1
|
Sun M, Ye C, Wang Z, Gao X, Feng S, Hu T, Mu W. Transcriptome, histology, and enzyme activities analysis of liver in Phoxinus lagowskii to the low temperature stress and recovery. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101317. [PMID: 39241494 DOI: 10.1016/j.cbd.2024.101317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024]
Abstract
Assessing the response and resilience of fish to low temperatures over different time scales can provide valuable insights into their mechanisms of adaptation to cold conditions. Farmed Amur minnows (Phoxinus lagowskii) frequently encounter low temperatures, especially during winter. However, the specific responses of P. lagowskii to low-temperature stress remain largely unexplored. In this study, we examined serum glucose and cortisol levels, histological changes, enzymes associated with phosphate and carbohydrate metabolism, triglyceride levels, and liver transcriptomics under various conditions: control (CK), short-term cold exposure (6 days, SC), prolonged cold exposure (14 days, PC), and recovery (RY) from cold exposure at 2 °C. Liver vacuolation was observed during short-term cold exposure. Additionally, we analyzed the enzymatic activity related to carbohydrate and lipid metabolism in serum and liver. Liver transcriptomic data revealed that the PPAR signaling pathway and autophagy-related genes were enriched during short-term cold exposure. Carbohydrate metabolism-related pathways, including the AMPK and MAPK signaling pathways, were significantly enriched after prolonged cold exposure. Metabolic pathways such as fat digestion and absorption, glycine, serine, and threonine metabolism, and arginine and proline metabolism were significantly enriched in the recovery group. Rapid warming after prolonged cold stress allowed P. lagowskii to recover quickly. These findings suggest that P. lagowskii has a strong adaptive capacity for energy metabolism during prolonged cold exposure and the ability to recover rapidly from cold stress. A comprehensive examination of the histological, physiological, biochemical, and molecular responses of P. lagowskii to low temperatures is crucial for developing effective strategies for cultivating this species in challenging environments.
Collapse
Affiliation(s)
- Mingyang Sun
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Cunrun Ye
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Zhen Wang
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Xinran Gao
- China Medical University, Shenyang 110122, China
| | - Shibo Feng
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Tingting Hu
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Weijie Mu
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
2
|
Li YX, Yan Q, Liu TW, Wang JX, Zhao XF. Lipases are differentially regulated by hormones to maintain free fatty acid homeostasis for insect brain development. BMC Biol 2024; 22:171. [PMID: 39135168 PMCID: PMC11321213 DOI: 10.1186/s12915-024-01973-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Free fatty acids (FFAs) play vital roles as energy sources and substrates in organisms; however, the molecular mechanism regulating the homeostasis of FFA levels in various circumstances, such as feeding and nonfeeding stages, is not fully clarified. Holometabolous insects digest dietary triglycerides (TAGs) during larval feeding stages and degrade stored TAGs in the fat body during metamorphosis after feeding cessation, which presents a suitable model for this study. RESULTS This study reported that two lipases are differentially regulated by hormones to maintain the homeostasis of FFA levels during the feeding and nonfeeding stages using the lepidopteran insect cotton bollworm Helicoverpa armigera as a model. Lipase member H-A-like (Lha-like), related to human pancreatic lipase (PTL), was abundantly expressed in the midgut during the feeding stage, while the monoacylglycerol lipase ABHD12-like (Abhd12-like), related to human monoacylglycerol lipase (MGL), was abundantly expressed in the fat body during the nonfeeding stage. Lha-like was upregulated by juvenile hormone (JH) via the JH intracellular receptor methoprene-tolerant 1 (MET1), and Abhd12-like was upregulated by 20-hydroxyecdysone (20E) via forkhead box O (FOXO) transcription factor. Knockdown of Lha-like decreased FFA levels in the hemolymph and reduced TAG levels in the fat body. Moreover, lipid droplets (LDs) were small, the brain morphology was abnormal, the size of the brain was small, and the larvae showed the phenotype of delayed pupation, small pupae, and delayed tissue remodeling. Knockdown of Abhd12-like decreased FFA levels in the hemolymph; however, TAG levels increased in the fat body, and LDs remained large. The development of the brain was arrested at the larval stage, and the larvae showed a delayed pupation phenotype and delayed tissue remodeling. CONCLUSIONS The differential regulation of lipases expression by different hormones determines FFAs homeostasis and different TAG levels in the fat body during the feeding larval growth and nonfeeding stages of metamorphosis in the insect. The homeostasis of FFAs supports insect growth, brain development, and metamorphosis.
Collapse
Affiliation(s)
- Yan-Xue Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Qiao Yan
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Tian-Wen Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
3
|
Taheri R, Mokhtari Y, Yousefi AM, Bashash D. The PI3K/Akt signaling axis and type 2 diabetes mellitus (T2DM): From mechanistic insights into possible therapeutic targets. Cell Biol Int 2024; 48:1049-1068. [PMID: 38812089 DOI: 10.1002/cbin.12189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 02/03/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is an immensely debilitating chronic disease that progressively undermines the well-being of various bodily organs and, indeed, most patients succumb to the disease due to post-T2DM complications. Although there is evidence supporting the activation of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway by insulin, which is essential in regulating glucose metabolism and insulin resistance, the significance of this pathway in T2DM has only been explored in a few studies. The current review aims to unravel the mechanisms by which different classes of PI3Ks control the metabolism of glucose; and also to discuss the original data obtained from international research laboratories on this topic. We also summarized the role of the PI3K/Akt signaling axis in target tissues spanning from the skeletal muscle to the adipose tissue and liver. Furthermore, inquiries regarding the impact of disrupting this axis on insulin function and the development of insulin resistance have been addressed. We also provide a general overview of the association of impaired PI3K/Akt signaling pathways in the pathogenesis of the most prevalent diabetes-related complications. The last section provides a special focus on the therapeutic potential of this axis by outlining the latest advances in active compounds that alleviate diabetes via modulation of the PI3K/Akt pathway. Finally, we comment on the future research aspects in which the field of T2DM therapies using PI3K modulators might be developed.
Collapse
Affiliation(s)
- Rana Taheri
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yazdan Mokhtari
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Park S, Cha HN, Shin MG, Park S, Kim Y, Kim MS, Shin KH, Thoudam T, Lee EJ, Wolfe RR, Dan J, Koh JH, Kim IY, Choi I, Lee IK, Sung HK, Park SY. Inhibitory Regulation of FOXO1 in PPARδ Expression Drives Mitochondrial Dysfunction and Insulin Resistance. Diabetes 2024; 73:1084-1098. [PMID: 38656552 DOI: 10.2337/db23-0432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
Forkhead box O1 (FOXO1) regulates muscle growth, but the metabolic role of FOXO1 in skeletal muscle and its mechanisms remain unclear. To explore the metabolic role of FOXO1 in skeletal muscle, we generated skeletal muscle-specific Foxo1 inducible knockout (mFOXO1 iKO) mice and fed them a high-fat diet to induce obesity. We measured insulin sensitivity, fatty acid oxidation, mitochondrial function, and exercise capacity in obese mFOXO1 iKO mice and assessed the correlation between FOXO1 and mitochondria-related protein in the skeletal muscle of patients with diabetes. Obese mFOXO1 iKO mice exhibited improved mitochondrial respiratory capacity, which was followed by attenuated insulin resistance, enhanced fatty acid oxidation, and improved skeletal muscle exercise capacity. Transcriptional inhibition of FOXO1 in peroxisome proliferator-activated receptor δ (PPARδ) expression was confirmed in skeletal muscle, and deletion of PPARδ abolished the beneficial effects of FOXO1 deficiency. FOXO1 protein levels were higher in the skeletal muscle of patients with diabetes and negatively correlated with PPARδ and electron transport chain protein levels. These findings highlight FOXO1 as a new repressor in PPARδ gene expression in skeletal muscle and suggest that FOXO1 links insulin resistance and mitochondrial dysfunction in skeletal muscle via PPARδ. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Soyoung Park
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
- Senotherapy-Based Metabolic Diseases Control Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Hye-Na Cha
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
- Senotherapy-Based Metabolic Diseases Control Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Min-Gyeong Shin
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Sanghee Park
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Yeongmin Kim
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology, Gachon University, Incheon, Republic of Korea
| | - Min-Seob Kim
- Department of Fundamental Environment Research, Environmental Measurement and Analysis Center, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Kyung-Hoon Shin
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan, Republic of Korea
| | - Themis Thoudam
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Robert R Wolfe
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Jinmyoung Dan
- Department of Orthopedic Surgery, College of Medicine, CHA University, Gumi, Republic of Korea
| | - Jin-Ho Koh
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju, Republic of Korea
| | - Il-Young Kim
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - In-Kyu Lee
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Hoon-Ki Sung
- The Hospital for Sick Children Research Institute & Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - So-Young Park
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
- Senotherapy-Based Metabolic Diseases Control Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| |
Collapse
|
5
|
Ding L, Huwyler F, Long F, Yang W, Binz J, Wernlé K, Pfister M, Klug M, Balaz M, Ukropcova B, Ukropec J, Wu C, Wang T, Gao M, Clavien PA, Dutkowski P, Tibbitt MW, Wolfrum C. Glucose controls lipolysis through Golgi PtdIns4P-mediated regulation of ATGL. Nat Cell Biol 2024; 26:552-566. [PMID: 38561547 PMCID: PMC11021197 DOI: 10.1038/s41556-024-01386-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/23/2024] [Indexed: 04/04/2024]
Abstract
Metabolic crosstalk of the major nutrients glucose, amino acids and fatty acids (FAs) ensures systemic metabolic homeostasis. The coordination between the supply of glucose and FAs to meet various physiological demands is especially important as improper nutrient levels lead to metabolic disorders, such as diabetes and metabolic dysfunction-associated steatohepatitis (MASH). In response to the oscillations in blood glucose levels, lipolysis is thought to be mainly regulated hormonally to control FA liberation from lipid droplets by insulin, catecholamine and glucagon. However, whether general cell-intrinsic mechanisms exist to directly modulate lipolysis via glucose sensing remains largely unknown. Here we report the identification of such an intrinsic mechanism, which involves Golgi PtdIns4P-mediated regulation of adipose triglyceride lipase (ATGL)-driven lipolysis via intracellular glucose sensing. Mechanistically, depletion of intracellular glucose results in lower Golgi PtdIns4P levels, and thus reduced assembly of the E3 ligase complex CUL7FBXW8 in the Golgi apparatus. Decreased levels of the E3 ligase complex lead to reduced polyubiquitylation of ATGL in the Golgi and enhancement of ATGL-driven lipolysis. This cell-intrinsic mechanism regulates both the pool of intracellular FAs and their extracellular release to meet physiological demands during fasting and glucose deprivation. Moreover, genetic and pharmacological manipulation of the Golgi PtdIns4P-CUL7FBXW8-ATGL axis in mouse models of simple hepatic steatosis and MASH, as well as during ex vivo perfusion of a human steatotic liver graft leads to the amelioration of steatosis, suggesting that this pathway might be a promising target for metabolic dysfunction-associated steatotic liver disease and possibly MASH.
Collapse
Affiliation(s)
- Lianggong Ding
- Institute of Food, Nutrition and Health, ETH Zürich, Schwerzenbach, Switzerland
| | - Florian Huwyler
- Macromolecular Engineering Laboratory, Institute of Energy and Process Engineering, ETH Zürich, Zurich, Switzerland
| | - Fen Long
- Institute of Food, Nutrition and Health, ETH Zürich, Schwerzenbach, Switzerland
| | - Wu Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Jonas Binz
- Macromolecular Engineering Laboratory, Institute of Energy and Process Engineering, ETH Zürich, Zurich, Switzerland
| | - Kendra Wernlé
- Department of Surgery and Transplantation, University of Zurich, Zurich, Switzerland
- Wyss Zurich Translational Center, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Matthias Pfister
- Department of Surgery and Transplantation, University of Zurich, Zurich, Switzerland
- Wyss Zurich Translational Center, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Manuel Klug
- Institute of Food, Nutrition and Health, ETH Zürich, Schwerzenbach, Switzerland
| | - Miroslav Balaz
- Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Barbara Ukropcova
- Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jozef Ukropec
- Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Chunyan Wu
- Institute of Food, Nutrition and Health, ETH Zürich, Schwerzenbach, Switzerland
| | - Tongtong Wang
- Institute of Food, Nutrition and Health, ETH Zürich, Schwerzenbach, Switzerland
| | - Min Gao
- Institute of Food, Nutrition and Health, ETH Zürich, Schwerzenbach, Switzerland
- Department of Pharmacy, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Pierre-Alain Clavien
- Department of Surgery and Transplantation, University of Zurich, Zurich, Switzerland
- Wyss Zurich Translational Center, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Philipp Dutkowski
- Department of Surgery and Transplantation, University of Zurich, Zurich, Switzerland
| | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, Institute of Energy and Process Engineering, ETH Zürich, Zurich, Switzerland
- Wyss Zurich Translational Center, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, ETH Zürich, Schwerzenbach, Switzerland.
| |
Collapse
|
6
|
Munoz M, Solis C, McCann M, Park J, Rafael-Clyke K, Chowdhury SAK, Jiang Y, Rosas PC. P21-activated kinase-1 signaling is required to preserve adipose tissue homeostasis and cardiac function. Mol Cell Biochem 2024:10.1007/s11010-024-04968-4. [PMID: 38430300 PMCID: PMC11371416 DOI: 10.1007/s11010-024-04968-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/13/2024] [Indexed: 03/03/2024]
Abstract
While P21-activated kinase-1 (PAK1) has been extensively studied in relation to cardiovascular health and glucose metabolism, its roles within adipose tissue and cardiometabolic diseases are less understood. In this study, we explored the effects of PAK1 deletion on energy balance, adipose tissue homeostasis, and cardiac function utilizing a whole-body PAK1 knockout (PAK1-/-) mouse model. Our findings revealed that body weight differences between PAK1-/- and WT mice emerged at 9 weeks of age, with further increases observed at 12 weeks. Furthermore, PAK1-/- mice displayed increased fat mass and decreased lean mass at 12 weeks, indicating a shift towards adiposity. In conjunction with the increased body weight, PAK1-/- mice had increased food intake and reduced energy expenditure. At a mechanistic level, PAK1 deletion boosted the expression of lipogenic markers while diminishing thermogenic markers expression in adipose tissues, contributing to reduced energy expenditure and the overall obesogenic phenotype. Moreover, our findings highlighted a significant impact on cardiac function following PAK1 deletion, including alterations in calcium kinetics and compromised systolic and lusitropy functions. In summary, our study emphasizes the significant role of PAK1 in weight regulation and cardiac function, enriching our comprehension of heart health and metabolism. These findings could potentially facilitate the identification of novel therapeutic targets in cardiometabolic diseases.
