1
|
Higashide M, Watanabe M, Sato T, Ogawa T, Umetsu A, Suzuki S, Furuhashi M, Ohguro H, Nishikiori N. Unexpected and Synergistical Effects of All-Trans Retinoic Acid and TGF-β2 on Biological Aspects of 2D and 3D Cultured ARPE19 Cells. Biomedicines 2024; 12:2228. [PMID: 39457541 PMCID: PMC11505250 DOI: 10.3390/biomedicines12102228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Objectives: To study the effects of all-trans retinoic acid (ATRA) on TGF-β2-induced effects of human retinal pigment epithelium cells under normoxia and hypoxia conditions. Methods: Two-dimensionally (2D) and three-dimensionally (3D) cultured ARPE19 cells were subjected to cellular functional analyses by transepithelial electrical resistance (TEER) and an extracellular flux assay (2D), measurement of levels of reactive oxygen species (ROS), gene expression analyses of COL1, αSMA, Zo-1, HIF1α, and PGC1α (2D), and physical property analyses (3D). Results: Under a normoxia condition, treatment with 100 nM ATRA substantially decreased barrier function regardless of the presence of 5 ng/mL TGF-β2 in 2D ARPE19 monolayer cells. Under a hypoxia condition, treatment with ATRA conversely increased barrier function, but the effect was masked by a marked increase in effects induced by TGF-β2. Although ATRA alone did not affect cellular metabolism and ROS levels in 2D ARPE cells, treatment with ATRA under a hypoxia condition did not affect ROS levels but shifted cellular metabolism from mitochondrial respiration to glycolysis. The changes of cellular metabolism and ROS levels were more pronounced with treatment of both ATRA and TGF-β2 independently of oxygen conditions. Changes in mRNA expressions of some of the above genes suggested the involvement of synergistical regulation of cellular functions by TGF-β2 and hypoxia. In 3D ARPE spheroids, the size was decreased and the stiffness was increased by either treatment with TGF-β2 or ATRA, but these changes were unexpectedly modulated by both ATRA and TGF-β2 treatment regardless of oxygen conditions. Conclusions: The findings reported herein indicate that TGF-β2 and hypoxia synergistically and differentially induce effects in 2D and 3D cultured ARPE19 cells and that their cellular properties are significantly altered by the presence of ATRA.
Collapse
Affiliation(s)
- Megumi Higashide
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.H.); (M.W.); (A.U.); (S.S.); (H.O.)
| | - Megumi Watanabe
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.H.); (M.W.); (A.U.); (S.S.); (H.O.)
| | - Tatsuya Sato
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.); (M.F.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Toshifumi Ogawa
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.); (M.F.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Araya Umetsu
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.H.); (M.W.); (A.U.); (S.S.); (H.O.)
| | - Soma Suzuki
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.H.); (M.W.); (A.U.); (S.S.); (H.O.)
| | - Masato Furuhashi
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.); (M.F.)
| | - Hiroshi Ohguro
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.H.); (M.W.); (A.U.); (S.S.); (H.O.)
| | - Nami Nishikiori
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.H.); (M.W.); (A.U.); (S.S.); (H.O.)
| |
Collapse
|
2
|
Stream A, Corriden R, Döhrmann S, Gallo RL, Nizet V, Anderson EL. The Effect of Retinoic Acid on Neutrophil Innate Immune Interactions With Cutaneous Bacterial Pathogens. INFECTIOUS MICROBES & DISEASES 2024; 6:65-73. [PMID: 38952747 PMCID: PMC11216695 DOI: 10.1097/im9.0000000000000145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Vitamin A and its biologically active derivative, retinoic acid (RA), are important for many immune processes. RA, in particular, is essential for the development of immune cells, including neutrophils, which serve as a front-line defense against infection. While vitamin A deficiency has been linked to higher susceptibility to infections, the precise role of vitamin A/RA in host-pathogen interactions remains poorly understood. Here, we provided evidence that RA boosts neutrophil killing of methicillin-resistant Staphylococcus aureus (MRSA). RA treatment stimulated primary human neutrophils to produce reactive oxygen species, neutrophil extracellular traps, and the antimicrobial peptide cathelicidin (LL-37). Because RA treatment was insufficient to reduce MRSA burden in an in vivo murine model of skin infection, we expanded our analysis to other infectious agents. RA did not affect the growth of a number of common bacterial pathogens, including MRSA, Escherichia coli K1 and Pseudomonas aeruginosa; however, RA directly inhibited the growth of group A Streptococcus (GAS). This antimicrobial effect, likely in combination with RA-mediated neutrophil boosting, resulted in substantial GAS killing in neutrophil killing assays conducted in the presence of RA. Furthermore, in a murine model of GAS skin infection, topical RA treatment showed therapeutic potential by reducing both skin lesion size and bacterial burden. These findings suggest that RA may hold promise as a therapeutic agent against GAS and perhaps other clinically significant human pathogens.
Collapse
Affiliation(s)
- Alexandra Stream
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
| | - Ross Corriden
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
| | - Simon Döhrmann
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
| | - Richard L. Gallo
- Department of Dermatology, University of California San Diego School of Medicine, La Jolla, California, USA
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 3, USA
| | - Ericka L. Anderson
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
| |
Collapse
|
3
|
Nagy NA, Hafkamp FMJ, Sparrius R, Bas R, Lozano Vigario F, van Capel TMM, van Ree R, Geijtenbeek TBH, Slütter B, Tas SW, de Jong EC. Retinoic acid-loaded liposomes induce human mucosal CD103 + dendritic cells that inhibit Th17 cells and drive regulatory T-cell development in vitro. Eur J Immunol 2024; 54:e2350839. [PMID: 38430190 DOI: 10.1002/eji.202350839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/03/2024]
Abstract
The active vitamin A metabolite, all-trans-retinoic acid (RA), primes precursor dendritic cells (DCs) into a mucosal phenotype with tolerogenic properties characterized by the expression of integrin CD103. CD103+ DCs can counteract pathogenic Th1 and Th17 in inflammatory bowel disease (IBD) or celiac disease (CD). Tolerogenic manipulation of DCs using nanoparticles carrying tolerogenic adjuvants and disease-specific antigens is a valuable treatment strategy to induce antigen-specific mucosal tolerance in vivo. Here, we investigated the effects of RA-loaded liposomes on human DC phenotype and function, including DC-driven T-cell development, both during the generation of monocyte-derived DCs (moDCs) as well as by priming immature moDCs. RA liposomes drove CD103+ DC differentiation as well as ALDH1A2 expression in DCs. Neutrophil-dependent Th17 cell development was reduced by RA-liposome-differentiated and RA-liposome-primed DCs. Moreover, RA liposome treatment shifted T-cell development toward a Th2 cell profile. Importantly, RA liposomes induced the development of IL-10-producing and FoxP3+ regulatory T cells (Tregs) of various Treg subsets, including ICOS+ Tregs, that were potent inhibitors of bystander memory T-cell proliferation. Taken together, RA-loaded liposomes could be a novel treatment avenue for IBD or CD patients.
Collapse
Affiliation(s)
- Noémi Anna Nagy
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, The Netherlands
| | - Florianne M J Hafkamp
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, The Netherlands
| | - Rinske Sparrius
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, The Netherlands
| | - Rico Bas
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, The Netherlands
| | - Fernando Lozano Vigario
- Division of BioTherapeutics, Leiden Academic Center for Drug Research, Leiden, The Netherlands
| | - Toni M M van Capel
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, The Netherlands
| | - Ronald van Ree
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, The Netherlands
- Department of Otorhinolaryngology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Teunis B H Geijtenbeek
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, The Netherlands
| | - Bram Slütter
- Division of BioTherapeutics, Leiden Academic Center for Drug Research, Leiden, The Netherlands
| | - Sander W Tas
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, The Netherlands
- Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Centers, Amsterdam Rheumatology and Immunology Center, Amsterdam, The Netherlands
| | - Esther C de Jong
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Wu K, Shang S, Bao L, Zhao Y, Guan Z, Xu J, Sun H, Yuan W, Fu Y, Peng L, Zhao C. Retinoic acid ameliorates low-grade endotoxemia-induced mastitis by limiting inflammatory responses in mice. Microb Pathog 2023; 185:106426. [PMID: 37879450 DOI: 10.1016/j.micpath.2023.106426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/21/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
Mastitis is a serious disease for humans and animals, which causes huge economic losses in the dairy industry and is hard to prevent due to the complex and unclear pathogenesis. Subacute ruminal acidosis (SARA) has contributed to the development of mastitis by inducing ruminal dysbiosis and subsequent low-grade endotoxemia (LGE), however, how ruminal metabolic changes regulate this progress is still unclear. Our previous study revealed that cows with SARA had increased ruminal retinoic acid (RA) levels, a metabolic intermediate of vitamin A that plays an essential role in mucosal immune responses. Hence, the aim of this study was to investigate the protective effect of RA on LGE-induced mastitis and the underlying mechanisms in mice. The results showed that RA alleviated LGE-induced mastitis, as evidenced by RA significantly reduced the increase in mammary proinflammatory cytokines and improved blood-milk barrier injury caused by LGE. In addition, RA increased the expression of tight junction proteins, including ZO-1, occludin and claudin-3. Furthermore, we found that RA limited the mammary inflammatory responses by inhibiting the activation of NF-κB and NLRP3 signaling pathways. These findings suggest that RA effectively alleviates LGE-induced mastitis and implies a potential strategy for the treatment and prevention of mastitis and other diseases.
Collapse
Affiliation(s)
- Keyi Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Shan Shang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Lijuan Bao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Yihong Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Zhihang Guan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Jiawen Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Hao Sun
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Weijie Yuan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Luyuan Peng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China.
| | - Caijun Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China.
| |
Collapse
|
5
|
Abstract
Retinoic acid (RA) is a metabolite of vitamin A and is essential for development and growth as well as cellular metabolism. Through genomic and nongenomic actions, RA regulates a variety of physiological functions. Dysregulation of RA signaling is associated with many diseases. Targeting RA signaling has been proven valuable to human health. All-trans retinoic acid (AtRA) and anthracycline-based chemotherapy are the standard treatment of acute promyelocytic leukemia (APL). Both human and animal studies have shown a significant relationship between RA signaling and the development and progression of nonalcoholic fatty liver disease (NAFLD). In this review article, we will first summarize vitamin A metabolism and then focus on the role of RA signaling in NAFLD. AtRA inhibits the development and progression of NAFLD via regulating lipid metabolism, inflammation, thermogenesis, etc.
Collapse
Affiliation(s)
- Fathima N Cassim Bawa
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA 44272
| | - Yanqiao Zhang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA 44272
| |
Collapse
|
6
|
van Steenwijk HP, Winter E, Knaven E, Brouwers JF, van Baardwijk M, van Dalum JB, Luijendijk TJC, van Osch FHM, Troost FJ, Bast A, Semen KO, de Boer A. The beneficial effect of sulforaphane on platelet responsiveness during caloric load: a single-intake, double-blind, placebo-controlled, crossover trial in healthy participants. Front Nutr 2023; 10:1204561. [PMID: 37485383 PMCID: PMC10359317 DOI: 10.3389/fnut.2023.1204561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/15/2023] [Indexed: 07/25/2023] Open
Abstract
Background and aims As our understanding of platelet activation in response to infections and/or inflammatory conditions is growing, it is becoming clearer that safe, yet efficacious, platelet-targeted phytochemicals could improve public health beyond the field of cardiovascular diseases. The phytonutrient sulforaphane shows promise for clinical use due to its effect on inflammatory pathways, favorable pharmacokinetic profile, and high bioavailability. The potential of sulforaphane to improve platelet functionality in impaired metabolic processes has however hardly been studied in humans. This study investigated the effects of broccoli sprout consumption, as a source of sulforaphane, on urinary 11-dehydro-thromboxane B2 (TXB2), a stable thromboxane metabolite used to monitor eicosanoid biosynthesis and response to antithrombotic therapy, in healthy participants exposed to caloric overload. Methods In this double-blind, placebo-controlled, crossover trial 12 healthy participants were administered 16g of broccoli sprouts, or pea sprouts (placebo) followed by the standardized high-caloric drink PhenFlex given to challenge healthy homeostasis. Urine samples were collected during the study visits and analyzed for 11-dehydro-TXB2, sulforaphane and its metabolites. Genotyping was performed using Illumina GSA v3.0 DTCBooster. Results Administration of broccoli sprouts before the caloric load reduced urinary 11-dehydro-TXB2 levels by 50% (p = 0.018). The amount of sulforaphane excreted in the urine during the study visits correlated negatively with 11-dehydro-TXB2 (rs = -0.377, p = 0.025). Participants carrying the polymorphic variant NAD(P)H dehydrogenase quinone 1 (NQO1*2) showed decreased excretion of sulforaphane (p = 0.035). Conclusion Sulforaphane was shown to be effective in targeting platelet responsiveness after a single intake. Our results indicate an inverse causal relationship between sulforaphane and 11-dehydro-TXB2, which is unaffected by the concomitant intake of the metabolic challenge. 11-Dehydro-TXB2 shows promise as a non-invasive, sensitive, and suitable biomarker to investigate the effects of phytonutrients on platelet aggregation within hours. Clinical trial registration [https://clinicaltrials.gov/], identifier [NCT05146804].
