1
|
Bauerfeld C, Talwar H, Zhang K, Liu Y, Samavati L. MKP-1 Modulates Mitochondrial Transcription Factors, Oxidative Phosphorylation, and Glycolysis. Immunohorizons 2020; 4:245-258. [PMID: 32414764 PMCID: PMC7646982 DOI: 10.4049/immunohorizons.2000015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/27/2020] [Indexed: 01/08/2023] Open
Abstract
Sepsis is the leading cause of death in the world. Recent reports suggest that in response to sepsis, metabolism of macrophages switches from oxidative phosphorylation to aerobic glycolysis. MAPK phosphatase (MKP)–1 (also known as DUSP1) localized in the nucleus and preferentially dephosphorylates p38 and JNK. MKP-1 controls the expression of numerous inflammatory genes and transcription factors, thereby regulating innate and adaptive immunity. MKP-1–deficient animals exhibit aberrant metabolic responses following bacterial infections with a markedly increased mortality in response to sepsis. Because metabolic reprogramming modulates immune responses to TLR-4 activation, we investigated the effect of MKP-1 deficiency on mitochondrial electron transport chains involved in oxidative phosphorylation and transcription factors regulating mitochondrial biogenesis. Mitochondrial biogenesis is regulated by three nuclear-encoded proteins, including transcription factor A (TFAM), nuclear respiratory factors (NRF-1), and peroxisome proliferator–activated receptor γ coactivator-1-α (PGC-1α). We show that MKP-1–deficient mice/ macrophages exhibit, at baseline, higher expression of oxidative phosphorylation, TFAM, PGC-1α, and NRF-1 associated with increased respiration and production of reactive oxygen species as compared with wild-type mice. Surprisingly, MKP-1–deficient mice/macrophages responded to Escherichia coli sepsis or LPS with an impaired metabolic switch; despite enhanced glycolysis, a preserved mitochondrial function and biogenesis are exhibited. Furthermore, inhibition of p38 MAPK had no significant effect on TFAM and NRF-1 either in MKP-1–deficient macrophages or in wild-type macrophages. These findings support the conclusion that MKP-1 plays an important role in regulating proteins involved in glycolysis and oxidative phosphorylation and modulates expression of mitochondrial transcription factors.
Collapse
Affiliation(s)
- Christian Bauerfeld
- Division of Critical Care, Department of Pediatrics, Wayne State University School of Medicine and Detroit Medical Center, Detroit, MI 48201
| | - Harvinder Talwar
- Division of Pulmonary & Critical Care and Sleep Medicine, Department of Medicine, Wayne State University School of Medicine and Detroit Medical Center, Detroit, MI 48201
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201; and
| | - Yusen Liu
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215
| | - Lobelia Samavati
- Division of Pulmonary & Critical Care and Sleep Medicine, Department of Medicine, Wayne State University School of Medicine and Detroit Medical Center, Detroit, MI 48201; .,Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201; and
| |
Collapse
|
2
|
Mathieu E, Bernard AS, Ching HYV, Somogyi A, Medjoubi K, Fores JR, Bertrand HC, Vincent A, Trépout S, Guerquin-Kern JL, Scheitler A, Ivanović-Burmazović I, Seksik P, Delsuc N, Policar C. Anti-inflammatory activity of superoxide dismutase mimics functionalized with cell-penetrating peptides. Dalton Trans 2020; 49:2323-2330. [DOI: 10.1039/c9dt04619d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A superoxide dismutase mimic was functionalized with three peptides: -R9, -RRWWRRWRR or -Fx-r-Fx-K (MPP). They were studied in intestinal epithelial cells in an inorganic cellular chemistry approach: quantification, distribution and bio-activity.
Collapse
|
3
|
Mathieu E, Bernard AS, Quévrain E, Zoumpoulaki M, Iriart S, Lung-Soong C, Lai B, Medjoubi K, Henry L, Nagarajan S, Poyer F, Scheitler A, Ivanović-Burmazović I, Marco S, Somogyi A, Seksik P, Delsuc N, Policar C. Intracellular location matters: rationalization of the anti-inflammatory activity of a manganese(ii) superoxide dismutase mimic complex. Chem Commun (Camb) 2020; 56:7885-7888. [DOI: 10.1039/d0cc03398g] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The study of Mn-based superoxide dismutase mimic conjugated with a multimodal Re-probe in a cellular model of oxidative stress revealed that its bioactivity is associated with its accumulation at the mitochondria.
Collapse
|
4
|
Sahley TL, Anderson DJ, Hammonds MD, Chandu K, Musiek FE. Evidence for a dynorphin-mediated inner ear immune/inflammatory response and glutamate-induced neural excitotoxicity: an updated analysis. J Neurophysiol 2019; 122:1421-1460. [DOI: 10.1152/jn.00595.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Acoustic overstimulation (AOS) is defined as the stressful overexposure to high-intensity sounds. AOS is a precipitating factor that leads to a glutamate (GLU)-induced Type I auditory neural excitotoxicity and an activation of an immune/inflammatory/oxidative stress response within the inner ear, often resulting in cochlear hearing loss. The dendrites of the Type I auditory neural neurons that innervate the inner hair cells (IHCs), and respond to the IHC release of the excitatory neurotransmitter GLU, are themselves directly innervated by the dynorphin (DYN)-bearing axon terminals of the descending brain stem lateral olivocochlear (LOC) system. DYNs are known to increase GLU availability, potentiate GLU excitotoxicity, and induce superoxide production. DYNs also increase the production of proinflammatory cytokines by modulating immune/inflammatory signal transduction pathways. Evidence is provided supporting the possibility that the GLU-mediated Type I auditory neural dendritic swelling, inflammation, excitotoxicity, and cochlear hearing loss that follow AOS may be part of a brain stem-activated, DYN-mediated cascade of inflammatory events subsequent to a LOC release of DYNs into the cochlea. In support of a DYN-mediated cascade of events are established investigations linking DYNs to the immune/inflammatory/excitotoxic response in other neural systems.
Collapse
Affiliation(s)
- Tony L. Sahley
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, Ohio
- School of Health Sciences, Cleveland State University, Cleveland, Ohio
| | - David J. Anderson
- Department of Chemistry, Cleveland State University, Cleveland, Ohio
| | | | - Karthik Chandu
- Department of Chemistry, Cleveland State University, Cleveland, Ohio
| | - Frank E. Musiek
- Department of Speech, Language, and Hearing Sciences, University of Arizona, Tucson, Arizona
| |
Collapse
|
5
|
Fetterman JL, Sammy MJ, Ballinger SW. Mitochondrial toxicity of tobacco smoke and air pollution. Toxicology 2017; 391:18-33. [PMID: 28838641 PMCID: PMC5681398 DOI: 10.1016/j.tox.2017.08.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Jessica L Fetterman
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
| | - Melissa J Sammy
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama, Birmingham, AL, United States
| | - Scott W Ballinger
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama, Birmingham, AL, United States.
| |
Collapse
|
6
|
Mathieu E, Bernard AS, Delsuc N, Quévrain E, Gazzah G, Lai B, Chain F, Langella P, Bachelet M, Masliah J, Seksik P, Policar C. A Cell-Penetrant Manganese Superoxide Dismutase (MnSOD) Mimic Is Able To Complement MnSOD and Exerts an Antiinflammatory Effect on Cellular and Animal Models of Inflammatory Bowel Diseases. Inorg Chem 2017; 56:2545-2555. [PMID: 28198622 DOI: 10.1021/acs.inorgchem.6b02695] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inorganic complexes are increasingly used for biological and medicinal applications, and the question of the cell penetration and distribution of metallodrugs is key to understanding their biological activity. Oxidative stress is known to be involved in inflammation and in inflammatory bowel diseases for which antioxidative defenses are weakened. We report here the study of the manganese complex Mn1 mimicking superoxide dismutase (SOD), a protein involved in cell protection against oxidative stress, using an approach in inorganic cellular chemistry combining the investigation of Mn1 intracellular speciation using mass spectrometry and of its quantification and distribution using electron paramagnetic resonance and spatially resolved X-ray fluorescence with evaluation of its biological activity. More precisely, we have looked for and found the MS signature of Mn1 in cell lysates and quantified the overall manganese content. Intestinal epithelial cells activated by bacterial lipopolysaccharide were taken as a cellular model of oxidative stress and inflammation. DNBS-induced colitis in mice was used to investigate Mn1 activity in vivo. Mn1 exerts an intracellular antiinflammatory activity, remains at least partially coordinated, with diffuse distribution over the whole cell, and functionally complements mitochondrial MnSOD.
