1
|
Tian S, Ma C, Zhu Y, Xu Q, Wu J, Qiu Y, Liang T, Ren G, Huang Z, Sun X, Kong L, Wei X, Yu Z, Wang P, Wan H. A light-addressable potentiometric sensor-based extracellular calcium dynamic monitoring and imaging platform for cellular calcium channel drug evaluation. Biosens Bioelectron 2025; 267:116814. [PMID: 39362138 DOI: 10.1016/j.bios.2024.116814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024]
Abstract
Disruption and dysregulation of cellular calcium channel function can lead to diseases such as ischemic stroke, heart failure, and arrhythmias. Corresponding calcium channel drugs typically require preliminary efficacy evaluations using in vitro models such as cells and simulated tissues before clinical testing. However, traditional detection and evaluation methods often encounter challenges in long-term continuous monitoring and lack calcium specificity. In this study, a dynamic monitoring system based on ion-sensitive membranes for light-addressable potentiometric sensor (LAPS) was developed to meet the demand for monitoring changes in extracellular calcium ion (Ca2+) concentration in live cells. The effects of Ca2+ channel agonists and blockers on 2D and 3D HL-1 cells were investigated, with changes in extracellular Ca2+ concentration reflecting cellular calcium metabolism, facilitating drug evaluation. Additionally, calcium imaging technology with optical addressing capability complemented the LAPS system's ability to perceive 3D cell morphology, enhancing its drug evaluation capabilities. This work provides a novel, label-free, specific, and stable technique for monitoring cellular calcium metabolism. It achieves both continuous monitoring at single points and custom sensing area calcium imaging, holding significant implications for drug screening and disease treatment related to human calcium homeostasis.
Collapse
Affiliation(s)
- Shichao Tian
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chiyu Ma
- Xi'an Institute of Applied Optics, Xi'an, 710065, China.
| | - Yuxuan Zhu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qihui Xu
- National Key Laboratory of Wide Bandgap Semiconductor Devices and Integrated Technology, Xidian University, 710071, China
| | - Jianguo Wu
- Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| | - Yong Qiu
- Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| | - Tao Liang
- Laboratory Medicine Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Guangqing Ren
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhuoru Huang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xianyou Sun
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Liubing Kong
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xinwei Wei
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhengyin Yu
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Hao Wan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China; Binjiang Institute of Zhejiang University, Hangzhou, 310053, China.
| |
Collapse
|
2
|
Matsui M, Lynch LE, Distefano I, Galante A, Gade AR, Wang HG, Gómez-Banoy N, Towers P, Sinden DS, Wei EQ, Barnett AS, Johnson K, Lima R, Rubio-Navarro A, Li AK, Marx SO, McGraw TE, Thornton PS, Timothy KW, Lo JC, Pitt GS. Multiple beta cell-independent mechanisms drive hypoglycemia in Timothy syndrome. Nat Commun 2024; 15:8980. [PMID: 39420001 PMCID: PMC11487186 DOI: 10.1038/s41467-024-52885-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
The canonical G406R mutation that increases Ca2+ influx through the CACNA1C-encoded CaV1.2 Ca2+ channel underlies the multisystem disorder Timothy syndrome (TS), characterized by life-threatening arrhythmias. Severe episodic hypoglycemia is among the poorly characterized non-cardiac TS pathologies. While hypothesized from increased Ca2+ influx in pancreatic beta cells and consequent hyperinsulinism, this hypoglycemia mechanism is undemonstrated because of limited clinical data and lack of animal models. We generated a CaV1.2 G406R knockin mouse model that recapitulates key TS features, including hypoglycemia. Unexpectedly, these mice do not show hyperactive beta cells or hyperinsulinism in the setting of normal intrinsic beta cell function, suggesting dysregulated glucose homeostasis. Patient data confirm the absence of hyperinsulinism. We discover multiple alternative contributors, including perturbed counterregulatory hormone responses with defects in glucagon secretion and abnormal hypothalamic control of glucose homeostasis. These data provide new insights into contributions of CaV1.2 channels and reveal integrated consequences of the mutant channels driving life-threatening events in TS.
Collapse
Affiliation(s)
- Maiko Matsui
- Cardiovascular Research Institute, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA
| | - Lauren E Lynch
- Cardiovascular Research Institute, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA
| | - Isabella Distefano
- Cardiovascular Research Institute, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA
| | - Allison Galante
- Cardiovascular Research Institute, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA
| | - Aravind R Gade
- Cardiovascular Research Institute, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA
| | - Hong-Gang Wang
- Cardiovascular Research Institute, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA
| | - Nicolas Gómez-Banoy
- Cardiovascular Research Institute, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA
- Weill Center for Metabolic Health, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA
| | - Patrick Towers
- Cardiovascular Research Institute, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA
| | - Daniel S Sinden
- Cardiovascular Research Institute, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA
| | - Eric Q Wei
- Department of Medicine, MSRB II, 2 Genome Ct, Duke University Medical Center, Durham, NC, 27710, USA
| | - Adam S Barnett
- Department of Medicine, MSRB II, 2 Genome Ct, Duke University Medical Center, Durham, NC, 27710, USA
| | - Kenneth Johnson
- Cardiovascular Research Institute, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA
| | - Renan Lima
- Weill Center for Metabolic Health, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA
| | - Alfonso Rubio-Navarro
- Cardiovascular Research Institute, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA
- Weill Center for Metabolic Health, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA
| | - Ang K Li
- Cardiovascular Research Institute, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA
- Weill Center for Metabolic Health, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA
| | - Steven O Marx
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 622 W 168th St, PH-3 Center, New York, NY, USA
- Department of Pharmacology, Vagelos College of Physicians and Surgeons, Columbia University, 622 W 168th St, PH-3 Center, New York, NY, USA
| | - Timothy E McGraw
- Department of Biochemistry, Weill Cornell Medical College, 1300 York Ave, New York, NY, 10065, USA
| | - Paul S Thornton
- Division of Endocrinology and Diabetes, Cook Children's Medical Center, 801 7th Ave, Fort Worth, TX, 76104, USA
| | - Katherine W Timothy
- Children's Hospital Boston, Harvard Medical School, 300 Longwood Ave., Boston, MA, 02115, USA
| | - James C Lo
- Cardiovascular Research Institute, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA
- Weill Center for Metabolic Health, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA
- Division of Cardiology, Department of Medicine, Weill Cornell Medicine, 413 E. 69th St, New York, NY, 10021, USA
| | - Geoffrey S Pitt
- Cardiovascular Research Institute, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA.
| |
Collapse
|
3
|
Combémorel N, Cavell N, Tyser RCV. Early heart development: examining the dynamics of function-form emergence. Biochem Soc Trans 2024; 52:1579-1589. [PMID: 38979619 DOI: 10.1042/bst20230546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024]
Abstract
During early embryonic development, the heart undergoes a remarkable and complex transformation, acquiring its iconic four-chamber structure whilst concomitantly contracting to maintain its essential function. The emergence of cardiac form and function involves intricate interplays between molecular, cellular, and biomechanical events, unfolding with precision in both space and time. The dynamic morphological remodelling of the developing heart renders it particularly vulnerable to congenital defects, with heart malformations being the most common type of congenital birth defect (∼35% of all congenital birth defects). This mini-review aims to give an overview of the morphogenetic processes which govern early heart formation as well as the dynamics and mechanisms of early cardiac function. Moreover, we aim to highlight some of the interplay between these two processes and discuss how recent findings and emerging techniques/models offer promising avenues for future exploration. In summary, the developing heart is an exciting model to gain fundamental insight into the dynamic relationship between form and function, which will augment our understanding of cardiac congenital defects and provide a blueprint for potential therapeutic strategies to treat disease.
Collapse
Affiliation(s)
- Noémie Combémorel
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, U.K
| | - Natasha Cavell
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, U.K
| | - Richard C V Tyser
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, U.K
| |
Collapse
|
4
|
Al-Khudhair A, VanRaden PM, Null DJ, Neupane M, McClure MC, Dechow CD. New mutation within a common haplotype is associated with calf muscle weakness in Holsteins. J Dairy Sci 2024; 107:3768-3779. [PMID: 38246543 DOI: 10.3168/jds.2023-24121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
A recessive haplotype resulting in elevated calf mortality but with apparent incomplete penetrance was previously linked to the end of chromosome 16 (78.7-80.7 Mbp). Genotype analysis of 5.6 million Holsteins indicated that the haplotype was common and traced back to 1952, with a key ancestor born in 1984 (HOUSA1964484, Southwind) identified from chip genotypes as homozygous for the suspect haplotype. Sequence data from Southwind (an affected calf) and the sire of the affected calf were scanned for candidate mutations. A missense mutation with a deleterious projected impact at 79,613,592 bp was homozygous in the affected calf and heterozygous in the calf's sire and Southwind. Sequence data available from the Cooperative Dairy DNA Repository for 299 other Holsteins indicated a 97% concordance with the haplotype and an 89% call rate. The exon amino acid sequence appears to be broadly conserved in the CACNA1S gene, and mutations in humans and mice can cause phenotypes of temporary or permanent paralysis analogous to those in calves with the haplotype causing muscle weakness (HMW). Improved methods for using pedigree to track new mutations within existing haplotypes were developed and applied to the haplotypes for both muscle weakness and Holstein cholesterol deficiency (HCD). For HCD, concordance of the gene test with its haplotype status was greatly improved. For both defects, haplotype status was matched to heifer livability records for 558,000 calves. For HMW, only 46 heifers with livability records were homozygous and traced only to Southwind on both sides. Of those, 52% died before 18 mo at an average age of 1.7 ± 1.6 mo, but that death rate may be underestimated if only healthier calves were genotyped. The death rate was 2.4% for noncarriers. Different reporting methods or dominance effects may be needed to include HMW and other partially lethal effects in selection and mating. Direct tests are needed for new mutations within existing common haplotypes because tracking can be difficult even with accurate pedigrees when the original haplotype has a high frequency.
Collapse
Affiliation(s)
- A Al-Khudhair
- USDA, Agricultural Research Service, Animal Genomics and Improvement Laboratory, Beltsville, MD 20705
| | - P M VanRaden
- USDA, Agricultural Research Service, Animal Genomics and Improvement Laboratory, Beltsville, MD 20705.
| | - D J Null
- USDA, Agricultural Research Service, Animal Genomics and Improvement Laboratory, Beltsville, MD 20705
| | - M Neupane
- USDA, Agricultural Research Service, Animal Genomics and Improvement Laboratory, Beltsville, MD 20705
| | | | - C D Dechow
- Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
5
|
Mesirca P, Chemin J, Barrère C, Torre E, Gallot L, Monteil A, Bidaud I, Diochot S, Lazdunski M, Soong TW, Barrère-Lemaire S, Mangoni ME, Nargeot J. Selective blockade of Ca v1.2 (α1C) versus Ca v1.3 (α1D) L-type calcium channels by the black mamba toxin calciseptine. Nat Commun 2024; 15:54. [PMID: 38167790 PMCID: PMC10762068 DOI: 10.1038/s41467-023-43502-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 11/10/2023] [Indexed: 01/05/2024] Open
Abstract
L-type voltage-gated calcium channels are involved in multiple physiological functions. Currently available antagonists do not discriminate between L-type channel isoforms. Importantly, no selective blocker is available to dissect the role of L-type isoforms Cav1.2 and Cav1.3 that are concomitantly co-expressed in the heart, neuroendocrine and neuronal cells. Here we show that calciseptine, a snake toxin purified from mamba venom, selectively blocks Cav1.2 -mediated L-type calcium currents (ICaL) at concentrations leaving Cav1.3-mediated ICaL unaffected in both native cardiac myocytes and HEK-293T cells expressing recombinant Cav1.2 and Cav1.3 channels. Functionally, calciseptine potently inhibits cardiac contraction without altering the pacemaker activity in sino-atrial node cells, underscoring differential roles of Cav1.2- and Cav1.3 in cardiac contractility and automaticity. In summary, calciseptine is a selective L-type Cav1.2 Ca2+ channel blocker and should be a valuable tool to dissect the role of these L-channel isoforms.
Collapse
Affiliation(s)
- Pietro Mesirca
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094, Montpellier, France.
- Laboratory of Excellence Ion Channels, Science & Therapeutics, F-06560, Valbonne, France.
| | - Jean Chemin
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094, Montpellier, France
- Laboratory of Excellence Ion Channels, Science & Therapeutics, F-06560, Valbonne, France
| | - Christian Barrère
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094, Montpellier, France
- Laboratory of Excellence Ion Channels, Science & Therapeutics, F-06560, Valbonne, France
| | - Eleonora Torre
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094, Montpellier, France
- Laboratory of Excellence Ion Channels, Science & Therapeutics, F-06560, Valbonne, France
| | - Laura Gallot
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094, Montpellier, France
- Laboratory of Excellence Ion Channels, Science & Therapeutics, F-06560, Valbonne, France
| | - Arnaud Monteil
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094, Montpellier, France
- Laboratory of Excellence Ion Channels, Science & Therapeutics, F-06560, Valbonne, France
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Isabelle Bidaud
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094, Montpellier, France
- Laboratory of Excellence Ion Channels, Science & Therapeutics, F-06560, Valbonne, France
| | - Sylvie Diochot
- Laboratory of Excellence Ion Channels, Science & Therapeutics, F-06560, Valbonne, France
- Université Côte d'Azur, CNRS, IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), FHU InovPain (Fédération Hospitalo-Universitaire "Innovative Solutions in Refractory Chronic Pain"), F-06560, Valbonne, France
| | - Michel Lazdunski
- Laboratory of Excellence Ion Channels, Science & Therapeutics, F-06560, Valbonne, France
- Université Côte d'Azur, CNRS, IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), FHU InovPain (Fédération Hospitalo-Universitaire "Innovative Solutions in Refractory Chronic Pain"), F-06560, Valbonne, France
| | - Tuck Wah Soong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Stéphanie Barrère-Lemaire
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094, Montpellier, France
- Laboratory of Excellence Ion Channels, Science & Therapeutics, F-06560, Valbonne, France
| | - Matteo E Mangoni
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094, Montpellier, France
- Laboratory of Excellence Ion Channels, Science & Therapeutics, F-06560, Valbonne, France
| | - Joël Nargeot
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094, Montpellier, France.