Collapse
Affiliation(s)
- Hidde P. van Steenwijk
- Food Claims Centre Venlo, Faculty of Science and Engineering, Maastricht University, Maastricht, Netherlands
| | - Evi Winter
- Food Claims Centre Venlo, Faculty of Science and Engineering, Maastricht University, Maastricht, Netherlands
| | - Edward Knaven
- Research Group Analysis Techniques in the Life Sciences, Avans University of Applied Sciences, Breda, Netherlands
| | - Jos F. Brouwers
- Research Group Analysis Techniques in the Life Sciences, Avans University of Applied Sciences, Breda, Netherlands
| | - Myrthe van Baardwijk
- Omnigen B.V., Delft, Netherlands
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | | | - Frits H. M. van Osch
- Department of Clinical Epidemiology, VieCuri Medical Center, Venlo, Netherlands
- Department of Epidemiology, NUTRIM, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Freddy J. Troost
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
- Food Innovation and Health, Centre for Healthy Eating and Food Innovation, Maastricht University, Maastricht, Netherlands
| | - Aalt Bast
- University College Venlo, Faculty of Science and Engineering, Maastricht University, Maastricht, Netherlands
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Khrystyna O. Semen
- University College Venlo, Faculty of Science and Engineering, Maastricht University, Maastricht, Netherlands
| | - Alie de Boer
- Food Claims Centre Venlo, Faculty of Science and Engineering, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
7
|
Song H, Ye X, Liao Y, Zhang S, Xu D, Zhong S, Jing B, Wang T, Sun B, Xu J, Guo W, Li K, Hu M, Kuang Y, Ling J, Zhang T, Wu Y, Du J, Yao F, Chin YE, Wang Q, Zhou BP, Deng J. NF-κB represses retinoic acid receptor-mediated GPRC5A transactivation in lung epithelial cells to promote neoplasia. JCI Insight 2023; 8:e153976. [PMID: 36413416 PMCID: PMC9870083 DOI: 10.1172/jci.insight.153976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Chronic inflammation is associated with lung tumorigenesis, in which NF-κB-mediated epigenetic regulation plays a critical role. Lung tumor suppressor G protein-coupled receptor, family C, member 5A (GPRC5A), is repressed in most non-small cell lung cancer (NSCLC); however, the mechanisms remain unclear. Here, we show that NF-κB acts as a transcriptional repressor in suppression of GPRC5A. NF-κB induced GPRC5A repression both in vitro and in vivo. Intriguingly, transactivation of NF-κB downstream targets was not required, but the transactivation domain of RelA/p65 was required for GPRC5A repression. NF-κB did not bind to any potential cis-element in the GPRC5A promoter. Instead, p65 was complexed with retinoic acid receptor α/β (RARα/β) and recruited to the RA response element site at the GPRC5A promoter, resulting in disrupted RNA polymerase II complexing and suppressed transcription. Notably, phosphorylation on serine 276 of p65 was required for interaction with RARα/β and repression of GPRC5A. Moreover, NF-κB-mediated epigenetic repression was through suppression of acetylated histone H3K9 (H3K9ac), but not DNA methylation of the CpG islands, at the GPRC5A promoter. Consistently, a histone deacetylase inhibitor, but not DNA methylation inhibitor, restored GPRC5A expression in NSCLC cells. Thus, NF-κB induces transcriptional repression of GPRC5A via a complex with RARα/β and mediates epigenetic repression via suppression of H3K9ac.
Collapse
Affiliation(s)
- Hongyong Song
- Key Laboratory of Cell Differentiation and Apoptosis of the Ministry of Education and
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofeng Ye
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Yueling Liao
- Key Laboratory of Cell Differentiation and Apoptosis of the Ministry of Education and
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Siwei Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of the Ministry of Education and
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongliang Xu
- Key Laboratory of Cell Differentiation and Apoptosis of the Ministry of Education and
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuangshuang Zhong
- Key Laboratory of Cell Differentiation and Apoptosis of the Ministry of Education and
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Jing
- Key Laboratory of Cell Differentiation and Apoptosis of the Ministry of Education and
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tong Wang
- Key Laboratory of Cell Differentiation and Apoptosis of the Ministry of Education and
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Beibei Sun
- Key Laboratory of Cell Differentiation and Apoptosis of the Ministry of Education and
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianhua Xu
- Key Laboratory of Cell Differentiation and Apoptosis of the Ministry of Education and
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenzheng Guo
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Kaimi Li
- Key Laboratory of Cell Differentiation and Apoptosis of the Ministry of Education and
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Hu
- Key Laboratory of Cell Differentiation and Apoptosis of the Ministry of Education and
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanbin Kuang
- Key Laboratory of Cell Differentiation and Apoptosis of the Ministry of Education and
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Ling
- Key Laboratory of Cell Differentiation and Apoptosis of the Ministry of Education and
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tuo Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of the Ministry of Education and
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yadi Wu
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Jing Du
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
- Peninsula Cancer Center, Binzhou Medical University, Yantai, China
| | - Feng Yao
- Key Laboratory of Cell Differentiation and Apoptosis of the Ministry of Education and
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Y. Eugene Chin
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
- Peninsula Cancer Center, Binzhou Medical University, Yantai, China
| | - Qi Wang
- Department of Respiratory Medicine, the Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Binhua P. Zhou
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Jiong Deng
- Key Laboratory of Cell Differentiation and Apoptosis of the Ministry of Education and
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
- Peninsula Cancer Center, Binzhou Medical University, Yantai, China
| |
Collapse
|
8
|
Xie M, Hao Y, Feng L, Wang T, Yao M, Li H, Ma D, Feng J. Neutrophil Heterogeneity and its Roles in the Inflammatory Network after Ischemic Stroke. Curr Neuropharmacol 2023; 21:621-650. [PMID: 35794770 PMCID: PMC10207908 DOI: 10.2174/1570159x20666220706115957] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/19/2022] [Accepted: 06/13/2022] [Indexed: 11/22/2022] Open
Abstract
As the first peripheral immune cells to enter the brain after ischemic stroke, neutrophils are important participants in stroke-related neuroinflammation. Neutrophils are quickly mobilized from the periphery in response to a stroke episode and cross the blood-brain barrier to reach the ischemic brain parenchyma. This process involves the mobilization and activation of neutrophils from peripheral immune organs (including the bone marrow and spleen), their chemotaxis in the peripheral blood, and their infiltration into the brain parenchyma (including disruption of the blood-brain barrier, inflammatory effects on brain tissue, and interactions with other immune cell types). In the past, it was believed that neutrophils aggravated brain injuries through the massive release of proteases, reactive oxygen species, pro-inflammatory factors, and extracellular structures known as neutrophil extracellular traps (NETs). With the failure of early clinical trials targeting neutrophils and uncovering their underlying heterogeneity, our view of their role in ischemic stroke has become more complex and multifaceted. As neutrophils can be divided into N1 and N2 phenotypes in tumors, neutrophils have also been found to have similar phenotypes after ischemic stroke, and play different roles in the development and prognosis of ischemic stroke. N1 neutrophils are dominant during the acute phase of stroke (within three days) and are responsible for the damage to neural structures via the aforementioned mechanisms. However, the proportion of N2 neutrophils gradually increases in later phases, and this has a beneficial effect through the release of anti-inflammatory factors and other neuroprotective mediators. Moreover, the N1 and N2 phenotypes are highly plastic and can be transformed into each other under certain conditions. The pronounced differences in their function and their high degree of plasticity make these neutrophil subpopulations promising targets for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Meizhen Xie
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin, Changchun, Jilin Province 130021, China
| | - Yulei Hao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin, Changchun, Jilin Province 130021, China
| | - Liangshu Feng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin, Changchun, Jilin Province 130021, China
| | - Tian Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin, Changchun, Jilin Province 130021, China
| | - Mengyue Yao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin, Changchun, Jilin Province 130021, China
| | - Hui Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin, Changchun, Jilin Province 130021, China
| | - Di Ma
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin, Changchun, Jilin Province 130021, China
| | - Jiachun Feng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin, Changchun, Jilin Province 130021, China
| |
Collapse
|
9
|
Tsugeno Y, Sato T, Watanabe M, Higashide M, Furuhashi M, Umetsu A, Suzuki S, Ida Y, Hikage F, Ohguro H. All Trans-Retinoic Acids Facilitate the Remodeling of 2D and 3D Cultured Human Conjunctival Fibroblasts. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9090463. [PMID: 36135009 PMCID: PMC9495389 DOI: 10.3390/bioengineering9090463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/26/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022]
Abstract
Vitamin A derivative, all-trans-retinoic acid (ATRA), is known to be a potent regulator of the growth and differentiation of various types of cells. In the present study, the unidentified effects of ATRA on superficial and vertical spreading conjunctival scarring were examined. The study involved the use of two-dimensional (2D) and three-dimensional (3D) cultures of human conjunctival fibroblast (HconF) cells in the presence or absence of TGF-β2. The effects of ATRA (1 μM) on superficial or vertical spreading conjunctival scarring were evaluated by the barrier function by trans-endothelial electrical resistance (TEER) and FITC dextran permeability measurements and real-time metabolic analysis, as well as the physical properties, namely, the size and stiffness, of 3D spheroids, respectively. In addition, the expressions of several related molecules, including extracellular matrix (ECM) molecules, ECM modulators including a tissue inhibitor of metalloproteinases (TIMPs), matrix metalloproteinases (MMPs), and ER stress-related factors, were examined. ATRA significantly induced (1) an increase in TEER values and a decrease in FITC dextran permeability, respectively, in the 2D monolayers, and (2) relatively and substantially increased the size and stiffness, respectively, of the 3D spheroids. These ATRA-induced effects were further enhanced in the TGF-β2-treated cells, whereas the TGF-β2-induced enhancement in glycolytic capacity was canceled by the presence of ATRA. Consistent with these physical and morphological effects, the mRNA expressions of several molecules were significantly but differently induced between 2D and 3D cultures by ATRA, although the presence of TGF-β2 did not substantially affect these gene expression levels. The findings reported in this study indicate that ATRA may exacerbate both superficial and vertical conjunctival fibrosis spreading independently of TGF-β2-induced changes.
Collapse
Affiliation(s)
- Yuri Tsugeno
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Tatsuya Sato
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Megumi Watanabe
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Megumi Higashide
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Masato Furuhashi
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Araya Umetsu
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Soma Suzuki
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Yosuke Ida
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Fumihito Hikage
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Hiroshi Ohguro
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
- Correspondence: ; Tel.: +81-116-112-111; Fax: +81-116-136-575
| |
Collapse
|
10
|
Watanabe M, Sato T, Tsugeno Y, Higashide M, Furuhashi M, Umetsu A, Suzuki S, Ida Y, Hikage F, Ohguro H. All-trans Retinoic Acids Synergistically and Beneficially Affect In Vitro Glaucomatous Trabecular Meshwork (TM) Models Using 2D and 3D Cell Cultures of Human TM Cells. Int J Mol Sci 2022; 23:ijms23179912. [PMID: 36077314 PMCID: PMC9456377 DOI: 10.3390/ijms23179912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022] Open
Abstract
We report herein on the effects of all-trans retinoic acid (ATRA) on two-dimensional (2D) and three-dimensional (3D) cultures of human trabecular meshwork (HTM) cells that were treated with transforming growth factor β2 (TGF-β2). In the presence of 5 ng/mL TGF-β2, the effects of ATRA on the following were observed: (1) the barrier function of the 2D HTM monolayers, as determined by trans-endothelial electrical resistance (TEER) and fluorescein isothiocyanate (FITC) dextran permeability measurements; (2) a Seahorse cellular bio-metabolism analysis; (3) physical properties, including the size and stiffness, of 3D spheroids; (4) the gene expression of extracellular matrix (ECM) molecules, ECM modulators including tissue inhibitor of metalloproteinases (TIMPs), matrix metalloproteinases (MMPs), tight junction (TJ)-related molecules, and endoplasmic reticulum (ER)-stress-related factors. ATRA significantly inhibited the TGF-β2-induced increase in the TEER values and FITC dextran permeability of the 2D monolayers, while an ATRA monotreatment induced similar effects as TGF-β2. A real-time metabolic analysis revealed that ATRA significantly inhibited the TGF-β2-induced shift in metabolic reserve from mitochondrial oxidative phosphorylation to glycolysis in 2D HTM cells, whereas ATRA alone did not induce significant metabolic changes. In contrast, ATRA induced the formation of substantially downsized and softer 3D spheroids in the absence and presence of TGF-β2. The different effects induced by ATRA toward 2D and 3D HTM cells were also supported by the qPCR analysis of several proteins as above. The findings reported here indicate that ATRA may induce synergistic and beneficial effects on TGF-β2-treated 2D- and 3D-cultured HTM cells; those effects varied significantly between the 2D and 3D cultures.