Collapse
Affiliation(s)
- Emilie Mathieu
- Département de Chimie, Ecole Normale Superieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolecules (LBM), 24 rue Lhomond, 75005 Paris, France
| | - Anne-Sophie Bernard
- Département de Chimie, Ecole Normale Superieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolecules (LBM), 24 rue Lhomond, 75005 Paris, France
| | - Nicolas Delsuc
- Département de Chimie, Ecole Normale Superieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolecules (LBM), 24 rue Lhomond, 75005 Paris, France
| | - Elodie Quévrain
- Département de Chimie, Ecole Normale Superieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolecules (LBM), 24 rue Lhomond, 75005 Paris, France
| | - Géraldine Gazzah
- Département de Chimie, Ecole Normale Superieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolecules (LBM), 24 rue Lhomond, 75005 Paris, France
| | - Barry Lai
- X-ray Science Division, Argonne National Laboratory (ANL) , Argonne, Illinois 60439, United States
| | - Florian Chain
- Commensal and Probiotics-Host Interactions Laboratory, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Philippe Langella
- Commensal and Probiotics-Host Interactions Laboratory, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Maria Bachelet
- Sorbonne Universites, UPMC Univ Paris 06 - Département de Chimie, Ecole Normale Superieure, PSL Research University - CNRS, INSERM, APHP, INRA, Laboratoire des Biomolecules (LBM), 27 rue de Chaligny, 75012 Paris, France.,Commensal and Probiotics-Host Interactions Laboratory, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Joelle Masliah
- Département de Chimie, Ecole Normale Superieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolecules (LBM), 24 rue Lhomond, 75005 Paris, France.,Sorbonne Universites, UPMC Univ Paris 06 - Département de Chimie, Ecole Normale Superieure, PSL Research University - CNRS, INSERM, APHP, INRA, Laboratoire des Biomolecules (LBM), 27 rue de Chaligny, 75012 Paris, France
| | - Philippe Seksik
- Sorbonne Universites, UPMC Univ Paris 06 - Département de Chimie, Ecole Normale Superieure, PSL Research University - CNRS, INSERM, APHP, INRA, Laboratoire des Biomolecules (LBM), 27 rue de Chaligny, 75012 Paris, France.,Commensal and Probiotics-Host Interactions Laboratory, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Clotilde Policar
- Département de Chimie, Ecole Normale Superieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolecules (LBM), 24 rue Lhomond, 75005 Paris, France
| |
Collapse
|
7
|
Manganese elevates manganese superoxide dismutase protein level through protein kinase C and protein tyrosine kinase. Biometals 2016; 29:265-74. [PMID: 26857738 DOI: 10.1007/s10534-016-9913-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/30/2016] [Indexed: 02/05/2023]
Abstract
Three experiments were conducted to investigate the effects of inorganic and organic Mn sources on MnSOD mRNA, protein and enzymatic activity and the possible signal pathways. The primary broiler myocardial cells were treated with MnCl2 (I) or one of organic chelates of Mn and amino acids with weak, moderate (M) or strong (S) chelation strength for 12 and 48 h. Cells were preincubated with superoxide radical anions scavenger N-acetylcysteine (NAC) or specific inhibitors for MAPKs and protein tyrosine kinase (PTK) or protein kinase C (PKC) for 30 min before treatments of I and M. The MnSOD mRNA, protein and enzymatic activity, phosphorylated MAPKs or protein kinases activations were examined. The results showed that additions of Mn increased (P < 0.05) MnSOD mRNA levels and M was more effective than I. Additions of Mn elevated (P < 0.05) MnSOD protein levels and enzymatic activities, and no differences were found among I and M. Addition of NAC did not decrease (P > 0.05) Mn-induced MnSOD mRNA and protein levels. None of the three MAPKs was phosphorylated (P > 0.05) by Mn. Additions of Mn decreased (P < 0.05) the PTK activities and increased (P < 0.05) the membrane PKC contents. Inhibitors for PTK or PKC decreased (P < 0.05) Mn-induced MnSOD protein levels. The results suggested that Mn-induced MnSOD mRNA and protein expressions be not related with NAC, and MAPK pathways might not involve in Mn-induced MnSOD mRNA expression. PKC and PTK mediated the Mn-induced MnSOD protein expression.
Collapse
|
8
|
Joo HK, Lee YR, Kang G, Choi S, Kim CS, Ryoo S, Park JB, Jeon BH. The 18-kDa Translocator Protein Inhibits Vascular Cell Adhesion Molecule-1 Expression via Inhibition of Mitochondrial Reactive Oxygen Species. Mol Cells 2015; 38:1064-70. [PMID: 26608360 PMCID: PMC4696997 DOI: 10.14348/molcells.2015.0165] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/25/2015] [Accepted: 09/30/2015] [Indexed: 12/31/2022] Open
Abstract
Translocator protein 18 kDa (TSPO) is a mitochondrial outer membrane protein and is abundantly expressed in a variety of organ and tissues. To date, the functional role of TSPO on vascular endothelial cell activation has yet to be fully elucidated. In the present study, the phorbol 12-myristate 13-acetate (PMA, 250 nM), an activator of protein kinase C (PKC), was used to induce vascular endothelial activation. Adenoviral TSPO overexpression (10-100 MOI) inhibited PMA-induced vascular cell adhesion molecule-1 (VCAM-1) and intracellular cell adhesion molecule-1 (ICAM-1) expression in a dose dependent manner. PMA-induced VCAM-1 expressions were inhibited by Mito-TEMPO (0.1-0.5 μM), a specific mitochondrial antioxidants, and cyclosporin A (1-5 μM), a mitochondrial permeability transition pore inhibitor, implying on an important role of mitochondrial reactive oxygen species (ROS) on the endothelial activation. Moreover, adenoviral TSPO overexpression inhibited mitochondrial ROS production and manganese superoxide dismutase expression. On contrasts, gene silencing of TSPO with siRNA increased PMA-induced VCAM-1 expression and mitochondrial ROS production. Midazolam (1-50 μM), TSPO ligands, inhibited PMA-induced VCAM-1 and mitochondrial ROS production in endothelial cells. These results suggest that mitochondrial TSPO can inhibit PMA-induced endothelial inflammation via suppression of VCAM-1 and mitochondrial ROS production in endothelial cells.
Collapse
Affiliation(s)
- Hee Kyoung Joo
- Infectious Signaling Network Research Center and Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747,
Korea
| | - Yu Ran Lee
- Infectious Signaling Network Research Center and Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747,
Korea
| | - Gun Kang
- Infectious Signaling Network Research Center and Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747,
Korea
| | - Sunga Choi
- Infectious Signaling Network Research Center and Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747,
Korea
| | - Cuk-Seong Kim
- Infectious Signaling Network Research Center and Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747,
Korea
| | - Sungwoo Ryoo
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chunchon 200-701,
Korea
| | - Jin Bong Park
- Infectious Signaling Network Research Center and Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747,
Korea
| | - Byeong Hwa Jeon
- Infectious Signaling Network Research Center and Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747,
Korea
| |
Collapse
|
9
|
Dave KA, Norris EL, Bukreyev AA, Headlam MJ, Buchholz UJ, Singh T, Collins PL, Gorman JJ. A comprehensive proteomic view of responses of A549 type II alveolar epithelial cells to human respiratory syncytial virus infection. Mol Cell Proteomics 2014; 13:3250-69. [PMID: 25106423 PMCID: PMC4256481 DOI: 10.1074/mcp.m114.041129] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/16/2014] [Indexed: 11/06/2022] Open
Abstract
Human respiratory syncytial virus is a major respiratory pathogen for which there are no suitable antivirals or vaccines. A better understanding of the host cell response to this virus may redress this problem. The present report concerns analysis of multiple independent biological replicates of control and 24 h infected lysates of A549 cells by two different proteomic workflows. One workflow involved fractionation of lysates by in-solution protein IEF and individual fractions were digested using trypsin prior to capillary HPLC-LTQ-OrbitrapXL-MS/MS. A second workflow involved digestion of whole cell lysates and analysis by nanoUltraHPLC-LTQ-OrbitrapElite-MS/MS. Both workflows resulted in the quantification of viral proteins exclusively in lysates of infected cells in the relative abundances anticipated from previous studies. Unprecedented numbers (3247 - 5010) of host cell protein groups were also quantified and the infection-specific regulation of a large number (191) of these protein groups was evident based on a stringent false discovery rate cut-off (<1%). Bioinformatic analyses revealed that most of the regulated proteins were potentially regulated by type I, II, and III interferon, TNF-α and noncanonical NF-κB2 mediated antiviral response pathways. Regulation of specific protein groups by infection was validated by quantitative Western blotting and the cytokine-/key regulator-specific nature of their regulation was confirmed by comparable analyses of cytokine treated A549 cells. Overall, it is evident that the workflows described herein have produced the most comprehensive proteomic characterization of host cell responses to human respiratory syncytial virus published to date. These workflows will form the basis for analysis of the impacts of specific genes of human respiratory syncytial virus responses of A549 and other cell lines using a gene-deleted version of the virus. They should also prove valuable for the analysis of the impact of other infectious agents on host cells.
Collapse
Affiliation(s)
- Keyur A Dave
- From the ‡Protein Discovery Centre, QIMR Berghofer Medical Research Institute, Herston, Queensland, 4029 Australia and
| | - Emma L Norris
- From the ‡Protein Discovery Centre, QIMR Berghofer Medical Research Institute, Herston, Queensland, 4029 Australia and
| | - Alexander A Bukreyev
- §Respiratory Virus Section, Laboratory of Infectious Diseases, National Institute for Allergy and Infectious Diseases, NIH, Bethesda, Maryland 20892
| | - Madeleine J Headlam
- From the ‡Protein Discovery Centre, QIMR Berghofer Medical Research Institute, Herston, Queensland, 4029 Australia and
| | - Ursula J Buchholz
- §Respiratory Virus Section, Laboratory of Infectious Diseases, National Institute for Allergy and Infectious Diseases, NIH, Bethesda, Maryland 20892
| | - Toshna Singh
- From the ‡Protein Discovery Centre, QIMR Berghofer Medical Research Institute, Herston, Queensland, 4029 Australia and
| | - Peter L Collins
- §Respiratory Virus Section, Laboratory of Infectious Diseases, National Institute for Allergy and Infectious Diseases, NIH, Bethesda, Maryland 20892
| | - Jeffrey J Gorman
- From the ‡Protein Discovery Centre, QIMR Berghofer Medical Research Institute, Herston, Queensland, 4029 Australia and
| |
Collapse
|
10
|
Dunham-Snary KJ, Ballinger SW. Mitochondrial genetics and obesity: evolutionary adaptation and contemporary disease susceptibility. Free Radic Biol Med 2013; 65:1229-1237. [PMID: 24075923 PMCID: PMC3859699 DOI: 10.1016/j.freeradbiomed.2013.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/12/2013] [Accepted: 09/13/2013] [Indexed: 12/22/2022]
Abstract
Obesity is a leading risk factor for a variety of metabolic diseases including cardiovascular disease, diabetes, and cancer. Although in its simplest terms, obesity may be thought of as a consequence of excessive caloric intake and sedentary lifestyle, it is also evident that individual propensity for weight gain can vary. The etiology of individual susceptibility to obesity seems to be complex-involving a combination of environmental-genetic interactions. Herein, we suggest that the mitochondrion plays a major role in influencing individual susceptibility to this disease via mitochondrial-nuclear interaction processes and that environmentally influenced selection events for mitochondrial function that conveyed increased reproductive and survival success during the global establishment of human populations during prehistoric times can influence individual susceptibility to weight gain and obesity.
Collapse
Affiliation(s)
- Kimberly J Dunham-Snary
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Scott W Ballinger
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
11
|
Kim A. Modulation of MnSOD in Cancer:Epidemiological and Experimental Evidence. Toxicol Res 2013; 26:83-93. [PMID: 24278510 PMCID: PMC3834467 DOI: 10.5487/tr.2010.26.2.083] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 05/11/2010] [Accepted: 05/14/2010] [Indexed: 01/08/2023] Open
Abstract
Since it was first observed in late 1970s that human cancers often had decreased manganese superoxide dismutase (MnSOD) protein expression and activity, extensive studies have been conducted to verify the association between MnSOD and cancer. Significance of MnSOD as a primary mitochondrial antioxidant enzyme is unquestionable; results from in vitro, in vivo and epidemiological studies are in harmony. On the contrary, studies regarding roles of MnSOD in cancer often report conflicting results. Although putative mechanisms have been proposed to explain how MnSOD regulates cellular proliferation, these mechanisms are not capitulated in epidemiological studies. This review discusses most recent epidemiological and experimental studies that examined the association between MnSOD and cancer, and describes emerging hypotheses of MnSOD as a mitochondrial redox regulatory enzyme and of how altered mitochondrial redox may affect physiology of normal as well as cancer cells.
