1
|
Papadimitriou K, Mousiolis AC, Mintziori G, Tarenidou C, Polyzos SA, Goulis DG. Hypogonadism and nonalcoholic fatty liver disease. Endocrine 2024; 86:28-47. [PMID: 38771482 DOI: 10.1007/s12020-024-03878-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/12/2024] [Indexed: 05/22/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD), recently proposed to be renamed to metabolic dysfunction-associated steatotic liver disease (MASLD), is a major global public health concern, affecting approximately 25-30% of the adult population and possibly leading to cirrhosis, hepatocellular carcinoma, and liver transplantation. The liver is involved in the actions of sex steroids via their hepatic metabolism and production of the sex hormone-binding globulin (SHBG). Liver disease, including NAFLD, is associated with reproductive dysfunction in men and women, and the prevalence of NAFLD in patients with hypogonadism is considerable. A wide spectrum of possible pathophysiological mechanisms linking NAFLD and male/female hypogonadism has been investigated. As therapies targeting NAFLD may impact hypogonadism in men and women, and vice versa, treatments of the latter may affect NAFLD, and an insight into their pathophysiological pathways is imperative. This paper aims to elucidate the complex association between NAFLD and hypogonadism in men and women and discuss the therapeutic options and their impact on both conditions.
Collapse
Affiliation(s)
- Kasiani Papadimitriou
- Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Athanasios C Mousiolis
- Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Gesthimani Mintziori
- Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Stergios A Polyzos
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios G Goulis
- Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
2
|
Brianso-Llort L, Saéz-Lopez C, Alvarez-Guaita A, Ramos-Perez L, Hernandez C, Simó R, Selva DM. Recent Advances on Sex Hormone-Binding Globulin Regulation by Nutritional Factors: Clinical Implications. Mol Nutr Food Res 2024; 68:e2400020. [PMID: 38934352 DOI: 10.1002/mnfr.202400020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/26/2024] [Indexed: 06/28/2024]
Abstract
Sex hormone-binding globulin (SHBG) is a homodimeric glycoprotein produced by the human liver and secreted into the systemic circulation where it binds with high affinity sex steroids regulating their availability in blood and accessibility to target tissues. Plasma SHBG levels are altered in metabolic disorders such as obesity, anorexia, and insulin resistance. Several reports have shown that diets in terms of total calories or fat, fiber, or protein content can alter plasma SHBG levels. However, there are many components in a diet that can affect SHBG gene expression in the liver. In order to unravel the molecular mechanisms by which diets regulate SHBG production, it would be necessary to analyze single diet components and/or nutritional factors. This review summarizes the recent advances in identifying different nutritional factors regulating SHBG production and the related molecular mechanism, as well as the clinical implications.
Collapse
Affiliation(s)
- Laura Brianso-Llort
- Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona and Biomedical Network Research Centre on Diabetes and Metabolic Diseases (CIBERDEM, ISCIII), Barcelona, 08035, Spain
| | - Cristina Saéz-Lopez
- Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona and Biomedical Network Research Centre on Diabetes and Metabolic Diseases (CIBERDEM, ISCIII), Barcelona, 08035, Spain
| | - Anna Alvarez-Guaita
- Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona and Biomedical Network Research Centre on Diabetes and Metabolic Diseases (CIBERDEM, ISCIII), Barcelona, 08035, Spain
| | - Lorena Ramos-Perez
- Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona and Biomedical Network Research Centre on Diabetes and Metabolic Diseases (CIBERDEM, ISCIII), Barcelona, 08035, Spain
| | - Cristina Hernandez
- Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona and Biomedical Network Research Centre on Diabetes and Metabolic Diseases (CIBERDEM, ISCIII), Barcelona, 08035, Spain
| | - Rafael Simó
- Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona and Biomedical Network Research Centre on Diabetes and Metabolic Diseases (CIBERDEM, ISCIII), Barcelona, 08035, Spain
| | - David M Selva
- Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona and Biomedical Network Research Centre on Diabetes and Metabolic Diseases (CIBERDEM, ISCIII), Barcelona, 08035, Spain
| |
Collapse
|
3
|
Meyers WM. Transcriptional regulation of the alternative sex hormone-binding globulin promoter by KLF4. Gene Expr Patterns 2024:119357. [PMID: 38460578 DOI: 10.1016/j.gep.2024.119357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/21/2024] [Accepted: 02/28/2024] [Indexed: 03/11/2024]
Abstract
In most mammals the major site of sex hormone-binding globulin (SHBG) synthesis is the liver wherefrom it is secreted into the bloodstream and is the primary determinant of sex steroid access to target tissues. The minor site of SHBG synthesis is the testis and in lower mammals testicular SHBG has long been known to be synthesized and secreted by Sertoli cells. However, human testicular SHBG is expressed in developing germ cells from an upstream alternative promoter (altP-SHBG). Transcripts arising from this region comprise an alternative first exon (1A) with the resultant protein confined to the acrosomal compartment of the mature spermatozoa. I have dissected the regulatory components of the alternative SHBG promoter and identified motifs that are required for optimal transcriptional activity from this region. Transcriptional activity is driven by two CACCC elements that appear to be functionally redundant. The transcription factor KLF4 interacts with promoter the region spanning these elements in vivo. Knockdown of Klf4 results in decreased altP-SHBG activity, while Klf4 overexpression relieves the effects of knockdown. Based on their shared patterns of expression in vivo, I conclude that KLF4 is a transcriptional regulator of SHBG in male germ cells.
Collapse
Affiliation(s)
- Warren M Meyers
- Department of Cellular & Physiological Sciences, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
4
|
Wang X, Wang Y, Hou J, Liu H, Zeng R, Li X, Han M, Li Q, Ji L, Pan D, Jia W, Zhong W, Xu T. Plasma proteome profiling reveals the therapeutic effects of the PPAR pan-agonist chiglitazar on insulin sensitivity, lipid metabolism, and inflammation in type 2 diabetes. Sci Rep 2024; 14:638. [PMID: 38182717 PMCID: PMC10770401 DOI: 10.1038/s41598-024-51210-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024] Open
Abstract
Chiglitazar is a novel peroxisome proliferator-activated receptor (PPAR) pan-agonist, which passed phase III clinical trials and was newly approved in China for use as an adjunct to diet and exercise in glycemic control in adult patients with Type 2 Diabetes (T2D). To explore the circulating protein signatures associated with the administration of chiglitazar in T2D patients, we conducted a comparative longitudinal study using plasma proteome profiling. Of the 157 T2D patients included in the study, we administered chiglitazar to a specific group, while the controls were given either placebo or sitagliptin. The plasma proteomes were profiled at baseline and 12 and 24 weeks post-treatment using data-independent acquisition mass spectrometry (DIA-MS). Our study indicated that 13 proteins were associated with chiglitazar treatment in T2D patients, including 10 up-regulated proteins (SHBG, TF, APOA2, APOD, GSN, MBL2, CFD, PGLYRP2, A2M, and APOA1) and 3 down-regulated proteins (PRG4, FETUB, and C2) after treatment, which were implicated in the regulation of insulin sensitivity, lipid metabolism, and inflammation response. Our study provides insight into the response of chiglitazar treatment from a proteome perspective and demonstrates the multi-faceted effects of chiglitazar in T2D patients, which will help the clinical application of chiglitazar and further study of its action mechanism.
Collapse
Affiliation(s)
- Xingyue Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - You Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Junjie Hou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Hongyang Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Rong Zeng
- CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Xiangyu Li
- Guangzhou National Laboratory, Guangzhou, China
| | - Mei Han
- Guangzhou National Laboratory, Guangzhou, China
| | - Qingrun Li
- CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Desi Pan
- Shenzhen Chipscreen Biosciences Co., Ltd, Shenzhen, China
| | - Weiping Jia
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wen Zhong
- Guangzhou National Laboratory, Guangzhou, China.
| | - Tao Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- Guangzhou National Laboratory, Guangzhou, China.
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
5
|
Simons PIHG, Valkenburg O, van de Waarenburg MPH, van Greevenbroek MMJ, Kooi ME, Jansen JFA, Schalkwijk CG, Stehouwer CDA, Brouwers MCGJ. Serum sex hormone-binding globulin is a mediator of the association between intrahepatic lipid content and type 2 diabetes: the Maastricht Study. Diabetologia 2023; 66:213-222. [PMID: 36114428 PMCID: PMC9729158 DOI: 10.1007/s00125-022-05790-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/28/2022] [Indexed: 12/14/2022]
Abstract
AIMS/HYPOTHESIS Serum sex hormone-binding globulin (SHBG) has been proposed to act as a hepatokine that contributes to the extrahepatic complications observed in non-alcoholic fatty liver disease (NAFLD). However, it remains uncertain whether serum SHBG mediates the association between intrahepatic lipids (IHL) and type 2 diabetes. Therefore, we studied whether, and to what extent, serum SHBG mediates the association between IHL content and type 2 diabetes. METHODS We used cross-sectional data from the Maastricht Study (n=1554), a population-based cohort study with oversampling of individuals with type 2 diabetes. Type 2 diabetes status was assessed by oral glucose tolerance test, and IHL content was measured using 3T Dixon MRI. Mediation analyses were performed to assess the role of serum SHBG in mediating the association between IHL content and type 2 diabetes. RESULTS IHL content was significantly associated with type 2 diabetes in women and men (OR 1.08 [95% CI 1.04, 1.14] and OR 1.12 [95% CI 1.08, 1.17], respectively). Serum SHBG significantly mediated the association between IHL content and type 2 diabetes. The contribution of serum SHBG was higher in women (OR 1.04 [95% CI 1.02, 1.07]; proportion mediated 50.9% [95% CI 26.7, 81.3]) than in men (OR 1.02 [95% CI 1.01, 1.03]; proportion mediated 17.2% [95% CI 9.6, 27.6]). Repeat analyses with proxies of type 2 diabetes and adjustment for covariates did not substantially affect the results. CONCLUSIONS/INTERPRETATION In this large-scale population-based cohort study, serum SHBG was found to be a mediator of the association between IHL content and type 2 diabetes. These findings extend our understanding of the potential mechanisms by which NAFLD is a risk factor for type 2 diabetes, and further elaborate on the role of SHBG as a hepatokine.
Collapse
Affiliation(s)
- Pomme I H G Simons
- Department of Internal Medicine, Division of Endocrinology and Metabolic Diseases, Maastricht University Medical Centre, Maastricht, the Netherlands
- Laboratory for Metabolism and Vascular Medicine, Maastricht University, Maastricht, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - Olivier Valkenburg
- Department of Reproductive Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Marjo P H van de Waarenburg
- Laboratory for Metabolism and Vascular Medicine, Maastricht University, Maastricht, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - Marleen M J van Greevenbroek
- Laboratory for Metabolism and Vascular Medicine, Maastricht University, Maastricht, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - M Eline Kooi
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Jacobus F A Jansen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
- Department of Electrical Engineering, University of Eindhoven, Eindhoven, the Netherlands
| | - Casper G Schalkwijk
- Laboratory for Metabolism and Vascular Medicine, Maastricht University, Maastricht, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - Coen D A Stehouwer
- Laboratory for Metabolism and Vascular Medicine, Maastricht University, Maastricht, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
- Department of Internal Medicine, Division of General Internal Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Martijn C G J Brouwers
- Department of Internal Medicine, Division of Endocrinology and Metabolic Diseases, Maastricht University Medical Centre, Maastricht, the Netherlands.
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
6
|
Narinx N, David K, Walravens J, Vermeersch P, Claessens F, Fiers T, Lapauw B, Antonio L, Vanderschueren D. Role of sex hormone-binding globulin in the free hormone hypothesis and the relevance of free testosterone in androgen physiology. Cell Mol Life Sci 2022; 79:543. [PMID: 36205798 DOI: 10.1007/s00018-022-04562-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/12/2022] [Accepted: 09/17/2022] [Indexed: 11/03/2022]
Abstract
According to the free hormone hypothesis, biological activity of a certain hormone is best reflected by free rather than total hormone concentrations. A crucial element in this theory is the presence of binding proteins, which function as gatekeepers for steroid action. For testosterone, tissue exposure is governed by a delicate equilibrium between free and total testosterone which is determined through interaction with the binding proteins sex hormone-binding globulin and albumin. Ageing, genetics and various pathological conditions influence this equilibrium, hereby possibly modulating hormonal exposure to the target tissues. Despite ongoing controversy on the subject, strong evidence from recent in vitro, in vivo and human experiments emphasizes the relevance of free testosterone. Currently, however, clinical possibilities for free hormone diagnostics are limited. Direct immunoassays are inaccurate, while gold standard liquid chromatography with tandem mass spectrometry (LC-MS/MS) coupled equilibrium dialysis is not available for clinical routine. Calculation models for free testosterone, despite intrinsic limitations, provide a suitable alternative, of which the Vermeulen calculator is currently the preferred method. Calculated free testosterone is indeed associated with bone health, frailty and other clinical endpoints. Moreover, the added value of free testosterone in the clinical diagnosis of male hypogonadism is clearly evident. In suspected hypogonadal men in whom borderline low total testosterone and/or altered sex hormone-binding globulin levels are detected, the determination of free testosterone avoids under- and overdiagnosis, facilitating adequate prescription of hormonal replacement therapy. As such, free testosterone should be integrated as a standard biochemical parameter, on top of total testosterone, in the diagnostic workflow of male hypogonadism.
Collapse
Affiliation(s)
- N Narinx
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Herestraat 49, ON1bis box 902, 3000, Leuven, Belgium.,Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - K David
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Herestraat 49, ON1bis box 902, 3000, Leuven, Belgium.,Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - J Walravens
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - P Vermeersch
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - F Claessens
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - T Fiers
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - B Lapauw
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - L Antonio
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Herestraat 49, ON1bis box 902, 3000, Leuven, Belgium.,Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - D Vanderschueren
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Herestraat 49, ON1bis box 902, 3000, Leuven, Belgium. .,Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
7
|
Briansó-Llort L, Fuertes-Rioja L, Ramos-Perez L, Salcedo-Allende MT, Hernandez C, Simó R, Selva DM. Transforming growth factor-beta 1: A new factor reducing hepatic SHBG production in liver fibrosis. J Cell Physiol 2022; 237:3598-3613. [PMID: 35762039 DOI: 10.1002/jcp.30818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 11/07/2022]
Abstract
Low plasma sex hormone-binding globulin (SHBG) levels are present in fatty liver disease, which represents a spectrum of diseases ranging from hepatocellular steatosis through steatohepatitis to fibrosis and irreversible cirrhosis. We have previously determined that fat accumulation reduces SHBG production in different nonalcoholic fatty liver disease mouse models. In the present work, we are interested in elucidating the molecular mechanisms reducing SHBG plasma levels in liver fibrosis. For this purpose, in vivo studies were performed using the human SHBG transgenic mice developing liver fibrosis induced by carbon tetrachloride (CCl4 ). Our results clearly showed that CCl4 induced liver fibrosis and reduced SHBG production by reducing hepatocyte nuclear factor 4 alpha (HNF-4α). The SHBG reduction could be influenced by the increase in transforming growth factor-beta 1 (TGF-β1), which was increased in mice developing liver fibrosis. Therefore, we decided to evaluate the role of TGF-β1 in regulating hepatic SHBG production. Results obtained in both HepG2 cells and human SHBG transgenic mice showed that TGF-β1 reduced significantly SHBG messenger RNA and protein levels. Mechanistically TGF-β1 downregulated P1-HNF-4α isoforms and increased P2-HNF-4α isoforms via Smad3 and Stat3 pathways through TGF-β1 receptor I, resulting in transcriptional repression of the SHBG gene. Taken together, we found for the first time that TGF-β1 is a new factor regulating hepatic SHBG production in liver fibrosis. Further research is needed to determine the role of this reduction in hepatic SHBG production in the progression of nonalcoholic steatohepatitis.