Collapse
Affiliation(s)
- Megumi Watanabe
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Tatsuya Sato
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Yuri Tsugeno
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Megumi Higashide
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Masato Furuhashi
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Araya Umetsu
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Soma Suzuki
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Yosuke Ida
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Fumihito Hikage
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Hiroshi Ohguro
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
- Correspondence: ; Tel.: +81-611-2111
| |
Collapse
|
11
|
Rojo-Trejo MH, Robles-Osorio ML, Sabath E. Liposoluble vitamins A and E in kidney disease. World J Nephrol 2022; 11:96-104. [PMID: 35733655 PMCID: PMC9160709 DOI: 10.5527/wjn.v11.i3.96] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/15/2021] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
Kidney disease (KD) is characterized by the presence of elevated oxidative stress, and this is postulated as contributing to the high cardiovascular morbidity and mortality in these individuals. Chronic KD (CKD) is related to high grade inflammatory condition and pro-oxidative state that aggravates the progression of the disease by damaging primary podocytes. Liposoluble vitamins (vitamin A and E) are potent dietary antioxidants that have also anti-inflammatory and antiapoptotic functions. Vitamin deficits in CKD patients are a common issue, and multiple causes are related to them: Anorexia, dietary restrictions, food cooking methods, dialysis losses, gastrointestinal malabsorption, etc. The potential benefit of retinoic acid (RA) and α-tocopherol have been described in animal models and in some human clinical trials. This review provides an overview of RA and α tocopherol in KD.
Collapse
Affiliation(s)
| | | | - Ernesto Sabath
- Department of Renal Medicine, Nutrition School, Universidad Autónoma de Querétaro, Querétaro 76090, Mexico
| |
Collapse
|
12
|
Melis M, Tang XH, Trasino SE, Gudas LJ. Retinoids in the Pathogenesis and Treatment of Liver Diseases. Nutrients 2022; 14:1456. [PMID: 35406069 PMCID: PMC9002467 DOI: 10.3390/nu14071456] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
Vitamin A (VA), all-trans-retinol (ROL), and its analogs are collectively called retinoids. Acting through the retinoic acid receptors RARα, RARβ, and RARγ, all-trans-retinoic acid, an active metabolite of VA, is a potent regulator of numerous biological pathways, including embryonic and somatic cellular differentiation, immune functions, and energy metabolism. The liver is the primary organ for retinoid storage and metabolism in humans. For reasons that remain incompletely understood, a body of evidence shows that reductions in liver retinoids, aberrant retinoid metabolism, and reductions in RAR signaling are implicated in numerous diseases of the liver, including hepatocellular carcinoma, non-alcohol-associated fatty liver diseases, and alcohol-associated liver diseases. Conversely, restoration of retinoid signaling, pharmacological treatments with natural and synthetic retinoids, and newer agonists for specific RARs show promising benefits for treatment of a number of these liver diseases. Here we provide a comprehensive review of the literature demonstrating a role for retinoids in limiting the pathogenesis of these diseases and in the treatment of liver diseases.
Collapse
Affiliation(s)
- Marta Melis
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY 10021, USA; (M.M.); (X.-H.T.)
| | - Xiao-Han Tang
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY 10021, USA; (M.M.); (X.-H.T.)
| | - Steven E. Trasino
- Nutrition Program, Hunter College, City University of New York, New York, NY 10065, USA;
| | - Lorraine J. Gudas
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY 10021, USA; (M.M.); (X.-H.T.)
| |
Collapse
|
13
|
Regulation of inflammation and COX-2 gene expression in benzo (a) pyrene induced lung carcinogenesis in mice by all trans retinoic acid (ATRA). Life Sci 2021; 285:119967. [PMID: 34543639 DOI: 10.1016/j.lfs.2021.119967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/05/2021] [Accepted: 09/13/2021] [Indexed: 11/21/2022]
Abstract
AIM Inflammation provides favourable microenvironment for cancer development. An enhanced COX-2 gene expression is a key inflammatory mediator of cancers and the drug that inhibits it, helps to manage cancer effectively and increases survival rate. The objective is to analyse the inflammatory changes and COX-2 gene expression in benzo (a) pyrene induced mice and to evaluate the regulatory effect of all trans retinoic acid. MATERIALS AND METHODS The body and organ weights were recorded in B(a)P induced mice. The haematological parameters and serum inflammatory markers of carcinogenesis were tested. The H & E stained liver and lung tissues were examined for histopathologic changes. The COX-2 gene expression was analysed by RT-PCR and qPCR in lung and liver. KEY FINDINGS The decreased body weight, increased organ weights and the damages in liver and lung were observed in B(a)P induced mice and were prevented significantly upon ATRA treatment. The lowered Hb, RBC and lymphocytes and an enhanced WBC, monocytes and neutrophils observed in B(a)P group were significantly reversed in treated group. A drastic increase in cancer associated inflammatory markers observed in B(a)P induced mice were significantly (P ≤ 0.001) reduced in treated mice. The RT-PCR product density of COX-2 gene was very high in B(a)P group (lung-0.43 ± 0.06; liver-0.39 ± 0.04) significantly lower in treated group (lung-0.12 ± 0.03; liver-0.08 ± 0.03) with a significant difference in RQ values (B(a)P lung-18.46 ± 0.04, liver-12.46 ± 0.08; treated lung-5.93 ± 0.07, liver-2.92 ± 0.10). SIGNIFICANCE The ATRA has decreased the inflammatory condition with downregulation of COX-2 gene expression and thereby prevented carcinogenesis during early stage of B(a)P induced cancer development.
Collapse
|
14
|
Midha IK, Kumar N, Kumar A, Madan T. Mega doses of retinol: A possible immunomodulation in Covid-19 illness in resource-limited settings. Rev Med Virol 2021; 31:1-14. [PMID: 33382930 PMCID: PMC7883262 DOI: 10.1002/rmv.2204] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022]
Abstract
Of all the nutrients, vitamin A has been the most extensively evaluated for its impact on immunity. There are three main forms of vitamin A, retinol, retinal and retinoic acid (RA) with the latter being most biologically active and all-trans-RA (ATRA) its main derivative. Vitamin A is a key regulator of the functions of various innate and adaptive immune cells and promotes immune-homeostasis. Importantly, it augments the interferon-based innate immune response to RNA viruses decreasing RNA virus replication. Several clinical trials report decreased mortality in measles and Ebola with vitamin A supplementation.During the Covid-19 pandemic interventions such as convalescent plasma, antivirals, monoclonal antibodies and immunomodulator drugs have been tried but most of them are difficult to implement in resource-limited settings. The current review explores the possibility of mega dose vitamin A as an affordable adjunct therapy for Covid-19 illness with minimal reversible side effects. Insight is provided into the effect of vitamin A on ACE-2 expression in the respiratory tract and its association with the prognosis of Covid-19 patients. Vitamin A supplementation may aid the generation of protective immune response to Covid-19 vaccines. An overview of the dosage and safety profile of vitamin A is presented along with recommended doses for prophylactic/therapeutic use in randomised controlled trials in Covid-19 patients.
Collapse
Affiliation(s)
| | | | - Amit Kumar
- Dwight D. Eisenhower VA Medical CenterLeavenworthKansasUSA
| | - Taruna Madan
- Department of Innate ImmunityICMR‐National Institute for Research in Reproductive HealthMumbaiIndia
| |
Collapse
|
15
|
Zhang R, Xu D, Zhang Y, Wang R, Yang N, Lou Y, Zhao H, Aa J, Wang G, Xie Y. Silybin Restored CYP3A Expression through the Sirtuin 2/Nuclear Factor κ-B Pathway in Mouse Nonalcoholic Fatty Liver Disease. Drug Metab Dispos 2021; 49:770-779. [PMID: 34183378 DOI: 10.1124/dmd.121.000438] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
Silybin is widely used as a hepatoprotective agent in various liver disease therapies and has been previously identified as a CYP3A inhibitor. However, little is known about the effect of silybin on CYP3A and the regulatory mechanism during high-fat-diet (HFD)-induced liver inflammation. In our study, we found that silybin restored CYP3A expression and activity that were decreased by HFD and conditioned medium (CM) from palmitate-treated Kupffer cells. Moreover, silybin suppressed liver inflammation in HFD-fed mice and inhibited nuclear factor κ-B translocation into the nucleus through elevation of SIRT2 expression and promotion of p65 deacetylation. This effect was confirmed by overexpression of SIRT2, which suppressed p65 nuclear translocation and restored CYP3A transcription affected by CM. The hepatic NAD+ concentration markedly decreased in HFD-fed mice and CM-treated hepatocytes/HepG2 cells but increased after silybin treatment. Supplementing nicotinamide mononucleotide as an NAD+ donor inhibited p65 acetylation, decreased p65 nuclear translocation, and restored cyp3a transcription in both HepG2 cells and mouse hepatocytes. These results suggest that silybin regulates metabolic enzymes during liver inflammation by a mechanism related to the increase in NAD+ and SIRT2 levels. In addition, silybin enhanced the intracellular NAD+ concentration by decreasing poly-ADP ribosyl polymerase-1 expression. In summary, silybin increased NAD+ concentration, promoted SIRT2 expression, and lowered p65 acetylation both in vivo and in vitro, which supported the recovery of CYP3A expression. These findings indicate that the NAD+/SIRT2 pathway plays an important role in CYP3A regulation during nonalcoholic fatty liver disease. SIGNIFICANCE STATEMENT: This research revealed the differential regulation of CYP3A by silybin under physiological and fatty liver pathological conditions. In the treatment of nonalcoholic fatty liver disease, silybin restored, not inhibited, CYP3A expression and activity through the NAD+/ sirtuin 2 pathway in accordance with its anti-inflammatory effect.
Collapse
Affiliation(s)
- Ran Zhang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (R.Z., Y.Z., R.W., Y.L., H.Z., J.A., G.W., Y.X.); Research and Development Center, Nanjing Chia Tai Tianqing Pharmaceutical co., Ltd., Nanjing, China (D.X.); and Department of Pharmacy, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China (N.Y.)
| | - Dan Xu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (R.Z., Y.Z., R.W., Y.L., H.Z., J.A., G.W., Y.X.); Research and Development Center, Nanjing Chia Tai Tianqing Pharmaceutical co., Ltd., Nanjing, China (D.X.); and Department of Pharmacy, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China (N.Y.)
| | - Yirui Zhang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (R.Z., Y.Z., R.W., Y.L., H.Z., J.A., G.W., Y.X.); Research and Development Center, Nanjing Chia Tai Tianqing Pharmaceutical co., Ltd., Nanjing, China (D.X.); and Department of Pharmacy, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China (N.Y.)
| | - Rui Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (R.Z., Y.Z., R.W., Y.L., H.Z., J.A., G.W., Y.X.); Research and Development Center, Nanjing Chia Tai Tianqing Pharmaceutical co., Ltd., Nanjing, China (D.X.); and Department of Pharmacy, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China (N.Y.)
| | - Na Yang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (R.Z., Y.Z., R.W., Y.L., H.Z., J.A., G.W., Y.X.); Research and Development Center, Nanjing Chia Tai Tianqing Pharmaceutical co., Ltd., Nanjing, China (D.X.); and Department of Pharmacy, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China (N.Y.)
| | - Yunge Lou
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (R.Z., Y.Z., R.W., Y.L., H.Z., J.A., G.W., Y.X.); Research and Development Center, Nanjing Chia Tai Tianqing Pharmaceutical co., Ltd., Nanjing, China (D.X.); and Department of Pharmacy, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China (N.Y.)
| | - Haokai Zhao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (R.Z., Y.Z., R.W., Y.L., H.Z., J.A., G.W., Y.X.); Research and Development Center, Nanjing Chia Tai Tianqing Pharmaceutical co., Ltd., Nanjing, China (D.X.); and Department of Pharmacy, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China (N.Y.)
| | - Jiye Aa
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (R.Z., Y.Z., R.W., Y.L., H.Z., J.A., G.W., Y.X.); Research and Development Center, Nanjing Chia Tai Tianqing Pharmaceutical co., Ltd., Nanjing, China (D.X.); and Department of Pharmacy, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China (N.Y.)