Collapse
Affiliation(s)
- Aekyong Kim
- School of Pharmacy, Catholic University of Daegu, Gyeongbuk 712-702, Korea
| |
Collapse
|
12
|
Joo HK, Lee YR, Lim SY, Lee EJ, Choi S, Cho EJ, Park MS, Ryoo S, Park JB, Jeon BH. Peripheral benzodiazepine receptor regulates vascular endothelial activations via suppression of the voltage-dependent anion channel-1. FEBS Lett 2012; 586:1349-55. [PMID: 22616995 DOI: 10.1016/j.febslet.2012.03.049] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 03/18/2012] [Accepted: 03/22/2012] [Indexed: 01/22/2023]
Abstract
Peripheral benzodiazepine receptor (PBR) is a multifunctional protein mainly found on the outer mitochondrial membrane. PBR expression is increased by tumor necrosis factor-α (TNF-α) in endothelial cells. Adenoviral overexpression of PBR inhibits monocyte adhesion, VCAM-1, and ICAM-1 expression in TNF-α-activated endothelial cells. Rotenone, cyclosporine A, and bongkrekic acid suppress TNF-α-induced VCAM-1 expression. Overexpression of PBR inhibits voltage-dependent anion channel-1 (VDAC-1) expression and the silencing of PBR increases VDAC-1 expression in endothelial cells. Moreover, TNF-α-induced VCAM-1 expression is suppressed by VDAC-1 gene silencing. PBR overexpression significantly decreases TNF-α-induced mitochondrial reactive oxygen species and MnSOD expression. These results suggest that PBR can inhibit endothelial activation and this action is related to the inhibition of mitochondrial ROS and/or VDAC-1 expression in endothelial cells.
Collapse
Affiliation(s)
- Hee Kyoung Joo
- Infectious Signaling Network Research Center and Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kamiński MM, Röth D, Sass S, Sauer SW, Krammer PH, Gülow K. Manganese superoxide dismutase: a regulator of T cell activation-induced oxidative signaling and cell death. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1041-52. [PMID: 22429591 DOI: 10.1016/j.bbamcr.2012.03.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 02/20/2012] [Accepted: 03/02/2012] [Indexed: 10/28/2022]
Abstract
Mitochondrial reactive oxygen species (ROS) are indispensible for T cell activation-induced expression of interleukin 2 (IL-2) and CD95 ligand (CD95L, FasL/Apo-1L) genes, and in turn, for CD95L-mediated activation-induced cell death (AICD). Here, we show that manganese superoxide dismutase (MnSOD/SOD2), a major mitochondrial antioxidative enzyme, constitutes an important control switch in the process of activation-induced oxidative signal generation in T cells. Analysis of the kinetics of T cell receptor (TCR)-triggered ROS production revealed a temporal association between higher MnSOD abundance/activity and a shut-down phase of oxidative signal generation. Transient or inducible MnSOD overexpression abrogated T cell activation-triggered mitochondrial ROS production as well as NF-κB- and AP-1-mediated transcription. Consequently, lowered expression of IL-2 and CD95L genes resulted in decreased IL-2 secretion and CD95L-dependent AICD. Moreover, upregulation of the mitochondrial MnSOD level is dependent on oxidation-sensitive transcription and not on the increase of mitochondrial mass. Thus, MnSOD-mediated negative feedback regulation of activation-induced mitochondrial ROS generation exemplifies a process of retrograde mitochondria-to-nucleus communication. Our finding underlines the critical role for MnSOD and mitochondria in the regulation of human T cell activation.
Collapse
Affiliation(s)
- Marcin Mikołaj Kamiński
- Division of Immunogenetics (D030), Tumor Immunology Program, German Cancer Research Center (DFKZ), Im Neuenheimer Feld 280, Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
14
|
Mattiussi M, Tilman G, Lenglez S, Decottignies A. Human telomerase represses ROS-dependent cellular responses to Tumor Necrosis Factor-α without affecting NF-κB activation. Cell Signal 2012; 24:708-17. [DOI: 10.1016/j.cellsig.2011.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 10/20/2011] [Accepted: 11/04/2011] [Indexed: 12/23/2022]
|
15
|
Hastie ML, Headlam MJ, Patel NB, Bukreyev AA, Buchholz UJ, Dave KA, Norris EL, Wright CL, Spann KM, Collins PL, Gorman JJ. The human respiratory syncytial virus nonstructural protein 1 regulates type I and type II interferon pathways. Mol Cell Proteomics 2012; 11:108-27. [PMID: 22322095 PMCID: PMC3418853 DOI: 10.1074/mcp.m111.015909] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Respiratory syncytial viruses encode a nonstructural protein (NS1) that interferes with type I and III interferon and other antiviral responses. Proteomic studies were conducted on human A549 type II alveolar epithelial cells and type I interferon-deficient Vero cells (African green monkey kidney cells) infected with wild-type and NS1-deficient clones of human respiratory syncytial virus to identify other potential pathway and molecular targets of NS1 interference. These analyses included two-dimensional differential gel electrophoresis and quantitative Western blotting. Surprisingly, NS1 was found to suppress the induction of manganese superoxide dismutase (SOD2) expression in A549 cells and to a much lesser degree Vero cells in response to infection. Because SOD2 is not directly inducible by type I interferons, it served as a marker to probe the impact of NS1 on signaling of other cytokines known to induce SOD2 expression and/or indirect effects of type I interferon signaling. Deductive analysis of results obtained from cell infection and cytokine stimulation studies indicated that interferon-γ signaling was a potential target of NS1, possibly as a result of modulation of STAT1 levels. However, this was not sufficient to explain the magnitude of the impact of NS1 on SOD2 induction in A549 cells. Vero cell infection experiments indicated that NS1 targeted a component of the type I interferon response that does not directly induce SOD2 expression but is required to induce another initiator of SOD2 expression. STAT2 was ruled out as a target of NS1 interference using quantitative Western blot analysis of infected A549 cells, but data were obtained to indicate that STAT1 was one of a number of potential targets of NS1. A label-free mass spectrometry-based quantitative approach is proposed as a means of more definitive identification of NS1 targets.
Collapse
Affiliation(s)
- Marcus L Hastie
- Protein Discovery Centre, Queensland Institute of Medical Research, Herston, Queensland 4029, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Bauerfeld CP, Rastogi R, Pirockinaite G, Lee I, Hüttemann M, Monks B, Birnbaum MJ, Franchi L, Nuñez G, Samavati L. TLR4-mediated AKT activation is MyD88/TRIF dependent and critical for induction of oxidative phosphorylation and mitochondrial transcription factor A in murine macrophages. THE JOURNAL OF IMMUNOLOGY 2012; 188:2847-57. [PMID: 22312125 DOI: 10.4049/jimmunol.1102157] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mitochondria play a critical role in cell survival and death. Mitochondrial recovery during inflammatory processes such as sepsis is associated with cell survival. Recovery of cellular respiration, mitochondrial biogenesis, and function requires coordinated expression of transcription factors encoded by nuclear and mitochondrial genes, including mitochondrial transcription factor A (T-fam) and cytochrome c oxidase (COX, complex IV). LPS elicits strong host defenses in mammals with pronounced inflammatory responses, but also triggers activation of survival pathways such as AKT pathway. AKT/PKB is a serine/threonine protein kinase that plays an important role in cell survival, protein synthesis, and controlled inflammation in response to TLRs. Hence we investigated the role of LPS-mediated AKT activation in mitochondrial bioenergetics and function in cultured murine macrophages (B6-MCL) and bone marrow-derived macrophages. We show that LPS challenge led to increased expression of T-fam and COX subunits I and IV in a time-dependent manner through early phosphorylation of the PI3K/AKT pathway. PI3K/AKT pathway inhibitors abrogated LPS-mediated T-fam and COX induction. Lack of induction was associated with decreased ATP production, increased proinflammatory cytokines (TNF-α), NO production, and cell death. The TLR4-mediated AKT activation and mitochondrial biogenesis required activation of adaptor protein MyD88 and Toll/IL-1R domain-containing adaptor-inducing IFN-β. Importantly, using a genetic approach, we show that the AKT1 isoform is pivotal in regulating mitochondrial biogenesis in response to TLR4 agonist.
Collapse
Affiliation(s)
- Christian P Bauerfeld
- Department of Pediatrics, St. John Hospital and Medical Center, Detroit, MI 48236, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Rico de Souza A, Zago M, Pollock SJ, Sime PJ, Phipps RP, Baglole CJ. Genetic ablation of the aryl hydrocarbon receptor causes cigarette smoke-induced mitochondrial dysfunction and apoptosis. J Biol Chem 2011; 286:43214-28. [PMID: 21984831 PMCID: PMC3234839 DOI: 10.1074/jbc.m111.258764] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 10/06/2011] [Indexed: 12/13/2022] Open
Abstract
Cigarette smoke is the primary risk factor for chronic obstructive pulmonary disease (COPD). Alterations in the balance between apoptosis and proliferation are involved in the etiology of COPD. Fibroblasts and epithelial cells are sensitive to the oxidative properties of cigarette smoke, and whose loss may precipitate the development of COPD. Fibroblasts express the aryl hydrocarbon receptor (AhR), a transcription factor that attenuates pulmonary inflammation and may also regulate apoptosis. We hypothesized the AhR would prevent apoptosis caused by cigarette smoke. Using genetically deleted in vitro AhR expression models and an established method of cigarette smoke exposure, we report that AhR expression regulates fibroblasts proliferation and prevents morphological features of apoptosis, including membrane blebbing and chromatin condensation caused by cigarette smoke extract (CSE). Absence of AhR expression results in cleavage of PARP, lamin, and caspase-3. Mitochondrial dysfunction, including cytochrome c release, was associated with loss of AhR expression, indicating activation of the intrinsic apoptotic cascade. Heightened sensitivity of AhR-deficient fibroblasts was not the result of alterations in GSH, Nrf2, or HO-1 expression. Instead, AhR(-/-) cells had significantly less MnSOD and CuZn-SOD expression, enzymes that protects against oxidative stress. The ability of the AhR to suppress apoptosis was not restricted to fibroblasts, as siRNA-mediated knockdown of the AhR in lung epithelial cells also increased sensitivity to smoke-induced apoptosis. Collectively, these results suggest that cigarette smoke induced loss of lung structural support (i.e. fibroblasts, epithelial cells) caused by aberrations in AhR expression may explain why some smokers develop lung diseases such as COPD.