Collapse
Affiliation(s)
- Laura Briansó-Llort
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Spain
| | - Lidia Fuertes-Rioja
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Spain
| | - Lorena Ramos-Perez
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Spain
| | | | - Cristina Hernandez
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Spain
| | - Rafael Simó
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Spain
| | - David M Selva
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Jiang Z, Elsarrag SZ, Duan Q, LaGory EL, Wang Z, Alexanian M, McMahon S, Rulifson IC, Winchester S, Wang Y, Vaisse C, Brown JD, Quattrocelli M, Lin CY, Haldar SM. KLF15 cistromes reveal a hepatocyte pathway governing plasma corticosteroid transport and systemic inflammation. SCIENCE ADVANCES 2022; 8:eabj2917. [PMID: 35263131 PMCID: PMC8906731 DOI: 10.1126/sciadv.abj2917] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 01/13/2022] [Indexed: 05/15/2023]
Abstract
Circulating corticosteroids orchestrate stress adaptation, including inhibition of inflammation. While pathways governing corticosteroid biosynthesis and intracellular signaling are well understood, less is known about mechanisms controlling plasma corticosteroid transport. Here, we show that hepatocyte KLF15 (Kruppel-like factor 15) controls plasma corticosteroid transport and inflammatory responses through direct transcriptional activation of Serpina6, which encodes corticosteroid-binding globulin (CBG). Klf15-deficient mice have profoundly low CBG, reduced plasma corticosteroid binding capacity, and heightened mortality during inflammatory stress. These defects are completely rescued by reconstituting CBG, supporting that KLF15 works primarily through CBG to control plasma corticosterone homeostasis. To understand transcriptional mechanisms, we generated the first KLF15 cistromes using newly engineered Klf153xFLAG mice. Unexpectedly, liver KLF15 is predominantly promoter enriched, including Serpina6, where it binds a palindromic GC-rich motif, opens chromatin, and transactivates genes with minimal associated direct gene repression. Overall, we provide critical mechanistic insight into KLF15 function and identify a hepatocyte-intrinsic transcriptional module that potently regulates systemic corticosteroid transport and inflammation.
Collapse
Affiliation(s)
- Zhen Jiang
- Amgen Research, South San Francisco, CA 94080, USA
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Selma Z. Elsarrag
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Medical Scientist Training Program and Quantitative and Computational Biosciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qiming Duan
- Gladstone Institutes, San Francisco, CA 94158, USA
| | | | - Zhe Wang
- Amgen Research, South San Francisco, CA 94080, USA
| | | | - Sarah McMahon
- Gladstone Institutes, San Francisco, CA 94158, USA
- Biomedical Sciences Graduate Program, UCSF School of Medicine, San Francisco, CA 94143, USA
| | | | | | - Yi Wang
- UCSF Diabetes Center and Department of Medicine, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Christian Vaisse
- UCSF Diabetes Center and Department of Medicine, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Jonathan D. Brown
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mattia Quattrocelli
- Molecular Cardiovascular Biology Division, Heart Institute, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Charles Y. Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Kronos Bio Inc., Cambridge, MA 02142, USA
| | - Saptarsi M. Haldar
- Amgen Research, South San Francisco, CA 94080, USA
- Gladstone Institutes, San Francisco, CA 94158, USA
- Cardiology Division, Department of Medicine, UCSF School of Medicine, San Francisco, CA 94143, USA
| |
Collapse
|
9
|
Xing C, Lv B, Zhao H, Wang D, Li X, He B. Metformin and exenatide upregulate hepatocyte nuclear factor-4α, sex hormone binding globulin levels and improve hepatic triglyceride deposition in polycystic ovary syndrome with insulin resistance rats. J Steroid Biochem Mol Biol 2021; 214:105992. [PMID: 34478829 DOI: 10.1016/j.jsbmb.2021.105992] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/18/2021] [Accepted: 08/29/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To explore the efficacy and underlying mechanisms of metformin and exenatide in reversing reproductive and metabolic disturbances in letrozole combined with high-fat diet-induced polycystic ovary syndrome (PCOS) rats. METHODS Rats with PCOS and insulin resistance (IR) were induced by intra-gastric instillation of letrozole combined with a high-fat diet and verified by histological screening of vaginal exfoliated cells. After metformin and exenatide supplementation, body weight, chow intake and ovarian morphology were observed. Serum biochemical profiles were analyzed using ELISA, while the levels of key anabolism-related proteins, including sex hormone binding globulin (SHBG), hepatocyte nuclear factor-4α (HNF-4α), PI3K, and AKT, were determined using western blotting. RESULTS The estrus cycle and ovarian morphology of rats with PCOS and IR were significantly recovered following metformin and exenatide treatment, with decreased body weight and chow intake. Furthermore, PCOS-induced changes in metabolic disorders including IR and hepatic triglyceride (TG) deposition, and hyperandrogenemia were reversed by treatment with both drugs. Specifically, the levels of HNF-4α and SHBG in liver tissue of rats with PCOS and IR were upregulated significantly. CONCLUSIONS Both metformin and exenatide could recover the estrous cycle and ovarian morphology, reduce body weight and high-fat chow intake, and improve glycolipid metabolism disorders and hyperandrogenemia in PCOS with IR rat models. Interestingly, our findings also highlight the potential of both therapeutic agents for improving IR by regulating the liver PI3K/AKT pathway, reducing the deposition of hepatic TG, as well as upregulating the levels of SHBG and HNF-4α in PCOS with IR rat liver tissue.
Collapse
Affiliation(s)
- Chuan Xing
- Department of Endocrinology, Shengjing Hospital of China Medical University, 110004, Shenyang, China
| | - Bo Lv
- Department of Endocrinology, Dalian Third People's Hospital, 116000, Dalian, China
| | - Han Zhao
- Department of Endocrinology, Shengjing Hospital of China Medical University, 110004, Shenyang, China
| | - Dongxu Wang
- Department of General Internal Medicine, Shengjing Hospital of China Medical University, 110004, Shenyang, China
| | - Xuesong Li
- Department of Endocrinology, Shengjing Hospital of China Medical University, 110004, Shenyang, China
| | - Bing He
- Department of Endocrinology, Shengjing Hospital of China Medical University, 110004, Shenyang, China.
| |
Collapse
|
10
|
Andriessen VC, Lightbourne M, Flippo C, Faucz FR, Delaney A, Hannah-Shmouni F, Hammond GL, Stratakis CA. Homozygous SHBG Variant ( rs6258) Linked to Gonadotropin-Independent Precocious Puberty in a Young Girl. J Endocr Soc 2021; 5:bvab125. [PMID: 34405127 DOI: 10.1210/jendso/bvab125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Indexed: 11/19/2022] Open
Abstract
Sex hormone-binding globulin (SHBG) in the blood is a major determinant of bioactivity for key sex steroids such as testosterone and estradiol. Low serum levels of SHBG have been associated with obesity, polycystic ovaries, and metabolic syndrome, and other states associated with hyperandrogenemia. A 9-year, 6-month-old girl presented with a history of peripheral precocious puberty and aggressive behavior. The patient's SHBG level was remarkably low for her age, at less than 5 nmol/L (reference range for a girl with a bone age of 10 years, 73 nmol/L [SEM = 10]) [1]. On genetic and protein analysis, the patient was found to have a homozygous missense potentially pathogenic variant in the SHBG gene (c.554C>T, p.P185L); her parents were asymptomatic heterozygote carriers. Laboratory investigations supported the possible involvement of this genetic alteration in the patient's phenotype. Various analyses of this variant support its pathogenicity, although the exact mechanism remains unclear. In conclusion, we present a genetic SHBG variant in the homozygote state that may have been associated with gonadotropin-independent precocious puberty in a young girl.
Collapse
Affiliation(s)
- Victoria C Andriessen
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-1109, USA
| | - Marissa Lightbourne
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-1109, USA
| | - Chelsi Flippo
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-1109, USA
| | - Fabio R Faucz
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-1109, USA
| | - Angela Delaney
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-1109, USA
| | - Fady Hannah-Shmouni
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-1109, USA
| | - Geoffrey L Hammond
- Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Constantine A Stratakis
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-1109, USA
| |
Collapse
|
11
|
Sun Y, Li S, Liu H, Bai H, Hu K, Zhang R, Liu Q, Fan P. Oxidative stress promotes hyperandrogenism by reducing sex hormone-binding globulin in polycystic ovary syndrome. Fertil Steril 2021; 116:1641-1650. [PMID: 34433519 DOI: 10.1016/j.fertnstert.2021.07.1203] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To determine the relationships between circulating sex hormone-binding globulin (SHBG) and oxidized low-density lipoprotein (ox-LDL), total oxidant status, total antioxidant capacity, oxidative stress index, malondialdehyde, and the high-density lipoprotein (HDL) inflammatory index in patients with polycystic ovary syndrome (PCOS) and to investigate the effect of oxidative stress on the expression of SHBG and its mechanism in HepG2 cells. DESIGN Cross-sectional study. SETTING University hospital. PATIENT(S) A total of 533 women with PCOS and 292 control women were included. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Circulating SHBG, hormones, and metabolic and oxidative stress indices were determined in all subjects. The effects of ox-LDL and ox-HDL on the mRNA and protein expression of SHBG and related transcription factors were observed in HepG2 cells. RESULT(S) The HDL inflammatory index, total oxidant status, oxidative stress index, and malondialdehyde levels were significantly higher in the three PCOS subgroups with different SHBG levels than in the controls. The ox-LDL and total antioxidant capacity were higher in the PCOS subgroups with SHBG levels <75th percentile compared with the controls or the PCOS subgroup with SHBG levels ≥75th percentile. In HepG2 cells, the SHBG concentration in the culture supernatant, the mRNA levels of SHBG and hepatocyte nuclear factor-4α (HNF-4α), and the protein levels of HNF-4α were significantly lower in ox-LDL- and ox-HDL-treated cells than in the control cells and lipoprotein-treated cells. CONCLUSION(S) Oxidative stress inhibits the expression and secretion of SHBG by downregulating HNF-4α in vitro and may be an important factor promoting the occurrence of hyperandrogenemia in PCOS.
Collapse
Affiliation(s)
- Yuan Sun
- Laboratory of Genetic Disease and Perinatal Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China; School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, People's Republic of China
| | - Suiyan Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, People's Republic of China
| | - Hongwei Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Huai Bai
- Laboratory of Genetic Disease and Perinatal Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Kaifeng Hu
- Laboratory of Genetic Disease and Perinatal Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Renjiao Zhang
- Laboratory of Genetic Disease and Perinatal Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Qingqing Liu
- Laboratory of Genetic Disease and Perinatal Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ping Fan
- Laboratory of Genetic Disease and Perinatal Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
12
|
Simons PIHG, Valkenburg O, Stehouwer CDA, Brouwers MCGJ. Sex hormone-binding globulin: biomarker and hepatokine? Trends Endocrinol Metab 2021; 32:544-553. [PMID: 34052096 DOI: 10.1016/j.tem.2021.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/19/2021] [Accepted: 05/04/2021] [Indexed: 12/18/2022]
Abstract
Over the past decade, there have been important breakthroughs in our understanding of the regulation and function of sex hormone-binding globulin (SHBG). A recent genome-wide association and Mendelian randomization study has provided new insights at the population level. Thorough study of genetic variants affecting serum SHBG has identified de novo lipogenesis as one of the mechanistic links between the metabolic syndrome and reduced serum SHBG levels in humans. Furthermore, careful deduction of the Mendelian randomization results suggests a direct, causal role for SHBG in the pathogenesis of type 2 diabetes, as a hepatokine, in women. These findings prompt the development of SHBG-raising therapies as a means to prevent or treat disorders such as type 2 diabetes and polycystic ovary syndrome.
Collapse
Affiliation(s)
- Pomme I H G Simons
- Division of Endocrinology and Metabolic Diseases, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands; Laboratory for Metabolism and Vascular Medicine, Maastricht University, Maastricht, The Netherlands; CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Olivier Valkenburg
- Department of Reproductive Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Coen D A Stehouwer
- Laboratory for Metabolism and Vascular Medicine, Maastricht University, Maastricht, The Netherlands; CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands; Division of General Internal Medicine, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Martijn C G J Brouwers
- Division of Endocrinology and Metabolic Diseases, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands; CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
13
|
Aydin BK, Yasa B, Moore JP, Yasa C, Poyrazoglu S, Bas F, Coban A, Darendeliler F, Winters SJ. Impact of Smoking, Obesity and Maternal Diabetes on SHBG Levels in Newborns. Exp Clin Endocrinol Diabetes 2021; 130:335-342. [PMID: 33618372 DOI: 10.1055/a-1375-4176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Low levels of SHBG have become a marker for insulin resistance and diabetes. Babies born to mothers who are obese, have diabetes, or smoke during pregnancy are at greater risk of developing obesity and diabetes later in life. AIMS To examine the impact of maternal obesity, diabetes and smoking on SHBG levels in newborns. STUDY DESIGN This cross-sectional study is part of an ongoing multicenter, longitudinal study. SUBJECTS 98 healthy newborns and their parents, including 16 mothers with diabetes and 31 mothers with a smoking history. OUTCOME MEASURES Cord blood and second day venipuncture samples were collected for measurement of SHBG and insulin. RESULTS Babies born to mothers with diabetes had lower SHBG levels in cord blood [14.0 (8.9-20.4) vs. 19.6 (14.9-25.1) nmol/L; p=0.011] and on day 2 [18.8 (12.6-21.2) vs. 22.9 (17.1-29.1) nmol/L; p=0.015] than controls. Maternal diabetes remained negatively associated with SHBG levels in cord blood (p=0.02) and on day 2 (p=0.04) when adjusted for mothers' age, smoking status, pre-pregnancy weight and weight gain during pregnancy. SHBG levels in cord blood and day 2 samples were similar in babies born to mothers who were overweight-obese but not diabetic vs. normal weight, or were smokers when compared to non-smokers. CONCLUSIONS SHBG levels are lower in newborns born to mothers with diabetes than without diabetes, and may be a marker for babies' life-long risk for abnormal metabolic health. On the other hand, the adverse effects of tobacco smoke on the fetus do not appear to directly influence SHBG levels.