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (R.Z., Y.Z., R.W., Y.L., H.Z., J.A., G.W., Y.X.); Research and Development Center, Nanjing Chia Tai Tianqing Pharmaceutical co., Ltd., Nanjing, China (D.X.); and Department of Pharmacy, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China (N.Y.)
| | - Yuan Xie
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (R.Z., Y.Z., R.W., Y.L., H.Z., J.A., G.W., Y.X.); Research and Development Center, Nanjing Chia Tai Tianqing Pharmaceutical co., Ltd., Nanjing, China (D.X.); and Department of Pharmacy, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China (N.Y.)
| |
Collapse
|
16
|
Tsai MH, C Chan T, Lee MS, Lai MS. Cardiovascular Risk Associated with Methotrexate versus Retinoids in Patients with Psoriasis: A Nationwide Taiwanese Cohort Study. Clin Epidemiol 2021; 13:693-705. [PMID: 34408498 PMCID: PMC8364829 DOI: 10.2147/clep.s305126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/22/2021] [Indexed: 01/22/2023] Open
Abstract
Purpose Psoriasis is an inflammatory disease associated with cardiovascular disease. Methotrexate (MTX) is a first-line systemic anti-psoriatic agent that may also protect against cardiovascular disease. We examined the cardiovascular risks among patients with psoriasis who were receiving MTX or the comparator, retinoids. Patients and Methods We analysed data from the Taiwanese National Health Insurance database. The primary outcome was a composite of hospitalisation for ischaemic heart disease, ischaemic stroke and all-cause mortality (composite cardiovascular outcome). Propensity score-weighted analyses were used to evaluate patients who were followed from therapy initiation to the earliest instance of outcome occurrence, insurance disenrollment, death or study termination. Results We identified 13,777 patients who received MTX and 6020 patients who received retinoids from 2000 to 2012. Compared to retinoids, MTX was associated with lower crude incidences of cardiovascular outcomes, hospitalisation for ischaemic heart disease, ischaemic stroke and all-cause mortality. In intention-to-treat analyses, MTX was associated with lower risks of composite cardiovascular outcomes (adjusted hazard ratio [HR]: 0.84, 95% confidence interval [CI]: 0.76–0.94), ischaemic heart disease (HR: 0.87, 95% CI: 0.71–1.06), ischaemic stroke (HR: 1.06, 95% CI: 0.89–1.27) and all-cause mortality (HR: 0.75, 95% CI: 0.66–0.85). Similar results were found in as-treated analyses. Conclusion In this nationwide cohort of patients with psoriasis, compared to retinoids, MTX was associated with a modestly lower risk of cardiovascular events.
Collapse
Affiliation(s)
- Ming-Hsueh Tsai
- Department of Internal Medicine, Taipei City Hospital, Taipei, Taiwan
| | - Tom C Chan
- Department of Dermatology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Meng-Sui Lee
- Department of Dermatology, Taipei City Hospital, Taipei, Taiwan.,Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Mei-Shu Lai
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
17
|
Li B, Cai SY, Boyer JL. The role of the retinoid receptor, RAR/RXR heterodimer, in liver physiology. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166085. [PMID: 33497820 PMCID: PMC11152086 DOI: 10.1016/j.bbadis.2021.166085] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 12/31/2022]
Abstract
Activated by retinoids, metabolites of vitamin A, the retinoic acid receptors (RARs) and the retinoid X receptors (RXRs) play important roles in a wide variety of biological processes, including embryo development, homeostasis, cell proliferation, differentiation and death. In this review, we summarized the functional roles of nuclear receptor RAR/RXR heterodimers in liver physiology. Specifically, RAR/RXR modulate the synthesis and metabolism of lipids and bile acids in hepatocytes, regulate cholesterol transport in macrophages, and repress fibrogenesis in hepatic stellate cells. We have also listed the specific genes that carry these functions and how RAR/RXR regulate their expression in liver cells, providing a mechanistic view of their roles in liver physiology. Meanwhile, we pointed out many questions regarding the detailed signaling of RAR/RXR in regulating the expression of liver genes, and hope future studies will address these issues.
Collapse
Affiliation(s)
- Baixue Li
- Liver Center, Yale University School of Medicine, New Haven, CT 06520, United States; College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Shi-Ying Cai
- Liver Center, Yale University School of Medicine, New Haven, CT 06520, United States.
| | - James L Boyer
- Liver Center, Yale University School of Medicine, New Haven, CT 06520, United States.
| |
Collapse
|
18
|
Lin Y, Wang S, Gao L, Zhou Z, Yang Z, Lin J, Ren S, Xing H, Wu B. Oscillating lncRNA Platr4 regulates NLRP3 inflammasome to ameliorate nonalcoholic steatohepatitis in mice. Theranostics 2021; 11:426-444. [PMID: 33391484 PMCID: PMC7681083 DOI: 10.7150/thno.50281] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Understanding the molecular events and mechanisms underlying development and progression of nonalcoholic steatohepatitis is essential in an attempt to formulating a specific treatment. Here, we uncover Platr4 as an oscillating and NF-κB driven lncRNA that is critical to the pathological conditions in experimental steatohepatitis Methods: RNA-sequencing of liver samples was used to identify differentially expressed lncRNAs. RNA levels were analyzed by qPCR and FISH assays. Proteins were detected by immunoblotting and ELISA. Luciferase reporter, ChIP-sequencing and ChIP assays were used to investigate transcriptional gene regulation. Protein interactions were evaluated by Co-IP experiments. The protein-RNA interactions were studied using FISH, RNA pull-down and RNA immunoprecipitation analyses Results: Cyclic expression of Platr4 is generated by the core clock component Rev-erbα via two RevRE elements (i.e., -1354/-1345 and -462/-453 bp). NF-κB transcriptionally drives Platr4 through direct binding to two κB sites (i.e., -1066/-1056 and -526/-516 bp), potentially accounting for up-regulation of Platr4 in experimental steatohepatitis. Intriguingly, Platr4 serves as a circadian repressor of Nlrp3 inflammasome pathway by inhibiting NF-κB-dependent transcription of the inflammasome components Nlrp3 and Asc. Loss of Platr4 down-regulates Nlrp3 inflammasome activity in the liver, blunts its diurnal rhythm, and sensitizes mice to experimental steatohepatitis, whereas overexpression of Platr4 ameliorates the pathological conditions in an Nlrp3-dependent manner. Mechanistically, Platr4 prevents binding of the NF-κB/Rxrα complex to the κB sites via a physical interaction, thereby inhibiting the transactivation of Nlrp3 and Asc by NF-κB. Conclusions:Platr4 functions to inactivate Nlrp3 inflammasome via intercepting NF-κB signaling. This lncRNA might be an attractive target that can be modulated to ameliorate the pathological conditions of steatohepatitis.
Collapse
Affiliation(s)
- Yanke Lin
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Shuai Wang
- College of Pharmacy, Jinan University, Guangzhou 510632, China
- Integrated Chinese and Western Medicine Postdoctoral research station, Jinan University, Guangzhou, 510632, China
| | - Lu Gao
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Ziyue Zhou
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zemin Yang
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jingpan Lin
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Shujing Ren
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Huijie Xing
- Institution of Laboratory Animal, Jinan University, 601 Huangpu Avenue West, Guangzhou, China
| | - Baojian Wu
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
19
|
Watanabe M, Fujihara M, Motoyama T, Kawasaki M, Yamada S, Takamura Y, Ito S, Makishima M, Nakano S, Kakuta H. Discovery of a "Gatekeeper" Antagonist that Blocks Entry Pathway to Retinoid X Receptors (RXRs) without Allosteric Ligand Inhibition in Permissive RXR Heterodimers. J Med Chem 2020; 64:430-439. [PMID: 33356247 DOI: 10.1021/acs.jmedchem.0c01354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Retinoid X receptor (RXR) heterodimers such as PPAR/RXR, LXR/RXR, and FXR/RXR can be activated by RXR agonists alone and are therefore designated as permissive. Similarly, existing RXR antagonists show allosteric antagonism toward partner receptor agonists in these permissive RXR heterodimers. Here, we show 1-(3-(2-ethoxyethoxy)-5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-2-yl)-2-(trifluoromethyl)-1H-benzo[d]imidazole-5-carboxylic acid (14, CBTF-EE) as the first RXR antagonist that does not show allosteric inhibition in permissive RXR heterodimers. This compound was designed based on the hypothesis that RXR antagonists that do not induce conformational changes of RXR would not exhibit such allosteric inhibition. CD spectra and X-ray co-crystallography of the complex of 14 and the RXR ligand binding domain (LBD) confirmed that 14 does not change the conformation of hRXR-LBD. The X-ray structure analysis revealed that 14 binds at the entrance of the ligand binding pocket (LBP), blocking access to the LBP and thus serving as a "gatekeeper".
Collapse
Affiliation(s)
- Masaki Watanabe
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Michiko Fujihara
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.,AIBIOS Company. Ltd., Tri-Seven Roppongi 8F 7-7-7 Roppongi, Minato-ku, Tokyo 106-0032, Japan
| | - Tomoharu Motoyama
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Mayu Kawasaki
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Shoya Yamada
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.,Research Fellowship Division, Japan Society for the Promotion of Science, Sumitomo-Ichibancho FS Bldg., 8 Ichibancho, Chiyoda-ku, Tokyo 102-8472, Japan
| | - Yuta Takamura
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Sohei Ito
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Shogo Nakano
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hiroki Kakuta
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
20
|
Okamura M, Shizu R, Abe T, Kodama S, Hosaka T, Sasaki T, Yoshinari K. PXR Functionally Interacts with NF-κB and AP-1 to Downregulate the Inflammation-Induced Expression of Chemokine CXCL2 in Mice. Cells 2020; 9:cells9102296. [PMID: 33076328 PMCID: PMC7602528 DOI: 10.3390/cells9102296] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022] Open
Abstract
Pregnane X receptor (PXR) is a liver-enriched xenobiotic-responsive transcription factor. Although recent studies suggest that PXR shows anti-inflammatory effects by suppressing nuclear factor kappa B (NF-κB), the detailed mechanism remains unclear. In this study, we aimed to elucidate this mechanism. Mice were treated intraperitoneally with the PXR agonist pregnenolone 16α-carbonitrile (PCN) and/or carbon tetrachloride (CCl4). Liver injury was evaluated, and hepatic mRNA levels were determined via quantitative reverse transcription polymerase chain reaction. Reporter assays with wild-type and mutated mouse Cxcl2 promoter-containing reporter plasmids were conducted in 293T cells. Results showed that the hepatic expression of inflammation-related genes was upregulated in CCl4-treated mice, and PCN treatment repressed the induced expression of chemokine-encoding Ccl2 and Cxcl2 among the genes investigated. Consistently, PCN treatment suppressed the increased plasma transaminase activity and neutrophil infiltration in the liver. In reporter assays, tumor necrosis factor-α-induced Cxcl2 expression was suppressed by PXR. Although an NF-κB inhibitor or the mutation of an NF-κB-binding motif partly reduced PXR-dependent suppression, the mutation of both NF-κB and activator protein 1 (AP-1) sites abolished it. Consistently, AP-1-dependent gene transcription was suppressed by PXR with a construct containing AP-1 binding motifs. In conclusion, the present results suggest that PXR exerts anti-inflammatory effects by suppressing both NF-κB- and AP-1-dependent chemokine expression in mouse liver.
Collapse
Affiliation(s)
- Maya Okamura
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Ryota Shizu
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Taiki Abe
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Susumu Kodama
- Laboratory of Toxicology, Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Takuomi Hosaka
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Takamitsu Sasaki
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kouichi Yoshinari
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
21
|
Abstract
Nuclear receptors have a broad spectrum of biological functions in normal physiology and in the pathology of various diseases, including glomerular disease. The primary therapies for many glomerular diseases are glucocorticoids, which exert their immunosuppressive and direct podocyte protective effects via the glucocorticoid receptor (GR). As glucocorticoids are associated with important adverse effects and a substantial proportion of patients show resistance to these therapies, the beneficial effects of selective GR modulators are now being explored. Peroxisome proliferator-activated receptor-γ (PPARγ) agonism using thiazolidinediones has potent podocyte cytoprotective and nephroprotective effects. Repurposing of thiazolidinediones or identification of novel PPARγ modulators are potential strategies to treat non-diabetic glomerular disease. Retinoic acid receptor-α is the key mediator of the renal protective effects of retinoic acid, and repair of the endogenous retinoic acid pathway offers another potential therapeutic strategy for glomerular disease. Vitamin D receptor, oestrogen receptor and mineralocorticoid receptor modulators regulate podocyte injury in experimental models. Further studies are needed to better understand the mechanisms of these nuclear receptors, evaluate their synergistic pathways and identify their novel modulators. Here, we focus on the role of nuclear receptors in podocyte biology and non-diabetic glomerular disease.
Collapse
|
22
|
Alatshan A, Kovács GE, Aladdin A, Czimmerer Z, Tar K, Benkő S. All-Trans Retinoic Acid Enhances both the Signaling for Priming and the Glycolysis for Activation of NLRP3 Inflammasome in Human Macrophage. Cells 2020; 9:cells9071591. [PMID: 32630207 PMCID: PMC7407903 DOI: 10.3390/cells9071591] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/19/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023] Open
Abstract
All-trans retinoic acid (ATRA) is a derivative of vitamin A that has many important biological functions, including the modulation of immune responses. ATRA actions are mediated through the retinoic acid receptor that functions as a nuclear receptor, either regulating gene transcription in the nucleus or modulating signal transduction in the cytoplasm. NLRP3 inflammasome is a multiprotein complex that is activated by a huge variety of stimuli, including pathogen- or danger-related molecules. Activation of the inflammasome is required for the production of IL-1β, which drives the inflammatory responses of infectious or non-infectious sterile inflammation. Here, we showed that ATRA prolongs the expression of IL-6 and IL-1β following a 2-, 6-, 12-, and 24-h LPS (100ng/mL) activation in human monocyte-derived macrophages. We describe for the first time that ATRA modulates both priming and activation signals required for NLRP3 inflammasome function. ATRA alone induces NLRP3 expression, and enhances LPS-induced expression of NLRP3 and pro-IL-1β via the regulation of signal transduction pathways, like NF-κB, p38, and ERK. We show that ATRA alleviates the negative feedback loop effect of IL-10 anti-inflammatory cytokine on NLRP3 inflammasome function by inhibiting the Akt-mTOR-STAT3 signaling axis. We also provide evidence that ATRA enhances hexokinase 2 expression, and shifts the metabolism of LPS-activated macrophages toward glycolysis, leading to the activation of NLRP3 inflammasome.
