1
|
Burchat N, Vidola J, Pfreundschuh S, Sharma P, Rizzolo D, Guo GL, Sampath H. Intestinal Stearoyl-CoA Desaturase-1 Regulates Energy Balance via Alterations in Bile Acid Homeostasis. Cell Mol Gastroenterol Hepatol 2024; 18:101403. [PMID: 39278403 PMCID: PMC11546130 DOI: 10.1016/j.jcmgh.2024.101403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND & AIMS Stearoyl-CoA desaturase-1 (SCD1) converts saturated fatty acids into monounsaturated fatty acids and plays an important regulatory role in lipid metabolism. Previous studies have demonstrated that mice deficient in SCD1 are protected from diet-induced obesity and hepatic steatosis due to altered lipid assimilation and increased energy expenditure. Previous studies in our lab have shown that intestinal SCD1 modulates intestinal and plasma lipids and alters cholesterol metabolism. Here, we investigated a novel role for intestinal SCD1 in the regulation of systemic energy balance. METHODS To interrogate the role of intestinal SCD1 in modulating whole body metabolism, intestine-specific Scd1 knockout (iKO) mice were maintained on standard chow diet or challenged with a high-fat diet (HFD). Studies included analyses of bile acid content and composition, and metabolic phenotyping, including body composition, indirect calorimetry, glucose tolerance analyses, quantification of the composition of the gut microbiome, and assessment of bile acid signaling pathways. RESULTS iKO mice displayed elevated plasma and hepatic bile acid content and decreased fecal bile acid excretion, associated with increased expression of the ileal bile acid uptake transporter, Asbt. In addition, the alpha and beta diversity of the gut microbiome was reduced in iKO mice, with several alterations in microbe species being associated with the observed increases in plasma bile acids. These increases in plasma bile acids were associated with increased expression of TGR5 targets, including Dio2 in brown adipose tissue and elevated plasma glucagon-like peptide-1 levels. Upon HFD challenge, iKO mice had reduced metabolic efficiency apparent through decreased weight gain despite higher food intake. Concomitantly, energy expenditure was increased, and glucose tolerance was improved in HFD-fed iKO mice. CONCLUSION Our results indicate that deletion of intestinal SCD1 has significant impacts on bile acid homeostasis and whole-body energy balance, likely via activation of TGR5.
Collapse
Affiliation(s)
- Natalie Burchat
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey
| | - Jeanine Vidola
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey
| | - Sarah Pfreundschuh
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey
| | - Priyanka Sharma
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey
| | - Daniel Rizzolo
- Ernest Mario School of Pharmacy, Rutgers University, New Brunswick, New Jersey
| | - Grace L Guo
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey; Ernest Mario School of Pharmacy, Rutgers University, New Brunswick, New Jersey
| | - Harini Sampath
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey; Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey.
| |
Collapse
|
2
|
Shen T, Oh Y, Jeong S, Cho S, Fiehn O, Youn JH. High-Fat Feeding Alters Circulating Triglyceride Composition: Roles of FFA Desaturation and ω-3 Fatty Acid Availability. Int J Mol Sci 2024; 25:8810. [PMID: 39201497 PMCID: PMC11354557 DOI: 10.3390/ijms25168810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Hypertriglyceridemia is a risk factor for type 2 diabetes and cardiovascular disease (CVD). Plasma triglycerides (TGs) are a key factor for assessing the risk of diabetes or CVD. However, previous lipidomics studies have demonstrated that not all TG molecules behave the same way. Individual TGs with different fatty acid compositions are regulated differentially under various conditions. In addition, distinct groups of TGs were identified to be associated with increased diabetes risk (TGs with lower carbon number [C#] and double-bond number [DB#]), or with decreased risk (TGs with higher C# and DB#). In this study, we examined the effects of high-fat feeding in rats on plasma lipid profiles with special attention to TG profiles. Wistar rats were maintained on either a low-fat (control) or high-fat diet (HFD) for 2 weeks. Plasma samples were obtained before and 2.5 h after a meal (n = 10 each) and subjected to lipidomics analyses. High-fat feeding significantly impacted circulating lipid profiles, with the most significant effects observed on TG profile. The effects of an HFD on individual TG species depended on DB# in their fatty acid chains; an HFD increased TGs with low DB#, associated with increased diabetes risk, but decreased TGs with high DB#, associated with decreased risk. These changes in TGs with an HFD were associated with decreased indices of hepatic stearoyl-CoA desaturase (SCD) activity, assessed from hepatic fatty acid profiles. Decreased SCD activity would reduce the conversion of saturated to monounsaturated fatty acids, contributing to the increases in saturated TGs or TGs with low DB#. In addition, an HFD selectively depleted ω-3 polyunsaturated fatty acids (PUFAs), contributing to the decreases in TGs with high DB#. Thus, an HFD had profound impacts on circulating TG profiles. Some of these changes were at least partly explained by decreased hepatic SCD activity and depleted ω-3 PUFA.
Collapse
Affiliation(s)
- Tong Shen
- West Coast Metabolomics Center, University of California Davis Genome Center, Davis, CA 95616, USA; (T.S.); (O.F.)
| | - Youngtaek Oh
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (Y.O.); (S.C.)
| | - Shinwu Jeong
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of USC, Los Angeles, CA 90033, USA;
| | - Suengmok Cho
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (Y.O.); (S.C.)
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California Davis Genome Center, Davis, CA 95616, USA; (T.S.); (O.F.)
| | - Jang H. Youn
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (Y.O.); (S.C.)
| |
Collapse
|
3
|
Boschi F, Negri A, Conti A, Bernardi P, Chirumbolo S, Sbarbati A. The human dermal white adipose tissue (dWAT) morphology: A multimodal imaging approach. Ann Anat 2024; 255:152289. [PMID: 38848928 DOI: 10.1016/j.aanat.2024.152289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/02/2024] [Accepted: 05/27/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Dermal white adipose tissue (dWAT) in humans can be characterized as a relaxed dermal skin compartment consisting of functionally interlinked adipocytes. dWAT is typically discerned both in terms of morphology and function from subcutaneous white adipose tissue (sWAT). In particular in human thigh, the dWAT appears as thin extensions from the adipose panniculus to the dermis, and it is primarily associated with pilosebaceous units, hair follicles, sebaceous glands, and erector pili muscles. In this work, human fat tissue samples obtained post-mortem from the gluteo-femoral region were analyzed focusing on the thin extensions of dWAT named dermal cones. This anatomical region was chosen to deepen the dWAT morphological features of this site which is interesting both for clinical applications and genetical studies. The purpose of this exploratory methodological study was to gain deeper insights into the morphological features of human dWAT through a multimodal imaging approach. METHODS Optical microscopy, Magnetic Resonance Imaging (MRI) and Scanning Electron Microscopy (SEM), have been employed in this study. The cones' length and their distances were measured on the acquired images for optical microscopy and SEM. The cone's apparent regular distribution in MRI images was evaluated using a mathematical criterion, the conformity ratio, which is the ratio of the mean nearest-neighbor distance to its standard deviation. RESULTS The imaging techniques revealed white adipocytes forming a layer, referred to as sWAT, with cones measuring nearly 2 mm in size measured on SEM and Optical images (2.1 ± 0.4 mm), with the lower part embedded in the sWAT and the upper part extending into the dermis. The distance between the cones results about 1 mm measured on MRI images and they show an overall semiregular distribution. CONCLUSIONS MRI images demonstrated an orderly arrangement of cones, and their 3D reconstruction allowed to elucidate the dermal cones' disposition in the tissue sample and a more general comprehensive visualization of the entire fat structure within the dermis.
Collapse
Affiliation(s)
- Federico Boschi
- Department of Engineering for Innovation Medicine, Strada Le Grazie 8, Verona 37134, Italy.
| | - Alessandro Negri
- Department of Neurosciences, Biomedicine and Movement Sciences, Strada Le Grazie 8, Verona 37134, Italy
| | - Anita Conti
- Department of Neurosciences, Biomedicine and Movement Sciences, Strada Le Grazie 8, Verona 37134, Italy
| | - Paolo Bernardi
- Department of Neurosciences, Biomedicine and Movement Sciences, Strada Le Grazie 8, Verona 37134, Italy
| | - Salvatore Chirumbolo
- Department of Engineering for Innovation Medicine, Strada Le Grazie 8, Verona 37134, Italy
| | - Andrea Sbarbati
- Department of Neurosciences, Biomedicine and Movement Sciences, Strada Le Grazie 8, Verona 37134, Italy
| |
Collapse
|
4
|
Bononi G, Lonzi C, Tuccinardi T, Minutolo F, Granchi C. The Benzoylpiperidine Fragment as a Privileged Structure in Medicinal Chemistry: A Comprehensive Review. Molecules 2024; 29:1930. [PMID: 38731421 PMCID: PMC11085656 DOI: 10.3390/molecules29091930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/08/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
The phenyl(piperidin-4-yl)methanone fragment (here referred to as the benzoylpiperidine fragment) is a privileged structure in the development of new drugs considering its presence in many bioactive small molecules with both therapeutic (such as anti-cancer, anti-psychotic, anti-thrombotic, anti-arrhythmic, anti-tubercular, anti-parasitic, anti-diabetic, and neuroprotective agents) and diagnostic properties. The benzoylpiperidine fragment is metabolically stable, and it is also considered a potential bioisostere of the piperazine ring, thus making it a feasible and reliable chemical frame to be exploited in drug design. Herein, we discuss the main therapeutic and diagnostic agents presenting the benzoylpiperidine motif in their structure, covering articles reported in the literature since 2000. A specific section is focused on the synthetic strategies adopted to obtain this versatile chemical portion.
Collapse
Affiliation(s)
| | | | | | | | - Carlotta Granchi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (G.B.); (C.L.); (T.T.); (F.M.)
| |
Collapse
|
5
|
Li Y, Long J, Zhang Z, Yin W. Insights into the unique roles of dermal white adipose tissue (dWAT) in wound healing. Front Physiol 2024; 15:1346612. [PMID: 38465261 PMCID: PMC10920283 DOI: 10.3389/fphys.2024.1346612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/31/2024] [Indexed: 03/12/2024] Open
Abstract
Dermal white adipose tissue (dWAT) is a newly recognized layer of adipocytes within the reticular dermis of the skin. In many mammals, this layer is clearly separated by panniculus carnosus from subcutaneous adipose tissue (sWAT). While, they concentrated around the hair shaft and follicle, sebaceous gland, and arrector pili muscle, and forms a very specific cone geometry in human. Both the anatomy and the histology indicate that dWAT has distinct development and functions. Different from sWAT, the developmental origin of dWAT shares a common precursor with dermal fibroblasts during embryogenesis. Therefore, when skin injury happens and mature adipocytes in dWAT are exposed, they may undergo lipolysis and dedifferentiate into fibroblasts to participate in wound healing as embryogenetic stage. Studies using genetic strategies to selectively ablate dermal adipocytes observed delayed revascularization and re-epithelialization in wound healing. This review specifically summarizes the hypotheses of the functions of dWAT in wound healing. First, lipolysis of dermal adipocytes could contribute to wound healing by regulating inflammatory macrophage infiltration. Second, loss of dermal adipocytes occurs at the wound edge, and adipocyte-derived cells then become ECM-producing wound bed myofibroblasts during the proliferative phase of repair. Third, mature dermal adipocytes are rich resources for adipokines and cytokines and could release them in response to injury. In addition, the dedifferentiated dermal adipocytes are more sensitive to redifferentiation protocol and could undergo expansion in infected wound. We then briefly introduce the roles of dWAT in protecting the skin from environmental challenges: production of an antimicrobial peptide against infection. In the future, we believe there may be great potential for research in these areas: (1) taking advantage of the plasticity of dermal adipocytes and manipulating them in wound healing; (2) investigating the precise mechanism of dWAT expansion in infected wound healing.
Collapse
Affiliation(s)
| | | | | | - Wen Yin
- *Correspondence: Ziang Zhang, ; Wen Yin,
| |
Collapse
|
6
|
Wang Z, Khondowe P, Brannick E, Abasht B. Spatial transcriptomics reveals alterations in perivascular macrophage lipid metabolism in the onset of Wooden Breast myopathy in broiler chickens. Sci Rep 2024; 14:3450. [PMID: 38342952 PMCID: PMC10859375 DOI: 10.1038/s41598-024-53904-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 02/06/2024] [Indexed: 02/13/2024] Open
Abstract
This study aims to use spatial transcriptomics to characterize the cell-type-specific expression profile associated with the microscopic features observed in Wooden Breast myopathy. 1 cm3 muscle sample was dissected from the cranial part of the right pectoralis major muscle from three randomly sampled broiler chickens at 23 days post-hatch and processed with Visium Spatial Gene Expression kits (10X Genomics), followed by high-resolution imaging and sequencing on the Illumina Nextseq 2000 system. WB classification was based on histopathologic features identified. Sequence reads were aligned to the chicken reference genome (Galgal6) and mapped to histological images. Unsupervised K-means clustering and Seurat integrative analysis differentiated histologic features and their specific gene expression pattern, including lipid laden macrophages (LLM), unaffected myofibers, myositis and vasculature. In particular, LLM exhibited reprogramming of lipid metabolism with up-regulated lipid transporters and genes in peroxisome proliferator-activated receptors pathway, possibly through P. Moreover, overexpression of fatty acid binding protein 5 could enhance fatty acid uptake in adjacent veins. In myositis regions, increased expression of cathepsins may play a role in muscle homeostasis and repair by mediating lysosomal activity and apoptosis. A better knowledge of different cell-type interactions at early stages of WB is essential in developing a comprehensive understanding.