Collapse
Affiliation(s)
- Banu Kucukemre Aydin
- Division of Pediatric Endocrinology, Metabolism and Diabetes, Istanbul University, Istanbul, Turkey
| | - Beril Yasa
- Division of Neonatology, Istanbul University, Istanbul, Turkey
| | - Joseph P Moore
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, USA
| | - Cenk Yasa
- Department of Obstetrics, Gynecology and Women's Health, Istanbul University, Istanbul, Turkey
| | - Sukran Poyrazoglu
- Division of Pediatric Endocrinology, Metabolism and Diabetes, Istanbul University, Istanbul, Turkey
| | - Firdevs Bas
- Division of Pediatric Endocrinology, Metabolism and Diabetes, Istanbul University, Istanbul, Turkey
| | - Asuman Coban
- Division of Neonatology, Istanbul University, Istanbul, Turkey
| | - Feyza Darendeliler
- Division of Pediatric Endocrinology, Metabolism and Diabetes, Istanbul University, Istanbul, Turkey
| | - Stephen J Winters
- Division of Endocrinology, Metabolism and Diabetes. University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
14
|
Basualto-Alarcón C, Llanos P, García-Rivas G, Troncoso MF, Lagos D, Barrientos G, Estrada M. Classic and Novel Sex Hormone Binding Globulin Effects on the Cardiovascular System in Men. Int J Endocrinol 2021; 2021:5527973. [PMID: 34335746 PMCID: PMC8318754 DOI: 10.1155/2021/5527973] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/28/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022] Open
Abstract
In men, 70% of circulating testosterone binds with high affinity to plasma sex hormone binding globulin (SHBG), which determines its bioavailability in their target cells. In recent years, a growing body of evidence has shown that circulating SHBG not only is a passive carrier for steroid hormones but also actively regulates testosterone signaling through putative plasma membrane receptors and by local expression of androgen-binding proteins apparently to reach local elevated testosterone concentrations in specific androgen target tissues. Circulating SHBG levels are influenced by metabolic and hormonal factors, and they are reduced in obesity and insulin resistance, suggesting that SHBG may have a broader clinical utility in assessing the risk for cardiovascular diseases. Importantly, plasma SHBG levels are strongly correlated with testosterone concentrations, and in men, low testosterone levels are associated with an adverse cardiometabolic profile. Although obesity and insulin resistance are associated with an increased incidence of cardiovascular disease, whether they lead to abnormal expression of circulating SHBG or its interaction with androgen signaling remains to be elucidated. SHBG is produced mainly in the liver, but it can also be expressed in several tissues including the brain, fat tissue, and myocardium. Expression of SHBG is controlled by peroxisome proliferator-activated receptor γ (PPARγ) and AMP-activated protein kinase (AMPK). AMPK/PPAR interaction is critical to regulate hepatocyte nuclear factor-4 (HNF4), a prerequisite for SHBG upregulation. In cardiomyocytes, testosterone activates AMPK and PPARs. Therefore, the description of local expression of cardiac SHBG and its circulating levels may shed new light to explain physiological and adverse cardiometabolic roles of androgens in different tissues. According to emerging clinical evidence, here, we will discuss the potential mechanisms with cardioprotective effects and SHBG levels to be used as an early metabolic and cardiovascular biomarker in men.
Collapse
Affiliation(s)
- Carla Basualto-Alarcón
- Departamento de Ciencias de la Salud, Universidad de Aysén, Coyhaique 5951537, Chile
- Departamento de Anatomía y Medicina Legal, Facultad de Medicina, Universidad de Chile, Santiago 8389100, Chile
| | - Paola Llanos
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Gerardo García-Rivas
- Tecnológico de Monterrey, Hospital Zambrano Hellion, TecSalud, Centro de Medicina Funcional, San Pedro Garza García, Nuevo León 66278, Mexico
| | - Mayarling Francisca Troncoso
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8389100, Chile
| | - Daniel Lagos
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8389100, Chile
| | - Genaro Barrientos
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8389100, Chile
| | - Manuel Estrada
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8389100, Chile
| |
Collapse
|
15
|
Bikle DD. The Free Hormone Hypothesis: When, Why, and How to Measure the Free Hormone Levels to Assess Vitamin D, Thyroid, Sex Hormone, and Cortisol Status. JBMR Plus 2020; 5:e10418. [PMID: 33553985 PMCID: PMC7839820 DOI: 10.1002/jbm4.10418] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/29/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
The free hormone hypothesis postulates that only the nonbound fraction (the free fraction) of hormones that otherwise circulate in blood bound to their carrier proteins is able to enter cells and exert biologic effects. In this review, I will examine four hormone groups-vitamin D metabolites (especially 25OHD), thyroid hormones (especially thyroxine [T4]), sex steroids (especially testosterone), and glucocorticoids (especially cortisol)-that are bound to various degrees to their respective binding proteins-vitamin D-binding protein (DBP), thyroid-binding globulin (TBG), sex hormone-binding globulin (SHBG), and cortisol-binding globulin (CBG)-for which a strong case can be made that measurement of the free hormone level provides a better assessment of hormonal status than the measurement of total hormonal levels under conditions in which the binding proteins are affected in levels or affinities for the hormones to which they bind. I will discuss the rationale for this argument based on the free hormone hypothesis, discuss potential exceptions to the free hormone hypothesis, and review functions of the binding proteins that may be independent of their transport role. I will then review the complications involved with measuring the free hormone levels and the efforts to calculate those levels based on estimates of binding constants and levels of both total hormone and total binding protein. In this review, the major focus will be on DBP and free 25OHD, but the parallels and differences with the other binding proteins and hormones will be highlighted. Vitamin D and its metabolites, thyroid hormones, sex steroids, and glucocorticoids are transported in blood bound to serum proteins. The tightness of binding varies depending on the hormone and the binding protein such that the percent free varies from 0.03% for T4 and 25OHD to 4% for cortisol with testosterone at 2%. Although the major function of the primary carrier proteins (DBP, TBG, SHBG, and CBG) may be to transport their respective lipophilic hormones within the aqueous media that is plasma, these proteins may have other functions independent of their transport function. For most tissues, these hormones enter the cell as the free hormone presumably by diffusion (the free hormone hypothesis), although a few tissues such as the kidney and reproductive tissues express megalin/cubilin enabling by endocytosis protein-bound hormone to enter the cell. Measuring the free levels of these protein-bound hormones is likely to provide a better measure of the true hormone status than measuring the total levels in situations where the levels and/or affinities of the binding proteins are altered. Methods to measure free hormone levels are problematic as the free levels can be quite low, the methods require separation of bound and free that could disturb the steady state, and the means of separating bound and free are prone to error. Calculation of free levels using existing data for association constants between the hormone and its binding protein are likewise prone to error because of assumptions of linear binding models and invariant association constants, both of which are invalid. © 2020 The Author. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Daniel D Bikle
- Department of Medicine University of California San Francisco USA.,Department of Medicine San Francisco VA Medical Center San Francisco CA USA
| |
Collapse
|
16
|
Winters SJ. SHBG and total testosterone levels in men with adult onset hypogonadism: what are we overlooking? Clin Diabetes Endocrinol 2020; 6:17. [PMID: 33014416 PMCID: PMC7526370 DOI: 10.1186/s40842-020-00106-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/21/2020] [Indexed: 11/10/2022] Open
Abstract
Background Adult onset male hypogonadism (AOH) is a common clinical condition whose diagnosis and management are controversial, and is often characterized by a low level of SHBG, but our understanding of why testosterone levels are low when SHBG is low is incomplete. Methods This retrospective chart review was performed to compare the relationship between SHBG and testosterone in the plasma of men presenting for evaluation of AOH with a cohort of men treated chronically with transdermal testosterone. Results The level of SHBG was < 30 nmol/L in 73% of men who presented for evaluation of AOH, and was inversely proportional to BMI in both the untreated and the testosterone-treated men. As in previous populations, the level of SHBG was highly positively correlated (r = 0.71, p < 0.01) with the total testosterone level in untreated men presenting for evaluation of AOH, but no relationship was found between the level of SHBG and total testosterone among men who were being treated with a transdermal testosterone preparation. Conclusions These findings further support the idea that SHBG regulates testicular negative feedback either directly or by modulating the entry of testosterone or estradiol into cells in the hypothalamus and/or pituitary to control gonadotropin synthesis and secretion which explains in part the low testosterone levels in men with AOH. Trial registration Not applicable.
Collapse
Affiliation(s)
- Stephen J Winters
- Division of Endocrinology, Metabolism and Diabetes, University of Louisville, ACB-A3G11, 550 Jackson Street, Louisville, KY 40202 USA
| |
Collapse
|
17
|
Winters SJ, Scoggins CR, Appiah D, Ghooray DT. The hepatic lipidome and HNF4α and SHBG expression in human liver. Endocr Connect 2020; 9:1009-1018. [PMID: 33064664 PMCID: PMC7576643 DOI: 10.1530/ec-20-0401] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 09/16/2020] [Indexed: 01/14/2023]
Abstract
Low plasma levels of sex hormone-binding globulin (SHBG) are a marker for obesity, insulin resistance, non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes. The transcription factor HNF4α is a major determinant of hepatic SHBG expression and thereby serum SHBG levels, and mediates in part the association of low SHBG with hyperinsulinemia and hepatic steatosis. We analyzed the lipidome in human liver specimens from a cohort of patients who underwent hepatic resection as a treatment for cancer, providing insight into hepatic lipids in those without extreme obesity or the clinical diagnosis of NAFLD or non-alcoholic steatohepatitis. Both steatosis and high HOMA-IR were associated with higher levels of saturated and unsaturated FA, other than arachidonic, with the most dramatic rise in 18:1 oleate, consistent with increased stearoyl-CoA desaturase activity. Individuals with low HOMA-IR had low levels of total hepatic fatty acids, while both low and high fatty acid levels characterized the high HOMA-IR group. Both insulin resistance and high levels of hepatic fat were associated with low expression levels of HNF4α and thereby SHBG, but the expression of these genes was also low in the absence of these determinants, implying additional regulatory mechanisms that remain to be determined. The relationship of all FA studied to HNFα and SHBG mRNAs was inverse, and similar to that for total triglyceride concentrations, irrespective of chain length and saturation vs unsaturation.
Collapse
Affiliation(s)
- Stephen J Winters
- Division of Endocrinology, Metabolism and Diabetes, University of Louisville, Louisville, Kentucky, USA
- Correspondence should be addressed to S J Winters:
| | - Charles R Scoggins
- Division of Surgical Oncology, University of Louisville, Louisville, Kentucky, USA
| | - Duke Appiah
- Department of Public Health, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Dushan T Ghooray
- Division of Endocrinology, Metabolism and Diabetes, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
18
|
Briansó-Llort L, Fuertes-Rioja L, Ramos-Perez L, Hernandez C, Simó R, Selva DM. Caffeine Upregulates Hepatic Sex Hormone-Binding Globulin Production by Increasing Adiponectin Through AKT/FOXO1 Pathway in White Adipose Tissue. Mol Nutr Food Res 2020; 64:e1901253. [PMID: 32652892 DOI: 10.1002/mnfr.201901253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 07/02/2020] [Indexed: 01/23/2023]
Abstract
SCOPE Epidemiological studies have shown that caffeine increases serum sex hormone-binding globulin (SHBG) levels. The relationship between caffeine and SHBG production has never been studied before at molecular level. The aim of this study is to examine whether caffeine regulates SHBG production and to determine the associated molecular mechanisms. METHODS AND RESULTS Two different studies are performed; in vitro studies using human HepG2 cells treated with caffeine (100 and 500 µm) and in vivo studies using a humanized SHBG transgenic mice drinking caffeine in the water (0.1 mg mL-1 ) for 12 days. The results show that caffeine does not change SHBG production in HepG2 cells. By contrast, caffeine treatment increases significantly hepatic SHBG production in human SHBG transgenic mice when compared with control mice. Caffeine increases adiponectin levels in epididymal adipose tissue of human SHBG transgenic mice. Moreover, caffeine increases adiponectin production by reducing protein kinase B (AKT) phosphorylation which increases forkhead box protein O1 (FOXO1) protein levels in 3T3-L1 mature adipocytes and human SHBG transgenic mice. Finally, caffeine-induced increase in adiponectin in turn upregulates hepatic hepatocyte nuclear receptor 4-alpha (HNF-4α) levels in human SHBG transgenic mice. CONCLUSIONS The results show that caffeine upregulates hepatic SHBG expression by increasing adiponectin production through AKT/FOXO1 pathway in the adipose tissue.
Collapse
Affiliation(s)
- Laura Briansó-Llort
- Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona and CIBERDEM (ISCIII), Barcelona, 08035, Spain
| | - Lidia Fuertes-Rioja
- Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona and CIBERDEM (ISCIII), Barcelona, 08035, Spain
| | - Lorena Ramos-Perez
- Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona and CIBERDEM (ISCIII), Barcelona, 08035, Spain
| | - Cristina Hernandez
- Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona and CIBERDEM (ISCIII), Barcelona, 08035, Spain
| | - Rafael Simó
- Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona and CIBERDEM (ISCIII), Barcelona, 08035, Spain
| | - David M Selva
- Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona and CIBERDEM (ISCIII), Barcelona, 08035, Spain
| |
Collapse
|
19
|
Watt MJ, Miotto PM, De Nardo W, Montgomery MK. The Liver as an Endocrine Organ-Linking NAFLD and Insulin Resistance. Endocr Rev 2019; 40:1367-1393. [PMID: 31098621 DOI: 10.1210/er.2019-00034] [Citation(s) in RCA: 336] [Impact Index Per Article: 67.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/04/2019] [Indexed: 02/06/2023]
Abstract
The liver is a dynamic organ that plays critical roles in many physiological processes, including the regulation of systemic glucose and lipid metabolism. Dysfunctional hepatic lipid metabolism is a cause of nonalcoholic fatty liver disease (NAFLD), the most common chronic liver disorder worldwide, and is closely associated with insulin resistance and type 2 diabetes. Through the use of advanced mass spectrometry "omics" approaches and detailed experimentation in cells, mice, and humans, we now understand that the liver secretes a wide array of proteins, metabolites, and noncoding RNAs (miRNAs) and that many of these secreted factors exert powerful effects on metabolic processes both in the liver and in peripheral tissues. In this review, we summarize the rapidly evolving field of "hepatokine" biology with a particular focus on delineating previously unappreciated communication between the liver and other tissues in the body. We describe the NAFLD-induced changes in secretion of liver proteins, lipids, other metabolites, and miRNAs, and how these molecules alter metabolism in liver, muscle, adipose tissue, and pancreas to induce insulin resistance. We also synthesize the limited information that indicates that extracellular vesicles, and in particular exosomes, may be an important mechanism for intertissue communication in normal physiology and in promoting metabolic dysregulation in NAFLD.
