1
|
Ng XY, Cao M. Dysfunction of synaptic endocytic trafficking in Parkinson's disease. Neural Regen Res 2024; 19:2649-2660. [PMID: 38595283 PMCID: PMC11168511 DOI: 10.4103/nrr.nrr-d-23-01624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/12/2023] [Accepted: 01/03/2024] [Indexed: 04/11/2024] Open
Abstract
Parkinson's disease is characterized by the selective degeneration of dopamine neurons in the nigrostriatal pathway and dopamine deficiency in the striatum. The precise reasons behind the specific degeneration of these dopamine neurons remain largely elusive. Genetic investigations have identified over 20 causative PARK genes and 90 genomic risk loci associated with both familial and sporadic Parkinson's disease. Notably, several of these genes are linked to the synaptic vesicle recycling process, particularly the clathrin-mediated endocytosis pathway. This suggests that impaired synaptic vesicle recycling might represent an early feature of Parkinson's disease, followed by axonal degeneration and the eventual loss of dopamine cell bodies in the midbrain via a "dying back" mechanism. Recently, several new animal and cellular models with Parkinson's disease-linked mutations affecting the endocytic pathway have been created and extensively characterized. These models faithfully recapitulate certain Parkinson's disease-like features at the animal, circuit, and cellular levels, and exhibit defects in synaptic membrane trafficking, further supporting the findings from human genetics and clinical studies. In this review, we will first summarize the cellular and molecular findings from the models of two Parkinson's disease-linked clathrin uncoating proteins: auxilin (DNAJC6/PARK19) and synaptojanin 1 (SYNJ1/PARK20). The mouse models carrying these two PARK gene mutations phenocopy each other with specific dopamine terminal pathology and display a potent synergistic effect. Subsequently, we will delve into the involvement of several clathrin-mediated endocytosis-related proteins (GAK, endophilin A1, SAC2/INPP5F, synaptotagmin-11), identified as Parkinson's disease risk factors through genome-wide association studies, in Parkinson's disease pathogenesis. We will also explore the direct or indirect roles of some common Parkinson's disease-linked proteins (alpha-synuclein (PARK1/4), Parkin (PARK2), and LRRK2 (PARK8)) in synaptic endocytic trafficking. Additionally, we will discuss the emerging novel functions of these endocytic proteins in downstream membrane traffic pathways, particularly autophagy. Given that synaptic dysfunction is considered as an early event in Parkinson's disease, a deeper understanding of the cellular mechanisms underlying synaptic vesicle endocytic trafficking may unveil novel targets for early diagnosis and the development of interventional therapies for Parkinson's disease. Future research should aim to elucidate why generalized synaptic endocytic dysfunction leads to the selective degeneration of nigrostriatal dopamine neurons in Parkinson's disease.
Collapse
Affiliation(s)
- Xin Yi Ng
- Programme in Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Mian Cao
- Programme in Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore, Singapore
- Department of Physiology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
2
|
Matveyenka M, Ali A, Mitchell CL, Brown HC, Kurouski D. Cholesterol Accelerates Aggregation of α-Synuclein Simultaneously Increasing the Toxicity of Amyloid Fibrils. ACS Chem Neurosci 2024; 15:4075-4081. [PMID: 39469734 DOI: 10.1021/acschemneuro.4c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
A hallmark of Parkinson disease (PD) is a progressive degeneration of neurons in the substantia nigra pars compacta, hypothalamus, and thalamus. Although the exact etiology of irreversible neuronal degeneration is unclear, a growing body of experimental evidence indicates that PD could be triggered by the abrupt aggregation of α-synuclein (α-Syn), a small membrane protein that is responsible for cell vesicle trafficking. Phospholipids uniquely alter the rate of α-Syn aggregation and, consequently, change the cytotoxicity of α-Syn oligomers and fibrils. However, the role of cholesterol in the aggregation of α-Syn remains unclear. In this study, we used Caenorhabditis elegans that overexpressed α-Syn to investigate the effect of low (15%), normal (30%), and high (60%) concentrations of cholesterol on α-Syn aggregation. We found that an increase in the concentration of cholesterol in diets substantially shortened the lifespan of C. elegans. Using biophysical methods, we also investigated the extent to which large unilamellar vesicles (LUVs) with low, normal, and high concentrations of cholesterol altered the rate of α-Syn aggregation. We found that only lipid membranes with a 60% concentration of cholesterol substantially accelerated the rate of protein aggregation. Cell assays revealed that α-Syn fibrils formed in the presence of LUVs with different concentrations of cholesterol exerted very similar levels of cytotoxicity to rat dopaminergic neurons. These results suggest that changes in the concentration of cholesterol in the plasma membrane, which in turn could be caused by nutritional preferences, could accelerate the onset and progression of PD.
Collapse
Affiliation(s)
- Mikhail Matveyenka
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Abid Ali
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Charles L Mitchell
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Harris C Brown
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
3
|
Tang Z, Fang Z, Wu X, Liu J, Tian L, Li X, Diao J, Ji B, Li D. Folding of N-terminally acetylated α-synuclein upon interaction with lipid membranes. Biophys J 2024; 123:3698-3720. [PMID: 39306670 PMCID: PMC11560312 DOI: 10.1016/j.bpj.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/30/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024] Open
Abstract
α-Synuclein (α-syn) is an abundant presynaptic neuronal protein whose aggregation is strongly associated with Parkinson's disease. It has been proposed that lipid membranes significantly affect α-syn's aggregation process. Extensive studies have been conducted to understand the interactions between α-syn and lipid membranes and have demonstrated that the N-terminus plays a critical role. However, the dynamics of the interactions and the conformational transitions of the N-terminus of α-syn at the atomistic scale details are still highly desired. In this study, we performed extensive enhanced sampling molecular dynamics simulations to quantify the folding and interactions of wild-type and N-terminally acetylated α-syn when interacting with lipid structures. We found that N-terminal acetylation significantly increases the helicity of the first few residues in solution or when interacting with lipid membranes. The observations in simulations showed that the binding of α-syn with lipid membranes mainly follows the induced-fit model, where the disordered α-syn binds with the lipid membrane through the electrostatic interactions and hydrophobic contacts with the packing defects; after stable insertion, N-terminal acetylation promotes the helical folding of the N-terminus to enhance the anchoring, thus increasing the binding affinity. We have shown the critical role of the first N-terminal residue methionine for recognition and anchoring to the negatively charged membrane. Although N-terminal acetylation neutralizes the positive charge of Met1 that may affect the electrostatic interactions of α-syn with membranes, the increase in helicity of the N-terminus should compensate for the binding affinity. This study provides detailed insight into the folding dynamics of α-syn's N-terminus with or without acetylation in solution and upon interaction with lipids, which clarifies how the N-terminal acetylation regulates the affinity of α-syn binding to lipid membranes. It also shows how packing defects and electrostatic effects coregulate the N-terminus of α-syn folding and its interaction with membranes.
Collapse
Affiliation(s)
- Zihan Tang
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Institute of Biomechanics and Applications, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Zhou Fang
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Institute of Biomechanics and Applications, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Xuwei Wu
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Institute of Biomechanics and Applications, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Jie Liu
- MOE Key Laboratory of Biomedical Engineering, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | - Liangfei Tian
- MOE Key Laboratory of Biomedical Engineering, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | - Xuejin Li
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Institute of Biomechanics and Applications, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Baohua Ji
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Institute of Biomechanics and Applications, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health) and Wenzhou Institute of University of Chinese Academy of Science, Wenzhou, China
| | - Dechang Li
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Institute of Biomechanics and Applications, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Cohen-Adiv S, Amer-Sarsour F, Berdichevsky Y, Boxer E, Goldstein O, Gana-Weisz M, Tripathi U, Rike WA, Prag G, Gurevich T, Giladi N, Stern S, Orr-Urtreger A, Friedmann-Morvinski D, Ashkenazi A. TMEM16F regulates pathologic α-synuclein secretion and spread in cellular and mouse models of Parkinson's disease. Aging Cell 2024:e14387. [PMID: 39487963 DOI: 10.1111/acel.14387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/14/2024] [Accepted: 10/01/2024] [Indexed: 11/04/2024] Open
Abstract
One of the main hallmarks of Parkinson's disease (PD) pathology is the spread of the aggregate-prone protein α-synuclein (α-syn), which can be detected in the plasma and cerebrospinal fluid of patients as well as in the extracellular environment of neuronal cells. The secreted α-syn can exhibit "prion-like" behavior and transmission to naïve cells can promote conformational changes and pathology. The precise role of plasma membrane proteins in the pathologic process of α-syn is yet to be fully resolved. The TMEM16 family of lipid scramblases and ion channels has been recently associated with cancer and infectious diseases but is less known for its role in aging-related diseases. To elucidate the role of TMEM16F in α-syn spread, we transduced neurons derived from TMEM16F knockout mice with a reporter system that enables the distinction between donor and recipient neurons of pathologic α-synA53T. We found that the spread of α-synA53T was reduced in neurons derived from TMEM16F-knockout mice. These findings were recapitulated in vivo in a mouse model of PD, where attenuated α-synA53T spread was observed when TMEM16F was ablated. Moreover, we identified a single nucleotide polymorphism in TMEM16F of Ashkenazi Jewish PD patients resulting in a missense Ala703Ser mutation with enhanced lipid scramblase activity. This mutation is associated with altered regulation of α-synA53T extracellular secretion in cellular models of PD. Our study highlights TMEM16F as a novel regulator of α-syn spread and as a potential therapeutic target in synucleinopathies.
Collapse
Affiliation(s)
- Stav Cohen-Adiv
- The Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Fatima Amer-Sarsour
- The Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yevgeny Berdichevsky
- The Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Emily Boxer
- The School of Neurobiology, Biochemistry and Biophysics, the George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Orly Goldstein
- Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Mali Gana-Weisz
- Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Utkarsh Tripathi
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Wote Amelo Rike
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Gali Prag
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- School of Neurobiology, Biochemistry and Biophysics, the George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tanya Gurevich
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Movement Disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Nir Giladi
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Brain Division, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Shani Stern
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Avi Orr-Urtreger
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Dinorah Friedmann-Morvinski
- The School of Neurobiology, Biochemistry and Biophysics, the George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Avraham Ashkenazi
- The Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
5
|
Yao Y, Zhao Q, Tao Y, Liu K, Cao T, Chen Z, Liu C, Le W, Zhao J, Li D, Kang W. Different charged biopolymers induce α-synuclein to form fibrils with distinct structures. J Biol Chem 2024; 300:107862. [PMID: 39374778 DOI: 10.1016/j.jbc.2024.107862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/09/2024] Open
Abstract
The aggregation of α-synuclein (α-syn) into amyloid fibrils, a key process in the development of Parkinson's disease (PD) and other synucleinopathies, is influenced by a range of factors such as charged biopolymers, chaperones, and metabolites. However, the specific impacts of different biopolymers on α-syn fibril structure are not well understood. In our work, we found that different polyanions and polycations, such as polyphosphate (polyP), polyuridine (polyU), and polyamines (including putrescine, spermidine, and spermine), markedly altered the fibrillation kinetics of α-syn in vitro. Furthermore, the seeding assay revealed distinct cross-seeding capacities across different biopolymer-induced α-syn fibrils, suggesting the formation of structurally distinct strains under different conditions. Utilizing cryo-electron microscopy (cryo-EM), we further examined the detailed structural configuration of α-syn fibrils formed in the presence of these biopolymers. Notably, we found that while polyamines do not change the atomic structure of α-syn fibrils, polyU and polyP induce the formation of distinct amyloid fibrils, exhibiting a range of structural polymorphs. Our work offers valuable insights into how various charged biopolymers affect the aggregation process and the resultant structures of α-syn fibrils, thereby enhancing our understanding of the structural variations in α-syn fibrils across different pathological conditions.