Collapse
Affiliation(s)
- Marcos Munoz
- Divison of Endocrinology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Christopher Solis
- Department of Health, Nutrition & Food Sciences, Florida State University, Tallahassee, FL, USA
| | - Maximilian McCann
- Department of Ophthalmology & Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jooman Park
- Department of Physiology & Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Koreena Rafael-Clyke
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Shamim A K Chowdhury
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Yuwei Jiang
- Department of Physiology & Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Paola C Rosas
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
7
|
Ahi EP, Verta JP, Kurko J, Ruokolainen A, Singh P, Debes PV, Erkinaro J, Primmer CR. Gene co-expression patterns in Atlantic salmon adipose tissue provide a molecular link among seasonal changes, energy balance and age at maturity. Mol Ecol 2024:e17313. [PMID: 38429895 DOI: 10.1111/mec.17313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
Sexual maturation in many fishes requires a major physiological change that involves a rapid transition between energy storage and usage. In Atlantic salmon, this transition for the initiation of maturation is tightly controlled by seasonality and requires a high-energy status. Lipid metabolism is at the heart of this transition since lipids are the main energy storing molecules. The balance between lipogenesis (lipid accumulation) and lipolysis (lipid use) determines energy status transitions. A genomic region containing a transcription co-factor of the Hippo pathway, vgll3, is the main determinant of maturation timing in Atlantic salmon. Interestingly, vgll3 acts as an inhibitor of adipogenesis in mice and its genotypes are potentially associated with seasonal heterochrony in lipid storage and usage in juvenile Atlantic salmon. Here, we explored changes in expression of more than 300 genes directly involved in the processes of adipogenesis, lipogenesis and lipolysis, as well as the Hippo pathway in the adipose tissue of immature and mature Atlantic salmon with distinct vgll3 genotypes. We found molecular evidence consistent with a scenario in which immature males with different vgll3 genotypes exhibit contrasting seasonal dynamics in their lipid profiles. We also identified components of the Hippo signalling pathway as potential major drivers of vgll3 genotype-specific differences in adipose tissue gene expression. This study demonstrates the importance of adipose gene expression patterns for directly linking environmental changes with energy balance and age at maturity through genetic factors bridging lipid metabolism, seasonality and sexual maturation.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Jukka-Pekka Verta
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Johanna Kurko
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Annukka Ruokolainen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Pooja Singh
- Department of Aquatic Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Center for Ecology, Evolution & Biogeochemistry, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Kastanienbaum, Switzerland
| | - Paul Vincent Debes
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Department of Aquaculture and Fish Biology, Hólar University, Sauoarkrokur, Iceland
| | | | - Craig R Primmer
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Wang B, Hou L, Yang W, Men X, Qi K, Xu Z, Wu W. Construction of a co-expression network affecting intramuscular fat content and meat color redness based on transcriptome analysis. Front Genet 2024; 15:1351429. [PMID: 38415055 PMCID: PMC10897757 DOI: 10.3389/fgene.2024.1351429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/26/2024] [Indexed: 02/29/2024] Open
Abstract
Introduction: Intramuscular fat content (IFC) and meat color are vital indicators of pork quality. Methods: A significant positive correlation between IFC and redness of meat color (CIE a* value) indicates that these two traits are likely to be regulated by shared molecular pathways.To identify candidate genes, hub genes, and signaling pathways that regulate these two traits, we measured the IFC and CIE a* value in 147 hybrid pigs, and selected individuls with extreme phenotypes for transcriptome analysis. Results: The results revealed 485 and 394 overlapping differentially expressed genes (DEGs), using the DESeq2, limma, and edgeR packages, affecting the IFC and CIE a* value, respectively. Weighted gene co-expression network analysis (WGCNA) identified four modules significantly correlated with the IFC and CIE a* value. Moreover, we integrated functional enrichment analysis results based on DEGs, GSEA, and WGCNA conditions to identify candidate genes, and identified 47 and 53 candidate genes affecting the IFC and CIE a* value, respectively. The protein protein interaction (PPI) network analysis of candidate genes showed that 5 and 13 hub genes affect the IFC and CIE a* value, respectively. These genes mainly participate in various pathways related to lipid metabolism and redox reactions. Notably, four crucial hub genes (MYC, SOX9, CEBPB, and PPAGRC1A) were shared for these two traits. Discussion and conclusion: After functional annotation of these four hub genes, we hypothesized that the SOX9/CEBPB/PPARGC1A axis could co-regulate lipid metabolism and the myoglobin redox response. Further research on these hub genes, especially the SOX9/CEBPB/PPARGC1A axis, will help to understand the molecular mechanism of the co-regulation of the IFC and CIE a* value, which will provide a theoretical basis for improving pork quality.
Collapse
Affiliation(s)
- Binbin Wang
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Liming Hou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Wen Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiaoming Men
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Keke Qi
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ziwei Xu
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wangjun Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
9
|
van der Weijden VA, Stötzel M, Iyer DP, Fauler B, Gralinska E, Shahraz M, Meierhofer D, Vingron M, Rulands S, Alexandrov T, Mielke T, Bulut-Karslioglu A. FOXO1-mediated lipid metabolism maintains mammalian embryos in dormancy. Nat Cell Biol 2024; 26:181-193. [PMID: 38177284 PMCID: PMC10866708 DOI: 10.1038/s41556-023-01325-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/29/2023] [Indexed: 01/06/2024]
Abstract
Mammalian developmental timing is adjustable in vivo by preserving pre-implantation embryos in a dormant state called diapause. Inhibition of the growth regulator mTOR (mTORi) pauses mouse development in vitro, yet how embryonic dormancy is maintained is not known. Here we show that mouse embryos in diapause are sustained by using lipids as primary energy source. In vitro, supplementation of embryos with the metabolite L-carnitine balances lipid consumption, puts the embryos in deeper dormancy and boosts embryo longevity. We identify FOXO1 as an essential regulator of the energy balance in dormant embryos and propose, through meta-analyses of dormant cell signatures, that it may be a common regulator of dormancy across adult tissues. Our results lift a constraint on in vitro embryo survival and suggest that lipid metabolism may be a critical metabolic transition relevant for longevity and stem cell function across tissues.
Collapse
Affiliation(s)
- Vera A van der Weijden
- Stem Cell Chromatin Group, Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Maximilian Stötzel
- Stem Cell Chromatin Group, Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Dhanur P Iyer
- Stem Cell Chromatin Group, Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Beatrix Fauler
- Microscopy and Cryo-Electron Microscopy Facility, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Elzbieta Gralinska
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Mohammed Shahraz
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany
| | - David Meierhofer
- Mass Spectrometry Facility, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Martin Vingron
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Steffen Rulands
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Theodore Alexandrov
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Thorsten Mielke
- Microscopy and Cryo-Electron Microscopy Facility, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Aydan Bulut-Karslioglu
- Stem Cell Chromatin Group, Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
10
|
Qin H, Han Z, Zhang W, He R, Zeng S, Qi C, Zhou S, Chen Y. CTCF modulates adipocyte lipolysis via directly regulating the expression of Beclin 1 with the cooperation of PPARγ. Cell Signal 2024; 113:110968. [PMID: 37951486 DOI: 10.1016/j.cellsig.2023.110968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/25/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Dysregulated lipolysis is a risk factor contributing to metabolic diseases and autophagy is known to be important in lipolysis. CTCF is involved in diverse cellular processes including adipogenesis, yet its role in lipolysis or autophagy remains unknown. We identified lipolytic genes were downregulated in CTCF knockdown adipocytes based on the RNA-seq data. Further validation showed that CTCF knockdown restrained adipocyte lipolysis while overexpression of CTCF had opposite effects. Similarly, overexpression and knockdown studies demonstrated that CTCF was a positive regulator of autophagy. Treatment with autophagy inducer relieved the suppression of lipolysis caused by CTCF knockdown, while autophagy inhibitor treatment alleviated lipolysis stimulated by CTCF overexpression, indicating that CTCF regulates adipocyte lipolysis through autophagy. Mechanistically, CTCF interacted with PPARγ to coordinately enhanced lipolytic capacity. Data of chip-seq, chip-qPCR and further experiments confirmed that CTCF and PPARγ separately stimulated transactivation of autophagy regulatory protein Beclin 1, while co-expression of the two displayed synergistic effects to regulate autophagy flux. Expectedly, overexpression of Beclin 1 abolished the blockage of lipolysis and autophagy caused by CTCF knockdown. Collectively, CTCF cooperates with PPARγ to regulate autophagy via directly modulating BECLIN 1 transcription, thereby leading to increased adipocyte lipolysis.
Collapse
Affiliation(s)
- Haorui Qin
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China; Department of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, PR China
| | - Zhiqiang Han
- Department of Plastic and Aesthetic Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Wenkai Zhang
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Rongquan He
- Department of Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Shuhua Zeng
- Department of Infectious Diseases, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, PR China
| | - Chunhui Qi
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China; Department of Infectious Diseases, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, PR China
| | - Shuting Zhou
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China; Department of Infectious Diseases, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, PR China
| | - Yingchun Chen
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China.
| |
Collapse
|
11
|
Yamagata K, Mizumoto T, Yoshizawa T. The Emerging Role of SIRT7 in Glucose and Lipid Metabolism. Cells 2023; 13:48. [PMID: 38201252 PMCID: PMC10778536 DOI: 10.3390/cells13010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/13/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
Sirtuins (SIRT1-7 in mammals) are a family of NAD+-dependent lysine deacetylases and deacylases that regulate diverse biological processes, including metabolism, stress responses, and aging. SIRT7 is the least well-studied member of the sirtuins, but accumulating evidence has shown that SIRT7 plays critical roles in the regulation of glucose and lipid metabolism by modulating many target proteins in white adipose tissue, brown adipose tissue, and liver tissue. This review focuses on the emerging roles of SIRT7 in glucose and lipid metabolism in comparison with SIRT1 and SIRT6. We also discuss the possible implications of SIRT7 inhibition in the treatment of metabolic diseases such as type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Kazuya Yamagata
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (T.M.); (T.Y.)
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Tomoya Mizumoto
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (T.M.); (T.Y.)
| | - Tatsuya Yoshizawa
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (T.M.); (T.Y.)
| |
Collapse
|
12
|
Niveta JPS, John CM, Arockiasamy S. Monoamine oxidase mediated oxidative stress: a potential molecular and biochemical crux in the pathogenesis of obesity. Mol Biol Rep 2023; 51:29. [PMID: 38142252 DOI: 10.1007/s11033-023-08938-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/14/2023] [Indexed: 12/25/2023]
Abstract
Obesity has become a global health concern with an increasing prevalence as years pass by but the researchers have not come to a consensus on the exact pathophysiological mechanism underlying this disease. In the past three decades, Monoamine Oxidases (MAO), has come into limelight for a possible involvement in orchestrating the genesis of obesity but the exact mechanism is not well elucidated. MAO is essentially an enzyme involved in the catabolism of neurotransmitters and other biogenic amines to form a corresponding aldehyde, hydrogen peroxide (H2O2) and ammonia. This review aims to highlight the repercussions of MAO's catabolic activity on the redox balance, carbohydrate metabolism and lipid metabolism of adipocytes which ultimately leads to obesity. The H2O2 produced by these enzymes seems to be the culprit causing oxidative stress in pre-adipocytes and goes on to mimic insulin's activity independent of its presence via the Protein Kinase B Pathway facilitating glucose influx. The H2O2 activates Sterol regulatory-element binding protein-1c and peroxisome proliferator activated receptor gamma crucial for encoding enzymes like fatty acid synthase, acetyl CoA carboxylase 1, Adenosine triphosphate-citrate lyase, phosphoenol pyruvate carboxykinase etc., which helps promoting lipogenesis at the same time inhibits lipolysis. More reactive oxygen species production occurs via NADPH Oxidases enzymes and is also able activate Nuclear Factor kappa B leading to inflammation in the adipocyte microenvironment. This chronic inflammation is the seed for insulin resistance.