Collapse
Affiliation(s)
- Ziqing Wang
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Paul Khondowe
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Erin Brannick
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Behnam Abasht
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA.
| |
Collapse
|
7
|
Miskelly MG, Lindqvist A, Piccinin E, Hamilton A, Cowan E, Nergård BJ, Del Giudice R, Ngara M, Cataldo LR, Kryvokhyzha D, Volkov P, Engelking L, Artner I, Lagerstedt JO, Eliasson L, Ahlqvist E, Moschetta A, Hedenbro J, Wierup N. RNA sequencing unravels novel L cell constituents and mechanisms of GLP-1 secretion in human gastric bypass-operated intestine. Diabetologia 2024; 67:356-370. [PMID: 38032369 PMCID: PMC10789678 DOI: 10.1007/s00125-023-06046-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/15/2023] [Indexed: 12/01/2023]
Abstract
AIMS/HYPOTHESIS Roux-en-Y gastric bypass surgery (RYGB) frequently results in remission of type 2 diabetes as well as exaggerated secretion of glucagon-like peptide-1 (GLP-1). Here, we assessed RYGB-induced transcriptomic alterations in the small intestine and investigated how they were related to the regulation of GLP-1 production and secretion in vitro and in vivo. METHODS Human jejunal samples taken perisurgically and 1 year post RYGB (n=13) were analysed by RNA-seq. Guided by bioinformatics analysis we targeted four genes involved in cholesterol biosynthesis, which we confirmed to be expressed in human L cells, for potential involvement in GLP-1 regulation using siRNAs in GLUTag and STC-1 cells. Gene expression analyses, GLP-1 secretion measurements, intracellular calcium imaging and RNA-seq were performed in vitro. OGTTs were performed in C57BL/6j and iScd1-/- mice and immunohistochemistry and gene expression analyses were performed ex vivo. RESULTS Gene Ontology (GO) analysis identified cholesterol biosynthesis as being most affected by RYGB. Silencing or chemical inhibition of stearoyl-CoA desaturase 1 (SCD1), a key enzyme in the synthesis of monounsaturated fatty acids, was found to reduce Gcg expression and secretion of GLP-1 by GLUTag and STC-1 cells. Scd1 knockdown also reduced intracellular Ca2+ signalling and membrane depolarisation. Furthermore, Scd1 mRNA expression was found to be regulated by NEFAs but not glucose. RNA-seq of SCD1 inhibitor-treated GLUTag cells identified altered expression of genes implicated in ATP generation and glycolysis. Finally, gene expression and immunohistochemical analysis of the jejunum of the intestine-specific Scd1 knockout mouse model, iScd1-/-, revealed a twofold higher L cell density and a twofold increase in Gcg mRNA expression. CONCLUSIONS/INTERPRETATION RYGB caused robust alterations in the jejunal transcriptome, with genes involved in cholesterol biosynthesis being most affected. Our data highlight SCD as an RYGB-regulated L cell constituent that regulates the production and secretion of GLP-1.
Collapse
Affiliation(s)
- Michael G Miskelly
- Neuroendocrine Cell Biology, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Andreas Lindqvist
- Neuroendocrine Cell Biology, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Elena Piccinin
- Department of Translational Biomedicine and Neuroscience, University of Bari 'Aldo Moro', Bari, Italy
- Department of Interdisciplinary Medicine, University of Bari 'Aldo Moro', Bari, Italy
| | - Alexander Hamilton
- Molecular Metabolism, Lund University Diabetes Centre, Lund University, Malmö, Sweden
- Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Elaine Cowan
- Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | | | - Rita Del Giudice
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Department of Biomedical Science and Biofilms - Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| | - Mtakai Ngara
- Neuroendocrine Cell Biology, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Luis R Cataldo
- Molecular Metabolism, Lund University Diabetes Centre, Lund University, Malmö, Sweden
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dmytro Kryvokhyzha
- Bioinformatics Unit, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Petr Volkov
- Bioinformatics Unit, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Luke Engelking
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Isabella Artner
- Endocrine Cell Differentiation and Function, Stem Cell Centre, Lund University, Malmö, Sweden
| | - Jens O Lagerstedt
- Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, Malmö, Sweden
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Lena Eliasson
- Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Emma Ahlqvist
- Genomics, Diabetes and Endocrinology, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari 'Aldo Moro', Bari, Italy
- INBB National Institute for Biostructure and Biosystems, Rome, Italy
| | - Jan Hedenbro
- Department of Surgery, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Nils Wierup
- Neuroendocrine Cell Biology, Lund University Diabetes Centre, Lund University, Malmö, Sweden.
| |
Collapse
|
8
|
Burchat N, Vidola J, Pfreundschuh S, Sharma P, Rizzolo D, Guo GL, Sampath H. Intestinal stearoyl-CoA desaturase-1 regulates energy balance via alterations in bile acid homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575400. [PMID: 38260602 PMCID: PMC10802577 DOI: 10.1101/2024.01.12.575400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Background and Aims Stearoyl-CoA desaturase-1 (SCD1) converts saturated fatty acids into monounsaturated fatty acids and plays an important regulatory role in lipid metabolism. Previous studies have demonstrated that mice deficient in SCD1 are protected from diet-induced obesity and hepatic steatosis due to altered lipid esterification and increased energy expenditure. Previous studies in our lab have shown that intestinal SCD1 modulates intestinal and plasma lipids and alters cholesterol metabolism. Here we investigated a novel role for intestinal SCD1 in the regulation of systemic energy balance. Methods To interrogate the role of intestinal SCD1 in modulating whole body metabolism, intestine-specific Scd1 knockout (iKO) mice were maintained on standard chow diet or challenged with a high-fat diet (HFD). Studies included analyses of bile acid content and composition, metabolic phenotyping including body composition, indirect calorimetry, glucose tolerance analyses, and assessment of bile acid signaling pathways. Results iKO mice displayed elevated plasma and hepatic bile acid content and decreased fecal bile acid excretion, associated with increased expression of the ileal bile acid uptake transporter, Asbt . These increases were associated with increased expression of TGR5 targets, including Dio2 in brown adipose tissue and elevated plasma glucagon-like peptide-1 levels. Upon HFD challenge, iKO mice had reduced metabolic efficiency apparent through decreased weight gain despite higher food intake. Concomitantly, energy expenditure was increased, and glucose tolerance was improved in HFD-fed iKO mice. Conclusion Our results indicate that deletion of intestinal SCD1 has significant impacts on bile acid metabolism and whole-body energy balance, likely via activation of TGR5.
Collapse
|
9
|
Fathi MA, Dan S, Abdelsalam AM, Chunmei L. Involvement of glyphosate in disruption of biotransformation P450 enzymes and hepatic lipid metabolism in chicken. Anim Biotechnol 2023; 34:4957-4967. [PMID: 37210632 DOI: 10.1080/10495398.2023.2214601] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The current study investigated the potentially harmful consequences of pure glyphosate or Roundup® on CYP family members and lipid metabolism in newly hatched chicks. On the sixth day, 225 fertilized eggs were randomly divided into three treatments: (1) the control group injected with deionized water, (2) the glyphosate group injected with 10 mg pure glyphosate/Kg egg mass and (3) the Roundup group injected 10 mg the active ingredient glyphosate in Roundup®/Kg egg. The results of the study revealed a reduction in hatchability in chicks treated with Roundup®. Moreover, change of Lipid concentration in serum and the liver-treated groups. Additionally, increased liver function enzymes and increased oxidative stress in the glyphosate and Roundup® groups. Furthermore, liver tissues showed histological changes and several lipid deposits in glyphosate-treated groups. Hepatic CYP1A2 and CYP1A4 expressions were significantly increased (p < .05) after glyphosate exposure, and suppression of CYP1C1 mRNA expression was significant (p < .05) after Roundup® exposure. The pro-inflammatory cytokines genes IFN-γ and IL-1β expression were significantly increased (p < .05) after Roundup® exposure. In addition, there were significant differences in the levels of expression genes which are related to lipid synthesis or catabolism in the liver. In conclusion, in ovo glyphosate exposure caused disruption of biotransformation, pro-inflammatory and lipid metabolism in chicks.
Collapse
Affiliation(s)
- Mohamed Ahmed Fathi
- Jiangsu Joint International Research Laboratory of Animal Gastrointestinal Genomes, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, P. R. China
- Agricultural Research Centre, Animal Production Research Institute, Dokki, Giza, Egypt
| | - Shen Dan
- Jiangsu Joint International Research Laboratory of Animal Gastrointestinal Genomes, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, P. R. China
| | | | - Li Chunmei
- Jiangsu Joint International Research Laboratory of Animal Gastrointestinal Genomes, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, P. R. China
| |
Collapse
|
10
|
Ye Y, Kawaguchi Y, Takeuchi A, Zhang N, Mori R, Mijiti M, Banno A, Okada T, Hiramatsu N, Nagaoka S. Rose polyphenols exert antiobesity effect in high-fat-induced obese mice by regulating lipogenic gene expression. Nutr Res 2023; 119:76-89. [PMID: 37757642 DOI: 10.1016/j.nutres.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/27/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Obesity presents a major risk factor in the development of cardiovascular diseases. Recent reports indicate that many kinds of polyphenols have the potential to prevent metabolic diseases. We hypothesized that rose polyphenols (ROSE) have the effect of improvement in lipid metabolism. In this study, we investigated whether rose polyphenols affected lipid metabolism and exerted antiobesity. To clarify the mechanism, C57BL/6J mice were fed a high-fat diet containing 0.25% ROSE for 35 days. Compared with the control group, body weight gain and adipose tissue weight in the 0.25% ROSE group were significantly decreased. Serum cholesterol and hepatic triglyceride concentrations significantly decreased, whereas fecal triglyceride was significantly increased in the 0.25% ROSE group. Liver stearoyl-CoA desaturase 1 (Scd1), 3-hydroxy-3-methylglutaryl-CoA reductase (Hmgcr), and acyl-CoA:cholesterol acyltransferase 1 (Acat1) mRNA as well as protein stearoyl-CoA desaturase 1 concentrations were significantly lower in the 0.25% ROSE group than that in the control group. The mRNA and the protein concentrations of adipose triglyceride lipase, hormone-sensitive lipase, and peroxisomal acylcoenzyme A oxidase 1 in white adipose tissue were significantly higher in the 0.25% ROSE group than that in the control group. The components in rose polyphenols were quantified by liquid chromatography-tandem mass spectrometry, and we consider that ellagic acid plays an important role in an antiobesity effect because the ellagic acid content is the highest among polyphenols in rose polyphenols. In summary, rose polyphenols exhibit antiobesity effects by influencing lipid metabolism-related genes and proteins to promote lipolysis and suppress lipid synthesis.
Collapse
Affiliation(s)
- Yuyang Ye
- Faculty of Applied Biological Sciences, Department of Applied Life Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yuya Kawaguchi
- Faculty of Applied Biological Sciences, Department of Applied Life Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Asahi Takeuchi
- Faculty of Applied Biological Sciences, Department of Applied Life Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Ni Zhang
- Faculty of Applied Biological Sciences, Department of Applied Life Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Ryosuke Mori
- Faculty of Applied Biological Sciences, Department of Applied Life Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Maihemuti Mijiti
- Faculty of Applied Biological Sciences, Department of Applied Life Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Arata Banno
- Faculty of Applied Biological Sciences, Department of Applied Life Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | | | | | - Satoshi Nagaoka
- Faculty of Applied Biological Sciences, Department of Applied Life Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| |
Collapse
|
11
|
Madsen S, Bak SY, Yde CC, Jensen HM, Knudsen TA, Bæch-Laursen C, Holst JJ, Laustsen C, Hedemann MS. Unravelling Effects of Rosemary ( Rosmarinus officinalis L.) Extract on Hepatic Fat Accumulation and Plasma Lipid Profile in Rats Fed a High-Fat Western-Style Diet. Metabolites 2023; 13:974. [PMID: 37755254 PMCID: PMC10534343 DOI: 10.3390/metabo13090974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/11/2023] [Accepted: 08/19/2023] [Indexed: 09/28/2023] Open
Abstract
The objective of the study was to investigate the preventive effect on obesity-related conditions of rosemary (Rosmarinus officinalis L.) extract (RE) in young, healthy rats fed a high-fat Western-style diet to complement the existing knowledge gap concerning the anti-obesity effects of RE in vivo. Sprague Dawley rats (71.3 ± 0.46 g) were fed a high-fat Western-style diet (WD) or WD containing either 1 g/kg feed or 4 g/kg feed RE for six weeks. A group fed standard chow served as a negative control. The treatments did not affect body weight; however, the liver fat percentage was reduced in rats fed RE, and NMR analyses of liver tissue indicated that total cholesterol and triglycerides in the liver were reduced. In plasma, HDL cholesterol was increased while triglycerides were decreased. Rats fed high RE had significantly increased fasting plasma concentrations of Glucagon-like peptide-1 (GLP-1). Proteomics analyses of liver tissue showed that RE increased enzymes involved in fatty acid oxidation, possibly associated with the higher fasting GLP-1 levels, which may explain the improvement of the overall lipid profile and hepatic fat accumulation. Furthermore, high levels of succinic acid in the cecal content of RE-treated animals suggested a modulation of the microbiota composition. In conclusion, our results suggest that RE may alleviate the effects of consuming a high-fat diet through increased GLP-1 secretion and changes in microbiota composition.
Collapse
Affiliation(s)
- Sidsel Madsen
- Department of Animal and Veterinary Sciences, Aarhus University, Blichers Allé 20, DK-8830 Tjele, Denmark
| | - Steffen Yde Bak
- IFF—Nutrition Biosciences Aps, Edwin Rahrs Vej 38, DK-8220 Brabrand, Denmark; (S.Y.B.); (C.C.Y.); (H.M.J.); (T.A.K.)
| | - Christian Clement Yde
- IFF—Nutrition Biosciences Aps, Edwin Rahrs Vej 38, DK-8220 Brabrand, Denmark; (S.Y.B.); (C.C.Y.); (H.M.J.); (T.A.K.)
| | - Henrik Max Jensen
- IFF—Nutrition Biosciences Aps, Edwin Rahrs Vej 38, DK-8220 Brabrand, Denmark; (S.Y.B.); (C.C.Y.); (H.M.J.); (T.A.K.)
| | - Tine Ahrendt Knudsen
- IFF—Nutrition Biosciences Aps, Edwin Rahrs Vej 38, DK-8220 Brabrand, Denmark; (S.Y.B.); (C.C.Y.); (H.M.J.); (T.A.K.)
| | - Cecilie Bæch-Laursen
- Department of Biomedical Sciences and Novo Nordisk Foundation, Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark; (C.B.-L.); (J.J.H.)
| | - Jens Juul Holst
- Department of Biomedical Sciences and Novo Nordisk Foundation, Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark; (C.B.-L.); (J.J.H.)
| | - Christoffer Laustsen
- The MR Research Centre, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus, Denmark;
| | - Mette Skou Hedemann
- Department of Animal and Veterinary Sciences, Aarhus University, Blichers Allé 20, DK-8830 Tjele, Denmark
| |
Collapse
|
12
|
Ntambi JM, Stover PJ. A Conversation with James Ntambi. Annu Rev Nutr 2023; 43:1-23. [PMID: 37253680 DOI: 10.1146/annurev-nutr-061021-020321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
An interview with James M. Ntambi, professor of biochemistry and the Katherine Berns Van Donk Steenbock Professor in Nutrition, College of Agricultural and Life Sciences, at the University of Wisconsin-Madison, took place via Zoom in April 2022. He was interviewed by Patrick J. Stover, director of the Institute for Advancing Health through Agriculture and professor of nutrition and biochemistry and biophysics at Texas A&M University. Dr. James Ntambi is a true pioneer in the field of nutritional biochemistry. He was among the very first to discover and elucidate the role that diet and nutrients play in regulating metabolism through changes in the expression of metabolic genes, focusing on the de novo lipogenesis pathways. As an African immigrant from Uganda, his love of science and his life experiences in African communities suffering from severe malnutrition molded his scientific interests at the interface of biochemistry and nutrition. Throughout his career, he has been an academic role model, a groundbreaking nutrition scientist, and an educator. His commitment to experiential learning through the many study-abroad classes he has hosted in Uganda has provided invaluable context for American students in nutrition. Dr. Ntambi's passion for education and scientific discovery is his legacy, and the field of nutrition has benefited enormously from his unique perspectives and contributions to science that are defined by his scientific curiosity, his generosity to his students and colleagues, and his life experiences. The following is an edited transcript.