Collapse
Affiliation(s)
| | - Michela Zago
- From the Research Institute of the McGill University Health Centre
- Department of Medicine, Meakins-Christie Laboratories, McGill University, Montreal, Quebec H2X 2P2, Canada and
| | | | | | - Richard P. Phipps
- the Departments of Environmental Medicine
- Ophthalmology, and
- Lung Biology and Disease Program, University of Rochester, Rochester, New York 14642
| | - Carolyn J. Baglole
- Department of Medicine, Meakins-Christie Laboratories, McGill University, Montreal, Quebec H2X 2P2, Canada and
| |
Collapse
|
18
|
Valezi AC, Cabrera EJ, Delfino VDA, Barbosa DS, Mali Junior J, Menezes MDA. Roux-en-Y gastric bypass and inflammatory activity of the adipose tissue. Rev Col Bras Cir 2011; 38:161-6. [PMID: 21789453 DOI: 10.1590/s0100-69912011000300004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 07/12/2010] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE To evaluate the oxidative stress and inflammatory markers in obese patients before and after Roux-en-Y vertical banded gastroplasty. METHODS We studied 20 class III obese patients undergoing Roux-en-Y vertical banded gastroplasty, seven men and 13 women, mean age 39 years, and 20 non-obese subjects, nine males and 11 females, mean age 38 years. We determined the plasma levels of malondialdehyde, stress an index, total antioxidant capacity, catalase, reduced and oxidized glutathione and inflammatory markers (C reactive protein and á-1 acid glycoprotein). In the obese group, these parameters were determined before and 2, 6 and 12 months after gastroplasty. RESULTS Preoperatively, the obese group showed elevated levels of inflammatory markers of oxidative stress (malondialdehyde levels and stress index) and lower levels of indicators of antioxidant defense compared to the control group. Weight loss was accompanied by gradual reduction in the levels of malondialdehyde and stress index. We found an increased concentration of reduced glutathione and total antioxidant status and reduced levels of inflammatory markers. CONCLUSION Weight loss improves the inflammatory state and oxidative stress levels.
Collapse
|
19
|
Kamianowska M, Szczepański M, Skrzydlewska E. Effects of erythropoietin on ICAM-1 and PECAM-1 expressions on human umbilical vein endothelial cells subjected to oxidative stress. Cell Biochem Funct 2011; 29:437-41. [PMID: 21638298 DOI: 10.1002/cbf.1768] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 02/12/2011] [Accepted: 04/12/2011] [Indexed: 11/10/2022]
Abstract
The protective effect of erythropoietin (Epo) is based on its ability to reduce oxidation and to stabilize the cells. The aim of the study was to evaluate the influence of Epo on malonyl dialdehyde (MDA), intercellular adhesion molecule-1 (ICAM-1) (CD54) and platelet-endothelial cell adhesion molecule-1 (PECAM-1) (CD31) levels on human umbilical vein endothelial cells (HUVECs) stimulated by tumour necrosis factor-α (TNF-α). HUVECs were incubated with Epo (10-40 IU ml⁻¹) or TNF-α (10-40 ng ml⁻¹) alone or preincubated with Epo (20 IU ml⁻¹) and subsequently stimulated with TNF-α (10-40 ng ml⁻¹). MDA concentrations were measured using the high-performance liquid chromatography, whereas ICAM-1 and PECAM-1 expressions were evaluated by flow cytometry. Incubation with Epo resulted in a decrease in MDA and the increased expressions of ICAM-1 and PECAM-1. Exposure to TNF-α reflected an increase in MDA, ICAM-1 and PECAM-1 levels. These changes were inhibited by preincubation with Epo. The cytoprotective activity proven in this study points to new applications and therapeutic possibilities for Epo.
Collapse
Affiliation(s)
- Monika Kamianowska
- Department of Neonatology and Neonatal Intensive Care, Medical University of Bialystok, Poland
| | | | | |
Collapse
|
20
|
Cytokine toxicity in insulin-producing cells is mediated by nitro-oxidative stress-induced hydroxyl radical formation in mitochondria. J Mol Med (Berl) 2011; 89:785-98. [PMID: 21487676 DOI: 10.1007/s00109-011-0747-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 02/22/2011] [Accepted: 03/07/2011] [Indexed: 01/27/2023]
Abstract
Although nitric oxide (NO) and oxidative stress both contribute to proinflammatory cytokine toxicity in pancreatic β-cells during type 1 diabetes mellitus (T1DM) development, the interactions between NO and reactive oxygen species (ROS) in cytokine-mediated β-cell death have not been clarified. Exposure of insulin-producing RINm5F cells to IL-1β generated NO, while exposure to a combination of IL-1β, TNF-α, and IFN-γ, which simulates T1DM conditions, generated both NO and ROS. In theory, two reactions between NO and ROS are possible, one with the superoxide radical yielding peroxynitrite, and the other with hydrogen peroxide (H(2)O(2)) yielding hydroxyl radicals. Results of the present work exclude peroxynitrite involvement in cytokine toxicity to β-cells because its generation did not correlate with the toxic action of cytokines. On the other hand, we show that H(2)O(2), produced upon exposure of insulin-producing cell clones and primary rat islet cells to cytokines almost exclusively in the mitochondria, reacted in the presence of trace metal (Fe(++)) with NO forming highly toxic hydroxyl radicals, thus explaining the severe toxicity that causes apoptotic β-cell death. Expression of the H(2)O(2)-inactivating enzyme catalase in mitochondria protected against cytokine toxicity by preventing hydroxyl radical formation. We therefore conclude that proinflammatory cytokine-mediated β-cell death is due to nitro-oxidative stress-mediated hydroxyl radical formation in the mitochondria.
Collapse
|
21
|
Camara AKS, Bienengraeber M, Stowe DF. Mitochondrial approaches to protect against cardiac ischemia and reperfusion injury. Front Physiol 2011; 2:13. [PMID: 21559063 PMCID: PMC3082167 DOI: 10.3389/fphys.2011.00013] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 03/24/2011] [Indexed: 12/18/2022] Open
Abstract
The mitochondrion is a vital component in cellular energy metabolism and intracellular signaling processes. Mitochondria are involved in a myriad of complex signaling cascades regulating cell death vs. survival. Importantly, mitochondrial dysfunction and the resulting oxidative and nitrosative stress are central in the pathogenesis of numerous human maladies including cardiovascular diseases, neurodegenerative diseases, diabetes, and retinal diseases, many of which are related. This review will examine the emerging understanding of the role of mitochondria in the etiology and progression of cardiovascular diseases and will explore potential therapeutic benefits of targeting the organelle in attenuating the disease process. Indeed, recent advances in mitochondrial biology have led to selective targeting of drugs designed to modulate or manipulate mitochondrial function, to the use of light therapy directed to the mitochondrial function, and to modification of the mitochondrial genome for potential therapeutic benefit. The approach to rationally treat mitochondrial dysfunction could lead to more effective interventions in cardiovascular diseases that to date have remained elusive. The central premise of this review is that if mitochondrial abnormalities contribute to the etiology of cardiovascular diseases (e.g., ischemic heart disease), alleviating the mitochondrial dysfunction will contribute to mitigating the severity or progression of the disease. To this end, this review will provide an overview of our current understanding of mitochondria function in cardiovascular diseases as well as the potential role for targeting mitochondria with potential drugs or other interventions that lead to protection against cell injury.
Collapse
Affiliation(s)
- Amadou K S Camara
- Department of Anesthesiology, Medical College of Wisconsin Milwaukee, WI, USA
| | | | | |
Collapse
|
22
|
Balková P, Hlaváčková M, Milerová M, Neckář J, Kolář F, Novák F, Nováková O. N-acetylcysteine treatment prevents the up-regulation of MnSOD in chronically hypoxic rat hearts. Physiol Res 2011; 60:467-74. [PMID: 21401304 DOI: 10.33549/physiolres.932042] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chronic intermittent hypoxia (CIH) is associated with increased production of reactive oxygen species that contributes to the adaptive mechanism underlying the improved myocardial ischemic tolerance. The aim was to find out whether the antioxidative enzyme manganese superoxide dismutase (MnSOD) can play a role in CIH-induced cardioprotection. Adult male Wistar rats were exposed to intermittent hypobaric hypoxia (7000 m, 8 h/day, 25 exposures) (n=14) or kept at normoxia (n=14). Half of the animals from each group received N-acetylcysteine (NAC, 100 mg/kg) daily before the hypoxic exposure. The activity and expression of MnSOD were increased by 66 % and 23 %, respectively, in the mitochondrial fraction of CIH hearts as compared with the normoxic group; these effects were suppressed by NAC treatment. The negative correlation between MnSOD activity and myocardial infarct size suggests that MnSOD can contribute to the improved ischemic tolerance of CIH hearts.
Collapse
Affiliation(s)
- P Balková
- Department of Cell Biology, Charles University, Faculty of Science, Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
23
|
Litteljohn D, Mangano E, Clarke M, Bobyn J, Moloney K, Hayley S. Inflammatory mechanisms of neurodegeneration in toxin-based models of Parkinson's disease. PARKINSONS DISEASE 2010; 2011:713517. [PMID: 21234362 PMCID: PMC3018622 DOI: 10.4061/2011/713517] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 12/09/2010] [Indexed: 12/17/2022]
Abstract
Parkinson's disease (PD) has been associated with exposure to a variety of environmental agents, including pesticides, heavy metals, and organic pollutants; and inflammatory processes appear to constitute a common mechanistic link among these insults. Indeed, toxin exposure has been repeatedly demonstrated to induce the release of oxidative and inflammatory factors from immunocompetent microglia, leading to damage and death of midbrain dopamine (DA) neurons. In particular, proinflammatory cytokines such as tumor necrosis factor-α and interferon-γ, which are produced locally within the brain by microglia, have been implicated in the loss of DA neurons in toxin-based models of PD; and mounting evidence suggests a contributory role of the inflammatory enzyme, cyclooxygenase-2. Likewise, immune-activating bacterial and viral agents were reported to have neurodegenerative effects themselves and to augment the deleterious impact of chemical toxins upon DA neurons. The present paper will focus upon the evidence linking microglia and their inflammatory processes to the death of DA neurons following toxin exposure. Particular attention will be devoted to the possibility that environmental toxins can activate microglia, resulting in these cells adopting a “sensitized” state that favors the production of proinflammatory cytokines and damaging oxidative radicals.