Collapse
Affiliation(s)
- J P Shirley Niveta
- Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Cordelia Mano John
- Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | | |
Collapse
|
13
|
Song Y, Wei D, Raza SHA, Zhao Y, Jiang C, Song X, Wu H, Wang X, Luoreng Z, Ma Y. Research progress of intramuscular fat formation based on co-culture. Anim Biotechnol 2023; 34:3216-3236. [PMID: 36200856 DOI: 10.1080/10495398.2022.2127410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Intramuscular fat (IMF) is closely related to the meat quality of livestock and poultry. As a new cell culture technique in vitro, cell co-culture has been gradually applied to the related research of IMF formation because it can simulate the changes of microenvironment in vivo during the process of IMF cell formation. In the co-culture model, in addition to studying the effects of skeletal muscle cells on the proliferation and differentiation of IMF, we can also consider the role of many secretion factors in the formation of IMF, thus making the cell research in vitro closer to the real level in vivo. This paper reviewed the generation and origin of IMF, summarized the existing co-culture methods and systems, and discussed the advantages and disadvantages of each method as well as the challenges faced in the establishment of the system, with emphasis on the current status of research on the formation of IMF for human and animal based on co-culture technology.
Collapse
Affiliation(s)
- Yaping Song
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | - Dawei Wei
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | | | - Yiang Zhao
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | - Chao Jiang
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | - Xiaoyu Song
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | - Hao Wu
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | - Xingping Wang
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | - Zhuoma Luoreng
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | - Yun Ma
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| |
Collapse
|
14
|
Song Y, Zhang J, Jiang C, Song X, Wu H, Zhang J, Raza SHA, Zhang L, Zhang L, Cai B, Wang X, Reng ZL, Ma Y, Wei D. FOXO1 regulates the formation of bovine fat by targeting CD36 and STEAP4. Int J Biol Macromol 2023; 248:126025. [PMID: 37506793 DOI: 10.1016/j.ijbiomac.2023.126025] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Intramuscular fat content is closely related to the quality of beef, where the forkhead box protein O1 (FOXO1) is involved in adipocyte differentiation and lipid metabolism, but the specific mechanism of its involvement is still unclear. In this study, interfering with FOXO1 promoted the G1/S transformation of bovine adipocytes by enhancing the expression of proliferation marker genes PCNA, CDK1, CDK2, CCNA2, CCNB1, and CCNE2, thereby positively regulating the proliferation of bovine adipocytes. Additionally, interfering with FOXO1 negatively regulated the expression of adipogenic differentiation marker genes PPARG and CEBPA, as well as lipid anabolism marker genes ACC, FASN, SCD1, SREBP1, FABP4, ACSL1, LPL, and DGAT1, thus reducing triglyceride (TG) content and inhibiting the generation of lipid droplets in bovine adipocytes. A combination of transcriptomic and metabolomics analyses revealed that FOXO1 could regulate the lipogenesis of cattle by influencing the AMPK and PI3K/AKT pathways. Importantly, chromatin immunoprecipitation (ChIP) and site-directed mutagenesis revealed that FOXO1 could regulate bovine lipogenesis by binding to the promoter regions of the CD36 and STEAP4 genes and affecting their transcriptional activities. These results provide a foundation for studying the role and molecular mechanism of FOXO1 in the bovine adipogenesis.
Collapse
Affiliation(s)
- Yaping Song
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Jiupan Zhang
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750021, China
| | - Chao Jiang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Xiaoyu Song
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Hao Wu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Juan Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Sayed Haidar Abbas Raza
- Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Le Zhang
- Institute of Physical Education, Yan'an University, Yan'an 716000, China
| | - Lingkai Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Bei Cai
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Xingping Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Zhuoma Luo Reng
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Yun Ma
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Dawei Wei
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China.
| |
Collapse
|
15
|
Chen M, Wang K, Han Y, Yan S, Yuan H, Liu Q, Li L, Li N, Zhu H, Lu D, Wang K, Liu F, Luo D, Zhang Y, Jiang J, Li D, Zhang L, Ji H, Zhou H, Chen Y, Qin J, Gao D. Identification of XAF1 as an endogenous AKT inhibitor. Cell Rep 2023; 42:112690. [PMID: 37384528 DOI: 10.1016/j.celrep.2023.112690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/06/2023] [Accepted: 06/08/2023] [Indexed: 07/01/2023] Open
Abstract
AKT kinase is a key regulator in cell metabolism and survival, and its activation is strictly modulated. Herein, we identify XAF1 (XIAP-associated factor) as a direct interacting protein of AKT1, which strongly binds the N-terminal region of AKT1 to block its K63-linked poly-ubiquitination and subsequent activation. Consistently, Xaf1 knockout causes AKT activation in mouse muscle and fat tissues and reduces body weight gain and insulin resistance induced by high-fat diet. Pathologically, XAF1 expression is low and anti-correlated with the phosphorylated p-T308-AKT signal in prostate cancer samples, and Xaf1 knockout stimulates the p-T308-AKT signal to accelerate spontaneous prostate tumorigenesis in mice with Pten heterozygous loss. And ectopic expression of wild-type XAF1, but not the cancer-derived P277L mutant, inhibits orthotopic tumorigenesis. We further identify Forkhead box O 1 (FOXO1) as a transcriptional regulator of XAF1, thus forming a negative feedback loop between AKT1 and XAF1. These results reveal an important intrinsic regulatory mechanism of AKT signaling.
Collapse
Affiliation(s)
- Min Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kangjunjie Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Ying Han
- University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China; CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Shukun Yan
- University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China; State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, National Center for Protein Science Shanghai, 333 Haike Road, Shanghai 201210, China
| | - Huairui Yuan
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Qiuli Liu
- Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Long Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ni Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Hongwen Zhu
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Dayun Lu
- University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China; Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Kaihua Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China
| | - Fen Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China
| | - Dakui Luo
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Yuxue Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China
| | - Jun Jiang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Lei Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China; School of Life Science and Technology, Shanghai Tech University, 100 Haike Road, Shanghai 201210, China
| | - Hu Zhou
- University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China; Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yong Chen
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China; State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, National Center for Protein Science Shanghai, 333 Haike Road, Shanghai 201210, China; School of Life Science and Technology, Shanghai Tech University, 100 Haike Road, Shanghai 201210, China.
| | - Jun Qin
- University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China; CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China.
| | - Daming Gao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
16
|
Wang C, Hucik B, Sarr O, Brown LH, Wells KRD, Brunt KR, Nakamura MT, Harasim-Symbor E, Chabowski A, Mutch DM. Delta-6 desaturase (Fads2) deficiency alters triacylglycerol/fatty acid cycling in murine white adipose tissue. J Lipid Res 2023; 64:100376. [PMID: 37085033 PMCID: PMC10323924 DOI: 10.1016/j.jlr.2023.100376] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/23/2023] Open
Abstract
The Δ-6 desaturase (D6D) enzyme is not only critical for the synthesis of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from α-linolenic acid (ALA), but recent evidence suggests that it also plays a role in adipocyte lipid metabolism and body weight; however, the mechanisms remain largely unexplored. The goal of this study was to investigate if a D6D deficiency would inhibit triacylglycerol storage and alter lipolytic and lipogenic pathways in mouse white adipose tissue (WAT) depots due to a disruption in EPA and DHA production. Male C57BL/6J D6D knockout (KO) and wild-type (WT) mice were fed either a 7% w/w lard or flax (ALA rich) diet for 21 weeks. Energy expenditure, physical activity, and substrate utilization were measured with metabolic caging. Inguinal and epididymal WAT depots were analyzed for changes in tissue weight, fatty acid composition, adipocyte size, and markers of lipogenesis, lipolysis, and insulin signaling. KO mice had lower body weight, higher serum nonesterified fatty acids, smaller WAT depots, and reduced adipocyte size compared to WT mice without altered food intake, energy expenditure, or physical activity, regardless of the diet. Markers of lipogenesis and lipolysis were more highly expressed in KO mice compared to WT mice in both depots, regardless of the diet. These changes were concomitant with lower basal insulin signaling in WAT. Collectively, a D6D deficiency alters triacylglycerol/fatty acid cycling in WAT by promoting lipolysis and reducing fatty acid re-esterification, which may be partially attributed to a reduction in WAT insulin signaling.
Collapse
Affiliation(s)
- Chenxuan Wang
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Barbora Hucik
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Ousseynou Sarr
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Liam H Brown
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Kyle R D Wells
- Department of Pharmacology, Dalhousie University, Saint John, NB, Canada
| | - Keith R Brunt
- Department of Pharmacology, Dalhousie University, Saint John, NB, Canada
| | - Manabu T Nakamura
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ewa Harasim-Symbor
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - David M Mutch
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
17
|
Lyu M, Li F, Wang X, Xu K, Sun S. miR-145 Modulates Fatty Acid Metabolism by Targeting FOXO1 to Affect SERBP1 Activity in Bovine Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7440-7450. [PMID: 37154263 DOI: 10.1021/acs.jafc.2c09001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
MicroRNA-mediated gene regulation is important for the regulation of fatty acid metabolism and synthesis. Our previous study uncovered that the miR-145 expression is higher in the lactating mammary gland of dairy cows than in the dry-period, but the underlying molecular mechanism is incompletely understood. In this study, we have investigated the potential role of miR-145 in bovine mammary epithelial cells (BMECs). We found that the expression of miR-145 gradually increased during lactation. CRISPR/Cas9-mediated knockout (KO) of miR-145 in BMECs results in the downregulated expression of fatty acid metabolism-associated genes. Further results revealed that miR-145 KO reduced total triacylglycerol (TAG) and cholesterol (TC) accumulation and altered the composition of intracellular fatty acids (C16:0, C18:0, and C18:1). Conversely, miR-145 overexpression had the opposite effect. Bioinformatics online program predicted that miR-145 targets the 3'-UTR of the Forkhead Box O1 (FOXO1) gene. Subsequently, FOXO1 was identified as a direct target of miR-145 by qRT-PCR, Western blot analysis, and luciferase reporter assay. Furthermore, siRNA-mediated silencing of FOXO1 promoted fatty acid metabolism and TAG synthesis in BMECs. Additionally, we observed the involvement of FOXO1 in the transcriptional activity of the sterol regulatory element-binding protein 1 (SREBP1) gene promoter. Overall, our findings indicated that miR-145 relieves the inhibitory effect of FOXO1 on SREBP1 expression by targeting FOXO1 and subsequently regulating fatty acid metabolism. Thus, our results provide valuable information on the molecular mechanisms for improving milk yield and quality from the perspective of miRNA-mRNA networks.
Collapse
Affiliation(s)
- Ming Lyu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang Shaanxi 712100, PR China
| | - Fang Li
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang Shaanxi 712100, PR China
| | - Xu Wang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang Shaanxi 712100, PR China
| | - Kun Xu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang Shaanxi 712100, PR China
| | - Shuang Sun
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, Henan 473061, PR China
| |
Collapse
|
18
|
Nong S, Han X, Xiang Y, Qian Y, Wei Y, Zhang T, Tian K, Shen K, Yang J, Ma X. Metabolic reprogramming in cancer: Mechanisms and therapeutics. MedComm (Beijing) 2023; 4:e218. [PMID: 36994237 PMCID: PMC10041388 DOI: 10.1002/mco2.218] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/22/2023] [Accepted: 01/30/2023] [Indexed: 03/29/2023] Open
Abstract
Cancer cells characterized by uncontrolled growth and proliferation require altered metabolic processes to maintain this characteristic. Metabolic reprogramming is a process mediated by various factors, including oncogenes, tumor suppressor genes, changes in growth factors, and tumor-host cell interactions, which help to meet the needs of cancer cell anabolism and promote tumor development. Metabolic reprogramming in tumor cells is dynamically variable, depending on the tumor type and microenvironment, and reprogramming involves multiple metabolic pathways. These metabolic pathways have complex mechanisms and involve the coordination of various signaling molecules, proteins, and enzymes, which increases the resistance of tumor cells to traditional antitumor therapies. With the development of cancer therapies, metabolic reprogramming has been recognized as a new therapeutic target for metabolic changes in tumor cells. Therefore, understanding how multiple metabolic pathways in cancer cells change can provide a reference for the development of new therapies for tumor treatment. Here, we systemically reviewed the metabolic changes and their alteration factors, together with the current tumor regulation treatments and other possible treatments that are still under investigation. Continuous efforts are needed to further explore the mechanism of cancer metabolism reprogramming and corresponding metabolic treatments.