- Laboratory of Excellence Ion Channels, Science & Therapeutics, F-06560, Valbonne, France.
| |
Collapse
|
6
|
Kessi M, Chen B, Pan L, Yang L, Yang L, Peng J, He F, Yin F. Disruption of mitochondrial and lysosomal functions by human CACNA1C variants expressed in HEK 293 and CHO cells. Front Mol Neurosci 2023; 16:1209760. [PMID: 37448958 PMCID: PMC10336228 DOI: 10.3389/fnmol.2023.1209760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/30/2023] [Indexed: 07/18/2023] Open
Abstract
Objective To investigate the pathogenesis of three novel de novo CACNA1C variants (p.E411D, p.V622G, and p.A272V) in causing neurodevelopmental disorders and arrhythmia. Methods Several molecular experiments were carried out on transfected human embryonic kidney 293 (HEK 293) and Chinese hamster ovary (CHO) cells to explore the effects of p.E411D, p.V622G, and p.A272V variants on electrophysiology, mitochondrial and lysosomal functions. Electrophysiological studies, RT-qPCR, western blot, apoptosis assay, mito-tracker fluorescence intensity, lyso-tracker fluorescence intensity, mitochondrial calcium concentration test, and cell viability assay were performed. Besides, reactive oxygen species (ROS) levels, ATP levels, mitochondrial copy numbers, mitochondrial complex I, II, and cytochrome c functions were measured. Results The p.E411D variant was found in a patient with attention deficit-hyperactive disorder (ADHD), and moderate intellectual disability (ID). This mutant demonstrated reduced calcium current density, mRNA, and protein expression, and it was localized in the nucleus, cytoplasm, lysosome, and mitochondria. It exhibited an accelerated apoptosis rate, impaired autophagy, and mitophagy. It also demonstrated compromised mitochondrial cytochrome c oxidase, complex I, and II enzymes, abnormal mitochondrial copy numbers, low ATP levels, abnormal mitochondria fluorescence intensity, impaired mitochondrial fusion and fission, and elevated mitochondrial calcium ions. The p.V622G variant was identified in a patient who presented with West syndrome and moderate global developmental delay. The p.A272V variant was found in a patient who presented with epilepsy and mild ID. Both mutants (p.V622G and p.A272V) exhibited reduced calcium current densities, decreased mRNA and protein expressions, and they were localized in the nucleus, cytoplasm, lysosome, and mitochondria. They exhibited accelerated apoptosis and proliferation rates, impaired autophagy, and mitophagy. They also exhibited abnormal mitochondrial cytochrome c oxidase, complex I and II enzymes, abnormal mitochondrial copy numbers, low ATP, high ROS levels, abnormal mitochondria fluorescence intensity, impaired mitochondrial fusion and fission, as well as elevated mitochondrial calcium ions. Conclusion The p.E411D, p.V622G and p.A272V mutations of human CACNA1C reduce the expression level of CACNA1C proteins, and impair mitochondrial and lysosomal functions. These effects induced by CACNA1C variants may contribute to the pathogenesis of CACNA1C-related disorders.
Collapse
Affiliation(s)
- Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Baiyu Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Langui Pan
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Li Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Fang He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
Fender H, Walter K, Kiper AK, Plačkić J, Kisko TM, Braun MD, Schwarting RKW, Rohrbach S, Wöhr M, Decher N, Kockskämper J. Calcium Handling Remodeling Underlies Impaired Sympathetic Stress Response in Ventricular Myocardium from Cacna1c Haploinsufficient Rats. Int J Mol Sci 2023; 24:9795. [PMID: 37372947 DOI: 10.3390/ijms24129795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
CACNA1C encodes the pore-forming α1C subunit of the L-type Ca2+ channel, Cav1.2. Mutations and polymorphisms of the gene are associated with neuropsychiatric and cardiac disease. Haploinsufficient Cacna1c+/- rats represent a recently developed model with a behavioral phenotype, but its cardiac phenotype is unknown. Here, we unraveled the cardiac phenotype of Cacna1c+/- rats with a main focus on cellular Ca2+ handling mechanisms. Under basal conditions, isolated ventricular Cacna1c+/- myocytes exhibited unaltered L-type Ca2+ current, Ca2+ transients (CaTs), sarcoplasmic reticulum (SR) Ca2+ load, fractional release, and sarcomere shortenings. However, immunoblotting of left ventricular (LV) tissue revealed reduced expression of Cav1.2, increased expression of SERCA2a and NCX, and augmented phosphorylation of RyR2 (at S2808) in Cacna1c+/- rats. The β-adrenergic agonist isoprenaline increased amplitude and accelerated decay of CaTs and sarcomere shortenings in both Cacna1c+/- and WT myocytes. However, the isoprenaline effect on CaT amplitude and fractional shortening (but not CaT decay) was impaired in Cacna1c+/- myocytes exhibiting both reduced potency and efficacy. Moreover, sarcolemmal Ca2+ influx and fractional SR Ca2+ release after treatment with isoprenaline were smaller in Cacna1c+/- than in WT myocytes. In Langendorff-perfused hearts, the isoprenaline-induced increase in RyR2 phosphorylation at S2808 and S2814 was attenuated in Cacna1c+/- compared to WT hearts. Despite unaltered CaTs and sarcomere shortenings, Cacna1c+/- myocytes display remodeling of Ca2+ handling proteins under basal conditions. Mimicking sympathetic stress with isoprenaline unmasks an impaired ability to stimulate Ca2+ influx, SR Ca2+ release, and CaTs caused, in part, by reduced phosphorylation reserve of RyR2 in Cacna1c+/- cardiomyocytes.
Collapse
Affiliation(s)
- Hauke Fender
- Institute of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Biochemical and Pharmacological Center (BPC) Marburg, University of Marburg, 35032 Marburg, Germany
| | - Kim Walter
- Institute of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Biochemical and Pharmacological Center (BPC) Marburg, University of Marburg, 35032 Marburg, Germany
| | - Aytug K Kiper
- Institute of Physiology and Pathophysiology, Vegetative Physiology, University of Marburg, 35037 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, 35032 Marburg, Germany
| | - Jelena Plačkić
- Institute of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Biochemical and Pharmacological Center (BPC) Marburg, University of Marburg, 35032 Marburg, Germany
| | - Theresa M Kisko
- Behavioral Neuroscience, Experimental and Biological Psychology, University of Marburg, 35032 Marburg, Germany
| | - Moria D Braun
- Behavioral Neuroscience, Experimental and Biological Psychology, University of Marburg, 35032 Marburg, Germany
| | - Rainer K W Schwarting
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, 35032 Marburg, Germany
- Behavioral Neuroscience, Experimental and Biological Psychology, University of Marburg, 35032 Marburg, Germany
| | - Susanne Rohrbach
- Institute of Physiology, University of Gießen, 35392 Giessen, Germany
| | - Markus Wöhr
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, 35032 Marburg, Germany
- Behavioral Neuroscience, Experimental and Biological Psychology, University of Marburg, 35032 Marburg, Germany
- Social and Affective Neuroscience Research Group, Laboratory of Biological Psychology, Research Unit Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, B-3000 Leuven, Belgium
- Leuven Brain Institute, KU Leuven, B-3000 Leuven, Belgium
| | - Niels Decher
- Institute of Physiology and Pathophysiology, Vegetative Physiology, University of Marburg, 35037 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, 35032 Marburg, Germany
| | - Jens Kockskämper
- Institute of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Biochemical and Pharmacological Center (BPC) Marburg, University of Marburg, 35032 Marburg, Germany
| |
Collapse
|
8
|
Hwang JY, Chung JJ. CatSper Calcium Channels: 20 Years On. Physiology (Bethesda) 2023; 38:0. [PMID: 36512352 PMCID: PMC10085559 DOI: 10.1152/physiol.00028.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
The flagellar-specific Ca2+ channel CatSper is the predominant Ca2+ entry site in mammalian sperm. CatSper-mediated Ca2+ signaling affects nearly every event that regulates sperm to acquire fertilizing capability. In this review, we summarize some of the main findings from 20 years of CatSper research and highlight recent progress and prospects.
Collapse
Affiliation(s)
- Jae Yeon Hwang
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
| | - Jean-Ju Chung
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
- Department of Gynecology and Obstetrics, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
9
|
Klomp AJ, Plumb A, Mehr JB, Madencioglu DA, Wen H, Williams AJ. Neuronal deletion of Ca V1.2 is associated with sex-specific behavioral phenotypes in mice. Sci Rep 2022; 12:22152. [PMID: 36550186 PMCID: PMC9780340 DOI: 10.1038/s41598-022-26504-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The gene CACNA1C, which encodes the pore forming subunit of the L-type calcium channel CaV1.2, is associated with increased risk for neuropsychiatric disorders including schizophrenia, autism spectrum disorder, major depression, and bipolar disorder. Previous rodent work identified that loss or reduction of CaV1.2 results in cognitive, affective, and motor deficits. Most previous work has either included non-neuronal cell populations (haploinsufficient and Nestin-Cre) or investigated a discrete neuronal cell population (e.g. CaMKII-Cre, Drd1-Cre), but few studies have examined the effects of more broad neuron-specific deletion of CaV1.2. Additionally, most of these studies did not evaluate for sex-specific effects or used only male animals. Here, we sought to clarify whether there are sex-specific behavioral consequences of neuron-specific deletion of CaV1.2 (neuronal CaV1.2 cKO) using Syn1-Cre-mediated conditional deletion. We found that neuronal CaV1.2 cKO mice have normal baseline locomotor function but female cKO mice display impaired motor performance learning. Male neuronal CaV1.2 cKO display impaired startle response with intact pre-pulse inhibition. Male neuronal CaV1.2 cKO mice did not display normal social preference, whereas female neuronal CaV1.2 cKO mice did. Neuronal CaV1.2 cKO mice displayed impaired associative learning in both sexes, as well as normal anxiety-like behavior and hedonic capacity. We conclude that deletion of neuronal CaV1.2 alters motor performance, acoustic startle reflex, and social behaviors in a sex-specific manner, while associative learning deficits generalize across sexes. Our data provide evidence for both sex-specific and sex-independent phenotypes related to neuronal expression of CaV1.2.
Collapse
Affiliation(s)
- Annette J Klomp
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Ashley Plumb
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Jacqueline B Mehr
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
- Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| | - Deniz A Madencioglu
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Hsiang Wen
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Aislinn J Williams
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA.
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
10
|
Hool LC. Elucidating the role of the L-type calcium channel in excitability and energetics in the heart: The ISHR 2020 Research Achievement Award Lecture. J Mol Cell Cardiol 2022; 172:100-108. [PMID: 36041287 DOI: 10.1016/j.yjmcc.2022.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease continues to be the leading health burden worldwide and with the rising rates in obesity and type II diabetes and ongoing effects of long COVID, it is anticipated that the burden of cardiovascular morbidity and mortality will increase. Calcium is essential to cardiac excitation and contraction. The main route for Ca2+ influx is the L-type Ca2+ channel (Cav1.2) and embryos that are homozygous null for the Cav1.2 gene are lethal at day 14 postcoitum. Acute changes in Ca2+ influx through the channel contribute to arrhythmia and sudden death, and chronic increases in intracellular Ca2+ contribute to pathological hypertrophy and heart failure. We use a multidisciplinary approach to study the regulation of the channel from the molecular level through to in vivo CRISPR mutant animal models. Here we describe some examples of our work from over 2 decades studying the role of the channel under physiological and pathological conditions. Our single channel analysis of purified human Cav1.2 protein in proteoliposomes has contributed to understanding direct molecular regulation of the channel including identifying the critical serine involved in the "fight or flight" response. Using the same approach we identified the cysteine responsible for altered function during oxidative stress. Chronic activation of the L-type Ca2+ channel during oxidative stress occurs as a result of persistent glutathionylation of the channel that contributes to the development of hypertrophy. We describe for the first time that activation of the channel alters mitochondrial function (and energetics) on a beat-to-beat basis via movement of cytoskeletal proteins. In translational studies we have used this response to "report" mitochondrial function in models of cardiomyopathy and to test efficacy of novel therapies to prevent cardiomyopathy.
Collapse
Affiliation(s)
- Livia C Hool
- School of Human Sciences, University of Western Australia, Crawley, WA, Australia; Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.
| |
Collapse
|
11
|
Archana GM, Arunkumar RC, Omkumar RV. Assays for L-type voltage gated calcium channels. Anal Biochem 2022; 656:114827. [PMID: 35964733 DOI: 10.1016/j.ab.2022.114827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/10/2022] [Accepted: 07/19/2022] [Indexed: 11/01/2022]
Abstract
Voltage gated calcium channels (VGCCs) are pursued as drug targets for neurodegenerative and cardiovascular diseases. High throughput drug screening targeting VGCCs depends on patch-clamp electrophysiology or fluorophore-based calcium imaging that requires powerful equipment and specialized expertise thus leading to cost escalation. Moreover, VGCC needs to be transfected into cell lines such as HEK-293. We report the presence of L-type VGCC (L-VGCC) subunit proteins, Cav1.2, α2δ and β in HEK-293 cells and the application of simple methods for its assay. Endogenous expression of the channel in HEK-293 cells overcomes the need for transfection. L-VGCC in HEK-293 cells was activated either by the agonist, BayK8644 or by KCl-mediated depolarization. Activity was detected using the calcium sensing probe, GCaMP6m by live imaging. L-VGCC activity induced enhancement in GCaMP6m fluorescence returned to baseline corresponding to channel-closure. Activity was also shown using a methodology involving end-point detection of the calcium dependent interaction of α-CaMKII with NMDA receptor subunit GluN2B sequence. This methodology further simplifies the assay as it eliminates the need for real time imaging. Activation was blocked by the specific L-type VGCC antagonist, nifedipine. Finding the protein and activity of L-VGCC in HEK-293 cells offers commercially viable assays for drug screening.