Collapse
Affiliation(s)
- Ahmad Alatshan
- Departments of Physiology, Faculty of Medicine, University of Debrecen, H-4012 Debrecen, Hungary; (A.A.); (G.E.K.)
- Doctoral School of Molecular Cellular and Immune Biology, Faculty of Medicine, University of Debrecen, H-4012 Debrecen, Hungary
| | - Gergő E. Kovács
- Departments of Physiology, Faculty of Medicine, University of Debrecen, H-4012 Debrecen, Hungary; (A.A.); (G.E.K.)
- Doctoral School of Molecular Cellular and Immune Biology, Faculty of Medicine, University of Debrecen, H-4012 Debrecen, Hungary
| | - Azzam Aladdin
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (A.A.); (K.T.)
- Doctoral School of Molecular Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Zsolt Czimmerer
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Krisztina Tar
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (A.A.); (K.T.)
| | - Szilvia Benkő
- Departments of Physiology, Faculty of Medicine, University of Debrecen, H-4012 Debrecen, Hungary; (A.A.); (G.E.K.)
- Doctoral School of Molecular Cellular and Immune Biology, Faculty of Medicine, University of Debrecen, H-4012 Debrecen, Hungary
- Correspondence: ; Tel.: +36-52-255-575
| |
Collapse
|
23
|
Kuti BP, Smith OS, Adetola HH, Oyelami OA. Serum Inflammatory Cytokines and Vitamin A in Nigerian Children with Community-Acquired Pneumonia: Association with Severity and Outcome. J PEDIAT INF DIS-GER 2020. [DOI: 10.1055/s-0040-1712986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Abstract
Objective Pneumonia is an acute inflammation of the lung parenchyma caused by microbial agents. The role of inflammatory mediators and modulators like vitamin A in childhood pneumonia in developing countries is poorly explored. The aim of this study is to determine the relationship between serum vitamin A and inflammatory cytokines (i.e., proinflammatory interleukins [IL]-1β, -2, -3, -6, -8, -12, and -17 and anti-inflammatory IL-4, -10, -11, and -13) in Nigerian children with community-acquired pneumonia (CAP) and relate these to pneumonia severity and length of hospital stay (LOS).
Methods Children aged 2 months to 14 years with World Health Organization (WHO) defined CAP and age and sex-matched controls were recruited over a 12-month period. Relevant data, serum cytokines, and vitamin A (assayed using chromatography method) were compared between the two groups, and between those with severe and nonsevere pneumonia. Relationships between serum vitamin A, cytokines, and LOS were also determined.
Results One hundred and thirty-two children (66 each for CAP and controls; M: F = 1.8:1) were recruited and 17 (12.9%) were vitamin-A deficient. Of the 66 with CAP, 52 (78.8%) had severe pneumonia. Serum proinflammatory cytokines (IL-6, -8, -12, and -17) and anti-inflammatory cytokines (IL-4 and -11) were higher in children with CAP compared with controls. In under-five age group, lower serum IL-4 and vitamin A were associated with severe CAP. Vitamin-A deficient children with CAP had lower proinflammatory cytokines (IL-1β, IL-2, -3, -12, and -17) and anti-inflammatory cytokine IL-4 than vitamin A sufficient ones. IL-6 and IL-8 correlated positively with LOS.
Conclusion CAP is associated with elevated serum proinflammatory cytokines and possible resultant higher need of antioxidants properties of vitamin A in severe cases. Vitamin A may be more important to ameliorate the acute inflammatory processes in Nigerian children with severe than nonsevere pneumonia.
Collapse
Affiliation(s)
- Bankole P. Kuti
- Department of Paediatrics, Obafemi Awolowo University Ile-Ife, Osun, Nigeria
| | - Olufemi S. Smith
- Department of Pathology, Obafemi Awolowo University Ile-Ife, Osun, Nigeria
- Department of Immunology, Obafemi Awolowo University Ile-Ife, Osun, Nigeria
| | - Hammed H. Adetola
- Department of Paediatrics, Obafemi Awolowo University Ile-Ife, Osun, Nigeria
| | - Oyeku A. Oyelami
- Department of Paediatrics, Obafemi Awolowo University Ile-Ife, Osun, Nigeria
| |
Collapse
|
24
|
Li Y, Lin N, Ji X, Mai J, Li Q. Organotin compound DBDCT induces CYP3A suppression through NF-κB-mediated repression of PXR activity. Metallomics 2020; 11:936-948. [PMID: 30848264 DOI: 10.1039/c8mt00361k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organotin anticancer agent di-n-butyl-di-(4-chlorobenzohydroxamato)tin(iv) (DBDCT) exerted an inhibitory effect on its major metabolic enzyme cytochrome CYP3A. But whether hepatic drug-metabolizing enzymes and their regulatory nuclear receptors including pregnane PXR and constitutive androstane CAR binding with retinoid receptor RXR as a heterodimer are involved in the DBDCT-mediated regulation of CYP3A remains unclear. This study was undertaken to determine the mechanisms responsible for the effects of DBDCT on CYP3A suppression, focusing on the PXR-mediated and NF-κB pathways. The results indicated DBDCT suppressed CYP3A expression by inhibiting CAR expression. But what's interesting is, both protein and mRNA of PXR increased with increasing DBDCT. A further exploration, dual luciferase reporter gene analysis, clarified that DBDCT induced CYP3A expression elevation via the PXR-mediated pathway and this induction was countered by activation of NF-κB, which played a pivotal role in suppression of CYP3A through disrupting the association of the PXR-RXRα complex with DNA sequences by EMSA. PXR-mediated CYP3A expression was similarly demonstrated by RNAi. As expected, expression of CYP3A and its mRNA levels were reduced by DBDCT only in NF-κB(+/+) but not in NF-κB(-/-) cells. The inductive effect of DBDCT on CYP3A4 mRNA was enhanced in PXR shRNA-transfected cells but weakened in the ip65 group, which showed both PXR up-regulated CYP3A expression and NF-κB p65 activation directly contributed to CYP3A inhibition. In conclusion, activated NF-κB by DBDCT interacts directly with the DNA-binding domain of PXR, and disrupts the binding between the PXR-RXR dimer, thereby affecting the regulatory process for CYP3A transcription and, therefore, leading to a decrease of the expression of the PXR-regulated CYP3A.
Collapse
Affiliation(s)
- Yunlan Li
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030001, P. R. China.
| | | | | | | | | |
Collapse
|
25
|
Chen C, Smith AD, Cheung L, Pham Q, Urban JF, Dawson HD. Potentiation of IL-4 Signaling by Retinoic Acid in Intestinal Epithelial Cells and Macrophages-Mechanisms and Targets. Front Immunol 2020; 11:605. [PMID: 32431691 PMCID: PMC7214669 DOI: 10.3389/fimmu.2020.00605] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/16/2020] [Indexed: 11/13/2022] Open
Abstract
We previously demonstrated that IL4, IL13, CLCA1, and CCL26 mRNA were significantly upregulated in the lungs of pigs given a low dose of all trans-retinoic acid (ATRA) and infected with Ascaris suum. We also demonstrated that in vitro ATRA induced a state of partial alternative activation in porcine macrophages (Mφs) and amplified certain aspects of M2a activation induced by IL-4. Given these results, we tested the effect of ATRA on IL-4 responses in two porcine intestinal epithelial cell lines, IPEC1 and IPEC-J2 and observed that ATRA increased mRNA for the IL-4 receptor alpha chain. ATRA also increased IL-4 induced phosphorylation of signal transducer and activator of transcription 6 (STAT6) and mRNA expression of the chloride channel, calcium activated, family member 1 (CLCA1), important for mucus formation, and chemokine (C-C motif) ligand 26 (CCL26), a potent eosinophil chemoattractant. We extended these findings to human Mφ THP-1 cells and showed that ATRA synergistically increased IL-4–induced CCL2, CCL13, and CCL26 mRNA and protein levels. Transglutaminase 2 mRNA, protein, and enzyme activity were synergistically induced in THP-1 cells pretreated with ATRA and then treated with IL-4, thus, ATRA increased signaling in response to IL-4 in porcine epithelial cells and porcine and human Mφs. Given the prevalence of allergic and parasitic diseases worldwide and the close similarities in the porcine and human immune responses, these findings have important implications for the nutritional regulation of allergic inflammation at mucosal surfaces.
Collapse
Affiliation(s)
- Celine Chen
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, USDA, Beltsville, MD, United States
| | - Allen D Smith
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, USDA, Beltsville, MD, United States
| | - Lumei Cheung
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, USDA, Beltsville, MD, United States
| | - Quynhchi Pham
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, USDA, Beltsville, MD, United States
| | - Joseph F Urban
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, USDA, Beltsville, MD, United States
| | - Harry D Dawson
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, USDA, Beltsville, MD, United States
| |
Collapse
|
26
|
Miller AP, Coronel J, Amengual J. The role of β-carotene and vitamin A in atherogenesis: Evidences from preclinical and clinical studies. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158635. [PMID: 31978554 DOI: 10.1016/j.bbalip.2020.158635] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is the principal contributor to myocardial infarction, the leading cause of death worldwide. Epidemiological and mechanistic studies indicate that β-carotene and its vitamin A derivatives stimulate lipid catabolism in several tissues to reduce the incidence of obesity, but their roles within ASCVD are elusive. Herein, we review the mechanisms by which β-carotene and vitamin A modulate ASCVD. First, we summarize the current knowledge linking these nutrients with epidemiological studies and lipoprotein metabolism as one of the initiating factors of ASCVD. Next, we focus on different aspects of vitamin A metabolism in immune cells such as the mechanisms of carotenoid uptake and conversion to the vitamin A metabolite, retinoic acid. Lastly, we review the effects of retinoic acid on immuno-metabolism, differentiation, and function of macrophages and T cells, the two pillars of the innate and adaptive immune response in ASCVD, respectively. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Anthony P Miller
- Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL 61801, United States of America
| | - Johana Coronel
- Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL 61801, United States of America
| | - Jaume Amengual
- Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL 61801, United States of America; Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL 61801, United States of America.
| |
Collapse
|
27
|
Alam J, de Paiva CS, Pflugfelder SC. Immune - Goblet cell interaction in the conjunctiva. Ocul Surf 2020; 18:326-334. [PMID: 31953222 DOI: 10.1016/j.jtos.2019.12.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/24/2019] [Accepted: 12/15/2019] [Indexed: 02/06/2023]
Abstract
The conjunctiva is a goblet cell rich mucosal tissue. Goblet cells are supported by tear growth factors and IL-13 produced by resident immune cells. Goblet cell secretions are essential for maintaining tear stability and ocular surface homeostasis. In addition to producing tear stabilizing mucins, they also produce cytokines and retinoic acid that condition monocyte-derived phagocytic cells in the conjunctiva. Aqueous tear deficiency from lacrimal gland disease and systemic inflammatory conditions results in goblet cell loss that amplifies dry eye severity. Reduced goblet cell density is correlated with more severe conjunctival disease, increased IFN-γ expression and antigen presenting cell maturation. Sterile Alpha Motif (SAM) pointed domain epithelial specific transcription factor (Spdef) gene deficient mice that lack goblet cells have increased infiltration of monocytes and dendritic cells with greater IL-12 expression in the conjunctiva. Similar findings were observed in the conjunctiva of aged mice. Reduced retinoic acid receptor (RXRα) signaling also increases conjunctival monocyte infiltration, IFN-γ expression and goblet cell loss. Evidence suggests that dry eye therapies that suppress IFN-γ expression preserve conjunctival goblet cell number and function and should be considered in aqueous deficiency.
Collapse
Affiliation(s)
- Jehan Alam
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | - Cintia S de Paiva
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | - Stephen C Pflugfelder
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
28
|
Conserva MR, Anelli L, Zagaria A, Specchia G, Albano F. The Pleiotropic Role of Retinoic Acid/Retinoic Acid Receptors Signaling: From Vitamin A Metabolism to Gene Rearrangements in Acute Promyelocytic Leukemia. Int J Mol Sci 2019; 20:ijms20122921. [PMID: 31207999 PMCID: PMC6627493 DOI: 10.3390/ijms20122921] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 12/18/2022] Open
Abstract
The family of retinoic acid receptors (RARs: RARα, -β, and -γ) has remarkable pleiotropy characteristics, since the retinoic acid/RARs pathway is involved in numerous biological processes not only during embryonic development, but also in the postnatal phase and during adulthood. In this review, we trace the roles of RA/RARs signaling in the immune system (where this pathway has both an immunosuppressive role or is involved in the inflammatory response), in hematopoiesis (enhancing hematopoietic stem cell self-renewal, progenitor cells differentiation or maintaining the bone marrow microenvironment homeostasis), and in bone remodeling (where this pathway seems to have controversial effects on bone formation or osteoclast activation). Moreover, in this review is shown the involvement of RAR genes in multiple chromosomal rearrangements generating different fusion genes in hematological neoplasms, with a particular focus on acute promyelocytic leukemia and its variant subtypes. The effect of different RARs fusion proteins on leukemic transformation, on patients’ outcome, and on therapy response is also discussed.