Collapse
Affiliation(s)
- Yuxuan Yao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Qinyue Zhao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Youqi Tao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Kaien Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Tianyi Cao
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zipeng Chen
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - WeiDong Le
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jing Zhao
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China.
| | - Wenyan Kang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Neurology, Ruijin Hainan Hospital, Shanghai Jiao Tong University, School of Medicine (Boao Research Hospital), Hainan, China.
| |
Collapse
|
6
|
Fu Q, Pan G, Yu Q, Liu Z, Shen T, Ma X, Jiang L. Exploring the causal effects of serum lipids and lipidomes on lewy body dementia: a Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1456005. [PMID: 39363901 PMCID: PMC11446761 DOI: 10.3389/fendo.2024.1456005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/13/2024] [Indexed: 10/05/2024] Open
Abstract
Background Lewy body dementia (LBD) is a neurodegenerative disorder characterized by the accumulation of Lewy bodies, which primarily composed of misfolded alpha-synuclein (αS). The development of LBD and APOE4 subtypes is thought to be associated with disorders of lipid metabolism. In this study, we investigated the causal relationship between serum lipids, liposomes and LBD using a two-sample Mendelian randomization (TSMR) method. Methods A TSMR analysis of genome-wide association study (GWAS) data for 8 serum lipids, 179 lipidomes components, LBD and its subtypes was performed, using inverse variance weighted as the primary outcome. To ensure robustness, the sensitivity analyses including MR Pleiotropy RESidual Sum and Outlier, Cochran's test, leave-one-out method and funnel plots were performed. Results In this study, we found that low-density lipoprotein cholesterol (LDL-C) (OR=1.45, 95% CI=1.19-1.77, P<0.001) and remnant cholesterol (RC) (OR=2.64, 95% CI=1.64-4.28, P<0.001) had significant positive causal effects on LBD, and RC also had a positive effect on LBD in carriers of the APOE4 gene. The results of lipidome analysis showed that phosphatidylcholine (PC) (O-16:0_20:4) levels (OR=0.86, 95% CI=0.75-0.98, P=0.02) and PC (O-18:1_20:4) levels (OR=0.76, 95% CI=0.65-0.89, P <0.001) had negative causal effects on LBD, whereas phosphatidylinositol (PI) (18:1_20:4) levels had a positive causal effect on LBD (OR=1.19, 95% CI=1.02-1.39, P=0.03). For LBD with APOE4 carriers, high levels of PC (16:1_18:0) and PC (O-18:2_18:1) had a significant positive effect, while high levels of PC (O-16:1_18:0), phosphatidylethanolamine (PE) (O-18:2_18:1), sphingomyelin (SM) (d38:2), and triacylglycerol (TAG) (56:5) significantly reduced the risk. No heterogeneity and horizontal pleiotropy were observed in sensitivity analysis. Conclusion Elevated LDL-C and RC levels are significant risk factors for LBD, with RC also impacting APOE4-carrying LBD. Glycerophospholipids play a crucial role in the pathogenesis of LBD, but the specific components that play a role differ from those with the APOE4 carries. These findings highlight the importance of lipid metabolism in LBD and APOE4 subtypes.
Collapse
Affiliation(s)
- Qingan Fu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Guanrui Pan
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qingyun Yu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhekang Liu
- Rheumatology and Immunology Department, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Tianzhou Shen
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaowei Ma
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Long Jiang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
7
|
Qin Y, Wang L, Song J, Quan W, Xu J, Chen J. Plasma lipidome, circulating inflammatory proteins, and Parkinson's disease: a Mendelian randomization study. Front Aging Neurosci 2024; 16:1424056. [PMID: 39347014 PMCID: PMC11433008 DOI: 10.3389/fnagi.2024.1424056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/20/2024] [Indexed: 10/01/2024] Open
Abstract
Background Observational studies have suggested that plasma lipidome play a pivotal role in the occurrence of Parkinson's disease (PD). However, it remains unknown which lipids among plasma lipidome affect PD and how they exert their influence. Clarity is lacking regarding the causal relationship between plasma lipidome and PD, as well as whether circulating inflammatory proteins serve as mediators. Methods Single nucleotide polymorphisms (SNPs) significantly associated with 179 plasma lipidome were selected as instrumental variables to assess their causal impact on PD. PD data, serving as the outcome, were sourced from the International Parkinson's Disease Genomics Consortium, which boasts the largest sample size to date. The inverse variance weighted (IVW), Weighted median method, MR-Egger method, Simple mode method, Weighted mode method and MR-PRESSO were employed to evaluate the influence of the 179 plasma lipidome on PD. Heterogeneity, pleiotropy tests, and reverse causality analyses were conducted accordingly. Additionally, we analyzed the causal relationship between 91 circulating inflammatory proteins and PD, exploring whether these proteins serve as mediators in the pathway from plasma lipidome to PD. Results Among the 179 plasma lipidome, three were found to be associated with a reduced risk of PD: Phosphatidylcholine (14:0_18:2) (IVW, OR = 0.877; 95%CI, 0.787-0.978; p = 0.018), Phosphatidylcholine (16:0_16:1) levels (IVW, OR = 0.835; 95%CI, 0.717-0.973; p = 0.021), and Phosphatidylcholine (O-17:0_17:1) levels (IVW, OR = 0.854; 95%CI, 0.779-0.936; p = 0.001). Meanwhile, Sphingomyelin (d38:1) was linked to an increased risk of PD (IVW, OR = 1.095; 95%CI, 1.027-1.166; p = 0.005). Among the 91 circulating inflammatory proteins, three were associated with a lower PD risk: Fibroblast growth factor 21 levels (IVW, OR = 0.817; 95%CI, 0.674-0.990; p = 0.039), Transforming growth factor-alpha levels (IVW, OR = 0.825; 95%CI, 0.683-0.998; p = 0.048), and Tumor necrosis factor receptor superfamily member 9 levels (IVW, OR = 0.846; 95%CI, 0.744-0.963; p = 0.011). Two were associated with a higher risk of PD: Interleukin-17A levels (IVW, OR = 1.285; 95%CI, 1.051-1.571; p = 0.014) and TNF-beta levels (IVW, OR = 1.088; 95%CI, 1.010-1.171; p = 0.026). Additionally, a positive correlation was observed between Phosphatidylcholine (14:0_18:2) levels and Fibroblast growth factor 21 levels (IVW, OR = 1.125; 95%CI, 1.006-1.257; p = 0.038), suggesting that Fibroblast growth factor 21 levels may serve as a mediating factor in the pathway between Phosphatidylcholine (14.0_18.2) levels and PD. The mediation effect was estimated to be -0.024, accounting for approximately 18% of the total effect. Conclusion Both plasma lipidome and circulating inflammatory proteins demonstrate a causal relationship with PD. Additionally, circulating inflammatory proteins may serve as mediators in the pathway from plasma lipidome to PD. These findings may contribute to the prediction and diagnosis of PD and potentially pave the way for targeted therapies in the future.
Collapse
Affiliation(s)
- Yidan Qin
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Lin Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Jia Song
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Quan
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Jing Xu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Jiajun Chen
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
8
|
Wu S, Schekman RW. Intercellular transmission of alpha-synuclein. Front Mol Neurosci 2024; 17:1470171. [PMID: 39324117 PMCID: PMC11422390 DOI: 10.3389/fnmol.2024.1470171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/28/2024] [Indexed: 09/27/2024] Open
Abstract
An emerging theme in Parkinson's disease (PD) is the propagation of α-synuclein pathology as the disease progresses. Research involving the injection of preformed α-synuclein fibrils (PFFs) in animal models has recapitulated the pathological spread observed in PD patients. At the cellular and molecular levels, this intercellular spread requires the translocation of α-synuclein across various membrane barriers. Recent studies have identified subcellular organelles and protein machineries that facilitate these processes. In this review, we discuss the proposed pathways for α-synuclein intercellular transmission, including unconventional secretion, receptor-mediated uptake, endosome escape and nanotube-mediated transfer. In addition, we advocate for a rigorous examination of the evidence for the localization of α-synuclein in extracellular vesicles.
Collapse
Affiliation(s)
| | - Randy W. Schekman
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
9
|
Kamano S, Ozawa D, Ikenaka K, Nagai Y. Role of Lipids in the Pathogenesis of Parkinson's Disease. Int J Mol Sci 2024; 25:8935. [PMID: 39201619 PMCID: PMC11354291 DOI: 10.3390/ijms25168935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
Aggregation of α-synuclein (αSyn) and its accumulation as Lewy bodies play a central role in the pathogenesis of Parkinson's disease (PD). However, the mechanism by which αSyn aggregates in the brain remains unclear. Biochemical studies have demonstrated that αSyn interacts with lipids, and these interactions affect the aggregation process of αSyn. Furthermore, genetic studies have identified mutations in lipid metabolism-associated genes such as glucocerebrosidase 1 (GBA1) and synaptojanin 1 (SYNJ1) in sporadic and familial forms of PD, respectively. In this review, we focus on the role of lipids in triggering αSyn aggregation in the pathogenesis of PD and propose the possibility of modulating the interaction of lipids with αSyn as a potential therapy for PD.
Collapse
Grants
- 24H00630 Ministry of Education, Culture, Sports, Science and Technology
- 21H02840 Ministry of Education, Culture, Sports, Science and Technology
- 17K19658 Ministry of Education, Culture, Sports, Science and Technology
- 20H05927 Ministry of Education, Culture, Sports, Science and Technology
- JP16ek0109018 Japan Agency for Medical Research and Development
- JP19ek0109222 Japan Agency for Medical Research and Development
- 30-3 National Center of Neurology and Psychiatry
- 30-9 National Center of Neurology and Psychiatry
- 3-9 National Center of Neurology and Psychiatry
- 6-9 National Center of Neurology and Psychiatry
Collapse
Affiliation(s)
- Shumpei Kamano
- Department of Neurology, Kindai University Faculty of Medicine, Osaka-Sayama 589-8511, Osaka, Japan; (S.K.); (D.O.)
| | - Daisaku Ozawa
- Department of Neurology, Kindai University Faculty of Medicine, Osaka-Sayama 589-8511, Osaka, Japan; (S.K.); (D.O.)
| | - Kensuke Ikenaka
- Department of Neurology, Osaka University Graduate School of Medicine, Suita 565-0871, Osaka, Japan;
| | - Yoshitaka Nagai
- Department of Neurology, Kindai University Faculty of Medicine, Osaka-Sayama 589-8511, Osaka, Japan; (S.K.); (D.O.)
- Life Science Research Institute, Kindai University, Osaka-Sayama 589-8511, Osaka, Japan
| |
Collapse
|
10
|
Agarwal A, Chandran A, Raza F, Ungureanu IM, Hilcenko C, Stott K, Bright NA, Morone N, Warren AJ, Lautenschläger J. VAMP2 regulates phase separation of α-synuclein. Nat Cell Biol 2024; 26:1296-1308. [PMID: 38951707 PMCID: PMC11322000 DOI: 10.1038/s41556-024-01451-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 05/30/2024] [Indexed: 07/03/2024]
Abstract
α-Synuclein (αSYN), a pivotal synaptic protein implicated in synucleinopathies such as Parkinson's disease and Lewy body dementia, undergoes protein phase separation. We reveal that vesicle-associated membrane protein 2 (VAMP2) orchestrates αSYN phase separation both in vitro and in cells. Electrostatic interactions, specifically mediated by VAMP2 via its juxtamembrane domain and the αSYN C-terminal region, drive phase separation. Condensate formation is specific for R-SNARE VAMP2 and dependent on αSYN lipid membrane binding. Our results delineate a regulatory mechanism for αSYN phase separation in cells. Furthermore, we show that αSYN condensates sequester vesicles and attract complexin-1 and -2, thus supporting a role in synaptic physiology and pathophysiology.
Collapse
Affiliation(s)
- Aishwarya Agarwal
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Aswathy Chandran
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Farheen Raza
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Protein and Cellular Sciences, GSK, Stevenage, UK
| | - Irina-Maria Ungureanu
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Department of Clinical Neurosciences, UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Christine Hilcenko
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, University of Cambridge, School of Clinical Medicine, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Katherine Stott
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Nicholas A Bright
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Alan J Warren
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, University of Cambridge, School of Clinical Medicine, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Janin Lautenschläger
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
11
|
Vieira TCRG, Barros CA, Domingues R, Outeiro TF. PrP meets alpha-synuclein: Molecular mechanisms and implications for disease. J Neurochem 2024; 168:1625-1639. [PMID: 37855859 DOI: 10.1111/jnc.15992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/19/2023] [Accepted: 10/01/2023] [Indexed: 10/20/2023]
Abstract
The discovery of prions has challenged dogmas and has revolutionized our understanding of protein-misfolding diseases. The concept of self-propagation via protein conformational changes, originally discovered for the prion protein (PrP), also applies to other proteins that exhibit similar behavior, such as alpha-synuclein (aSyn), a central player in Parkinson's disease and in other synucleinopathies. aSyn pathology appears to spread from one cell to another during disease progression, and involves the misfolding and aggregation of aSyn. How the transfer of aSyn between cells occurs is still being studied, but one important hypothesis involves receptor-mediated transport. Interestingly, recent studies indicate that the cellular prion protein (PrPC) may play a crucial role in this process. PrPC has been shown to act as a receptor/sensor for protein aggregates in different neurodegenerative disorders, including Alzheimer's disease and amyotrophic lateral sclerosis. Here, we provide a comprehensive overview of the current state of knowledge regarding the interaction between aSyn and PrPC and discuss its role in synucleinopathies. We examine the properties of PrP and aSyn, including their structure, function, and aggregation. Additionally, we discuss the current understanding of PrPC's role as a receptor/sensor for aSyn aggregates and identify remaining unanswered questions in this area of research. Ultimately, we posit that exploring the interaction between aSyn and PrPC may offer potential treatment options for synucleinopathies.