Collapse
Affiliation(s)
- G M Archana
- Molecular Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud, P. O., Thiruvananthapuram, 695014, India; University of Kerala, India
| | - R C Arunkumar
- Molecular Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud, P. O., Thiruvananthapuram, 695014, India; University of Kerala, India
| | - R V Omkumar
- Molecular Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud, P. O., Thiruvananthapuram, 695014, India.
| |
Collapse
|
12
|
Blackwell DJ, Schmeckpeper J, Knollmann BC. Animal Models to Study Cardiac Arrhythmias. Circ Res 2022; 130:1926-1964. [PMID: 35679367 DOI: 10.1161/circresaha.122.320258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cardiac arrhythmias are a significant cause of morbidity and mortality worldwide, accounting for 10% to 15% of all deaths. Although most arrhythmias are due to acquired heart disease, inherited channelopathies and cardiomyopathies disproportionately affect children and young adults. Arrhythmogenesis is complex, involving anatomic structure, ion channels and regulatory proteins, and the interplay between cells in the conduction system, cardiomyocytes, fibroblasts, and the immune system. Animal models of arrhythmia are powerful tools for studying not only molecular and cellular mechanism of arrhythmogenesis but also more complex mechanisms at the whole heart level, and for testing therapeutic interventions. This review summarizes basic and clinical arrhythmia mechanisms followed by an in-depth review of published animal models of genetic and acquired arrhythmia disorders.
Collapse
Affiliation(s)
- Daniel J Blackwell
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Jeffrey Schmeckpeper
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Bjorn C Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
13
|
Chen J, Liu Z, Deng F, Liang J, Fan B, Zhen X, Tao R, Sun L, Zhang S, Cong Z, Li X, Du W. Mechanisms of Lian-Gui-Ning-Xin-Tang in the treatment of arrhythmia: Integrated pharmacology and in vivo pharmacological assessment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:153989. [PMID: 35272242 DOI: 10.1016/j.phymed.2022.153989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/27/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Lian-Gui-Ning-Xin-Tang (LGNXT), a classical traditional Chinese medicine (TCM) formula, has been widely used in clinical practice and has shown satisfactory efficacy in the treatment of arrhythmias. However, its mechanism of action in the treatment of arrhythmias is still unknown. Moreover, the complex chemical composition and therapeutic targets of LGNXT pose a challenge in pharmacological research. PURPOSE To analyze the active compounds and action mechanisms of LGNXT for the treatment of arrhythmias. METHODS Here, we used an integrated pharmacology approach to identify the potential active compounds and mechanisms of action of LGNXT in treating arrhythmias. Potential active compounds in LGNXT were identified using ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF/MS) and the potential related targets of these compounds were predicted using an integrated in silico approach. The obtained targets were mapped onto relevant databases to identify their corresponding pathways, following the experiments that were conducted to confirm whether the presumptive results of systemic pharmacology were correct. RESULTS Eighty-three components were identified in herbal materials and in animal plasma using UPLC-Q-TOF/MS and were considered the potential active components of LGNXT. Thirty key targets and 57 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were identified as possible targets and pathways involved in LGNXT-mediated treatment using network pharmacology, with the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA)/Ca2+ system pathway being the most significantly affected. This finding was validated using an adrenaline (Adr)-induced rat model of arrhythmias. Pretreatment with LGNXT delayed the occurrence, shortened the duration, and reduced the severity of arrhythmias. LGNXT exerted antiarrhythmic effects by inhibiting cAMP, PKA, CACNA1C, and RyR2. CONCLUSIONS The findings of this study revealed that preventing intracellular Ca2+ overload and maintaining intracellular Ca2+ homeostasis may be the primary mechanisms of LGNXT in alleviating arrhythmias. Thus, we suggest that the β-adrenergic receptor (AR)/cAMP/PKA/Ca2+ system signaling hub may constitute a promising molecular target for the development of novel antiarrhythmic therapeutic interventions. Additionally, we believe that the approach of investigation of the biological effects of a multi-herbal formula by the combination of metabolomics and network pharmacology, as used in this study, could serve as a systematic model for TCM research.
Collapse
Affiliation(s)
- Jinhong Chen
- Graduate School, Tianjin University of TCM, Tianjin 301617, China
| | - Zhichao Liu
- Graduate School, Tianjin University of TCM, Tianjin 301617, China
| | - Fangjun Deng
- Graduate School, Tianjin University of TCM, Tianjin 301617, China
| | - Jiayu Liang
- Graduate School, Tianjin University of TCM, Tianjin 301617, China
| | - Boya Fan
- Graduate School, Tianjin University of TCM, Tianjin 301617, China
| | - Xin Zhen
- Graduate School, Tianjin University of TCM, Tianjin 301617, China
| | - Rui Tao
- Department of TCM, Tianjin University of TCM, Tianjin, 301617, China
| | - Lili Sun
- Department of TCM, Tianjin University of TCM, Tianjin, 301617, China
| | - Shaoqiang Zhang
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of TCM, Tianjin 300150, China
| | - Zidong Cong
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of TCM, Tianjin 300150, China
| | - Xiaofeng Li
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of TCM, Tianjin 300150, China.
| | - Wuxun Du
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of TCM, Tianjin 300150, China.
| |
Collapse
|
14
|
Calcium Channels in the Heart: Disease States and Drugs. Cells 2022; 11:cells11060943. [PMID: 35326393 PMCID: PMC8945986 DOI: 10.3390/cells11060943] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 12/30/2022] Open
Abstract
Calcium ions are the major signaling ions in the cells. They regulate muscle contraction, neurotransmitter secretion, cell growth and migration, and the activity of several proteins including enzymes and ion channels and transporters. They participate in various signal transduction pathways, thereby regulating major physiological functions. Calcium ion entry into the cells is regulated by specific calcium channels and transporters. There are mainly six types of calcium channels, of which only two are prominent in the heart. In cardiac tissues, the two types of calcium channels are the L type and the T type. L-type channels are found in all cardiac cells and T-type are expressed in Purkinje cells, pacemaker and atrial cells. Both these types of channels contribute to atrioventricular conduction as well as pacemaker activity. Given the crucial role of calcium channels in the cardiac conduction system, mutations and dysfunctions of these channels are known to cause several diseases and disorders. Drugs targeting calcium channels hence are used in a wide variety of cardiac disorders including but not limited to hypertension, angina, and arrhythmias. This review summarizes the type of cardiac calcium channels, their function, and disorders caused by their mutations and dysfunctions. Finally, this review also focuses on the types of calcium channel blockers and their use in a variety of cardiac disorders.
Collapse
|
15
|
Park N, Marquez J, Pham TK, Ko TH, Youm JB, Kim M, Choi SH, Moon J, Flores J, Ko KS, Rhee BD, Shimizu I, Minamino T, Du Ha J, Hwang JY, Yang SJ, Park CS, Kim HK, Han J. Cereblon contributes to cardiac dysfunction by degrading Cav1.2α. Eur Heart J 2022; 43:1973-1989. [PMID: 35190817 DOI: 10.1093/eurheartj/ehac072] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/14/2022] Open
Abstract
AIMS Cereblon (CRBN) is a substrate receptor of the E3 ubiquitin ligase complex that was reported to target ion channel proteins. L-type voltage-dependent Ca2+ channel (LTCC) density and dysfunction is a critical player in heart failure with reduced ejection fraction (HFrEF). However, the underlying cellular mechanisms by which CRBN regulates LTCC subtype Cav1.2α during cardiac dysfunction remain unclear. Here, we explored the role of CRBN in HFrEF by investigating the direct regulatory role of CRBN in Cav1.2α activity and examining how it can serve as a target to address myocardial dysfunction. METHODS AND RESULTS Cardiac tissues from HFrEF patients exhibited increased levels of CRBN compared with controls. In vivo and ex vivo studies demonstrated that whole-body CRBN knockout (CRBN-/-) and cardiac-specific knockout mice (Crbnfl/fl/Myh6Cre+) exhibited enhanced cardiac contractility with increased LTCC current (ICaL) compared with their respective controls, which was modulated by the direct interaction of CRBN with Cav1.2α. Mechanistically, the Lon domain of CRBN directly interacted with the N-terminal of Cav1.2α. Increasing CRBN levels enhanced the ubiquitination and proteasomal degradation of Cav1.2α and decreased ICaL. In contrast, genetic or pharmacological depletion of CRBN via TD-165, a novel PROTAC-based CRBN degrader, increased surface expression of Cav1.2α and enhanced ICaL. Low CRBN levels protected the heart against cardiomyopathy in vivo. CONCLUSION Cereblon selectively degrades Cav1.2α, which in turn facilitates cardiac dysfunction. A targeted approach or an efficient method of reducing CRBN levels could serve as a promising strategy for HFrEF therapeutics. KEY QUESTION KEY FINDING TAKE-HOME MESSAGE Cereblon modulates cardiac function by altering Cav1.2α current density and CRBN-targeting therapy could serve as a novel strategy for future HFrEF therapeutics.
Collapse
Affiliation(s)
- Nammi Park
- Basic Research Laboratory, Department of Physiology, College of Medicine, Smart Marine Therapeutic Center, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Republic of Korea
| | - Jubert Marquez
- Basic Research Laboratory, Department of Physiology, College of Medicine, Smart Marine Therapeutic Center, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Republic of Korea
| | - Trong Kha Pham
- Basic Research Laboratory, Department of Physiology, College of Medicine, Smart Marine Therapeutic Center, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Republic of Korea
| | - Tae Hee Ko
- Basic Research Laboratory, Department of Physiology, College of Medicine, Smart Marine Therapeutic Center, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Republic of Korea
| | - Jae Boum Youm
- Basic Research Laboratory, Department of Physiology, College of Medicine, Smart Marine Therapeutic Center, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Republic of Korea
| | - Min Kim
- Basic Research Laboratory, Department of Physiology, College of Medicine, Smart Marine Therapeutic Center, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Republic of Korea
| | - Seung Hak Choi
- Basic Research Laboratory, Department of Physiology, College of Medicine, Smart Marine Therapeutic Center, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Republic of Korea
| | - Jiyoung Moon
- Basic Research Laboratory, Department of Physiology, College of Medicine, Smart Marine Therapeutic Center, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Republic of Korea
| | - Jessa Flores
- Basic Research Laboratory, Department of Physiology, College of Medicine, Smart Marine Therapeutic Center, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Republic of Korea
| | - Kyung Soo Ko
- Basic Research Laboratory, Department of Physiology, College of Medicine, Smart Marine Therapeutic Center, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Republic of Korea
| | - Byoung Doo Rhee
- Basic Research Laboratory, Department of Physiology, College of Medicine, Smart Marine Therapeutic Center, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Republic of Korea
| | - Ippei Shimizu
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Jae Du Ha
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Jong Yeon Hwang
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Seung Joo Yang
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Chul-Seung Park
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Hyoung Kyu Kim
- Basic Research Laboratory, Department of Physiology, College of Medicine, Smart Marine Therapeutic Center, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Republic of Korea
| | - Jin Han
- Basic Research Laboratory, Department of Physiology, College of Medicine, Smart Marine Therapeutic Center, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Republic of Korea
| |
Collapse
|
16
|
Trophectoderm cell failure leads to peri-implantation lethality in Trpm7-deficient mouse embryos. Cell Rep 2021; 37:109851. [PMID: 34686339 DOI: 10.1016/j.celrep.2021.109851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/28/2021] [Accepted: 09/28/2021] [Indexed: 11/24/2022] Open
Abstract
Early embryogenesis depends on proper control of intracellular homeostasis of ions including Ca2+ and Mg2+. Deletion of the Ca2+ and Mg2+ conducting the TRPM7 channel is embryonically lethal in mice but leaves compaction, blastomere polarization, blastocoel formation, and correct specification of the lineages of the trophectoderm and inner cell mass unaltered despite that free cytoplasmic Ca2+ and Mg2+ is reduced at the two-cell stage. Although Trpm7-/- embryos are able to hatch from the zona pellucida, no expansion of Trpm7-/- trophoblast cells can be observed, and Trpm7-/- embryos are not identifiable in utero at E6.5 or later. Given the proliferation and adhesion defect of Trpm7-/- trophoblast stem cells and the ability of Trpm7-/- ESCs to develop to embryos in tetraploid embryo complementation assays, we postulate a critical role of TRPM7 in trophectoderm cells and their failure during implantation as the most likely explanation of the developmental arrest of Trpm7-deficient mouse embryos.