Collapse
Affiliation(s)
- Shiqi Nong
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Xiaoyue Han
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Yu Xiang
- Department of BiotherapyCancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Yuran Qian
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Yuhao Wei
- Department of Clinical MedicineWest China School of MedicineWest China HospitalSichuan UniversityChengduSichuanChina
| | - Tingyue Zhang
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Keyue Tian
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Kai Shen
- Department of OncologyFirst Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Jing Yang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xuelei Ma
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
- Department of Biotherapy and Cancer CenterState Key Laboratory of BiotherapyCancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
19
|
Popovic R, Yu Y, Leal NS, Fedele G, Loh SHY, Martins LM. Upregulation of Tribbles decreases body weight and increases sleep duration. Dis Model Mech 2023; 16:dmm049942. [PMID: 37083954 PMCID: PMC10151826 DOI: 10.1242/dmm.049942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/16/2023] [Indexed: 04/22/2023] Open
Abstract
Eukaryotic Tribbles proteins are pseudoenzymes that regulate multiple aspects of intracellular signalling. Both Drosophila melanogaster and mammalian members of this family of pseudokinases act as negative regulators of insulin signalling. Mammalian tribbles pseudokinase (TRIB) genes have also been linked to insulin resistance and type 2 diabetes mellitus. Type 2 diabetes mellitus is associated with increased body weight, sleep problems and increased long-term mortality. Here, we investigated how manipulating the expression of Tribbles impacts body weight, sleep and mortality. We showed that the overexpression of Drosophila tribbles (trbl) in the fly fat body reduces both body weight and lifespan in adult flies without affecting food intake. Furthermore, it decreases the levels of Drosophila insulin-like peptide 2 (DILP2; ILP2) and increases night-time sleep. The three genes encoding TRIBs of mammals, TRIB1, TRIB2 and TRIB3, show both common and unique features. As the three human TRIB genes share features with Drosophila trbl, we further explored the links between TRIB genetic variants and both body weight and sleep in the human population. We identified associations between the polymorphisms and expression levels of the pseudokinases and markers of body weight and sleep duration. We conclude that Tribbles pseudokinases are involved in the control of body weight, lifespan and sleep.
Collapse
Affiliation(s)
- Rebeka Popovic
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Yizhou Yu
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Nuno Santos Leal
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Giorgio Fedele
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Samantha H. Y. Loh
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
| | - L. Miguel Martins
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
| |
Collapse
|
20
|
He Q, Gao L, Zhang F, Yao W, Wu J, Song N, Luo J, Zhang Y. The FoxO1-ATGL axis alters milk lipolysis homeostasis through PI3K/AKT signaling pathway in dairy goat mammary epithelial cells. J Anim Sci 2023; 101:skad286. [PMID: 37638641 PMCID: PMC10699848 DOI: 10.1093/jas/skad286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/25/2023] [Indexed: 08/29/2023] Open
Abstract
Goat milk is enriched in fatty acids which are beneficial to human health. Previous research has revealed that 98% of milk fat is composed of triglycerides. However, the mechanisms regulating milk fat composition remain unclear. Forkhead box protein O1 (FoxO1) is a crucial regulatory factor involved in lipid metabolism across various cell types. Chromatin immunoprecipitation sequencing (ChIP)-seq data) and RNA sequencing (RNA-seq) data revealed that have indicated a close association between FoxO1 was closely related to lipid metabolism during lactation in dairy goats. The objective of this study was to investigate the mechanisms by which FoxO1 regulates lipid metabolism in goat mammary epithelial cells (GMECs). FoxO1 knockdown significantly downregulated the expression of adipose triglyceride lipase (ATGL) and suppressed the activity of the ATGL promoter. Consistently, the number of lipid droplets decreased significantly in FoxO1-overexpressing cells and increased in ATGL-knockdown cells. To further verify the effect of FoxO1 on ATGL promoter activity, cells were transfected with four promoter fragments of different lengths. We found that the core region of the ATGL promoter was located between -882 bp and -524 bp, encompassing two FoxO1 binding sites (FKH1 and FKH2). Mutations in the FoxO1 binding sites significantly downregulated ATGL promoter activity in GMECs. Luciferase reporter assays demonstrated that FoxO1 overexpression markedly enhanced ATGL promoter activity. Furthermore, site-directed mutation confirmed that FKH1 and FKH2 sites were simultaneously mutated significantly attenuated the stimulatory effect of FoxO1 on ATGL promoter activities simultaneous mutation of FKH1 and FKH2 sites significantly attenuated the stimulatory effect of FoxO1 on ATGL promoter activity. ChIP assays showed that FoxO1 directly binds to the FKH2 element located in the ATGL promoter in vivo. Finally, immunofluorescence staining revealed that insulin promotes the translocation of FoxO1 from the nucleus to the cytoplasm, thereby attenuating the FoxO1-induced activation of the ATGL promoter. Collectively, these findings uncover a novel pathway where by FoxO1 may regulate lipid metabolism in GMECs specifically by modulating the transcriptional activity of ATGL.
Collapse
Affiliation(s)
- Qiuya He
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Liangjiahui Gao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Fuhong Zhang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Weiwei Yao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jiao Wu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Ning Song
- College of Animal Science and Technology, Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei 230036, China
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yong Zhang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
21
|
Xu M, Chen X, Yu Z, Li X. Receptors that bind to PEDF and their therapeutic roles in retinal diseases. Front Endocrinol (Lausanne) 2023; 14:1116136. [PMID: 37139333 PMCID: PMC10149954 DOI: 10.3389/fendo.2023.1116136] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/04/2023] [Indexed: 05/05/2023] Open
Abstract
Retinal neovascular, neurodegenerative, and inflammatory diseases represented by diabetic retinopathy are the main types of blinding eye disorders that continually cause the increased burden worldwide. Pigment epithelium-derived factor (PEDF) is an endogenous factor with multiple effects including neurotrophic activity, anti-angiogenesis, anti-tumorigenesis, and anti-inflammatory activity. PEDF activity depends on the interaction with the proteins on the cell surface. At present, seven independent receptors, including adipose triglyceride lipase, laminin receptor, lipoprotein receptor-related protein, plexin domain-containing 1, plexin domain-containing 2, F1-ATP synthase, and vascular endothelial growth factor receptor 2, have been demonstrated and confirmed to be high affinity receptors for PEDF. Understanding the interactions between PEDF and PEDF receptors, their roles in normal cellular metabolism and the response the initiate in disease will be accommodating for elucidating the ways in which inflammation, angiogenesis, and neurodegeneration exacerbate disease pathology. In this review, we firstly introduce PEDF receptors comprehensively, focusing particularly on their expression pattern, ligands, related diseases, and signal transduction pathways, respectively. We also discuss the interactive ways of PEDF and receptors to expand the prospective understanding of PEDF receptors in the diagnosis and treatment of retinal diseases.
Collapse
|
22
|
Pan Z, Mao B, Zhang Q, Tang X, Yang B, Zhao J, Cui S, Zhang H. Postbiotics Prepared Using Lactobacillus paracasei CCFM1224 Prevent Nonalcoholic Fatty Liver Disease by Modulating the Gut Microbiota and Liver Metabolism. Int J Mol Sci 2022; 23:ijms232113522. [PMID: 36362307 PMCID: PMC9653709 DOI: 10.3390/ijms232113522] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Postbiotics are rich in a variety of bioactive components, which may have beneficial effects in inhibiting hepatic lipid accumulation. In this study, we investigated the preventive effects of postbiotics (POST) prepared from Lactobacillus paracasei on non-alcoholic fatty liver disease (NAFLD). Our results showed that when mice ingested a high-fat diet (HFD) and POST simultaneously, weight gain was slowed, epididymal white fat hypertrophy and insulin resistance were suppressed, serum biochemical indicators related to blood lipid metabolism were improved, and hepatic steatosis and liver inflammation decreased. Bacterial sequencing showed that POST modulated the gut microbiota in HFD mice, increasing the relative abundance of Akkermansia and reducing the relative abundance of Lachnospiraceae NK4A136 group, Ruminiclostridium and Bilophila. Spearman’s correlation analysis revealed significant correlations between lipid metabolism parameters and gut microbes. Functional prediction results showed that the regulation of gut microbiota was associated with the improvement of metabolic status. The metabolomic analysis of the liver revealed that POST-regulated liver metabolic pathways, such as glycerophospholipid and ether lipid metabolism, pantothenate and CoA biosynthesis, some parts of amino acid metabolism, and other metabolic pathways. In addition, POST regulated the gene expression in hepatocytes at the mRNA level, thereby regulating lipid metabolism. These findings suggest that POST plays a protective role against NAFLD and may exert its efficacy by modulating the gut microbiota and liver metabolism, and these findings may be applied to related functional foods.
Collapse
Affiliation(s)
- Zhenghao Pan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Correspondence: ; Tel.: +86-0510-85912155
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
23
|
Kleiboeker B, Lodhi IJ. Peroxisomal regulation of energy homeostasis: Effect on obesity and related metabolic disorders. Mol Metab 2022; 65:101577. [PMID: 35988716 PMCID: PMC9442330 DOI: 10.1016/j.molmet.2022.101577] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/01/2022] [Accepted: 08/16/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Peroxisomes are single membrane-bound organelles named for their role in hydrogen peroxide production and catabolism. However, their cellular functions extend well beyond reactive oxygen species (ROS) metabolism and include fatty acid oxidation of unique substrates that cannot be catabolized in mitochondria, and synthesis of ether lipids and bile acids. Metabolic functions of peroxisomes involve crosstalk with other organelles, including mitochondria, endoplasmic reticulum, lipid droplets and lysosomes. Emerging studies suggest that peroxisomes are important regulators of energy homeostasis and that disruption of peroxisomal functions influences the risk for obesity and the associated metabolic disorders, including type 2 diabetes and hepatic steatosis. SCOPE OF REVIEW Here, we focus on the role of peroxisomes in ether lipid synthesis, β-oxidation and ROS metabolism, given that these functions have been most widely studied and have physiologically relevant implications in systemic metabolism and obesity. Efforts are made to mechanistically link these cellular and systemic processes. MAJOR CONCLUSIONS Circulating plasmalogens, a form of ether lipids, have been identified as inversely correlated biomarkers of obesity. Ether lipids influence metabolic homeostasis through multiple mechanisms, including regulation of mitochondrial morphology and respiration affecting brown fat-mediated thermogenesis, and through regulation of adipose tissue development. Peroxisomal β-oxidation also affects metabolic homeostasis through generation of signaling molecules, such as acetyl-CoA and ROS that inhibit hydrolysis of stored lipids, contributing to development of hepatic steatosis. Oxidative stress resulting from increased peroxisomal β-oxidation-generated ROS in the context of obesity mediates β-cell lipotoxicity. A better understanding of the roles peroxisomes play in regulating and responding to obesity and its complications will provide new opportunities for their treatment.
Collapse
Affiliation(s)
- Brian Kleiboeker
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Irfan J Lodhi
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO 63110 USA.
| |
Collapse
|
24
|
Meriin AB, Zaarur N, Roy D, Kandror KV. Egr1 plays a major role in the transcriptional response of white adipocytes to insulin and environmental cues. Front Cell Dev Biol 2022; 10:1003030. [PMID: 36246998 PMCID: PMC9554007 DOI: 10.3389/fcell.2022.1003030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022] Open
Abstract
It is believed that insulin regulates metabolic functions of white adipose tissue primarily at the post-translational level via the PI3K-Akt-mediated pathway. Still, changes in transcription also play an important role in the response of white adipocytes to insulin and environmental signals. One transcription factor that is dramatically and rapidly induced in adipocytes by insulin and nutrients is called Early Growth Response 1, or Egr1. Among other functions, it directly binds to promoters of leptin and ATGL stimulating the former and inhibiting the latter. Furthermore, expression of Egr1 in adipocytes demonstrates cell autonomous circadian pattern suggesting that Egr1 not only mediates the effect of insulin and nutrients on lipolysis and leptin production but also, coordinates insulin action with endogenous circadian rhythms of adipose tissue.
Collapse
Affiliation(s)
- A. B. Meriin
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
| | - N. Zaarur
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
| | - D. Roy
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
| | - K. V. Kandror
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
- *Correspondence: K. V. Kandror,
| |
Collapse
|
25
|
Shanaki M, Omidifar A, Shabani P, Toolabi K. Association between HDACs and pro-inflammatory cytokine gene expressions in obesity. Arch Physiol Biochem 2022; 128:880-886. [PMID: 32238064 DOI: 10.1080/13813455.2020.1734843] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Histone deacetylases (HDACs) are important players in a variety of physiological and pathological conditions. Few studies have addressed HDAC expressions in human adipose tissue in obese individuals, and their association with pro-inflammatory cytokines. Here, we compared 20 non-obese and 20 obese women to investigate possible changes in gene expressions of HDAC2, 4, 5, and 6 in the subcutaneous adipose tissues (SAT) and visceral adipose tissues (VAT) of these individuals. Our findings showed decreased HDAC5 expression in SAT and elevated HDAC4 expression in VAT from the obese group compared with the non-obese group. Our analyses showed negative correlations between HDAC2, 5, and 6 and the obesity indices and positive correlations between HDAC4 and obesity indices. HDAC2 showed a positive correlation with pro-inflammatory cytokines whereas HDAC4, 5, and 6 were negatively correlated with pro-inflammatory cytokines. Our findings provide new evidence that implicates the important roles of HDACs in obesity and obesity-associated inflammation.
Collapse
Affiliation(s)
- Mehrnoosh Shanaki
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolfazl Omidifar
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Shabani
- Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Karamollah Toolabi
- Department of Surgery, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
RNA-Binding Proteins in the Regulation of Adipogenesis and Adipose Function. Cells 2022; 11:cells11152357. [PMID: 35954201 PMCID: PMC9367552 DOI: 10.3390/cells11152357] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 01/27/2023] Open
Abstract
The obesity epidemic represents a critical public health issue worldwide, as it is a vital risk factor for many diseases, including type 2 diabetes (T2D) and cardiovascular disease. Obesity is a complex disease involving excessive fat accumulation. Proper adipose tissue accumulation and function are highly transcriptional and regulated by many genes. Recent studies have discovered that post-transcriptional regulation, mainly mediated by RNA-binding proteins (RBPs), also plays a crucial role. In the lifetime of RNA, it is bound by various RBPs that determine every step of RNA metabolism, from RNA processing to alternative splicing, nucleus export, rate of translation, and finally decay. In humans, it is predicted that RBPs account for more than 10% of proteins based on the presence of RNA-binding domains. However, only very few RBPs have been studied in adipose tissue. The primary aim of this paper is to provide an overview of RBPs in adipogenesis and adipose function. Specifically, the following best-characterized RBPs will be discussed, including HuR, PSPC1, Sam68, RBM4, Ybx1, Ybx2, IGF2BP2, and KSRP. Characterization of these proteins will increase our understanding of the regulatory mechanisms of RBPs in adipogenesis and provide clues for the etiology and pathology of adipose-tissue-related diseases.