Collapse
Affiliation(s)
- James M Ntambi
- Departments of Biochemistry and Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA;
| | - Patrick J Stover
- College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
13
|
Lombardi S, Goldman AR, Tang HY, Kossenkov AV, Liu H, Zhou W, Herlyn M, Lin J, Zhang R. Targeting Fatty Acid Reprogramming Suppresses CARM1-expressing Ovarian Cancer. CANCER RESEARCH COMMUNICATIONS 2023; 3:1067-1077. [PMID: 37377614 PMCID: PMC10281290 DOI: 10.1158/2767-9764.crc-23-0030] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/14/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023]
Abstract
The arginine methyltransferase CARM1 exhibits high expression levels in several human cancers, with the trend also observed in ovarian cancer. However, therapeutic approaches targeting tumors that overexpress CARM1 have not been explored. Cancer cells exploit metabolic reprogramming such as fatty acids for their survival. Here we report that CARM1 promotes monounsaturated fatty acid synthesis and fatty acid reprogramming represents a metabolic vulnerability for CARM1-expressing ovarian cancer. CARM1 promotes the expression of genes encoding rate-limiting enzymes of de novo fatty acid metabolism such as acetyl-CoA carboxylase 1 (ACC1) and fatty acid synthase (FASN). In addition, CARM1 upregulates stearoyl-CoA desaturase 1 (SCD1) that produces monounsaturated fatty acid by desaturation. Thus, CARM1 enhances de novo fatty acids synthesis which was subsequently utilized for synthesis of monounsaturated fatty acids. Consequently, inhibition of SCD1 suppresses the growth of ovarian cancer cells in a CARM1 status-dependent manner, which was rescued by the addition of monounsaturated fatty acids. Consistently, CARM1-expressing cells were more tolerant to the addition of saturated fatty acids. Indeed, SCD1 inhibition demonstrated efficacy against ovarian cancer in both orthotopic xenograft and syngeneic mouse models in a CARM1-dependent manner. In summary, our data show that CARM1 reprograms fatty acid metabolism and targeting SCD1 through pharmacological inhibition can serve as a potent therapeutic approach for CARM1-expressing ovarian cancers. Significance CARM1 reprograms fatty acid metabolism transcriptionally to support ovarian cancer growth by producing monounsaturated fatty acids, supporting SCD1 inhibition as a rational strategy for treating CARM1-expressing ovarian cancer.
Collapse
Affiliation(s)
- Simona Lombardi
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Aaron R. Goldman
- Molecular and Cellular Oncology Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Hsin-Yao Tang
- Molecular and Cellular Oncology Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Andrew V. Kossenkov
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Heng Liu
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Wei Zhou
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Meenhard Herlyn
- Molecular and Cellular Oncology Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Jianhuang Lin
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Rugang Zhang
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
14
|
Kasano-Camones CI, Takizawa M, Ohshima N, Saito C, Iwasaki W, Nakagawa Y, Fujitani Y, Yoshida R, Saito Y, Izumi T, Terawaki SI, Sakaguchi M, Gonzalez FJ, Inoue Y. PPARα activation partially drives NAFLD development in liver-specific Hnf4a-null mice. J Biochem 2023; 173:393-411. [PMID: 36779417 PMCID: PMC10433406 DOI: 10.1093/jb/mvad005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/13/2023] [Indexed: 01/24/2023] Open
Abstract
HNF4α regulates various genes to maintain liver function. There have been reports linking HNF4α expression to the development of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis. In this study, liver-specific Hnf4a-deficient mice (Hnf4aΔHep mice) developed hepatosteatosis and liver fibrosis, and they were found to have difficulty utilizing glucose. In Hnf4aΔHep mice, the expression of fatty acid oxidation-related genes, which are PPARα target genes, was increased in contrast to the decreased expression of PPARα, suggesting that Hnf4aΔHep mice take up more lipids in the liver instead of glucose. Furthermore, Hnf4aΔHep/Ppara-/- mice, which are simultaneously deficient in HNF4α and PPARα, showed improved hepatosteatosis and fibrosis. Increased C18:1 and C18:1/C18:0 ratio was observed in the livers of Hnf4aΔHep mice, and the transactivation of PPARα target gene was induced by C18:1. When the C18:1/C18:0 ratio was close to that of Hnf4aΔHep mouse liver, a significant increase in transactivation was observed. In addition, the expression of Pgc1a, a coactivator of PPARs, was increased, suggesting that elevated C18:1 and Pgc1a expression could contribute to PPARα activation in Hnf4aΔHep mice. These insights may contribute to the development of new diagnostic and therapeutic approaches for NAFLD by focusing on the HNF4α and PPARα signaling cascade.
Collapse
Affiliation(s)
- Carlos Ichiro Kasano-Camones
- Laboratory of Metabolism, Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Masayuki Takizawa
- Laboratory of Metabolism, Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Noriyasu Ohshima
- Department of Biochemistry, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan
| | - Chinatsu Saito
- Laboratory of Metabolism, Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Wakana Iwasaki
- Laboratory of Metabolism, Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Yuko Nakagawa
- Laboratory of Developmental Biology and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Yoshio Fujitani
- Laboratory of Developmental Biology and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Ryo Yoshida
- Laboratory of Metabolism, Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Yoshifumi Saito
- Laboratory of Metabolism, Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Takashi Izumi
- Department of Biochemistry, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan
- Faculty of Health Care, Teikyo Heisei University, Tokyo 170-8445, Japan
| | - Shin-Ichi Terawaki
- Laboratory of Metabolism, Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20852, USA
| | - Yusuke Inoue
- Laboratory of Metabolism, Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
- Gunma University Center for Food Science and Wellness, Maebashi, Gunma 371-8510, Japan
| |
Collapse
|
15
|
Ntambi JM, Liu X, Burhans MS, ALjohani A, Selen ES, Kalyesubula M, Assadi-Porter F. Hepatic oleate regulates one-carbon metabolism during high carbohydrate feeding. Biochem Biophys Res Commun 2023; 651:62-69. [PMID: 36791500 PMCID: PMC9992055 DOI: 10.1016/j.bbrc.2023.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
Obesity is a major risk factor for type 2 diabetes, coronary heart disease, and strok. These diseases are associated with profound alterations in gene expression in metabolic tissues. Epigenetic-mediated regulation of gene expression is one mechanism through which environmental factors, such as diet, modify gene expression and disease predisposition. However, epigenetic control of gene expression in obesity and insulin resistance is not fully characterized. We discovered that liver-specific stearoyl-CoA desaturase-1 (Scd1) knockout mice (LKO) fed a high-carbohydrate low-fat diet exhibit dramatic changes in hepatic gene expression and metabolites of the folate cycle and one-carbon metabolism respectively for the synthesis of S-adenosylmethionine (SAM). LKO mice show an increased ratio of S-adenosylmethionine to S-adenosylhomocysteine, a marker for increased cellular methylation capacity. Furthermore, expression of DNA and histone methyltransferase genes is up-regulated while the mRNA and protein levels of the non-DNA methyltransferases including phosphatidylethanolamine methyltransferase (PEMT), Betaine homocysteine methyltransferase (Bhmt), and the SAM-utilizing enzymes such as glycine-N-methyltransferase (Gnmt) and guanidinoacetate methyltransferase (Gamt) are generally down-regulated. Feeding LKO mice a high carbohydrate diet supplemented with triolein, but not tristearin, and increased endogenous hepatic synthesis of oleate but not palmitoleate in Scd1 global knockout mice normalized one carbon gene expression and metabolite levels. Additionally, changes in one carbon gene expression are independent of the PGC-1α-mediated ER stress response previously reported in the LKO mice. Together, these results highlight the important role of oleate in maintaining one-carbon cycle homeostasis and point to observed changes in one-carbon metabolism as a novel mediator of the Scd1 deficiency-induced liver phenotype.
Collapse
Affiliation(s)
- James M Ntambi
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA; Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Xueqing Liu
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Maggie S Burhans
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ahmed ALjohani
- College of Science and Health Professions, King Saudi Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Ebru Selin Selen
- Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Mugagga Kalyesubula
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Fariba Assadi-Porter
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA; Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
16
|
Balatskyi VV, Dobrzyn P. Role of Stearoyl-CoA Desaturase 1 in Cardiovascular Physiology. Int J Mol Sci 2023; 24:ijms24065531. [PMID: 36982607 PMCID: PMC10059744 DOI: 10.3390/ijms24065531] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 03/15/2023] Open
Abstract
Stearoyl-CoA desaturase is a rate-limiting enzyme in the synthesis of monounsaturated fatty acids. Monounsaturated fatty acids limit the toxicity of exogenous saturated fats. Studies have shown that stearoyl-CoA desaturase 1 is involved in the remodeling of cardiac metabolism. The loss of stearoyl-CoA desaturase 1 reduces fatty acid oxidation and increases glucose oxidation in the heart. Such a change is protective under conditions of a high-fat diet, which reduces reactive oxygen species-generating β-oxidation. In contrast, stearoyl-CoA desaturase 1 deficiency predisposes individuals to atherosclerosis under conditions of hyperlipidemia but protects against apnea-induced atherosclerosis. Stearoyl-CoA desaturase 1 deficiency also impairs angiogenesis after myocardial infarction. Clinical data show a positive correlation between blood stearoyl-CoA Δ-9 desaturation rates and cardiovascular disease and mortality. Moreover, stearoyl-CoA desaturase inhibition is considered an attractive intervention in some obesity-associated pathologies, and the importance of stearoyl-CoA desaturase in the cardiovascular system might be a limitation for developing such therapy. This review discusses the role of stearoyl-CoA desaturase 1 in the regulation of cardiovascular homeostasis and the development of heart disease and presents markers of systemic stearoyl-CoA desaturase activity and their predictive potential in the diagnosis of cardiovascular disorders.
Collapse
|
17
|
Nobiletin Intake Attenuates Hepatic Lipid Profiling and Oxidative Stress in HFD-Induced Nonalcoholic-Fatty-Liver-Disease Mice. Molecules 2023; 28:molecules28062570. [PMID: 36985541 PMCID: PMC10054910 DOI: 10.3390/molecules28062570] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Nobiletin (NOB) is a naturally occurring compound, commonly found in citrus peel, that shows hepatoprotective and lipid-reducing effects. However, the lipid biomarkers and the potential improvement mechanisms have not been adequately explored. Therefore, we investigated the ameliorative effect and the molecular mechanism of NOB on NAFLD induced by a high-fat diet in mice. The results showed that supplementation with NOB over 12 weeks markedly improved glucose tolerance, serum lipid profiles, inflammatory factors, hepatic steatosis, and oxidative stress. These beneficial effects were mainly related to reduced levels of potential lipid biomarkers including free fatty acids, diacylglycerols, triacylglycerols, and cholesteryl esters according to hepatic lipidomic analysis. Twenty lipids, including DGs and phosphatidylcholines, were identified as potential lipid biomarkers. Furthermore, RT-qPCR and Western blot analysis indicated that NOB inhibited the expression of lipogenesis-related factors such as SREBP-1c, SCD-1, and FAS, and upregulated the expression of lipid oxidation (PPARα) and cholesterol conversion (LXRα, CYP7A1, and CYP27A1) genes as well as antioxidation-related factors (Nucl-Nrf2, NQO1, HO-1, and GCLC), indicating that NOB intake may reduce lipid biosynthesis and increase lipid consumption to improve hepatic steatosis and oxidative stress. This study is beneficial for understanding the ameliorative effects of NOB on NAFLD.
Collapse
|
18
|
Feng T, Tao Y, Yan Y, Lu S, Li Y, Zhang X, Qiang J. Transcriptional Inhibition of AGPAT2 Induces Abnormal Lipid Metabolism and Oxidative Stress in the Liver of Nile Tilapia Oreochromis niloticus. Antioxidants (Basel) 2023; 12:antiox12030700. [PMID: 36978948 PMCID: PMC10045202 DOI: 10.3390/antiox12030700] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 03/15/2023] Open
Abstract
The enzyme 1-acylglycerol-3-phosphate O-acyltransferase 2 (AGPAT2) is an intermediate enzyme in triglyceride synthesis. The aim was to study the regulatory mechanism of AGPAT2 on Nile tilapia, Oreochromis niloticus. In this study, antisense RNA technology was used to knock-down AGPAT2 in Nile tilapia. Compared with the control groups (transfected with ultrapure water or the blank expression vector), the AGPAT2 knock-down group showed a significantly higher weight gain rate, special growth rate, visceral somatic index, and hepatopancreas somatic index; and significantly increased the total cholesterol, triglycerides, glucose, low-density lipoprotein cholesterol, and insulin levels in serum. In addition, the contents of total cholesterol and triglycerides and the abundance of superoxide dismutase, catalase, and glutathione peroxidase in the liver significantly increased, while the malondialdehyde content significantly decreased. The liver cells became severely vacuolated and accumulated lipids in the AGPAT2 knock-down group. Comparative transcriptome analyses (AGPAT2 knock-down vs. control group) revealed 1789 differentially expressed genes (DEGs), including 472 upregulated genes and 1313 downregulated genes in the AGPAT2 knock-down group. Functional analysis showed that the main pathway of differentially expressed genes enrichment was lipid metabolism and oxidative stress, such as steroid biosynthesis, unsaturated fatty acid biosynthesis, the PPAR signaling pathway, and the P53 pathway. We used qRT-PCR to verify the mRNA expression changes of 13 downstream differential genes in related signaling pathways. These findings demonstrate that knock-down of AGPAT2 in tilapia leads to abnormal lipid metabolism and oxidative stress.
Collapse
Affiliation(s)
- Tiantian Feng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yifan Tao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yue Yan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Siqi Lu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yan Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jun Qiang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Correspondence:
| |
Collapse
|
19
|
Lopdell TJ. Using QTL to Identify Genes and Pathways Underlying the Regulation and Production of Milk Components in Cattle. Animals (Basel) 2023; 13:ani13050911. [PMID: 36899768 PMCID: PMC10000085 DOI: 10.3390/ani13050911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Milk is a complex liquid, and the concentrations of many of its components are under genetic control. Many genes and pathways are known to regulate milk composition, and the purpose of this review is to highlight how the discoveries of quantitative trait loci (QTL) for milk phenotypes can elucidate these pathways. The main body of this review focuses primarily on QTL discovered in cattle (Bos taurus) as a model species for the biology of lactation, and there are occasional references to sheep genetics. The following section describes a range of techniques that can be used to help identify the causative genes underlying QTL when the underlying mechanism involves the regulation of gene expression. As genotype and phenotype databases continue to grow and diversify, new QTL will continue to be discovered, and although proving the causality of underlying genes and variants remains difficult, these new data sets will further enhance our understanding of the biology of lactation.