Collapse
Affiliation(s)
- Darcy Litteljohn
- Institute of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6
| | | | | | | | | | | |
Collapse
|
24
|
Lee HG, Li MH, Joung EJ, Na HK, Cha YN, Surh YJ. Nrf2-Mediated heme oxygenase-1 upregulation as adaptive survival response to glucose deprivation-induced apoptosis in HepG2 cells. Antioxid Redox Signal 2010; 13:1639-48. [PMID: 20446774 DOI: 10.1089/ars.2010.3226] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Induction of heme oxygenase-1 (HO-1) represents an important cellular adaptive survival response to oxidative stress and other toxic insults. In the present study, HepG2 cells grown in glucose-free media underwent apoptotic cell death, but they exhibited elevated expression of HO-1 before apoptosis manifested. Treatment of HepG2 cells with SnCl₂, a HO-1 inducer, rescued these cells from glucose deprivation-induced apoptosis, while inhibition of the HO activity with zinc protoporphyrin IX exacerbated apoptosis under the same condition. HepG2 cells transfected with a dominant negative Nrf2 were more vulnerable to glucose deprivation-induced apoptosis compared to cells transfected with empty vector alone. To confirm the involvement of Nrf2 in the induction of HO-1 caused by glucose deprivation, we used embryonic fibroblasts prepared from nrf2⁻(/)⁻, nrf2(+/)⁻, and nrf2(+/+) embryos. Compared to the wild-type and the nrf2(+/)⁻ embryonic fibroblasts, nrf2⁻(/)⁻ cells were less prone to induce HO-1 expression upon glucose deprivation. Exposure of HepG2 cells to glucose-deprived media resulted in an elevated accumulation of reactive oxygen species (ROS). Pretreatment with N-acetylcysteine prevented the glucose deprivation-induced ROS accumulation and also the HO-1 expression. In conclusion, the Nrf2-mediated HO-1 upregulation upon glucose deprivation is mediated by ROS in HepG2 cells, and responsible for the adaptive survival response.
Collapse
|
25
|
Neuroprotective and neurodegenerative effects of the chronic expression of tumor necrosis factor α in the nigrostriatal dopaminergic circuit of adult mice. Exp Neurol 2010; 227:237-51. [PMID: 21093436 DOI: 10.1016/j.expneurol.2010.11.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 09/20/2010] [Accepted: 11/09/2010] [Indexed: 12/19/2022]
Abstract
Tumor necrosis factor (TNF)-α, a pro-inflammatory cytokine, has been implicated in both neuronal death and survival in Parkinson's disease (PD). The substantia nigra (SN), a CNS region affected in PD, is particularly susceptible to inflammatory insults and possesses the highest density of microglial cells, but the effects of inflammation and in particular TNF-α on neuronal survival in this region remains controversial. Using adenoviral vectors, the CRE/loxP system and hypomorphic mice, we achieved chronic expression of two levels of TNF-α in the SN of adult mice. Chronic low expression of TNF-α levels reduced the nigrostriatal neurodegeneration mediated by intrastriatal 6-hydroxydopamine administration. Protective effects of low TNF-α level could be mediated by TNF-R1, GDNF, and IGF-1 in the SN and SOD activity in the striatum (ST). On the contrary, chronic expression of high levels of TNF-α induced progressive neuronal loss (63% at 20 days and 75% at 100 days). This effect was accompanied by gliosis and an inflammatory infiltrate composed almost exclusively by monocytes/macrophages. The finding that chronic high TNF-α had a slow and progressive neurodegenerative effect in the SN provides an animal model of PD mediated by the chronic expression of a single cytokine. In addition, it supports the view that cytokines are not detrimental or beneficial by themselves, i.e., their level and time of expression among other factors can determine its final effect on CNS damage or protection. These data support the view that new anti-parkinsonian treatments based on anti-inflammatory therapies should consider these dual effects of cytokines on their design.
Collapse
|
26
|
Abstract
The mitochondrion is the most important organelle in determining continued cell survival and cell death. Mitochondrial dysfunction leads to many human maladies, including cardiovascular diseases, neurodegenerative disease, and cancer. These mitochondria-related pathologies range from early infancy to senescence. The central premise of this review is that if mitochondrial abnormalities contribute to the pathological state, alleviating the mitochondrial dysfunction would contribute to attenuating the severity or progression of the disease. Therefore, this review will examine the role of mitochondria in the etiology and progression of several diseases and explore potential therapeutic benefits of targeting mitochondria in mitigating the disease processes. Indeed, recent advances in mitochondrial biology have led to selective targeting of drugs designed to modulate and manipulate mitochondrial function and genomics for therapeutic benefit. These approaches to treat mitochondrial dysfunction rationally could lead to selective protection of cells in different tissues and various disease states. However, most of these approaches are in their infancy.
Collapse
|
27
|
Than NG, Romero R, Tarca AL, Draghici S, Erez O, Chaiworapongsa T, Kim YM, Kim SK, Vaisbuch E, Tromp G. Mitochondrial manganese superoxide dismutase mRNA expression in human chorioamniotic membranes and its association with labor, inflammation, and infection. J Matern Fetal Neonatal Med 2009; 22:1000-13. [PMID: 19900038 DOI: 10.3109/14767050903019676] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Human parturition is characterized by the activation of genes involved in acute inflammatory responses in the fetal membranes. Manganese superoxide dismutase (Mn SOD) is a mitochondrial enzyme that scavenges reactive oxygen species (ROS). Mn SOD is up-regulated in sites of inflammation and has an important role in the down-regulation of acute inflammatory processes. Therefore, the aim of this study was to determine the differences in Mn SOD mRNA expression in the fetal membranes in patients with term and preterm labor (PTL) as well as in acute chorioamnionitis. STUDY DESIGN Fetal membranes were obtained from patients in the following groups: (1) term not in labor (n = 29); (2) term in labor (n = 29); (3) spontaneous PTL with intact mebranes (n = 16); (4) PTL with histological chorioamnionitis (n = 12); (5) preterm prelabor rupture of the membranes (PPROM; n = 17); and (6) PPROM with histological chorioamnionitis (n = 21). Mn SOD mRNA expression in the membranes was determined by quantitative real-time reverse transcription-polymerase chain reaction. RESULTS (1) Mn SOD mRNA expression was higher in the fetal membranes of patients at term in labor than those not in labor (2.4-fold; p = 0.02); (2) the amount of Mn SOD mRNA in the fetal membranes was higher in PTL than in term labor or in PPROM (7.2-fold, p = 0.03; 3.2-fold, p = 0.03, respectively); (3) Mn SOD mRNA expression was higher when histological chorioamnionitis was present both among patients with PPROM (3.8-fold, p = 0.02) and with PTL (5.4-fold, p = 0.02) than in patients with these conditions without histological chorioamnionitis; (4) expression of Mn SOD mRNA was higher in PTL with chorioamnionitis than in PPROM with chorioamnionitis (4.3-fold, p = 0.03). CONCLUSION The increase in Mn SOD mRNA expression by fetal membranes in term labor and in histological chorioamnionitis in PTL and PPROM suggests that the fetus deploys anti-oxidant mechanisms to constrain the inflammatory processes in the chorioamniotic membranes.
Collapse
Affiliation(s)
- Nandor Gabor Than
- Perinatology Research Branch, NICHD, NIH, DHHS, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Durrant JR, Seals DR, Connell ML, Russell MJ, Lawson BR, Folian BJ, Donato AJ, Lesniewski LA. Voluntary wheel running restores endothelial function in conduit arteries of old mice: direct evidence for reduced oxidative stress, increased superoxide dismutase activity and down-regulation of NADPH oxidase. J Physiol 2009; 587:3271-85. [PMID: 19417091 DOI: 10.1113/jphysiol.2009.169771] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Habitual aerobic exercise is associated with enhanced endothelium-dependent dilatation (EDD) in older humans, possibly by increasing nitric oxide bioavailability and reducing oxidative stress. However, the mechanisms involved are incompletely understood. EDD was measured in young (6-8 months) and old (29-32 months) cage control and voluntary wheel running (VR) B6D2F1 mice. Age-related reductions in maximal carotid artery EDD to acetylcholine (74 vs. 96%, P < 0.01) and the nitric oxide (NO) component of EDD (maximum dilatation with ACh and l-NAME minus that with ACh alone was -28% vs. -55%, P < 0.01) were restored in old VR (EDD: 96%, NO: -46%). Nitrotyrosine, a marker of oxidative stress, was increased in aorta with age, but was markedly lower in old VR (P < 0.05). Aortic superoxide dismutase (SOD) activity was greater (P < 0.01), whereas NADPH oxidase protein expression (P < 0.01) and activity (P = 0.05) were lower in old VR vs. old cage control. Increasing SOD (with 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl) and inhibition of NADPH oxidase (with apocynin) improved EDD and its NO component in old cage control, but not old VR mice. VR increased endothelial NO synthase (eNOS) protein expression (P < 0.05) and activation (Ser1177 phosphorylation) (P < 0.05) in old mice. VR did not affect EDD in young mice. Our results show that voluntary aerobic exercise restores the age-associated loss of EDD by suppression of oxidative stress via stimulation of SOD antioxidant activity and inhibition of NADPH oxidase superoxide production. Increased eNOS protein and activation also may contribute to exercise-mediated preservation of NO bioavailability and EDD with ageing.
Collapse
Affiliation(s)
- Jessica R Durrant
- Department of Integrative Physiology, University of Colorado at Boulder, 80309, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Viral inhibitor of apoptosis vFLIP/K13 protects endothelial cells against superoxide-induced cell death. J Virol 2008; 83:598-611. [PMID: 18987137 DOI: 10.1128/jvi.00629-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Human herpesvirus 8 (HHV-8) is the etiological agent of Kaposi's sarcoma (KS). HHV-8 encodes an antiapoptotic viral Fas-associated death domain-like interleukin-1beta-converting enzyme-inhibitory protein (vFLIP/K13). The antiapoptotic activity of vFLIP/K13 has been attributed to an inhibition of caspase 8 activation and more recently to its capability to induce the expression of antiapoptotic proteins via activation of NF-kappaB. Our study provides the first proteome-wide analysis of the effect of vFLIP/K13 on cellular-protein expression. Using comparative proteome analysis, we identified manganese superoxide dismutase (MnSOD), a mitochondrial antioxidant and an important antiapoptotic enzyme, as the protein most strongly upregulated by vFLIP/K13 in endothelial cells. MnSOD expression was also upregulated in endothelial cells upon infection with HHV-8. Microarray analysis confirmed that MnSOD is also upregulated at the RNA level, though the differential expression at the RNA level was much lower (5.6-fold) than at the protein level (25.1-fold). The induction of MnSOD expression was dependent on vFLIP/K13-mediated activation of NF-kappaB, occurred in a cell-intrinsic manner, and was correlated with decreased intracellular superoxide accumulation and increased resistance of endothelial cells to superoxide-induced death. The upregulation of MnSOD expression by vFLIP/K13 may support the survival of HHV-8-infected cells in the inflammatory microenvironment in KS.