Collapse
|
17
|
McNally BA, Plante AE, Meredith AL. Contributions of Ca V1.3 Channels to Ca 2+ Current and Ca 2+-Activated BK Current in the Suprachiasmatic Nucleus. Front Physiol 2021; 12:737291. [PMID: 34650447 PMCID: PMC8505962 DOI: 10.3389/fphys.2021.737291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/30/2021] [Indexed: 11/29/2022] Open
Abstract
Daily regulation of Ca2+– and voltage-activated BK K+ channel activity is required for action potential rhythmicity in the suprachiasmatic nucleus (SCN) of the hypothalamus, the brain's circadian clock. In SCN neurons, BK activation is dependent upon multiple types of Ca2+ channels in a circadian manner. Daytime BK current predominantly requires Ca2+ influx through L-type Ca2+ channels (LTCCs), a time when BK channels are closely coupled with their Ca2+ source. Here we show that daytime BK current is resistant to the Ca2+ chelator BAPTA. However, at night when LTCCs contribute little to BK activation, BK current decreases by a third in BAPTA compared to control EGTA conditions. In phase with this time-of-day specific effect on BK current activation, LTCC current is larger during the day. The specific Ca2+ channel subtypes underlying the LTCC current in SCN, as well as the subtypes contributing the Ca2+ influx relevant for BK current activation, have not been identified. SCN neurons express two LTCC subtypes, CaV1.2 and CaV1.3. While a role for CaV1.2 channels has been identified during the night, CaV1.3 channel modulation has also been suggested to contribute to daytime SCN action potential activity, as well as subthreshold Ca2+ oscillations. Here we characterize the role of CaV1.3 channels in LTCC and BK current activation in SCN neurons using a global deletion of CACNA1D in mouse (CaV1.3 KO). CaV1.3 KO SCN neurons had a 50% reduction in the daytime LTCC current, but not total Ca2+ current, with no difference in Ca2+ current levels at night. During the day, CaV1.3 KO neurons exhibited oscillations in membrane potential, and most neurons, although not all, also had BK currents. Changes in BK current activation were only detectable at the highest voltage tested. These data show that while CaV1.3 channels contribute to the daytime Ca2+ current, this does not translate into a major effect on the daytime BK current. These data suggest that BK current activation does not absolutely require CaV1.3 channels and may therefore also depend on other LTCC subtypes, such as CaV1.2.
Collapse
Affiliation(s)
- Beth A McNally
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Amber E Plante
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Andrea L Meredith
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
18
|
Isensee J, van Cann M, Despang P, Araldi D, Moeller K, Petersen J, Schmidtko A, Matthes J, Levine JD, Hucho T. Depolarization induces nociceptor sensitization by CaV1.2-mediated PKA-II activation. J Cell Biol 2021; 220:212600. [PMID: 34431981 PMCID: PMC8404467 DOI: 10.1083/jcb.202002083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/14/2021] [Accepted: 08/05/2021] [Indexed: 01/20/2023] Open
Abstract
Depolarization drives neuronal plasticity. However, whether depolarization drives sensitization of peripheral nociceptive neurons remains elusive. By high-content screening (HCS) microscopy, we revealed that depolarization of cultured sensory neurons rapidly activates protein kinase A type II (PKA-II) in nociceptors by calcium influx through CaV1.2 channels. This effect was modulated by calpains but insensitive to inhibitors of cAMP formation, including opioids. In turn, PKA-II phosphorylated Ser1928 in the distal C terminus of CaV1.2, thereby increasing channel gating, whereas dephosphorylation of Ser1928 involved the phosphatase calcineurin. Patch-clamp and behavioral experiments confirmed that depolarization leads to calcium- and PKA-dependent sensitization of calcium currents ex vivo and local peripheral hyperalgesia in the skin in vivo. Our data suggest a local activity-driven feed-forward mechanism that selectively translates strong depolarization into further activity and thereby facilitates hypersensitivity of nociceptor terminals by a mechanism inaccessible to opioids.
Collapse
Affiliation(s)
- Jörg Isensee
- Department of Anesthesiology and Intensive Care Medicine, Translational Pain Research, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Marianne van Cann
- Department of Anesthesiology and Intensive Care Medicine, Translational Pain Research, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Patrick Despang
- Department of Pharmacology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Dioneia Araldi
- Division of Neuroscience, Departments of Medicine and Oral & Maxillofacial Surgery, University of California, San Francisco, San Francisco, CA
| | - Katharina Moeller
- Department of Anesthesiology and Intensive Care Medicine, Translational Pain Research, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Jonas Petersen
- Institute for Pharmacology and Clinical Pharmacy, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Achim Schmidtko
- Institute for Pharmacology and Clinical Pharmacy, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jan Matthes
- Department of Pharmacology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Jon D Levine
- Division of Neuroscience, Departments of Medicine and Oral & Maxillofacial Surgery, University of California, San Francisco, San Francisco, CA
| | - Tim Hucho
- Department of Anesthesiology and Intensive Care Medicine, Translational Pain Research, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
19
|
Abstract
Conduction disorders and arrhythmias remain difficult to treat and are increasingly prevalent owing to the increasing age and body mass of the general population, because both are risk factors for arrhythmia. Many of the underlying conditions that give rise to arrhythmia - including atrial fibrillation and ventricular arrhythmia, which frequently occur in patients with acute myocardial ischaemia or heart failure - can have an inflammatory component. In the past, inflammation was viewed mostly as an epiphenomenon associated with arrhythmia; however, the recently discovered inflammatory and non-canonical functions of cardiac immune cells indicate that leukocytes can be arrhythmogenic either by altering tissue composition or by interacting with cardiomyocytes; for example, by changing their phenotype or perhaps even by directly interfering with conduction. In this Review, we discuss the electrophysiological properties of leukocytes and how these cells relate to conduction in the heart. Given the thematic parallels, we also summarize the interactions between immune cells and neural systems that influence information transfer, extrapolating findings from the field of neuroscience to the heart and defining common themes. We aim to bridge the knowledge gap between electrophysiology and immunology, to promote conceptual connections between these two fields and to explore promising opportunities for future research.
Collapse
|
20
|
Abstract
Steroid hormones bind receptors in the cell nucleus and in the cell membrane. The most widely studied class of steroid hormone receptors are the nuclear receptors, named for their function as ligand-dependent transcription factors in the cell nucleus. Nuclear receptors, such as estrogen receptor alpha, can also be anchored to the plasma membrane, where they respond to steroids by activating signaling pathways independent of their function as transcription factors. Steroids can also bind integral membrane proteins, such as the G protein-coupled estrogen receptor. Membrane estrogen and progestin receptors have been cloned and characterized in vitro and influence the development and function of many organ systems. Membrane androgen receptors were cloned and characterized in vitro, but their function as androgen receptors in vivo is unresolved. We review the identity and function of membrane proteins that bind estrogens, progestins, and androgens. We discuss evidence that membrane glucocorticoid and mineralocorticoid receptors exist, and whether glucocorticoid and mineralocorticoid nuclear receptors act at the cell membrane. In many cases, integral membrane steroid receptors act independently of nuclear steroid receptors, even though they may share a ligand.
Collapse
Affiliation(s)
- Lindsey S Treviño
- Department of Population Sciences, Division of Health Equities, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Daniel A Gorelick
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: Daniel A Gorelick, PhD, One Baylor Plaza, Alkek Building N1317.07, Houston, TX, 77030-3411, USA.
| |
Collapse
|
21
|
Mechanisms and Regulation of Cardiac Ca V1.2 Trafficking. Int J Mol Sci 2021; 22:ijms22115927. [PMID: 34072954 PMCID: PMC8197997 DOI: 10.3390/ijms22115927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 01/05/2023] Open
Abstract
During cardiac excitation contraction coupling, the arrival of an action potential at the ventricular myocardium triggers voltage-dependent L-type Ca2+ (CaV1.2) channels in individual myocytes to open briefly. The level of this Ca2+ influx tunes the amplitude of Ca2+-induced Ca2+ release from ryanodine receptors (RyR2) on the junctional sarcoplasmic reticulum and thus the magnitude of the elevation in intracellular Ca2+ concentration and ultimately the downstream contraction. The number and activity of functional CaV1.2 channels at the t-tubule dyads dictates the amplitude of the Ca2+ influx. Trafficking of these channels and their auxiliary subunits to the cell surface is thus tightly controlled and regulated to ensure adequate sarcolemmal expression to sustain this critical process. To that end, recent discoveries have revealed the existence of internal reservoirs of preformed CaV1.2 channels that can be rapidly mobilized to enhance sarcolemmal expression in times of acute stress when hemodynamic and metabolic demand increases. In this review, we provide an overview of the current thinking on CaV1.2 channel trafficking dynamics in the heart. We highlight the numerous points of control including the biosynthetic pathway, the endosomal recycling pathway, ubiquitination, and lysosomal and proteasomal degradation pathways, and discuss the effects of β-adrenergic and angiotensin receptor signaling cascades on this process.
Collapse
|
22
|
Wright CS, Robling AG, Farach-Carson MC, Thompson WR. Skeletal Functions of Voltage Sensitive Calcium Channels. Curr Osteoporos Rep 2021; 19:206-221. [PMID: 33721180 PMCID: PMC8216424 DOI: 10.1007/s11914-020-00647-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 12/15/2022]
Abstract
Voltage-sensitive calcium channels (VSCCs) are ubiquitous multimeric protein complexes that are necessary for the regulation of numerous physiological processes. VSCCs regulate calcium influx and various intracellular processes including muscle contraction, neurotransmission, hormone secretion, and gene transcription, with function specificity defined by the channel's subunits and tissue location. The functions of VSCCs in bone are often overlooked since bone is not considered an electrically excitable tissue. However, skeletal homeostasis and adaptation relies heavily on VSCCs. Inhibition or deletion of VSCCs decreases osteogenesis, impairs skeletal structure, and impedes anabolic responses to mechanical loading. RECENT FINDINGS: While the functions of VSCCs in osteoclasts are less clear, VSCCs have distinct but complementary functions in osteoblasts and osteocytes. PURPOSE OF REVIEW: This review details the structure, function, and nomenclature of VSCCs, followed by a comprehensive description of the known functions of VSCCs in bone cells and their regulation of bone development, bone formation, and mechanotransduction.
Collapse
Affiliation(s)
- Christian S Wright
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN, 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA
| | - Alexander G Robling
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA
- Department of Anatomy & Cell Biology, Indiana University, Indianapolis, IN, 46202, USA
| | - Mary C Farach-Carson
- Department of Diagnostic & Biomedical Sciences, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, 77054, USA
| | - William R Thompson
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN, 46202, USA.
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA.
- Department of Anatomy & Cell Biology, Indiana University, Indianapolis, IN, 46202, USA.
| |
Collapse
|
23
|
Bauer R, Timothy KW, Golden A. Update on the Molecular Genetics of Timothy Syndrome. Front Pediatr 2021; 9:668546. [PMID: 34079780 PMCID: PMC8165229 DOI: 10.3389/fped.2021.668546] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
Timothy Syndrome (TS) (OMIM #601005) is a rare autosomal dominant syndrome caused by variants in CACNA1C, which encodes the α1C subunit of the voltage-gated calcium channel Cav1.2. TS is classically caused by only a few different genetic changes and characterized by prolonged QT interval, syndactyly, and neurodevelopmental delay; however, the number of identified TS-causing variants is growing, and the resulting symptom profiles are incredibly complex and variable. Here, we aim to review the genetic and clinical findings of all published case reports of TS to date. We discuss multiple possible mechanisms for the variability seen in clinical features across these cases, including mosaicism, genetic background, isoform complexity of CACNA1C and differential expression of transcripts, and biophysical changes in mutant CACNA1C channels. Finally, we propose future research directions such as variant validation, in vivo modeling, and natural history characterization.
Collapse
Affiliation(s)
- Rosemary Bauer
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | | | - Andy Golden
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
24
|
Non-Mendelian inheritance during inbreeding of Ca v3.2 and Ca v2.3 deficient mice. Sci Rep 2020; 10:15993. [PMID: 33009476 PMCID: PMC7532468 DOI: 10.1038/s41598-020-72912-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 09/03/2020] [Indexed: 11/08/2022] Open
Abstract
The mating of 77 heterozygous pairs (Cav3.2[+|-] x Cav3.2[+|-]) revealed a significant deviation of genotype distribution from Mendelian inheritance in weaned pups. The mating of 14 pairs (Cav3.2[-|-] female x Cav3.2[+|-] male) and 8 pairs (Cav3.2[+|-] female x Cav3.2[-|-] male) confirmed the significant reduction of deficient homozygous Cav3.2[-|-] pups, leading to the conclusion that prenatal lethality may occur, when one or both alleles, encoding the Cav3.2T-type Ca2+ channel, are missing. Also, the mating of 63 heterozygous pairs (Cav2.3[+|-] x Cav2.3[+|-]) revealed a significant deviation of genotype distribution from Mendelian inheritance in weaned pups, but only for heterozygous male mice, leading to the conclusion that compensation may only occur for Cav2.3[-|-] male mice lacking both alleles of the R-type Ca2+ channel. During the mating of heterozygous parents, the number of female mice within the weaned population does not deviate from the expected Mendelian inheritance. During prenatal development, both, T- and R-type Ca2+ currents are higher expressed in some tissues than postnatally. It will be discussed that the function of voltage-gated Ca2+ channels during prenatal development must be investigated in more detail, not least to understand devastative diseases like developmental epileptic encephalopathies (DEE).