Collapse
|
20
|
Le Mentec H, Monniez E, Legrand A, Monvoisin C, Lagadic-Gossmann D, Podechard N. A New In Vivo Zebrafish Bioassay Evaluating Liver Steatosis Identifies DDE as a Steatogenic Endocrine Disruptor, Partly through SCD1 Regulation. Int J Mol Sci 2023; 24:ijms24043942. [PMID: 36835354 PMCID: PMC9959061 DOI: 10.3390/ijms24043942] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), which starts with liver steatosis, is a growing worldwide epidemic responsible for chronic liver diseases. Among its risk factors, exposure to environmental contaminants, such as endocrine disrupting compounds (EDC), has been recently emphasized. Given this important public health concern, regulation agencies need novel simple and fast biological tests to evaluate chemical risks. In this context, we developed a new in vivo bioassay called StAZ (Steatogenic Assay on Zebrafish) using an alternative model to animal experimentation, the zebrafish larva, to screen EDCs for their steatogenic properties. Taking advantage of the transparency of zebrafish larvae, we established a method based on fluorescent staining with Nile red to estimate liver lipid content. Following testing of known steatogenic molecules, 10 EDCs suspected to induce metabolic disorders were screened and DDE, the main metabolite of the insecticide DDT, was identified as a potent inducer of steatosis. To confirm this and optimize the assay, we used it in a transgenic zebrafish line expressing a blue fluorescent liver protein reporter. To obtain insight into DDE's effect, the expression of several genes related to steatosis was analyzed; an up-regulation of scd1 expression, probably relying on PXR activation, was found, partly responsible for both membrane remodeling and steatosis.
Collapse
Affiliation(s)
- Hélène Le Mentec
- INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail)-UMR_S 1085, University of Rennes, 35000 Rennes, France
| | - Emmanuelle Monniez
- INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail)-UMR_S 1085, University of Rennes, 35000 Rennes, France
| | - Antoine Legrand
- INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail)-UMR_S 1085, University of Rennes, 35000 Rennes, France
| | - Céline Monvoisin
- UMR 1236-MOBIDIC, INSERM, Université Rennes, Etablissement Français du Sang Bretagne, 35043 Rennes, France
| | - Dominique Lagadic-Gossmann
- INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail)-UMR_S 1085, University of Rennes, 35000 Rennes, France
| | - Normand Podechard
- INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail)-UMR_S 1085, University of Rennes, 35000 Rennes, France
- Correspondence:
| |
Collapse
|
21
|
Chakraborty S, Dissanayake M, Godwin J, Wang X, Bhandari RK. Ancestral BPA exposure caused defects in the liver of medaka for four generations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159067. [PMID: 36174697 PMCID: PMC10593180 DOI: 10.1016/j.scitotenv.2022.159067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 07/01/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Environmental chemicals can induce liver defects in experimental animals due to their direct and acute exposure. It is not clear whether environmental chemical exposures result in the transgenerational passage of liver defects in subsequent generations living in an uncontaminated environment. Bisphenol A (BPA), a plasticizer chemical, has been ubiquitous in the environment in the recent decade. Every organism is exposed to this chemical at some point during its lifetime. Literature suggests that direct BPA exposure can result in several metabolic diseases, including non-alcoholic fatty liver disease (NAFLD). Despite the phasing out of BPA from several consumer goods, it is unclear whether ancestral BPA exposure causes liver health problems in the unexposed future generations. Here, we demonstrate an advanced stage of NAFLD in the grandchildren (F2 generation) of medaka fish (Oryzias latipes) due to embryonic BPA exposure in the grandparental generation (F0), which persists for five generations (F4) even in the absence of BPA. The severity of transgenerational NAFLD phenotype included steatosis together with perisinusoidal fibrosis and apoptosis of hepatocytes. Adult females developed more severe histopathological conditions in the liver than males. Genes encoding enzymes involved in lipolytic pathways were significantly decreased. The present results suggest that ancestral BPA exposure can result in transgenerational metabolic diseases that can persist for five generations and that the NAFLD trait is sexually dimorphic. Given that ancestral BPA exposure can lead to altered metabolic health outcomes in the subsequent unexposed generations, the development of the methods and strategies to mitigate the transgenerational onset of metabolic diseases seem imperative to protect future generations.
Collapse
Affiliation(s)
- Sourav Chakraborty
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA
| | - Manthi Dissanayake
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA
| | - Julia Godwin
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA
| | - Xuegeng Wang
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA; Institute of Modern Aquaculture Science and Engineering, College of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Ramji Kumar Bhandari
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA.
| |
Collapse
|
22
|
Sarode GV, Mazi TA, Neier K, Shibata NM, Jospin G, Harder NHO, Heffern MC, Sharma AK, More SK, Dave M, Schroeder SM, Wang L, LaSalle JM, Lutsenko S, Medici V. The role of intestine in metabolic dysregulation in murine Wilson disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.524009. [PMID: 36711483 PMCID: PMC9882126 DOI: 10.1101/2023.01.13.524009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Background and aims Major clinical manifestations of Wilson disease (WD) are related to copper accumulation in the liver and the brain, and little is known about other tissues involvement in metabolic changes in WD. In vitro studies suggested that the loss of intestinal ATP7B could contribute to metabolic dysregulation in WD. We tested this hypothesis by evaluating gut microbiota and lipidome in two mouse models of WD and by characterizing a new mouse model with a targeted deletion of Atp7b in intestine. Methods Cecal content 16S sequencing and untargeted hepatic and plasma lipidome analyses in the Jackson Laboratory toxic-milk and the Atp7b null global knockout mouse models of WD were profiled and integrated. Intestine-specific Atp7b knockout mice ( Atp7b ΔIEC ) was generated using B6.Cg-Tg(Vil1-cre)997Gum/J mice and Atp7b Lox/Lox mice, and characterized using targeted lipidome analysis following a high-fat diet challenge. Results Gut microbiota diversity was reduced in animal models of WD. Comparative prediction analysis revealed amino acid, carbohydrate, and lipid metabolism functions to be dysregulated in the WD gut microbial metagenome. Liver and plasma lipidomic profiles showed dysregulated tri- and diglyceride, phospholipid, and sphingolipid metabolism in WD models. When challenged with a high-fat diet, Atp7b ΔIEC mice exhibited profound alterations to fatty acid desaturation and sphingolipid metabolism pathways as well as altered APOB48 distribution in intestinal epithelial cells. Conclusion Coordinated changes of gut microbiome and lipidome analyses underlie systemic metabolic manifestations in murine WD. Intestine-specific ATP7B deficiency affected both intestinal and systemic response to a high-fat challenge. WD is a systemic disease in which intestinal-specific ATP7B loss and diet influence phenotypic presentations.
Collapse
|
23
|
Wanezaki S, Taniwaki T, Miyamoto J, Hosokawa M. Dietary Combination of Fish Oil and Soy β-Conglycinin Inhibits Fat Accumulation and Reduces Blood Glucose Levels by Altering Gut Microbiome Composition in Diabetic/Obese KK-A y Mice. J Oleo Sci 2023; 72:303-312. [PMID: 36878584 DOI: 10.5650/jos.ess22363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Dietary fish oil containing n-3 polyunsaturated fatty acids provides health benefits by lowering lipid levels in the liver and serum. β-Conglycinin (βCG) is a major constituent protein in soybean with many physiological effects, such as lowering blood triglyceride levels, preventing obesity and diabetes, and improving hepatic lipid metabolism. However, the combined effects of fish oil and βCG remain unclear. Here, we investigated the effects of a dietary combination of fish oil and βCG on lipid and glucose parameters in diabetic/obese KK-A y mice. KK-A y mice were divided into three groups: control, fish oil, and fish oil + βCG; these groups were fed a casein-based diet containing 7% (w/w) soybean oil, a casein-based diet containing 2% (w/w) soybean oil and 5% (w/w) fish oil, and a βCG-based diet containing 2% (w/w) soybean oil and 5% (w/w) fish oil, respectively. The effects of the dietary combination of fish oil and βCG on blood biochemical parameters, adipose tissue weight, expression levels of fat- and glucose metabolism-related genes, and cecal microbiome composition were evaluated. The total white adipose tissue weight (p < 0.05), levels of total serum cholesterol (p < 0.01), triglyceride (p < 0.01), and blood glucose (p < 0.05), and expression levels of fatty acid synthesis-related genes (including Fasn (p < 0.05) and Acc (p < 0.05)), and glucose metabolism-related genes (such as Pepck (p < 0.05)) were lower in the fish oil and fish oil + βCG groups than in the control group. Furthermore, the relative abundance of Bacteroidaceae and Coriobacteriaceae differed significantly between the fish oil + βCG and control groups. These findings suggest that dietary intake of fish oil + βCG may prevent obesity and diabetes, alleviate lipid abnormalities, and alter the gut microbiome composition in diabetic/obese KK-A y mice. Further research is needed to build on this study to evaluate the health benefits of major components of Japanese food.
Collapse
Affiliation(s)
| | | | - Junki Miyamoto
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology
| | | |
Collapse
|
24
|
Barahona I, Rada P, Calero-Pérez S, Grillo-Risco R, Pereira L, Soler-Vázquez MC, LaIglesia LM, Moreno-Aliaga MJ, Herrero L, Serra D, García-Monzon C, González-Rodriguez Á, Balsinde J, García-García F, Valdecantos MP, Valverde ÁM. Ptpn1 deletion protects oval cells against lipoapoptosis by favoring lipid droplet formation and dynamics. Cell Death Differ 2022; 29:2362-2380. [PMID: 35681014 PMCID: PMC9751306 DOI: 10.1038/s41418-022-01023-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 01/31/2023] Open
Abstract
Activation of oval cells (OCs) has been related to hepatocyte injury during chronic liver diseases including non-alcoholic fatty liver disease (NAFLD). However, OCs plasticity can be affected under pathological environments. We previously found protection against hepatocyte cell death by inhibiting protein tyrosine phosphatase 1B (PTP1B). Herein, we investigated the molecular and cellular processes involved in the lipotoxic susceptibility in OCs expressing or not PTP1B. Palmitic acid (PA) induced apoptotic cell death in wild-type (Ptpn1+/+) OCs in parallel to oxidative stress and impaired autophagy. This lipotoxic effect was attenuated in OCs lacking Ptpn1 that showed upregulated antioxidant defences, increased unfolded protein response (UPR) signaling, higher endoplasmic reticulum (ER) content and elevated stearoyl CoA desaturase (Scd1) expression and activity. These effects in Ptpn1-/- OCs concurred with an active autophagy, higher mitochondrial efficiency and a molecular signature of starvation, favoring lipid droplet (LD) formation and dynamics. Autophagy blockade in Ptpn1-/- OCs reduced Scd1 expression, mitochondrial fitness, LD formation and restored lipoapoptosis, an effect also recapitulated by Scd1 silencing. PTP1B immunostaining was detected in OCs from mouse liver and, importantly, LDs were found in OCs from Ptpn1-/- mice with NAFLD. In conclusion, we demonstrated that Ptpn1 deficiency restrains lipoapoptosis in OCs through a metabolic rewiring towards a "starvation-like" fate, favoring autophagy, mitochondrial fitness and LD formation. Dynamic LD-lysosomal interations likely ensure lipid recycling and, overall, these adaptations protect against lipotoxicity. The identification of LDs in OCs from Ptpn1-/- mice with NAFLD opens therapeutic perspectives to ensure OC viability and plasticity under lipotoxic liver damage.
Collapse
Affiliation(s)
- Inés Barahona
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), 28029, Madrid, Spain
| | - Patricia Rada
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), 28029, Madrid, Spain
| | - Silvia Calero-Pérez
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), 28029, Madrid, Spain
| | - Ruben Grillo-Risco
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain
| | - Laura Pereira
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), 28029, Madrid, Spain
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), 47003, Valladolid, Spain
| | - M Carmen Soler-Vázquez
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, 08028, Barcelona, Spain
| | - Laura María LaIglesia
- University of Navarra, Center for Nutrition Research and Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, 31008, Pamplona, Spain
| | - María J Moreno-Aliaga
- University of Navarra, Center for Nutrition Research and Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, 31008, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, 31008, Pamplona, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Dolors Serra
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Carmelo García-Monzon
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, 28009, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029, Madrid, Spain
| | - Águeda González-Rodriguez
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), 28029, Madrid, Spain
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, 28009, Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), 28029, Madrid, Spain
| | - Jesús Balsinde
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), 28029, Madrid, Spain
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), 47003, Valladolid, Spain
| | - Francisco García-García
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain
| | - M Pilar Valdecantos
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), 28029, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), 28029, Madrid, Spain.
| | - Ángela M Valverde
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), 28029, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), 28029, Madrid, Spain.
| |
Collapse
|
25
|
Ntambi JM. The role of Stearoyl-CoA desaturase in hepatic de novo lipogenesis. Biochem Biophys Res Commun 2022; 633:81-83. [DOI: 10.1016/j.bbrc.2022.08.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/06/2022]
|
26
|
Kim H, Kim HW, Lee JH, Park J, Lee H, Kim S, Shin SC. Gene family expansions in Antarctic winged midge as a strategy for adaptation to cold environments. Sci Rep 2022; 12:18263. [PMID: 36309574 PMCID: PMC9617917 DOI: 10.1038/s41598-022-23268-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/27/2022] [Indexed: 12/31/2022] Open
Abstract
Parochlus steinenii is the only flying insect native to Antarctica. To elucidate the molecular mechanisms underlying its adaptation to cold environments, we conducted comparative genomic analyses of P. steinenii and closely related lineages. In an analysis of gene family evolution, 68 rapidly evolving gene families, involved in the innate immune system, unfolded protein response, DNA packaging, protein folding, and unsaturated fatty acid biosynthesis were detected. Some gene families were P. steinenii-specific and showed phylogenetic instability. Acyl-CoA delta desaturase and heat shock cognate protein 70 (Hsc70) were representative gene families, showing signatures of positive selection with multiple gene duplication events. Acyl-CoA delta desaturases may play pivotal roles in membrane fluidity, and expanded Hsc70 genes may function as chaperones or thermal sensors in cold environments. These findings suggest that multiple gene family expansions contributed to the adaptation of P. steinenii to cold environments.