Collapse
Affiliation(s)
- Tuane C R G Vieira
- Institute of Medical Biochemistry Leopoldo de Meis and National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caroline A Barros
- Institute of Medical Biochemistry Leopoldo de Meis and National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renato Domingues
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
- Scientific Employee with an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
| |
Collapse
|
12
|
Barbuti PA. A-Syn(ful) MAM: A Fresh Perspective on a Converging Domain in Parkinson's Disease. Int J Mol Sci 2024; 25:6525. [PMID: 38928232 PMCID: PMC11203789 DOI: 10.3390/ijms25126525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Parkinson's disease (PD) is a disease of an unknown origin. Despite that, decades of research have provided considerable evidence that alpha-synuclein (αSyn) is central to the pathogenesis of disease. Mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) are functional domains formed at contact sites between the ER and mitochondria, with a well-established function of MAMs being the control of lipid homeostasis within the cell. Additionally, there are numerous proteins localized or enriched at MAMs that have regulatory roles in several different molecular signaling pathways required for cellular homeostasis, such as autophagy and neuroinflammation. Alterations in several of these signaling pathways that are functionally associated with MAMs are found in PD. Taken together with studies that find αSyn localized at MAMs, this has implicated MAM (dys)function as a converging domain relevant to PD. This review will highlight the many functions of MAMs and provide an overview of the literature that finds αSyn, in addition to several other PD-related proteins, localized there. This review will also detail the direct interaction of αSyn and αSyn-interacting partners with specific MAM-resident proteins. In addition, recent studies exploring new methods to investigate MAMs will be discussed, along with some of the controversies regarding αSyn, including its several conformations and subcellular localizations. The goal of this review is to highlight and provide insight on a domain that is incompletely understood and, from a PD perspective, highlight those complex interactions that may hold the key to understanding the pathomechanisms underlying PD, which may lead to the targeted development of new therapeutic strategies.
Collapse
Affiliation(s)
- Peter A Barbuti
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
13
|
Ghosh D, Biswas A, Radhakrishna M. Advanced computational approaches to understand protein aggregation. BIOPHYSICS REVIEWS 2024; 5:021302. [PMID: 38681860 PMCID: PMC11045254 DOI: 10.1063/5.0180691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/18/2024] [Indexed: 05/01/2024]
Abstract
Protein aggregation is a widespread phenomenon implicated in debilitating diseases like Alzheimer's, Parkinson's, and cataracts, presenting complex hurdles for the field of molecular biology. In this review, we explore the evolving realm of computational methods and bioinformatics tools that have revolutionized our comprehension of protein aggregation. Beginning with a discussion of the multifaceted challenges associated with understanding this process and emphasizing the critical need for precise predictive tools, we highlight how computational techniques have become indispensable for understanding protein aggregation. We focus on molecular simulations, notably molecular dynamics (MD) simulations, spanning from atomistic to coarse-grained levels, which have emerged as pivotal tools in unraveling the complex dynamics governing protein aggregation in diseases such as cataracts, Alzheimer's, and Parkinson's. MD simulations provide microscopic insights into protein interactions and the subtleties of aggregation pathways, with advanced techniques like replica exchange molecular dynamics, Metadynamics (MetaD), and umbrella sampling enhancing our understanding by probing intricate energy landscapes and transition states. We delve into specific applications of MD simulations, elucidating the chaperone mechanism underlying cataract formation using Markov state modeling and the intricate pathways and interactions driving the toxic aggregate formation in Alzheimer's and Parkinson's disease. Transitioning we highlight how computational techniques, including bioinformatics, sequence analysis, structural data, machine learning algorithms, and artificial intelligence have become indispensable for predicting protein aggregation propensity and locating aggregation-prone regions within protein sequences. Throughout our exploration, we underscore the symbiotic relationship between computational approaches and empirical data, which has paved the way for potential therapeutic strategies against protein aggregation-related diseases. In conclusion, this review offers a comprehensive overview of advanced computational methodologies and bioinformatics tools that have catalyzed breakthroughs in unraveling the molecular basis of protein aggregation, with significant implications for clinical interventions, standing at the intersection of computational biology and experimental research.
Collapse
Affiliation(s)
- Deepshikha Ghosh
- Department of Biological Sciences and Engineering, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gujarat 382355, India
| | - Anushka Biswas
- Department of Chemical Engineering, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gujarat 382355, India
| | | |
Collapse
|
14
|
Ali A, Dou T, Holman AP, Hung A, Osborne L, Pickett D, Rodriguez A, Zhaliazka K, Kurouski D. The influence of zwitterionic and anionic phospholipids on protein aggregation. Biophys Chem 2024; 306:107174. [PMID: 38211368 DOI: 10.1016/j.bpc.2024.107174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
The progressive aggregation of misfolded proteins is the underlying molecular cause of numerous pathologies including Parkinson's disease and injection and transthyretin amyloidosis. A growing body of evidence indicates that protein deposits detected in organs and tissues of patients diagnosed with such pathologies contain fragments of lipid membranes. In vitro experiments also showed that lipid membranes could strongly change the aggregation rate of amyloidogenic proteins, as well as alter the secondary structure and toxicity of oligomers and fibrils formed in their presence. In this review, the effect of large unilamellar vesicles (LUVs) composed of zwitterionic and anionic phospholipids on the aggregation rate of insulin, lysozyme, transthyretin (TTR) and α- synuclein (α-syn) will be discussed. The manuscript will also critically review the most recent findings on the lipid-induced changes in the secondary structure of protein oligomers and fibrils, as well as reveal the extent to which lipids could alter the toxicity of protein aggregates formed in their presence.
Collapse
Affiliation(s)
- Abid Ali
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States
| | - Tianyi Dou
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States
| | - Aidan P Holman
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States; Department of Entomology, Texas A&M University, College Station, TX 77843, United States
| | - Andrew Hung
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States
| | - Luke Osborne
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States
| | - Davis Pickett
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States
| | - Axell Rodriguez
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States
| | - Kiryl Zhaliazka
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States; Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, United States.
| |
Collapse
|
15
|
Runwal GM, Edwards RH. The role of α-synuclein in exocytosis. Exp Neurol 2024; 373:114668. [PMID: 38147972 DOI: 10.1016/j.expneurol.2023.114668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/28/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
The pathogenesis of degeneration in Parkinson's disease (PD) remains poorly understood but multiple lines of evidence have converged on the presynaptic protein α-synuclein (αsyn). αSyn has been shown to regulate several cellular processes, however, its normal function remains poorly understood. In this review, we will specifically focus on its role in exocytosis.
Collapse
Affiliation(s)
- Gautam M Runwal
- Departments of Neurology and Physiology, UCSF School of Medicine, United States of America; Departments of Neurology and Physiology, UCSF School of Medicine, United States of America- Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD 20815, United States of America
| | - Robert H Edwards
- Departments of Neurology and Physiology, UCSF School of Medicine, United States of America; Departments of Neurology and Physiology, UCSF School of Medicine, United States of America- Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD 20815, United States of America.
| |
Collapse
|
16
|
Moors TE, Milovanovic D. Defining a Lewy Body: Running Up the Hill of Shifting Definitions and Evolving Concepts. JOURNAL OF PARKINSON'S DISEASE 2024; 14:17-33. [PMID: 38189713 PMCID: PMC10836569 DOI: 10.3233/jpd-230183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/14/2023] [Indexed: 01/09/2024]
Abstract
Lewy bodies (LBs) are pathological hallmarks of Parkinson's disease and dementia with Lewy bodies, characterized by the accumulation of α-synuclein (αSyn) protein in the brain. While LBs were first described a century ago, their formation and morphogenesis mechanisms remain incompletely understood. Here, we present a historical overview of LB definitions and highlight the importance of semantic clarity and precise definitions when describing brain inclusions. Recent breakthroughs in imaging revealed shared features within LB subsets and the enrichment of membrane-bound organelles in these structures, challenging the conventional LB formation model. We discuss the involvement of emerging concepts of liquid-liquid phase separation, where biomolecules demix from a solution to form dense condensates, as a potential LB formation mechanism. Finally, we emphasize the need for the operational definitions of LBs based on morphological characteristics and detection protocols, particularly in studies investigating LB formation mechanisms. A better understanding of LB organization and ultrastructure can contribute to the development of targeted therapeutic strategies for synucleinopathies.
Collapse
Affiliation(s)
- Tim E. Moors
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Einstein Center for Neuroscience, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
17
|
Kowalski A, Betzer C, Larsen ST, Gregersen E, Newcombe EA, Bermejo MC, Bendtsen VW, Diemer J, Ernstsen CV, Jain S, Bou AE, Langkilde AE, Nejsum LN, Klipp E, Edwards R, Kragelund BB, Jensen PH, Nissen P. Monomeric α-synuclein activates the plasma membrane calcium pump. EMBO J 2023; 42:e111122. [PMID: 37916890 PMCID: PMC10690453 DOI: 10.15252/embj.2022111122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/19/2023] [Accepted: 10/11/2023] [Indexed: 11/03/2023] Open
Abstract
Alpha-synuclein (aSN) is a membrane-associated and intrinsically disordered protein, well known for pathological aggregation in neurodegeneration. However, the physiological function of aSN is disputed. Pull-down experiments have pointed to plasma membrane Ca2+ -ATPase (PMCA) as a potential interaction partner. From proximity ligation assays, we find that aSN and PMCA colocalize at neuronal synapses, and we show that calcium expulsion is activated by aSN and PMCA. We further show that soluble, monomeric aSN activates PMCA at par with calmodulin, but independent of the autoinhibitory domain of PMCA, and highly dependent on acidic phospholipids and membrane-anchoring properties of aSN. On PMCA, the key site is mapped to the acidic lipid-binding site, located within a disordered PMCA-specific loop connecting the cytosolic A domain and transmembrane segment 3. Our studies point toward a novel physiological role of monomeric aSN as a stimulator of calcium clearance in neurons through activation of PMCA.