Collapse
|
27
|
Sabir U, Irfan HM, Alamgeer, Umer I, Niazi ZR, Asjad HMM. Phytochemicals targeting NAFLD through modulating the dual function of forkhead box O1 (FOXO1) transcription factor signaling pathways. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:741-755. [PMID: 35357518 DOI: 10.1007/s00210-022-02234-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/18/2022] [Indexed: 02/06/2023]
Abstract
Literature evidence reveals that natural compounds are potential candidates for ameliorating obesity-associated non-alcoholic fatty liver disease (NAFLD) by targeting forkhead box O1 (FOXO1) transcription factor. FOXO1 has a dual and complex role in regulating both increase and decrease in lipid accumulation in hepatocytes and adipose tissues (AT) at different stages of NAFLD. In insulin resistance (IR), it is constitutively expressed, resulting in increased hepatic glucose output and lipid metabolism irregularity. The studies on different phytochemicals indicate that dysregulation of FOXO1 causes disturbance in cellular nutrients homeostasis, and the natural entities have an enduring impact on the mitigation of these abnormalities. The current review communicates and evaluates certain phytochemicals through different search engines, targeting FOXO1 and its downstream cellular pathways to find lead compounds as potential therapeutic agents for treating NAFLD and related metabolic disorders. The findings of this review confirm that polyphenols, flavonoids, alkaloids, terpenoids, and anthocyanins are capable of modulating FOXO1 and associated signaling pathways, and they are potential therapeutic agents for NAFLD and related complications. HIGHLIGHTS: • FOXO1 has the potential to be targeted by novel drugs from natural sources for the treatment of NAFLD and obesity. • FOXO1 regulates cellular autophagy, inflammation, oxidative stress, and lipogenesis through alternative mechanisms. • Phytochemicals treat NAFLD by acting on FOXO1 or SREBP1c and PPARγ transcription factor signaling pathways.
Collapse
Affiliation(s)
- Usman Sabir
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Hafiz Muhammad Irfan
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Pakistan.
| | - Alamgeer
- Punjab University College of Pharmacy, University of the Punjab Lahore, Lahore, Pakistan
| | - Ihtisham Umer
- Pharmacy Department, Comsat International University Lahore Campus, Lahore, Pakistan
| | | | | |
Collapse
|
28
|
Angiotensin II Inhibits Insulin Receptor Signaling in Adipose Cells. Int J Mol Sci 2022; 23:ijms23116048. [PMID: 35682723 PMCID: PMC9181642 DOI: 10.3390/ijms23116048] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Angiotensin II (Ang II) is a critical regulator of insulin signaling in the cardiovascular system and metabolic tissues. However, in adipose cells, the regulatory role of Ang II on insulin actions remains to be elucidated. The effect of Ang II on insulin-induced insulin receptor (IR) phosphorylation, Akt activation, and glucose uptake was examined in 3T3-L1 adipocytes. In these cells, Ang II specifically inhibited insulin-stimulated IR and insulin receptor substrate-1 (IRS-1) tyrosine-phosphorylation, Akt activation, and glucose uptake in a time-dependent manner. These inhibitory actions were associated with increased phosphorylation of the IR at serine residues. Interestingly, Ang II-induced serine-phosphorylation of IRS was not detected, suggesting that Ang II-induced desensitization begins from IR regulation itself. PKC inhibition by BIM I restored the inhibitory effect of Ang II on insulin actions. We also found that Ang II promoted activation of several PKC isoforms, including PKCα/βI/βII/δ, and its association with the IR, particularly PKCβII, showed the highest interaction. Finally, we also found a similar regulatory effect of Ang II in isolated adipocytes, where insulin-induced Akt phosphorylation was inhibited by Ang II, an effect that was prevented by PKC inhibitors. These results suggest that Ang II may lead to insulin resistance through PKC activation in adipocytes.
Collapse
|
29
|
Inoue Y, Sawano T, Yamaguchi N, Inoue S, Takayama A, Nakazawa S, Inagaki S, Nakatani J, Tanaka H. Comparative distribution of
Arcadlin/Protocadherin‐8
mRNA in the intact and ischemic brains of adult mice. J Comp Neurol 2022; 530:2033-2055. [DOI: 10.1002/cne.25319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Yosuke Inoue
- Pharmacology Laboratory Department of Biomedical Sciences, College of Life Sciences Ritsumeikan University Shiga Japan
| | - Toshinori Sawano
- Pharmacology Laboratory Department of Biomedical Sciences, College of Life Sciences Ritsumeikan University Shiga Japan
| | - Natsumi Yamaguchi
- Pharmacology Laboratory Department of Biomedical Sciences, College of Life Sciences Ritsumeikan University Shiga Japan
| | - Shota Inoue
- Pharmacology Laboratory Department of Biomedical Sciences, College of Life Sciences Ritsumeikan University Shiga Japan
| | - Akinori Takayama
- Pharmacology Laboratory Department of Biomedical Sciences, College of Life Sciences Ritsumeikan University Shiga Japan
| | - Shuma Nakazawa
- Pharmacology Laboratory Department of Biomedical Sciences, College of Life Sciences Ritsumeikan University Shiga Japan
| | - Shinobu Inagaki
- United Graduate School of Child Development Osaka University Suita Japan
- Department of Physical Therapy Osaka Yukioka College of Health Science Ibaraki Japan
| | - Jin Nakatani
- Pharmacology Laboratory Department of Biomedical Sciences, College of Life Sciences Ritsumeikan University Shiga Japan
| | - Hidekazu Tanaka
- Pharmacology Laboratory Department of Biomedical Sciences, College of Life Sciences Ritsumeikan University Shiga Japan
| |
Collapse
|
30
|
Wu B, Xu C, Tian Y, Zeng Y, Yan F, Chen A, Zhao J, Chen L. Aerobic exercise promotes the expression of ATGL and attenuates inflammation to improve hepatic steatosis via lncRNA SRA. Sci Rep 2022; 12:5370. [PMID: 35354841 PMCID: PMC8968712 DOI: 10.1038/s41598-022-09174-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/18/2022] [Indexed: 11/10/2022] Open
Abstract
The role of aerobic exercise in preventing and improving non-alcoholic fatty liver has been widely established. SRA is a long non-coding RNA, which has received increasing attention due to its important role in lipid metabolism. However, it is unclear whether aerobic exercise can prevent and treat hepatic lipid accumulation via SRA. The mice were randomly divided into four groups as follows, normal control group, normal aerobic exercise group, high-fat diet group (HFD), and high-fat diet plus aerobic exercise (8 weeks, 6 days/week, 18 m/min for 50 min, 6% slope) group (HAE). After 8 weeks, the mice in the HAE group showed significant improvement in hepatic steatosis. Body weight as well as blood TC, LDL-C, and liver TG levels were significantly lower in the HAE group than in the HFD group. Compared with the HFD group, the expression of SRA was markedly suppressed and the expression of ATGL was significantly increased in the HAE group. Additionally, the JNK/P38 signaling was inhibited, the pro-inflammatory factors were down-regulated, and the anti-inflammatory factor was increased. In addition to this, the same results were shown in experiments with overexpression of SRA. The results of this study provided new support for aerobic exercise to improve hepatic lipid metabolism via lncRNA.
Collapse
|
31
|
Li Y, Li Z, Ngandiri DA, Llerins Perez M, Wolf A, Wang Y. The Molecular Brakes of Adipose Tissue Lipolysis. Front Physiol 2022; 13:826314. [PMID: 35283787 PMCID: PMC8907745 DOI: 10.3389/fphys.2022.826314] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
Adaptation to changes in energy availability is pivotal for the survival of animals. Adipose tissue, the body’s largest reservoir of energy and a major source of metabolic fuel, exerts a buffering function for fluctuations in nutrient availability. This functional plasticity ranges from energy storage in the form of triglycerides during periods of excess energy intake to energy mobilization via lipolysis in the form of free fatty acids for other organs during states of energy demands. The subtle balance between energy storage and mobilization is important for whole-body energy homeostasis; its disruption has been implicated as contributing to the development of insulin resistance, type 2 diabetes and cancer cachexia. As a result, adipocyte lipolysis is tightly regulated by complex regulatory mechanisms involving lipases and hormonal and biochemical signals that have opposing effects. In thermogenic brown and brite adipocytes, lipolysis stimulation is the canonical way for the activation of non-shivering thermogenesis. Lipolysis proceeds in an orderly and delicately regulated manner, with stimulation through cell-surface receptors via neurotransmitters, hormones, and autocrine/paracrine factors that activate various intracellular signal transduction pathways and increase kinase activity. The subsequent phosphorylation of perilipins, lipases, and cofactors initiates the translocation of key lipases from the cytoplasm to lipid droplets and enables protein-protein interactions to assemble the lipolytic machinery on the scaffolding perilipins at the surface of lipid droplets. Although activation of lipolysis has been well studied, the feedback fine-tuning is less well appreciated. This review focuses on the molecular brakes of lipolysis and discusses some of the divergent fine-tuning strategies in the negative feedback regulation of lipolysis, including delicate negative feedback loops, intermediary lipid metabolites-mediated allosteric regulation and dynamic protein–protein interactions. As aberrant adipocyte lipolysis is involved in various metabolic diseases and releasing the brakes on lipolysis in thermogenic adipocytes may activate thermogenesis, targeting adipocyte lipolysis is thus of therapeutic interest.
Collapse
|
32
|
Okuro K, Fukuhara A, Minemura T, Hayakawa T, Nishitani S, Okuno Y, Otsuki M, Shimomura I. Glutamine deficiency induces lipolysis in adipocytes. Biochem Biophys Res Commun 2021; 585:155-161. [PMID: 34801935 DOI: 10.1016/j.bbrc.2021.11.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 10/19/2022]
Abstract
Glutamine is the most abundant amino acid in the body, and adipose tissue is one of the glutamine-producing organs. Glutamine has important and unique metabolic functions; however, its effects in adipocytes are still unclear. 3T3-L1 adipocytes produced and secreted glutamine dependent on glutamine synthetase, but preadipocytes did not. The inhibition of glutamine synthetase by l-methionine sulfoximine (MSO) impaired the differentiation of preadipocytes to mature adipocytes, and this inhibitory effect of MSO was rescued by exogenous glutamine supplementation. Glutamine concentrations were low, and Atgl gene expression was high in epididymal white adipose tissues of fasting mice in vivo. In 3T3-L1 adipocytes, glutamine deprivation induced Atgl expression and increased glycerol concentration in culture medium. Atgl expression is regulated by FoxO1, and glutamine deprivation reduced FoxO1 phosphorylation (Ser256), indicating the activation of FoxO1. These results demonstrate that glutamine is necessary for the differentiation of preadipocytes and regulates lipolysis through FoxO1 in mature adipocytes.
Collapse
Affiliation(s)
- Kenta Okuro
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Atsunori Fukuhara
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Department of Adipose Management, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | - Tomomi Minemura
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tomoaki Hayakawa
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shigeki Nishitani
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yosuke Okuno
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Michio Otsuki
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
33
|
Zuo Z, Li Y, Zeng C, Xi Y, Tao H, Guo Y. Integrated Analyses Identify Key Molecules and Reveal the Potential Mechanism of miR-182-5p/FOXO1 Axis in Alcoholic Liver Disease. Front Med (Lausanne) 2021; 8:767584. [PMID: 34950682 PMCID: PMC8688759 DOI: 10.3389/fmed.2021.767584] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/15/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Alcoholic liver disease (ALD) is one of the most common chronic liver diseases worldwide. However, the potential molecular mechanism in ALD development remains unclear. The objective of this work was to identify key molecules and demonstrate the underlying regulatory mechanisms. Methods: RNA-seq datasets were obtained from Gene Expression Omnibus (GEO), and key molecules in ALD development were identified with bioinformatics analysis. Alcoholic liver disease mouse and cell models were constructed using Lieber-DeCarli diets and alcohol medium, respectively. Quantitative real-time PCR and Western blotting were conducted to confirm the differential expression level. Dual-luciferase reporter assays were performed to explore the targeting regulatory relationship. Overexpression and knockdown experiments were applied to reveal the potential molecular mechanism in ALD development. Results: Between ALD patients and healthy controls, a total of 416 genes and 21 microRNAs (miRNAs) with significantly differential expression were screened. A comprehensive miRNA-mRNA network was established; within this network, the miR-182-5p/FOXO1 axis was considered a significant pathway in ALD lipid metabolism. Mouse and cell experiments validated that miR-182-5p was substantially higher in ALD than in normal livers, whereas the expression of FOXO1 was dramatically decreased by alcohol consumption (P < 0.05). Next, dual-luciferase reporter assays demonstrated that miR-182-5p directly targets the binding site of the FOXO1 3′UTR and inhibits its mRNA and protein expression. In addition, miR-182-5p was found to promote hepatic lipid accumulation via targeting the FOXO1 signaling pathway, and inhibition of the miR-182-5p/FOXO1 axis improved hepatic triglyceride (TG) deposition in ALD by regulating downstream genes involved in lipid metabolism. Conclusion: In summary, key molecules were identified in ALD development and a comprehensive miRNA–mRNA network was established. Meanwhile, our results suggested that miR-182-5p significantly increases lipid accumulation in ALD by targeting FOXO1, thereby providing novel scientific insights and potential therapeutic targets for ALD.