Collapse
Affiliation(s)
- Heesoo Kim
- Division of Life Sciences, Korea Polar Research Institute (KOPRI), Incheon, 21990, Republic of Korea
- Animal and Plant Research Department, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju-si, Republic of Korea
| | - Han-Woo Kim
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon, 21990, Republic of Korea
| | - Jun Hyuck Lee
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon, 21990, Republic of Korea
| | - Joonho Park
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul, Republic of Korea
| | - Hyoungseok Lee
- Division of Life Sciences, Korea Polar Research Institute (KOPRI), Incheon, 21990, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon, 21990, Republic of Korea
| | - Sanghee Kim
- Division of Life Sciences, Korea Polar Research Institute (KOPRI), Incheon, 21990, Republic of Korea.
| | - Seung Chul Shin
- Division of Life Sciences, Korea Polar Research Institute (KOPRI), Incheon, 21990, Republic of Korea.
| |
Collapse
|
27
|
Patel O, Muller CJF, Joubert E, Rosenkranz B, Louw J, Awortwe C. Aspalathin-rich green rooibos tea in combination with glyburide and atorvastatin enhances lipid metabolism in a db/db mouse model. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2022; 3:963489. [PMID: 36992750 PMCID: PMC10012079 DOI: 10.3389/fcdhc.2022.963489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/24/2022] [Indexed: 11/06/2022]
Abstract
Rooibos (Aspalathus linearis), an indigenous South African plant and its major flavonoid, aspalathin, exhibited positive effects on glycemia and dyslipidemia in animal studies. Limited evidence exists on the effects of rooibos extract taken in combination with oral hypoglycemic and lipid-lowering medications. This study investigated the combined effects of a pharmaceutical grade aspalathin-rich green rooibos extract (GRT) with the sulfonylurea, glyburide, and atorvastatin in a type 2 diabetic (db/db) mouse model. Six-week-old male db/db mice and their nondiabetic lean db+ littermates were divided into 8 experimental groups (n=6/group). Db/db mice were treated orally with glyburide (5 mg/kg bodyweight), atorvastatin (80 mg/kg bodyweight) and GRT (100 mg/kg bodyweight) as mono- and combination therapies respectively, for 5 weeks. An intraperitoneal glucose tolerance test was conducted at 3 weeks of treatment. Serum was collected for lipid analyses and liver tissues for histological examination and gene expression. A significant increase in the fasting plasma glucose (FPG) of the db/db mice compared to their lean counterparts (from 7.98 ± 0.83 to 26.44 ± 1.84, p < 0.0001) was observed. Atorvastatin reduced cholesterol (from 4.00 ± 0.12 to 2.93 ± 0.13, p < 0.05) and triglyceride levels (from 2.77 ± 0.50 to 1.48 ± 0.23, p < 0.05). In db/db mice, the hypotriglyceridemic effect of atorvastatin was enhanced when combined with both GRT and glyburide (from 2.77 ± 0.50 to 1.73 ± 0.35, p = 0.0002). Glyburide reduced the severity and pattern of steatotic lipid droplet accumulation from a mediovesicular type across all lobular areas, whilst combining GRT with glyburide reduced the abundance and severity of lipid droplet accumulation in the centri- and mediolobular areas. The combination of GRT, glyburide and atorvastatin reduced the abundance and severity of lipid accumulation and the intensity score compared to the administered drugs alone. The addition of either GRT or glyburide in combination with atorvastatin had no effect on blood glucose or lipid profiles, but significantly reduced lipid droplet accumulation.
Collapse
Affiliation(s)
- Oelfah Patel
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (MRC), Tygerberg, South Africa
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, South Africa
| | - Christo J. F. Muller
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (MRC), Tygerberg, South Africa
- Centre for Cardio-metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, South Africa
- *Correspondence: Christo J. F. Muller,
| | - Elizabeth Joubert
- Department of Food Science, Stellenbosch University, Matieland, South Africa
- Post-Harvest and Agro-Processing Technologies, Agricultural Research Council, Infruitec-Nietvoorbij, Stellenbosch, South Africa
| | - Bernd Rosenkranz
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (MRC), Tygerberg, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, South Africa
| | - Charles Awortwe
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (MRC), Tygerberg, South Africa
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, South Africa
| |
Collapse
|
28
|
Nezhadebrahimi A, Sepehri H, Jahanshahi M, Marjani M, Marjani A. The effect of simvastatin on gene expression of low-density lipoprotein receptor, sterol regulatory element-binding proteins, stearoyl-CoA desaturase 1 mRNA in rat hepatic tissues. Arch Physiol Biochem 2022; 128:1383-1390. [PMID: 32643419 DOI: 10.1080/13813455.2020.1772829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The study aimed to assess the effect of simvastatin on gene expression of LDLR, SREBPs, and SCD1 in rat hepatic tissues fed with high-fat diets (HFD) and its association with some biochemical parameters. Thirty-two male Wister albino rats were divided into four equal groups (three test and one control groups). The biochemical parameters were determined by using spectrophotometer techniques and the Elisa method. Low-density lipoprotein receptor, sterol regulatory element-binding proteins, stearoyl-CoA desaturase1, Beta-actin were analysed by real-time quantitative polymerase chain reaction (RT-PCR) method. At the end of study, the livers of the rats were separated and changes of hepatic tissue were determined. LDLR, SREBP2, and SCD1 expression increased significantly when compared G1 versus G4 and G2 versus G4. The expression of LDLR, SREBP2, and SCD1 also increased significantly when compared G2 versus G3, G1versus G3 and G1 versus G3 and G2 versus G3. The serum level of cholesterol, triglyceride, glucose, LDL, and HDL increased significantly when compared G1 versus G3. LDL showed significantly decreased when compared G1 versus G2. Cholesterol, glucose and HDL and triglyceride levels were increased significantly when compared G1 versus G4 and G2. Treatment of rats with HFD and simvastatin 20 mg/kg, triglyceride and LDL were almost the same as a control group and LDLR expression increased 98% in liver tissue. Gene expressions may be up-regulated in liver tissue and they showed different effects on biochemical parameters.
Collapse
Affiliation(s)
- Abbas Nezhadebrahimi
- Department of Biochemistry and Biophysics, Student Research Center, Metabolic Disorders Research Center, Gorgan Faculty of Medicine, Golestan University Medical Sciences, Gorgan, Iran
- Department of Physiology, Neuroscience Research Center, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hamid Sepehri
- Department of Physiology, Neuroscience Research Center, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehrdad Jahanshahi
- Neuroscience Research Center, Department of Anatomy, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Majid Marjani
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus, Turkey
| | - Abdoljalal Marjani
- Metabolic Disorders Research Center, Department of Biochemistry and Biophysics, Gorgan Faculty of Medicine, Golestan University Medical Sciences, Gorgan, Iran
| |
Collapse
|
29
|
Furukawa E, Chen Z, Kubo T, Wu Y, Ueda K, Chelenga M, Chiba H, Yanagawa Y, Katagiri S, Nagano M, Hui SP. Simultaneous free fatty acid elevations and accelerated desaturation in plasma and oocytes in early postpartum dairy cows under intensive feeding management. Theriogenology 2022; 193:20-29. [PMID: 36122530 DOI: 10.1016/j.theriogenology.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022]
Abstract
A severe negative energy balance and high circulating free fatty acids (FFA) in postpartum cows impair fertility. The lipotoxicity of FFA has been shown to decrease the quality of bovine oocytes in vitro. Therefore, excess FFA in cells is converted to triacylglycerol (TAG), a non-toxic form, to avoid lipotoxicity. We recently reported that the TAG content in oocytes was higher in postpartum lactating cows subjected to grazing management than in heifers (Theriogenology 176: 174-182, 2021). The present study investigated the compositions of the energy metabolism-related lipids, FFA and TAG, in the plasma and oocytes of cows at different lactation stages under indoor intensive feeding management in order to obtain insights into lipotoxicity in oocytes, particularly those in early postpartum cows. Blood and oocytes were collected from 20 lactating cows categorized into the following lactation groups: 20-30 days in milk (DIM) (n = 5), 40-50 DIM (n = 5), 60-80 DIM (n = 5), and 130-160 DIM (n = 5). Daily energy balance data were obtained for 3 weeks prior to oocyte collection using the ovum pick up (OPU) method. The contents and compositions of FFA and TAG in plasma and oocytes were analyzed using liquid chromatography-mass spectrometry. As expected, plasma FFA was high at 20-30 DIM, decreased by 50 DIM, and was maintained at a low level for the remainder of the experimental period. Similar changes were observed in oocyte FFA and TAG with DIM as plasma FFA. Oocyte FFA positively correlated with plasma FFA (P < 0.05), but negatively correlated with the mean energy balance 1 and 21 days before OPU (P < 0.05). Relationships were noted between the composition and content of FFA in plasma and oocytes, with the FFA 16:1/16:0 and 18:1/18:0 ratios positively correlating with the total amount of FFA (P < 0.05). Elevated oocyte FFA in cows in the early postpartum period under intensive feeding management suggested that oocytes were at a high risk of FFA lipotoxicity. Furthermore, the present results implied that the severe negative energy balance in the previous few weeks was closely related to increases in oocyte FFA, which supports the importance of long-term cow feeding management for preserving the quality of oocytes in the early postpartum period. The present results provide insights into the effects of high circulating FFA on the fertility of postpartum cows.
Collapse
Affiliation(s)
- Eri Furukawa
- Laboratory of Theriogenology, Graduate School of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Zhen Chen
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Tomoaki Kubo
- Dairy Cattle Group, Dairy Research Center, Hokkaido Research Organization, 7, Asahigaoka, Nakashibetsu, Hokkaido, 086-1135, Japan
| | - Yue Wu
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Koichiro Ueda
- Laboratory of Animal Production System, Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo, Hokkaido, 060-8589, Japan
| | - Madalitso Chelenga
- Laboratory of Theriogenology, Graduate School of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Nakanuma Nishi-4-2-1-15, Higashi-ku, Sapporo, Hokkaido, 007-0894, Japan
| | - Yojiro Yanagawa
- Laboratory of Theriogenology, Graduate School of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Seiji Katagiri
- Laboratory of Theriogenology, Graduate School of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Masashi Nagano
- Laboratory of Theriogenology, Graduate School of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan; Laboratory of Animal Reproduction, Department of Animal Science, School of Veterinary Medicine, Kitasato University, 35-1, Higashi-23 Bancho, Towada, 034-8628, Japan.
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.
| |
Collapse
|
30
|
Burchat N, Akal T, Ntambi JM, Trivedi N, Suresh R, Sampath H. SCD1 is nutritionally and spatially regulated in the intestine and influences systemic postprandial lipid homeostasis and gut-liver crosstalk. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159195. [PMID: 35718096 PMCID: PMC11287785 DOI: 10.1016/j.bbalip.2022.159195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/21/2022] [Accepted: 06/01/2022] [Indexed: 01/27/2023]
Abstract
Stearoyl-CoA desaturase-1 is an endoplasmic reticulum (ER)-membrane resident protein that inserts a double bond into saturated fatty acids, converting them into their monounsaturated counterparts. Previous studies have demonstrated an important role for SCD1 in modulating tissue and systemic health. Specifically, lack of hepatic or cutaneous SCD1 results in significant reductions in tissue esterified lipids. While the intestine is an important site of lipid esterification and assimilation into the body, the regulation of intestinal SCD1 or its impact on lipid composition in the intestine and other tissues has not been investigated. Here we report that unlike other lipogenic enzymes, SCD1 is enriched in the distal small intestine and in the colon of chow-fed mice and is robustly upregulated by acute refeeding of a high-sucrose diet. We generated a mouse model lacking SCD1 specifically in the intestine (iKO mice). These mice have significant reductions not only in intestinal lipids, but also in plasma triacylglycerols, diacylglycerols, cholesterol esters, and free cholesterol. Additionally, hepatic accumulation of diacylglycerols is significantly reduced in iKO mice. Comprehensive targeted lipidomic profiling revealed a consistent reduction in the myristoleic (14:1) to myristic (14:0) acid ratios in intestine, liver, and plasma of iKO mice. Consistent with the reduction of the monounsaturated fatty acid myristoleic acid in hepatic lipids of chow fed iKO mice, hepatic expression of Pgc-1α, Sirt1, and related fatty acid oxidation genes were reduced in chow-fed iKO mice. Further, lack of intestinal SCD1 reduced expression of de novo lipogenic genes in distal intestine of chow-fed mice and in the livers of mice fed a lipogenic high-sucrose diet. Taken together, these studies reveal a novel pattern of expression of SCD1 in the intestine. They also demonstrate that intestinal SCD1 modulates lipid content and composition of not only intestinal tissues, but also that of plasma and liver. Further, these data point to intestinal SCD1 as a modulator of gut-liver crosstalk, potentially through the production of novel signaling lipids such as myristoleic acid. These data have important implications to understanding how intestinal SCD1 may modulate risk for post-prandial lipemia, hepatic steatosis, and related pathologies.
Collapse
Affiliation(s)
- Natalie Burchat
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, United States of America
| | - Tasleenpal Akal
- Department of Nutritional Sciences, Rutgers University, United States of America
| | - James M Ntambi
- Departments of Biochemistry and Nutritional Sciences, University of Wisconsin-Madison, United States of America
| | - Nirali Trivedi
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, United States of America
| | - Ranjita Suresh
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, United States of America
| | - Harini Sampath
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, United States of America; Department of Nutritional Sciences, Rutgers University, United States of America.
| |
Collapse
|
31
|
Leikin-Frenkel A, Cohen H, Keshet R, Shnerb-GanOr R, Kandel-Kfir M, Harari A, Hollander KS, Shaish A, Harats D, Kamari Y. The effect of α-linolenic acid enrichment in perinatal diets in preventing high fat diet-induced SCD1 increased activity and lipid disarray in adult offspring of low density lipoprotein receptor knockout (LDLRKO) mice. Prostaglandins Leukot Essent Fatty Acids 2022; 184:102475. [PMID: 35940045 DOI: 10.1016/j.plefa.2022.102475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/29/2022]
Abstract
The present study examined the effects of maternal perinatal dietary ALA enrichment on the high fat diet (HFD)-induced lipid disarray in the adult offspring of low density lipoprotein receptor knock-out (LDLRKO) mice. Female LDLRKO mice received, during pregnancy and lactation, isocaloric diets with either corn oil, RD, or flax oil, ALA. The weaning offspring was given a regular chow diet for a washout period of eight weeks, which was followed by HFD for eight weeks. Plasma and liver lipids and SCD1 activity were then analyzed. The HFD-fed RD adult offspring had substantially higher plasma cholesterol levels than the HFD-fed ALA offspring (15.7 versus 9.7 mmole/l, p<0.00001) and non-alcoholic fatty liver disease (NAFLD) (65.0 versus 23.9 mg/g lipids, p<0.00001). Liver lipids oleic acid (OA) content and monounsaturated to saturated fatty acids (MUFA/SAT) ratio, were two times lower in RD compared to ALA (p<0.0001). The threefold HFD-induced SCD1 raised activity (p<0.00001), and OA produced from SA, observed in RD adult offspring were prevented by perinatal ALA. In conclusion, the resilience of SCD1 to HFD- induced increased activity may account for the beneficial effects of perinatal ALA dietary enrichment in preventing NAFLD and hypercholesterolemia from occurring in adult LDLRKO offspring mice.
