. We encountered only one viable Srebf2(-/-) mouse, which displayed alopecia, attenuated growth, and reduced adipose tissue stores. Hypomorphic SREBP-2 mice (expressing low levels of SREBP-2) survived development, but the female mice exhibited reduced body weight and died between 8 and 12 weeks of age. Male hypomorphic mice were viable but had reduced cholesterol stores in the liver and lower expression of SREBP target genes. Reduced SREBP-2 expression affected SREBP-1 isoforms in a tissue-specific manner. In the liver, reduced SREBP-2 expression nearly abolished Srebf1c transcripts and reduced Srebf1a mRNA levels. In contrast, adipose tissue displayed normal expression of SREBP target genes, likely due to a compensatory increase in Srebf1a expression. Our results establish that SREBP-2 is critical for survival and limb patterning during development. Reduced expression of SREBP-2 from the hypomorphic allele leads to early death in females and reduced cholesterol content in the liver, but not in adipose tissue.
Collapse
Affiliation(s)
- Laurent Vergnes
- Departments of Human Genetics David Geffen School of Medicine at the University of California, Los Angeles, CA 90095
| | - Robert G Chin
- Departments of Human Genetics David Geffen School of Medicine at the University of California, Los Angeles, CA 90095
| | - Thomas de Aguiar Vallim
- Medicine, David Geffen School of Medicine at the University of California, Los Angeles, CA 90095
| | - Loren G Fong
- Medicine, David Geffen School of Medicine at the University of California, Los Angeles, CA 90095
| | - Timothy F Osborne
- Metabolic Disease Program, Sanford-Burnham Medical Research Institute, Orlando, FL 32827
| | - Stephen G Young
- Departments of Human Genetics David Geffen School of Medicine at the University of California, Los Angeles, CA 90095 Medicine, David Geffen School of Medicine at the University of California, Los Angeles, CA 90095 Molecular Biology Institute, University of California, Los Angeles, CA 90095
| | - Karen Reue
- Departments of Human Genetics David Geffen School of Medicine at the University of California, Los Angeles, CA 90095 Medicine, David Geffen School of Medicine at the University of California, Los Angeles, CA 90095 Molecular Biology Institute, University of California, Los Angeles, CA 90095
| |
Collapse
|
33
|
González-Reimers E, Quintero-Platt G, Rodríguez-Gaspar M, Alemán-Valls R, Pérez-Hernández O, Santolaria-Fernández F. Liver steatosis in hepatitis C patients. World J Hepatol 2015; 7:1337-1346. [PMID: 26052379 PMCID: PMC4450197 DOI: 10.4254/wjh.v7.i10.1337] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 01/31/2015] [Accepted: 03/09/2015] [Indexed: 02/06/2023] Open
Abstract
There is controversy regarding some aspects of hepatitis C virus (HCV) infection-associated liver steatosis, and their relationship with body fat stores. It has classically been found that HCV, especially genotype 3, exerts direct metabolic effects which lead to liver steatosis. This supports the existence of a so called viral steatosis and a metabolic steatosis, which would affect HCV patients who are also obese or diabetics. In fact, several genotypes exert metabolic effects which overlap with some of those observed in the metabolic syndrome. In this review we will analyse the pathogenic pathways involved in the development of steatosis in HCV patients. Several cytokines and adipokines also become activated and are involved in “pure” steatosic effects, in addition to inflammation. They are probably responsible for the evolution of simple steatosis to steatohepatitis, making it difficult to explain why such alterations only affect a proportion of steatosic patients.