Collapse
Affiliation(s)
- Zhihua Zuo
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yiqin Li
- Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Chuyi Zeng
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuge Xi
- Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Hualin Tao
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yongcan Guo
- Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
34
|
Sun Y, Wang Z, Nie C, Xue L, Wang Y, Song C, Fan M, Qian H, Ying H, Li Y, Wang L. Hydroxysafflor Yellow A Alters Fuel Selection From Glucose to Fat by Activating the PPARδ Pathway in Myocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13838-13848. [PMID: 34757740 DOI: 10.1021/acs.jafc.1c06034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Modulation of fuel selection is critical in skeletal muscle function. Hydroxysafflor yellow A (HSYA) is the major bioactive component in safflower (Carthamus tinctorius L.) and, in our previous study, has been demonstrated to promote a shift from fast to slow myofiber. However, the effects of HSYA on fuel selection in skeletal muscle and its underlying mechanisms remain unclear. In this study, the in vitro experiments found that water extracts of safflower, rich in HSYA, significantly suppressed the expressions of the genes related to glucose utilization and activated the expressions of the lipolysis genes. Furthermore, HSYA resulted in a shift in substrate utilization toward fat relative to carbohydrates in C2C12 myotubes. Animal tests showed HSYA could significantly reduce the respiratory exchange ratio and prolonge endurance performance in mice and also trigger a switch in intramuscular fuel selection preference from carbohydrates to fat at rest and during exercise. Mechanistic studies revealed that HSYA converted this fuel selection by activating peroxisome proliferator activated receptor δ (PPARδ), and these effects of HSYA could be reversed by specific suppression of PPARδ by PPARδ siRNA. Collectively, our study demonstrated that HSYA can switch substrate utilization from glucose to fat in myocytes by activating PPARδ signaling, resulting in prolonged endurance performance. These findings provided direct evidence for the endurance performance enhancement effect of HSYA and explored new perspectives for the innovation and application of HSYA in the health care industry.
Collapse
Affiliation(s)
- Yujie Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhijun Wang
- COFCO Aerocean Oils & Grain Industrial Co., Ltd, Shawan, NO.1 West Park Road, West Urumqi Road, Shawan County, Tacheng District, Xinjiang Province 832100, China
| | - Chenzhipeng Nie
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Lamei Xue
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yu Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chunmei Song
- Food & Pharmacy College, Xuchang University, Xuchang 461000, China
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Ying
- Chinese Academy of Sciences (CAS) Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People's Republic of China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
35
|
Grabner GF, Xie H, Schweiger M, Zechner R. Lipolysis: cellular mechanisms for lipid mobilization from fat stores. Nat Metab 2021; 3:1445-1465. [PMID: 34799702 DOI: 10.1038/s42255-021-00493-6] [Citation(s) in RCA: 246] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022]
Abstract
The perception that intracellular lipolysis is a straightforward process that releases fatty acids from fat stores in adipose tissue to generate energy has experienced major revisions over the last two decades. The discovery of new lipolytic enzymes and coregulators, the demonstration that lipophagy and lysosomal lipolysis contribute to the degradation of cellular lipid stores and the characterization of numerous factors and signalling pathways that regulate lipid hydrolysis on transcriptional and post-transcriptional levels have revolutionized our understanding of lipolysis. In this review, we focus on the mechanisms that facilitate intracellular fatty-acid mobilization, drawing on canonical and noncanonical enzymatic pathways. We summarize how intracellular lipolysis affects lipid-mediated signalling, metabolic regulation and energy homeostasis in multiple organs. Finally, we examine how these processes affect pathogenesis and how lipolysis may be targeted to potentially prevent or treat various diseases.
Collapse
Affiliation(s)
- Gernot F Grabner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Hao Xie
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Martina Schweiger
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
36
|
Homan EP, Brandão BB, Softic S, El Ouaamari A, O’Neill BT, Kulkarni RN, Kim JK, Kahn CR. Differential roles of FOXO transcription factors on insulin action in brown and white adipose tissue. J Clin Invest 2021; 131:e143328. [PMID: 34428182 PMCID: PMC8483763 DOI: 10.1172/jci143328] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 08/19/2021] [Indexed: 01/02/2023] Open
Abstract
Insulin and IGF-1 are essential for adipocyte differentiation and function. Mice lacking insulin and IGF-1 receptors in fat (FIGIR-KO, fat-specific IGF-1 receptor and insulin receptor-KO) exhibit complete loss of white and brown adipose tissue (WAT and BAT), glucose intolerance, insulin resistance, hepatosteatosis, and cold intolerance. To determine the role of FOXO transcription factors in the altered adipose phenotype, we generated FIGIR-KO mice with fat-specific KO of fat-expressed Foxos [Foxo1, Foxo3, Foxo4] (F-Quint-KO). Unlike FIGIR-KO mice, F-Quint-KO mice had normal BAT, glucose tolerance, insulin-regulated hepatic glucose production, and cold tolerance. However, loss of FOXOs only partially rescued subcutaneous WAT and hepatosteatosis, did not rescue perigonadal WAT or systemic insulin resistance, and led to even more marked hyperinsulinemia. Thus, FOXOs play different roles in insulin/IGF-1 action in different adipose depots, being most important in BAT, followed by subcutaneous WAT and then by visceral WAT. Disruption of FOXOs in fat also led to a reversal of insulin resistance in liver, but not in skeletal muscle, and an exacerbation of hyperinsulinemia. Thus, adipose FOXOs play a unique role in regulating crosstalk between adipose depots, liver, and β cells.
Collapse
Affiliation(s)
- Erica P. Homan
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
- Biology Department, Northeastern University, Boston, Massachusetts, USA
| | - Bruna B. Brandão
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Samir Softic
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, and Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Abdelfattah El Ouaamari
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
- Division of Endocrinology, Metabolism and Nutrition, Department of Medicine, and
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Brian T. O’Neill
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Rohit N. Kulkarni
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Jason K. Kim
- Program in Molecular Medicine and
- Division of Endocrinology and Metabolism, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - C. Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
37
|
Wang H, Ma M, Li Y, Liu J, Sun C, Liu S, Ma Y, Yan Y, Tang Z, Shen S, Yu J, Wu Y, Jiang J, Wang L, Jin ZB, Ying H, Li Y. miR-183 and miR-96 orchestrate both glucose and fat utilization in skeletal muscle. EMBO Rep 2021; 22:e52247. [PMID: 34358402 DOI: 10.15252/embr.202052247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 06/27/2021] [Accepted: 07/01/2021] [Indexed: 01/07/2023] Open
Abstract
Our knowledge of the coordination of fuel usage in skeletal muscle is incomplete. Whether and how microRNAs are involved in the substrate selection for oxidation is largely unknown. Here we show that mice lacking miR-183 and miR-96 have enhanced muscle oxidative phenotype and altered glucose/lipid homeostasis. Moreover, loss of miR-183 and miR-96 results in a shift in substrate utilization toward fat relative to carbohydrates in mice. Mechanistically, loss of miR-183 and miR-96 suppresses glucose utilization in skeletal muscle by increasing PDHA1 phosphorylation via targeting FoxO1 and PDK4. On the other hand, loss of miR-183 and miR-96 promotes fat usage in skeletal muscle by enhancing intramuscular lipolysis via targeting FoxO1 and ATGL. Thus, our study establishes miR-183 and miR-96 as master coordinators of fuel selection and metabolic homeostasis owing to their capability of modulating both glucose utilization and fat catabolism. Lastly, we show that loss of miR-183 and miR-96 can alleviate obesity and improve glucose metabolism in high-fat diet-induced mice, suggesting that miR-183 and miR-96 may serve as therapeutic targets for metabolic diseases.
Collapse
Affiliation(s)
- Hui Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Mei Ma
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yuying Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jinxin Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Chao Sun
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shengnan Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yiruo Ma
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ying Yan
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhili Tang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Siyi Shen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jing Yu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yuting Wu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jingjing Jiang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zi-Bing Jin
- Beijing Ophthalmology & Visual Science Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Hao Ying
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
38
|
Lertpatipanpong P, Lee J, Kim I, Eling T, Oh SY, Seong JK, Baek SJ. The anti-diabetic effects of NAG-1/GDF15 on HFD/STZ-induced mice. Sci Rep 2021; 11:15027. [PMID: 34294853 PMCID: PMC8298384 DOI: 10.1038/s41598-021-94581-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/13/2021] [Indexed: 12/20/2022] Open
Abstract
Nonsteroidal anti-inflammatory drug-activated gene-1 (NAG-1) plays a role in various diseases. Here, the anti-diabetic effects of NAG-1 were evaluated using a high-fat diet/streptozotocin-induced diabetic mouse model. NAG-1-overexpressing transgenic (NAG-1 Tg) mice exhibited lower body weight, fasting blood glucose levels, and serum insulin levels than wild-type (WT) mice. The homeostatic model assessment of insulin resistance scores of NAG-1 Tg mice were lower than those of WT mice. Hematoxylin and eosin staining revealed a smaller lipid droplet size in the adipose tissues, lower lipid accumulation in the hepatocytes, and larger beta cell area in the pancreas of NAG-1 Tg mice than in those of WT mice. Immunohistochemical analysis revealed downregulated expression of cleaved caspase-3, an apoptosis marker, in the beta cells of NAG-1 Tg mice. Adiponectin and leptin mRNA levels were upregulated and downregulated in NAG-1 Tg mice, respectively. Additionally, the expression of IRS1/PI3K/AKT signaling pathway components, especially Foxo1, which regulates gluconeogenesis in the muscle and white adipose tissue, was downregulated in NAG-1 Tg mice. Furthermore, NAG-1 overexpression promoted the expression of As160 in both muscles and adipocytes, and the mRNA levels of the NLRP3 pathway members were downregulated in NAG-1 Tg mice. Our findings suggest that NAG-1 expression alleviates diabetes in mice.
Collapse
Affiliation(s)
- Pattawika Lertpatipanpong
- Laboratory of Signal Transduction, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jaehak Lee
- Laboratory of Signal Transduction, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Ilju Kim
- Laboratory of Signal Transduction, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Thomas Eling
- National Institute of Environmental Health Science, 111 TW Alexander Dr. Research Triangle Park, NC, 27709, USA
| | - Seung Yeon Oh
- Laboratory of Developmental Biology and Genomics, BK21 Plus Program for Advanced Veterinary Science, Research Institute for Veterinary Science, College of Veterinary Medicine, and Korea Mouse Phenotyping Center, Seoul National University, Seoul, 08826, South Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, BK21 Plus Program for Advanced Veterinary Science, Research Institute for Veterinary Science, College of Veterinary Medicine, and Korea Mouse Phenotyping Center, Seoul National University, Seoul, 08826, South Korea
- Interdisciplinary Program for Bioinformatics, Seoul National University, Seoul, 08826, South Korea
| | - Seung Joon Baek
- Laboratory of Signal Transduction, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
39
|
Tian M, Wu Z, Heng J, Chen F, Guan W, Zhang S. Novel advances in understanding fatty acid-binding G protein-coupled receptors and their roles in controlling energy balance. Nutr Rev 2021; 80:187-199. [PMID: 34027989 DOI: 10.1093/nutrit/nuab021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/10/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetes, obesity, and other metabolic diseases have been recognized as the main factors that endanger human health worldwide. Most of these metabolic syndromes develop when the energy balance in the body is disrupted. Energy balance depends upon the systemic regulation of food intake, glucose homeostasis, and lipid metabolism. Fatty acid-binding G protein-coupled receptors (GPCRs) are widely expressed in various types of tissues and cells involved in energy homeostasis regulation. In this review, the distribution and biological functions of fatty acid-binding GPCRs are summarized, particularly with respect to the gut, pancreas, and adipose tissue. A systematic understanding of the physiological functions of the fatty acid-binding GPCRs involved in energy homeostasis regulation will help in identifying novel pharmacological targets for metabolic diseases.