Collapse
Affiliation(s)
- Antoni Kowalski
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
- Danish Research Institute of Translational Neuroscience – DANDRITEAarhus UniversityAarhusDenmark
- REPIN and Structural Biology and NMR Laboratory, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
- Department of Molecular NeurochemistryMedical University of LodzLodzPoland
- Present address:
ImmunAware ApSHørsholmDenmark
| | - Cristine Betzer
- Danish Research Institute of Translational Neuroscience – DANDRITEAarhus UniversityAarhusDenmark
- Department of BiomedicineAarhus UniversityAarhusDenmark
- Present address:
Region Midtjylland, Regionshospitalet GødstrupHerningDenmark
| | - Sigrid Thirup Larsen
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
- Danish Research Institute of Translational Neuroscience – DANDRITEAarhus UniversityAarhusDenmark
| | - Emil Gregersen
- Danish Research Institute of Translational Neuroscience – DANDRITEAarhus UniversityAarhusDenmark
- Department of BiomedicineAarhus UniversityAarhusDenmark
- Present address:
Department of Clinical MedicineAarhus UniversityAarhus NDenmark
| | - Estella A Newcombe
- REPIN and Structural Biology and NMR Laboratory, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Montaña Caballero Bermejo
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
- Danish Research Institute of Translational Neuroscience – DANDRITEAarhus UniversityAarhusDenmark
- Department Biochemistry and Molecular Biology and Genetics, IBMPUniversity of ExtremaduraBadajozSpain
| | - Viktor Wisniewski Bendtsen
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
- Danish Research Institute of Translational Neuroscience – DANDRITEAarhus UniversityAarhusDenmark
| | - Jorin Diemer
- Theoretical BiophysicsHumboldt‐Universität zu BerlinBerlinGermany
| | | | - Shweta Jain
- Departments of Neurology and PhysiologyUniversity of California San FranciscoSan FranciscoCAUSA
| | - Alicia Espiña Bou
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
- Danish Research Institute of Translational Neuroscience – DANDRITEAarhus UniversityAarhusDenmark
| | | | - Lene N Nejsum
- Department of Clinical MedicineAarhus UniversityAarhus NDenmark
| | - Edda Klipp
- Theoretical BiophysicsHumboldt‐Universität zu BerlinBerlinGermany
| | - Robert Edwards
- Departments of Neurology and PhysiologyUniversity of California San FranciscoSan FranciscoCAUSA
| | - Birthe B Kragelund
- REPIN and Structural Biology and NMR Laboratory, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Poul Henning Jensen
- Danish Research Institute of Translational Neuroscience – DANDRITEAarhus UniversityAarhusDenmark
- Department of BiomedicineAarhus UniversityAarhusDenmark
| | - Poul Nissen
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
- Danish Research Institute of Translational Neuroscience – DANDRITEAarhus UniversityAarhusDenmark
| |
Collapse
|
18
|
Horvath JD, Casas M, Kutchukian C, Sánchez SC, Pergande MR, Cologna SM, Simó S, Dixon RE, Dickson EJ. α-Synuclein-dependent increases in PIP5K1γ drive inositol signaling to promote neurotoxicity. Cell Rep 2023; 42:113244. [PMID: 37838947 PMCID: PMC11010634 DOI: 10.1016/j.celrep.2023.113244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/09/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023] Open
Abstract
Anomalous aggregation of α-synuclein (α-Syn) is a pathological hallmark of many degenerative synucleinopathies including Lewy body dementia (LBD) and Parkinson's disease (PD). Despite its strong link to disease, the precise molecular mechanisms that link α-Syn aggregation to neurodegeneration have yet to be elucidated. Here, we find that elevated α-Syn leads to an increase in the plasma membrane (PM) phosphoinositide PI(4,5)P2, which precipitates α-Syn aggregation and drives toxic increases in mitochondrial Ca2+ and reactive oxygen species leading to neuronal death. Upstream of this toxic signaling pathway is PIP5K1γ, whose abundance and localization is enhanced at the PM by α-Syn-dependent increases in ARF6. Selective inhibition of PIP5K1γ or knockout of ARF6 in neurons rescues α-Syn aggregation and cellular phenotypes of toxicity. Collectively, our data suggest that modulation of phosphoinositide metabolism may be a therapeutic target to slow neurodegeneration for PD and other related neurodegenerative disorders.
Collapse
Affiliation(s)
- Jonathan D Horvath
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA
| | - Maria Casas
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA
| | - Candice Kutchukian
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA
| | - Sara Creus Sánchez
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA
| | | | | | - Sergi Simó
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA 95616, USA
| | - Rose E Dixon
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA
| | - Eamonn J Dickson
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
19
|
Lai Y, Zhao C, Tian Z, Wang C, Fan J, Hu X, Tu J, Li T, Leitz J, Pfuetzner RA, Liu Z, Zhang S, Su Z, Burré J, Li D, Südhof TC, Zhu ZJ, Liu C, Brunger AT, Diao J. Neutral lysophosphatidylcholine mediates α-synuclein-induced synaptic vesicle clustering. Proc Natl Acad Sci U S A 2023; 120:e2310174120. [PMID: 37883437 PMCID: PMC10622907 DOI: 10.1073/pnas.2310174120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
α-synuclein (α-Syn) is a presynaptic protein that is involved in Parkinson's and other neurodegenerative diseases and binds to negatively charged phospholipids. Previously, we reported that α-Syn clusters synthetic proteoliposomes that mimic synaptic vesicles. This vesicle-clustering activity depends on a specific interaction of α-Syn with anionic phospholipids. Here, we report that α-Syn surprisingly also interacts with the neutral phospholipid lysophosphatidylcholine (lysoPC). Even in the absence of anionic lipids, lysoPC facilitates α-Syn-induced vesicle clustering but has no effect on Ca2+-triggered fusion in a single vesicle-vesicle fusion assay. The A30P mutant of α-Syn that causes familial Parkinson disease has a reduced affinity to lysoPC and does not induce vesicle clustering. Taken together, the α-Syn-lysoPC interaction may play a role in α-Syn function.
Collapse
Affiliation(s)
- Ying Lai
- National Clinical Research Center for Geriatrics, West China Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan610065, China
- Department of Molecular and Cellular Physiology, Stanford University, Palo Alto, CA94305
| | - Chunyu Zhao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai200032, China
| | - Zhiqi Tian
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH45267
| | - Chuchu Wang
- Department of Molecular and Cellular Physiology, Stanford University, Palo Alto, CA94305
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai200032, China
| | - Jiaqi Fan
- National Clinical Research Center for Geriatrics, West China Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan610065, China
| | - Xiao Hu
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH45267
| | - Jia Tu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai200032, China
| | - Tihui Li
- State Key Laboratory of Biotherapy, West China Cryo-electron Microscopy Center, West China Hospital, Sichuan University, Chengdu, Sichuan610065, China
| | - Jeremy Leitz
- Department of Molecular and Cellular Physiology, Stanford University, Palo Alto, CA94305
| | - Richard A. Pfuetzner
- Department of Molecular and Cellular Physiology, Stanford University, Palo Alto, CA94305
| | - Zhengtao Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai200032, China
| | - Shengnan Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai200032, China
| | - Zhaoming Su
- State Key Laboratory of Biotherapy, West China Cryo-electron Microscopy Center, West China Hospital, Sichuan University, Chengdu, Sichuan610065, China
| | - Jacqueline Burré
- Brain and Mind Research Institute and Appel Institute for Alzheimer’s Disease Research, Weill Cornell Medicine, New York, NY10021
| | - Dan Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai200230, China
| | - Thomas C. Südhof
- Department of Molecular and Cellular Physiology, Stanford University, Palo Alto, CA94305
- HHMI, Stanford University, Palo Alto, CA94305
| | - Zheng-Jiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai200032, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai200032, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai200032, China
| | - Axel T. Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Palo Alto, CA94305
- HHMI, Stanford University, Palo Alto, CA94305
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH45267
| |
Collapse
|
20
|
Ramirez J, Pancoe SX, Rhoades E, Petersson EJ. The Effects of Lipids on α-Synuclein Aggregation In Vitro. Biomolecules 2023; 13:1476. [PMID: 37892158 PMCID: PMC10604467 DOI: 10.3390/biom13101476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
The small neuronal protein α-synuclein (αS) is found in pre-synaptic terminals and plays a role in vesicle recycling and neurotransmission. Fibrillar aggregates of αS are the hallmark of Parkinson's disease and related neurodegenerative disorders. In both health and disease, interactions with lipids influence αS's structure and function, prompting much study of the effects of lipids on αS aggregation. A comprehensive collection (126 examples) of aggregation rate data for various αS/lipid combinations was presented, including combinations of lipid variations and mutations or post-translational modifications of αS. These data were interpreted in terms of lipid structure to identify general trends. These tabulated data serve as a resource for the community to help in the interpretation of aggregation experiments with lipids and to be potentially used as inputs for computational models of lipid effects on aggregation.
Collapse
Affiliation(s)
- Jennifer Ramirez
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA;
| | - Samantha X. Pancoe
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - Elizabeth Rhoades
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - E. James Petersson
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
21
|
Dou T, Matveyenka M, Kurouski D. Elucidation of Secondary Structure and Toxicity of α-Synuclein Oligomers and Fibrils Grown in the Presence of Phosphatidylcholine and Phosphatidylserine. ACS Chem Neurosci 2023; 14:3183-3191. [PMID: 37603792 PMCID: PMC10862479 DOI: 10.1021/acschemneuro.3c00314] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/09/2023] [Indexed: 08/23/2023] Open
Abstract
Abrupt aggregation of α-synuclein (α-Syn) in the midbrain hypothalamus and thalamus is a hallmark of Parkinson's disease (PD), the fastest growing neurodegenerative pathology, projected to strike 12 million people by 2040 worldwide. In this study, we examine the effect of two phospholipids that are present in neuronal membranes, phosphatidylcholine (PC) and phosphatidylserine (PS), on the rate of α-Syn aggregation. We found that PS accelerated α-Syn aggregation, whereas PC strongly inhibited α-Syn aggregation. We also utilized the nano-infrared imaging technique, also known as atomic force microscopy infrared (AFM-IR) spectroscopy, to investigate whether PC and PS only change the rates or also modify the secondary structure of α-Syn aggregates. We found that both phospholipids uniquely altered the secondary structure of α-Syn aggregates present at the lag and growth phase, as well as the late stage of protein aggregation. In addition, compared to the α-Syn aggregates formed in the lipid-free environment, α-Syn:PC and α-Syn:PS aggregates demonstrated higher cellular toxicity to N27 rat neurons. Interestingly, both α-Syn:PC and α-Syn:PS aggregates showed similar levels of oxidative stress, but α-Syn:PC aggregates exhibited a greater degree of mitochondrial dysfunction compared to α-Syn:PS aggregates.
Collapse
Affiliation(s)
- Tianyi Dou
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Mikhail Matveyenka
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Dmitry Kurouski
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Biomedical Engineering, Texas A&M
University, College Station, Texas 77843, United States
| |
Collapse
|
22
|
Battis K, Xiang W, Winkler J. The Bidirectional Interplay of α-Synuclein with Lipids in the Central Nervous System and Its Implications for the Pathogenesis of Parkinson's Disease. Int J Mol Sci 2023; 24:13270. [PMID: 37686080 PMCID: PMC10487772 DOI: 10.3390/ijms241713270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
The alteration and aggregation of alpha-synuclein (α-syn) play a crucial role in neurodegenerative diseases collectively termed as synucleinopathies, including Parkinson's disease (PD). The bidirectional interaction of α-syn with lipids and biomembranes impacts not only α-syn aggregation but also lipid homeostasis. Indeed, lipid composition and metabolism are severely perturbed in PD. One explanation for lipid-associated alterations may involve structural changes in α-syn, caused, for example, by missense mutations in the lipid-binding region of α-syn as well as post-translational modifications such as phosphorylation, acetylation, nitration, ubiquitination, truncation, glycosylation, and glycation. Notably, different strategies targeting the α-syn-lipid interaction have been identified and are able to reduce α-syn pathology. These approaches include the modulation of post-translational modifications aiming to reduce the aggregation of α-syn and modify its binding properties to lipid membranes. Furthermore, targeting enzymes involved in various steps of lipid metabolism and exploring the neuroprotective potential of lipids themselves have emerged as novel therapeutic approaches. Taken together, this review focuses on the bidirectional crosstalk of α-syn and lipids and how alterations of this interaction affect PD and thereby open a window for therapeutic interventions.
Collapse
Affiliation(s)
| | | | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (K.B.); (W.X.)
| |
Collapse
|
23
|
Matveyenka M, Zhaliazka K, Kurouski D. Unsaturated fatty acids uniquely alter aggregation rate of α-synuclein and insulin and change the secondary structure and toxicity of amyloid aggregates formed in their presence. FASEB J 2023; 37:e22972. [PMID: 37302013 PMCID: PMC10405295 DOI: 10.1096/fj.202300003r] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/24/2023] [Accepted: 05/01/2023] [Indexed: 06/12/2023]
Abstract
Docosahexaenoic (DHA) and arachidonic acids (ARA) are omega-3 and omega-6 long-chain polyunsaturated fatty acids (LCPUFAs). These molecules constitute a substantial portion of phospholipids in plasma membranes. Therefore, both DHA and ARA are essential diet components. Once consumed, DHA and ARA can interact with a large variety of biomolecules, including proteins such as insulin and α-synuclein (α-Syn). Under pathological conditions known as injection amyloidosis and Parkinson's disease, these proteins aggregate forming amyloid oligomers and fibrils, toxic species that exert high cell toxicity. In this study, we investigate the role of DHA and ARA in the aggregation properties of α-Syn and insulin. We found that the presence of both DHA and ARA at the equimolar concentrations strongly accelerated aggregation rates of α-Syn and insulin. Furthermore, LCPUFAs substantially altered the secondary structure of protein aggregates, whereas no noticeable changes in the fibril morphology were observed. Nanoscale Infrared analysis of α-Syn and insulin fibrils grown in the presence of both DHA and ARA revealed the presence of LCPUFAs in these aggregates. We also found that such LCPUFAs-rich α-Syn and insulin fibrils exerted significantly greater toxicities compared to the aggregates grown in the LCPUFAs-free environment. These findings show that interactions between amyloid-associated proteins and LCPUFAs can be the underlying molecular cause of neurodegenerative diseases.