Collapse
Affiliation(s)
- Matthew J Watt
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Paula M Miotto
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - William De Nardo
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | | |
Collapse
|
20
|
Zhu JL, Chen Z, Feng WJ, Long SL, Mo ZC. Sex hormone-binding globulin and polycystic ovary syndrome. Clin Chim Acta 2019; 499:142-148. [PMID: 31525346 DOI: 10.1016/j.cca.2019.09.010] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 12/14/2022]
Abstract
Polycystic ovary syndrome (PCOS), one of the most common endocrine diseases that causes infertility in reproductive women, is characterized by hyperandrogenemia, chronic anovulation, and polycystic ovary morphology (PCOM), and most women with PCOS have metabolic abnormalities. A reduction in plasma sex hormone-binding globulin (SHBG), a transport carrier that binds estrogen and androgens and regulates their biological activities, is often used as an indicator of hyperandrogenism in women with PCOS. Low serum SHBG levels are considered a biomarker of abnormal metabolism and are related to insulin resistance (IR), compensatory hyperinsulinemia and abnormalities in glucose and lipid metabolism in PCOS patients. SHBG is also associated with the long-term prognosis of PCOS. SHBG gene polymorphism is correlated with the risk of PCOS. As SHBG plays a vital role in the occurrence and development of PCOS, knowledge regarding its role in PCOS is helpful for further understanding the molecular mechanism of SHBG in PCOS development and providing new ideas for the treatment of female infertility. Hepatocyte nuclear factor-4α (HNF-4α) is a vital transcription factor in the SHBG synthesis process. HNF-4α binds to the cis-type element DR1 in the SHBG promoter to initiate transcription and regulates hepatic SHBG levels by modulating glucose and lipid metabolism and inflammatory factors. However, it remains unclear whether HNF-4α is indirectly involved in the pathogenesis of PCOS via regulation of hepatic SHBG synthesis. Therefore, this review discusses the interaction between SHBG and the various complications of PCOS as well as the regulatory effect of HNF-4α on SHBG expression.
Collapse
Affiliation(s)
- Jing-Ling Zhu
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, University of South China, Hengyang, Hunan 421001, China; Hunan Province Innovative Training Base for Medical Postgraduates, University of South China and Yueyang Women & Children's Medical Center, Yueyang, Hunan 416000, China
| | - Zhuo Chen
- Hunan Province Innovative Training Base for Medical Postgraduates, University of South China and Yueyang Women & Children's Medical Center, Yueyang, Hunan 416000, China
| | - Wen-Jie Feng
- 2015 Grade Medical Imaging Class of Medical School, University of South China, Hengyang 421001, China
| | - Shuang-Lian Long
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, University of South China, Hengyang, Hunan 421001, China; Hunan Province Innovative Training Base for Medical Postgraduates, University of South China and Yueyang Women & Children's Medical Center, Yueyang, Hunan 416000, China.
| | - Zhong-Cheng Mo
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, University of South China, Hengyang, Hunan 421001, China; Hunan Province Innovative Training Base for Medical Postgraduates, University of South China and Yueyang Women & Children's Medical Center, Yueyang, Hunan 416000, China.
| |
Collapse
|
21
|
Luo J, Chen Q, Shen T, Wang X, Fang W, Wu X, Yuan Z, Chen G, Ling W, Chen Y. Association of sex hormone-binding globulin with nonalcoholic fatty liver disease in Chinese adults. Nutr Metab (Lond) 2018; 15:79. [PMID: 30455723 PMCID: PMC6225668 DOI: 10.1186/s12986-018-0313-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/15/2018] [Indexed: 02/07/2023] Open
Abstract
Background Sex hormone-binding globulin (SHBG), a glycoprotein synthesized by hepatocytes, has been linked to insulin resistance and hepatic lipid metabolism and is suggested to be associated with nonalcoholic fatty liver disease (NAFLD). This study aimed to investigate the association of SHBG with NAFLD in Chinese adults. Methods We conducted a community-based, cross-sectional study in China involving 2912 participants aged 40–75 years old. All participants underwent detection for hepatic fat infiltration by ultrasound in addition to providing complete medical history and undergoing physical and blood biochemical examinations. The association of serum SHBG with the presence of NAFLD was reported by adjusted odds ratio after applying logistic regression models. To further explore the relationship between SHBG and NAFLD, mRNA expression of SHBG and hepatocyte nuclear factor 4-α (HNF4α), as well as intrahepatic triglycerides, were determined from the liver tissues of 32 subjects with different degrees of steatosis. Results Serum SHBG levels in patients with NAFLD (median, 43.8 nmol/L; interquartile range, 33.4–56.8 nmol/L) were significantly lower than those in non-NAFLD subjects (median, 63.4 nmol/L; interquartile range, 47.6–83.1 nmol/L). Serum SHBG levels were inversely correlated with WHR, trunk fat percentage, glucose, HOMA-IR, TG, UA and DHEAS, and were positively correlated with HDL-C levels (all p < 0.001). Logistic regression analysis indicated that serum SHBG levels were negatively associated with the presence of NAFLD in all subjects, as well as the subgroups stratified by sex, BMI and HOMA-IR (all p < 0.05). In human liver tissues, SHBG and HNF4α mRNA expression decreased along with the elevated grade of hepatic steatosis. Both SHBG and HNF4α mRNA expression levels were negatively correlated with intrahepatic triglycerides. Conclusions These results demonstrate that SHBG levels were negatively associated with the presence of NAFLD in middle-aged and elderly Chinese adults. Electronic supplementary material The online version of this article (10.1186/s12986-018-0313-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jing Luo
- 1Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, 510080 China.,2Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080 China
| | - Qian Chen
- 1Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, 510080 China.,2Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080 China.,5Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120 China
| | - Tianran Shen
- 1Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, 510080 China.,2Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080 China
| | - Xu Wang
- 1Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, 510080 China.,2Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080 China
| | - Wanjun Fang
- 1Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, 510080 China.,2Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080 China
| | - Xiaocai Wu
- 4Department of Hepatic Surgery,The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630 China
| | - Zenan Yuan
- 4Department of Hepatic Surgery,The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630 China
| | - Gengdong Chen
- 2Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080 China.,3Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, 510080 China
| | - Wenhua Ling
- 1Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, 510080 China.,2Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080 China
| | - Yuming Chen
- 2Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080 China.,3Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, 510080 China
| |
Collapse
|
22
|
Gyawali P, Martin SA, Heilbronn LK, Vincent AD, Jenkins AJ, Januszewski AS, Taylor AW, Adams RJT, O’Loughlin PD, Wittert GA. Cross-sectional and longitudinal determinants of serum sex hormone binding globulin (SHBG) in a cohort of community-dwelling men. PLoS One 2018; 13:e0200078. [PMID: 29995902 PMCID: PMC6040731 DOI: 10.1371/journal.pone.0200078] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 06/19/2018] [Indexed: 12/31/2022] Open
Abstract
Despite its widespread clinical use, there is little data available from population-based studies on the determinants of serum sex hormone binding globulin (SHBG). We aimed to examine multifactorial determinants of circulating SHBG levels in community-dwelling men. Study participants comprised randomly selected 35–80 y.o. men (n = 2563) prospectively-followed for 5 years (n = 2038) in the Men Androgen Inflammation Lifestyle Environment and Stress (MAILES) study. After excluding men with illness or medications known to affect SHBG (n = 172), data from 1786 men were available at baseline, and 1476 at follow-up. The relationship between baseline body composition (DXA), serum glucose, insulin, triglycerides, thyroxine (fT4), sex steroids (total testosterone (TT), oestradiol (E2)), and pro-inflammatory cytokines and serum SHBG level at both baseline & follow-up was determined by linear and penalized logistic regression models adjusting for age, lifestyle & demographic, body composition, metabolic, and hormonal factors. Restricted cubic spline analyses was also conducted to capture possible non-linear relationships. At baseline there were positive cross-sectional associations between age (β = 0.409, p<0.001), TT (β = 0.560, p<0.001), fT4 (β = 0.067, p = 0.019) and SHBG, and negative associations between triglycerides (β = -0.112, p<0.001), abdominal fat mass (β = -0.068, p = 0.032) and E2 (β = -0.058, p = 0.050) and SHBG. In longitudinal analysis the positive determinants of SHBG at 4.9 years were age (β = 0.406, p = <0.001), TT (β = 0.461, p = <0.001), and fT4 (β = 0.040, p = 0.034) and negative determinants were triglycerides (β = -0.065, p = 0.027) and abdominal fat mass (β = -0.078, p = 0.032). Taken together these data suggest low SHBG is a marker of abdominal obesity and increased serum triglycerides, conditions which are known to have been associated with low testosterone and low T4.
Collapse
Affiliation(s)
- Prabin Gyawali
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
- Freemasons Foundation Centre for Men’s Health, University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- * E-mail: (PG); (GW)
| | - Sean A. Martin
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
- Freemasons Foundation Centre for Men’s Health, University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Leonie K. Heilbronn
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Andrew D. Vincent
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
- Freemasons Foundation Centre for Men’s Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Alicia J. Jenkins
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Andrzej S. Januszewski
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Anne W. Taylor
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Population Research and Outcomes Studies, University of Adelaide, Adelaide, South Australia, Australia
| | - Robert J. T. Adams
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- The Health Observatory, University of Adelaide, Queen Elizabeth Hospital, Woodville, South Australia, Australia
| | | | - Gary A. Wittert
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
- Freemasons Foundation Centre for Men’s Health, University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- * E-mail: (PG); (GW)
| |
Collapse
|
23
|
Rastrelli G, Corona G, Cipriani S, Mannucci E, Maggi M. Sex hormone-binding globulin is associated with androgen deficiency features independently of total testosterone. Clin Endocrinol (Oxf) 2018; 88:556-564. [PMID: 29235134 DOI: 10.1111/cen.13530] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/28/2017] [Accepted: 12/05/2017] [Indexed: 01/22/2023]
Abstract
OBJECTIVE It is recognized that total testosterone (TT) does not sufficiently describe androgen status when sex hormone-binding globulin (SHBG) is altered. However, in humans, evidence supporting the existence of a hypogonadism due to low T bioactivity is scanty. The aim of the study was to assess whether changes in SHBG levels, independently of TT, are associated with subjective and objective androgen-dependent parameters. DESIGN Cross-sectional observation. PATIENTS Two thousand six hundred and twenty-two men (aged 51.1 ± 13.5 years) attending a Sexual Medicine and Andrology Outpatient Clinic for sexual dysfunctions. MEASUREMENTS All patients underwent a standardized diagnostic protocol before starting any treatment. Clinical and biochemical parameters have been collected. Higher ANDROTEST score has been used as a comprehensive marker of more severe hypogonadal symptoms. Prostate-specific antigen (PSA) and haematocrit have been used as objective surrogate markers of T bioactivity. RESULTS After adjusting for TT and lifestyle, SHBG showed a significant positive association with ANDROTEST score (B = 0.79 [0.61; 0.96], P < .0001). Conversely, higher SHBG, independently of TT, was negatively related to PSA (B = -0.86 [-0.83; -0.89]; P < .0001) and haematocrit (B = -0.64 [-0.88; -0.40]; P < .0001), after adjustment for the aforementioned confounders along with age and body mass index. Furthermore, a relationship between SHBG and lipids or blood pressure was found, with lower SHBG levels associated with a worse metabolic profile, independently of TT. CONCLUSIONS Higher SHBG, independently of TT, is associated with either subjective or objective androgen deficiency features. This indicates that besides a hypogonadism due to an impaired T production, a hypogonadism due to a lower biological activity of T does exist.
Collapse
Affiliation(s)
- Giulia Rastrelli
- Sexual Medicine and Andrology Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Giovanni Corona
- Sexual Medicine and Andrology Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
- Endocrinology Unit, Medical Department, Azienda Usl Bologna Maggiore-Bellaria Hospital, Bologna, Italy
| | - Sarah Cipriani
- Sexual Medicine and Andrology Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Edoardo Mannucci
- Diabetology, University of Florence and Careggi Teaching Hospital, Florence, Italy
| | - Mario Maggi
- Sexual Medicine and Andrology Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
- Istituto Nazionale Biostrutture e Biosistemi (I.N.B.B.), Rome, Italy
| |
Collapse
|
24
|
Sofer Y, Nevo N, Vechoropoulos M, Shefer G, Osher E, Landis N, Tordjman K, Hammond GL, Stern N. Human sex hormone-binding globulin does not provide metabolic protection against diet-induced obesity and dysglycemia in mice. Endocr Connect 2018; 7:91-96. [PMID: 29141991 PMCID: PMC5754513 DOI: 10.1530/ec-17-0240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 11/15/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Sex hormone-binding globulin (SHBG) is the main transporter of sex hormones in most vertebrates. Low SHBG levels have been linked to increased risk for diabetes and metabolic syndrome. Polymorphisms of the SHBG gene linked to low SHBG protein levels also strongly predicted increased risk of type 2 diabetes, thus raising the possibility that SHBG may play a role in the pathogenesis of insulin resistance and diabetes. AIM To examine whether expression of human SHBG in mice may ameliorate the development of diabetes and metabolic syndrome in response to a high-fat diet (HFD). METHODS Transgene mice expressing a human SHBG transgene (SHBG+) (N = 10/11; males/females) and their wild type littermates (N = 12/8; males/females) were fed HFD for 4.5 months. RESULTS HFD induced comparable obesity in control and SHBG+ mice. Male transgenes had higher muscle mass after 2-3.5 months HFD (0.43 ± 0.028 (n = 4) vs 0.38 ± 0.053 g (n = 7), P = 0.05). Fasting blood glucose, as well as insulin or HOMA-IR, was not different in transgenic vs wild-type males after 4-5 months HFD. Female transgenes had higher fasting glucose (152 ± 29 (n = 7) vs 115 ± 27 mg/dL, P = 0.01 (n = 8)), but mean insulin and HOMA-IR were not different. Likewise, insulin tolerance test and intra-peritoneal glucose tolerance test (GTT) were not different. Finally, SHBG+ mice were not different from controls in terms of liver enzymes, serum triglyceride levels and blood pressure. CONCLUSION In mice with diet-induced obesity, human SHBG did not protect against development of obesity or dysglycemia.
Collapse
Affiliation(s)
- Yael Sofer
- Institute of EndocrinologyMetabolism and Hypertension, Tel Aviv-Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nava Nevo
- Department of Biological RegulationWeizmann Institute of Science, Rehovot, Israel
| | - Michal Vechoropoulos
- Institute of EndocrinologyMetabolism and Hypertension, Tel Aviv-Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gabi Shefer
- Institute of EndocrinologyMetabolism and Hypertension, Tel Aviv-Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Etty Osher
- Institute of EndocrinologyMetabolism and Hypertension, Tel Aviv-Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nathan Landis
- Institute of EndocrinologyMetabolism and Hypertension, Tel Aviv-Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Geoffrey L Hammond
- Departments of Cellular & Physiological Sciences and Obstetrics & GynaecologyUniversity of British Columbia, Vancouver, British Columbia, Canada
| | - Naftali Stern
- Institute of EndocrinologyMetabolism and Hypertension, Tel Aviv-Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
25
|
Non-alcoholic fatty liver disease is an influencing factor for the association of SHBG with metabolic syndrome in diabetes patients. Sci Rep 2017; 7:14532. [PMID: 29109457 PMCID: PMC5674048 DOI: 10.1038/s41598-017-15232-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/23/2017] [Indexed: 02/07/2023] Open
Abstract
Metabolic syndrome (MS) and non-alcoholic fatty liver disease (NAFLD) have been identified as risk factors affecting serum sex hormone binding globulin (SHBG) levels. We conducted this cross-sectional study to delineate whether MS or NAFLD has more impact on circulating SHBG levels in type 2 diabetes (T2D) patients. Anthropometric and biochemical parameters including serums SHBG, testosterone (TT), liver enzymes, lipids, insulin, C-peptide and plasma glucose were measured. Regardless of the MS status, SHBG level was significantly lower in NAFLD patients than in non-NAFLD patients (P < 0.001). In the multiple linear regression analysis, lower serum SHBG level was strongly correlated with a higher incidence of NAFLD, but not MS components. In logistic regression analyses, after adjusted for age, sex, duration of diabetes, smoking status, and alcohol use, the ORs and 95%CI for presence of MS was 2.26 (95%CI 1.91–2.68) and for presence of NAFLD was 6.36 (95%CI 4.87–8.31) with per one SD decrease in serum SHBG (both P < 0.001). In conclusion, lower serum SHBG is associated with a higher prevalence of NAFLD, compared with MS and other metabolic disorders, in T2D patients. NAFLD might be an important influencing factor for the association of circulating SHBG with MS in T2D patients.