Collapse
|
34
|
Identification of Cholesterol 25-Hydroxylase as a Novel Host Restriction Factor and a Part of the Primary Innate Immune Responses against Hepatitis C Virus Infection. J Virol 2015; 89:6805-16. [PMID: 25903345 DOI: 10.1128/jvi.00587-15] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/10/2015] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Hepatitis C virus (HCV), a single-stranded positive-sense RNA virus of the Flaviviridae family, causes chronic liver diseases, including hepatitis, cirrhosis, and cancer. HCV infection is critically dependent on host lipid metabolism, which contributes to all stages of the viral life cycle, including virus entry, replication, assembly, and release. 25-Hydroxycholesterol (25HC) plays a critical role in regulating lipid metabolism, modulating immune responses, and suppressing viral pathogens. In this study, we showed that 25HC and its synthesizing enzyme cholesterol 25-hydroxylase (CH25H) efficiently inhibit HCV infection at a postentry stage. CH25H inhibits HCV infection by suppressing the maturation of SREBPs, critical transcription factors for host lipid biosynthesis. Interestingly, CH25H is upregulated upon poly(I · C) treatment or HCV infection in hepatocytes, which triggers type I and III interferon responses, suggesting that the CH25H induction constitutes a part of host innate immune response. To our surprise, in contrast to studies in mice, CH25H is not induced by interferons in human cells and knockdown of STAT-1 has no effect on the induction of CH25H, suggesting CH25H is not an interferon-stimulated gene in humans but rather represents a primary and direct host response to viral infection. Finally, knockdown of CH25H in human hepatocytes significantly increases HCV infection. In summary, our results demonstrate that CH25H constitutes a primary innate response against HCV infection through regulating host lipid metabolism. Manipulation of CH25H expression and function should provide a new strategy for anti-HCV therapeutics. IMPORTANCE Recent studies have expanded the critical roles of oxysterols in regulating immune response and antagonizing viral pathogens. Here, we showed that one of the oxysterols, 25HC and its synthesizing enzyme CH25H efficiently inhibit HCV infection at a postentry stage via suppressing the maturation of transcription factor SREBPs that regulate lipid biosynthesis. Furthermore, we found that CH25H expression is upregulated upon poly(I·C) stimulation or HCV infection, suggesting CH25H induction constitutes a part of host innate immune response. Interestingly, in contrast to studies in mice showing that ch25h is an interferon-stimulated gene, CH25H cannot be induced by interferons in human cells but rather represents a primary and direct host response to viral infection. Our studies demonstrate that the induction of CH25H represents an important host innate response against virus infection and highlight the role of lipid effectors in host antiviral strategy.
Collapse
|
35
|
Abstract
Accumulation of triacylglycerols within the cytoplasm of hepatocytes to the degree that lipid droplets are visible microscopically is called liver steatosis. Most commonly, it occurs when there is an imbalance between the delivery or synthesis of fatty acids in the liver and their disposal through oxidative pathways or secretion into the blood as a component of triacylglycerols in very low density lipoprotein. This disorder is called nonalcoholic fatty liver disease (NAFLD) in the absence of alcoholic abuse and viral hepatitis, and it is often associated with insulin resistance, obesity and type 2 diabetes. Also, liver steatosis can be induced by many other causes including excessive alcohol consumption, infection with genotype 3 hepatitis C virus and certain medications. Whereas hepatic triacylglycerol accumulation was once considered the ultimate effector of hepatic lipotoxicity, triacylglycerols per se are quite inert and do not induce insulin resistance or cellular injury. Rather, lipotoxic injury in the liver appears to be mediated by the global ongoing fatty acid enrichment in the liver, paralleling the development of insulin resistance. A considerable number of fatty acid metabolites may be responsible for hepatic lipotoxicity and liver injury. Additional key contributors include hepatic cytosolic lipases and the "lipophagy" of lipid droplets, as sources of hepatic fatty acids. The specific origin of the lipids, mainly triacylglycerols, accumulating in liver has been unraveled by recent kinetic studies, and identifying the origin of the accumulated triacylglycerols in the liver of patients with NAFLD may direct the prevention and treatment of this condition.
Collapse
Affiliation(s)
- David Q-H Wang
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Saint Louis University School of Medicine, St. Louis, Missouri
| | | | | |
Collapse
|
36
|
Kandasamy N, Ashokkumar N. Renoprotective effect of myricetin restrains dyslipidemia and renal mesangial cell proliferation by the suppression of sterol regulatory element binding proteins in an experimental model of diabetic nephropathy. Eur J Pharmacol 2014; 743:53-62. [PMID: 25240712 DOI: 10.1016/j.ejphar.2014.09.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/05/2014] [Accepted: 09/09/2014] [Indexed: 01/14/2023]
Abstract
Myricetin is a natural flavonoid used in various health management systems. In this present study myricetin tested to evaluate the effect on lipids and lipid metabolism enzymes in normal and streptozotocin (STZ) with cadmium (Cd) induced diabetic nephrotoxic rats. Diabetic nephrotoxic rats were significantly (P<0.05) increased the levels of urinary albumin and lipid profiles: total cholesterol (TC), triglycerides (TGs), free fatty acids (FFAs), phospholipids (PLs), low density lipoprotein (LDL), very low-density lipoproteins (VLDL), and decreased in the levels of high-density lipoproteins (HDL). In addition, the activity of lipoprotein lipase (LPL) and lecithin cholesterol acyl transferase (LCAT) were decreased significantly, whereas the 3-hydroxy 3-methylglutaryl coenzyme A (HmgCoA) reductase activity was increased. The upregulation of sterol regulatory element binding protein-1a (SREBP-1a), SREBP-1c, SREBP-2, transforming growth factor-β1 (TGF-β1), vascular endothelial growth factor (VEGF) and downregulation peroxisome proliferator-activated receptor alpha (PPAR-α) proteins expression levels were noticed. An administration of myricetin (1.0 mg/kg body weight (b/w)) for 12 weeks was brought the above parameters towards normal level. Histopathological study of kidney samples showed that extracellular mesangial matrix expansion, glomerulosclerosis and interstitial fibrosis in diabetic nephrotoxic rats was suppressed by myricetin treatment. Further our results indicate that administration of myricetin afforded remarkable protection against STZ-Cd induced alterations in lipid metabolism and thereby reduced the diabetic nephropathy in experimental rats.