Collapse
|
30
|
Chen X, Andresen1 BT, Hill M, Zhang J, Booth F, Zhang C. Role of Reactive Oxygen Species in Tumor Necrosis Factor-alpha Induced Endothelial Dysfunction. Curr Hypertens Rev 2008; 4:245-255. [PMID: 20559453 DOI: 10.2174/157340208786241336] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Endothelial cell injury and dysfunction are the major triggers of pathophysiological processes leading to cardiovascular disease. Endothelial dysfunction (ED) has been implicated in atherosclerosis, hypertension, coronary artery disease, vascular complications of diabetes, chronic renal failure, insulin resistance and hypercholesterolemia. Although now recognized as a class of physiological second messengers, reactive oxygen species (ROS) are important mediators in cellular injury, specifically, as a factor in endothelial cell damage. Uncontrolled ROS production and/or decreased antioxidant activity results in a deleterious state referred to as 'oxidative stress'. A candidate factor in causing ROS production in endothelial cells is tumor necrosis factor alpha (TNF-α), a pleiotropic inflammatory cytokine. TNF-α has been shown to both be secreted by endothelial cells and to induce intracellular ROS formation. These observations provide a potential mechanism by which TNF-α may activate and injure endothelial cells resulting in ED. In this review, we focus on the relationship between intracellular ROS formation and ED in endothelial cells or blood vessels exposed to TNF-α to provide insight into the role of this important cytokine in cardiovascular disease.
Collapse
Affiliation(s)
- Xiuping Chen
- Department of Internal Medicine, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | | | | | | | | | |
Collapse
|
31
|
Antioxidant activity of Bol d'Air Jacquier breathing sessions in Wistar rats--first studies. Int J Occup Med Environ Health 2008; 21:31-46. [PMID: 18482901 DOI: 10.2478/v10001-008-0003-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES The Bol d'Air Jacquier is used to create a molecule able to deliver oxygen at the cellular level to manage hypoxia due to environmental pollution, ageing, or inflammatory disease. This study was designed to determine, firstly, whether the device generated oxidative stress and, secondly, whether it might induce an antioxidant effect. MATERIAL AND METHODS Over a period of 62 weeks, 10 male Wistar rats were randomized into two groups: the Bol d'Air group (BA) regularly breathed peroxidizing terpens delivered by the device and the control group breathed water vapour during 9-min sessions, at the frequency of 1-12 per month. Several antioxidant compounds and KRL levels were determined in the blood and major organs. RESULTS The results showed that the two groups did not differ with respect to the organ concentrations of Cu, Zn SOD, GPx, GSH, GSSG and TBARS. The device might have a weak slimming effect over time. The BA group presented a significantly higher GR level in plasma throughout the experiment, and in the muscle at the end of the study. In the BA group, the plasma Cu, Zn SOD level was related to the number of breathing sessions per week before blood collection. The BA group also had a higher KRLantioxidant status at two different time-points: at the onset of the study, in the blood of young rats; and after three breathing sessions per week, in the blood and RBCs of old rats. CONCLUSIONS The device did not generate oxidative stress and seemed to produce global antioxidant effect depending on the number of sessions per week, especially in old rats.
Collapse
|
32
|
Aiken KJ, Bickford JS, Kilberg MS, Nick HS. Metabolic regulation of manganese superoxide dismutase expression via essential amino acid deprivation. J Biol Chem 2008; 283:10252-63. [PMID: 18187411 PMCID: PMC2447627 DOI: 10.1074/jbc.m709944200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Indexed: 01/13/2023] Open
Abstract
Organisms respond to available nutrient levels by rapidly adjusting metabolic flux, in part through changes in gene expression. A consequence of adaptations in metabolic rate is the production of mitochondria-derived reactive oxygen species. Therefore, we hypothesized that nutrient sensing could regulate the synthesis of the primary defense of the cell against superoxide radicals, manganese superoxide dismutase. Our data establish a novel nutrient-sensing pathway for manganese superoxide dismutase expression mediated through essential amino acid depletion concurrent with an increase in cellular viability. Most relevantly, our results are divergent from current mechanisms governing amino acid-dependent gene regulation. This pathway requires the presence of glutamine, signaling via the tricarboxylic acid cycle/electron transport chain, an intact mitochondrial membrane potential, and the activity of both the MEK/ERK and mammalian target of rapamycin kinases. Our results provide evidence for convergence of metabolic cues with nutrient control of antioxidant gene regulation, revealing a potential signaling strategy that impacts free radical-mediated mutations with implications in cancer and aging.
Collapse
Affiliation(s)
- Kimberly J Aiken
- Department of Neuroscience, McKnight Brain Institute, Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | |
Collapse
|
33
|
Sompol P, Ittarat W, Tangpong J, Chen Y, Doubinskaia I, Batinic-Haberle I, Abdul HM, Butterfield DA, St Clair DK. A neuronal model of Alzheimer's disease: an insight into the mechanisms of oxidative stress-mediated mitochondrial injury. Neuroscience 2008; 153:120-30. [PMID: 18353561 DOI: 10.1016/j.neuroscience.2008.01.044] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Revised: 01/23/2008] [Accepted: 01/27/2008] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is associated with beta-amyloid accumulation, oxidative stress and mitochondrial dysfunction. However, the effects of genetic mutation of AD on oxidative status and mitochondrial manganese superoxide dismutase (MnSOD) production during neuronal development are unclear. To investigate the consequences of genetic mutation of AD on oxidative damages and production of MnSOD during neuronal development, we used primary neurons from new born wild-type (WT/WT) and amyloid precursor protein (APP) (NLh/NLh) and presenilin 1 (PS1) (P264L) knock-in mice (APP/PS1) which incorporated humanized mutations in the genome. Increasing levels of oxidative damages, including protein carbonyl, 4-hydroxynonenal (4-HNE) and 3-nitrotyrosine (3-NT), were accompanied by a reduction in mitochondrial membrane potential in both developing and mature APP/PS1 neurons compared with WT/WT neurons suggesting mitochondrial dysfunction under oxidative stress. Interestingly, developing APP/PS1 neurons were significantly more resistant to beta-amyloid 1-42 treatment, whereas mature APP/PS1 neurons were more vulnerable than WT/WT neurons of the same age. Consistent with the protective function of MnSOD, developing APP/PS1 neurons have increased MnSOD protein and activity, indicating an adaptive response to oxidative stress in developing neurons. In contrast, mature APP/PS1 neurons exhibited lower MnSOD levels compared with mature WT/WT neurons indicating that mature APP/PS1 neurons lost the adaptive response. Moreover, mature APP/PS1 neurons had more co-localization of MnSOD with nitrotyrosine indicating a greater inhibition of MnSOD by nitrotyrosine. Overexpression of MnSOD or addition of MnTE-2-PyP(5+) (SOD mimetic) protected against beta-amyloid-induced neuronal death and improved mitochondrial respiratory function. Together, the results demonstrate that compensatory induction of MnSOD in response to an early increase in oxidative stress protects developing neurons against beta-amyloid toxicity. However, continuing development of neurons under oxidative damage conditions may suppress the expression of MnSOD and enhance cell death in mature neurons.
Collapse
Affiliation(s)
- P Sompol
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Chavko M, Mahon RT, McCarron RM. Mechanisms of protection against pulmonary hyperbaric O(2) toxicity by intermittent air breaks. Eur J Appl Physiol 2007; 102:525-32. [PMID: 18034261 DOI: 10.1007/s00421-007-0611-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2007] [Indexed: 01/25/2023]
Abstract
Intermittent exposure to air is used as a protective strategy against hyperbaric O(2) (HBO(2)) toxicity. Little is known about optimal intermittent exposure schedules and the mechanism of protection. In this study, we examined the role of antioxidant enzymes, and inflammatory cytokines in the mechanism of HBO(2) tolerance by intermittent air breaks. One group of rats was exposed continuously to 282 kPa O(2) until death. Other groups were exposed to 30, 60, and 120 min intervals of HBO(2) with different numbers of intermittent 30 min air breaks (1-12 breaks). After the final break, animals were exposed to HBO(2) until death. In a separate experiment, animals were sacrificed before terminal exposure and lung tissues were collected for analysis of gene expression. Two intermittent schedules with 6 h cumulative O(2) time (30/30 and 60/30 min schedules) were compared with continuous exposure to HBO(2) for 6 h and with intermittent exposure of 8 h (120/30 min schedule) duration. Continuous exposure resulted in activation of inflammatory cytokine TNF-alpha and IL-1beta mRNA expression, an increase in lung protein nitration and activation of inducible NOS (iNOS) mRNA. Inflammatory response was not observed at intermittent exposures of the same cumulative O(2) time duration (30/30 and 60/30 min schedule). Expression of heme oxygenase-1 (HO-1) mRNA was significantly increased in all exposure groups while manganese superoxide dismutase (MnSOD) mRNA expression was increased only in continuous and 120/30 exposure groups. Results show that intermittent exposure to air protects against pulmonary HBO(2) toxicity by inhibiting inflammation. The mechanism of inhibition may involve the antiinflammatory and antioxidative effect of HO-1 but some other mechanisms may also be involved in protection by intermittent air breaks.
Collapse
Affiliation(s)
- Mikulas Chavko
- Trauma and Resuscitative Medicine Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA.
| | | | | |
Collapse
|
35
|
Moreira TJTP, Cebere A, Cebers G, Ostenson CG, Efendic S, Liljequist S. Reduced HO-1 protein expression is associated with more severe neurodegeneration after transient ischemia induced by cortical compression in diabetic Goto-Kakizaki rats. J Cereb Blood Flow Metab 2007; 27:1710-23. [PMID: 17406657 DOI: 10.1038/sj.jcbfm.9600479] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Pronounced hyperglycemia provoked by extradural compression (EC) of the sensorimotor cortex was recently described in the non-insulin dependent Goto-Kakizaki (GK) diabetic rat. Compared with control Wistar rats, GK rats exhibited more extensive brain damage after cortical ischemia at 48 h of reperfusion (Moreira et al, 2007). We hypothesized that the enhanced brain injury in GK rats could be caused by differential regulation of the heme degrading enzyme heme oxygenase (HO)-1, known to interact with the expression of other target genes implicated in antioxidant defense, inflammation and neurodegeneration, such as superoxide dismutase (SOD)-1, -2, inducible nitric oxide synthase (iNOS), and tumor necrosis factor-alpha (TNFalpha). At 48 h after ischemia, relative mRNA expression of such target genes was compared between ipsilateral (compressed) and contralateral (uncompressed) hemispheres of GK rats, along with baseline comparison of sham, uncompressed GK and Wistar rats. Immunohistochemistry was performed to detect cellular and regional localization of HO-1 at this time point. Baseline expression of HO-1, iNOS, and TNFalpha mRNA was increased in the cortex of sham GK rats. GK rats showed pronounced hyperglycemia during EC and transient attenuation of regional cerebral blood flow recovery. At 48 h after reperfusion, HO-1 mRNA expression was 7- to 8-fold higher in the ischemic cortex of both strains, being the most upregulated gene under study. Heme oxygenase-1 protein expression was significantly reduced in diabetic rats and was found in perilesional astrocytes and rare microglial cells, in both strains. The reduced HO-1 protein expression in GK rats at 48 h after reperfusion combined with more extensive neurodegeneration induced by EC, provides further in vivo evidence for a neuroprotective role of HO after brain ischemia.