Collapse
|
26
|
Saez-Lopez C, Brianso-Llort L, Torres-Torronteras J, Simó R, Hammond GL, Selva DM. Resveratrol Increases Hepatic SHBG Expression through Human Constitutive Androstane Receptor: a new Contribution to the French Paradox. Sci Rep 2017; 7:12284. [PMID: 28947831 PMCID: PMC5612985 DOI: 10.1038/s41598-017-12509-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 09/12/2017] [Indexed: 01/08/2023] Open
Abstract
Sex hormone-binding globulin (SHBG) carries sex steroids in blood regulating their bioavailability. Red wine consumption increases plasma SHBG levels, and we have discovered that resveratrol, a polyphenol enriched in red wine, acts specifically through the human constitutive androstane receptor (CAR), a drug/xenobiotic detoxification gene regulator, to increase hepatic SHBG production. Chromatin immunoprecipitation and luciferase reporter gene assays show that human CAR binds to a typical direct repeat 1 nuclear hormone receptor-binding element in the human SHBG proximal promoter. Resveratrol also increased hepatic SHBG production in humanized SHBG/CAR transgenic mice. Moreover, SHBG expression correlated significantly with CAR mRNA levels in human liver biopsies. We conclude that the beneficial effects of red wine on the metabolic syndrome and it associated co-morbidities, including cardiovascular disease and type 2 diabetes, may be mediated in part by resveratrol acting via CAR to increase plasma SHBG levels.
Collapse
Affiliation(s)
- Cristina Saez-Lopez
- Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca (VHIR). Universitat Autònoma de Barcelona and Biomedical Network Research Centre on Diabetes and Metabolic Diseases (CIBERDEM, ISCIII), Barcelona, Spain
| | - Laura Brianso-Llort
- Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca (VHIR). Universitat Autònoma de Barcelona and Biomedical Network Research Centre on Diabetes and Metabolic Diseases (CIBERDEM, ISCIII), Barcelona, Spain
| | - J Torres-Torronteras
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall Hebron Institut de Recerca (VHIR). Universitat Autònoma de Barcelona and Biomedical Network Research Centre on Rare Diseases (CIBERER, ISCIII), Barcelona, Spain
| | - Rafael Simó
- Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca (VHIR). Universitat Autònoma de Barcelona and Biomedical Network Research Centre on Diabetes and Metabolic Diseases (CIBERDEM, ISCIII), Barcelona, Spain.
| | - Geoffrey L Hammond
- Cellular & Physiological Sciences, University of British Columbia, Vancouver, Canada.
| | - David M Selva
- Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca (VHIR). Universitat Autònoma de Barcelona and Biomedical Network Research Centre on Diabetes and Metabolic Diseases (CIBERDEM, ISCIII), Barcelona, Spain.
| |
Collapse
|
27
|
Hammond GL. Plasma steroid-binding proteins: primary gatekeepers of steroid hormone action. J Endocrinol 2016; 230:R13-25. [PMID: 27113851 PMCID: PMC5064763 DOI: 10.1530/joe-16-0070] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 04/22/2016] [Indexed: 12/11/2022]
Abstract
Biologically active steroids are transported in the blood by albumin, sex hormone-binding globulin (SHBG), and corticosteroid-binding globulin (CBG). These plasma proteins also regulate the non-protein-bound or 'free' fractions of circulating steroid hormones that are considered to be biologically active; as such, they can be viewed as the 'primary gatekeepers of steroid action'. Albumin binds steroids with limited specificity and low affinity, but its high concentration in blood buffers major fluctuations in steroid concentrations and their free fractions. By contrast, SHBG and CBG play much more dynamic roles in controlling steroid access to target tissues and cells. They bind steroids with high (~nM) affinity and specificity, with SHBG binding androgens and estrogens and CBG binding glucocorticoids and progesterone. Both are glycoproteins that are structurally unrelated, and they function in different ways that extend beyond their transportation or buffering functions in the blood. Plasma SHBG and CBG production by the liver varies during development and different physiological or pathophysiological conditions, and abnormalities in the plasma levels of SHBG and CBG or their abilities to bind steroids are associated with a variety of pathologies. Understanding how the unique structures of SHBG and CBG determine their specialized functions, how changes in their plasma levels are controlled, and how they function outside the blood circulation provides insight into how they control the freedom of steroids to act in health and disease.
Collapse
Affiliation(s)
- Geoffrey L Hammond
- Departments of Cellular & Physiological Sciences and Obstetrics & GynaecologyUniversity of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
28
|
Abstract
Sex hormone-binding globulin (SHBG) is a circulating glycoprotein that transports testosterone and other steroids in the blood. Interest in SHBG has escalated in recent years because of its inverse association with obesity and insulin resistance, and because many studies have linked lower circulating levels of SHBG to metabolic syndrome, type 2 diabetes, nonalcoholic fatty liver disease, polycystic ovary syndrome, and early puberty. The purpose of this review is to summarize molecular, clinical, endocrine, and epidemiological findings to illustrate how measurement of plasma SHBG may be useful in clinical medicine in children.
Collapse
Affiliation(s)
- Banu Aydın
- University of Louisville Faculty of Medicine, Division of Endocrinology, Metabolism and Diabetes, Kentucky, USA
| | - Stephen J. Winters
- University of Louisville Faculty of Medicine, Division of Endocrinology, Metabolism and Diabetes, Kentucky, USA
,* Address for Correspondence: University of Louisville Faculty of Medicine, Division of Endocrinology, Metabolism and Diabetes, Kentucky, USA Phone: +1 502 852 52 37 E-mail:
| |
Collapse
|
29
|
Saéz-López C, Rivera-Giménez M, Hernández C, Simó R, Selva DM. SHBG-C57BL/ksJ-db/db: A New Mouse Model to Study SHBG Expression and Regulation During Obesity Development. Endocrinology 2015; 156:4571-81. [PMID: 26441241 DOI: 10.1210/en.2015-1677] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Low plasma sex hormone-binding globulin (SHBG) levels in overweight individuals are a biomarker for the metabolic syndrome and are predictive of type 2 diabetes and cardiovascular disease risk. There are no in vivo models to study SHBG expression and regulation during obesity development. The main reason for this is that the obesity-prone rodent models cannot be used to study this issue, because rodents, unlike humans, do not express the SHBG gene in their livers. We have developed a unique mouse model that expresses the human SHBG, and it develops obesity, by crossing the human SHBG transgenic mice with the C57BL/ksJ-db/db mice. The results obtained with the SHBG-C57BL/ksJ-db/db mouse model have allowed us to determine that the SHBG overexpression in the C57BL/ksJ-db/db reduced the body weight gain but did not change the metabolic profile of these mice. Moreover, we elucidated the molecular mechanisms and transcription factors causing the SHBG down-regulation during obesity development, which involved changes in liver hepatocyte nuclear factor 4α and peroxisome proliferator-activated receptor-γ mRNA and protein levels. Furthermore, these results were confirmed using human liver biopsies. Importantly, we also showed that this model resembles what occurs in human obese subjects, because plasma SHBG and total testosterone levels where reduced in obese mice when compared with lean mice. Future research using this unique mouse model will determine the role of SHBG in the development and progression of obesity, type 2 diabetes, or fatty liver disease.
Collapse
Affiliation(s)
- Cristina Saéz-López
- Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca, Universitat Autònoma de Barcelona and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (Instituto Carlos III), 08035 Barcelona, Spain
| | - Marta Rivera-Giménez
- Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca, Universitat Autònoma de Barcelona and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (Instituto Carlos III), 08035 Barcelona, Spain
| | - Cristina Hernández
- Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca, Universitat Autònoma de Barcelona and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (Instituto Carlos III), 08035 Barcelona, Spain
| | - Rafael Simó
- Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca, Universitat Autònoma de Barcelona and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (Instituto Carlos III), 08035 Barcelona, Spain
| | - David M Selva
- Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca, Universitat Autònoma de Barcelona and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (Instituto Carlos III), 08035 Barcelona, Spain
| |
Collapse
|
30
|
Simó R, Sáez-López C, Barbosa-Desongles A, Hernández C, Selva DM. Novel insights in SHBG regulation and clinical implications. Trends Endocrinol Metab 2015; 26:376-83. [PMID: 26044465 DOI: 10.1016/j.tem.2015.05.001] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/28/2015] [Accepted: 05/05/2015] [Indexed: 12/26/2022]
Abstract
Sex hormone-binding globulin (SHBG) is produced and secreted by the liver into the bloodstream where it binds sex steroids and regulates their bioavailability. Traditionally, body mass index (BMI) was thought to be the major determinant of SHBG concentrations and hyperinsulinemia the main cause for low SHBG levels found in obesity. However, no mechanisms have ever been described. Emerging evidence now shows that liver fat content rather than BMI is a strong determinant of circulating SHBG. In this review we discuss evidence demonstrating that insulin might not regulate SHBG production, describe putative molecular mechanisms by which proinflammatory cytokines downregulate SHBG, and comment on recent findings suggesting dietary SHBG regulation. Finally, clinical implications of all of these findings and future perspectives are discussed.
Collapse
Affiliation(s)
- Rafael Simó
- Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona and CIBERDEM (ISCIII), Barcelona, Spain.
| | - Cristina Sáez-López
- Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona and CIBERDEM (ISCIII), Barcelona, Spain
| | - Anna Barbosa-Desongles
- Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona and CIBERDEM (ISCIII), Barcelona, Spain
| | - Cristina Hernández
- Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona and CIBERDEM (ISCIII), Barcelona, Spain
| | - David M Selva
- Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona and CIBERDEM (ISCIII), Barcelona, Spain.
| |
Collapse
|
31
|
Winters SJ, Gogineni J, Karegar M, Scoggins C, Wunderlich CA, Baumgartner R, Ghooray DT. Sex hormone-binding globulin gene expression and insulin resistance. J Clin Endocrinol Metab 2014; 99:E2780-8. [PMID: 25226295 DOI: 10.1210/jc.2014-2640] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
CONTEXT The plasma level of sex hormone binding globulin (SHBG), a glycoprotein produced by hepatocytes, is subject to genetic, hormonal, metabolic, and nutritional regulation, and is a marker for the development of the metabolic syndrome and diabetes. OBJECTIVE Because the mechanism for these associations is unclear, and no studies of SHBG gene expression in humans have been published, SHBG mRNA was measured in human liver samples and related to anthropometric data. SETTING Inpatients at a private, nonprofit, university-associated hospital were studied. PARTICIPANTS Subjects were fifty five adult men and women undergoing hepatic resection as treatment for cancer. MAIN OUTCOME MEASURES Main outcome measures were SHBG mRNA and serum SHBG levels. RESULTS SHBG mRNA was a strong predictor of serum SHBG with higher levels of the mRNA and protein in women than in men. The relationship between SHBG mRNA and circulating SHBG differed in males and females consistent with a sex difference in post-transcriptional regulation. A strong positive correlation was found between the level of the mRNA for the transcription factor HNF4α and SHBG mRNA. Insulin resistance (IR), assessed by homeostatis model assessment, was related inversely to SHBG mRNA and to HNF4α mRNA as well as to circulating SHBG levels. These mRNAs, as well as serum SHBG, were higher when the hepatic triglyceride concentration was low, and decreased with increasing body mass index but were unrelated to age. CONCLUSIONS Fat accumulation in liver and IR are important determinants of SHBG gene expression and thereby circulating SHBG levels that are perhaps mediated through effects on the transcription factor HNF4α. These findings provide a potential mechanism to explain why low SHBG predicts the development of type 2 diabetes.
Collapse
Affiliation(s)
- Stephen J Winters
- Division of Endocrinology, Metabolism and Diabetes (S.J.W., J.G., M.K., D.T.G.), Division of Surgical Oncology (C.S.), Clinical Pathology Associates, Norton Healthcare (C.A.W.), and Department of Epidemiology and Population Health (R.B.), University of Louisville, Louisville, Kentucky 40202
| | | | | | | | | | | | | |
Collapse
|
32
|
Zhou Z, Wang R, Yang X, Lu XY, Zhang Q, Wang YL, Wang H, Zhu C, Lin HY, Wang H. The cAMP-responsive element binding protein (CREB) transcription factor regulates furin expression during human trophoblast syncytialization. Placenta 2014; 35:907-18. [PMID: 25175744 DOI: 10.1016/j.placenta.2014.07.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 11/30/2022]
Abstract
INTRODUCTION The multinucleated syncytiotrophoblast is formed and maintained by cytotrophoblast cell fusion and serves multiple functions to ensure a successful pregnancy. We have previously reported that the proprotein convertase furin is required for trophoblast syncytialization by processing type 1 insulin-like growth factor receptor (IGF1R). METHODS Utilizing trophoblast cell fusion models including induced fusion of choriocarcinoma BeWo cells and spontaneous fusion of primary cultured term cytotrophoblast cells, the expression of furin was evaluated by quantitative real-time PCR, Western blotting and immunofluorescence. The key transcription factor regulating the FUR gene promoter and critical responsive elements were identified by luciferase reporter assays, truncated mutants analysis, site-directed mutagenesis and ChIP. RESULTS We demonstrated that the levels of FUR mRNA were significantly stimulated by cAMP/PKA signaling pathway during spontaneous fusion of cytotrophoblast cells and forskolin-induced fusion of BeWo cells. cAMP-responsive element binding protein (CREB) was proven to be the key transcription factor which regulated the FUR P1 promoter during forskolin-induced BeWo cell fusion, and two critical cAMP-responsive elements (CREs) in the P1 promoter were further identified. Finally, we showed that CREB mediated endogenous furin activation and that CREB siRNA attenuated forskolin-induced furin expression and cell fusion in BeWo cells. DISCUSSION This provides the first evidence of the upstream regulator of furin during trophoblast cell fusion. CONCLUSIONS The above results suggest that the FUR transcription is activated by CREB-dependent stimulation of the FUR P1 promoter during human trophoblast syncytialization.