Collapse
Affiliation(s)
- A Leikin-Frenkel
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Tel-Hashomer, 5265601, Israel; Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 69978, Israel.
| | - H Cohen
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Tel-Hashomer, 5265601, Israel; Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - R Keshet
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Tel-Hashomer, 5265601, Israel
| | - R Shnerb-GanOr
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Tel-Hashomer, 5265601, Israel
| | - M Kandel-Kfir
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Tel-Hashomer, 5265601, Israel
| | - A Harari
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Tel-Hashomer, 5265601, Israel
| | - K S Hollander
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - A Shaish
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Tel-Hashomer, 5265601, Israel; Achva Academic College, Israel
| | - D Harats
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Tel-Hashomer, 5265601, Israel; Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Y Kamari
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Tel-Hashomer, 5265601, Israel; Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 69978, Israel
| |
Collapse
|
32
|
Yuan X, Abdul-Rahman II, Hu S, Li L, He H, Xia L, Hu J, Ran M, Liu Y, Abdulai M, Wang J. Mechanism of SCD Participation in Lipid Droplet-Mediated Steroidogenesis in Goose Granulosa Cells. Genes (Basel) 2022; 13:genes13091516. [PMID: 36140684 PMCID: PMC9498882 DOI: 10.3390/genes13091516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Stearoyl-CoA desaturase (SCD) is a key enzyme catalyzing the rate-limiting step in monounsaturated fatty acids (MUFAs) production. There may be a mechanism by which SCD is involved in lipid metabolism, which is assumed to be essential for goose follicular development. For this reason, a cellular model of SCD function in goose granulosa cells (GCs) via SCD overexpression and knockdown was used to determine the role of SCD in GC proliferation using flow cytometry. We found that SCD overexpression induced and SCD knockdown inhibited GCs proliferation. Furthermore, ELISA analysis showed that SCD overexpression increased the total cholesterol (TC), progesterone, and estrogen levels in GCs, while SCD knockdown decreased TC, progesterone, and estrogen levels (p < 0.05). Combining these results with those of related multi-omics reports, we proposed a mechanism of SCD regulating the key lipids and differentially expressed gene (DEGs) in glycerophospholipid and glycerolipid metabolism, which participate in steroidogenesis mediated by the lipid droplet deposition in goose GCs. These results add further insights into understanding the lipid metabolism mechanism of goose GCs.
Collapse
Affiliation(s)
- Xin Yuan
- Country Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Ibn Iddriss Abdul-Rahman
- Department of Veterinary Science, Faculty of Agriculture, University for Development Studies, Nyankpala Campus, Tamale P.O. Box TL 1882, Ghana
| | - Shenqiang Hu
- Country Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Liang Li
- Country Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hua He
- Country Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lu Xia
- Country Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiwei Hu
- Country Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingxia Ran
- Country Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yali Liu
- Country Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Mariama Abdulai
- Country Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiwen Wang
- Country Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: ; Tel.: +86-028-8629-098
| |
Collapse
|
33
|
Yanran W, Jung S, Ko KS. Saturated Fatty Acid-Induced Impairment of Hepatic Lipid Metabolism Is Worsened by Prohibitin 1 Deficiency in Hepatocytes. J Med Food 2022; 25:845-852. [PMID: 35980329 DOI: 10.1089/jmf.2022.k.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Obesity-associated nonalcoholic fatty liver disease (NAFLD) is characterized by excessive intrahepatic lipid accumulation. Despite the increasing prevalence of NAFLD and obesity, the pathogenesis of NAFLD has not yet been clearly elucidated. Prohibitin 1 (PHB1) is mainly expressed in the inner membrane of mitochondria and is known to play an important role in hepatocyte proliferation and lipid metabolism. In this study, we investigated how PHB1 affects lipid metabolism in murine hepatocytes. To reduce the expression of PHB1, Phb1 small interfering RNA was transfected into normal murine hepatocytes (AML12), and the cells were treated with the saturated fatty acid (SFA), palmitic acid (PA), for 24 h. When PHB1 was inhibited, the cell viability decreased by ∼20%, and it was found that it diminished further after PA treatment in both control and peroxisome proliferator-activated receptor gamma (Ppar-γ) knockdown cell groups. Examination of the mRNA expression levels of key enzymes involved in lipid metabolism revealed that PHB1 led to increased stearoyl-coenzyme A desaturase-1 (Scd1) mRNA levels, which leads to an increase in the synthesis of triglycerides (TGs). It also activates the endoplasmic reticulum (ER) stress response through upregulating C/EBP homologous protein (Chop) mRNA levels. PPAR-γ, which has been reported to be upregulated in NAFLD patients, also showed elevated expression. The expression of carnitine palmitoyltransferase 1A, which is involved in the conversion of excess intracellular SFA to fatty acid by catabolism, was downregulated in the PHB1-deficient group. Furthermore, TG synthesis was further promoted by a marked increase in SCD1 mRNA levels, which was further exacerbated by elevated Chop mRNA levels and Ppar-γ disruption. Taken together, PHB1 deficiency led to altered lipid metabolism, resulting in the increased intracellular lipid accumulation and ER stress. These cytotoxic effects were shown to be further exacerbated by excessive PA treatment.
Collapse
Affiliation(s)
- Wen Yanran
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Korea
| | - Soohan Jung
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, Korea
| | - Kwang Suk Ko
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Korea
| |
Collapse
|
34
|
Kim JE, Bennett DC, Wright K, Cheng KM. Seasonal and sexual variation in mRNA expression of selected adipokine genes affecting fat deposition and metabolism of the emu (Dromaius novaehollandiae). Sci Rep 2022; 12:6325. [PMID: 35428830 PMCID: PMC9012844 DOI: 10.1038/s41598-022-10232-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 03/29/2022] [Indexed: 11/16/2022] Open
Abstract
Emus are farmed for fat production. Oil rendered from their back and abdominal fat pads has good anti-oxidant and anti-inflammatory properties and has ingredients that promote cell growth. Our objective is to examine the mRNA expression of 7 emu adipokine genes (eFABP4, eSCD1, eAdipoQ, eAdipoR1, eAdipoR2, eLEP and eLepR) to identify gene markers that may help improve emu fat production. Back and abdominal fat tissues from 11 adult emus were biopsied at four time points (April, June, August and November). Total RNA was isolated and cDNA was synthesized. Gene specific primers were designed for partial cloning fragments to amplify the open reading frame of the 7 genes. eLEP was not expressed in emu fat tissue. Nucleotides and amino acids sequences of the 6 expressed gene were compared with homologs from other species and phylogenetic relationships established. Seasonal mRNA expression of each gene was assessed by quantitative RT-PCR and differential expression analysed by the 2-ΔΔCT method. The 6 expressed genes showed seasonal variation in expression and showed association of expression level with back fat adiposity. More whole-genome scanning studies are needed to develop novel molecular markers that can be applied to improve fat production in emus.
Collapse
Affiliation(s)
- Ji Eun Kim
- Faculty of Land and Food Systems, Avian Research Centre, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Darin C Bennett
- Faculty of Land and Food Systems, Avian Research Centre, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Animal Science Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Kristina Wright
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, 570 West 7th Avenue, Vancouver, BC, V5Z 4S6, Canada
| | - Kimberly M Cheng
- Faculty of Land and Food Systems, Avian Research Centre, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
35
|
Ko H, Kim C, Lee MS, Chang E, Kim CT, Kim Y. High Hydrostatic Pressure Extract of Mulberry Leaf Attenuated Obesity-Induced Inflammation in Rats. J Med Food 2022; 25:251-260. [PMID: 35320014 DOI: 10.1089/jmf.2021.k.0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Low-grade inflammation might be a link between obesity and obesity-associated metabolic dysfunction, including diabetes, hepatic steatosis, and other health complications. This study investigated whether the supplementation of high hydrostatic pressure extract of mulberry (Morus alba L.) leaves (HML) to obese rats could counteract obesity-related inflammation. Three-week-old male Sprague-Dawley rats were separated into three groups as follows: (a) a normal diet, (b) 45% high-fat (HF) diet, and HF diet containing 0.4% HML (c) or 0.8% HML (d) (IACUC No. 17-033). After 14 weeks of HML supplementation, adipose tissue mass, mRNA expression of adipogenic genes, such as aP2, peroxisome proliferator-activated receptor γ (PPARγ), and sterol regulatory element binding protein 1c (SREBP1c), and macrophage recruitment were significantly decreased in HF-fed obese rats. Serum concentrations of nitric oxide and mRNA levels of arginase1 (Arg1), CD11c, and inducible nitric oxide synthase (iNOS) involved in adipose tissue macrophage M1 polarization were also significantly reduced by HML. Moreover, HML alleviated the serum and hepatic lipid profiles and reduced hepatic lipogenic gene expression of acetyl-CoA carboxylase (ACC), cluster of differentiation 36 (CD36), CPT1, fatty acid synthase (FAS), stearoyl-CoA desaturase (SCD1), and SREBP1c, and inflammation-associated genes, including IL1β, interleukin 6 (IL6), and tumor necrosis factor α (TNFα). Serum IL6 and TNFα levels were remarkedly suppressed in the 0.8% HML group. These results suggested that the favorable effect of HML on obesity-associated inflammation might be related in part to the decrease in adipose tissue and hepatic fat deposition and inflammation.
Collapse
Affiliation(s)
- Hyunmi Ko
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Korea
| | - Chaemin Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Korea
| | - Mak-Soon Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Korea
| | - Eugene Chang
- Department of Food and Nutrition, Gangneung-Wonju National University, Gangneung-si, Korea
| | | | - Yangha Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Korea.,Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Korea
| |
Collapse
|
36
|
Rome FI, Hughey CC. Disrupted Liver Oxidative Metabolism in Glycine N-Methyltransferase-Deficient Mice is Mitigated by Dietary Methionine Restriction. Mol Metab 2022; 58:101452. [PMID: 35121169 PMCID: PMC8866067 DOI: 10.1016/j.molmet.2022.101452] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/10/2022] [Accepted: 01/27/2022] [Indexed: 11/25/2022] Open
|
37
|
Jeyakumar SM, Vajreswari A. Stearoyl-CoA desaturase 1: A potential target for non-alcoholic fatty liver disease?-perspective on emerging experimental evidence. World J Hepatol 2022; 14:168-179. [PMID: 35126846 PMCID: PMC8790397 DOI: 10.4254/wjh.v14.i1.168] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/18/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a progressive disease and one of the leading causes of death. An unnamed disease has become a global epidemic disease of public health concern. This spectrum of diseases manifests itself with initial accumulation of excessive triglycerides (due to de novo lipogenesis) in the hepatocytes, leading to simple steatosis. Although its aetiology is multi-factorial, lifestyle changes (diet and physical activity) are considered to be the key thriving factors. In this context, high fructose consumption is associated with an increased risk for developing NAFLD in humans, while high-fructose feeding to experimental animals results in hepatic steatosis and non-alcoholic steatohepatitis, by increasing hepatic lipogenesis. Among several lipogenic genes, the endoplasmic reticulum-bound stearoyl-CoA desaturase 1 (SCD1) is the key determinant of triglycerides biosynthesis pathway, by providing monounsaturated fatty acids, through the incorporation of a double bond at the delta-9 position of saturated fatty acids, specifically, palmitic (C16:0) and stearic (C18:0) acids, yielding palmitoleic (C16:1) and oleic (C18:1) acids, respectively. Various experimental studies involving SCD1 gene knockout and diet-induced rodent models have demonstrated that SCD1 plays a key role in the development of NAFLD, by modulating hepatic lipogenesis and thus triglyceride accumulation in the liver. Several pharmacological and dietary intervention studies have shown the benefits of inhibiting hepatic SCD1 in the pathogenesis of NAFLD. In this review, we give an overview of SCD1 in NAFLD, based on the current experimental evidence and the translational applicability of SCD1 inhibition in human NAFLD conditions, besides discussing the limitations and way-forward.
Collapse
Affiliation(s)
- Shanmugam Murugaiha Jeyakumar
- Division of Lipid Biochemistry, National Institute of Nutrition, Hyderabad 500007, Telangana, India
- Department of Clinical Pharmacology, National Institute for Research in Tuberculosis, Chennai 600031, Tamil Nadu, India
| | | |
Collapse
|
38
|
Hinds TD, Kipp ZA, Xu M, Yiannikouris FB, Morris AJ, Stec DF, Wahli W, Stec DE. Adipose-Specific PPARα Knockout Mice Have Increased Lipogenesis by PASK-SREBP1 Signaling and a Polarity Shift to Inflammatory Macrophages in White Adipose Tissue. Cells 2021; 11:4. [PMID: 35011564 PMCID: PMC8750478 DOI: 10.3390/cells11010004] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/16/2022] Open
Abstract
The nuclear receptor PPARα is associated with reducing adiposity, especially in the liver, where it transactivates genes for β-oxidation. Contrarily, the function of PPARα in extrahepatic tissues is less known. Therefore, we established the first adipose-specific PPARα knockout (PparaFatKO) mice to determine the signaling position of PPARα in adipose tissue expansion that occurs during the development of obesity. To assess the function of PPARα in adiposity, female and male mice were placed on a high-fat diet (HFD) or normal chow for 30 weeks. Only the male PparaFatKO animals had significantly more adiposity in the inguinal white adipose tissue (iWAT) and brown adipose tissue (BAT) with HFD, compared to control littermates. No changes in adiposity were observed in female mice compared to control littermates. In the males, the loss of PPARα signaling in adipocytes caused significantly higher cholesterol esters, activation of the transcription factor sterol regulatory element-binding protein-1 (SREBP-1), and a shift in macrophage polarity from M2 to M1 macrophages. We found that the loss of adipocyte PPARα caused significantly higher expression of the Per-Arnt-Sim kinase (PASK), a kinase that activates SREBP-1. The hyperactivity of the PASK-SREBP-1 axis significantly increased the lipogenesis proteins fatty acid synthase (FAS) and stearoyl-Coenzyme A desaturase 1 (SCD1) and raised the expression of genes for cholesterol metabolism (Scarb1, Abcg1, and Abca1). The loss of adipocyte PPARα increased Nos2 in the males, an M1 macrophage marker indicating that the population of macrophages had changed to proinflammatory. Our results demonstrate the first adipose-specific actions for PPARα in protecting against lipogenesis, inflammation, and cholesterol ester accumulation that leads to adipocyte tissue expansion in obesity.