Collapse
Affiliation(s)
- Mikhail Matveyenka
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Kiryl Zhaliazka
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
24
|
Panigrahi R, Krishnan R, Singh JS, Padinhateeri R, Kumar A. SUMO1 hinders α-Synuclein fibrillation by inducing structural compaction. Protein Sci 2023; 32:e4632. [PMID: 36974517 PMCID: PMC10108436 DOI: 10.1002/pro.4632] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
Small Ubiquitin-like Modifier 1 (SUMO1) is an essential protein for many cellular functions, including regulation, signaling, etc., achieved by a process known as SUMOylation, which involves covalent attachment of SUMO1 to target proteins. SUMO1 also regulates the function of several proteins via non-covalent interactions involving the hydrophobic patch in the target protein identified as SUMO Binding or Interacting Motif (SBM/SIM). Here, we demonstrate a crucial functional potential of SUMO1 mediated by its non-covalent interactions with α-Synuclein, a protein responsible for many neurodegenerative diseases called α-Synucleinopathies. SUMO1 hinders the fibrillation of α-Synuclein, an intrinsically disordered protein (IDP) that undergoes a transition to β-structures during the fibrillation process. Using a plethora of biophysical techniques, we show that SUMO1 transiently binds to the N-terminus region of α-Synuclein non-covalently and causes structural compaction, which hinders the self-association process and thereby delays the fibrillation process. On the one hand, this study demonstrates an essential functional role of SUMO1 protein concerning neurodegeneration; it also illustrates the commonly stated mechanism that IDPs carry out multiple functions by structural adaptation to suit specific target proteins, on the other. Residue-level details about the SUMO1-α-Synuclein interaction obtained here also serve as a reliable approach for investigating the detailed mechanisms of IDP functions.
Collapse
Affiliation(s)
- Rajlaxmi Panigrahi
- Department of Biosciences and BioengineeringIndian Institute of Technology (IIT) BombayMumbaiMaharashtraIndia
| | - Rakesh Krishnan
- Department of Biosciences and BioengineeringIndian Institute of Technology (IIT) BombayMumbaiMaharashtraIndia
| | - Jai Shankar Singh
- Department of Biosciences and BioengineeringIndian Institute of Technology (IIT) BombayMumbaiMaharashtraIndia
| | - Ranjith Padinhateeri
- Department of Biosciences and BioengineeringIndian Institute of Technology (IIT) BombayMumbaiMaharashtraIndia
| | - Ashutosh Kumar
- Department of Biosciences and BioengineeringIndian Institute of Technology (IIT) BombayMumbaiMaharashtraIndia
| |
Collapse
|
25
|
Zhu H, Zhang J, Dai X, Mesias VSD, Chi H, Wang C, Yeung CS, Chen Q, Liu W, Huang J. Tunable lipid-coated nanoporous silver sheet for characterization of protein-membrane interactions by surface-enhanced Raman scattering (SERS). Anal Bioanal Chem 2023:10.1007/s00216-023-04701-y. [PMID: 37083760 DOI: 10.1007/s00216-023-04701-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/14/2023] [Accepted: 04/12/2023] [Indexed: 04/22/2023]
Abstract
Membrane environments affect protein structures and functions through protein-membrane interactions in a wide range of important biological processes. To better study the effects from the lipid's hydrophilic and hydrophobic interaction with protein on different membrane regions, we developed the lipid-coated nanoporous silver sheets to provide tunable supported lipid monolayer/bilayer environments for in situ surface-enhanced Raman vibrational spectroscopy (SERS) characterizations. Under the controllable surface pressure, lipid monolayer/bilayer was coated along the microscopic curved surface of nanoporous silver sheets to serve as a cell membrane mimic as well as a barrier to avoid protein denaturation while empowering the high SERS enhancements from the underlying metallic bases allowing detection sensitivity at low physiological concentrations. Moreover, we fine-tuned the lipid packing density and controlled the orientation of the deposited lipid bilayers and monolayers to directly monitor the protein structures upon interactions with various membrane parts/positions. Our results indicate that lysozyme adopted the α-helical structure in both hydrophilic and hydrophobic interaction with lipid membrane. Interestingly, alpha-synuclein folded into the α-helical structure on the negatively charged lipid heads, whereas the hydrophobic lipid tails induced the β-sheet structural conversion of alpha-synuclein originated from its unstructured monomers. These direct observations on protein hydrophilic and hydrophobic interaction with lipid membrane might provide profound insights into the formation of the β-sheet-containing alpha-synuclein oligomers for further membrane disruptions and amyloid genesis associated with Parkinson's disease. Hence, with the controllability and tunability of lipid environments, our platform holds great promise for more general applications in investigating the influences from membranes and the correlative structures of proteins under both hydrophilic and hydrophobic effects.
Collapse
Affiliation(s)
- Hongni Zhu
- HKUST-Shenzhen Research Institute, No. 9 Yuexing First RD, Hi-Tech Park, Nanshan, , Shenzhen, 518057, China
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jianing Zhang
- HKUST-Shenzhen Research Institute, No. 9 Yuexing First RD, Hi-Tech Park, Nanshan, , Shenzhen, 518057, China
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xin Dai
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Vince St Dollente Mesias
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Huanyu Chi
- HKUST-Shenzhen Research Institute, No. 9 Yuexing First RD, Hi-Tech Park, Nanshan, , Shenzhen, 518057, China
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Congcheng Wang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Chi Shun Yeung
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Department of Civil & Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Qing Chen
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Wei Liu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Jinqing Huang
- HKUST-Shenzhen Research Institute, No. 9 Yuexing First RD, Hi-Tech Park, Nanshan, , Shenzhen, 518057, China.
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
26
|
Sansevrino R, Hoffmann C, Milovanovic D. Condensate biology of synaptic vesicle clusters. Trends Neurosci 2023; 46:293-306. [PMID: 36725404 DOI: 10.1016/j.tins.2023.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/20/2022] [Accepted: 01/10/2023] [Indexed: 01/31/2023]
Abstract
Neuronal communication crucially relies on exocytosis of neurotransmitters from synaptic vesicles (SVs) which are clustered at synapses. To ensure reliable neurotransmitter release, synapses need to maintain an adequate pool of SVs at all times. Decades of research have established that SVs are clustered by synapsin 1, an abundant SV-associated phosphoprotein. The classical view postulates that SVs are crosslinked in a scaffold of protein-protein interactions between synapsins and their binding partners. Recent studies have shown that synapsins cluster SVs via liquid-liquid phase separation (LLPS), thus providing a new framework for the organization of the synapse. We discuss the evidence for phase separation of SVs, emphasizing emerging questions related to its regulation, specificity, and reversibility.
Collapse
Affiliation(s)
- Roberto Sansevrino
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Christian Hoffmann
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany.
| |
Collapse
|
27
|
Brontesi L, Imberdis T, Ramalingam N, Dettmer U. The effects of KTKEGV repeat motif and intervening ATVA sequence on α-synuclein solubility and assembly. J Neurochem 2023; 165:246-258. [PMID: 36625497 PMCID: PMC10211470 DOI: 10.1111/jnc.15763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023]
Abstract
Alpha-synuclein (αS), the key protein in Parkinson's disease, is typically described as an intrinsically disordered protein. Consistent with this notion, several context-dependent folding states may coexist in neurons. Unfolded soluble monomers, helical monomers at membranes and helical multimers (soluble or at membranes) have all been reported and may be in an equilibrium with each other. We previously found that αS can be stabilized in its membrane-associated monomeric form by genetically increasing the hydrophobicity of the membrane-embedded half of the αS helix. αS amphipathic helix formation at membranes is governed by up to nine 11-amino acid repeats with the core motif KTKEGV. However, this repeat is only imperfectly conserved; for example, it consists of KAKEGV in repeat #1, KTKEQV in repeat #5, and AVVTGV in the poorly conserved repeat #6. Here we explored the effect of perfecting the αS core repeat to nine times KTKEGV ("9KV") and found by sequential protein extraction that this engineered mutant accumulates in the cytosolic phase of neural cells. Intact-cell cross-linking trapped a part of the cytosolic portion at multimeric positions (30, 60, 80, 100 kDa). Thus, compared to wild-type αS, αS 9KV seems less prone to populating the membrane-associated monomeric form. Removing the "ATVA" intervening amino-acid sequence between repeats 4 and 5 slightly increased cytosolic localization while adding "ATVA" in between all repeats 1-8 caused αS to be trapped as a monomer in membrane fractions. Our results contribute to an ongoing debate on the dynamic structure of αS, highlighting that wild-type αS is unlikely to be fully multimeric/monomeric or fully cytosolic/membrane-associated in cells, but protein engineering can create αS variants that preferentially adopt a certain state. Overall, the imperfect nature of the KTKEGV repeat motifs and the presence of ATVA in between repeats 4 and 5 seem to prevent a strong cytosolic localization of αS and thus play a major role in the protein's ability to dynamically populate cytosolic vs. membrane-associated and monomeric vs. multimeric states.
Collapse
Affiliation(s)
| | | | - Nagendran Ramalingam
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
28
|
Interfacial properties of α-synuclein's Parkinsonian variants. Biophys Chem 2023; 297:107006. [PMID: 37019052 DOI: 10.1016/j.bpc.2023.107006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
Human alpha-synuclein (αS) is associated with the occurrence of Parkinson's disease. In the past decade, six autosomally dominant mutations have been identified in αS (SNCA) gene that translate into A30P, E46K, H50Q, G51D, A53E, and A53T mutations in the protein. These mutations alter the electrostatics and hydrophobicity of a cardinal region of the protein. A comprehensive comparison of interfacial properties of these Parkinsonian αS variants is crucial to understand their membrane dynamics. Here, we investigated the interfacial activity of these αS variants at air-aqueous interface. All the αS variants were found to possess comparable surface activity of ∼20-22 mN/m. Compression/expansion isotherms reveal a very distinct behaviour of the A30P variant compared to others. The Blodgett-deposited films were analysed using CD and LD spectroscopy as well as the atomic force microscopy. All the variants adopted predominantly α-helical conformation in these films. Atomic force microscopy of the Langmuir-Blodgett films revealed self-assembly at the interface. The lipid-penetration activity was also investigated using zwitterionic and negatively charged lipid monolayers.
Collapse
|
29
|
Liquid-liquid Phase Separation of α-Synuclein: A New Mechanistic Insight for α-Synuclein Aggregation Associated with Parkinson's Disease Pathogenesis. J Mol Biol 2023; 435:167713. [PMID: 35787838 DOI: 10.1016/j.jmb.2022.167713] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023]
Abstract
Aberrant aggregation of the misfolded presynaptic protein, α-Synuclein (α-Syn) into Lewy body (LB) and Lewy neuritis (LN) is a major pathological hallmark of Parkinson's disease (PD) and other synucleinopathies. Numerous studies have suggested that prefibrillar and fibrillar species of the misfolded α-Syn aggregates are responsible for cell death in PD pathogenesis. However, the precise molecular events during α-Syn aggregation, especially in the early stages, remain elusive. Emerging evidence has demonstrated that liquid-liquid phase separation (LLPS) of α-Syn occurs in the nucleation step of α-Syn aggregation, which offers an alternate non-canonical aggregation pathway in the crowded microenvironment. The liquid-like α-Syn droplets gradually undergo an irreversible liquid-to-solid phase transition into amyloid-like hydrogel entrapping oligomers and fibrils. This new mechanism of α-Syn LLPS and gel formation might represent the molecular basis of cellular toxicity associated with PD. This review aims to demonstrate the recent development of α-Syn LLPS, the underlying mechanism along with the microscopic events of aberrant phase transition. This review further discusses how several intrinsic and extrinsic factors regulate the thermodynamics and kinetics of α-Syn LLPS and co-LLPS with other proteins, which might explain the pathophysiology of α-Syn in various neurodegenerative diseases.
Collapse
|
30
|
The Role of α-Synuclein in SNARE-mediated Synaptic Vesicle Fusion. J Mol Biol 2023; 435:167775. [PMID: 35931109 DOI: 10.1016/j.jmb.2022.167775] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023]
Abstract
Neuronal communication depends on exquisitely regulated membrane fusion between synaptic vesicles and presynaptic neurons, which results in neurotransmitter release in precisely timed patterns. Presynaptic dysfunctions are known to occur prior to the onset of neurodegenerative diseases, including Parkinson's disease. Synaptic accumulation of α-synuclein (α-Syn) oligomers has been implicated in the pathway leading to such outcomes. α-Syn oligomers exert aberrant effects on presynaptic fusion machinery through their interactions with synaptic vesicles and proteins. Here, we summarize in vitro bulk and single-vesicle assays for investigating the functions of α-Syn monomers and oligomers in synaptic vesicle fusion and then discuss the current understanding of the roles of α-Syn monomers and oligomers in synaptic vesicle fusion. Finally, we suggest a new therapeutic avenue specifically targeting the mechanisms of α-Syn oligomer toxicity rather than the oligomer itself.