Collapse
Affiliation(s)
- Min Tian
- M. Tian, Z. Wu, J. Heng, F. Chen, W. Guan, and S. Zhang are with the Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China. F. Chen, W. Guan, and S. Zhang are with the College of Animal Science and National Engineering Research Center for Breeding Swine Industry, and the Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Zhihui Wu
- M. Tian, Z. Wu, J. Heng, F. Chen, W. Guan, and S. Zhang are with the Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China. F. Chen, W. Guan, and S. Zhang are with the College of Animal Science and National Engineering Research Center for Breeding Swine Industry, and the Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Jinghui Heng
- M. Tian, Z. Wu, J. Heng, F. Chen, W. Guan, and S. Zhang are with the Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China. F. Chen, W. Guan, and S. Zhang are with the College of Animal Science and National Engineering Research Center for Breeding Swine Industry, and the Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Fang Chen
- M. Tian, Z. Wu, J. Heng, F. Chen, W. Guan, and S. Zhang are with the Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China. F. Chen, W. Guan, and S. Zhang are with the College of Animal Science and National Engineering Research Center for Breeding Swine Industry, and the Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- M. Tian, Z. Wu, J. Heng, F. Chen, W. Guan, and S. Zhang are with the Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China. F. Chen, W. Guan, and S. Zhang are with the College of Animal Science and National Engineering Research Center for Breeding Swine Industry, and the Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | | |
Collapse
|
40
|
Burillo J, Marqués P, Jiménez B, González-Blanco C, Benito M, Guillén C. Insulin Resistance and Diabetes Mellitus in Alzheimer's Disease. Cells 2021; 10:1236. [PMID: 34069890 PMCID: PMC8157600 DOI: 10.3390/cells10051236] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes mellitus is a progressive disease that is characterized by the appearance of insulin resistance. The term insulin resistance is very wide and could affect different proteins involved in insulin signaling, as well as other mechanisms. In this review, we have analyzed the main molecular mechanisms that could be involved in the connection between type 2 diabetes and neurodegeneration, in general, and more specifically with the appearance of Alzheimer's disease. We have studied, in more detail, the different processes involved, such as inflammation, endoplasmic reticulum stress, autophagy, and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jesús Burillo
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28040 Madrid, Spain
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Patricia Marqués
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Beatriz Jiménez
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28040 Madrid, Spain
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Carlos González-Blanco
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Manuel Benito
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28040 Madrid, Spain
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Carlos Guillén
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28040 Madrid, Spain
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| |
Collapse
|
41
|
Issinger OG, Guerra B. Phytochemicals in cancer and their effect on the PI3K/AKT-mediated cellular signalling. Biomed Pharmacother 2021; 139:111650. [PMID: 33945911 DOI: 10.1016/j.biopha.2021.111650] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Protein kinases belong to the largest family of enzymes controlling every aspect of cellular activity including gene expression, cell division, differentiation and metabolism. They are part of major intracellular signalling pathways. Hence, it is not surprising that they are involved in the development of major diseases such as cardiovascular disorders, diabetes, dementia and, most importantly, cancer when they undergo mutations, modifications and unbalanced expression. This review will explore the possibility to draw a connection between the application of natural phytochemicals and the treatment of cancer. We have chosen to focus on the PI3K/AKT cellular signalling pathway which has been shown to be a major target by natural compounds in cell cultures and animal models.
Collapse
Affiliation(s)
- Olaf-Georg Issinger
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | - Barbara Guerra
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| |
Collapse
|
42
|
Abstract
As the principal tissue for insulin-stimulated glucose disposal, skeletal muscle is a primary driver of whole-body glycemic control. Skeletal muscle also uniquely responds to muscle contraction or exercise with increased sensitivity to subsequent insulin stimulation. Insulin's dominating control of glucose metabolism is orchestrated by complex and highly regulated signaling cascades that elicit diverse and unique effects on skeletal muscle. We discuss the discoveries that have led to our current understanding of how insulin promotes glucose uptake in muscle. We also touch upon insulin access to muscle, and insulin signaling toward glycogen, lipid, and protein metabolism. We draw from human and rodent studies in vivo, isolated muscle preparations, and muscle cell cultures to home in on the molecular, biophysical, and structural elements mediating these responses. Finally, we offer some perspective on molecular defects that potentially underlie the failure of muscle to take up glucose efficiently during obesity and type 2 diabetes.
Collapse
|
43
|
Filali-Mouncef Y, Hunter C, Roccio F, Zagkou S, Dupont N, Primard C, Proikas-Cezanne T, Reggiori F. The ménage à trois of autophagy, lipid droplets and liver disease. Autophagy 2021; 18:50-72. [PMID: 33794741 PMCID: PMC8865253 DOI: 10.1080/15548627.2021.1895658] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Autophagic pathways cross with lipid homeostasis and thus provide energy and essential building blocks that are indispensable for liver functions. Energy deficiencies are compensated by breaking down lipid droplets (LDs), intracellular organelles that store neutral lipids, in part by a selective type of autophagy, referred to as lipophagy. The process of lipophagy does not appear to be properly regulated in fatty liver diseases (FLDs), an important risk factor for the development of hepatocellular carcinomas (HCC). Here we provide an overview on our current knowledge of the biogenesis and functions of LDs, and the mechanisms underlying their lysosomal turnover by autophagic processes. This review also focuses on nonalcoholic steatohepatitis (NASH), a specific type of FLD characterized by steatosis, chronic inflammation and cell death. Particular attention is paid to the role of macroautophagy and macrolipophagy in relation to the parenchymal and non-parenchymal cells of the liver in NASH, as this disease has been associated with inappropriate lipophagy in various cell types of the liver.Abbreviations: ACAT: acetyl-CoA acetyltransferase; ACAC/ACC: acetyl-CoA carboxylase; AKT: AKT serine/threonine kinase; ATG: autophagy related; AUP1: AUP1 lipid droplet regulating VLDL assembly factor; BECN1/Vps30/Atg6: beclin 1; BSCL2/seipin: BSCL2 lipid droplet biogenesis associated, seipin; CMA: chaperone-mediated autophagy; CREB1/CREB: cAMP responsive element binding protein 1; CXCR3: C-X-C motif chemokine receptor 3; DAGs: diacylglycerols; DAMPs: danger/damage-associated molecular patterns; DEN: diethylnitrosamine; DGAT: diacylglycerol O-acyltransferase; DNL: de novo lipogenesis; EHBP1/NACSIN (EH domain binding protein 1); EHD2/PAST2: EH domain containing 2; CoA: coenzyme A; CCL/chemokines: chemokine ligands; CCl4: carbon tetrachloride; ER: endoplasmic reticulum; ESCRT: endosomal sorting complexes required for transport; FA: fatty acid; FFAs: free fatty acids; FFC: high saturated fats, fructose and cholesterol; FGF21: fibroblast growth factor 21; FITM/FIT: fat storage inducing transmembrane protein; FLD: fatty liver diseases; FOXO: forkhead box O; GABARAP: GABA type A receptor-associated protein; GPAT: glycerol-3-phosphate acyltransferase; HCC: hepatocellular carcinoma; HDAC6: histone deacetylase 6; HECT: homologous to E6-AP C-terminus; HFCD: high fat, choline deficient; HFD: high-fat diet; HSCs: hepatic stellate cells; HSPA8/HSC70: heat shock protein family A (Hsp70) member 8; ITCH/AIP4: itchy E3 ubiquitin protein ligase; KCs: Kupffer cells; LAMP2A: lysosomal associated membrane protein 2A; LDs: lipid droplets; LDL: low density lipoprotein; LEP/OB: leptin; LEPR/OBR: leptin receptor; LIPA/LAL: lipase A, lysosomal acid type; LIPE/HSL: lipase E, hormone sensitive type; LIR: LC3-interacting region; LPS: lipopolysaccharide; LSECs: liver sinusoidal endothelial cells; MAGs: monoacylglycerols; MAPK: mitogen-activated protein kinase; MAP3K5/ASK1: mitogen-activated protein kinase kinase kinase 5; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MCD: methionine-choline deficient; MGLL/MGL: monoglyceride lipase; MLXIPL/ChREBP: MLX interacting protein like; MTORC1: mechanistic target of rapamycin kinase complex 1; NAFLD: nonalcoholic fatty liver disease; NAS: NAFLD activity score; NASH: nonalcoholic steatohepatitis; NPC: NPC intracellular cholesterol transporter; NR1H3/LXRα: nuclear receptor subfamily 1 group H member 3; NR1H4/FXR: nuclear receptor subfamily 1 group H member 4; PDGF: platelet derived growth factor; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PLIN: perilipin; PNPLA: patatin like phospholipase domain containing; PNPLA2/ATGL: patatin like phospholipase domain containing 2; PNPLA3/adiponutrin: patatin like phospholipase domain containing 3; PPAR: peroxisome proliferator activated receptor; PPARA/PPARα: peroxisome proliferator activated receptor alpha; PPARD/PPARδ: peroxisome proliferator activated receptor delta; PPARG/PPARγ: peroxisome proliferator activated receptor gamma; PPARGC1A/PGC1α: PPARG coactivator 1 alpha; PRKAA/AMPK: protein kinase AMP-activated catalytic subunit; PtdIns3K: class III phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; PTEN: phosphatase and tensin homolog; ROS: reactive oxygen species; SE: sterol esters; SIRT1: sirtuin 1; SPART/SPG20: spartin; SQSTM1/p62: sequestosome 1; SREBF1/SREBP1c: sterol regulatory element binding transcription factor 1; TAGs: triacylglycerols; TFE3: transcription factor binding to IGHM enhancer 3; TFEB: transcription factor EB; TGFB1/TGFβ: transforming growth factor beta 1; Ub: ubiquitin; UBE2G2/UBC7: ubiquitin conjugating enzyme E2 G2; ULK1/Atg1: unc-51 like autophagy activating kinase 1; USF1: upstream transcription factor 1; VLDL: very-low density lipoprotein; VPS: vacuolar protein sorting; WIPI: WD-repeat domain, phosphoinositide interacting; WDR: WD repeat domain.
Collapse
Affiliation(s)
- Yasmina Filali-Mouncef
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, AV Groningen, The Netherlands
| | - Catherine Hunter
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tuebingen, Tuebingen, Germany.,International Max Planck Research School 'From Molecules to Organisms', Max Planck Institute for Developmental Biology and Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Federica Roccio
- Institut Necker Enfants-Malades (INEM), INSERM U1151-CNRS UMR 8253, Université de Paris, Paris, France
| | - Stavroula Zagkou
- Adjuvatis, Lyon, France.,Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR 5305, Université Claude Bernard Lyon 1, France
| | - Nicolas Dupont
- Institut Necker Enfants-Malades (INEM), INSERM U1151-CNRS UMR 8253, Université de Paris, Paris, France
| | | | - Tassula Proikas-Cezanne
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tuebingen, Tuebingen, Germany.,International Max Planck Research School 'From Molecules to Organisms', Max Planck Institute for Developmental Biology and Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Fulvio Reggiori
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, AV Groningen, The Netherlands
| |
Collapse
|
44
|
Shuvalov O, Daks A, Fedorova O, Petukhov A, Barlev N. Linking Metabolic Reprogramming, Plasticity and Tumor Progression. Cancers (Basel) 2021; 13:cancers13040762. [PMID: 33673109 PMCID: PMC7917602 DOI: 10.3390/cancers13040762] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/03/2021] [Accepted: 02/07/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary In the present review, we discuss the role of metabolic reprogramming which occurs in malignant cells. The process of metabolic reprogramming is also known as one of the “hallmarks of cancer”. Due to several reasons, including the origin of cancer, tumor microenvironment, and the tumor progression stage, metabolic reprogramming can be heterogeneous and dynamic. In this review, we provide evidence that the usage of metabolic drugs is a promising approach to treat cancer. However, because these drugs can damage not only malignant cells but also normal rapidly dividing cells, it is important to understand the exact metabolic changes which are elicited by particular drivers in concrete tissue and are specific for each stage of cancer development, including metastases. Finally, the review highlights new promising targets for the development of new metabolic drugs. Abstract The specific molecular features of cancer cells that distinguish them from the normal ones are denoted as “hallmarks of cancer”. One of the critical hallmarks of cancer is an altered metabolism which provides tumor cells with energy and structural resources necessary for rapid proliferation. The key feature of a cancer-reprogrammed metabolism is its plasticity, allowing cancer cells to better adapt to various conditions and to oppose different therapies. Furthermore, the alterations of metabolic pathways in malignant cells are heterogeneous and are defined by several factors including the tissue of origin, driving mutations, and microenvironment. In the present review, we discuss the key features of metabolic reprogramming and plasticity associated with different stages of tumor, from primary tumors to metastases. We also provide evidence of the successful usage of metabolic drugs in anticancer therapy. Finally, we highlight new promising targets for the development of new metabolic drugs.
Collapse
Affiliation(s)
- Oleg Shuvalov
- Institute of Cytology RAS, 194064 St-Petersburg, Russia; (O.S.); (A.D.); (O.F.); (A.P.)
| | - Alexandra Daks
- Institute of Cytology RAS, 194064 St-Petersburg, Russia; (O.S.); (A.D.); (O.F.); (A.P.)
| | - Olga Fedorova
- Institute of Cytology RAS, 194064 St-Petersburg, Russia; (O.S.); (A.D.); (O.F.); (A.P.)
| | - Alexey Petukhov
- Institute of Cytology RAS, 194064 St-Petersburg, Russia; (O.S.); (A.D.); (O.F.); (A.P.)
- Almazov National Medical Research Center, 197341 St-Petersburg, Russia
| | - Nickolai Barlev
- Institute of Cytology RAS, 194064 St-Petersburg, Russia; (O.S.); (A.D.); (O.F.); (A.P.)