Collapse
Affiliation(s)
- Maria Rosa Conserva
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| | - Luisa Anelli
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| | - Antonella Zagaria
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| | - Giorgina Specchia
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| |
Collapse
|
29
|
Smith AD, Panickar KS, Urban JF, Dawson HD. Impact of Micronutrients on the Immune Response of Animals. Annu Rev Anim Biosci 2019; 6:227-254. [PMID: 29447473 DOI: 10.1146/annurev-animal-022516-022914] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vitamins and minerals (micronutrients) play an important role in regulating and shaping an immune response. Deficiencies generally result in inadequate or dysregulated cellular activity and cytokine expression, thereby affecting the immune response. Decreased levels of natural killer, granulocyte, and phagocytic cell activity and T and B cell proliferation and trafficking are associated with inadequate levels of micronutrients, as well as increased susceptibility to various adverse health conditions, including inflammatory disorders, infection, and altered vaccine efficacy. In addition, most studies of micronutrient modulation of immune responses have been done in rodents and humans, thus limiting application to the health and well-being of livestock and companion animals. This exploratory review elucidates the role of vitamins and minerals on immune function and inflammatory responses in animals (pigs, dogs, cats, horses, goats, sheep, and cattle), with reference to rodents and humans.
Collapse
Affiliation(s)
- Allen D Smith
- United States Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics & Immunology Laboratory, Beltsville, Maryland 20705-2350, USA;
| | - Kiran S Panickar
- Science & Technology Center, Hills Pet Nutrition Center, Topeka, Kansas 66617, USA
| | - Joseph F Urban
- United States Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics & Immunology Laboratory, Beltsville, Maryland 20705-2350, USA;
| | - Harry D Dawson
- United States Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics & Immunology Laboratory, Beltsville, Maryland 20705-2350, USA;
| |
Collapse
|
30
|
Anti-inflammatory effects of naturally occurring retinoid X receptor agonists isolated from Sophora tonkinensis Gagnep. via retinoid X receptor/liver X receptor heterodimers. J Nat Med 2019; 73:419-430. [DOI: 10.1007/s11418-018-01277-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 12/28/2018] [Indexed: 12/18/2022]
|
31
|
Riedlinger T, Liefke R, Meier-Soelch J, Jurida L, Nist A, Stiewe T, Kracht M, Schmitz ML. NF-κB p65 dimerization and DNA-binding is important for inflammatory gene expression. FASEB J 2018; 33:4188-4202. [PMID: 30526044 PMCID: PMC6404571 DOI: 10.1096/fj.201801638r] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Increasing evidence shows that many transcription factors execute important biologic functions independent from their DNA-binding capacity. The NF-κB p65 (RELA) subunit is a central regulator of innate immunity. Here, we investigated the relative functional contribution of p65 DNA-binding and dimerization in p65-deficient human and murine cells reconstituted with single amino acid mutants preventing either DNA-binding (p65 E/I) or dimerization (p65 FL/DD). DNA-binding of p65 was required for RelB-dependent stabilization of the NF-κB p100 protein. The antiapoptotic function of p65 and expression of the majority of TNF-α–induced genes were dependent on p65’s ability to bind DNA and to dimerize. Chromatin immunoprecipitation with massively parallel DNA sequencing experiments revealed that impaired DNA-binding and dimerization strongly diminish the chromatin association of p65. However, there were also p65-independent TNF-α–inducible genes and a subgroup of p65 binding sites still allowed some residual chromatin association of the mutants. These sites were enriched in activator protein 1 (AP-1) binding motifs and showed increased chromatin accessibility and basal transcription. This suggests a mechanism of assisted p65 chromatin association that can be in part facilitated by chromatin priming and cooperativity with other transcription factors such as AP-1.—Riedlinger, T., Liefke, R., Meier-Soelch, J., Jurida, L., Nist, A., Stiewe, T., Kracht, M., Schmitz, M. L. NF-κB p65 dimerization and DNA-binding is important for inflammatory gene expression.
Collapse
Affiliation(s)
- Tabea Riedlinger
- Institute of Biochemistry, Member of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany
| | - Robert Liefke
- Institute of Biochemistry, Member of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany.,Institute of Molecular Biology and Tumor Research (IMT), Philipps University Marburg, Marburg, Germany
| | - Johanna Meier-Soelch
- Rudolf-Buchheim-Institute of Pharmacology, Member of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany; and
| | - Liane Jurida
- Rudolf-Buchheim-Institute of Pharmacology, Member of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany; and
| | - Andrea Nist
- Genomics Core Facility-Institute of Molecular Oncology, Philipps University Marburg, Marburg, Germany
| | - Thorsten Stiewe
- Genomics Core Facility-Institute of Molecular Oncology, Philipps University Marburg, Marburg, Germany
| | - Michael Kracht
- Rudolf-Buchheim-Institute of Pharmacology, Member of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany; and
| | - M Lienhard Schmitz
- Institute of Biochemistry, Member of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
32
|
Impact of Retinoic Acid on Immune Cells and Inflammatory Diseases. Mediators Inflamm 2018; 2018:3067126. [PMID: 30158832 PMCID: PMC6109577 DOI: 10.1155/2018/3067126] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/16/2018] [Accepted: 06/28/2018] [Indexed: 12/14/2022] Open
Abstract
Vitamin A metabolite retinoic acid (RA) plays important roles in cell growth, differentiation, organogenesis, and reproduction and a key role in mucosal immune responses. RA promotes dendritic cells to express CD103 and to produce RA, enhances the differentiation of Foxp3+ inducible regulatory T cells, and induces gut-homing specificity in T cells. Although vitamin A is crucial for maintaining homeostasis at the intestinal barrier and equilibrating immunity and tolerance, including gut dysbiosis, retinoids perform a wide variety of functions in many settings, such as the central nervous system, skin aging, allergic airway diseases, cancer prevention and therapy, and metabolic diseases. The mechanism of RA is interesting to explore as both a mucosal adjuvant and a combination therapy with other effective agents. Here, we review the effect of RA on innate and adaptive immunity with a special emphasis on inflammatory status.
Collapse
|
33
|
All-trans retinoic acid ameliorates inflammatory response mediated by TLR4/NF-κB during initiation of diabetic nephropathy. J Nutr Biochem 2018; 60:47-60. [PMID: 30193155 DOI: 10.1016/j.jnutbio.2018.06.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 05/04/2018] [Accepted: 06/06/2018] [Indexed: 01/05/2023]
Abstract
Diabetic nephropathy (DN) is the leading cause of renal failure worldwide and its complications have become a public health problem. Inflammation, oxidative stress and fibrosis play central roles in the progression of DN that lead to renal failure. Potential deleterious effect of inflammation in early evolution of DN is not fully disclosed. Therefore, it is relevant to explore therapies that might modulate this process in order to reduce DN progression. We explored the beneficial effect of all-trans retinoic acid (ATRA) in early inflammation in glomeruli, proximal and distal tubules in streptozotocin (STZ)-induced diabetes. ATRA was administered (1 mg/kg daily by gavage) on days 3 to 21 after STZ administration. It was found that 21 days after STZ injection, diabetic rats exhibited proteinuria, increased natriuresis and loss of body weight. Besides, diabetes induced an increase in interleukins [IL-1β, IL-1α, IL-16, IL-13, IL-2; tumor necrosis factor alpha (TNF-α)] and transforming growth factor-beta 1 (TGF-β1), chemokines (CCL2, CCL20, CXCL5 and CXCL7), adhesion molecules (ICAM-1 and L-selectin) and growth factors (GM-CSF, VEGF, PDGF) in glomeruli and proximal tubules, whereas ATRA treatment remarkably ameliorated these alterations. To further explore the mechanisms through which ATRA decreased inflammatory response, the NF-κB/p65 signaling mediated by TLR4 was studied. We found that ATRA administration attenuates the TLR4/NF-κB inflammatory signaling and prevents NF-κB nuclear translocation in glomeruli and proximal tubules.
Collapse
|
34
|
Tsai SY, Catts VS, Fullerton JM, Corley SM, Fillman SG, Weickert CS. Nuclear Receptors and Neuroinflammation in Schizophrenia. MOLECULAR NEUROPSYCHIATRY 2018; 3:181-191. [PMID: 29888229 DOI: 10.1159/000485565] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/21/2017] [Indexed: 01/23/2023]
Abstract
Introduction Several nuclear receptor family members have been associated with schizophrenia and inflammation. Vitamins A and D exert anti-inflammatory actions, but their receptors (mainly nuclear receptors) have not been extensively studied in either schizophrenia brains or in association with neuroinflammation. We examined the expression of vitamin A (RARs and RXRs) and vitamin D and protein disulphide-isomerase A3 (PDIA3) receptors, as well as nuclear orphan receptors (NR4As), in the context of elevated cytokine expression in the dorsolateral prefrontal cortex (DLPFC). Methods mRNA levels of nuclear receptors were measured in DLPFC tissues via RT-qPCR. ANCOVAs comparing high inflammation schizophrenia, low inflammation schizophrenia and low inflammation control groups were performed. Results RARG, RXRB, NR4A1 and NR4A3 transcripts showed significant differential expression across the three groups (ANCOVA p = 0.02-0.001). Post hoc testing revealed significant reductions in RARG expression in schizophrenia with low inflammation compared to schizophrenia with high inflammation and to controls, and RXRB mRNA was significantly reduced in schizophrenia with low inflammation compared to controls. NR4A1 and NR4A3 mRNAs were decreased in schizophrenia with high inflammation compared to schizophrenia with low inflammation, with NR4A1 also significantly different to controls. Conclusion In schizophrenia, changes in nuclear receptor mRNA levels involved with mediating actions of vitamin A derivatives vary according to the inflammatory state of brains.
Collapse
Affiliation(s)
- Shan-Yuan Tsai
- Schizophrenia Research Institute, Sydney, New South Wales, Australia.,Neuroscience Research Australia, Sydney, New South Wales, Australia.,School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Vibeke S Catts
- Schizophrenia Research Institute, Sydney, New South Wales, Australia.,Neuroscience Research Australia, Sydney, New South Wales, Australia.,School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Janice M Fullerton
- Schizophrenia Research Institute, Sydney, New South Wales, Australia.,Neuroscience Research Australia, Sydney, New South Wales, Australia.,School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Susan M Corley
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Stuart G Fillman
- Schizophrenia Research Institute, Sydney, New South Wales, Australia.,Neuroscience Research Australia, Sydney, New South Wales, Australia.,School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Institute, Sydney, New South Wales, Australia.,Neuroscience Research Australia, Sydney, New South Wales, Australia.,School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
35
|
Larange A, Cheroutre H. Retinoic Acid and Retinoic Acid Receptors as Pleiotropic Modulators of the Immune System. Annu Rev Immunol 2017; 34:369-94. [PMID: 27168242 DOI: 10.1146/annurev-immunol-041015-055427] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vitamin A is a multifunctional vitamin implicated in a wide range of biological processes. Its control over the immune system and functions are perhaps the most pleiotropic not only for development but also for the functional fate of almost every cell involved in protective or regulatory adaptive or innate immunity. This is especially key at the intestinal border, where dietary vitamin A is first absorbed. Most effects of vitamin A are exerted by its metabolite, retinoic acid (RA), which through ligation of nuclear receptors controls transcriptional expression of RA target genes. In addition to this canonical function, RA and RA receptors (RARs), either as ligand-receptor or separately, play extranuclear, nongenomic roles that greatly expand the multiple mechanisms employed for their numerous and paradoxical functions that ultimately link environmental sensing with immune cell fate. This review discusses RA and RARs and their complex roles in innate and adaptive immunity.
Collapse
Affiliation(s)
- Alexandre Larange
- Division of Developmental Immunology, La Jolla Institute for Allergy & Immunology, La Jolla, California 92037; ,
| | - Hilde Cheroutre
- Division of Developmental Immunology, La Jolla Institute for Allergy & Immunology, La Jolla, California 92037; ,
| |
Collapse
|
36
|
All-Trans Retinoic Acid Modulates TLR4/NF- κB Signaling Pathway Targeting TNF- α and Nitric Oxide Synthase 2 Expression in Colonic Mucosa during Ulcerative Colitis and Colitis Associated Cancer. Mediators Inflamm 2017; 2017:7353252. [PMID: 28408791 PMCID: PMC5376956 DOI: 10.1155/2017/7353252] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 01/05/2017] [Accepted: 02/19/2017] [Indexed: 12/24/2022] Open
Abstract
Colitis associated cancer (CAC) is the colorectal cancer (CRC) subtype that is associated with bowel disease such as ulcerative colitis (UC). The data on role of NF-κB signaling in development and progression of CAC were derived from preclinical studies, whereas data from human are rare. The aim of this work was to study the contribution of NF-κB pathway during UC and CAC, as well as the immunomodulatory effect of all-trans retinoic acid (AtRA). We analyzed the expression of NOS2, TNF-α, TLR4, and NF-κB, in colonic mucosa. We also studied NO/TNF-α modulation by LPS in colonic mucosa pretreated with AtRA. A marked increase in TLR4, NF-κB, TNF-α, and NOS2 expression was reported in colonic mucosa. The relationship between LPS/TLR4 and TNF-α/NO production, as well as the role of NF-κB signaling, was confirmed by ex vivo experiments and the role of LPS/TLR4 in NOS2/TNF-α induction through NF-κB pathway was suggested. AtRA downregulates NOS2 and TNF-α expression. Collectively, our study indicates that AtRA modulates in situ LPS/TLR4/NF-κB signaling pathway targeting NOS2 and TNF-α expression. Therefore, we suggest that AtRA has a potential value in new strategies to improve the current therapy, as well as in the clinical prevention of CAC development and progression.