Collapse
Affiliation(s)
- Terry D. Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40508, USA; (Z.A.K.); (M.X.); (F.B.Y.)
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY 40508, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40508, USA
| | - Zachary A. Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40508, USA; (Z.A.K.); (M.X.); (F.B.Y.)
| | - Mei Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40508, USA; (Z.A.K.); (M.X.); (F.B.Y.)
| | - Frederique B. Yiannikouris
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40508, USA; (Z.A.K.); (M.X.); (F.B.Y.)
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY 40508, USA
| | - Andrew J. Morris
- Division of Cardiovascular Medicine, College of Medicine, University of Kentucky, Lexington, KY 40508, USA;
- Lexington Veterans Affairs Medical Center, Lexington, KY 40508, USA
| | - Donald F. Stec
- Small Molecule NMR Facility Core, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA;
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, Singapore 308232, Singapore;
- Toxalim Research Center in Food Toxicology (UMR 1331), INRAE, ENVT, INP—PURPAN, UPS, Université de Toulouse, F-31300 Toulouse, France
- Center for Integrative Genomics, Université de Lausanne, Le Génopode, CH-1015 Lausanne, Switzerland
| | - David E. Stec
- Department of Physiology & Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
39
|
Furukawa E, Chen Z, Ueshiba H, Wu Y, Chiba H, Yanagawa Y, Katagiri S, Nagano M, Hui SP. Postpartum cows showed high oocyte triacylglycerols concurrently with high plasma free fatty acids. Theriogenology 2021; 176:174-182. [PMID: 34624811 DOI: 10.1016/j.theriogenology.2021.09.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/12/2021] [Accepted: 09/30/2021] [Indexed: 12/11/2022]
Abstract
Impaired oocyte quality is one of the main causes of low fertility in modern high-yielding dairy cows. One of the potential factors of the impaired oocyte quality is the effects of free fatty acids (FFA). In fact, high FFA supplementation to culture media exacerbated oocyte developmental competence in vitro. Meanwhile, artificially induced high blood FFA levels in heifers did not affect the lipid composition of oocytes in vivo; however, the oocyte lipid profile of postpartum cows has not yet been investigated. Therefore, the profile of lipids involved in energy metabolism, including FFA and triacylglycerols (TAG), and their relationship between plasma and oocytes were compared among cows at different lactation stages. Heifers were used as a control group that was not affected by lactation. Plasma and oocytes were collected from heifers (n = 4) and 14 Holstein cows categorized to the early lactation stage: 25-47 days in milk (DIM) (n = 6), peak lactation stage: 61-65 DIM (n = 4), and middle lactation stage: 160-202 DIM (n = 4). The FFA and TAG profiles of plasma and oocytes were examined by liquid chromatography mass spectrometry. Plasma FFA positively correlated with oocyte TAG (P < 0.05). Plasma FFA and oocyte TAG were significantly higher in cows in the early lactation stage than in heifers (P < 0.05), while the peak and middle lactation stage groups had intermediate levels. The proportion of oleic acid in plasma increased concurrently with elevations in total FFA, while the compositions of oocyte FFA and TAG fatty acyls were constant regardless of plasma FFA concentration or oocyte TAG content. The present results suggest that high postpartum plasma FFA concentrations affect the quantity of oocyte TAG. Taken together with the adverse effects of high FFA concentrations on oocyte developmental competence in vitro, oocyte quality in postpartum cows may be impaired due to high circulating FFA concentrations. These results provide a more detailed understanding of the effects of postpartum high circulating FFA concentrations on the low fertility of cows.
Collapse
Affiliation(s)
- Eri Furukawa
- Laboratory of Theriogenology, Graduate School of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Zhen Chen
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Hiroki Ueshiba
- Laboratory of Theriogenology, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Yue Wu
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Nakanuma Nishi-4-2-1-15, Higashi-ku, Sapporo, Hokkaido, 007-0894, Japan
| | - Yojiro Yanagawa
- Laboratory of Theriogenology, Graduate School of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Seiji Katagiri
- Laboratory of Theriogenology, Graduate School of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Masashi Nagano
- Laboratory of Theriogenology, Graduate School of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan; Laboratory of Animal Reproduction, Department of Animal Science, School of Veterinary Medicine, Kitasato University, 35-1, Higashi-23, Towada, Aomori, 034-8628, Japan.
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.
| |
Collapse
|
40
|
Thangapandi VR, Knittelfelder O, Brosch M, Patsenker E, Vvedenskaya O, Buch S, Hinz S, Hendricks A, Nati M, Herrmann A, Rekhade DR, Berg T, Matz-Soja M, Huse K, Klipp E, Pauling JK, Wodke JA, Miranda Ackerman J, Bonin MV, Aigner E, Datz C, von Schönfels W, Nehring S, Zeissig S, Röcken C, Dahl A, Chavakis T, Stickel F, Shevchenko A, Schafmayer C, Hampe J, Subramanian P. Loss of hepatic Mboat7 leads to liver fibrosis. Gut 2021; 70:940-950. [PMID: 32591434 PMCID: PMC8040158 DOI: 10.1136/gutjnl-2020-320853] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVE The rs641738C>T variant located near the membrane-bound O-acyltransferase domain containing 7 (MBOAT7) locus is associated with fibrosis in liver diseases, including non-alcoholic fatty liver disease (NAFLD), alcohol-related liver disease, hepatitis B and C. We aim to understand the mechanism by which the rs641738C>T variant contributes to pathogenesis of NAFLD. DESIGN Mice with hepatocyte-specific deletion of MBOAT7 (Mboat7Δhep) were generated and livers were characterised by histology, flow cytometry, qPCR, RNA sequencing and lipidomics. We analysed the association of rs641738C>T genotype with liver inflammation and fibrosis in 846 NAFLD patients and obtained genotype-specific liver lipidomes from 280 human biopsies. RESULTS Allelic imbalance analysis of heterozygous human liver samples pointed to lower expression of the MBOAT7 transcript on the rs641738C>T haplotype. Mboat7Δhep mice showed spontaneous steatosis characterised by increased hepatic cholesterol ester content after 10 weeks. After 6 weeks on a high fat, methionine-low, choline-deficient diet, mice developed increased hepatic fibrosis as measured by picrosirius staining (p<0.05), hydroxyproline content (p<0.05) and transcriptomics, while the inflammatory cell populations and inflammatory mediators were minimally affected. In a human biopsied NAFLD cohort, MBOAT7 rs641738C>T was associated with fibrosis (p=0.004) independent of the presence of histological inflammation. Liver lipidomes of Mboat7Δhep mice and human rs641738TT carriers with fibrosis showed increased total lysophosphatidylinositol levels. The altered lysophosphatidylinositol and phosphatidylinositol subspecies in MBOAT7Δhep livers and human rs641738TT carriers were similar. CONCLUSION Mboat7 deficiency in mice and human points to an inflammation-independent pathway of liver fibrosis that may be mediated by lipid signalling and a potentially targetable treatment option in NAFLD.
Collapse
Affiliation(s)
- Veera Raghavan Thangapandi
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Sachsen, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Oskar Knittelfelder
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Sachsen, Germany
| | - Mario Brosch
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Sachsen, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Eleonora Patsenker
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Olga Vvedenskaya
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Sachsen, Germany
| | - Stephan Buch
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Sachsen, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Sebastian Hinz
- Department of Visceral and Thoracic Surgery, Universitatsklinikum Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany
| | - Alexander Hendricks
- Department of Visceral and Thoracic Surgery, Universitatsklinikum Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany
| | - Marina Nati
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Sachsen, Germany
| | - Alexander Herrmann
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Sachsen, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Devavrat Ravindra Rekhade
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Sachsen, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Thomas Berg
- Division of Hepatology, Department of Oncology, Gastroenterology, Hepatology Pulmonology, and Infectious Diseases, University Hospital Leipzig, Leipzig, Sachsen, Germany
| | - Madlen Matz-Soja
- Division of Hepatology, Department of Oncology, Gastroenterology, Hepatology Pulmonology, and Infectious Diseases, University Hospital Leipzig, Leipzig, Sachsen, Germany
- Rudolf Schönheimer- Institute of Biochemistry, University of Leipzig Faculty of Medicine, Leipzig, Germany
| | - Klaus Huse
- Leibniz Institute for Age Research Fritz-Lipmann Institute, Jena, Thüringen, Germany
| | - Edda Klipp
- Department of Theoretical Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Josch K Pauling
- Department of Theoretical Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising, Bayern, Germany
| | - Judith Ah Wodke
- Department of Theoretical Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Malte von Bonin
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Sachsen, Germany
- German Cancer Consortium, Heidelberg, Baden-Württemberg, Germany
| | - Elmar Aigner
- Department of Medicine, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Christian Datz
- Department of Internal Medicine, Hospital Oberndorf, Teaching Hospital of the Paracelsus Private University of Salzburg, Obendorf, Austria
| | - Witigo von Schönfels
- Department of Visceral and Thoracic Surgery, Universitatsklinikum Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany
| | - Sophie Nehring
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Sachsen, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Sebastian Zeissig
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Sachsen, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Christoph Röcken
- Department of Pathology, University Hospital Schleswig Holstein, Kiel, Schleswig-Holstein, Germany
| | - Andreas Dahl
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Triantafyllos Chavakis
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Sachsen, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Sachsen, Germany
- German Center for Diabetes Research, Neuherberg, Germany
- Paul Langerhans Institute Dresden, Helmholtz Zentrum München, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Sachsen, Germany
| | - Felix Stickel
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Andrej Shevchenko
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Sachsen, Germany
| | - Clemens Schafmayer
- Department of General, Visceral, Vascular and Transplantation Surgery, University of Rostock, Rostock, Mecklenburg-Vorpommern, Germany
| | - Jochen Hampe
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Sachsen, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Pallavi Subramanian
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Sachsen, Germany
| |
Collapse
|
41
|
Nichols RG, Davenport ER. The relationship between the gut microbiome and host gene expression: a review. Hum Genet 2021; 140:747-760. [PMID: 33221945 PMCID: PMC7680557 DOI: 10.1007/s00439-020-02237-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022]
Abstract
Despite the growing knowledge surrounding host-microbiome interactions, we are just beginning to understand how the gut microbiome influences-and is influenced by-host gene expression. Here, we review recent literature that intersects these two fields, summarizing themes across studies. Work in model organisms, human biopsies, and cell culture demonstrate that the gut microbiome is an important regulator of several host pathways relevant for disease, including immune development and energy metabolism, and vice versa. The gut microbiome remodels host chromatin, causes differential splicing, alters the epigenetic landscape, and directly interrupts host signaling cascades. Emerging techniques like single-cell RNA sequencing and organoid generation have the potential to refine our understanding of the relationship between the gut microbiome and host gene expression in the future. By intersecting microbiome and host gene expression, we gain a window into the physiological processes important for fostering the extensive cross-kingdom interactions and ultimately our health.
Collapse
Affiliation(s)
- Robert G. Nichols
- Department of Biology, The Pennsylvania State University, University Park, PA 16802 USA
| | - Emily R. Davenport
- Department of Biology, The Pennsylvania State University, University Park, PA 16802 USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802 USA
| |
Collapse
|
42
|
Monounsaturated Fatty Acids in Obesity-Related Inflammation. Int J Mol Sci 2020; 22:ijms22010330. [PMID: 33396940 PMCID: PMC7795523 DOI: 10.3390/ijms22010330] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 12/14/2022] Open
Abstract
Obesity is an important aspect of the metabolic syndrome and is often associated with chronic inflammation. In this context, inflammation of organs participating in energy homeostasis (such as liver, adipose tissue, muscle and pancreas) leads to the recruitment and activation of macrophages, which secrete pro-inflammatory cytokines. Interleukin-1β secretion, sustained C-reactive protein plasma levels and activation of the NLRP3 inflammasome characterize this inflammation. The Stearoyl-CoA desaturase-1 (SCD1) enzyme is a central regulator of lipid metabolism and fat storage. This enzyme catalyzes the generation of monounsaturated fatty acids (MUFAs)-major components of triglycerides stored in lipid droplets-from saturated fatty acid (SFA) substrates. In this review, we describe the molecular effects of specific classes of fatty acids (saturated and unsaturated) to better understand the impact of different diets (Western versus Mediterranean) on inflammation in a metabolic context. Given the beneficial effects of a MUFA-rich Mediterranean diet, we also present the most recent data on the role of SCD1 activity in the modulation of SFA-induced chronic inflammation.
Collapse
|
43
|
Bogie JFJ, Grajchen E, Wouters E, Corrales AG, Dierckx T, Vanherle S, Mailleux J, Gervois P, Wolfs E, Dehairs J, Van Broeckhoven J, Bowman AP, Lambrichts I, Gustafsson JÅ, Remaley AT, Mulder M, Swinnen JV, Haidar M, Ellis SR, Ntambi JM, Zelcer N, Hendriks JJA. Stearoyl-CoA desaturase-1 impairs the reparative properties of macrophages and microglia in the brain. J Exp Med 2020; 217:133840. [PMID: 32097464 PMCID: PMC7201924 DOI: 10.1084/jem.20191660] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/12/2019] [Accepted: 01/24/2020] [Indexed: 12/15/2022] Open
Abstract
Failure of remyelination underlies the progressive nature of demyelinating diseases such as multiple sclerosis. Macrophages and microglia are crucially involved in the formation and repair of demyelinated lesions. Here we show that myelin uptake temporarily skewed these phagocytes toward a disease-resolving phenotype, while sustained intracellular accumulation of myelin induced a lesion-promoting phenotype. This phenotypic shift was controlled by stearoyl-CoA desaturase-1 (SCD1), an enzyme responsible for the desaturation of saturated fatty acids. Monounsaturated fatty acids generated by SCD1 reduced the surface abundance of the cholesterol efflux transporter ABCA1, which in turn promoted lipid accumulation and induced an inflammatory phagocyte phenotype. Pharmacological inhibition or phagocyte-specific deficiency of Scd1 accelerated remyelination ex vivo and in vivo. These findings identify SCD1 as a novel therapeutic target to promote remyelination.