Collapse
|
25
|
Cocaine- and stress-primed reinstatement of drug-associated memories elicit differential behavioral and frontostriatal circuit activity patterns via recruitment of L-type Ca 2+ channels. Mol Psychiatry 2020; 25:2373-2391. [PMID: 31501511 PMCID: PMC7927165 DOI: 10.1038/s41380-019-0513-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/12/2019] [Accepted: 07/31/2019] [Indexed: 01/07/2023]
Abstract
Cocaine-associated memories are critical drivers of relapse in cocaine-dependent individuals that can be evoked by exposure to cocaine or stress. Whether these environmental stimuli recruit similar molecular and circuit-level mechanisms to promote relapse remains largely unknown. Here, using cocaine- and stress-primed reinstatement of cocaine conditioned place preference to model drug-associated memories, we find that cocaine drives reinstatement by increasing the duration that mice spend in the previously cocaine-paired context whereas stress increases the number of entries into this context. Importantly, both forms of reinstatement require Cav1.2 L-type Ca2+ channels (LTCCs) in cells of the prelimbic cortex that project to the nucleus accumbens core (PrL→NAcC). Utilizing fiber photometry to measure circuit activity in vivo in conjunction with the LTCC blocker, isradipine, we find that LTCCs drive differential recruitment of the PrL→ NAcC pathway during cocaine- and stress-primed reinstatement. While cocaine selectively activates PrL→NAcC cells prior to entry into the cocaine-paired chamber, a measure that is predictive of duration in that chamber, stress increases persistent activity of this projection, which correlates with entries into the cocaine-paired chamber. Using projection-specific chemogenetic manipulations, we show that PrL→NAcC activity is required for both cocaine- and stress-primed reinstatement, and that activation of this projection in Cav1.2-deficient mice restores reinstatement. These data indicate that LTCCs are a common mediator of cocaine- and stress-primed reinstatement. However, they engage different patterns of behavior and PrL→NAcC projection activity depending on the environmental stimuli. These findings establish a framework to further study how different environmental experiences can drive relapse, and supports further exploration of isradipine, an FDA-approved LTCC blocker, as a potential therapeutic for the prevention of relapse in cocaine-dependent individuals.
Collapse
|
26
|
Ren AJ, Chen C, Zhang S, Liu M, Wei C, Wang K, Ma X, Song Y, Wang R, Zhang H, Chen YX, Wu H, Xie Z, Zhang Y, Zhang WJ. Zbtb20 deficiency causes cardiac contractile dysfunction in mice. FASEB J 2020; 34:13862-13876. [PMID: 32844471 DOI: 10.1096/fj.202000160rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022]
Abstract
The zinc-finger protein ZBTB20 regulates development and metabolism in multiple systems, and is essential for postnatal survival in mice. However, its potential role in the cardiovascular system remains undefined. Here, we demonstrate that ZBTB20 is critically involved in the regulation of cardiac contractility and blood pressure in mice. At the age of 16 days, the relatively healthy Zbtb20-null mice exhibited hypotension without obvious change of heart rate or other evidence for heart failure. Moreover, Zbtb20 deletion led to a marked reduction in heart size, left ventricular wall thickness, and cell size of cardiomyocytes, which was largely proportional to the decreased body growth. Notably, echocardiographic and hemodynamic analyses showed that cardiac contractility was greatly impaired in the absence of ZBTB20. Mechanistically, ZBTB20 deficiency decreased cardiac ATP contents, and compromised the enzyme activity of mitochondrial complex I in heart as well as L-type calcium current density in cardiomyocytes. Furthermore, the developmental activation of some mitochondrial function-related genes was significantly attenuated in Zbtb20-null myocardium, which included Hspb8, Ckmt2, Cox7a1, Tfrc, and Ogdhl. Put together, these results suggest that ZBTB20 plays a crucial role in the regulation of heart development, energy metabolism, and contractility.
Collapse
Affiliation(s)
- An-Jing Ren
- Department of Pathophysiology, Naval Medical University, Shanghai, China
| | - Chao Chen
- Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
| | - Sha Zhang
- Department of Pathophysiology, Naval Medical University, Shanghai, China.,Department of Cardiovascular Diseases, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Mengna Liu
- Department of Pathophysiology, Naval Medical University, Shanghai, China
| | - Chunchun Wei
- Department of Pathophysiology, Naval Medical University, Shanghai, China
| | - Kai Wang
- Department of Pathophysiology, Naval Medical University, Shanghai, China
| | - Xianhua Ma
- Department of Pathophysiology, Naval Medical University, Shanghai, China
| | - Yao Song
- Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
| | - Rui Wang
- Department of Pathophysiology, Naval Medical University, Shanghai, China
| | - Hai Zhang
- Department of Pathophysiology, Naval Medical University, Shanghai, China
| | - Yu-Xia Chen
- Department of Pathophysiology, Naval Medical University, Shanghai, China
| | - Hong Wu
- Department of Cardiovascular Diseases, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhifang Xie
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Youyi Zhang
- Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
| | - Weiping J Zhang
- Department of Pathophysiology, Naval Medical University, Shanghai, China.,NHC Key Laboratory of Hormones and Development, Tianjin Institute of Endocrinology, Tianjin Medical University Chu Hsien-I Memorial Hospital, Tianjin, China
| |
Collapse
|
27
|
Marcantoni A, Calorio C, Hidisoglu E, Chiantia G, Carbone E. Cav1.2 channelopathies causing autism: new hallmarks on Timothy syndrome. Pflugers Arch 2020; 472:775-789. [PMID: 32621084 DOI: 10.1007/s00424-020-02430-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023]
Abstract
Cav1.2 L-type calcium channels play key roles in long-term synaptic plasticity, sensory transduction, muscle contraction, and hormone release. De novo mutations in the gene encoding Cav1.2 (CACNA1C) causes two forms of Timothy syndrome (TS1, TS2), characterized by a multisystem disorder inclusive of cardiac arrhythmias, long QT, autism, and adrenal gland dysfunction. In both TS1 and TS2, the missense mutation G406R is on the alternatively spliced exon 8 and 8A coding for the IS6-helix of Cav1.2 and is responsible for the penetrant form of autism in most TS individuals. The mutation causes specific gain-of-function changes to Cav1.2 channel gating: a "leftward shift" of voltage-dependent activation, reduced voltage-dependent inactivation, and a "leftward shift" of steady-state inactivation. How this occurs and how Cav1.2 gating changes alter neuronal firing and synaptic plasticity is still largely unexplained. Trying to better understanding the molecular basis of Cav1.2 gating dysfunctions leading to autism, here, we will present and discuss the properties of recently reported typical and atypical TS phenotypes and the effective gating changes exhibited by missense mutations associated with long QTs without extracardiac symptoms, unrelated to TS. We will also discuss new emerging views achieved from using iPSCs-derived neurons and the newly available autistic TS2-neo mouse model, both appearing promising for understanding neuronal mistuning in autistic TS patients. We will also analyze and describe recent proposals of molecular pathways that might explain mistuned Ca2+-mediated and Ca2+-independent excitation-transcription signals to the nucleus. Briefly, we will also discuss possible pharmacological approaches to treat autism associated with L-type channelopathies.
Collapse
Affiliation(s)
- Andrea Marcantoni
- Department of Drug Science, Laboratory of Cellular and Molecular Neuroscience, N.I.S. Centre, Corso Raffaello 30, 10125, Torino, Italy
| | - Chiara Calorio
- Department of Drug Science, Laboratory of Cellular and Molecular Neuroscience, N.I.S. Centre, Corso Raffaello 30, 10125, Torino, Italy
| | - Enis Hidisoglu
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Giuseppe Chiantia
- Department of Drug Science, Laboratory of Cellular and Molecular Neuroscience, N.I.S. Centre, Corso Raffaello 30, 10125, Torino, Italy
| | - Emilio Carbone
- Department of Drug Science, Laboratory of Cellular and Molecular Neuroscience, N.I.S. Centre, Corso Raffaello 30, 10125, Torino, Italy.
| |
Collapse
|
28
|
Mizuno K, Shiozawa K, Katoh TA, Minegishi K, Ide T, Ikawa Y, Nishimura H, Takaoka K, Itabashi T, Iwane AH, Nakai J, Shiratori H, Hamada H. Role of Ca 2+ transients at the node of the mouse embryo in breaking of left-right symmetry. SCIENCE ADVANCES 2020; 6:eaba1195. [PMID: 32743070 PMCID: PMC7375832 DOI: 10.1126/sciadv.aba1195] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 06/11/2020] [Indexed: 05/14/2023]
Abstract
Immotile cilia sense extracellular signals such as fluid flow, but whether Ca2+ plays a role in flow sensing has been unclear. Here, we examined the role of ciliary Ca2+ in the flow sensing that initiates the breaking of left-right (L-R) symmetry in the mouse embryo. Intraciliary and cytoplasmic Ca2+ transients were detected in the crown cells at the node. These Ca2+ transients showed L-R asymmetry, which was lost in the absence of fluid flow or the PKD2 channel. Further characterization allowed classification of the Ca2+ transients into two types: cilium-derived, L-R-asymmetric transients (type 1) and cilium-independent transients without an L-R bias (type 2). Type 1 intraciliary transients occurred preferentially at the left posterior region of the node, where L-R symmetry breaking takes place. Suppression of intraciliary Ca2+ transients delayed L-R symmetry breaking. Our results implicate cilium-derived Ca2+ transients in crown cells in initiation of L-R symmetry breaking in the mouse embryo.
Collapse
Affiliation(s)
- Katsutoshi Mizuno
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
- Corresponding author. (K.Miz.); (H.H.)
| | - Kei Shiozawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-0011, Japan
| | - Takanobu A. Katoh
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Katsura Minegishi
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-0011, Japan
| | - Takahiro Ide
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Yayoi Ikawa
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-0011, Japan
| | - Hiromi Nishimura
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-0011, Japan
| | - Katsuyoshi Takaoka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-0011, Japan
| | - Takeshi Itabashi
- RIKEN Center for Biosystems Dynamics Research, Higashi-hiroshima, Hiroshima 739-0046, Japan
| | - Atsuko H. Iwane
- RIKEN Center for Biosystems Dynamics Research, Higashi-hiroshima, Hiroshima 739-0046, Japan
| | - Junichi Nakai
- Department of Oral Function and Morphology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Hidetaka Shiratori
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-0011, Japan
| | - Hiroshi Hamada
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-0011, Japan
- Corresponding author. (K.Miz.); (H.H.)
| |
Collapse
|
29
|
Tyser RCV, Srinivas S. The First Heartbeat-Origin of Cardiac Contractile Activity. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a037135. [PMID: 31767652 DOI: 10.1101/cshperspect.a037135] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The amniote embryonic heart starts as a crescent of mesoderm that transitions through a midline linear heart tube in the course of developing into the four chambered heart. It is unusual in having to contract rhythmically while still undergoing extensive morphogenetic remodeling. Advances in imaging have allowed us to determine when during development this contractile activity starts. In the mouse, focal regions of contractions can be detected as early as the cardiac crescent stage. Calcium transients, required to trigger contraction, can be detected even earlier, prior to contraction. In this review, we outline what is currently known about how this early contractile function is initiated and the impact early contractile function has on cardiac development.
Collapse
Affiliation(s)
- Richard C V Tyser
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom
| | - Shankar Srinivas
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom
| |
Collapse
|
30
|
Fan G, Kaßmann M, Cui Y, Matthaeus C, Kunz S, Zhong C, Zhu S, Xie Y, Tsvetkov D, Daumke O, Huang Y, Gollasch M. Age attenuates the T-type Ca V 3.2-RyR axis in vascular smooth muscle. Aging Cell 2020; 19:e13134. [PMID: 32187825 PMCID: PMC7189999 DOI: 10.1111/acel.13134] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 01/28/2020] [Accepted: 02/16/2020] [Indexed: 12/26/2022] Open
Abstract
Caveolae position CaV3.2 (T‐type Ca2+ channel encoded by the α‐3.2 subunit) sufficiently close to RyR (ryanodine receptors) for extracellular Ca2+ influx to trigger Ca2+ sparks and large‐conductance Ca2+‐activated K+ channel feedback in vascular smooth muscle. We hypothesize that this mechanism of Ca2+ spark generation is affected by age. Using smooth muscle cells (VSMCs) from mouse mesenteric arteries, we found that both Cav3.2 channel inhibition by Ni2+ (50 µM) and caveolae disruption by methyl‐ß‐cyclodextrin or genetic abolition of Eps15 homology domain‐containing protein (EHD2) inhibited Ca2+ sparks in cells from young (4 months) but not old (12 months) mice. In accordance, expression of Cav3.2 channel was higher in mesenteric arteries from young than old mice. Similar effects were observed for caveolae density. Using SMAKO Cav1.2−/− mice, caffeine (RyR activator) and thapsigargin (Ca2+ transport ATPase inhibitor), we found that sufficient SR Ca2+ load is a prerequisite for the CaV3.2‐RyR axis to generate Ca2+ sparks. We identified a fraction of Ca2+ sparks in aged VSMCs, which is sensitive to the TRP channel blocker Gd3+ (100 µM), but insensitive to CaV1.2 and CaV3.2 channel blockade. Our data demonstrate that the VSMC CaV3.2‐RyR axis is down‐regulated by aging. This defective CaV3.2‐RyR coupling is counterbalanced by a Gd3+ sensitive Ca2+ pathway providing compensatory Ca2+ influx for triggering Ca2+ sparks in aged VSMCs.