Collapse
|
31
|
Gao V, Briano JA, Komer LE, Burré J. Functional and Pathological Effects of α-Synuclein on Synaptic SNARE Complexes. J Mol Biol 2023; 435:167714. [PMID: 35787839 PMCID: PMC10472340 DOI: 10.1016/j.jmb.2022.167714] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023]
Abstract
α-Synuclein is an abundant protein at the neuronal synapse that has been implicated in Parkinson's disease for over 25 years and characterizes the hallmark pathology of a group of neurodegenerative diseases now known as the synucleinopathies. Physiologically, α-synuclein exists in an equilibrium between a synaptic vesicle membrane-bound α-helical multimer and a cytosolic largely unstructured monomer. Through its membrane-bound state, α-synuclein functions in neurotransmitter release by modulating several steps in the synaptic vesicle cycle, including synaptic vesicle clustering and docking, SNARE complex assembly, and homeostasis of synaptic vesicle pools. These functions have been ascribed to α-synuclein's interactions with the synaptic vesicle SNARE protein VAMP2/synaptobrevin-2, the synaptic vesicle-attached synapsins, and the synaptic vesicle membrane itself. How α-synuclein affects these processes, and whether disease is due to loss-of-function or gain-of-toxic-function of α-synuclein remains unclear. In this review, we provide an in-depth summary of the existing literature, discuss possible reasons for the discrepancies in the field, and propose a working model that reconciles the findings in the literature.
Collapse
Affiliation(s)
- Virginia Gao
- Appel Alzheimer's Disease Research Institute & Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA; Department of Neurology, New York Presbyterian/Weill Cornell Medicine, New York, NY, USA.
| | - Juan A Briano
- Appel Alzheimer's Disease Research Institute & Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Lauren E Komer
- Appel Alzheimer's Disease Research Institute & Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA. https://www.twitter.com/lauren_komer
| | - Jacqueline Burré
- Appel Alzheimer's Disease Research Institute & Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
32
|
Lysophospholipids: A Potential Drug Candidates for Neurodegenerative Disorders. Biomedicines 2022; 10:biomedicines10123126. [PMID: 36551882 PMCID: PMC9775253 DOI: 10.3390/biomedicines10123126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases (NDs) commonly present misfolded and aggregated proteins. Considerable research has been performed to unearth the molecular processes underpinning this pathological aggregation and develop therapeutic strategies targeting NDs. Fibrillary deposits of α-synuclein (α-Syn), a highly conserved and thermostable protein, are a critical feature in the development of NDs such as Alzheimer's disease (AD), Lewy body disease (LBD), Parkinson's disease (PD), and multiple system atrophy (MSA). Inhibition of α-Syn aggregation can thus serve as a potential approach for therapeutic intervention. Recently, the degradation of target proteins by small molecules has emerged as a new therapeutic modality, gaining the hotspot in pharmaceutical research. Additionally, interest is growing in the use of food-derived bioactive compounds as intervention agents against NDs via functional foods and dietary supplements. According to reports, dietary bioactive phospholipids may have cognition-enhancing and neuroprotective effects, owing to their abilities to influence cognition and mental health in vivo and in vitro. However, the mechanisms by which lipids may prevent the pathological aggregation of α-Syn warrant further clarification. Here, we review evidence for the potential mechanisms underlying this effect, with a particular focus on how porcine liver decomposition product (PLDP)-derived lysophospholipids (LPLs) may inhibit α-Syn aggregation.
Collapse
|
33
|
Andersson A, Fornasier M, Makasewicz K, Pálmadóttir T, Linse S, Sparr E, Jönsson P. Single-vesicle intensity and colocalization fluorescence microscopy to study lipid vesicle fusion, fission, and lipid exchange. Front Mol Neurosci 2022; 15:1007699. [PMID: 36533132 PMCID: PMC9751204 DOI: 10.3389/fnmol.2022.1007699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/18/2022] [Indexed: 12/19/2023] Open
Abstract
Interactions of lipid vesicles play important roles in a large variety of functions and dysfunctions in the human body. Vital for several biochemical functions is the interaction between monomeric proteins and lipid membranes, and the induced phenomena such as fusion between vesicles and cell membranes, lipid exchange between the membranes, or vesicle fission. Identification of single events and their frequency of occurrence would provide valuable information about protein-lipid interactions in both healthy and degenerative pathways. In this work, we present a single-vesicle intensity and colocalization fluorescence microscopy assay with a custom-written MATLAB analysis program. The assay can be used to study lipid exchange as well as vesicle fusion and fission between two vesicle populations labeled with different fluorescent dyes. Vesicles from the two populations are first mixed and docked to a glass surface. The sample is then simultaneously imaged using two separate wavelength channels monitoring intensity changes and colocalization of vesicles from the two populations. The monomeric pre-synaptic protein α-synuclein (α-syn) and small unilamellar vesicles consisting of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dioleoyl-sn-glycero-3-phospho-L-serine, (DOPS), and monosialotetrahexosylganglioside (GM1) were used as a model system to evaluate the method. From our analysis, neither α-syn induced fusion nor lipid exchange was observed for vesicles consisting of DOPC:DOPS (7:3). However, including 10% GM1 in the vesicles resulted in a 91% increase of the number of vesicles within 10 min, combined with a 57% decrease in the average fluorescence intensity per vesicle, indicating that approximately half of the vesicles underwent fission. The method facilitates the study of lipid vesicle fusion, fission, and lipid exchange under controlled conditions. It also allows these events to be studied for systems with more complex composition including exosomes and lipid-based drug carriers, to enable a better understanding of their physicochemical properties.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Peter Jönsson
- Department of Chemistry, Lund University, Lund, Sweden
| |
Collapse
|
34
|
Yoo G, An HJ, Yeou S, Lee NK. α-Synuclein Disrupts Vesicle Fusion by Two Mutant-Specific Mechanisms. Mol Cells 2022; 45:806-819. [PMID: 36380732 PMCID: PMC9676983 DOI: 10.14348/molcells.2022.0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
Synaptic accumulation of α-synuclein (α-Syn) oligomers and their interactions with VAMP2 have been reported to be the basis of synaptic dysfunction in Parkinson's disease (PD). α-Syn mutants associated with familial PD have also been known to be capable of interacting with VAMP2, but the exact mechanisms resulting from those interactions to eventual synaptic dysfunction are still unclear. Here, we investigate the effect of α-Syn mutant oligomers comprising A30P, E46K, and A53T on VAMP2-embedded vesicles. Specifically, A30P and A53T oligomers cluster vesicles in the presence of VAMP2, which is a shared mechanism with wild type α-Syn oligomers induced by dopamine. On the other hand, E46K oligomers reduce the membrane mobility of the planar bilayers, as revealed by single-particle tracking, and permeabilize the membranes in the presence of VAMP2. In the absence of VAMP2 interactions, E46K oligomers enlarge vesicles by fusing with one another. Our results clearly demonstrate that α-Syn mutant oligomers have aberrant effects on VAMP2-embedded vesicles and the disruption types are distinct depending on the mutant types. This work may provide one of the possible clues to explain the α-Syn mutant-type dependent pathological heterogeneity of familial PD.
Collapse
Affiliation(s)
- Gyeongji Yoo
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Hyeong Jeon An
- Department of Physics, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Sanghun Yeou
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Nam Ki Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
35
|
Reimer L, Gram H, Jensen NM, Betzer C, Yang L, Jin L, Shi M, Boudeffa D, Fusco G, De Simone A, Kirik D, Lashuel HA, Zhang J, Jensen PH. Protein kinase R dependent phosphorylation of α-synuclein regulates its membrane binding and aggregation. PNAS NEXUS 2022; 1:pgac259. [PMID: 36712380 PMCID: PMC9802061 DOI: 10.1093/pnasnexus/pgac259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022]
Abstract
Aggregated α-synuclein (α-syn) accumulates in the neuronal Lewy body (LB) inclusions in Parkinson's disease (PD) and LB dementia. Yet, under nonpathological conditions, monomeric α-syn is hypothesized to exist in an equilibrium between disordered cytosolic- and partially α-helical lipid-bound states: a feature presumably important in synaptic vesicle release machinery. The exact underlying role of α-syn in these processes, and the mechanisms regulating membrane-binding of α-syn remains poorly understood. Herein we demonstrate that Protein kinase R (PKR) can phosphorylate α-syn at several Ser/Thr residues located in the membrane-binding region that is essential for α-syn's vesicle-interactions. α-Syn phosphorylated by PKR or α-syn isolated from PKR overexpressing cells, exhibit decreased binding to lipid membranes. Phosphorylation of Thr64 and Thr72 appears as the major contributor to this effect, as the phosphomimetic Thr64Glu/Thr72Glu-α-syn mutant displays reduced overall attachment to brain vesicles due to a decrease in vesicle-affinity of the last two thirds of α-syn's membrane binding region. This allows enhancement of the "double-anchor" vesicle-binding mechanism that tethers two vesicles and thus promote the clustering of presynaptic vesicles in vitro. Furthermore, phosphomimetic Thr64Glu/Thr72Glu-α-syn inhibits α-syn oligomerization and completely abolishes nucleation, elongation, and seeding of α-syn fibrillation in vitro and in cells, and prevents trans-synaptic spreading of aggregated α-syn pathology in organotypic hippocampal slice cultures. Overall, our findings demonstrate that normal and abnormal functions of α-syn, like membrane-binding, synaptic vesicle clustering and aggregation can be regulated by phosphorylation, e.g., via PKR. Mechanisms that could potentially be modulated for the benefit of patients suffering from α-syn aggregate-related diseases.
Collapse
Affiliation(s)
| | - Hjalte Gram
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, 8000 Aarhus C, Denmark,Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Nanna Møller Jensen
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, 8000 Aarhus C, Denmark,Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Cristine Betzer
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, 8000 Aarhus C, Denmark,Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Li Yang
- Department of Pathology, University of Washington School of Medicine, Seattle WA 98195, USA
| | - Lorrain Jin
- Department of Pathology, University of Washington School of Medicine, Seattle WA 98195, USA
| | - Min Shi
- Department of Pathology, University of Washington School of Medicine, Seattle WA 98195, USA
| | - Driss Boudeffa
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences Brain Mind Institute, Station 19, 1015 Lausanne, Switzerland
| | - Giuliana Fusco
- Centre for Misfolding Diseases,Department of Chemistry, University of Cambridge, CB2 1EW, UK
| | | | - Deniz Kirik
- Brain Repair and Imaging in Neural Systems, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences Brain Mind Institute, Station 19, 1015 Lausanne, Switzerland
| | - Jing Zhang
- Department of Pathology, University of Washington School of Medicine, Seattle WA 98195, USA,Department of Pathology, Zhejiang University School of Medicine and the First Affiliated Hospital, 310003 Hangzhou, China
| | - Poul Henning Jensen
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, 8000 Aarhus C, Denmark,Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
36
|
Fu Y, He Y, Phan K, Bhatia S, Pickford R, Wu P, Dzamko N, Halliday GM, Kim WS. Increased unsaturated lipids underlie lipid peroxidation in synucleinopathy brain. Acta Neuropathol Commun 2022; 10:165. [PMID: 36376990 PMCID: PMC9664712 DOI: 10.1186/s40478-022-01469-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/24/2022] [Indexed: 11/15/2022] Open
Abstract
Lipid peroxidation is a process of oxidative degradation of cellular lipids that is increasingly recognized as an important factor in the pathogenesis of neurodegenerative diseases. We were therefore interested in the manifestation of lipid peroxidation in synucleinopathies, a group of neurodegenerative diseases characterized by the central pathology of α-synuclein aggregates, including Parkinson's disease, multiple system atrophy, dementia with Lewy bodies and Alzheimer's disease with Lewy bodies. We assessed lipid peroxidation products, lipid aldehydes, in the amygdala, a common disease-affected region in synucleinopathies, and in the visual cortex, a disease-unaffected region. We found that the levels of lipid aldehydes were significantly increased in the amygdala, but not in the visual cortex. We hypothesized that these increases are due to increases in the abundance of unsaturated lipids, since lipid aldehydes are formed from unsaturated lipids. We undertook a comprehensive analysis of membrane lipids using liquid chromatography-mass spectrometry and found that unsaturated phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine and sphingomyelin were specifically elevated in the amygdala and correlated with increases in lipid aldehydes. Furthermore, unsaturated phosphatidylethanolamine levels were associated with soluble α-synuclein. Put together, these results suggest that manifestation of lipid peroxidation is prevalent in synucleinopathies and is likely to be due to increases in unsaturated membrane lipids. Our findings underscore the importance of lipid peroxidation in α-synuclein pathology and in membrane structure maintenance.