- MIPT, 141701 Dolgoprudny, Moscow Region, Russia
- Orekhovich IBMC, 119435 Moscow, Russia
- Correspondence: ; Tel.: +7-812-297-4519
| |
Collapse
|
45
|
Lutein attenuates excessive lipid accumulation in differentiated 3T3-L1 cells and abdominal adipose tissue of rats by the SIRT1-mediated pathway. Int J Biochem Cell Biol 2021; 133:105932. [PMID: 33529717 DOI: 10.1016/j.biocel.2021.105932] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/07/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Obesity is now a worldwide disease and is mainly attributable to increased body fat deposition. In a growing number of epidemiological studies, lutein has been revealed to have different degrees of anti-obesity properties, but the potential underlying mechanisms that have been reported are limited. Therefore, we aimed to clarify the protective effects of lutein against excessive lipid accumulation, and we explored the role of SIRT1 and SIRT1-mediated pathways both in abdominal adipose tissue and mature 3T3-L1 cells during lutein administration. METHODS In our design, male Sprague-Dawley rats were fed either control or high-fat diets with or without 25 mg/kg·bw/day lutein for 5 weeks. Additionally, differentiated 3T3-L1 cells were incubated with 40 μM lutein or 10 μM Ex527 for 24 h. RESULTS Lutein supplementation decreased the body weight, abdominal fat index ratio, frequency and mean area of larger adipocytes in HE staining induced by the high-fat diet and then activated the expression of SIRT1 and thus upregulated FoxO1, ATGL, and HSL expression and downregulated SREBP-1, FAS, and ACC expression both in abdominal adipose tissue and differentiated 3T3-L1 cells. However, coincubation with Ex527 and lutein suppressed the activation of SIRT1 and reversed the expression of FoxO1, ATGL, HSL, SREBP-1, FAS, and ACC in comparison to those in the Lut group. CONCLUSIONS Overall, we suggest that the effects of lutein on attenuating excessive lipid accumulation are dependent on the SIRT1-mediated pathway in vivo and in vitro, which indicates that lutein administration may be a potential strategy for preventing excessive lipid accumulation and obesity.
Collapse
|
46
|
Zhao N, Tan H, Wang L, Han L, Cheng Y, Feng Y, Li T, Liu X. Palmitate induces fat accumulation via repressing FoxO1-mediated ATGL-dependent lipolysis in HepG2 hepatocytes. PLoS One 2021; 16:e0243938. [PMID: 33449950 PMCID: PMC7810308 DOI: 10.1371/journal.pone.0243938] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/30/2020] [Indexed: 02/05/2023] Open
Abstract
Obesity is closely associated with non-alcoholic fatty liver disease (NAFLD), and elevated serum palmitate is the link between obesity and excessive hepatic lipid accumulation. Forkhead box O-1 (FoxO1) is one of the FoxO family members of transcription factors and can stimulate adipose triglyceride lipase (ATGL) and suppress its inhibitor G0/G1 switch gene 2 (G0S2) expression in the liver. However, previous researches have also shown conflicting results regarding the role of FoxO1 in hepatic lipid accumulation. We therefore examined the role of FoxO1 as a downstream suppressor to palmitate-stimulated hepatic steatosis. Palmitate significantly promoted lipid accumulation but inhibited lipid decomposition in human HepG2 hepatoma cells. Palmitate also significantly reduced FoxO1, ATGL and its activator comparative gene identification-58 (CGI-58) expression but increased peroxisome proliferator-activated receptorγ (PPARγ) and its target gene G0S2 expression. FoxO1 overexpression significantly increased palmitate-inhibited ATGL and CGI-58 expression but reduced palmitate-stimulated PPARγ and its target gene G0S2 expression. FoxO1 overexpression also inhibited lipid accumulation and promoted lipolysis in palmitate-treated hepatocytes. Overall, these results indicate that FoxO1-mediated ATGL-dependent lipolysis may be an effective molecular mechanism in protecting hepatocytes from palmitate-induced fat accumulation.
Collapse
Affiliation(s)
- Naiqian Zhao
- Department of Gerontology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- * E-mail:
| | - Huiwen Tan
- Department of Endocrinology and Metabolism, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Li Wang
- Department of Gerontology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Le Han
- Department of Gerontology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanli Cheng
- Department of Gerontology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ying Feng
- Department of Gerontology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ting Li
- Department of Gerontology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoling Liu
- Department of Gerontology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
47
|
Mukai S, Mizokami A, Otani T, Sano T, Matsuda M, Chishaki S, Gao J, Kawakubo-Yasukochi T, Tang R, Kanematsu T, Takeuchi H, Jimi E, Hirata M. Adipocyte-specific GPRC6A ablation promotes diet-induced obesity by inhibiting lipolysis. J Biol Chem 2021; 296:100274. [PMID: 33428938 PMCID: PMC7949034 DOI: 10.1016/j.jbc.2021.100274] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/22/2020] [Accepted: 01/07/2021] [Indexed: 12/17/2022] Open
Abstract
The G protein–coupled receptor GPRC6A regulates various physiological processes in response to its interaction with multiple ligands, such as extracellular basic amino acids, divalent cations, testosterone, and the uncarboxylated form of osteocalcin (GluOC). Global ablation of GPRC6A increases the susceptibility of mice to diet-induced obesity and related metabolic disorders. However, given that GPRC6A is expressed in many tissues and responds to a variety of hormonal and nutritional signals, the cellular and molecular mechanisms underlying the development of metabolic disorders in conventional knockout mice have remained unclear. On the basis of our previous observation that long-term oral administration of GluOC markedly reduced adipocyte size and improved glucose tolerance in WT mice, we examined whether GPRC6A signaling in adipose tissue might be responsible for prevention of metabolic disorders. We thus generated adipocyte-specific GPRC6A knockout mice, and we found that these animals manifested increased adipose tissue weight, adipocyte hypertrophy, and adipose tissue inflammation when fed a high-fat and high-sucrose diet compared with control mice. These effects were associated with reduced lipolytic activity because of downregulation of lipolytic enzymes such as adipose triglyceride lipase and hormone-sensitive lipase in adipose tissue of the conditional knockout mice. Given that, among GPR6CA ligands tested, GluOC and ornithine increased the expression of adipose triglyceride lipase in cultured 3T3-L1 adipocytes in a manner dependent on GPRC6A, our results suggest that the constitutive activation of GPRC6A signaling in adipocytes by GluOC or ornithine plays a key role in adipose lipid handling and the prevention of obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Satoru Mukai
- OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan; Department of Health and Nutrition care, Faculty of Allied Health Sciences, University of East Asia, Shimonoseki, Japan
| | - Akiko Mizokami
- OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.
| | - Takahito Otani
- Division of Functional Structure, Department of Morphological Biology, Fukuoka Dental College, Fukuoka, Japan
| | - Tomomi Sano
- Department of Cell Biology and Pharmacology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Miho Matsuda
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Sakura Chishaki
- OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan; Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Jing Gao
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | | | - Ronghao Tang
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takashi Kanematsu
- Department of Cell Biology and Pharmacology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Hiroshi Takeuchi
- Division of Applied Pharmacology, Kyushu Dental University, Kitakyushu, Japan
| | - Eijiro Jimi
- OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan; Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Masato Hirata
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan.
| |
Collapse
|
48
|
Ow JR, Cadez MJ, Zafer G, Foo JC, Li HY, Ghosh S, Wollmann H, Cazenave-Gassiot A, Ong CB, Wenk MR, Han W, Choi H, Kaldis P. Remodeling of whole-body lipid metabolism and a diabetic-like phenotype caused by loss of CDK1 and hepatocyte division. eLife 2020; 9:63835. [PMID: 33345777 PMCID: PMC7771968 DOI: 10.7554/elife.63835] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/19/2020] [Indexed: 12/13/2022] Open
Abstract
Cell cycle progression and lipid metabolism are well-coordinated processes required for proper cell proliferation. In liver diseases that arise from dysregulated lipid metabolism, hepatocyte proliferation is diminished. To study the outcome of CDK1 loss and blocked hepatocyte proliferation on lipid metabolism and the consequent impact on whole-body physiology, we performed lipidomics, metabolomics, and RNA-seq analyses on a mouse model. We observed reduced triacylglycerides in liver of young mice, caused by oxidative stress that activated FOXO1 to promote the expression of Pnpla2/ATGL. Additionally, we discovered that hepatocytes displayed malfunctioning β-oxidation, reflected by increased acylcarnitines (ACs) and reduced β-hydroxybutyrate. This led to elevated plasma free fatty acids (FFAs), which were transported to the adipose tissue for storage and triggered greater insulin secretion. Upon aging, chronic hyperinsulinemia resulted in insulin resistance and hepatic steatosis through activation of LXR. Here, we demonstrate that loss of hepatocyte proliferation is not only an outcome but also possibly a causative factor for liver pathology.
Collapse
Affiliation(s)
- Jin Rong Ow
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Matias J Cadez
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Gözde Zafer
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Juat Chin Foo
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore (NUS), Singapore, Singapore
| | - Hong Yu Li
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium (SBIC), A*STAR, Singapore, Singapore
| | - Soumita Ghosh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Heike Wollmann
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Amaury Cazenave-Gassiot
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore.,Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore (NUS), Singapore, Singapore
| | - Chee Bing Ong
- Biological Resource Centre (BRC), A*STAR, Singapore, Singapore
| | - Markus R Wenk
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore.,Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore (NUS), Singapore, Singapore
| | - Weiping Han
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore.,Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium (SBIC), A*STAR, Singapore, Singapore
| | - Hyungwon Choi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Philipp Kaldis
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore.,Department of Clinical Sciences, Lund University, Clinical Research Centre (CRC), Malmö, Sweden
| |
Collapse
|
49
|
Farhan M, Silva M, Li S, Yan F, Fang J, Peng T, Hu J, Tsao M, Little P, Zheng W. The role of FOXOs and autophagy in cancer and metastasis-Implications in therapeutic development. Med Res Rev 2020; 40:2089-2113. [PMID: 32474970 PMCID: PMC7586888 DOI: 10.1002/med.21695] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 04/21/2020] [Accepted: 05/16/2020] [Indexed: 12/17/2022]
Abstract
Autophagy is a highly conserved intracellular degradation process that plays a crucial role in cell survival and stress reactions as well as in cancer development and metastasis. Autophagy process involves several steps including sequestration, fusion of autophagosomes with lysosomes and degradation. Forkhead box O (FOXO) transcription factors regulate the expression of genes involved in cellular metabolic activity and signaling pathways of cancer growth and metastasis. Recent evidence suggests that FOXO proteins are also involved in autophagy regulation. The relationship among FOXOs, autophagy, and cancer has been drawing attention of many who work in the field. This study summarizes the role of FOXO proteins and autophagy in cancer growth and metastasis and analyzes their potential roles in cancer disease management.
Collapse
Affiliation(s)
- Mohd Farhan
- Faculty of Health SciencesCentre of Reproduction, Development and Aging, Institute of Translational Medicine, University of MacauTaipaMacau SARChina
| | - Marta Silva
- Faculty of Health SciencesCentre of Reproduction, Development and Aging, Institute of Translational Medicine, University of MacauTaipaMacau SARChina
| | - Shuai Li
- Faculty of Health SciencesCentre of Reproduction, Development and Aging, Institute of Translational Medicine, University of MacauTaipaMacau SARChina
| | - Fengxia Yan
- Department of MedicineJinan UniversityGuangzhouChina
| | - Jiankang Fang
- Faculty of Health SciencesCentre of Reproduction, Development and Aging, Institute of Translational Medicine, University of MacauTaipaMacau SARChina
| | - Tangming Peng
- Faculty of Health SciencesCentre of Reproduction, Development and Aging, Institute of Translational Medicine, University of MacauTaipaMacau SARChina
| | - Jim Hu
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoOntarioCanada
| | - Ming‐Sound Tsao
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoOntarioCanada
| | - Peter Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of QueenslandWoolloongabbaQueenslandAustralia
| | - Wenhua Zheng
- Faculty of Health SciencesCentre of Reproduction, Development and Aging, Institute of Translational Medicine, University of MacauTaipaMacau SARChina
| |
Collapse
|
50
|
He Q, Luo J, Wu J, Yao W, Li Z, Wang H, Xu H. FoxO1 Knockdown Promotes Fatty Acid Synthesis via Modulating SREBP1 Activities in the Dairy Goat Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12067-12078. [PMID: 33054209 DOI: 10.1021/acs.jafc.0c05237] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
FoxO1 is a crucial transcription factor involved in lipid metabolism in mouse liver through repressing a key regulator of lipogenesis, sterol regulatory element binding protein 1 (SREBP1). However, it remains elusive whether FoxO1 plays roles in the regulation of fatty acid metabolism during lactation in dairy goats. In this study, we aim to investigate the function of FoxO1 in goat mammary epithelial cells (GMECs). We found that the expression of FoxO1 is significantly upregulated during lactation compared with the dry period. FoxO1 knockdown enhanced the expression of genes related to de novo fatty acid synthesis (e.g., FASN, ELOVL6 and SCD1) and triacylglycerol (TAG) synthesis (e.g., DGAT2 and GPAM). Consistently, intracellular TAG was significantly increased in FoxO1 knockdown cells and reduced in FoxO1 overexpression cells. Immunofluorescence staining revealed that insulin suppresses FoxO1 transcription by promoting its nuclear export. Further, we found that FoxO1 inhibits insulin-induced SREBP1 promoter activities in GMECs. Moreover, FoxO1 suppresses SREBP1 transcription via the LXR response element (LXRE) and SREBP response element (SRE) located in the SREBP1 promoter. Our data reveal that FoxO1 plays critical roles in regulating the synthesis of the fatty acid and triacylglycerol (TAG) in GMECs.
Collapse
Affiliation(s)
- Qiuya He
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jiao Wu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Weiwei Yao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Zhuang Li
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Hui Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610041, PR China
| | - Huifen Xu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|