Collapse
Affiliation(s)
- Tiago J T P Moreira
- Division of Drug Dependence Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
36
|
Gibanova NV, Rakitina TV, Lipkin VM, Kostanyan IA. Granulocyte differentiation inducer, hexapeptide HLDF-6, decreases cytotoxic effect of tumor necrosis factor on HL-60 cell line. BIOCHEMISTRY (MOSCOW) 2007; 72:49-60. [PMID: 17309437 DOI: 10.1134/s0006297907010063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The effect of hexapeptide HLDF-6, the granulocytic differentiation inducer, on the tumor necrosis factor alpha (TNF-alpha)-induced differentiation and apoptosis of human promyelocytic leukemia HL-60 cells has been investigated. Costimulation of HL-60 cells with HLDF-6 and TNF-alpha enhanced granulocyte differentiation, whereas the level of monocyte differentiation remained unchanged; however, the cytotoxic action of TNF-alpha on these cells decreased. The protective effect of HLDF-6 peptide did not depend on activation of NF-kappaB (nuclear transcription factor). Since HLDF-6 peptide decreases the number of cells entering apoptosis caused by C(2)-ceramide, a mediator of TNF-induced apoptosis, and also reduces TNF-alpha-mediated activation of caspase-3, we have proposed the hypothesis that HLDF-6 increases resistance of HL-60 cells to the TNF-alpha cytotoxic effect due to inhibition of some stages of mitochondria-dependent apoptotic signaling.
Collapse
Affiliation(s)
- N V Gibanova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | | | | | | |
Collapse
|
37
|
Kibriya MG, Jasmine F, Argos M, Verret WJ, Rakibuz-Zaman M, Ahmed A, Parvez F, Ahsan H. Changes in gene expression profiles in response to selenium supplementation among individuals with arsenic-induced pre-malignant skin lesions. Toxicol Lett 2007; 169:162-76. [PMID: 17293063 PMCID: PMC1924917 DOI: 10.1016/j.toxlet.2007.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 01/09/2007] [Accepted: 01/09/2007] [Indexed: 12/27/2022]
Abstract
The molecular basis and downstream targets of oral selenium supplementation in individuals with elevated risk of cancer due to chronic exposure from environmental carcinogens has been largely unexplored. In this study, we investigated genome-wide differential gene expression in peripheral blood mononuclear cells (PBMC) from individuals with pre-malignant arsenic (As)-induced skin lesions before and after 6 months daily oral supplementation of 200 microg L-selenomethionine. The Affymetrix GeneChip Human 133A 2.0 array, containing probes for 22,277 gene transcripts, was used to assess gene expression. Three different normalization methods, RMA (robust multi-chip analysis), GC-RMA and PLIER (Probe logarithmic intensity error), were applied to explore differentially expressed genes. We identified a list of 28 biologically meaningful, significantly differentially expressed genes. Genes up-regulated by selenium supplementation included TNF, IL1B, IL8, SOD2, CXCL2 and several other immunological and oxidative stress-related genes. When mapped to a biological association network, many of the differentially expressed genes were found to regulate functional classes such as fibroblast growth factor, collagenase, matrix metalloproteinase and stromelysin-1, and thus, considered to affect cellular processes like apoptosis, proliferation and others. Many of the significantly up-regulated genes following selenium-supplementation were previously found by us to be down-regulated in a different set of individuals with As-induced skin lesions compared to those without. In conclusion, findings from this study may elucidate the biological effect of selenium supplementation in humans. Additionally, this study suggests that long-term selenium supplementation may revert some of the gene expression changes presumably induced by chronic As exposure in individuals with pre-malignant skin lesions.
Collapse
Affiliation(s)
- Muhammad G Kibriya
- Department of Epidemiology, Mailman School of Public Health, Columbia University, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Afonso V, Santos G, Collin P, Khatib AM, Mitrovic DR, Lomri N, Leitman DC, Lomri A. Tumor necrosis factor-alpha down-regulates human Cu/Zn superoxide dismutase 1 promoter via JNK/AP-1 signaling pathway. Free Radic Biol Med 2006; 41:709-21. [PMID: 16895791 DOI: 10.1016/j.freeradbiomed.2006.05.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 04/28/2006] [Accepted: 05/12/2006] [Indexed: 12/18/2022]
Abstract
Overexpression of Cu/Zn superoxide dismutase 1 (SOD1) in monocytes blocks reactive oxygen species-induced inhibition of cell growth and apoptosis and renders cells resistant to the toxic effect of tumor necrosis factor (TNF)-alpha, suggesting that TNF-alpha represses the SOD1 gene in these cells. We herein show that TNF-alpha decreases SOD1 mRNA, protein, and promoter activity in U937 cells. Electrophoretic mobility-shift assays (EMSA) show that TNF-alpha decreased binding of three different complexes. Ectopic Sp1 overexpression markedly increased SOD1-basal promoter activity and partially antagonized the TNF-alpha inhibitory effect. In contrast, ectopic c-Jun overexpression mimics TNF-alpha inhibitory effects and antagonizes Sp1 stimulatory effects. In agreement with these findings, EMSA shows a TNF-alpha-induced increase in AP-1 and a decrease in Sp1 DNA binding. Disruption of the C/EBP site decreases, whereas mutation in the Sp1/Egr-1 site completely abolishes DNA-binding and promoter activity. A JNK inhibitor antagonized the negative effects of TNF-alpha on SOD1 promoter activity, suggesting that JNK signaling through c-Jun protein activation is critical for the TNF-alpha-dependent SOD1 repression. A greater understanding of the mechanisms of TNF-alpha-induced SOD1 repression could facilitate the design and development of novel therapeutic drugs for inflammatory conditions.
Collapse
|
39
|
Abstract
The CCAAT enhancer binding protein-beta (C/EBPbeta) is a critical regulator of many cellular processes. Exposure of C/EBPbeta-deficient fibroblasts to tumor necrosis factor-alpha (TNF) resulted in their death due to apoptosis. While, the expression of Bad, Bcl-2, Bcl-x, CAS, and hILP/XIAP, as well as the nuclear translocation of NF-kappaB was normal in C/EBPbeta-deficient cells, induction of manganous superoxide dismutase (MnSOD) gene did not occur. Ectopic expression of C/EBPbeta in C/EBPbeta-deficient fibroblasts prevented TNF-induced apoptosis. C/EBPbeta complemented cells were able to induce MnSOD in response to TNF, ruling out the possibilities that C/EBPbeta could render protection by regulating early apoptotic gene expression and/or NF-kappaB p65 expression. Moreover, C/EBPbeta-deficient cells stably transfected with an MnSOD expression vector bypassed the requirement of C/EBPbeta in protection against TNF-induced cell death, suggesting that C/EBPbeta protects TNF-induced apoptotic cell death through its role in activating MnSOD expression. Mechanistically, C/EBPbeta was required for induced NF-kappaB p65 binding to MnSOD's intronic TNF response element and indispensable for histone acetylation of the element in response to TNF. These results suggest a role for C/EBPbeta in MnSOD regulation through remodeling of local chromatin structure.
Collapse
Affiliation(s)
- Priya Ranjan
- Department of Microbiology and Immunology, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA
| | | |
Collapse
|
40
|
Crouser ED, Julian MW, Huff JE, Mandich DV, Green-Church KB. A proteomic analysis of liver mitochondria during acute endotoxemia. Intensive Care Med 2006; 32:1252-62. [PMID: 16741687 DOI: 10.1007/s00134-006-0224-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Accepted: 05/02/2006] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Accumulating evidence indicates that mitochondrial function is impaired in vital organs during sepsis. In addition to oxidative phosphorylation, mitochondria participate in diverse cellular functions ranging from protein and lipid metabolism to programmed cell death. We analyzed liver mitochondrial protein expression patterns (i.e., proteomics) during acute endotoxemia to discover novel insights into mitochondrial responses to acute systemic inflammation. DESIGN A normotensive endotoxemia model was employed in which altered mitochondrial morphology occurs under conditions minimizing the potentially confounding effects of tissue hypoxia and acidosis. SETTING University medical research laboratory. SUBJECTS Random-source, adult, male cats. INTERVENTIONS Hemodynamic resuscitation and maintenance of acid-base balance and tissue oxygen availability were provided to preserve baseline homeostatic conditions. Treatment groups received isotonic saline vehicle (control; n = 5) or endotoxin (lipopolysaccharide, LPS, at 3.0 mg/kg intravenously; n = 5]. Liver samples were obtained 4 h posttreatment, and mitochondrial proteins were isolated and quantitatively compared using two-dimensional gel electrophoresis. Differentially expressed proteins (> 1.5-fold change relative to controls) were identified using mass spectrometry. MEASUREMENTS AND RESULTS Among over 500 protein spots that were separated 14 were differentially expressed in mitochondria of LPS-treated animals relative to matching controls. Spectrometric analyses demonstrated increased expression of urea cycle enzymes, heat shock protein (HSP) 60 and manganese superoxide dismutase, whereas expression of HSP70, F(1)-ATPase and key enzymes regulating lipid metabolism was reduced. CONCLUSIONS Considering the known functions of each of the proteins exhibiting altered expression, it is likely that the observed changes in liver mitochondrial protein expression are reflective of significant changes in mitochondrial function in response to endotoxemia.