Collapse
Affiliation(s)
- YuHong Fu
- Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Ying He
- Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Katherine Phan
- Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Surabhi Bhatia
- Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Russell Pickford
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, Australia
| | - Ping Wu
- Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Nicolas Dzamko
- Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Glenda M Halliday
- Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, University of New South Wales & Neuroscience Research Australia, Sydney, NSW, Australia
| | - Woojin Scott Kim
- Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia.
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.
- School of Medical Sciences, University of New South Wales & Neuroscience Research Australia, Sydney, NSW, Australia.
| |
Collapse
|
37
|
Galper J, Kim WS, Dzamko N. LRRK2 and Lipid Pathways: Implications for Parkinson's Disease. Biomolecules 2022; 12:1597. [PMID: 36358947 PMCID: PMC9687231 DOI: 10.3390/biom12111597] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 04/10/2024] Open
Abstract
Genetic alterations in the LRRK2 gene, encoding leucine-rich repeat kinase 2, are a common risk factor for Parkinson's disease. How LRRK2 alterations lead to cell pathology is an area of ongoing investigation, however, multiple lines of evidence suggest a role for LRRK2 in lipid pathways. It is increasingly recognized that in addition to being energy reservoirs and structural entities, some lipids, including neural lipids, participate in signaling cascades. Early investigations revealed that LRRK2 localized to membranous and vesicular structures, suggesting an interaction of LRRK2 and lipids or lipid-associated proteins. LRRK2 substrates from the Rab GTPase family play a critical role in vesicle trafficking, lipid metabolism and lipid storage, all processes which rely on lipid dynamics. In addition, LRRK2 is associated with the phosphorylation and activity of enzymes that catabolize plasma membrane and lysosomal lipids. Furthermore, LRRK2 knockout studies have revealed that blood, brain and urine exhibit lipid level changes, including alterations to sterols, sphingolipids and phospholipids, respectively. In human LRRK2 mutation carriers, changes to sterols, sphingolipids, phospholipids, fatty acyls and glycerolipids are reported in multiple tissues. This review summarizes the evidence regarding associations between LRRK2 and lipids, and the functional consequences of LRRK2-associated lipid changes are discussed.
Collapse
Affiliation(s)
- Jasmin Galper
- Charles Perkins Centre and Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia
| | - Woojin S Kim
- Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia
| | - Nicolas Dzamko
- Charles Perkins Centre and Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia
- Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia
| |
Collapse
|
38
|
Quaternary structure of patient-homogenate amplified α-synuclein fibrils modulates seeding of endogenous α-synuclein. Commun Biol 2022; 5:1040. [PMID: 36180728 PMCID: PMC9525671 DOI: 10.1038/s42003-022-03948-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/02/2022] [Indexed: 11/08/2022] Open
Abstract
Parkinson's disease (PD) and Multiple System Atrophy (MSA) are progressive and unremitting neurological diseases that are neuropathologically characterized by α-synuclein inclusions. Increasing evidence supports the aggregation of α-synuclein in specific brain areas early in the disease course, followed by the spreading of α-synuclein pathology to multiple brain regions. However, little is known about how the structure of α-synuclein fibrils influence its ability to seed endogenous α-synuclein in recipient cells. Here, we aggregated α-synuclein by seeding with homogenates of PD- and MSA-confirmed brain tissue, determined the resulting α-synuclein fibril structures by cryo-electron microscopy, and characterized their seeding potential in mouse primary oligodendroglial cultures. The combined analysis shows that the two patient material-amplified α-synuclein fibrils share a similar protofilament fold but differ in their inter-protofilament interface and their ability to recruit endogenous α-synuclein. Our study indicates that the quaternary structure of α-synuclein fibrils modulates the seeding of α-synuclein pathology inside recipient cells. It thus provides an important advance in the quest to understand the connection between the structure of α-synuclein fibrils, cellular seeding/spreading, and ultimately the clinical manifestations of different synucleinopathies.
Collapse
|
39
|
Thorne NJ, Tumbarello DA. The relationship of alpha-synuclein to mitochondrial dynamics and quality control. Front Mol Neurosci 2022; 15:947191. [PMID: 36090250 PMCID: PMC9462662 DOI: 10.3389/fnmol.2022.947191] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/02/2022] [Indexed: 11/22/2022] Open
Abstract
Maintenance of mitochondrial health is essential for neuronal survival and relies upon dynamic changes in the mitochondrial network and effective mitochondrial quality control mechanisms including the mitochondrial-derived vesicle pathway and mitophagy. Mitochondrial dysfunction has been implicated in driving the pathology of several neurodegenerative diseases, including Parkinson’s disease (PD) where dopaminergic neurons in the substantia nigra are selectively degenerated. In addition, many genes with PD-associated mutations have defined functions in organelle quality control, indicating that dysregulation in mitochondrial quality control may represent a key element of pathology. The most well-characterized aspect of PD pathology relates to alpha-synuclein; an aggregation-prone protein that forms intracellular Lewy-body inclusions. Details of how alpha-synuclein exerts its toxicity in PD is not completely known, however, dysfunctional mitochondria have been observed in both PD patients and models of alpha-synuclein pathology. Accordingly, an association between alpha-synuclein and mitochondrial function has been established. This relates to alpha-synuclein’s role in mitochondrial transport, dynamics, and quality control. Despite these relationships, there is limited research defining the direct mechanisms linking alpha-synuclein to mitochondrial dynamics and quality control. In this review, we will discuss the current literature addressing this association and provide insight into the proposed mechanisms promoting these functional relationships. We will also consider some of the alternative mechanisms linking alpha-synuclein with mitochondrial dynamics and speculate what the relationship between alpha-synuclein and mitochondria might mean both physiologically and in relation to PD.
Collapse
|
40
|
Ramos-Martín F, D'Amelio N. Biomembrane lipids: When physics and chemistry join to shape biological activity. Biochimie 2022; 203:118-138. [PMID: 35926681 DOI: 10.1016/j.biochi.2022.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/13/2022] [Accepted: 07/21/2022] [Indexed: 11/02/2022]
Abstract
Biomembranes constitute the first lines of defense of cells. While small molecules can often permeate cell walls in bacteria and plants, they are generally unable to penetrate the barrier constituted by the double layer of phospholipids, unless specific receptors or channels are present. Antimicrobial or cell-penetrating peptides are in fact highly specialized molecules able to bypass this barrier and even discriminate among different cell types. This capacity is made possible by the intrinsic properties of its phospholipids, their distribution between the internal and external leaflet, and their ability to mutually interact, modulating the membrane fluidity and the exposition of key headgroups. Although common phospholipids can be found in the membranes of most organisms, some are characteristic of specific cell types. Here, we review the properties of the most common lipids and describe how they interact with each other in biomembrane. We then discuss how their assembly in bilayers determines some key physical-chemical properties such as permeability, potential and phase status. Finally, we describe how the exposition of specific phospholipids determines the recognition of cell types by membrane-targeting molecules.
Collapse
Affiliation(s)
- Francisco Ramos-Martín
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, 80039, France.
| | - Nicola D'Amelio
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, 80039, France.
| |
Collapse
|
41
|
Kulkarni AS, Burns MR, Brundin P, Wesson DW. Linking α-synuclein-induced synaptopathy and neural network dysfunction in early Parkinson's disease. Brain Commun 2022; 4:fcac165. [PMID: 35822101 PMCID: PMC9272065 DOI: 10.1093/braincomms/fcac165] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/11/2022] [Accepted: 06/20/2022] [Indexed: 01/18/2023] Open
Abstract
The prodromal phase of Parkinson's disease is characterized by aggregation of the misfolded pathogenic protein α-synuclein in select neural centres, co-occurring with non-motor symptoms including sensory and cognitive loss, and emotional disturbances. It is unclear whether neuronal loss is significant during the prodrome. Underlying these symptoms are synaptic impairments and aberrant neural network activity. However, the relationships between synaptic defects and network-level perturbations are not established. In experimental models, pathological α-synuclein not only impacts neurotransmission at the synaptic level, but also leads to changes in brain network-level oscillatory dynamics-both of which likely contribute to non-motor deficits observed in Parkinson's disease. Here we draw upon research from both human subjects and experimental models to propose a 'synapse to network prodrome cascade' wherein before overt cell death, pathological α-synuclein induces synaptic loss and contributes to aberrant network activity, which then gives rise to prodromal symptomology. As the disease progresses, abnormal patterns of neural activity ultimately lead to neuronal loss and clinical progression of disease. Finally, we outline goals and research needed to unravel the basis of functional impairments in Parkinson's disease and other α-synucleinopathies.
Collapse
Affiliation(s)
- Aishwarya S Kulkarni
- Department of Pharmacology & Therapeutics, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
| | - Matthew R Burns
- Department of Neurology, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
- Norman Fixel Institute for Neurological Disorders, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
| | - Patrik Brundin
- Pharma Research and Early Development (pRED), F. Hoffman-La Roche, Little Falls, NJ, USA
| | - Daniel W Wesson
- Department of Pharmacology & Therapeutics, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
- Norman Fixel Institute for Neurological Disorders, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
| |
Collapse
|
42
|
Maltseva D, Gonella G, Ruysschaert JM, Bonn M. Phospholipid acyl tail affects lipid headgroup orientation and membrane hydration. J Chem Phys 2022; 156:234706. [PMID: 35732527 DOI: 10.1063/5.0092237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Biomembrane hydration is crucial for understanding processes at biological interfaces. While the effect of the lipid headgroup has been studied extensively, the effect (if any) of the acyl chain chemical structure on lipid-bound interfacial water has remained elusive. We study model membranes composed of phosphatidylethanolamine (PE) and phosphatidylcholine (PC) lipids, the most abundant lipids in biomembranes. We explore the extent to which the lipid headgroup packing and associated water organization are affected by the lipid acyl tail unsaturation and chain length. To this end, we employ a combination of surface-sensitive techniques, including sum-frequency generation spectroscopy, surface pressure measurements, and Brewster angle microscopy imaging. Our results reveal that the acyl tail structure critically affects the headgroup phosphate orientational distribution and lipid-associated water molecules, for both PE and PC lipid monolayers at the air/water interface. These insights reveal the importance of acyl chain chemistry in determining not only membrane fluidity but also membrane hydration.
Collapse
Affiliation(s)
- Daria Maltseva
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Grazia Gonella
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Jean-Marie Ruysschaert
- Laboratory for the Structure and Function of Biological Membranes, Université Libre de Bruxelles, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
43
|
Venkatesan D, Iyer M, S RW, Narayanasamy A, Kamalakannan S, Valsala Gopalakrishnan A, Vellingiri B. Genotypic-Phenotypic Analysis, Metabolic Profiling and Clinical Correlations in Parkinson's Disease Patients from Tamil Nadu Population, India. J Mol Neurosci 2022; 72:1724-1737. [PMID: 35676593 DOI: 10.1007/s12031-022-02028-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/07/2022] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is an ageing disorder caused by dopaminergic neuron depletion with age. Growing research in the field of metabolomics is expected to play a major role in PD diagnosis, prognosis and therapeutic development. In this study, we looked at how SNCA and GBA1 gene mutations, as well as metabolomic abnormalities of kynurenine and cholesterol metabolites, were linked to alpha-synuclein (α-syn) and clinical characteristics in three different PD age groups. In all three age groups, a metabolomics analysis revealed an increased amount of 27-hydroxycholesterol (27-OHC) and a lower level of kynurenic acid (KYNA). The effect of 27-OHC on SNCA and GBA1 modifications was shown to be significant (P < 0.05) only in the A53T variant of the SNCA gene in late-onset and early-onset PD groups, whereas GBA1 variants were not. Based on the findings, we observed that the increase in 27-OHC would have elevated α-syn expression, which triggered the changes in the SNCA gene but not in the GBA1 gene. Missense variations in the SNCA and GBA1 genes were investigated using the sequencing technique. SNCA mutation A53T has been linked to increased PD symptoms, but there is no phenotypic link between GBA1 and PD. As a result of the data, we hypothesise that cholesterol and kynurenine metabolites play an important role in PD, with the metabolite 27-OHC potentially serving as a PD biomarker. These findings will aid in the investigation of pathogenic causes as well as the development of therapeutic and preventative measures for PD.