Collapse
Affiliation(s)
- Z Zhou
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; Graduate School of the Chinese Academy of Sciences, Beijing 100039, PR China
| | - R Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; Graduate School of the Chinese Academy of Sciences, Beijing 100039, PR China
| | - X Yang
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100006, PR China
| | - X-Y Lu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; Graduate School of the Chinese Academy of Sciences, Beijing 100039, PR China
| | - Q Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; Laboratory Animal Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Y-L Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - H Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - C Zhu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - H-Y Lin
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.
| | - H Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.
| |
Collapse
|
33
|
Simó R, Saez-Lopez C, Lecube A, Hernandez C, Fort JM, Selva DM. Adiponectin upregulates SHBG production: molecular mechanisms and potential implications. Endocrinology 2014; 155:2820-30. [PMID: 24828613 DOI: 10.1210/en.2014-1072] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epidemiological studies have shown that plasma SHBG levels correlate with plasma adiponectin levels, both in men and women. There are no reports describing any molecular mechanism by which adiponectin regulates hepatic SHBG production. The aim of the present study is to explore whether adiponectin regulates SHBG production by increasing HNF-4α levels through reducing hepatic lipid content. For this purpose, in vitro studies using human HepG2 cells, as well as human liver biopsies, were performed. Our results show that adiponectin treatment increased SHBG production via AMPK activation in HepG2 cells. Adiponectin treatment decreased the mRNA and protein levels of enzymes related to hepatic lipogenesis (ACC) and increased those related to fatty acid oxidation (ACOX and CPTI). These adiponectin-induced changes in hepatic enzymes resulted in a reduction of total TG and FFA and an increase of HNF-4α. When HNF-4α expression was silenced by using siRNA, adiponectin-induced SHBG overexpression was blocked. Furthermore, adiponectin-induced upregulation of SHBG production via HNF-4α overexpression was abrogated by the inhibition of fatty acid oxidation or by the induction of lipogenesis with a 30mM glucose treatment in HepG2 cells. Finally, adiponectin levels correlated positively and significantly with both HNF-4α and SHBG mRNA levels in human liver biopsies. Our results suggest for the first time that adiponectin increases SHBG production by activating AMPK, which reduces hepatic lipid content and increases HNF-4α levels.
Collapse
Affiliation(s)
- Rafael Simó
- Diabetes and Metabolism Research Unit (R.S., C.S.-L., C.H., D.M.S.), Vall d'Hebron Institut de Recerca, 08035 Barcelona, Universitat Autónoma de Barcelona, 08193 Barcelona, Centro de Investigación Biomédica en Red, 28029 Madrid, Spain Endocrinology and Nutrition Unit (A.L.), Hospital Universitari Arnau de Vilanova, 25198 Lleida, Spain; Endocrine, Metabolic and Bariatric Unit (J.M.F.), General Surgery Department, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
34
|
Sáez-López C, Soriguer F, Hernandez C, Rojo-Martinez G, Rubio-Martín E, Simó R, Selva DM. Oleic acid increases hepatic sex hormone binding globulin production in men. Mol Nutr Food Res 2013; 58:760-7. [PMID: 24142580 DOI: 10.1002/mnfr.201300304] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 08/06/2013] [Accepted: 08/13/2013] [Indexed: 12/27/2022]
Abstract
SCOPE Low circulating sex hormone-binding globulin (SHBG) is an independent risk factor for cardiovascular disease. Mediterranean diet has been associated with a decreased risk of cardiovascular disease. We aimed to test the hypothesis that the increase of circulating MUFA associated with olive oil consumption (primary fat source in Mediterranean diet) increases SHBG serum levels. METHODS AND RESULTS A total of 315 men were included. In these patients, nutrition data and plasma samples for SHBG assessment were obtained. In vitro studies to examine the effects of oleic and linoleic acid on SHBG production using HepG2 cells were performed. We provided evidence that SHBG serum levels were significantly higher in subjects using olive oil for cooking in comparison with subjects using sunflower oil. The SHBG levels correlated positively with MUFA (p < 0.001) and negatively with saturated fatty acids (p = 0.003). In the multiple regression analysis, MUFA were independently associated with SHBG levels and accounted for the 20.4% of SHBG variance. In vitro studies revealed that oleoyl-CoA increases SHBG production by downregulating PPAR-γ levels in HepG2 cells. CONCLUSION Olive oil consumption is associated with elevated SHBG serum levels. PPAR-γ downregulation induced by oleoyl-CoA is an important underlying mechanism of such regulation.
Collapse
Affiliation(s)
- Cristina Sáez-López
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Chicken ovalbumin upstream promoter transcription factor II (COUP-TFII) is an orphan nuclear receptor that acts as a transcriptional activator or repressor in a cell type-dependent manner. Best characterized for its role in the regulation of angiogenesis during mouse development, COUP-TFII also plays important roles in glucose metabolism and cancer. Expression of COUP-TFII is altered in various endocrine conditions. Cell type-specific functions and the regulation of COUP-TFII expression result in its varying physiological and pathological actions in diverse systems. Evidence will be reviewed for oncogenic and tumor-suppressive functions of COUP-TFII, with roles in angiogenesis, metastasis, steroidogenesis, and endocrine sensitivity of breast cancer described. The applicability of current data to our understanding of the role of COUP-TFII in cancer will be discussed.
Collapse
Affiliation(s)
- Lacey M Litchfield
- Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | | |
Collapse
|
36
|
Blouin K, Robitaille J, Bélanger C, Fontaine-Bisson B, Couture P, Vohl MC, Tchernof A. Effect of a six-week national cholesterol education program step 1 diet on plasma sex hormone-binding globulin levels in overweight premenopausal women. Metab Syndr Relat Disord 2012; 5:22-33. [PMID: 18370811 DOI: 10.1089/met.2006.0005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Low circulating sex hormone-binding globulin (SHBG) concentrations have been associated with the presence of several features of the metabolic syndrome in both men and women. Nutritional factors including dietary lipids and fibers in particular have been suggested to modulate plasma SHBG levels. METHODS The primary objective of the present study was to investigate the effect of an oat bran-rich supplement in conjunction with the National Cholesterol Education Program (NCEP) Step 1 diet (< 30% of total energy from fat, < 10% of energy from saturated fat, and < 300 mg cholesterol per day) on plasma SHBG levels in 35 overweight premenopausal women. Subjects (age 38.6 +/- 7.4 years) had normal menstrual cycles and were tested in the midluteal phase. Since no effect of the oat bran supplement was observed on plasma SHBG levels, data were analyzed according to the 6-week NCEP Step 1 diet. RESULTS The NCEP Step 1 nutritional intervention caused a significant decrease in energy intake ( -11%, p < 0.05), percent fat intake (-10%, p < 0.005), as well as saturated (-20%, p < 0.005) and monounsaturated (-10%, p < 0.05) fatty acid intake. Body mass index (BMI) decreased slightly but significantly (from 29.2 +/- 4.5 to 28.8 +/- 4.3 kg/m(2), p < 0.005). Plasma SHBG levels increased significantly (from 70.6 +/- 17.7 to 79.9 +/- 15.3 pmol/L, p < 0.0005) following the 6-week NCEP Step 1 diet, whereas plasma insulin levels were not modified significantly. Significant correlations were observed between the change in plasma SHBG levels and baseline BMI (r = 0.36, p < 0.04), as well as baseline (r = -0.42, p < 0.05) and postintervention (r = -0.35, p < 0.05) HDL cholesterol levels. CONCLUSIONS We observed that a 6-week NCEP Step 1 diet significantly increased plasma SHBG levels, despite the finding that fasting insulin was not modified. Further studies are needed to elucidate physiological mechanisms underlying a direct effect of dietary composition on SHBG production by the liver.
Collapse
Affiliation(s)
- Karine Blouin
- Molecular Endocrinology and Oncology Research Center and Department of Food Science and Nutrition, Laval University, Ste-Foy, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
37
|
Li Y, Wu L, Lei J, Zhu C, Wang H, Yu X, Lin H. Single nucleotide polymorphisms in the human corticosteroid-binding globulin promoter alter transcriptional activity. SCIENCE CHINA-LIFE SCIENCES 2012; 55:699-708. [PMID: 22932886 DOI: 10.1007/s11427-012-4365-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 08/01/2012] [Indexed: 12/16/2022]
Abstract
Corticosteroid-binding globulin (CBG) is a high-affinity plasma protein that transports glucocorticoids and progesterone. Others and we have reported non-synonymous single nucleotide polymorphisms (SNPs) that influence CBG production or steroid-binding activity. However, no promoter polymorphisms affecting the transcription of human CBG gene (Cbg) have been reported. In the present study we investigated function implications of six promoter SNPs, including -26 C/G, -54 C/T, -144 G/C, -161 A/G, -205 C/A, and -443/-444 AG/-, five of which are located within the first 205 base pairs of 5'-flanking region and close to the highly conserved footprinted elements, TATA-box, or CCAAT-box. Luciferase reporter assays demonstrated that basal activity of the promoter carrying -54 T or -161 G was significantly enhanced. The first three polymorphisms, -26 C/G, -54 C/T, and -144 G/C located close to the putative hepatic nuclear factor (HNF) 1 binding elements, altered the transactivation effect of HNF1β. We also found a negative promoter response to dexamethasone-activated glucocorticoid receptor (GR) α, although none of the SNPs affected its transrepression function. Our results suggest that human Cbg -26 C/G, -54 C/T, -144 G/C, and -161 A/G promoter polymorphisms alter transcriptional activity, and further studies are awaited to explore their association with physiological and pathological conditions.
Collapse
Affiliation(s)
- Yue Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Harbin Medical University, Harbin, 150081, China
| | | | | | | | | | | | | |
Collapse
|
38
|
Simó R, Barbosa-Desongles A, Hernandez C, Selva DM. IL1β down-regulation of sex hormone-binding globulin production by decreasing HNF-4α via MEK-1/2 and JNK MAPK pathways. Mol Endocrinol 2012; 26:1917-27. [PMID: 22902540 DOI: 10.1210/me.2012-1152] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Patients suffering from low-grade chronic inflammatory diseases, such as rheumatoid arthritis, osteoarthritis, diabetes, and obesity, have low plasma sex hormone-binding globulin (SHBG) levels. These diseases are characterized among other features by high plasma IL1β levels. The aim of the present study is to explore whether IL1β could regulate hepatic SHBG production to account for low SHBG levels in these diseases. We provide evidence that daily IL1β treatment reduces SHBG production in HepG2 cells by the down-regulation of HNF-4A via the MAPK kinase (MEK)-1/2 and c-Jun N-terminal kinase (JNK) MAPK signaling pathways through the activation c-Jun transcription factors. The human SHBG promoter sequence contains two putative activator protein 1 (AP1) binding sites recognized by c-Jun transcription factors, but they are not necessary for the IL1β-induced down-regulation of SHBG promoter activity in luciferase reporter gene assays. Daily treatment with IL1β reduces hepatic nuclear factor (HNF)-4α mRNA and protein levels via the MEK-1/2 and JNK MAPK signaling pathways. Moreover, IL1β rapidly decreased HNF-4α mRNA and protein levels while increased phospho-c-Jun protein levels after the treatment. Finally, daily IL1β treatment of human SHBG transgenic mice reduced plasma SHBG and SHBG mRNA levels. Moreover, IL1β treatment also reduced HNF-4α mRNA and protein levels while increased hepatic phospho-c-Jun protein levels. Our results show that IL1β reduces hepatic SHBG production by decreasing HNF-4α via MEK-1/2 and JNK MAPK pathways. In addition, our findings suggest that IL1β could be involved the low plasma SHBG levels reported in chronic low-grade inflammatory diseases.
Collapse
Affiliation(s)
- Rafael Simó
- Diabetes and Metabolism Research Unit, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (Instituto de Salud Carlos III), 08035 Barcelona, Spain
| | | | | | | |
Collapse
|
39
|
Coviello AD, Haring R, Wellons M, Vaidya D, Lehtimäki T, Keildson S, Lunetta KL, He C, Fornage M, Lagou V, Mangino M, Onland-Moret NC, Chen B, Eriksson J, Garcia M, Liu YM, Koster A, Lohman K, Lyytikäinen LP, Petersen AK, Prescott J, Stolk L, Vandenput L, Wood AR, Zhuang WV, Ruokonen A, Hartikainen AL, Pouta A, Bandinelli S, Biffar R, Brabant G, Cox DG, Chen Y, Cummings S, Ferrucci L, Gunter MJ, Hankinson SE, Martikainen H, Hofman A, Homuth G, Illig T, Jansson JO, Johnson AD, Karasik D, Karlsson M, Kettunen J, Kiel DP, Kraft P, Liu J, Ljunggren Ö, Lorentzon M, Maggio M, Markus MRP, Mellström D, Miljkovic I, Mirel D, Nelson S, Morin Papunen L, Peeters PHM, Prokopenko I, Raffel L, Reincke M, Reiner AP, Rexrode K, Rivadeneira F, Schwartz SM, Siscovick D, Soranzo N, Stöckl D, Tworoger S, Uitterlinden AG, van Gils CH, Vasan RS, Wichmann HE, Zhai G, Bhasin S, Bidlingmaier M, Chanock SJ, De Vivo I, Harris TB, Hunter DJ, Kähönen M, Liu S, Ouyang P, Spector TD, van der Schouw YT, Viikari J, Wallaschofski H, McCarthy MI, Frayling TM, Murray A, Franks S, Järvelin MR, de Jong FH, Raitakari O, Teumer A, Ohlsson C, Murabito JM, Perry JRB. A genome-wide association meta-analysis of circulating sex hormone-binding globulin reveals multiple Loci implicated in sex steroid hormone regulation. PLoS Genet 2012; 8:e1002805. [PMID: 22829776 PMCID: PMC3400553 DOI: 10.1371/journal.pgen.1002805] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 05/19/2012] [Indexed: 01/28/2023] Open
Abstract
Sex hormone-binding globulin (SHBG) is a glycoprotein responsible for the transport and biologic availability of sex steroid hormones, primarily testosterone and estradiol. SHBG has been associated with chronic diseases including type 2 diabetes (T2D) and with hormone-sensitive cancers such as breast and prostate cancer. We performed a genome-wide association study (GWAS) meta-analysis of 21,791 individuals from 10 epidemiologic studies and validated these findings in 7,046 individuals in an additional six studies. We identified twelve genomic regions (SNPs) associated with circulating SHBG concentrations. Loci near the identified SNPs included SHBG (rs12150660, 17p13.1, p = 1.8 × 10(-106)), PRMT6 (rs17496332, 1p13.3, p = 1.4 × 10(-11)), GCKR (rs780093, 2p23.3, p = 2.2 × 10(-16)), ZBTB10 (rs440837, 8q21.13, p = 3.4 × 10(-09)), JMJD1C (rs7910927, 10q21.3, p = 6.1 × 10(-35)), SLCO1B1 (rs4149056, 12p12.1, p = 1.9 × 10(-08)), NR2F2 (rs8023580, 15q26.2, p = 8.3 × 10(-12)), ZNF652 (rs2411984, 17q21.32, p = 3.5 × 10(-14)), TDGF3 (rs1573036, Xq22.3, p = 4.1 × 10(-14)), LHCGR (rs10454142, 2p16.3, p = 1.3 × 10(-07)), BAIAP2L1 (rs3779195, 7q21.3, p = 2.7 × 10(-08)), and UGT2B15 (rs293428, 4q13.2, p = 5.5 × 10(-06)). These genes encompass multiple biologic pathways, including hepatic function, lipid metabolism, carbohydrate metabolism and T2D, androgen and estrogen receptor function, epigenetic effects, and the biology of sex steroid hormone-responsive cancers including breast and prostate cancer. We found evidence of sex-differentiated genetic influences on SHBG. In a sex-specific GWAS, the loci 4q13.2-UGT2B15 was significant in men only (men p = 2.5 × 10(-08), women p = 0.66, heterogeneity p = 0.003). Additionally, three loci showed strong sex-differentiated effects: 17p13.1-SHBG and Xq22.3-TDGF3 were stronger in men, whereas 8q21.12-ZBTB10 was stronger in women. Conditional analyses identified additional signals at the SHBG gene that together almost double the proportion of variance explained at the locus. Using an independent study of 1,129 individuals, all SNPs identified in the overall or sex-differentiated or conditional analyses explained ~15.6% and ~8.4% of the genetic variation of SHBG concentrations in men and women, respectively. The evidence for sex-differentiated effects and allelic heterogeneity highlight the importance of considering these features when estimating complex trait variance.