Collapse
Affiliation(s)
- Gang Fan
- Experimental and Clinical Research Center (ECRC) a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC) Charité – Universitätsmedizin Berlin Berlin Germany
- Hunan Cancer Hospital The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha China
| | - Mario Kaßmann
- Experimental and Clinical Research Center (ECRC) a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC) Charité – Universitätsmedizin Berlin Berlin Germany
| | - Yingqiu Cui
- Experimental and Clinical Research Center (ECRC) a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC) Charité – Universitätsmedizin Berlin Berlin Germany
| | - Claudia Matthaeus
- Crystallography Max‐Delbrück‐Center for Molecular Medicine Berlin Germany
| | - Séverine Kunz
- Electron Microscopy Facility Max Delbrück Center for Molecular Medicine (MDC) Berlin Germany
| | - Cheng Zhong
- Experimental and Clinical Research Center (ECRC) a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC) Charité – Universitätsmedizin Berlin Berlin Germany
| | - Shuai Zhu
- Hunan Cancer Hospital The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha China
| | - Yu Xie
- Hunan Cancer Hospital The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha China
| | - Dmitry Tsvetkov
- Experimental and Clinical Research Center (ECRC) a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC) Charité – Universitätsmedizin Berlin Berlin Germany
| | - Oliver Daumke
- Crystallography Max‐Delbrück‐Center for Molecular Medicine Berlin Germany
- Institute of Chemistry and Biochemistry Freie Universität Berlin Berlin Germany
| | - Yu Huang
- Institute of Vascular Medicine and School of Biomedical Sciences Chinese University of Hong Kong Hong Kong China
| | - Maik Gollasch
- Experimental and Clinical Research Center (ECRC) a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC) Charité – Universitätsmedizin Berlin Berlin Germany
- Medical Clinic for Nephrology and Internal Intensive Care Charité – Universitätsmedizin Berlin Berlin Germany
- Department of Geriatrics University Medicine Greifswald Greifswald Germany
| |
Collapse
|
31
|
Binas S, Knyrim M, Hupfeld J, Kloeckner U, Rabe S, Mildenberger S, Quarch K, Strätz N, Misiak D, Gekle M, Grossmann C, Schreier B. miR-221 and -222 target CACNA1C and KCNJ5 leading to altered cardiac ion channel expression and current density. Cell Mol Life Sci 2020; 77:903-918. [PMID: 31312877 PMCID: PMC7058603 DOI: 10.1007/s00018-019-03217-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/14/2019] [Accepted: 07/02/2019] [Indexed: 12/26/2022]
Abstract
MicroRNAs (miRs) contribute to different aspects of cardiovascular pathology, among others cardiac hypertrophy and atrial fibrillation. The aim of our study was to evaluate the impact of miR-221/222 on cardiac electrical remodeling. Cardiac miR expression was analyzed in a mouse model with altered electrocardiography parameters and severe heart hypertrophy. Next generation sequencing revealed 14 differentially expressed miRs in hypertrophic hearts, with miR-221 and -222 being the strongest regulated miR-cluster. This increase was restricted to cardiomyocytes and not observed in cardiac fibroblasts. Additionally, we evaluated the change of miR-221/222 in vivo in two models of pharmacologically induced heart hypertrophy (angiotensin II, isoprenaline), thereby demonstrating a stimulus-induced increase in miR-221/222 in vivo by angiotensin II but not by isoprenaline. Whole transcriptome analysis by RNA-seq and qRT-PCR validation revealed an enriched number of downregulated mRNAs coding for proteins located in the T-tubule, which are also predicted targets for miR-221/222. Among those, mRNAs were the L-type Ca2+ channel subunits as well as potassium channel subunits. We confirmed that both miRs target the 3'-untranslated regions of Cacna1c and Kcnj5. Furthermore, enhanced expression of these miRs reduced L-type Ca2+ channel and Kcnj5 channel abundance and function, which was analyzed by whole-cell patch clamp recordings or Western blot and flux measurements, respectively. miR-221 and -222 contribute to the regulation of L-type Ca2+ channels as well as Kcnj5 channels and, therefore, potentially contribute to disturbed cardiac excitation generation and propagation. Future studies will have to evaluate the pathophysiological and clinical relevance of aberrant miR-221/222 expression for electrical remodeling.
Collapse
Affiliation(s)
- Stephanie Binas
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06110, Halle/Saale, Germany
| | - Maria Knyrim
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06110, Halle/Saale, Germany
| | - Julia Hupfeld
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06110, Halle/Saale, Germany
| | - Udo Kloeckner
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06110, Halle/Saale, Germany
| | - Sindy Rabe
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06110, Halle/Saale, Germany
| | - Sigrid Mildenberger
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06110, Halle/Saale, Germany
| | - Katja Quarch
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06110, Halle/Saale, Germany
| | - Nicole Strätz
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06110, Halle/Saale, Germany
| | - Danny Misiak
- Institute of Molecular Medicine, Martin-Luther-University Halle-Wittenberg, Heinrich-Damerow-Str. 1, 06120, Halle/Saale, Germany
| | - Michael Gekle
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06110, Halle/Saale, Germany
| | - Claudia Grossmann
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06110, Halle/Saale, Germany
| | - Barbara Schreier
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06110, Halle/Saale, Germany.
| |
Collapse
|
32
|
Turner M, Anderson DE, Bartels P, Nieves-Cintron M, Coleman AM, Henderson PB, Man KNM, Tseng PY, Yarov-Yarovoy V, Bers DM, Navedo MF, Horne MC, Ames JB, Hell JW. α-Actinin-1 promotes activity of the L-type Ca 2+ channel Ca v 1.2. EMBO J 2020; 39:e102622. [PMID: 31985069 DOI: 10.15252/embj.2019102622] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 01/05/2023] Open
Abstract
The L-type Ca2+ channel CaV 1.2 governs gene expression, cardiac contraction, and neuronal activity. Binding of α-actinin to the IQ motif of CaV 1.2 supports its surface localization and postsynaptic targeting in neurons. We report a bi-functional mechanism that restricts CaV 1.2 activity to its target sites. We solved separate NMR structures of the IQ motif (residues 1,646-1,664) bound to α-actinin-1 and to apo-calmodulin (apoCaM). The CaV 1.2 K1647A and Y1649A mutations, which impair α-actinin-1 but not apoCaM binding, but not the F1658A and K1662E mutations, which impair apoCaM but not α-actinin-1 binding, decreased single-channel open probability, gating charge movement, and its coupling to channel opening. Thus, α-actinin recruits CaV 1.2 to defined surface regions and simultaneously boosts its open probability so that CaV 1.2 is mostly active when appropriately localized.
Collapse
Affiliation(s)
- Matthew Turner
- Department of Chemistry, University of California, Davis, CA, USA
| | - David E Anderson
- Department of Chemistry, University of California, Davis, CA, USA
| | - Peter Bartels
- Department of Pharmacology, University of California, Davis, CA, USA
| | | | - Andrea M Coleman
- Department of Chemistry, University of California, Davis, CA, USA.,Department of Pharmacology, University of California, Davis, CA, USA
| | - Peter B Henderson
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Kwun Nok Mimi Man
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Pang-Yen Tseng
- Department of Pharmacology, University of California, Davis, CA, USA
| | | | - Donald M Bers
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Manuel F Navedo
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Mary C Horne
- Department of Pharmacology, University of California, Davis, CA, USA
| | - James B Ames
- Department of Chemistry, University of California, Davis, CA, USA
| | - Johannes W Hell
- Department of Pharmacology, University of California, Davis, CA, USA
| |
Collapse
|
33
|
|
34
|
Pitman KA, Ricci R, Gasperini R, Beasley S, Pavez M, Charlesworth J, Foa L, Young KM. The voltage-gated calcium channel CaV1.2 promotes adult oligodendrocyte progenitor cell survival in the mouse corpus callosum but not motor cortex. Glia 2019; 68:376-392. [PMID: 31605513 PMCID: PMC6916379 DOI: 10.1002/glia.23723] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 09/02/2019] [Accepted: 09/10/2019] [Indexed: 12/21/2022]
Abstract
Throughout life, oligodendrocyte progenitor cells (OPCs) proliferate and differentiate into myelinating oligodendrocytes. OPCs express cell surface receptors and channels that allow them to detect and respond to neuronal activity, including voltage‐gated calcium channel (VGCC)s. The major L‐type VGCC expressed by developmental OPCs, CaV1.2, regulates their differentiation. However, it is unclear whether CaV1.2 similarly influences OPC behavior in the healthy adult central nervous system (CNS). To examine the role of CaV1.2 in adulthood, we conditionally deleted this channel from OPCs by administering tamoxifen to P60 Cacna1cfl/fl (control) and Pdgfrα‐CreER:: Cacna1cfl/fl (CaV1.2‐deleted) mice. Whole cell patch clamp analysis revealed that CaV1.2 deletion reduced L‐type voltage‐gated calcium entry into adult OPCs by ~60%, confirming that it remains the major L‐type VGCC expressed by OPCs in adulthood. The conditional deletion of CaV1.2 from adult OPCs significantly increased their proliferation but did not affect the number of new oligodendrocytes produced or influence the length or number of internodes they elaborated. Unexpectedly, CaV1.2 deletion resulted in the dramatic loss of OPCs from the corpus callosum, such that 7 days after tamoxifen administration CaV1.2‐deleted mice had an OPC density ~42% that of control mice. OPC density recovered within 2 weeks of CaV1.2 deletion, as the lost OPCs were replaced by surviving CaV1.2‐deleted OPCs. As OPC density was not affected in the motor cortex or spinal cord, we conclude that calcium entry through CaV1.2 is a critical survival signal for a subpopulation of callosal OPCs but not for all OPCs in the mature CNS.
Collapse
Affiliation(s)
- Kimberley A Pitman
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Raphael Ricci
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Robert Gasperini
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia.,School of Medicine, University of Tasmania, Hobart, Australia
| | - Shannon Beasley
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Macarena Pavez
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Jac Charlesworth
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Lisa Foa
- School of Medicine, University of Tasmania, Hobart, Australia
| | - Kaylene M Young
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| |
Collapse
|
35
|
L-type voltage-gated Ca 2+ channel Ca V1.2 regulates chondrogenesis during limb development. Proc Natl Acad Sci U S A 2019; 116:21592-21601. [PMID: 31591237 DOI: 10.1073/pnas.1908981116] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
All cells, including nonexcitable cells, maintain a discrete transmembrane potential (V mem), and have the capacity to modulate V mem and respond to their own and neighbors' changes in V mem Spatiotemporal variations have been described in developing embryonic tissues and in some cases have been implicated in influencing developmental processes. Yet, how such changes in V mem are converted into intracellular inputs that in turn regulate developmental gene expression and coordinate patterned tissue formation, has remained elusive. Here we document that the V mem of limb mesenchyme switches from a hyperpolarized to depolarized state during early chondrocyte differentiation. This change in V mem increases intracellular Ca2+ signaling through Ca2+ influx, via CaV1.2, 1 of L-type voltage-gated Ca2+ channels (VGCCs). We find that CaV1.2 activity is essential for chondrogenesis in the developing limbs. Pharmacological inhibition by an L-type VGCC specific blocker, or limb-specific deletion of CaV1.2, down-regulates expression of genes essential for chondrocyte differentiation, including Sox9, Col2a1, and Agc1, and thus disturbs proper cartilage formation. The Ca2+-dependent transcription factor NFATc1, which is a known major transducer of intracellular Ca2+ signaling, partly rescues Sox9 expression. These data reveal instructive roles of CaV1.2 in limb development, and more generally expand our understanding of how modulation of membrane potential is used as a mechanism of developmental regulation.
Collapse
|
36
|
Garg P, Garg V, Shrestha R, Sanguinetti MC, Kamp TJ, Wu JC. Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes as Models for Cardiac Channelopathies: A Primer for Non-Electrophysiologists. Circ Res 2019; 123:224-243. [PMID: 29976690 DOI: 10.1161/circresaha.118.311209] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Life threatening ventricular arrhythmias leading to sudden cardiac death are a major cause of morbidity and mortality. In the absence of structural heart disease, these arrhythmias, especially in the younger population, are often an outcome of genetic defects in specialized membrane proteins called ion channels. In the heart, exceptionally well-orchestrated activity of a diversity of ion channels mediates the cardiac action potential. Alterations in either the function or expression of these channels can disrupt the configuration of the action potential, leading to abnormal electrical activity of the heart that can sometimes initiate an arrhythmia. Understanding the pathophysiology of inherited arrhythmias can be challenging because of the complexity of the disorder and lack of appropriate cellular and in vivo models. Recent advances in human induced pluripotent stem cell technology have provided remarkable progress in comprehending the underlying mechanisms of ion channel disorders or channelopathies by modeling these complex arrhythmia syndromes in vitro in a dish. To fully realize the potential of induced pluripotent stem cells in elucidating the mechanistic basis and complex pathophysiology of channelopathies, it is crucial to have a basic knowledge of cardiac myocyte electrophysiology. In this review, we will discuss the role of the various ion channels in cardiac electrophysiology and the molecular and cellular mechanisms of arrhythmias, highlighting the promise of human induced pluripotent stem cell-cardiomyocytes as a model for investigating inherited arrhythmia syndromes and testing antiarrhythmic strategies. Overall, this review aims to provide a basic understanding of the electrical activity of the heart and related channelopathies, especially to clinicians or research scientists in the cardiovascular field with limited electrophysiology background.
Collapse
Affiliation(s)
- Priyanka Garg
- From the Stanford Cardiovascular Institute (P.G., R.S., J.C.W.).,Department of Medicine, Division of Cardiology (P.G., R.S., J.C.W.).,Institute for Stem Cell Biology and Regenerative Medicine (P.G., R.S., J.C.W.)
| | - Vivek Garg
- Stanford University School of Medicine, CA; Department of Physiology, University of California San Francisco (V.G.)
| | - Rajani Shrestha
- From the Stanford Cardiovascular Institute (P.G., R.S., J.C.W.).,Department of Medicine, Division of Cardiology (P.G., R.S., J.C.W.).,Institute for Stem Cell Biology and Regenerative Medicine (P.G., R.S., J.C.W.)
| | | | - Timothy J Kamp
- Department of Medicine, University of Wisconsin-Madison (T.J.K.)
| | - Joseph C Wu
- From the Stanford Cardiovascular Institute (P.G., R.S., J.C.W.) .,Department of Medicine, Division of Cardiology (P.G., R.S., J.C.W.).,Institute for Stem Cell Biology and Regenerative Medicine (P.G., R.S., J.C.W.)
| |
Collapse
|
37
|
Andrade A, Brennecke A, Mallat S, Brown J, Gomez-Rivadeneira J, Czepiel N, Londrigan L. Genetic Associations between Voltage-Gated Calcium Channels and Psychiatric Disorders. Int J Mol Sci 2019; 20:E3537. [PMID: 31331039 PMCID: PMC6679227 DOI: 10.3390/ijms20143537] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/12/2019] [Accepted: 07/13/2019] [Indexed: 12/23/2022] Open
Abstract
Psychiatric disorders are mental, behavioral or emotional disorders. These conditions are prevalent, one in four adults suffer from any type of psychiatric disorders world-wide. It has always been observed that psychiatric disorders have a genetic component, however, new methods to sequence full genomes of large cohorts have identified with high precision genetic risk loci for these conditions. Psychiatric disorders include, but are not limited to, bipolar disorder, schizophrenia, autism spectrum disorder, anxiety disorders, major depressive disorder, and attention-deficit and hyperactivity disorder. Several risk loci for psychiatric disorders fall within genes that encode for voltage-gated calcium channels (CaVs). Calcium entering through CaVs is crucial for multiple neuronal processes. In this review, we will summarize recent findings that link CaVs and their auxiliary subunits to psychiatric disorders. First, we will provide a general overview of CaVs structure, classification, function, expression and pharmacology. Next, we will summarize tools to study risk loci associated with psychiatric disorders. We will examine functional studies of risk variations in CaV genes when available. Finally, we will review pharmacological evidence of the use of CaV modulators to treat psychiatric disorders. Our review will be of interest for those studying pathophysiological aspects of CaVs.