Collapse
Affiliation(s)
- Neelamegam Kandasamy
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608002, Tamil Nadu, India
| | - Natarajan Ashokkumar
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608002, Tamil Nadu, India.
| |
Collapse
|
37
|
Palomino-Morales R, Alejandre MJ, Perales S, Torres C, Linares A. Effect of PUFAs on extracellular matrix production and remodeling in vascular smooth muscle cell cultures in an atherosclerotic model. EUR J LIPID SCI TECH 2014. [DOI: 10.1002/ejlt.201400141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Rogelio Palomino-Morales
- Faculty of Sciences, Department of Biochemistry and Molecular Biology I; Campus Universitario de Fuentenueva, University of Granada; Granada Spain
| | - M. Jose Alejandre
- Faculty of Sciences, Department of Biochemistry and Molecular Biology I; Campus Universitario de Fuentenueva, University of Granada; Granada Spain
| | - Sonia Perales
- Faculty of Sciences, Department of Biochemistry and Molecular Biology I; Campus Universitario de Fuentenueva, University of Granada; Granada Spain
| | - Carolina Torres
- Faculty of Sciences, Department of Biochemistry and Molecular Biology I; Campus Universitario de Fuentenueva, University of Granada; Granada Spain
| | - Ana Linares
- Faculty of Sciences, Department of Biochemistry and Molecular Biology I; Campus Universitario de Fuentenueva, University of Granada; Granada Spain
| |
Collapse
|
38
|
Brose SA, Marquardt AL, Golovko MY. Fatty acid biosynthesis from glutamate and glutamine is specifically induced in neuronal cells under hypoxia. J Neurochem 2013; 129:400-12. [PMID: 24266789 DOI: 10.1111/jnc.12617] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 10/27/2013] [Accepted: 11/14/2013] [Indexed: 12/12/2022]
Abstract
Hypoxia is involved in many neuronal and non-neuronal diseases, and defining the mechanisms for tissue adaptation to hypoxia is critical for the understanding and treatment of these diseases. One mechanism for tissue adaptation to hypoxia is increased glutamine and/or glutamate (Gln/Glu) utilization. To address this mechanism, we determined incorporation of Gln/Glu and other lipogenic substrates into lipids and fatty acids in both primary neurons and a neuronal cell line under normoxic and hypoxic conditions and compared this to non-neuronal primary cells and non-neuronal cell lines. Incorporation of Gln/Glu into total lipids was dramatically and specifically increased under hypoxia in neuronal cells including both primary (2.0- and 3.0-fold for Gln and Glu, respectively) and immortalized cultures (3.5- and 8.0-fold for Gln and Glu, respectively), and 90% to 97% of this increase was accounted for by incorporation into fatty acids (FA) depending upon substrate and cell type. All other non-neuronal cells tested demonstrated decreased or unchanged FA synthesis from Gln/Glu under hypoxia. Consistent with these data, total FA mass was also increased in neuronal cells under hypoxia that was mainly accounted for by the increase in saturated and monounsaturated FA with carbon length from 14 to 24. Incorporation of FA synthesized from Gln/Glu was increased in all major lipid classes including cholesteryl esters, triacylglycerols, diacylglycerols, free FA, and phospholipids, with the highest rate of incorporation into triacylglycerols. These results indicate that increased FA biosynthesis from Gln/Glu followed by esterification may be a neuronal specific pathway for adaptation to hypoxia. We identified a novel neuronal specific pathway for adaptation to hypoxia through increased fatty acid biosynthesis from glutamine and glutamate (Gln/Glu) followed by esterification into lipids. All other non-neuronal cells tested demonstrated decreased or unchanged lipid synthesis from Gln/Glu under hypoxia. Incorporation of other lipogenic substrates into lipids was decreased under hypoxia in neuronal cells. We believe that this finding will provide a novel strategy for treatment of oxygen and energy deficient conditions in the neuronal system.