Collapse
Affiliation(s)
- Andrea D. Coviello
- Section of Preventive Medicine and Epidemiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Section of Endocrinology, Diabetes, and Nutrition, Boston University School of Medicine, Boston, Massachusetts, United States of America
- National Heart, Lung, and Blood Institute's The Framingham Heart Study, Framingham, Massachusetts, United States of America
| | - Robin Haring
- Institute for Clinical Chemistry and Laboratory Medicine, University Medicine, Ernst-Moritz-Arndt University of Greifswald, Greifswald, Germany
| | - Melissa Wellons
- Department of Medicine and Department of Obstetrics and Gynecology, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Dhananjay Vaidya
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere University Hospital and University of Tampere School of Medicine, Tampere, Finland
| | - Sarah Keildson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Kathryn L. Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - Chunyan He
- Department of Public Health, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, Indiana, United States of America
| | - Myriam Fornage
- University of Texas Health Sciences Center at Houston, Houston, Texas, United States of America
| | - Vasiliki Lagou
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - N. Charlotte Onland-Moret
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Brian Chen
- Program on Genomics and Nutrition and the Center for Metabolic Disease Prevention, School of Public Health, University of California Los Angeles, Los Angeles, California, United States of America
| | - Joel Eriksson
- Center for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Melissa Garcia
- Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, Bethesda, Maryland, United States of America
| | - Yong Mei Liu
- Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
| | - Annemarie Koster
- Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, Bethesda, Maryland, United States of America
| | - Kurt Lohman
- Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere University Hospital and University of Tampere School of Medicine, Tampere, Finland
| | - Ann-Kristin Petersen
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jennifer Prescott
- Program in Molecular and Genetic Epidemiology, Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lisette Stolk
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Netherlands Consortium of Healthy Aging, Rotterdam, The Netherlands
| | - Liesbeth Vandenput
- Center for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Andrew R. Wood
- Genetics of Complex Traits, Peninsula Medical School, University of Exeter, Exeter, United Kingdom
| | - Wei Vivian Zhuang
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - Aimo Ruokonen
- Institute of Diagnostics, University of Oulu, Oulu, Finland
| | | | - Anneli Pouta
- National Institute for Health and Welfare and Institute of Health Sciences, University of Oulu, Oulu, Finland
| | | | - Reiner Biffar
- Department of Prosthetic Dentistry, Gerostomatology, and Dental Materials, University of Greifswald, Greifswald, Germany
| | - Georg Brabant
- Experimental and Clinical Endocrinology, University of Lübeck, Lübeck, Germany
| | - David G. Cox
- Cancer Research Center of Lyon, INSERM U1052, Lyon, France
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, United Kingdom
| | - Yuhui Chen
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Steven Cummings
- California Pacific Medical Center, San Francisco, California, United States of America
| | - Luigi Ferrucci
- Longitudinal Studies Section, Clinical Research Branch, National Institute on Aging, Baltimore, Maryland, United States of America
| | - Marc J. Gunter
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, United Kingdom
| | - Susan E. Hankinson
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Biostatistics and Epidemiology, University of Massachusetts, Amherst, Massachusetts, United States of America
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Hannu Martikainen
- Department of Obstetrics and Gynecology, University Hospital of Oulu, Oulu, Finland
| | - Albert Hofman
- Netherlands Consortium of Healthy Aging, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Thomas Illig
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| | - John-Olov Jansson
- Center for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Andrew D. Johnson
- National Heart, Lung, and Blood Institute's The Framingham Heart Study, Framingham, Massachusetts, United States of America
| | - David Karasik
- Hebrew SeniorLife Institute for Aging Research and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Magnus Karlsson
- Clinical and Molecular Osteoporosis Research Unit, Department of Clinical Sciences and Department of Orthopaedics, Lund University, Malmö, Sweden
| | - Johannes Kettunen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
| | - Douglas P. Kiel
- Hebrew SeniorLife Institute for Aging Research and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Peter Kraft
- Program in Molecular and Genetic Epidemiology, Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Jingmin Liu
- Women's Health Initiative Clinical Coordinating Center, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Östen Ljunggren
- Department of Medical Sciences, University of Uppsala, Uppsala, Sweden
| | - Mattias Lorentzon
- Center for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marcello Maggio
- Department of Internal Medicine and Biomedical Sciences, Section of Geriatrics, University of Parma, Parma, Italy
| | | | - Dan Mellström
- Center for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Iva Miljkovic
- University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Daniel Mirel
- Gene Environment Initiative, Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Boston, Massachusetts, United States of America
| | - Sarah Nelson
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Laure Morin Papunen
- Department of Obstetrics and Gynecology, University Hospital of Oulu, Oulu, Finland
| | - Petra H. M. Peeters
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Inga Prokopenko
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Leslie Raffel
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Martin Reincke
- Medizinische Klinik and Poliklinik IV, Ludwig-Maximilians University, Munich, Germany
| | - Alex P. Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Kathryn Rexrode
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Netherlands Consortium of Healthy Aging, Rotterdam, The Netherlands
| | - Stephen M. Schwartz
- Cardiovascular Health Research Unit, Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
| | - David Siscovick
- Cardiovascular Health Research Unit, Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
| | - Nicole Soranzo
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Doris Stöckl
- Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians-University, Munich, Germany
| | - Shelley Tworoger
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - André G. Uitterlinden
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Netherlands Consortium of Healthy Aging, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Carla H. van Gils
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ramachandran S. Vasan
- Section of Preventive Medicine and Epidemiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- National Heart, Lung, and Blood Institute's The Framingham Heart Study, Framingham, Massachusetts, United States of America
| | - H.-Erich Wichmann
- Institute of Epidemiology I, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Medical Informatics, Biometry, and Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
- Klinikum Großhadern, Munich, Germany
| | - Guangju Zhai
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Shalender Bhasin
- Section of Endocrinology, Diabetes, and Nutrition, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Martin Bidlingmaier
- Medizinische Klinik and Poliklinik IV, Ludwig-Maximilians University, Munich, Germany
| | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Immaculata De Vivo
- Program in Molecular and Genetic Epidemiology, Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Tamara B. Harris
- Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, Bethesda, Maryland, United States of America
| | - David J. Hunter
- Program in Molecular and Genetic Epidemiology, Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital and University of Tampere School of Medicine, Tampere, Finland
| | - Simin Liu
- Program on Genomics and Nutrition, Department of Epidemiology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Pamela Ouyang
- Division of Cardiology, Johns Hopkins Bayview Medical Center, Baltimore, Maryland, United States of America
| | - Tim D. Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Yvonne T. van der Schouw
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jorma Viikari
- Department of Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Henri Wallaschofski
- Institute for Clinical Chemistry and Laboratory Medicine, University Medicine, Ernst-Moritz-Arndt University of Greifswald, Greifswald, Germany
| | - Mark I. McCarthy
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, United Kingdom
| | - Timothy M. Frayling
- Genetics of Complex Traits, Peninsula Medical School, University of Exeter, Exeter, United Kingdom
| | - Anna Murray
- Genetics of Complex Traits, Peninsula Medical School, University of Exeter, Exeter, United Kingdom
| | - Steve Franks
- Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
| | - Marjo-Riitta Järvelin
- Department of Biostatistics and Epidemiology, School of Public Health, MRC-HPA Centre for Environment and Health, Faculty of Medicine, Imperial College London, London, United Kingdom
- Institute of Health Sciences, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- National Institute of Health and Welfare, University of Oulu, Oulu, Finland
| | - Frank H. de Jong
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Olli Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital and Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Alexander Teumer
- Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Claes Ohlsson
- Center for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Joanne M. Murabito
- National Heart, Lung, and Blood Institute's The Framingham Heart Study, Framingham, Massachusetts, United States of America
- Section of General Internal Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - John R. B. Perry
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
- Genetics of Complex Traits, Peninsula Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
40
|
Hammond GL, Wu TS, Simard M. Evolving utility of sex hormone-binding globulin measurements in clinical medicine. Curr Opin Endocrinol Diabetes Obes 2012; 19:183-9. [PMID: 22531107 DOI: 10.1097/med.0b013e328353732f] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW Sex hormone-binding globulin (SHBG) regulates the plasma levels and biological actions of the sex steroids: testosterone and estradiol. Advances in our understanding of how plasma SHBG levels are determined, and how SHBG functions, have provided insight into how SHBG should be used to assess the actions of its sex-steroid ligands, and as a biomarker of metabolic and endocrine abnormalities. RECENT FINDINGS Plasma SHBG levels fluctuate throughout life in response to the changes in metabolic and physiologic states, and are altered by natural hormones and synthetic steroids. Interindividual differences in plasma SHBG levels and activity are also influenced by polymorphisms within the structural and regulatory regions of the SHBG gene. SUMMARY Measurements of SHBG are widely used to predict plasma free testosterone levels in patients suffering from excess androgen exposures, but have broader utility in assessing the risk for endocrine diseases and clinical sequelae of the metabolic syndrome, namely, type 2 diabetes and cardiovascular disease. It is anticipated that new genetic and functional data regarding SHBG will reveal whether SHBG is simply a biomarker of these diseases or participants in their cause.
Collapse
Affiliation(s)
- Geoffrey L Hammond
- Department of Obstetrics and Gynecology, University of British Columbia, Child & Family Research Institute, Vancouver, British Columbia, Canada.
| | | | | |
Collapse
|
41
|
Azrad M, Gower BA, Hunter GR, Nagy TR. Intra-abdominal adipose tissue is independently associated with sex-hormone binding globulin in premenopausal women. Obesity (Silver Spring) 2012; 20:1012-5. [PMID: 22222925 PMCID: PMC3626111 DOI: 10.1038/oby.2011.375] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lower serum concentrations of sex-hormone binding globulin (SHBG) are associated with increased risk for several obesity-related diseases in women including hormone-sensitive cancers, type 2 diabetes, metabolic syndrome, and cardiovascular disease. Previous investigations have reported that body composition, specifically central obesity, and/or higher insulin concentrations are key factors associated with lower SHBG in overweight and obese women; however, these studies were limited by their cross-sectional design. We hypothesized that intra-abdominal adipose tissue (IAAT), a fat depot linked with an abnormal metabolic profile, is inversely and independently associated with SHBG. Therefore, we determined the longitudinal associations among SHBG, insulin, and IAAT in 107 premenopausal women enrolled in a weight loss study. Overweight (BMI 27-30 kg/m(2)) women were weight reduced until BMI of ≤ 24 was achieved. Body composition and IAAT were measured at baseline and after weight loss with dual-energy X-ray absorptiometry and computed tomography, respectively. Serum concentrations of insulin and SHBG were determined. Paired t-test showed that insulin and IAAT decreased significantly and SHBG increased significantly following weight loss (P < 0.0001 for all). Simple correlations from baseline showed no association with insulin and SHBG (r = -0.142, P = 0.143) and a significant inverse association between IAAT and SHBG (r = -0.43, P < 0.0001). Repeated measures mixed-model showed that after adjusting for age and time (weight loss), IAAT was significantly inversely associated with SHBG (P = 0.0002) and there was no association with insulin and SHBG (P = 0.180). We conclude that SHBG concentrations are influenced by IAAT and not insulin in premenopausal women.
Collapse
Affiliation(s)
- Maria Azrad
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Barbara A. Gower
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Gary R. Hunter
- Department of Human Studies, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Tim R. Nagy
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
42
|
Simó R, Barbosa-Desongles A, Sáez-Lopez C, Lecube A, Hernandez C, Selva DM. Molecular Mechanism of TNFα-Induced Down-Regulation of SHBG Expression. Mol Endocrinol 2012; 26:438-46. [PMID: 22301786 DOI: 10.1210/me.2011-1321] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The reason why obesity (a chronic low-grade inflammatory disease) is associated with low levels of sex hormone-binding globulin (SHBG) remains to be elucidated. The present study provides evidence that TNFα (a proinflammatory cytokine increased in obesity) reduces SHBG production by human HepG2 hepatoblastoma cells. Although the human SHBG promoter contains one nuclear factor-κB (NF-κB) binding site, the human SHBG promoter activity did not change after TNFα treatment or transfection with either small interfering RNA against p65 or a p65 expression vector in luciferase reporter gene assays. The effect of TNFα on human SHBG expression was indirect, and it was mediated by NF-κB through the down-regulation of hepatocyte nuclear factor (HNF)-4A: a key SHBG transcriptional regulator. Furthermore, the HNF-4A proximal promoter contains three putative NF-κB binding sites. The HNF-4A promoter activity was decreased by the treatment with TNFα or the transfection of a p65 expression vector, and it was increased by the treatment with small interfering RNA against NF-κB in luciferase reporter gene assays. Finally, the TNFα treatment promotes the NF-κB binding to the HNF-4A promoter in chromatin immunoprecipitation assays. We conclude that sustained exposition to elevated levels of TNFα decreases SHBG production by reducing hepatic HNF-4α levels via NF-κB activation in HepG2 cells.
Collapse
Affiliation(s)
- Rafael Simó
- Diabetes and Metabolism Research Unit, Vall d'Hebron Institut de Recerca, Passeig Vall d'Hebron 119-129, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
43
|
Simó R, Barbosa-Desongles A, Lecube A, Hernandez C, Selva DM. Potential role of tumor necrosis factor-α in downregulating sex hormone-binding globulin. Diabetes 2012; 61:372-82. [PMID: 22210320 PMCID: PMC3266423 DOI: 10.2337/db11-0727] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Low plasma sex hormone-binding globulin (SHBG) levels are associated with obesity and predict the development of type 2 diabetes. The reason why obese individuals have low circulating SHBG has been attributed to hyperinsulinemia, but no mechanistic evidence has been described. The aim of the current study is to explore whether tumor necrosis factor-α (TNF-α) rather than insulin could be the main factor accounting for low SHBG levels in obesity. We performed in vitro and in vivo studies using human HepG2 cells and human SHBG transgenic mice. In addition, a cross-sectional study to explore the relationship between TNF-α and SHBG in obese patients and an interventional study to examine the effect of insulin administration on circulating SHBG in type 2 diabetic patients were performed. We provide evidence that TNF-α, but not insulin, is the main factor by which SHBG is reduced in obesity. Plasma SHBG was significantly increased rather than decreased after insulin treatment in diabetic patients. TNF-α-induced reduction of SHBG expression was mediated by downregulating HNF4A. Finally, a negative and independent correlation was found between plasma TNF-α receptor 1 and SHBG levels in obese patients. Our results suggest that TNF-α plays an important role downregulating SHBG in chronic low-grade inflammatory diseases such as obesity and type 2 diabetes.