Collapse
Affiliation(s)
- Dhivya Venkatesan
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Mahalaxmi Iyer
- Livestock Farming, & Bioresources Technology, Tamil Nadu, India
| | - Robert Wilson S
- Department of Neurology and Neurosurgery, SRM University, Kattankulathur, 603 203, Kancheepuram District, Tamil Nadu, India
| | - Arul Narayanasamy
- Disease Proteomic Laboratory, Department of Zoology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Siva Kamalakannan
- Ministry of Health and Family Welfare, National Centre for Disease Control, Civil Line, 22-Sham Nath Marg, Delhi, 110054, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632 014, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| |
Collapse
|
44
|
Tarutani A, Adachi T, Akatsu H, Hashizume Y, Hasegawa K, Saito Y, Robinson AC, Mann DMA, Yoshida M, Murayama S, Hasegawa M. Ultrastructural and biochemical classification of pathogenic tau, α-synuclein and TDP-43. Acta Neuropathol 2022; 143:613-640. [PMID: 35513543 PMCID: PMC9107452 DOI: 10.1007/s00401-022-02426-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/12/2022] [Accepted: 04/23/2022] [Indexed: 12/20/2022]
Abstract
Intracellular accumulation of abnormal proteins with conformational changes is the defining neuropathological feature of neurodegenerative diseases. The pathogenic proteins that accumulate in patients' brains adopt an amyloid-like fibrous structure and exhibit various ultrastructural features. The biochemical analysis of pathogenic proteins in sarkosyl-insoluble fractions extracted from patients' brains also shows disease-specific features. Intriguingly, these ultrastructural and biochemical features are common within the same disease group. These differences among the pathogenic proteins extracted from patients' brains have important implications for definitive diagnosis of the disease, and also suggest the existence of pathogenic protein strains that contribute to the heterogeneity of pathogenesis in neurodegenerative diseases. Recent experimental evidence has shown that prion-like propagation of these pathogenic proteins from host cells to recipient cells underlies the onset and progression of neurodegenerative diseases. The reproduction of the pathological features that characterize each disease in cellular and animal models of prion-like propagation also implies that the structural differences in the pathogenic proteins are inherited in a prion-like manner. In this review, we summarize the ultrastructural and biochemical features of pathogenic proteins extracted from the brains of patients with neurodegenerative diseases that accumulate abnormal forms of tau, α-synuclein, and TDP-43, and we discuss how these disease-specific properties are maintained in the brain, based on recent experimental insights.
Collapse
Affiliation(s)
- Airi Tarutani
- Department of Brain and Neuroscience, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Tadashi Adachi
- Division of Neuropathology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Tottori, 683-8503, Japan
| | - Hiroyasu Akatsu
- Department of Neuropathology, Choju Medical Institute, Fukushimura Hospital, Aichi, 441-8124, Japan
- Department of Community-Based Medical Education, Nagoya City University Graduate School of Medical Sciences, Aichi, 467-8601, Japan
| | - Yoshio Hashizume
- Department of Neuropathology, Choju Medical Institute, Fukushimura Hospital, Aichi, 441-8124, Japan
| | - Kazuko Hasegawa
- Division of Neurology, National Hospital Organization, Sagamihara National Hospital, Kanagawa, 252-0392, Japan
| | - Yuko Saito
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
- Department of Pathology and Laboratory Medicine, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, 187-8551, Japan
| | - Andrew C Robinson
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience and Experimental Psychology, Salford Royal Hospital, The University of Manchester, Salford, M6 8HD, UK
| | - David M A Mann
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience and Experimental Psychology, Salford Royal Hospital, The University of Manchester, Salford, M6 8HD, UK
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Aichi, 480-1195, Japan
| | - Shigeo Murayama
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
- Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Osaka, 565-0871, Japan
| | - Masato Hasegawa
- Department of Brain and Neuroscience, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan.
| |
Collapse
|
45
|
Jin Y, Li F, Sonoustoun B, Kondru NC, Martens YA, Qiao W, Heckman MG, Ikezu TC, Li Z, Burgess JD, Amerna D, O’Leary J, DeTure MA, Zhao J, McLean PJ, Dickson DW, Ross OA, Bu G, Zhao N. APOE4 exacerbates α-synuclein seeding activity and contributes to neurotoxicity in Alzheimer's disease with Lewy body pathology. Acta Neuropathol 2022; 143:641-662. [PMID: 35471463 PMCID: PMC9107450 DOI: 10.1007/s00401-022-02421-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 01/17/2023]
Abstract
Approximately half of Alzheimer's disease (AD) brains have concomitant Lewy pathology at autopsy, suggesting that α-synuclein (α-SYN) aggregation is a regulated event in the pathogenesis of AD. Genome-wide association studies revealed that the ε4 allele of the apolipoprotein E (APOE4) gene, the strongest genetic risk factor for AD, is also the most replicated genetic risk factor for Lewy body dementia (LBD), signifying an important role of APOE4 in both amyloid-β (Aβ) and α-SYN pathogenesis. How APOE4 modulates α-SYN aggregation in AD is unclear. In this study, we aimed to determine how α-SYN is associated with AD-related pathology and how APOE4 impacts α-SYN seeding and toxicity. We measured α-SYN levels and their association with other established AD-related markers in brain samples from autopsy-confirmed AD patients (N = 469), where 54% had concomitant LB pathology (AD + LB). We found significant correlations between the levels of α-SYN and those of Aβ40, Aβ42, tau and APOE, particularly in insoluble fractions of AD + LB. Using a real-time quaking-induced conversion (RT-QuIC) assay, we measured the seeding activity of soluble α-SYN and found that α-SYN seeding was exacerbated by APOE4 in the AD cohort, as well as a small cohort of autopsy-confirmed LBD brains with minimal Alzheimer type pathology. We further fractionated the soluble AD brain lysates by size exclusion chromatography (SEC) ran on fast protein liquid chromatography (FPLC) and identified the α-SYN species (~ 96 kDa) that showed the strongest seeding activity. Finally, using human induced pluripotent stem cell (iPSC)-derived neurons, we showed that amplified α-SYN aggregates from AD + LB brain of patients with APOE4 were highly toxic to neurons, whereas the same amount of α-SYN monomer was not toxic. Our findings suggest that the presence of LB pathology correlates with AD-related pathologies and that APOE4 exacerbates α-SYN seeding activity and neurotoxicity, providing mechanistic insight into how APOE4 affects α-SYN pathogenesis in AD.
Collapse
|
46
|
Wang C, Zhou Y, Ewuola C, Akinleye T, Hasegawa T, Leblanc RM. Determine both the conformation and orientation of a specific residue in α-synuclein(61–95) even in monolayer by 13C isotopic label and p-polarized multiple-angle incidence resolution spectrometry (pMAIRS). ANAL SCI 2022; 38:935-940. [PMID: 35633482 PMCID: PMC9206922 DOI: 10.1007/s44211-022-00128-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/07/2022] [Indexed: 11/30/2022]
Abstract
Protein’s magic function stems from its structure and various analytical techniques have been developed for it. Among proteins, membrane proteins are encoded 20–30% of genomes, whereas cause challenges for many analytical techniques. For example, lots of membrane proteins cannot form single crystal structure required by X-ray crystallography. As for NMR, the measurements were hindered by the low tumbling rates of membrane (i.e., phospholipid bilayers) where membrane proteins exist. In addition, membrane proteins usually lay parallel to the surface of phospholipid bilayers or form transmembrane structure. No matter parallel or perpendicular to phospholipid bilayers surface, membrane proteins form monolayer structure which is also difficult for X-ray and NMR to provide high-resolution results. Because NMR and X-ray crystallography are the two major analytical techniques to address protein’s structure, membrane proteins only contribute 2.4% to the solved protein databank. Surface FT-IR techniques can evaluate the conformation and orientation of membrane proteins by amide I band. Specifically for α-helical peptides/proteins, the orientation of the axis is critical to decide whether proteins form transmembrane structure. Notice that the traditional FT-IR can only provide “low-resolution” results. Here, 13C isotope was introduced into the nonamyloid component (NAC), which spans residues 61–95 of α-synuclein (α-syn). Then, p-polarized multiple-angle incidence resolution spectrometry (pMAIRS) was used to determine the orientation of a specific residue of α-helical NAC in monolayer. In general, pMAIRS is a novel technique to work complementary with X-ray and NMR to address membrane peptides/proteins structure with high resolution even in monolayer.
Collapse
Affiliation(s)
- Chengshan Wang
- Department of Chemistry, Middle Tennessee State University, 1301 East Main Street, Murfreesboro, TN, 37132, USA.
| | - Yiqun Zhou
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, USA
| | - Christopher Ewuola
- Department of Chemistry, Middle Tennessee State University, 1301 East Main Street, Murfreesboro, TN, 37132, USA
| | - Toyin Akinleye
- Department of Chemistry, Middle Tennessee State University, 1301 East Main Street, Murfreesboro, TN, 37132, USA
| | - Takeshi Hasegawa
- Laboratory of Chemistry for Functionalized Surfaces, Division of Environmental Chemistry, Institute for Chemistry Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, USA.
| |
Collapse
|
47
|
Matveyenka M, Rizevsky S, Kurouski D. Unsaturation in the Fatty Acids of Phospholipids Drastically Alters the Structure and Toxicity of Insulin Aggregates Grown in Their Presence. J Phys Chem Lett 2022; 13:4563-4569. [PMID: 35580189 PMCID: PMC9170185 DOI: 10.1021/acs.jpclett.2c00559] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Lipid bilayers play an important role in the pathological assembly of amyloidogenic proteins and peptides. This assembly yields oligomers and fibrils, which are highly toxic protein aggregates. In this study, we investigated the role of saturation in fatty acids of two phospholipids that are present in cell membranes. We found that unsaturated cardiolipin (CL) drastically shortened the lag phase of insulin aggregation. Furthermore, structurally and morphologically different aggregates were formed in the presence of unsaturated CL vs saturated CL. These aggregates exerted drastically different cell toxicity. Both saturated and unsaturated phosphatidylcholine (PC) were able to inhibit insulin aggregation equally efficiently. Similar to CL, structurally different aggregates were formed in the presence of saturated and unsaturated PC. These aggregates exerted different cell toxicities. These results show that unsaturated phospholipids catalyze the formation of more toxic amyloid aggregates comparing to those formed in the presence of saturated lipids.
Collapse
Affiliation(s)
| | - Stanislav Rizevsky
- Department of Biotechnology, Binh Duong University, Thu Dau Mot 820000, Vietnam
| | | |
Collapse
|
48
|
Pandey MK. The Role of Alpha-Synuclein Autoantibodies in the Induction of Brain Inflammation and Neurodegeneration in Aged Humans. Front Aging Neurosci 2022; 14:902191. [PMID: 35721016 PMCID: PMC9204601 DOI: 10.3389/fnagi.2022.902191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/19/2022] [Indexed: 12/05/2022] Open
Affiliation(s)
- Manoj Kumar Pandey
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
- *Correspondence: Manoj Kumar Pandey,
| |
Collapse
|
49
|
Lipid membrane-mediated assembly of the functional amyloid-forming peptide Somatostatin-14. Biophys Chem 2022; 287:106830. [DOI: 10.1016/j.bpc.2022.106830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/03/2022] [Accepted: 05/17/2022] [Indexed: 11/20/2022]
|
50
|
Multiomics implicate gut microbiota in altered lipid and energy metabolism in Parkinson's disease. NPJ Parkinsons Dis 2022; 8:39. [PMID: 35411052 PMCID: PMC9001728 DOI: 10.1038/s41531-022-00300-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 03/04/2022] [Indexed: 12/19/2022] Open
Abstract
We aimed to investigate the link between serum metabolites, gut bacterial community composition, and clinical variables in Parkinson’s disease (PD) and healthy control subjects (HC). A total of 124 subjects were part of the study (63 PD patients and 61 HC subjects). 139 metabolite features were found to be predictive between the PD and Control groups. No associations were found between metabolite features and within-PD clinical variables. The results suggest alterations in serum metabolite profiles in PD, and the results of correlation analysis between metabolite features and microbiota suggest that several bacterial taxa are associated with altered lipid and energy metabolism in PD.
Collapse
|