Collapse
Affiliation(s)
- Stephen A Brose
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota, Grand Forks, ND, USA
| | | | | |
Collapse
|
39
|
Xu T, Zheng L, Xu L, Yin L, Qi Y, Xu Y, Han X, Peng J. Protective effects of dioscin against alcohol-induced liver injury. Arch Toxicol 2013; 88:739-53. [PMID: 24146112 DOI: 10.1007/s00204-013-1148-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/10/2013] [Indexed: 02/06/2023]
Abstract
Our previous studies have shown that dioscin has protective effect against liver injury. However, the action of the compound against ethanol-induced liver injury is still unknown. In the present paper, ethanol-induced acute and chronic liver damage rat models were used, and the results showed that dioscin significantly alleviated liver steatosis, reduced the levels of alanine aminotransferase, aspartate aminotransferase, total triglyceride (TG), total cholesterol and malondialdehyde, and increased the levels of high-density lipoprotein, superoxide dismutase, glutathione and glutathione peroxidase. Transmission electron microscopy and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assays showed that dioscin prevented mitochondrial ultrastructural alterations and apoptosis caused by ethanol. In addition, dioscin significantly inhibited ethanol-induced cytochrome P450 2E1 activation, down-regulated the levels of mitogen-activated protein kinases phosphorylation, inhibited the expressions of nuclear factor kappa B, glucose regulated protein 78, activating transcription factor 6 and alpha subunit of translation initiation factor 2 to attenuate oxidative damage, decreased the expressions of tumor necrosis factor alpha and interleukin-6, and down-regulated the expressions of apoptosis-related proteins including p53, caspase-3, caspase-9, poly (ADP-ribose)-polymerase and cytokeratin-18. Further investigation indicated that dioscin markedly increased the expressions of peroxisome proliferators-activated receptor α and its target genes including medium-chain acyl-CoA dehydrogenase, carnitine palmitoyl-CoA transferase I and acyl-CoA oxidase to advance fatty acid β-oxidation, up-regulated the expressions of acyl-CoA synthetase long-chain family member 1, acyl-CoA synthetase long-chain family member 5, alpha-aminoadipic semialdehyde dehydrogenase and acyl-CoA dehydrogenase to promote fatty acid metabolism, and down-regulated the expressions of glycerol-3-phosphate acyltransferase, diacylglycerol acyltransferase 1 and diacylglycerol acyltransferase 2 to accelerate TG synthesis. However, dioscin had no effects on the expressions of sterol regulatory element-binding protein-1c, fatty acid synthase, acetyl-CoA carboxylase 1 and stearoyl-CoA desaturase 1 associated with fatty acid synthesis. In conclusion, dioscin shows excellent protective effect against ethanol-induced liver injury through ameliorating ethanol-induced oxidative stress, mitochondrial function, inflammatory cytokine production, apoptosis and liver steatosis, which should be developed as a new drug for the treatment of ethanol-induced liver injury in the future.
Collapse
Affiliation(s)
- Tingting Xu
- College of Pharmacy, Dalian Medical University, 9 Western Lvshun South Road, Dalian, 116044, China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Daemen S, Kutmon M, Evelo CT. A pathway approach to investigate the function and regulation of SREBPs. GENES AND NUTRITION 2013; 8:289-300. [PMID: 23516131 PMCID: PMC3639327 DOI: 10.1007/s12263-013-0342-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 03/05/2013] [Indexed: 02/06/2023]
Abstract
The essential function of sterol regulatory element-binding proteins (SREBPs) in cellular lipid metabolism and homeostasis has been recognized for a long time, and the basic biological pathway involving SREBPs has been well described; however, a rapidly growing number of studies reveal the complex regulation of these SREBP transcription factors at multiple levels. This regulation allows the integration of signals of diverse pathways involving nutrients, contributing to cellular lipid and energy homeostasis. This review attempts to integrate this knowledge. The description of the SREBP pathway is Web-linked as it refers to the online version of the pathway on wikipathways.org , which is interactively linked to genomics databases and literature. This allows a more extensive study of the pathway through reviewing these links.