Collapse
|
44
|
Abstract
Sex hormone-binding globulin (SHBG) transports androgens and estrogens in blood and regulates their access to target tissues. Hepatic production of SHBG fluctuates throughout the life cycle and is influenced primarily by metabolic and hormonal factors. Genetic differences also contribute to interindividual variations in plasma SHBG levels. In addition to controlling the plasma distribution, metabolic clearance, and bioavailability of sex steroids, SHBG accumulates in the extravascular compartments of some tissues and in the cytoplasm of specific epithelial cells, where it exerts novel effects on androgen and estrogen action. In mammals, the gene-encoding SHBG is expressed primarily in the liver but also at low levels in other tissues, including the testis. In subprimate species, Shbg expression in Sertoli cells is under the control of follicle-stimulating hormone and produces the androgen-binding protein that influences androgen actions in the seminiferous tubules and epididymis. In humans, the SHBG gene is not expressed in Sertoli cells, but its expression in germ cells produces an SHBG isoform that accumulates in the acrosome. In fish, Shbg is produced by the liver but has a unique function in the gill as a portal for natural steroids and xenobiotics, including synthetic steroids. However, salmon have retained a second, poorly conserved Shbg gene that is expressed only in ovary, muscle, and gill and that likely exerts specialized functions in these tissues. The present review compares the production and functions of SHBG in different species and its diverse effects on reproduction.
Collapse
Affiliation(s)
- Geoffrey L Hammond
- Child & Family Research Institute and Department of Obstetrics & Gynecology, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
45
|
Pinós T, Barbosa-Desongles A, Hurtado A, Santamaria-Martínez A, de Torres I, Reventós J, Munell F. Human SHBG mRNA translation is modulated by alternative 5'-non-coding exons 1A and 1B. PLoS One 2010; 5:e13844. [PMID: 21079794 PMCID: PMC2973947 DOI: 10.1371/journal.pone.0013844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 10/06/2010] [Indexed: 11/30/2022] Open
Abstract
Background The human sex hormone-binding globulin (SHBG) gene comprises at least 6 different transcription units (TU-1, -1A, -1B, -1C, -1D and -1E), and is regulated by no less than 6 different promoters. The best characterized are TU-1 and TU-1A: TU-1 is responsible for producing plasma SHBG, while TU-1A is transcribed and translated in the testis. Transcription of the recently described TU-1B, -1C, and -1D has been demonstrated in human prostate tissue and prostate cancer cell lines, as well as in other human cell lines such as HeLa, HepG2, HeK 293, CW 9019 and imr 32. However, there are no reported data demonstrating their translation. In the present study, we aimed to determine whether TU-1A and TU-1B are indeed translated in the human prostate and whether 5′ UTR exons 1A and 1B differently regulate SHBG translation. Results Cis-regulatory elements that could potentially regulate translation were identified within the 5′UTRs of SHBG TU-1A and TU–1B. Although full-length SHBG TU-1A and TU-1B mRNAs were present in prostate cancer cell lines, the endogenous SHBG protein was not detected by western blot in any of them. LNCaP prostate cancer cells transfected with several SHBG constructs containing exons 2 to 8 but lacking the 5′UTR sequence did show SHBG translation, whereas inclusion of the 5′UTR sequences of either exon 1A or 1B caused a dramatic decrease in SHBG protein levels. The molecular weight of SHBG did not vary between cells transfected with constructs with or without the 5′UTR sequence, thus confirming that the first in-frame ATG of exon 2 is the translation start site of TU-1A and TU-1B. Conclusions The use of alternative SHBG first exons 1A and 1B differentially inhibits translation from the ATG situated in exon 2, which codes for methionine 30 of transcripts that begin with the exon 1 sequence.
Collapse
Affiliation(s)
- Tomàs Pinós
- Institut de Recerca Hospital Universitari Vall d'Hebrón, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | | | - Antoni Hurtado
- Institut de Recerca Hospital Universitari Vall d'Hebrón, Barcelona, Spain
| | | | - Inés de Torres
- Servei d'Anatomía Patològica, Hospital Universitari Vall d'Hebrón, Barcelona, Spain
| | - Jaume Reventós
- Institut de Recerca Hospital Universitari Vall d'Hebrón, Barcelona, Spain
| | - Francina Munell
- Institut de Recerca Hospital Universitari Vall d'Hebrón, Barcelona, Spain
- * E-mail:
| |
Collapse
|
46
|
Pugeat M, Nader N, Hogeveen K, Raverot G, Déchaud H, Grenot C. Sex hormone-binding globulin gene expression in the liver: drugs and the metabolic syndrome. Mol Cell Endocrinol 2010; 316:53-9. [PMID: 19786070 DOI: 10.1016/j.mce.2009.09.020] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 09/17/2009] [Accepted: 09/18/2009] [Indexed: 01/21/2023]
Abstract
Sex hormone-binding globulin (SHBG) is the main transport binding protein for sex steroid hormones in plasma and regulates their accessibility to target cells. Plasma SHBG is secreted by the liver under the control of hormones and nutritional factors. In the human hepatoma cell line (HepG2), thyroid and estrogenic hormones, and a variety of drugs including the antioestrogen tamoxifen, the phytoestrogen, genistein and mitotane (Op'DDD) increase SHBG production and SHBG gene promoter activity. In contrast, monosaccharides (glucose or fructose) effectively decrease SHBG expression by inducing lipogenesis, which reduces hepatic HNF-4alpha levels, a transcription factor that play a critical role in controlling the SHBG promoter. Interestingly, diminishing hepatic lipogenesis and free fatty acid liver biosynthesis also appear to be associated with the positive effects of thyroid hormones and PPARgamma antagonists on SHBG expression. This mechanism provides a biological explanation for why SHBG is a sensitive biomarker of insulin resistance and the metabolic syndrome, and why low plasma SHBG levels are a risk factor for developing hyperglycemia and type 2 diabetes, especially in women. These important advances in our knowledge of the regulation of SHBG expression in the liver open new approaches for identifying and preventing metabolic disorder-associated diseases early in life.
Collapse
Affiliation(s)
- Michel Pugeat
- Hospices Civils de Lyon, Fédération d'Endocrinologie, Groupement Hospitalier Est, Bron, France.
| | | | | | | | | | | |
Collapse
|
47
|
Pinós T, Barbosa-Desongles A, Hurtado A, Santamaria-Martínez A, de Torres I, Morote J, Reventós J, Munell F. Identification, characterization and expression of novel Sex Hormone Binding Globulin alternative first exons in the human prostate. BMC Mol Biol 2009; 10:59. [PMID: 19534810 PMCID: PMC2706245 DOI: 10.1186/1471-2199-10-59] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 06/17/2009] [Indexed: 11/21/2022] Open
Abstract
Background The human Sex Hormone Binding Globulin (SHBG) gene, located at 17p13.1, comprises, at least, two different transcription units regulated by two different promoters. The first transcription unit begins with the exon 1 sequence and is responsible for the production of plasma SHBG by the hepatocytes, while the second begins with an alternative exon 1 sequence, which replaces the exon 1 present in liver transcripts. Alternative exon 1 transcription and translation has only been demonstrated in the testis of transgenic mice containing an 11-kb human SHBG transgene and in the human testis. Our goal has been to further characterize the 5' end of the SHBG gene and analyze the presence of the SHBG alternative transcripts in human prostate tissue and derived cell lines. Results Using a combination of in silico and in vitro studies, we have demonstrated that the SHBG gene, along with exon 1 and alternative exon 1 (renamed here exon 1A), contains four additional alternative first exons: the novel exons 1B, 1C, and 1E, and a previously identified exon 1N, which has been further characterized and renamed as exon 1D. We have shown that these four alternative first exons are all spliced to the same 3' splice site of SHBG exon 2, and that exon 1A and the novel exon 1B can be spliced to exon 1. We have also demonstrated the presence of SHBG transcripts beginning with exons 1B, 1C and 1D in prostate tissues and cell lines, as well as in several non-prostatic cell lines. Finally, the alignment of the SHBG mammalian sequences revealed that, while exons 1C, 1D and 1E are very well conserved phylogenetically through non-primate mammal species, exon 1B probably aroused in apes due to a single nucleotide change that generated a new 5' splice site in exon 1B. Conclusion The identification of multiple transcription start sites (TSS) upstream of the annotated first exon of human SHBG, and the detection of the alternative transcripts in human prostate, concur with the prediction of the ENCODE (ENCyclopedia of DNA Elements) project, and suggest that the regulation of SHBG is much more complex than previously reported.
Collapse
Affiliation(s)
- Tomàs Pinós
- Institut de Recerca Hospital Universitari Vall d'Hebrón, Barcelona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Selva DM, Hammond GL. Peroxisome-proliferator receptor gamma represses hepatic sex hormone-binding globulin expression. Endocrinology 2009; 150:2183-9. [PMID: 19179433 DOI: 10.1210/en.2008-1289] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Plasma SHBG production by the liver is influenced by its metabolic state, and hepatocyte nuclear factor-4alpha regulates SHBG expression in response to changes in lipogenesis. Peroxisome-proliferator receptors (PPARs) also regulate glucose homeostasis and fatty acid metabolism. The human SHBG promoter contains a PPAR-response element (PPAR-RE), and plasma SHBG levels increase in polycystic ovarian syndrome patients treated with the PPARgamma agonist, rosiglitazone. In addition, plasma SHBG levels are associated with a genetic polymorphism in the PPARgamma-2 coding sequence that alters its transcriptional activity. Therefore, we set out to determine whether PPARgamma influences hepatic production of SHBG by using human HepG2 hepatoblastoma cells as an in vitro model. Surprisingly, treatment of HepG2 cells with rosiglitazone reduced SHBG production and SHBG promoter activity (as assessed in a luciferase reporter gene assay) by 20-25%, whereas the PPARgamma antagonist, GW9662, increased both by 2- to 3-fold. The effects of PPARgamma agonists and antagonists on SHBG promoter activity were substantially diminished when the PPAR-RE in the SHBG promoter was mutated. A PPARgamma small interfering RNA also increased SHBG production by HepG2 cells as well as SHBG promoter activity, and the latter was accentuated by cotreatment with GW9662. Importantly, overexpression of a PPARgamma-2 Pro12 variant in HepG2 cells was more effective at reducing SHBG promoter activity, when compared with PPARgamma-2 Ala12, consistent with its superior PPAR-RE binding activity. We conclude that PPARgamma represses human SHBG expression in liver cells, and that differences in PPARgamma levels and activity contribute directly to variations in plasma SHBG levels.
Collapse
Affiliation(s)
- David M Selva
- Department of Obstetrics & Gynaecology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | | |
Collapse
|
49
|
Thompson DJ, Healey CS, Baynes C, Kalmyrzaev B, Ahmed S, Dowsett M, Folkerd E, Luben RN, Cox D, Ballinger D, Pharoah PDP, Ponder BAJ, Dunning AM, Easton DF. Identification of common variants in the SHBG gene affecting sex hormone-binding globulin levels and breast cancer risk in postmenopausal women. Cancer Epidemiol Biomarkers Prev 2009; 17:3490-8. [PMID: 19064566 DOI: 10.1158/1055-9965.epi-08-0734] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Circulating levels of sex hormone-binding globulin (SHBG) are inversely associated with breast cancer risk in postmenopausal women. Three polymorphisms within the SHBG gene have been reported to affect SHBG levels, but there has been no systematic attempt to identify other such variants. METHODS We looked for associations between SHBG levels in 1,134 healthy, postmenopausal women and 11 tagging single nucleotide polymorphisms (SNP) in or around the SHBG gene. Associations between SHBG SNPs and breast cancer were tested in up to 6,622 postmenopausal breast cancer cases and 6,784 controls. RESULTS Ten SNPs within or close to the SHBG gene were significantly associated with SHBG levels as was the (TAAAA)(n) polymorphism. The best-fitting combination of rs6259, rs858521, and rs727428 and body mass index, waist, hip, age, and smoking status accounted for 24% of the variance in SHBG levels (natural logarithm transformed). Haplotype analysis suggested that rs858518, rs727428, or a variant in linkage disequilibrium with them acts to decrease SHBG levels but that this effect is neutralized by rs6259 (D356N). rs1799941 increases SHBG levels, but the previously reported association with (TAAAA)(n) repeat length appears to be a consequence of linkage disequilibrium with these SNPs. One further SHBG SNP was significantly associated with breast cancer (rs6257, per-allele odds ratio, 0.88; 95% confidence interval, 0.82-0.95; P = 0.002). CONCLUSION At least 3 SNPs showed associations with SHBG levels that were highly significant but relatively small in magnitude. rs6257 is a potential breast cancer susceptibility variant, but relationships between the genetic determinants of SHBG levels and breast cancer are complex.
Collapse
Affiliation(s)
- Deborah J Thompson
- Cambridge University, Strangeways Research Laboratories, Worts Causeway, Cambridge CB1 8RN, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Selva DM, Hogeveen KN, Innis SM, Hammond GL. Monosaccharide-induced lipogenesis regulates the human hepatic sex hormone-binding globulin gene. J Clin Invest 2008; 117:3979-87. [PMID: 17992261 DOI: 10.1172/jci32249] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Accepted: 08/29/2007] [Indexed: 01/02/2023] Open
Abstract
The liver produces plasma sex hormone-binding globulin (SHBG), which transports sex steroids and regulates their access to tissues. In overweight children and adults, low plasma SHBG levels are a biomarker of the metabolic syndrome and its associated pathologies. Here, we showed in transgenic mice and HepG2 hepatoblastoma cells that monosaccharides (glucose and fructose) reduce human SHBG production by hepatocytes. This occurred via a downregulation of hepatocyte nuclear factor-4alpha (HNF-4alpha) and replacement of HNF-4alpha by the chicken OVA upstream promoter-transcription factor 1 at a cis-element within the human SHBG promoter, coincident with repression of its transcriptional activity. The dose-dependent reduction of HNF-4alpha levels in HepG2 cells after treatment with glucose or fructose occurred in concert with parallel increases in cellular palmitate levels and could be mimicked by treatment with palmitoyl-CoA. Moreover, inhibition of lipogenesis prevented monosaccharide-induced downregulation of HNF-4alpha and reduced SHBG expression in HepG2 cells. Thus, monosaccharide-induced lipogenesis reduced hepatic HNF-4alpha levels, which in turn attenuated SHBG expression. This provides a biological explanation for why SHBG is a sensitive biomarker of the metabolic syndrome and the metabolic disturbances associated with increased fructose consumption.
Collapse
Affiliation(s)
- David M Selva
- Department of Obstetrics and Gynecology, University of British Columbia, Child and Family Research Institute, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|