Collapse
Affiliation(s)
- Jeroen F J Bogie
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Elien Grajchen
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Elien Wouters
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Aida Garcia Corrales
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Tess Dierckx
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Sam Vanherle
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Jo Mailleux
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Pascal Gervois
- Department of Cardio and Organ Systems, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Esther Wolfs
- Department of Cardio and Organ Systems, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Jonas Dehairs
- Department of Oncology, Laboratory of Lipid Metabolism and Cancer, Leuven Cancer Institute, University of Leuven, Leuven, Belgium
| | - Jana Van Broeckhoven
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Andrew P Bowman
- The Maastricht MultiModal Molecular Imaging Institute, Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, Netherlands
| | - Ivo Lambrichts
- Department of Cardio and Organ Systems, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Jan-Åke Gustafsson
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Alan T Remaley
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Monique Mulder
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Johannes V Swinnen
- Department of Oncology, Laboratory of Lipid Metabolism and Cancer, Leuven Cancer Institute, University of Leuven, Leuven, Belgium
| | - Mansour Haidar
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Shane R Ellis
- The Maastricht MultiModal Molecular Imaging Institute, Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, Netherlands
| | - James M Ntambi
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI.,Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI
| | - Noam Zelcer
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Jerome J A Hendriks
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
44
|
Hinds TD, Creeden JF, Gordon DM, Stec DF, Donald MC, Stec DE. Bilirubin Nanoparticles Reduce Diet-Induced Hepatic Steatosis, Improve Fat Utilization, and Increase Plasma β-Hydroxybutyrate. Front Pharmacol 2020; 11:594574. [PMID: 33390979 PMCID: PMC7775678 DOI: 10.3389/fphar.2020.594574] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/13/2020] [Indexed: 12/18/2022] Open
Abstract
The inverse relationship of plasma bilirubin levels with liver fat accumulation has prompted the possibility of bilirubin as a therapeutic for non-alcoholic fatty liver disease. Here, we used diet-induced obese mice with non-alcoholic fatty liver disease treated with pegylated bilirubin (bilirubin nanoparticles) or vehicle control to determine the impact on hepatic lipid accumulation. The bilirubin nanoparticles significantly reduced hepatic fat, triglyceride accumulation, de novo lipogenesis, and serum levels of liver dysfunction marker aspartate transaminase and ApoB100 containing very-low-density lipoprotein. The bilirubin nanoparticles improved liver function and activated the hepatic β-oxidation pathway by increasing PPARα and acyl-coenzyme A oxidase 1. The bilirubin nanoparticles also significantly elevated plasma levels of the ketone β-hydroxybutyrate and lowered liver fat accumulation. This study demonstrates that bilirubin nanoparticles induce hepatic fat utilization, raise plasma ketones, and reduce hepatic steatosis, opening new therapeutic avenues for NAFLD.
Collapse
Affiliation(s)
- Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Justin F Creeden
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, United States
| | - Darren M Gordon
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, United States
| | - Donald F Stec
- Small Molecule NMR Facility Core, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, United States
| | - Matthew C Donald
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS, United States
| | - David E Stec
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
45
|
Snx14 proximity labeling reveals a role in saturated fatty acid metabolism and ER homeostasis defective in SCAR20 disease. Proc Natl Acad Sci U S A 2020; 117:33282-33294. [PMID: 33310904 DOI: 10.1073/pnas.2011124117] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Fatty acids (FAs) are central cellular metabolites that contribute to lipid synthesis, and can be stored or harvested for metabolic energy. Dysregulation in FA processing and storage causes toxic FA accumulation or altered membrane compositions and contributes to metabolic and neurological disorders. Saturated lipids are particularly detrimental to cells, but how lipid saturation levels are maintained remains poorly understood. Here, we identify the cerebellar ataxia spinocerebellar ataxia, autosomal recessive 20 (SCAR20)-associated protein Snx14, an endoplasmic reticulum (ER)-lipid droplet (LD) tethering protein, as a factor required to maintain the lipid saturation balance of cell membranes. We show that following saturated FA (SFA) treatment, the ER integrity of SNX14 KO cells is compromised, and both SNX14 KO cells and SCAR20 disease patient-derived cells are hypersensitive to SFA-mediated lipotoxic cell death. Using APEX2-based proximity labeling, we reveal the protein composition of Snx14-associated ER-LD contacts and define a functional interaction between Snx14 and Δ-9 FA desaturase SCD1. Lipidomic profiling reveals that SNX14 KO cells increase membrane lipid saturation following exposure to palmitate, phenocopying cells with perturbed SCD1 activity. In line with this, SNX14 KO cells manifest delayed FA processing and lipotoxicity, which can be rescued by SCD1 overexpression. Altogether, these mechanistic insights reveal a role for Snx14 in FA and ER homeostasis, defects in which may underlie the neuropathology of SCAR20.
Collapse
|
46
|
Meng H, Gonzales NM, Lonard DM, Putluri N, Zhu B, Dacso CC, York B, O'Malley BW. XBP1 links the 12-hour clock to NAFLD and regulation of membrane fluidity and lipid homeostasis. Nat Commun 2020; 11:6215. [PMID: 33277471 PMCID: PMC7718229 DOI: 10.1038/s41467-020-20028-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
A distinct 12-hour clock exists in addition to the 24-hour circadian clock to coordinate metabolic and stress rhythms. Here, we show that liver-specific ablation of X-box binding protein 1 (XBP1) disrupts the hepatic 12-hour clock and promotes spontaneous non-alcoholic fatty liver disease (NAFLD). We show that hepatic XBP1 predominantly regulates the 12-hour rhythmicity of gene transcription in the mouse liver and demonstrate that perturbation of the 12-hour clock, but not the core circadian clock, is associated with the onset and progression of this NAFLD phenotype. Mechanistically, we provide evidence that the spliced form of XBP1 (XBP1s) binds to the hepatic 12-hour cistrome to directly regulate the 12-hour clock, with a periodicity paralleling the harmonic activation of the 12-hour oscillatory transcription of many rate-limiting metabolic genes known to have perturbations in human metabolic disease. Functionally, we show that Xbp1 ablation significantly reduces cellular membrane fluidity and impairs lipid homeostasis via rate-limiting metabolic processes in fatty acid monounsaturated and phospholipid remodeling pathways. These findings reveal that genetic disruption of the hepatic 12-hour clock links to the onset and progression of NAFLD development via transcriptional regulator XBP1, and demonstrate a role for XBP1 and the 12-hour clock in the modulation of phospholipid composition and the maintenance of lipid homeostasis.
Collapse
Affiliation(s)
- Huan Meng
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Naomi M Gonzales
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - David M Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Bokai Zhu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Clifford C Dacso
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Brian York
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
47
|
Zou Y, Wang YN, Ma H, He ZH, Tang Y, Guo L, Liu Y, Ding M, Qian SW, Tang QQ. SCD1 promotes lipid mobilization in subcutaneous white adipose tissue. J Lipid Res 2020; 61:1589-1604. [PMID: 32978274 PMCID: PMC7707166 DOI: 10.1194/jlr.ra120000869] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Beiging of white adipose tissue (WAT) has beneficial effects on metabolism. Although it is known that beige adipocytes are active in lipid catabolism and thermogenesis, how they are regulated deserves more explorations. In this study, we demonstrate that stearoyl-CoA desaturase 1 (SCD1) in subcutaneous WAT (scWAT) responded to cold stimulation and was able to promote mobilization of triacylglycerol [TAG (triglyceride)]. In vitro studies showed that SCD1 promoted lipolysis in C3H10T1/2 white adipocytes. The lipolytic effect was contributed by one of SCD1's products, oleic acid (OA). OA upregulated adipose TAG lipase and hormone-sensitive lipase expression. When SCD1 was overexpressed in the scWAT of mice, lipolysis was enhanced, and oxygen consumption and heat generation were increased. These effects were also demonstrated by the SCD1 knockdown experiments in mice. In conclusion, our study suggests that SCD1, known as an enzyme for lipid synthesis, plays a role in upregulating lipid mobilization through its desaturation product, OA.
Collapse
Affiliation(s)
- Ying Zou
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology of the School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai Medical College, Shanghai, China
| | - Yi-Na Wang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology of the School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai Medical College, Shanghai, China
| | - Hong Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhi-Hui He
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology of the School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai Medical College, Shanghai, China
| | - Yan Tang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology of the School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai Medical College, Shanghai, China
| | - Liang Guo
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology of the School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai Medical College, Shanghai, China
| | - Yang Liu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology of the School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai Medical College, Shanghai, China
| | - Meng Ding
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology of the School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai Medical College, Shanghai, China
| | - Shu-Wen Qian
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology of the School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai Medical College, Shanghai, China
| | - Qi-Qun Tang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology of the School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai Medical College, Shanghai, China
| |
Collapse
|
48
|
Lew LC, Hor YY, Jaafar MH, Lau ASY, Lee BK, Chuah LO, Yap KP, Azlan A, Azzam G, Choi SB, Liong MT. Lactobacillus Strains Alleviated Hyperlipidemia and Liver Steatosis in Aging Rats via Activation of AMPK. Int J Mol Sci 2020; 21:ijms21165872. [PMID: 32824277 PMCID: PMC7461503 DOI: 10.3390/ijms21165872] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 01/18/2023] Open
Abstract
In this study, we hypothesized that different strains of Lactobacillus can alleviate hyperlipidemia and liver steatosis via activation of 5′ adenosine monophosphate-activated protein kinase (AMPK), an enzyme that is involved in cellular energy homeostasis, in aged rats. Male rats were fed with a high-fat diet (HFD) and injected with D-galactose daily over 12 weeks to induce aging. Treatments included (n = 6) (i) normal diet (ND), (ii) HFD, (iii) HFD-statin (lovastatin 2 mg/kg/day), (iv) HFD-Lactobacillus fermentum DR9 (10 log CFU/day), (v) HFD-Lactobacillus plantarum DR7 (10 log CFU/day), and (vi) HFD-Lactobacillus reuteri 8513d (10 log CFU/day). Rats administered with statin, DR9, and 8513d reduced serum total cholesterol levels after eight weeks (p < 0.05), while the administration of DR7 reduced serum triglycerides level after 12 weeks (p < 0.05) as compared to the HFD control. A more prominent effect was observed from the administration of DR7, where positive effects were observed, ranging from hepatic gene expressions to liver histology as compared to the control (p < 0.05); downregulation of hepatic lipid synthesis and β-oxidation gene stearoyl-CoA desaturase 1 (SCD1), upregulation of hepatic sterol excretion genes of ATP-binding cassette subfamily G member 5 and 8 (ABCG5 and ABCG8), lesser degree of liver steatosis, and upregulation of hepatic energy metabolisms genes AMPKα1 and AMPKα2. Taken altogether, this study illustrated that the administration of selected Lactobacillus strains led to improved lipid profiles via activation of energy and lipid metabolisms, suggesting the potentials of Lactobacillus as a promising natural intervention for alleviation of cardiovascular and liver diseases.
Collapse
Affiliation(s)
- Lee-Ching Lew
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (L.-C.L.); (Y.-Y.H.); (M.-H.J.); (A.-S.-Y.L.); (B.-K.L.); (L.-O.C.)
- USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - Yan-Yan Hor
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (L.-C.L.); (Y.-Y.H.); (M.-H.J.); (A.-S.-Y.L.); (B.-K.L.); (L.-O.C.)
- USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - Mohamad-Hafis Jaafar
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (L.-C.L.); (Y.-Y.H.); (M.-H.J.); (A.-S.-Y.L.); (B.-K.L.); (L.-O.C.)
- USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - Amy-Sie-Yik Lau
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (L.-C.L.); (Y.-Y.H.); (M.-H.J.); (A.-S.-Y.L.); (B.-K.L.); (L.-O.C.)
| | - Boon-Kiat Lee
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (L.-C.L.); (Y.-Y.H.); (M.-H.J.); (A.-S.-Y.L.); (B.-K.L.); (L.-O.C.)
| | - Li-Oon Chuah
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (L.-C.L.); (Y.-Y.H.); (M.-H.J.); (A.-S.-Y.L.); (B.-K.L.); (L.-O.C.)
| | - Kien-Pong Yap
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Azali Azlan
- School of Biological Science, Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - Ghows Azzam
- USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, Penang 11800, Malaysia;
- School of Biological Science, Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - Sy-Bing Choi
- School of Data Sciences, Perdana University, MARDI Complex, Selangor 43400, Malaysia
- Correspondence: (S.-B.C.); (M.-T.L.); Tel.: +603-89418646 (S.-B.C.); +604-653-2114 (M.-T.L.); Fax: +603-894107661 (S.-B.C.); +604-653-6375 (M.-T.L.)
| | - Min-Tze Liong
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (L.-C.L.); (Y.-Y.H.); (M.-H.J.); (A.-S.-Y.L.); (B.-K.L.); (L.-O.C.)
- USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, Penang 11800, Malaysia;
- Correspondence: (S.-B.C.); (M.-T.L.); Tel.: +603-89418646 (S.-B.C.); +604-653-2114 (M.-T.L.); Fax: +603-894107661 (S.-B.C.); +604-653-6375 (M.-T.L.)
| |
Collapse
|
49
|
Feng K, Lan Y, Zhu X, Li J, Chen T, Huang Q, Ho CT, Chen Y, Cao Y. Hepatic Lipidomics Analysis Reveals the Antiobesity and Cholesterol-Lowering Effects of Tangeretin in High-Fat Diet-Fed Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6142-6153. [PMID: 32394707 DOI: 10.1021/acs.jafc.0c01778] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tangeretin (TAN) exhibited antilipogenic, antidiabetic, and lipid-lowering effects. However, the lipid biomarkers and the underlying mechanisms for antiobesity and cholesterol-lowering effects of TAN have not been sufficiently investigated. Herein, we integrated biochemical analysis with lipidomics to elucidate its efficacy and mechanisms in high-fat diet-fed rats. TAN at supplementation levels of 0.04 and 0.08% not only significantly decreased body weight gain, serum total cholesterol, and low-density lipoprotein cholesterol levels but also ameliorated hepatic steatosis. These beneficial effects were associated with the declining levels of fatty acids, diacylglycerols (DGs), triacylglycerols, ceramides, and cholesteryl esters by hepatic lipidomics analysis, which were attributed to downregulating lipogenesis-related genes and upregulating lipid oxidation- and bile acid biosynthesis-related genes. Additionally, 21 lipids were identified as potential lipid biomarkers, such as DGs and phosphatidylethanolamines. These findings indicated that the modulation of lipid homeostasis might be the key pathways for the mechanisms of TAN in the antiobesity and cholesterol-lowering effects.
Collapse
Affiliation(s)
- Konglong Feng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yaqi Lan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xiaoai Zhu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Jun Li
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Tong Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Shenzhen Agricultural Product Quality Safety Inspection Testing Center, Shenzhen, Guangdong 518000, China
| | - Qingrong Huang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Yunjiao Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| |
Collapse
|
50
|
Qian H, Zhao X, Yan R, Yao X, Gao S, Sun X, Du X, Yang H, Wong CCL, Yan N. Structural basis for catalysis and substrate specificity of human ACAT1. Nature 2020; 581:333-338. [DOI: 10.1038/s41586-020-2290-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 03/17/2020] [Indexed: 02/03/2023]
|