Collapse
Affiliation(s)
- Sabine Daemen
- Department of Bioinformatics, BiGCaT, Maastricht University, Maastricht, The Netherlands
| | - Martina Kutmon
- Department of Bioinformatics, BiGCaT, Maastricht University, Maastricht, The Netherlands
- Netherlands Consortium for Systems Biology (NCSB), Amsterdam, The Netherlands
| | - Chris T. Evelo
- Department of Bioinformatics, BiGCaT, Maastricht University, Maastricht, The Netherlands
- Netherlands Consortium for Systems Biology (NCSB), Amsterdam, The Netherlands
| |
Collapse
|
41
|
Song HJ, Sneddon AA, Heys SD, Wahle KWJ. Regulation of fatty acid synthase (FAS) and apoptosis in estrogen-receptor positive and negative breast cancer cells by conjugated linoleic acids. Prostaglandins Leukot Essent Fatty Acids 2012; 87:197-203. [PMID: 23142364 DOI: 10.1016/j.plefa.2012.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 08/31/2012] [Accepted: 09/13/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND Conjugated linoleic acids (CLAs) are natural dairy food components that exhibit a unique body of potential health benefits in animals and man, including anti-cardiovascular disease and anti-cancer effects. Several studies have demonstrated that fatty acid synthase (FAS) levels (protein and mRNA) are over expressed in many carcinomas. Sterol regulatory element binding proteins (SREBPs) are transcription factors that regulate genes involved in lipid metabolism, including FAS. METHODS Breast cancer cell lines, MCF-7 and MDA-MB-231 were treated with CLAs to investigate the regulation of SREBP-1c and FAS expression. RESULTS In MDA-MB-231 cells, SREBP-1c and FAS were co-ordinately decreased by treatment with 25 μM CLA 9-11 and 10-12. In MCF-7 cells, the decrease in SREBP-1c and FAS expression was dependant on the concentration of CLA used. CONCLUSIONS The data suggest a differential effect of CLAs on SREBP-1c and FAS in estrogen receptor-positive (MCF-7) compared to estrogen receptor-negative (MDA-MB-231) breast cancer cells.
Collapse
Affiliation(s)
- H-J Song
- School of Life Science, The Robert Gordon University, Aberdeen, AB10 1JQ, UK
| | | | | | | |
Collapse
|
42
|
Fukumitsu S, Villareal MO, Onaga S, Aida K, Han J, Isoda H. α-Linolenic acid suppresses cholesterol and triacylglycerol biosynthesis pathway by suppressing SREBP-2, SREBP-1a and -1c expression. Cytotechnology 2012; 65:899-907. [PMID: 23138267 DOI: 10.1007/s10616-012-9510-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 10/15/2012] [Indexed: 12/21/2022] Open
Abstract
α-Linolenic acid (ALA), a major fatty acid in flaxseed oil, has multiple functionalities such as anti-cardiovascular and anti-hypertensive activities. In this study, we investigated the effects of ALA on lipid metabolism and studied the possible mechanisms of its action in differentiated 3T3-L1 adipocytes using DNA microarray analysis. From a total of 34,325 genes in the DNA chip, 87 genes were down-regulated and 185 genes were up-regulated at least twofold in differentiated 3T3-L1 adipocyte cells treated with 300 μM ALA for a week, 5-12 days after induction of cell differentiation, compared to ALA-untreated 3T3-L1 adipocytes (control). From the Reactome analysis results, eight lipid metabolism-related genes involved in cholesterol and triacylglycerol biosynthesis pathway and lipid transport were significantly down-regulated by ALA treatment. Furthermore, ALA significantly decreased the mRNA expressions of sterol regulatory element binding protein (SREBP)-2, SREBP-1a, SREBP-1c and fatty acid synthase (FAS) in 3T3-L1 adipocyte cells. On the other hand, the average levels of the gene expressions of carnitine palmitoyltransferase 1a (CPT-1a) and leptin in 300 μM ALA treatment were increased by 1.7- and 2.9-fold, respectively, followed by an increase in the intracellular ATP content. These results show that ALA is likely to inhibit cholesterol and fatty acid biosynthesis pathway by suppressing the expression of transcriptional factor SREBPs. Furthermore, ALA promotes fatty acid oxidation in 3T3-L1 adipocytes, thereby increasing its health benefits.