Collapse
|
37
|
Neuronally-directed effects of RXR activation in a mouse model of Alzheimer's disease. Sci Rep 2017; 7:42270. [PMID: 28205585 PMCID: PMC5311933 DOI: 10.1038/srep42270] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 01/04/2017] [Indexed: 12/13/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by extensive neuron loss that accompanies profound impairments in memory and cognition. We examined the neuronally directed effects of the retinoid X receptor agonist bexarotene in an aggressive model of AD. We report that a two week treatment of 3.5 month old 5XFAD mice with bexarotene resulted in the clearance of intraneuronal amyloid deposits. Importantly, neuronal loss was attenuated by 44% in the subiculum in mice 4 months of age and 18% in layer V of the cortex in mice 8 months of age. Moreover, bexarotene treatment improved remote memory stabilization in fear conditioned mice and improved olfactory cross habituation. These improvements in neuron viability and function were correlated with significant increases in the levels of post-synaptic marker PSD95 and the pre-synaptic marker synaptophysin. Moreover, bexarotene pretreatment improved neuron survival in primary 5XFAD neurons in vitro in response to glutamate-induced excitotoxicity. The salutary effects of bexarotene were accompanied by reduced plaque burden, decreased astrogliosis, and suppression of inflammatory gene expression. Collectively, these data provide evidence that bexarotene treatment reduced neuron loss, elevated levels of markers of synaptic integrity that was linked to improved cognition and in an aggressive model of AD.
Collapse
|
38
|
Fujii U, Miyahara N, Taniguchi A, Oda N, Morichika D, Murakami E, Nakayama H, Waseda K, Kataoka M, Kakuta H, Tanimoto M, Kanehiro A. Effect of a retinoid X receptor partial agonist on airway inflammation and hyperresponsiveness in a murine model of asthma. Respir Res 2017; 18:23. [PMID: 28114934 PMCID: PMC5260083 DOI: 10.1186/s12931-017-0507-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/13/2017] [Indexed: 12/21/2022] Open
Abstract
Background Retinoid X receptors (RXRs) are members of the nuclear receptor (NR) superfamily that mediate signaling by 9-cis retinoic acid, a vitamin A (retinol) derivative. RXRs play key roles not only as homodimers but also as heterodimeric partners—e.g., retinoic acid receptors (RARs), vitamin D receptors (VDRs), liver X receptors (LXRs), and peroxisome proliferator-activated receptors (PPARs). The NR family was recently associated with allergic diseases, but the role of RXRs in allergen-induced airway responses is not well defined. The goal of this study is to elucidate the role of RXRs in asthma pathogenesis and the potency of RXR partial agonist in the treatment of allergic airway inflammation and airway hyperresponsiveness using a murine model of asthma. Methods We investigated the effect of a novel RXR partial agonist (NEt-4IB) on the development of allergic airway inflammation and airway hyperresponsiveness (AHR) in a murine model of asthma. Balb/c mice were sensitized (days 0 and 14) and challenged (days 28–30) with ovalbumin (OVA), and airway inflammation and airway responses were monitored 48 h after the last OVA challenge. NEt-4IB was administered orally on days 25 to 32. Results Oral administration of NEt-4IB significantly suppressed AHR and inflammatory cell accumulation in the airways and attenuated the levels of TNF-α in the lung and IL-5, IL-13 and NO levels in bronchoalveolar lavage (BAL) fluid and the number of periodic acid Schiff (PAS)-positive goblet cells in lung tissue. Treatment with NEt-4IB also significantly suppressed NF-κB expression. Conclusion These data suggest that RXRs may be of crucial importance in the mechanism of allergic asthma and that the novel RXR partial agonist NEt-4IB may be a promising candidate for the treatment of allergic airway inflammation and airway hyperresponsiveness in a model of allergic asthma.
Collapse
Affiliation(s)
- Utako Fujii
- Department of Hematology, Oncology, Allergy and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Nobuaki Miyahara
- Department of Hematology, Oncology, Allergy and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Akihiko Taniguchi
- Department of Hematology, Oncology, Allergy and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Naohiro Oda
- Department of Hematology, Oncology, Allergy and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Daisuke Morichika
- Department of Hematology, Oncology, Allergy and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Etsuko Murakami
- Department of Hematology, Oncology, Allergy and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hikari Nakayama
- Department of Hematology, Oncology, Allergy and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Koichi Waseda
- Department of Hematology, Oncology, Allergy and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Mikio Kataoka
- Department of Hematology, Oncology, Allergy and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hiroki Kakuta
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 1-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan
| | - Mitsune Tanimoto
- Department of Hematology, Oncology, Allergy and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Arihiko Kanehiro
- Department of Hematology, Oncology, Allergy and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| |
Collapse
|
39
|
Hiromori Y, Ido A, Aoki A, Kimura T, Nagase H, Nakanishi T. Ligand Activity of Group 15 Compounds Possessing Triphenyl Substituent for the RXR and PPARγ Nuclear Receptors. Biol Pharm Bull 2016; 39:1596-1603. [PMID: 27725436 DOI: 10.1248/bpb.b16-00186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the ability of group 15 compounds with a triphenyl substituent to bind to and activate human retinoic X receptor (RXR) and peroxisome proliferator-activated receptor (PPAR) γ and their ability to activate the receptor. Triphenylphosphine oxide (TPPO) transcriptionally activated both RXR and PPARγ. Triphenylbismuth (TPBi) transcriptionally activated PPARγ but not RXR. However, TPBi significantly inhibited RXR transcriptional activity induced by 9-cis retinoic acid (9cRA) and PPARγ transcriptional activity induced by rosiglitazone (Rosi). Triphenylarsine (TPAs) also significantly inhibited the 9cRA- and Rosi-induced transcriptional activity of both receptors, whereas TPAs alone had no effect on the transcriptional activity of RXR and PPARγ. Consistent with these results, TPAs and TPBi blocked the binding of [3H]9cRA to RXR and of [3H]Rosi to PPARγ in a competitive manner. However, contrary to the results of the reporter gene assay, TPPO did not compete with [3H]9cRA and [3H]Rosi for binding to RXR and PPARγ, respectively. Our findings indicate that 1) TPPO is a transcriptional activator-but not a ligand-of RXR and PPARγ; 2) TPBi is an antagonist of RXR and a partial agonist of PPARγ; and 3) TPAs is a dual antagonist of RXR and PPARγ. These results suggest that TPPO, TPAs, and TPBi are potential endocrine disrupters of the PPARγ-RXR signaling pathway.
Collapse
Affiliation(s)
- Youhei Hiromori
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University
| | | | | | | | | | | |
Collapse
|
40
|
Dulla YAT, Kurauchi Y, Hisatsune A, Seki T, Shudo K, Katsuki H. Regulatory Mechanisms of Vitamin D 3 on Production of Nitric Oxide and Pro-inflammatory Cytokines in Microglial BV-2 Cells. Neurochem Res 2016; 41:2848-2858. [PMID: 27401255 DOI: 10.1007/s11064-016-2000-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/19/2016] [Accepted: 07/07/2016] [Indexed: 11/24/2022]
Abstract
Inhibition of pro-inflammatory functions of microglia has been considered a promising strategy to prevent pathogenic events in the central nervous system under neurodegenerative conditions. Here we examined potential inhibitory effects of nuclear receptor ligands on lipopolysaccharide (LPS)-induced inflammatory responses in microglial BV-2 cells. We demonstrate that a vitamin D receptor agonist 1,25-dihydroxyvitamin D3 (VD3) and a retinoid X receptor agonist HX630 affect LPS-induced expression of pro-inflammatory factors. Specifically, both VD3 and HX630 inhibited expression of mRNAs encoding inducible nitric oxide synthase (iNOS) and IL-6, whereas expression of IL-1β mRNA was inhibited only by VD3. The inhibitory effect of VD3 and HX630 on expression of iNOS and IL-6 mRNAs was additive. Effect of VD3 and HX630 was also observed for inhibition of iNOS protein expression and nitric oxide production. Moreover, VD3 and HX630 inhibited LPS-induced activation of extracellular signal-regulated kinase (ERK) and nuclear translocation of nuclear factor κB (NF-κB). PD98059, an inhibitor of ERK kinase, attenuated LPS-induced nuclear translocation of NF-κB and induction of mRNAs for iNOS, IL-1β and IL-6. These results indicate that VD3 can inhibit production of several pro-inflammatory molecules from microglia, and that suppression of ERK activation is at least in part involved in the anti-inflammatory effect of VD3.
Collapse
Affiliation(s)
- Yevgeny Aster T Dulla
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.,Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto, Japan
| | - Yuki Kurauchi
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Akinori Hisatsune
- Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto, Japan.,Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto, Japan
| | - Takahiro Seki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Koichi Shudo
- Research Foundation Itsuu Laboratory, Tokyo, Japan
| | - Hiroshi Katsuki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
| |
Collapse
|
41
|
Kosters A, Abebe DF, Felix JC, Dawson PA, Karpen SJ. Inflammation-associated upregulation of the sulfated steroid transporter Slc10a6 in mouse liver and macrophage cell lines. Hepatol Res 2016; 46:794-803. [PMID: 26510996 PMCID: PMC4851596 DOI: 10.1111/hepr.12609] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 09/28/2015] [Accepted: 10/14/2015] [Indexed: 12/12/2022]
Abstract
AIM Slc10a6, an incompletely characterized member of the SLC10A bile acid transporter family, was one of the most highly induced RNA transcripts identified in a screen for inflammation-responsive genes in mouse liver. This study aimed to elucidate a role for Slc10a6 in hepatic inflammation. METHODS Mice were treated with lipopolysaccharide (LPS; 2 mg/kg) or interleukin (IL)-1β (5 mg/kg) for various time points. Cells were treated with LPS (1 μg/mL) at various time points, with cell signaling inhibitors, nuclear receptor ligands and Slc10a6 substrates. All mRNA levels were determined by quantitative polymerase chain reaction. RESULTS Slc10a6 mRNA levels were upregulated in mouse liver at 2 h (7-fold), 4 h (100-fold) and 16 h (50-fold) after LPS treatment, and 35-fold by the cytokine IL-1β (4 h). Both absence of the nuclear receptor Fxr and pretreating mice with the synthetic retinoid X receptor-α ligand LG268 attenuated the LPS upregulation of Slc10a6 mRNA by 60-75%. In vitro, Slc10a6 mRNA was induced 30-fold by LPS in mouse RAW264.7 macrophages in a time-dependent manner (maximum at 8 h). The Slc10a6 substrate dehydroepiandrosterone sulfate (DHEAS) enhanced LPS induction of CCL5 mRNA, a pro-inflammatory chemokine, by 50% in RAW264.7 cells. This effect was abrogated in the presence of anti-inflammatory nuclear receptor ligands 9-cis-retinoic acid and dexamethasone. CONCLUSION Dramatic upregulation of Slc10a6 mRNA by LPS combined with enhanced LPS stimulation of CCL5 expression by the Slc10a6 substrate DHEAS in macrophages suggests that Slc10a6 function contributes to the hepatic inflammatory response.
Collapse
Affiliation(s)
- Astrid Kosters
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta GA, 30322
| | - Demesew F. Abebe
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta GA, 30322
| | - Julio C. Felix
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Paul A. Dawson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta GA, 30322
| | - Saul J. Karpen
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta GA, 30322
| |
Collapse
|
42
|
Ayala-Peña VB, Pilotti F, Volonté Y, Rotstein NP, Politi LE, German OL. Protective effects of retinoid x receptors on retina pigment epithelium cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1134-45. [DOI: 10.1016/j.bbamcr.2016.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 02/04/2016] [Accepted: 02/12/2016] [Indexed: 01/01/2023]
|
43
|
Yosaee S, Akbari Fakhrabadi M, Shidfar F. Positive evidence for vitamin A role in prevention of type 1 diabetes. World J Diabetes 2016; 7:177-88. [PMID: 27162582 PMCID: PMC4856890 DOI: 10.4239/wjd.v7.i9.177] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 03/23/2016] [Accepted: 04/07/2016] [Indexed: 02/05/2023] Open
Abstract
Type 1 diabetes mellitus (T1DM) as one of the most well-known autoimmune disease, results from the destruction of β-cells in pancreas by autoimmune process. T1DM is fatal without insulin treatment. The expansion of alternative treatment to insulin is a dream to be fulfilled. Currently autoimmunity is considered as main factor in development of T1DM. So manipulation of the immune system can be considered as alternative treatment to insulin. For the past decades, vitamin A has been implicated as an essential dietary micronutrient in regulator of immune function. Despite major advantage in the knowledge of vitamin A biology, patients who present T1DM are at risk for deficiency in vitamin A and carotenoids. Applying such evidences, vitamin A treatment may be the key approach in preventing T1DM.