Collapse
Affiliation(s)
- Arturo Andrade
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA.
| | - Ashton Brennecke
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Shayna Mallat
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Julian Brown
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | | | - Natalie Czepiel
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Laura Londrigan
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|
38
|
Redecker TM, Kisko TM, Schwarting RK, Wöhr M. Effects of Cacna1c haploinsufficiency on social interaction behavior and 50-kHz ultrasonic vocalizations in adult female rats. Behav Brain Res 2019; 367:35-52. [DOI: 10.1016/j.bbr.2019.03.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/03/2019] [Accepted: 03/15/2019] [Indexed: 01/28/2023]
|
39
|
An element for development: Calcium signaling in mammalian reproduction and development. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1230-1238. [DOI: 10.1016/j.bbamcr.2019.02.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/22/2019] [Accepted: 02/24/2019] [Indexed: 11/21/2022]
|
40
|
Wang X, Zhuo X, Gao J, Liu H, Lin F, Ma A. Neuregulin-1β Partially Improves Cardiac Function in Volume-Overload Heart Failure Through Regulation of Abnormal Calcium Handling. Front Pharmacol 2019; 10:616. [PMID: 31281251 PMCID: PMC6597678 DOI: 10.3389/fphar.2019.00616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 05/15/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Neuregulin (NRG-1), an essential stress-mediated paracrine growth factor, has a cardioprotective effect in failing heart. However, the underlying mechanism remains unclear. The role of NRG-1β in heart failure (HF) rats was examined. Methods and Results: Volume-overload HF rat model was created by aortocaval fistula surgery. The sham-operated (SO) rats received the same surgical intervention without the fistula. Thirty-five HF rats were injected with NRG-1β (NRG, 10 μg/kg·d) via the tail vein for 7 days, whereas 35 HF rats and 20 SO rats were injected with the same dose of saline. The echocardiographic findings showed left ventricular dilatation, systolic and diastolic dysfunction, and QTc interval prolongation in HF rats. The NRG-1β treatment attenuated the ventricular remodeling and shortened the QTc interval. Patch clamp recordings showed ICa-L was significantly decreased in the HF group, and NRG-1β treatment attenuated the decreased ICa-L. No significant differences in the kinetic properties of ICa-L were observed. The expressions of Cav1.2 and SERCA2a were significantly reduced, but the expression level of NCX1 was increased dramatically in the HF group. NRG-1β treatment could partially prevent the decrease of Cav1.2 and SERCA2a, and the increase of NCX1 in HF rats. Conclusions: NRG-1β could partly attenuate the heart function deterioration in the volume-overload model. Reduced function and expression of calcium transportation-related proteins might be the underlying mechanism.
Collapse
Affiliation(s)
- Xuehui Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Xiaozhen Zhuo
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jie Gao
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Huibing Liu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Fei Lin
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Aiqun Ma
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
41
|
Abstract
Most cells in the body acquire iron via receptor-mediated endocytosis of transferrin, the circulating iron transport protein. When cellular iron levels are sufficient, the uptake of transferrin decreases to limit further iron assimilation and prevent excessive iron accumulation. In iron overload conditions, such as hereditary hemochromatosis and thalassemia major, unregulated iron entry into the plasma overwhelms the carrying capacity of transferrin, resulting in non-transferrin-bound iron (NTBI), a redox-active, potentially toxic form of iron. Plasma NTBI is rapidly cleared from the circulation primarily by the liver and other organs (e.g., pancreas, heart, and pituitary) where it contributes significantly to tissue iron overload and related pathology. While NTBI is usually not detectable in the plasma of healthy individuals, it does appear to be a normal constituent of brain interstitial fluid and therefore likely serves as an important source of iron for most cell types in the CNS. A growing body of literature indicates that NTBI uptake is mediated by non-transferrin-bound iron transporters such as ZIP14, L-type and T-type calcium channels, DMT1, ZIP8, and TRPC6. This review provides an overview of NTBI uptake by various tissues and cells and summarizes the evidence for and against the roles of individual transporters in this process.
Collapse
Affiliation(s)
- Mitchell D Knutson
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
42
|
Kisko TM, Braun MD, Michels S, Witt SH, Rietschel M, Culmsee C, Schwarting RKW, Wöhr M. Sex‐dependent effects of
Cacna1c
haploinsufficiency on juvenile social play behavior and pro‐social 50‐kHz ultrasonic communication in rats. GENES BRAIN AND BEHAVIOR 2019; 19:e12552. [DOI: 10.1111/gbb.12552] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/22/2018] [Accepted: 12/26/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Theresa M. Kisko
- Behavioral Neuroscience, Experimental and Biological Psychology, Department of PsychologyPhilipps‐Universität Marburg Marburg Germany
| | - Moria D. Braun
- Behavioral Neuroscience, Experimental and Biological Psychology, Department of PsychologyPhilipps‐Universität Marburg Marburg Germany
| | - Susanne Michels
- Institute of Pharmacology and Clinical PharmacyPhilipps‐Universität Marburg Marburg Germany
| | - Stephanie H. Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Faculty of Medicine MannheimRuprecht‐Karls‐Universität Heidelberg Mannheim Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Faculty of Medicine MannheimRuprecht‐Karls‐Universität Heidelberg Mannheim Germany
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical PharmacyPhilipps‐Universität Marburg Marburg Germany
- Center for Mind, Brain, and Behavior (CMBB)Philipps‐Universität Marburg Marburg Germany
| | - Rainer K. W. Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Department of PsychologyPhilipps‐Universität Marburg Marburg Germany
- Center for Mind, Brain, and Behavior (CMBB)Philipps‐Universität Marburg Marburg Germany
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Department of PsychologyPhilipps‐Universität Marburg Marburg Germany
- Center for Mind, Brain, and Behavior (CMBB)Philipps‐Universität Marburg Marburg Germany
| |
Collapse
|
43
|
Fan G, Kaßmann M, Hashad AM, Welsh DG, Gollasch M. Differential targeting and signalling of voltage-gated T-type Ca v 3.2 and L-type Ca v 1.2 channels to ryanodine receptors in mesenteric arteries. J Physiol 2018; 596:4863-4877. [PMID: 30146760 PMCID: PMC6187032 DOI: 10.1113/jp276923] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 08/24/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS In arterial smooth muscle, Ca2+ sparks are elementary Ca2+ -release events generated by ryanodine receptors (RyRs) to cause vasodilatation by opening maxi Ca2+ -sensitive K+ (BKCa ) channels. This study elucidated the contribution of T-type Cav 3.2 channels in caveolae and their functional interaction with L-type Cav 1.2 channels to trigger Ca2+ sparks in vascular smooth muscle cells (VSMCs). Our data demonstrate that L-type Cav 1.2 channels provide the predominant Ca2+ pathway for the generation of Ca2+ sparks in murine arterial VSMCs. T-type Cav 3.2 channels represent an additional source for generation of VSMC Ca2+ sparks. They are located in pit structures of caveolae to provide locally restricted, tight coupling between T-type Cav 3.2 channels and RyRs to ignite Ca2+ sparks. ABSTRACT Recent data suggest that T-type Cav 3.2 channels in arterial vascular smooth muscle cells (VSMCs) and pits structure of caveolae could contribute to elementary Ca2+ signalling (Ca2+ sparks) via ryanodine receptors (RyRs) to cause vasodilatation. While plausible, their precise involvement in igniting Ca2+ sparks remains largely unexplored. The goal of this study was to elucidate the contribution of caveolar Cav 3.2 channels and their functional interaction with Cav 1.2 channels to trigger Ca2+ sparks in VSMCs from mesenteric, tibial and cerebral arteries. We used tamoxifen-inducible smooth muscle-specific Cav 1.2-/- (SMAKO) mice and laser scanning confocal microscopy to assess Ca2+ spark generation in VSMCs. Ni2+ , Cd2+ and methyl-β-cyclodextrin were used to inhibit Cav 3.2 channels, Cav 1.2 channels and caveolae, respectively. Ni2+ (50 μmol L-1 ) and methyl-β-cyclodextrin (10 mmol L-1 ) decreased Ca2+ spark frequency by ∼20-30% in mesenteric VSMCs in a non-additive manner, but failed to inhibit Ca2+ sparks in tibial and cerebral artery VSMCs. Cd2+ (200 μmol L-1 ) suppressed Ca2+ sparks in mesenteric arteries by ∼70-80%. A similar suppression of Ca2+ sparks was seen in mesenteric artery VSMCs of SMAKO mice. The remaining Ca2+ sparks were fully abolished by Ni2+ or methyl-β-cyclodextrin. Our data demonstrate that Ca2+ influx through CaV 1.2 channels is the primary means of triggering Ca2+ sparks in murine arterial VSMCs. CaV 3.2 channels, localized to caveolae and tightly coupled to RyR, provide an additional Ca2+ source for Ca2+ spark generation in mesenteric, but not tibial and cerebral, arteries.
Collapse
Affiliation(s)
- Gang Fan
- Charité – Universitätsmedizin BerlinExperimental and Clinical Research Center (ECRC)Campus BuchBerlinGermany
| | - Mario Kaßmann
- Charité – Universitätsmedizin BerlinExperimental and Clinical Research Center (ECRC)Campus BuchBerlinGermany
- DZHK (German Centre for Cardiovascular Research)BerlinGermany
| | - Ahmed M. Hashad
- Department of Physiology and PharmacologyHotchkiss Brain and Libin Cardiovascular InstitutesUniversity of CalgaryAlbertaCanada
| | - Donald G. Welsh
- Department of Physiology and PharmacologyWestern UniversityLondonONCanada
| | - Maik Gollasch
- Charité – Universitätsmedizin BerlinExperimental and Clinical Research Center (ECRC)Campus BuchBerlinGermany
- DZHK (German Centre for Cardiovascular Research)BerlinGermany
- Charité – Universitätsmedizin BerlinMedical Clinic for Nephrology and Internal Intensive CareCampus VirchowBerlinGermany
| |
Collapse
|
44
|
Conrad R, Stölting G, Hendriks J, Ruello G, Kortzak D, Jordan N, Gensch T, Hidalgo P. Rapid Turnover of the Cardiac L-Type Ca V1.2 Channel by Endocytic Recycling Regulates Its Cell Surface Availability. iScience 2018; 7:1-15. [PMID: 30267672 PMCID: PMC6135870 DOI: 10.1016/j.isci.2018.08.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/18/2018] [Accepted: 08/10/2018] [Indexed: 02/06/2023] Open
Abstract
Calcium entry through CaV1.2 L-type calcium channels regulates cardiac contractility. Here, we study the impact of exocytic and post-endocytic trafficking on cell surface channel abundance in cardiomyocytes. Single-molecule localization and confocal microscopy reveal an intracellular CaV1.2 pool tightly associated with microtubules from the perinuclear region to the cell periphery, and with actin filaments at the cell cortex. Channels newly inserted into the plasma membrane become internalized with an average time constant of 7.5 min and are sorted out to the Rab11a-recycling compartment. CaV1.2 recycling suffices for maintaining stable L-type current amplitudes over 20 hr independent of de novo channel transport along microtubules. Disruption of the actin cytoskeleton re-routes CaV1.2 from recycling toward lysosomal degradation. We identify endocytic recycling as essential for the homeostatic regulation of voltage-dependent calcium influx into cardiomyocytes. This mechanism provides the basis for a dynamic adjustment of the channel's surface availability and thus, of heart's contraction.