Collapse
Affiliation(s)
- Satoshi Fukumitsu
- Central Laboratory, Nippon Flour Mills Co., Ltd., Midorigaoka, Atsugi, Kanagawa, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Hong SW, Lee J, Park SE, Rhee EJ, Park CY, Oh KW, Park SW, Lee WY. Repression of sterol regulatory element-binding protein 1-c is involved in the protective effects of exendin-4 in pancreatic β-cell line. Mol Cell Endocrinol 2012; 362:242-52. [PMID: 22820130 DOI: 10.1016/j.mce.2012.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 06/06/2012] [Accepted: 07/10/2012] [Indexed: 02/07/2023]
Abstract
Exendin-4 (Ex-4), a long-acting agonist of glucagon-like peptide-1 receptor, is a novel anti-diabetic drug that prevents β-cells against various toxicities. However, the mechanism and molecules mediating the protection procession of Ex-4 are not fully understood. We investigated the protective effect of Ex-4 against lipotoxicity, mediated by a repression of sterol regulatory element-binding protein (SREBP)-1c, a regulator of genes expression involved in fat and cholesterol synthesis. To observe the effect of Ex-4, we evaluated glucose-stimulated insulin secretion (GSIS) and apoptosis in the MIN6 pancreatic β-cell line, which were cultured in DMEM medium containing 500 μM palmitate, with or without 10 nM Ex-4. We also examined the roles of SREBP-1c in lipotoxicity model by knockdown with si-RNA. Treatment with Ex-4 improved insulin secretion and survival as well as reduced SREBP-1c expression and activity in palmitate-treated MIN6 cells. This improvement was accompanied with an upregulation of PI3K/Akt signaling pathway, and LY294.002, a specific inhibitor of PI3 kinase, abrogated effects of Ex-4 on insulin secretion. Moreover, SREBP-1c in nuclei was increased by the inhibition of PI3 kinase. Lipotoxic effects of palmitate in the insulin secretion and apoptosis were significantly prevented by SREBP-1 knockdown. In conclusion, Ex-4 protects β-cell against palmitate-induced β-cell dysfunction and apoptosis, by inhibiting SREBP-1c expression and activity through the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Seok-Woo Hong
- Institute of Medical Research, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Zaidi N, Royaux I, Swinnen JV, Smans K. ATP citrate lyase knockdown induces growth arrest and apoptosis through different cell- and environment-dependent mechanisms. Mol Cancer Ther 2012; 11:1925-35. [PMID: 22718913 DOI: 10.1158/1535-7163.mct-12-0095] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
ATP citrate lyase (ACLY) is a cytosolic enzyme that catalyzes generation of acetyl-CoA, which is a vital building block for fatty acid, cholesterol, and isoprenoid biosynthesis. ACLY is upregulated in several types of cancer, and its inhibition induces proliferation arrest in certain cancer cells. As ACLY is involved in several pathways, its downregulation may affect multiple processes. Here, we have shown that short hairpin RNA-mediated ACLY silencing in cell lines derived from different types of cancers induces proliferation, cell-cycle arrest, and apoptosis. However, this antiproliferative effect of ACLY knockdown was observed only when cells were cultivated under lipid-reduced growth conditions. Proliferation arrest induced by ACLY silencing was partially rescued by supplementing the media with fatty acids and/or cholesterol. This indicates that the ACLY knockdown-mediated growth arrest might be the result of either fatty acid or cholesterol starvation or both. In the absence of ACLY, the cancer cells displayed elevated expression of sterol regulatory element binding protein-regulated downstream genes involved in de novo fatty acid and cholesterol biosynthesis. Furthermore, ACLY suppression resulted in elevated expression of acyl-CoA synthetase short-chain family member 2 (ACSS2), an enzyme that also produces acetyl-CoA using acetate as a substrate. Acetate supplementation partially rescued the cancer cells from ACLY suppression-induced proliferation arrest. We also observed that the absence of ACLY enhanced ACSS2-dependent lipid synthesis. These findings provide new insights into the role of ACLY in cancer cell growth and give critical information about the effects of ACLY silencing on different pathways. This information is crucial in understanding the possible application of ACLY inhibition in cancer therapeutics.