Collapse
|
44
|
Retinoic acid decreases the severity of Salmonella enterica serovar Typhimurium mediated gastroenteritis in a mouse model. Immunobiology 2016; 221:839-44. [PMID: 26858186 DOI: 10.1016/j.imbio.2016.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 01/19/2016] [Accepted: 01/26/2016] [Indexed: 01/01/2023]
Abstract
Gastroenteritis is a global burden; it's the major cause of morbidity and mortality both in adults and children of developing countries. Salmonella is one of the leading causes of bacteria-mediated gastroenteritis and due to its increasing multidrug antibiotic resistance; Salmonella-mediated gastroenteritis is difficult to control. Retinoic acid, the biologically active agent of vitamin A has an anti-inflammatory effect on experimental colitis. In this study we have shown All trans retinoic acid (ATRA) treatment down regulates Salmonella-mediated colitis in a murine model. Macroscopic signs of inflammation such as decrease in body weight and cecum weight, shorter length of proximal colon and pathological score of colitis were observed less in ATRA treated mice than in a vehicle control group. ATRA treatment not only reduced pro-inflammatory cytokine responses, such as TNF-α, IL-6, IL-1β, IFN-γ and IL-17 production but also increased IL-10 response in the supernatant of intestinal tissue. Results also suggested that ATRA treatment enhances the number of FoxP3-expressing T regulatory cells in MLN and also decreases bacterial load in systemic organs. We concluded that ATRA treatment indeed reduces Salmonella Typhimurium-mediated gastroenteritis in mice, suggesting it could be an important part of an alternative therapeutic approach to combat the disease.
Collapse
|
45
|
Certo M, Endo Y, Ohta K, Sakurada S, Bagetta G, Amantea D. Activation of RXR/PPARγ underlies neuroprotection by bexarotene in ischemic stroke. Pharmacol Res 2015; 102:298-307. [PMID: 26546745 DOI: 10.1016/j.phrs.2015.10.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/14/2015] [Accepted: 10/12/2015] [Indexed: 10/22/2022]
Abstract
The identification of novel drug targets for the treatment of ischemic stroke is currently an urgent challenge. Recent experimental findings have highlighted the neuroprotective potential of immunomodulatory strategies, based on polarization of myeloid cells toward non-inflammatory, beneficial phenotypes. Given the role of retinoid X receptors (RXR) in myeloid cells differentiation and polarization, here we have explored the neuroprotective potential of the RXR agonist bexarotene in mice subjected to focal cerebral ischemia. Acute administration of bexarotene significantly reduced blood brain barrier leakage, brain infarct damage and neurological deficit produced by transient middle cerebral artery occlusion in mice, without affecting cerebral blood flow. The rexinoid exerted neuroprotection with a wide time-window, being effective when administered up to 4.5h after the insult. The amelioration of histological outcome, as well as the ability of bexarotene to revert middle cerebral artery occlusion (MCAo)-induced spleen atrophy, was antagonised by BR1211, a pan-RXR antagonist, or by the selective peroxisome proliferator-activated receptor (PPAR)γ antagonist bisphenol A diglycidyl ether (BADGE), highlighting the involvement of the RXR/PPARγ heterodimer in the beneficial effects exerted by the drug. Immunofluorescence analysis revealed that bexarotene elevates Ym1-immunopositive N2 neutrophils both in the ipsilateral hemisphere and in the spleen of mice subjected to transient middle cerebral artery occlusion, pointing to a major role for peripheral neutrophil polarization in neuroprotection. Thus, our findings suggest that the RXR agonist bexarotene exerts peripheral immunomodulatory effects under ischemic conditions to be effectively repurposed for the acute therapy of ischemic stroke.
Collapse
Affiliation(s)
- Michelangelo Certo
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, CS, Italy
| | - Yasuyuki Endo
- Faculty of Pharmaceutical Sciences, Tohoku Pharmaceutical University, Sendai, Japan
| | - Kiminori Ohta
- Faculty of Pharmaceutical Sciences, Tohoku Pharmaceutical University, Sendai, Japan
| | - Shinobu Sakurada
- Faculty of Pharmaceutical Sciences, Tohoku Pharmaceutical University, Sendai, Japan
| | - Giacinto Bagetta
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, CS, Italy
| | - Diana Amantea
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, CS, Italy.
| |
Collapse
|
46
|
Low CF, Mariana NS, Maha A, Chee HY, Fatimah MY. Non-immune-related genes and signalling pathways in spleen of Vibrio parahaemolyticus-infected Epinephelus fuscoguttatus (Forskal). JOURNAL OF FISH DISEASES 2015; 38:761-764. [PMID: 25073481 DOI: 10.1111/jfd.12283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/19/2014] [Accepted: 05/22/2014] [Indexed: 06/03/2023]
Affiliation(s)
- C-F Low
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - N S Mariana
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - A Maha
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - H-Y Chee
- Department of Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - M Y Fatimah
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
47
|
Raiten DJ, Sakr Ashour FA, Ross AC, Meydani SN, Dawson HD, Stephensen CB, Brabin BJ, Suchdev PS, van Ommen B. Inflammation and Nutritional Science for Programs/Policies and Interpretation of Research Evidence (INSPIRE). J Nutr 2015; 145:1039S-1108S. [PMID: 25833893 PMCID: PMC4448820 DOI: 10.3945/jn.114.194571] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/08/2014] [Accepted: 10/29/2014] [Indexed: 02/06/2023] Open
Abstract
An increasing recognition has emerged of the complexities of the global health agenda—specifically, the collision of infections and noncommunicable diseases and the dual burden of over- and undernutrition. Of particular practical concern are both 1) the need for a better understanding of the bidirectional relations between nutritional status and the development and function of the immune and inflammatory response and 2) the specific impact of the inflammatory response on the selection, use, and interpretation of nutrient biomarkers. The goal of the Inflammation and Nutritional Science for Programs/Policies and Interpretation of Research Evidence (INSPIRE) is to provide guidance for those users represented by the global food and nutrition enterprise. These include researchers (bench and clinical), clinicians providing care/treatment, those developing and evaluating programs/interventions at scale, and those responsible for generating evidence-based policy. The INSPIRE process included convening 5 thematic working groups (WGs) charged with developing summary reports around the following issues: 1) basic overview of the interactions between nutrition, immune function, and the inflammatory response; 2) examination of the evidence regarding the impact of nutrition on immune function and inflammation; 3) evaluation of the impact of inflammation and clinical conditions (acute and chronic) on nutrition; 4) examination of existing and potential new approaches to account for the impact of inflammation on biomarker interpretation and use; and 5) the presentation of new approaches to the study of these relations. Each WG was tasked with synthesizing a summary of the evidence for each of these topics and delineating the remaining gaps in our knowledge. This review consists of a summary of the INSPIRE workshop and the WG deliberations.
Collapse
Affiliation(s)
- Daniel J Raiten
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD;
| | - Fayrouz A Sakr Ashour
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD
| | - A Catharine Ross
- Departments of Nutritional Sciences and Veterinary and Biomedical Science and Center for Molecular Immunology and Infectious Disease, Pennsylvania State University, University Park, PA
| | - Simin N Meydani
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Harry D Dawson
- USDA-Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, Beltsville, MD
| | - Charles B Stephensen
- Agricultural Research Service, Western Human Nutrition Research Center, USDA, Davis, CA
| | - Bernard J Brabin
- Child and Reproductive Health Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom; Global Child Health Group, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Parminder S Suchdev
- Department of Pediatrics and Global Health, Emory University, Atlanta, GA; and
| | | |
Collapse
|
48
|
Mallipattu SK, He JC. The beneficial role of retinoids in glomerular disease. Front Med (Lausanne) 2015; 2:16. [PMID: 25853135 PMCID: PMC4370041 DOI: 10.3389/fmed.2015.00016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 03/08/2015] [Indexed: 12/12/2022] Open
Abstract
The primary etiology of CKD is a direct consequence of initial dysfunction and injury of the glomerulus, the main filtration system. Podocytes are terminally differentiated epithelial cells in the glomerulus, whose major function is the maintenance of this renal filtration barrier. Podocyte injury is implicated in many glomerular diseases including focal segmental glomerular sclerosis and HIV-associated nephropathy. In many of these diseased conditions, the podocyte can either undergo dedifferentiation and proliferation, apoptosis, or cell detachment. Regardless of the initial type of injury, the podocyte ultimately loses its functional capacity to maintain the glomerular filtration barrier. Significant injury resulting in a loss of the podocytes and failure to maintain the renal filtration barrier contributes to progressive kidney disease. Consequently, therapies that prevent podocyte injury and promote their regeneration will have a major clinical impact on glomerular disease. Retinoic acid (RA), which is a derivative of vitamin A, has many cellular functions including induction of cell differentiation, regulation of apoptosis, and inhibition of inflammation and proliferation. RA is required for kidney development and is essential for cellular differentiation in the setting of podocyte injury. The mechanism by which RA directs its beneficial effects is multifactorial, ranging from its anti-inflammatory and anti-fibrotic effects to a direct effect of upregulating podocyte differentiation markers in the podocyte. The focus of this review is to provide an overview of RA in kidney development and glomerular disease. We also highlight the key mechanism(s) by which RA restores podocyte differentiation markers and ameliorates glomerular disease.
Collapse
Affiliation(s)
- Sandeep K Mallipattu
- Division of Nephrology, Department of Medicine, Stony Brook University , New York, NY , USA
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai , New York, NY , USA ; Renal Section, James J. Peters VA Medical Center , New York, NY , USA
| |
Collapse
|
49
|
Ma F, Liu SY, Razani B, Arora N, Li B, Kagechika H, Tontonoz P, Núñez V, Ricote M, Cheng G. Retinoid X receptor α attenuates host antiviral response by suppressing type I interferon. Nat Commun 2014; 5:5494. [PMID: 25417649 PMCID: PMC4380327 DOI: 10.1038/ncomms6494] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/07/2014] [Indexed: 12/23/2022] Open
Abstract
The retinoid X receptor α (RXRα), a key nuclear receptor in metabolic processes, is downregulated during host antiviral response. However, the roles of RXRα in host antiviral response are unknown. Here we show that RXRα overexpression or ligand activation increases host susceptibility to viral infections in vitro and in vivo, while Rxra-/- or antagonist treatment reduces infection by the same viruses. Consistent with these functional studies, ligand activation of RXR inhibits the expression of antiviral genes including type I interferon (IFN) and Rxra-/- macrophages produce more IFNβ than WT macrophages in response to polyI:C stimulation. Further results indicate that ligand activation of RXR suppresses the nuclear translocation of β-catenin, a co-activator of IFNβ enhanceosome. Thus, our studies have uncovered a novel RXR-dependent innate immune regulatory pathway, suggesting that the downregulation of RXR expression or RXR antagonist treatment benefits host antiviral response, whereas RXR agonist treatment may increase the risk of viral infections.
Collapse
Affiliation(s)
- Feng Ma
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, USA
| | - Su-Yang Liu
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, USA
| | - Bahram Razani
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, USA
| | - Neda Arora
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, USA
| | - Bing Li
- Department of Biological Chemistry, University of California, Los Angeles, California 90095, USA
| | - Hiroyuki Kagechika
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Peter Tontonoz
- 1] Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA [2] Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California 90095, USA
| | - Vanessa Núñez
- Cardiovascular Development and Repair Department, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | - Mercedes Ricote
- Cardiovascular Development and Repair Department, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | - Genhong Cheng
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
50
|
Zhu L, Zhao Q, Yang T, Ding W, Zhao Y. Cellular metabolism and macrophage functional polarization. Int Rev Immunol 2014; 34:82-100. [PMID: 25340307 DOI: 10.3109/08830185.2014.969421] [Citation(s) in RCA: 267] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Macrophages are a functionally heterogeneous cell population that is mainly shaped by a variety of microenvironmental stimuli. Interferon γ (IFN-γ), interleukin-1β (IL-1β), and lipopolysaccharide (LPS) induce a classical activation of macrophages (M1), whereas IL-4 and IL-13 induce an alternative activation program in macrophages (M2). Reprogramming of intracellular metabolisms is required for the proper polarization and functions of activated macrophages. Similar to the Warburg effect observed in tumor cells, M1 macrophages increase glucose consumption and lactate release and decreased oxygen consumption rate. In comparison, M2 macrophages mainly employ oxidative glucose metabolism pathways. In addition, fatty acids, vitamins, and iron metabolisms are also related to macrophage polarization. However, detailed metabolic pathways involved in macrophages have remained elusive. Understanding the bidirectional interactions between cellular metabolism and macrophage functions in physiological and pathological situations and the regulatory pathways involved may offer novel therapies for macrophage-associated diseases.
Collapse
Affiliation(s)
- Linnan Zhu
- 1Transplantation Biology Research Division, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | |
Collapse
|