Collapse
Affiliation(s)
- Rachel Conrad
- Institute of Complex Systems 4, Zelluläre Biophysik, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Gabriel Stölting
- Institute of Complex Systems 4, Zelluläre Biophysik, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Johnny Hendriks
- Institute of Complex Systems 4, Zelluläre Biophysik, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Giovanna Ruello
- Institute of Complex Systems 4, Zelluläre Biophysik, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Daniel Kortzak
- Institute of Complex Systems 4, Zelluläre Biophysik, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Nadine Jordan
- Institute of Complex Systems 4, Zelluläre Biophysik, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Thomas Gensch
- Institute of Complex Systems 4, Zelluläre Biophysik, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Patricia Hidalgo
- Institute of Complex Systems 4, Zelluläre Biophysik, Forschungszentrum Jülich, 52425 Jülich, Germany; Institute of Biochemistry, Heinrich-Heine University, Düsseldorf, Germany.
| |
Collapse
|
45
|
A Critical Neurodevelopmental Role for L-Type Voltage-Gated Calcium Channels in Neurite Extension and Radial Migration. J Neurosci 2018; 38:5551-5566. [PMID: 29773754 DOI: 10.1523/jneurosci.2357-17.2018] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/28/2017] [Accepted: 04/21/2018] [Indexed: 11/21/2022] Open
Abstract
Despite many association studies linking gene polymorphisms and mutations of L-type voltage-gated Ca2+ channels (VGCCs) in neurodevelopmental disorders such as autism and schizophrenia, the roles of specific L-type VGCC during brain development remain unclear. Calcium signaling has been shown to be essential for neurodevelopmental processes such as sculpting of neurites, functional wiring, and fine tuning of growing networks. To investigate this relationship, we performed submembraneous calcium imaging using a membrane-tethered genetically encoded calcium indicator (GECI) Lck-G-CaMP7. We successfully recorded spontaneous regenerative calcium transients (SRCaTs) in developing mouse excitatory cortical neurons prepared from both sexes before synapse formation. SRCaTs originated locally in immature neurites independently of somatic calcium rises and were significantly more elevated in the axons than in dendrites. SRCaTs were not blocked by tetrodoxin, a Na+ channel blocker, but were strongly inhibited by hyperpolarization, suggesting a voltage-dependent source. Pharmacological and genetic manipulations revealed the critical importance of the Cav1.2 (CACNA1C) pore-forming subunit of L-type VGCCs, which were indeed expressed in immature mouse brains. Consistently, knocking out Cav1.2 resulted in significant alterations of neurite outgrowth. Furthermore, expression of a gain-of-function Cav1.2 mutant found in Timothy syndrome, an autosomal dominant multisystem disorder exhibiting syndromic autism, resulted in impaired radial migration of layer 2/3 excitatory neurons, whereas postnatal abrogation of Cav1.2 enhancement could rescue cortical malformation. Together, these lines of evidence suggest a critical role for spontaneous opening of L-type VGCCs in neural development and corticogenesis and indicate that L-type VGCCs might constitute a perinatal therapeutic target for neuropsychiatric calciochannelopathies.SIGNIFICANCE STATEMENT Despite many association studies linking gene polymorphisms and mutations of L-type voltage-gated Ca2+ channels (VGCCs) in neurodevelopmental disorders such as autism and schizophrenia, the roles of specific L-type VGCCs during brain development remain unclear. We here combined the latest Ca2+ indicator technology, quantitative pharmacology, and in utero electroporation and found a hitherto unsuspected role for L-type VGCCs in determining the Ca2+ signaling landscape of mouse immature neurons. We found that malfunctional L-type VGCCs in immature neurons before birth might cause errors in neuritic growth and cortical migration. Interestingly, the retarded corticogenesis phenotype was rescued by postnatal correction of L-type VGCC signal aberration. These findings suggest that L-type VGCCs might constitute a perinatal therapeutic target for neurodevelopment-associated psychiatric disorders.
Collapse
|
46
|
Lam A, Karekar P, Shah K, Hariharan G, Fleyshman M, Kaur H, Singh H, Gururaja Rao S. Drosophila Voltage-Gated Calcium Channel α1-Subunits Regulate Cardiac Function in the Aging Heart. Sci Rep 2018; 8:6910. [PMID: 29720608 PMCID: PMC5932002 DOI: 10.1038/s41598-018-25195-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 04/17/2018] [Indexed: 12/20/2022] Open
Abstract
Ion channels maintain numerous physiological functions and regulate signaling pathways. They are the key targets for cellular reactive oxygen species (ROS), acting as signaling switches between ROS and ionic homeostasis. We have carried out a paraquat (PQ) screen in Drosophila to identify ion channels regulating the ROS handling and survival in Drosophila melanogaster. Our screen has revealed that α1-subunits (D-type, T-type, and cacophony) of voltage-gated calcium channels (VGCCs) handle PQ-mediated ROS stress differentially in a gender-based manner. Since ROS are also involved in determining the lifespan, we discovered that the absence of T-type and cacophony decreased the lifespan while the absence of D-type maintained a similar lifespan to that of the wild-type strain. VGCCs are also responsible for electrical signaling in cardiac cells. The cardiac function of each mutant was evaluated through optical coherence tomography (OCT), which revealed that α1-subunits of VGCCs are essential in maintaining cardiac rhythmicity and cardiac function in an age-dependent manner. Our results establish specific roles of α1-subunits of VGCCs in the functioning of the aging heart.
Collapse
Affiliation(s)
- Alexander Lam
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Priyanka Karekar
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Kajol Shah
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Girija Hariharan
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Michelle Fleyshman
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Harmehak Kaur
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Harpreet Singh
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA. .,Division of Cardiology, Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
| | - Shubha Gururaja Rao
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
| |
Collapse
|
47
|
Dedic N, Pöhlmann ML, Richter JS, Mehta D, Czamara D, Metzger MW, Dine J, Bedenk BT, Hartmann J, Wagner KV, Jurik A, Almli LM, Lori A, Moosmang S, Hofmann F, Wotjak CT, Rammes G, Eder M, Chen A, Ressler KJ, Wurst W, Schmidt MV, Binder EB, Deussing JM. Cross-disorder risk gene CACNA1C differentially modulates susceptibility to psychiatric disorders during development and adulthood. Mol Psychiatry 2018; 23:533-543. [PMID: 28696432 PMCID: PMC5822460 DOI: 10.1038/mp.2017.133] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/25/2017] [Accepted: 05/04/2017] [Indexed: 12/17/2022]
Abstract
Single-nucleotide polymorphisms (SNPs) in CACNA1C, the α1C subunit of the voltage-gated L-type calcium channel Cav1.2, rank among the most consistent and replicable genetics findings in psychiatry and have been associated with schizophrenia, bipolar disorder and major depression. However, genetic variants of complex diseases often only confer a marginal increase in disease risk, which is additionally influenced by the environment. Here we show that embryonic deletion of Cacna1c in forebrain glutamatergic neurons promotes the manifestation of endophenotypes related to psychiatric disorders including cognitive decline, impaired synaptic plasticity, reduced sociability, hyperactivity and increased anxiety. Additional analyses revealed that depletion of Cacna1c during embryonic development also increases the susceptibility to chronic stress, which suggest that Cav1.2 interacts with the environment to shape disease vulnerability. Remarkably, this was not observed when Cacna1c was deleted in glutamatergic neurons during adulthood, where the later deletion even improved cognitive flexibility, strengthened synaptic plasticity and induced stress resilience. In a parallel gene × environment design in humans, we additionally demonstrate that SNPs in CACNA1C significantly interact with adverse life events to alter the risk to develop symptoms of psychiatric disorders. Overall, our results further validate Cacna1c as a cross-disorder risk gene in mice and humans, and additionally suggest a differential role for Cav1.2 during development and adulthood in shaping cognition, sociability, emotional behavior and stress susceptibility. This may prompt the consideration for pharmacological manipulation of Cav1.2 in neuropsychiatric disorders with developmental and/or stress-related origins.
Collapse
Affiliation(s)
- N Dedic
- Molecular Neurogenetics, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - M L Pöhlmann
- Molecular Neurogenetics, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - J S Richter
- Molecular Neurogenetics, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - D Mehta
- Queensland Brain Institute, University of Queensland, St. Lucia, QLD, Australia
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - D Czamara
- Queensland Brain Institute, University of Queensland, St. Lucia, QLD, Australia
| | - M W Metzger
- Molecular Neurogenetics, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - J Dine
- Molecular Neurogenetics, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - B T Bedenk
- Molecular Neurogenetics, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - J Hartmann
- Molecular Neurogenetics, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, MA, USA
| | - K V Wagner
- Molecular Neurogenetics, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - A Jurik
- Institute of Pharmacology and Toxicology, Technische Universität München, Munich, Germany
| | - L M Almli
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - A Lori
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - S Moosmang
- Institute of Pharmacology and Toxicology, Technische Universität München, Munich, Germany
| | - F Hofmann
- Institute of Pharmacology and Toxicology, Technische Universität München, Munich, Germany
| | - C T Wotjak
- Molecular Neurogenetics, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - G Rammes
- Clinic of Anaesthesiology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - M Eder
- Molecular Neurogenetics, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - A Chen
- Molecular Neurogenetics, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
- The Ruhman Family Laboratory for Research on the Neurobiology of Stress, Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - K J Ressler
- Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, MA, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - W Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - M V Schmidt
- Molecular Neurogenetics, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - E B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - J M Deussing
- Molecular Neurogenetics, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
48
|
Altered function of neuronal L-type calcium channels in ageing and neuroinflammation: Implications in age-related synaptic dysfunction and cognitive decline. Ageing Res Rev 2018; 42:86-99. [PMID: 29339150 DOI: 10.1016/j.arr.2018.01.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 12/29/2022]
Abstract
The rapid developments in science have led to an increase in human life expectancy and thus, ageing and age-related disorders/diseases have become one of the greatest concerns in the 21st century. Cognitive abilities tend to decline as we get older. This age-related cognitive decline is mainly attributed to aberrant changes in synaptic plasticity and neuronal connections. Recent studies show that alterations in Ca2+ homeostasis underlie the increased vulnerability of neurons to age-related processes like cognitive decline and synaptic dysfunctions. Dysregulation of Ca2+ can lead to dramatic changes in neuronal functions. We discuss in this review, the recent advances on the potential role of dysregulated Ca2+ homeostasis through altered function of L-type voltage gated Ca2+ channels (LTCC) in ageing, with an emphasis on cognitive decline. This review therefore focuses on age-related changes mainly in the hippocampus, and with mention of other brain areas, that are important for learning and memory. This review also highlights age-related memory deficits via synaptic alterations and neuroinflammation. An understanding of these mechanisms will help us formulate strategies to reverse or ameliorate age-related disorders like cognitive decline.
Collapse
|
49
|
Zhang Q, Chen J, Qin Y, Wang J, Zhou L. Mutations in voltage-gated L-type calcium channel: implications in cardiac arrhythmia. Channels (Austin) 2018; 12:201-218. [PMID: 30027834 PMCID: PMC6104696 DOI: 10.1080/19336950.2018.1499368] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/08/2018] [Accepted: 07/05/2018] [Indexed: 02/06/2023] Open
Abstract
The voltage-gated L-type calcium channel (LTCC) is essential for multiple cellular processes. In the heart, calcium influx through LTCC plays an important role in cardiac electrical excitation. Mutations in LTCC genes, including CACNA1C, CACNA1D, CACNB2 and CACNA2D, will induce the dysfunctions of calcium channels, which result in the abnormal excitations of cardiomyocytes, and finally lead to cardiac arrhythmias. Nevertheless, the newly found mutations in LTCC and their functions are continuously being elucidated. This review summarizes recent findings on the mutations of LTCC, which are associated with long QT syndromes, Timothy syndromes, Brugada syndromes, short QT syndromes, and some other cardiac arrhythmias. Indeed, we describe the gain/loss-of-functions of these mutations in LTCC, which can give an explanation for the phenotypes of cardiac arrhythmias. Moreover, we present several challenges in the field at present, and propose some diagnostic or therapeutic approaches to these mutation-associated cardiac diseases in the future.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Cardiology, the Second Affiliated Hospital of Nantong University, Nantong First Hospital, Nantong, Jiangsu, China
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junjie Chen
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yao Qin
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Juejin Wang
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Zhou
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
50
|
Lorincz R, Emfinger CH, Walcher A, Giolai M, Krautgasser C, Remedi MS, Nichols CG, Meyer D. In vivo monitoring of intracellular Ca 2+ dynamics in the pancreatic β-cells of zebrafish embryos. Islets 2018; 10:221-238. [PMID: 30521410 PMCID: PMC6300091 DOI: 10.1080/19382014.2018.1540234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Assessing the response of pancreatic islet cells to glucose stimulation is important for understanding β-cell function. Zebrafish are a promising model for studies of metabolism in general, including stimulus-secretion coupling in the pancreas. We used transgenic zebrafish embryos expressing a genetically-encoded Ca2+ sensor in pancreatic β-cells to monitor a key step in glucose induced insulin secretion; the elevations of intracellular [Ca2+]i. In vivo and ex vivo analyses of [Ca2+]i demonstrate that β-cell responsiveness to glucose is well established in late embryogenesis and that embryonic β-cells also respond to free fatty acid and amino acid challenges. In vivo imaging of whole embryos further shows that indirect glucose administration, for example by yolk injection, results in a slow and asynchronous induction of β-cell [Ca2+]i responses, while intravenous glucose injections cause immediate and islet-wide synchronized [Ca2+]i fluctuations. Finally, we demonstrate that embryos with disrupted mutation of the CaV1.2 channel gene cacna1c are hyperglycemic and that this phenotype is associated with glucose-independent [Ca2+]i fluctuation in β-cells. The data reveal a novel central role of cacna1c in β-cell specific stimulus-secretion coupling in zebrafish and demonstrate that the novel approach we propose - to monitor the [Ca2+]i dynamics in embryonic β-cells in vivo - will help to expand the understanding of β-cell physiological functions in healthy and diseased states.
Collapse
Affiliation(s)
- Reka Lorincz
- Institute of Molecular Biology/CMBI, University of Innsbruck, Innsbruck, Austria
| | - Christopher H. Emfinger
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrea Walcher
- Institute of Molecular Biology/CMBI, University of Innsbruck, Innsbruck, Austria
| | - Michael Giolai
- Institute of Molecular Biology/CMBI, University of Innsbruck, Innsbruck, Austria
| | - Claudia Krautgasser
- Institute of Molecular Biology/CMBI, University of Innsbruck, Innsbruck, Austria
| | - Maria S. Remedi
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Colin G. Nichols
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University School of Medicine, St. Louis, MO, USA
| | - Dirk Meyer
- Institute of Molecular Biology/CMBI, University of Innsbruck, Innsbruck, Austria
- CONTACT Dirk Meyer Institute of Molecular Biology/CMBI, University of Innsbruck, Technikerstrasse 25, Innsbruck 6020, Austria
| |
Collapse
|