Collapse
Affiliation(s)
- Nousheen Zaidi
- Department of Oncology, Janssen Research and Development, Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | | | | | | |
Collapse
|
45
|
Jin X, Zeng F, Zhang N, Huang T, Meng Q, Liu Y. Association of Sterol Regulatory Element-Binding Transcription Factor Gene Polymorphisms with Ischaemic Stroke. J Int Med Res 2012; 40:157-66. [PMID: 22429355 DOI: 10.1177/147323001204000116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE: To explore the association between polymorphisms of the sterol regulatory element-binding transcription factor ( SREBF) gene and ischaemic stroke. METHODS: The SREBF1c 54G>C and SREBPF2 1784G>C genotypes were assessed using restriction fragment length polymorphism analysis in 446 Han Chinese ischaemic stroke patients and 355 Han Chinese control subjects without cerebrovascular disease. RESULTS: The frequencies of the SREBF2 1784G>C CC genotype and the C allele were significantly higher in the ischaemic stroke group than in controls. Patients with ischaemic stroke who had the SREBF2 1784G>C CC genotype had significantly lower high-density lipoprotein (HDL) levels, compared with ischaemic stroke patients and control subjects with the GC or GG genotypes. Multivariate logistic regression analysis revealed a significant positive association between SREBF2 1784G>C and ischaemic stroke; an inverse association was observed between HDL level and risk of ischaemic stroke. CONCLUSIONS: The CC genotype of the SREBF2 1784G>C polymorphism was associated with an increased risk of ischaemic stroke, possibly through decreasing the HDL level, which was inversely associated with the risk of ischaemic stroke.
Collapse
Affiliation(s)
- X Jin
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - F Zeng
- Department of Emergency Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - N Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - T Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Q Meng
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
| | - Y Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
46
|
Zeng T, Zhang CL, Song FY, Zhao XL, Xie KQ. Garlic oil alleviated ethanol-induced fat accumulation via modulation of SREBP-1, PPAR-α, and CYP2E1. Food Chem Toxicol 2011; 50:485-91. [PMID: 22138249 DOI: 10.1016/j.fct.2011.11.030] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 11/01/2011] [Accepted: 11/18/2011] [Indexed: 12/20/2022]
Abstract
Garlic oil (GO) has been shown to partially attenuate ethanol-induced fatty liver, but the underlying mechanisms remain unclear. The current study was designed to evaluate the protective effects of GO against ethanol-induced steatosis in vitro and in vivo, and to explore potential mechanisms by investigating the sterol regulatory element binding protein-1c (SREBP-1c), peroxisome proliferators-activated receptor-α (PPAR-α), cytochrome P4502E1 (CYP2E1), and etc. In the in vitro study, human normal cell LO2 was exposed to 100 mM ethanol in the presence or absence of GO for 24 h. We found that ethanol increased the protein levels of n-SREBP-1c and CYP2E1, but decreased the protein levels of PPAR-α, which was significantly attenuated by GO co-treatment. In the in vivo study, male Kun-Ming mice were pretreated with single dose of GO (50-200 mg/kg body weight) at 2 h before ethanol (4.8 g/kg body weight) exposure. The changes of n-SREBP-1c, PPAR-α and CYP2E1 were paralleled well to those of in vitro study. Furthermore, GO significantly reduced the protein levels of fatty acid synthase (FAS), and suppressed ethanol-induced hepatic mitochondrial dysfunction. These results suggested that GO had the potential to ameliorate alcoholic steatosis which might be related to its modulation on SREBP-1c, PPAR-α, and CYP2E1.
Collapse
Affiliation(s)
- Tao Zeng
- Institute of Toxicology, School of Public Health, Shandong University, 44 Wenhua West Road, Shandong, Jinan 250012, PR China.
| | | | | | | | | |
Collapse
|
47
|
Spanova M, Daum G. Squalene - biochemistry, molecular biology, process biotechnology, and applications. EUR J LIPID SCI TECH 2011. [DOI: 10.1002/ejlt.201100203] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
48
|
Ye J, DeBose-Boyd RA. Regulation of cholesterol and fatty acid synthesis. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a004754. [PMID: 21504873 DOI: 10.1101/cshperspect.a004754] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In mammals, intracellular levels of cholesterol and fatty acids are controlled through a feedback regulatory system mediated by a family of transcription factors called sterol regulatory element-binding proteins (SREBPs). SREBPs are synthesized as inactive precursors bound to membranes of the endoplasmic reticulum. When cells are deprived of cholesterol and fatty acids, NH(2)-terminal fragments of SREBPs become proteolytically released from membranes and migrate to the nucleus to activate transcription of genes required for lipid synthesis and uptake. Conversely, lipid repletion inhibits proteolytic processing of SREBPs and thereby suppresses lipid accumulation. We review here studies in cultured cells that reveal the mechanism for regulation of SREBP proteolytic activation, and those in animal models in which SREBP proteolysis has been either activated or inhibited to show the essential role of SREBPs in regulating hepatic lipid homeostasis.
Collapse
Affiliation(s)
- Jin Ye
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | |
Collapse
|
49
|
Zeng T, Xie KQ. Ethanol and liver: recent advances in the mechanisms of ethanol-induced hepatosteatosis. Arch Toxicol 2011; 83:1075-81. [PMID: 19588123 DOI: 10.1007/s00204-009-0457-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 06/29/2009] [Indexed: 12/20/2022]
Abstract
Ethanol-induced fatty liver is a worldwide health problem without effective therapeutic methods. The underlying mechanisms are extremely complex and not fully understood. The hepatosteatosis caused by ethanol can be attributed to many factors, including the changes of the redox condition, transportation impairment of the synthesized lipid, inhibition of fatty acid oxidation, and the enhancement of the lipogenesis. Recent studies focus on the reduced oxidation of fatty acid and the enhancement of the do novo lipogenesis, and several factors are sequentially revealed. Two important nuclear transcription factors, peroxisome proliferators-activated receptor α (PPARα) and sterol regulatory element binding protein-1 (SREBP-1), and the lipid metabolism-associated enzymes regulated by the two molecules, are shown to be involved in ethanol-induced steatosis. The AMP-dependent protein kinase, adiponectin, and tumor necrosis factor α (TNF-α) may mediate the modulation of ethanol on PPARα and SREBP-1. In addition, a number of studies demonstrate that plasminogen activator inhibitor-1 (PAI-1) is also involved in ethanol- induced fatty liver, and its effects may be associated with the TNF-α production. Furthermore, the role of CYP2E1 has also been investigated. Some studies showed that CYP2E1 played a critical role in the development of alcoholic fatty liver, which was denied by other reports. As such, the exact role of CYP2E1 needs to be further studied.
Collapse
Affiliation(s)
- Tao Zeng
- Institute of Toxicology, Shandong University, 44 Wenhua West Road, Jinan, Shandong 250012, People's Republic of China.
| | | |
Collapse
|
50
|
Li L, Yang Y, Yang G, Lu C, Yang M, Liu H, Zong H. The role of JAZF1 on lipid metabolism and related genes in vitro. Metabolism 2011; 60:523-30. [PMID: 20580384 DOI: 10.1016/j.metabol.2010.04.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 04/09/2010] [Accepted: 04/23/2010] [Indexed: 12/11/2022]
Abstract
JAZF1 is a novel gene that is associated with diabetes mellitus and prostate cancer according to genomewide association studies; however, little is known about the function of this gene in regulating metabolism. In the present study, we have shown the expression of JAZF1 in various mouse tissues. To elucidate its role in metabolism, we investigated the influence of an overexpression of JAZF1 on 3T3-L1 adipose cells and hepatoma carcinoma Hepa1-6 cells that represent target tissues for diabetes and insulin resistance. In both cells, JAZF1 overexpression led to a substantial reduction in the expression of acetyl-coenzyme A carboxylase, fatty acid synthetase, and sterol regulatory element-binding protein 1 messenger RNA (mRNA). The level of hormone-sensitive lipase mRNA significantly increased. The expression of JAZF1 in 3T3-L1 adipocyte exhibited suppressive effects on lipid accumulation and decreased droplet size. In addition, the transcription for glucose transport 1 was significantly higher than the control in the Hepa1-6 cell line; but it was not significantly different in 3T3-L1. These results showed that JAZF1 in adipocytes and liver cells reduces lipid synthesis and increases lipolysis mainly by down-regulating the levels of sterol regulatory element-binding protein 1, acetyl-coenzyme A carboxylase, and fatty acid synthetase mRNA expression and by increasing hormone-sensitive lipase mRNA expression. Because it had an effect on the decrease of the maturation of lipid droplets and fat storage, we speculate that JAZF1 might represent a potential target against diabetes and obesity.
Collapse
Affiliation(s)
- Ling Li
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical Biochemistry, Chongqing Medical University, 400016 Chongqing, China.
| | | | | | | | | | | | | |
Collapse
|