Collapse
Affiliation(s)
- Elliott D Crouser
- Division of Pulmonary, Critical Care and Sleep Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, 473 West 12 Avenue, Columbus, OH 43210-1252, USA.
| | | | | | | | | |
Collapse
|
41
|
van der Loo B, Bachschmid M, Skepper JN, Labugger R, Schildknecht S, Hahn R, Müssig E, Gygi D, Lüscher TF. Age-associated cellular relocation of Sod 1 as a self-defense is a futile mechanism to prevent vascular aging. Biochem Biophys Res Commun 2006; 344:972-80. [PMID: 16631605 DOI: 10.1016/j.bbrc.2006.03.224] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Accepted: 03/26/2006] [Indexed: 11/20/2022]
Abstract
Vascular aging is characterized by the presence of chronic oxidative stress. Although cytosolic Sod 1 has a key role in the detoxification of superoxide ((*)O(2)(-)), little is known about its importance in vascular aging. We found that inhibition of Sod 1 had no effect on (*)O2- generation. Furthermore, its expression decreased in an age-dependent manner. Interestingly, Sod 1 loses its membrane-association and is also lost from the caveolae with increasing age. Instead, a relocation of Sod 1 to the mitochondria takes place, presumably in an attempt to maintain mitochondrial integrity and to counter-balance age-associated oxidative stress. Unlike Sod 2, which is constitutively expressed in mitochondria to control (*)O2- radical fluxes, Sod 1 is not inactivated by peroxynitrite and is not nitrated as a function of age. These novel insights into oxidative stress-associated vascular aging and the understanding about how redox-systems are regulated in old age may identify new targets to ameliorate aging as the greatest cardiovascular risk factor.
Collapse
Affiliation(s)
- Bernd van der Loo
- Clinic of Cardiology, Cardiovascular Centre, University Hospital Zurich, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Watanabe N, Zmijewski JW, Takabe W, Umezu-Goto M, Le Goffe C, Sekine A, Landar A, Watanabe A, Aoki J, Arai H, Kodama T, Murphy MP, Kalyanaraman R, Darley-Usmar VM, Noguchi N. Activation of mitogen-activated protein kinases by lysophosphatidylcholine-induced mitochondrial reactive oxygen species generation in endothelial cells. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:1737-48. [PMID: 16651638 PMCID: PMC1606607 DOI: 10.2353/ajpath.2006.050648] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/30/2006] [Indexed: 01/09/2023]
Abstract
Lysophosphatidylcholine (lysoPC) evokes diverse biological responses in vascular cells including Ca(2+) mobilization, production of reactive oxygen species, and activation of the mitogen-activated protein kinases, but the mechanisms linking these events remain unclear. Here, we provide evidence that the response of mitochondria to the lysoPC-dependent increase in cytosolic Ca(2+) leads to activation of the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase through a redox signaling mechanism in human umbilical vein endothelial cells. ERK activation was attenuated by inhibitors of the electron transport chain proton pumps (rotenone and antimycin A) and an uncoupler (carbonyl cyanide p-trifluoromethoxyphenylhydrazone), suggesting that mitochondrial inner membrane potential plays a key role in the signaling pathway. ERK activation was also selectively attenuated by chain-breaking antioxidants and by vitamin E targeted to mitochondria, suggesting that transduction of the mitochondrial hydrogen peroxide signal is mediated by a lipid peroxidation product. Inhibition of ERK activation with MEK inhibitors (PD98059 or U0126) diminished induction of the antioxidant enzyme heme oxygenase-1. Taken together, these data suggest a role for mitochondrially generated reactive oxygen species and Ca(2+) in the redox cell signaling path-ways, leading to ERK activation and adaptation of the pathological stress mediated by oxidized lipids such as lysoPC.
Collapse
Affiliation(s)
- Nobuo Watanabe
- Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Zmijewski JW, Landar A, Watanabe N, Dickinson DA, Noguchi N, Darley-Usmar VM. Cell signalling by oxidized lipids and the role of reactive oxygen species in the endothelium. Biochem Soc Trans 2006; 33:1385-9. [PMID: 16246125 PMCID: PMC1413972 DOI: 10.1042/bst20051385] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The controlled formation of ROS (reactive oxygen species) and RNS (reactive nitrogen species) is now known to be critical in cellular redox signalling. As with the more familiar phosphorylation-dependent signal transduction pathways, control of protein function is mediated by the post-translational modification at specific amino acid residues, notably thiols. Two important classes of oxidant-derived signalling molecules are the lipid oxidation products, including those with electrophilic reactive centres, and decomposition products such as lysoPC (lysophosphatidylcholine). The mechanisms can be direct in the case of electrophiles, as they can modify signalling proteins by post-translational modification of thiols. In the case of lysoPC, it appears that secondary generation of ROS/RNS, dependent on intracellular calcium fluxes, can cause the secondary induction of H2O2 in the cell. In either case, the intracellular source of ROS/RNS has not been defined. In this respect, the mitochondrion is particularly interesting since it is now becoming apparent that the formation of superoxide from the respiratory chain can play an important role in cell signalling, and oxidized lipids can stimulate ROS formation from an undefined source. In this short overview, we describe recent experiments that suggest that the cell signalling mediated by lipid oxidation products involves their interaction with mitochondria. The implications of these results for our understanding of adaptation and the response to stress in cardiovascular disease are discussed.
Collapse
Affiliation(s)
- J W Zmijewski
- Department of Pathology, University of Alabama at Birmingham, AL, USA
| | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Cell signalling by oxidized lipids and the role of reactive oxygen species in the endothelium. Biochem Soc Trans 2005; 33:1385-9. [PMID: 16246125 PMCID: PMC1413972 DOI: 10.1042/bst0331385] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The controlled formation of ROS (reactive oxygen species) and RNS (reactive nitrogen species) is now known to be critical in cellular redox signalling. As with the more familiar phosphorylation-dependent signal transduction pathways, control of protein function is mediated by the post-translational modification at specific amino acid residues, notably thiols. Two important classes of oxidant-derived signalling molecules are the lipid oxidation products, including those with electrophilic reactive centres, and decomposition products such as lysoPC (lysophosphatidylcholine). The mechanisms can be direct in the case of electrophiles, as they can modify signalling proteins by post-translational modification of thiols. In the case of lysoPC, it appears that secondary generation of ROS/RNS, dependent on intracellular calcium fluxes, can cause the secondary induction of H2O2 in the cell. In either case, the intracellular source of ROS/RNS has not been defined. In this respect, the mitochondrion is particularly interesting since it is now becoming apparent that the formation of superoxide from the respiratory chain can play an important role in cell signalling, and oxidized lipids can stimulate ROS formation from an undefined source. In this short overview, we describe recent experiments that suggest that the cell signalling mediated by lipid oxidation products involves their interaction with mitochondria. The implications of these results for our understanding of adaptation and the response to stress in cardiovascular disease are discussed.
Collapse
|
46
|
Rodríguez-Ariza A, López-Sánchez LM, González R, Corrales FJ, López P, Bernardos A, Muntané J. Altered protein expression and protein nitration pattern during d-galactosamine-induced cell death in human hepatocytes: a proteomic analysis. Liver Int 2005; 25:1259-69. [PMID: 16343079 DOI: 10.1111/j.1478-3231.2005.01172.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND/AIMS Hepatic injury by d-galactosamine (d-GalN) is a suitable experimental model of hepatocellular injury. The induction of oxidative and nitrosative stress participates during d-GalN-induced cell death in cultured rat hepatocytes. This study aimed to identify protein expression changes during the induction of apoptosis and necrosis by d-GalN in cultured human hepatocytes. METHODS A proteomic approach was used to identify the proteins involved and those altered by tyrosine nitration. A high dose of d-GalN (40 mM) was used to induce apoptosis and necrosis in primary culture of human hepatocytes. Cellular lysates prepared at different times after addition of d-GalN were separated by two-dimensional electrophoresis. Gel spots with an altered expression and those matching nitrotyrosine-immunopositive proteins were excised and analyzed by mass spectrometry. RESULTS d-GalN treatment upregulated microsomal cytochrome b5, fatty acid binding protein and manganese superoxide dismutase, and enhanced annexin degradation. d-GalN increased tyrosine nitration of four cytosolic (Hsc70, Hsp70, annexin A4 and carbonyl reductase) and three mitochondrial (glycine amidinotransferase, ATP synthase beta chain, and thiosulfate sulfurtransferase) proteins in human hepatocytes. CONCLUSIONS The results provide evidences that oxidative stress and nitric oxide-derived reactive oxygen intermediates induce specific alterations in protein expression that may be critical for the induction of apoptosis and necrosis by d-GalN in cultured human hepatocytes.
Collapse
|
47
|
Suliman HB, Welty-Wolf KE, Carraway MS, Schwartz DA, Hollingsworth JW, Piantadosi CA. Toll-like receptor 4 mediates mitochondrial DNA damage and biogenic responses after heat-inactivated E. coli. FASEB J 2005; 19:1531-3. [PMID: 15994412 DOI: 10.1096/fj.04-3500fje] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Accepted: 04/25/2005] [Indexed: 11/11/2022]
Abstract
An important site of cellular damage in bacterial sepsis is mitochondrial DNA (mtDNA), which we proposed is caused by reactive oxygen and nitrogen species generated by activation of signaling through specific toll-like receptors (TLR). In wild-type (Wt) mice injected with heat-inactivated E. coli, hepatic TLR4 and TLR2 proteins were up-regulated with TLR-dependent increases in transcript levels for tumor necrosis factor (TNF-alpha), interleukin 6, nitric oxide synthase-II (iNOS), and NADPH oxidase 2 (Nox2). The accompanying stress significantly depleted hepatic mtDNA despite eight- and fourfold increases in manganese superoxide dismutase (MnSOD) and mitochondrial transcription factor A (Tfam) expression, respectively. The identical E. coli dose generated significantly less TNF-alpha, NO, and Nox2 in TLR4-/- and TLR2/4-/- but not in TLR2-/- mice. TLR4-/- and TLR2/4-/- compared with Wt mice were protected from mtDNA oxidation but showed no Tfam up-regulation and little copy number restoration. A critical role in the mtDNA damage was determined for TLR4-mediated iNOS transcription through the MyD88 pathway. In Wt mice, mtDNA depletion was avoided by selective iNOS blockade, and residual mtDNA loss was linked to NF-kappaB-dependent TNF-alpha expression. These data disclose the dual role of TLR4 in mtDNA damage and compensatory mitochondrial biogenic responses after innate immune activation.
Collapse
Affiliation(s)
- Hagir B Suliman
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
48
|
Lortz S, Gurgul-Convey E, Lenzen S, Tiedge M. Importance of mitochondrial superoxide dismutase expression in insulin-producing cells for the toxicity of reactive oxygen species and proinflammatory cytokines. Diabetologia 2005; 48:1541-8. [PMID: 15986238 DOI: 10.1007/s00125-005-1822-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Accepted: 03/20/2005] [Indexed: 11/30/2022]
Abstract
AIMS/HYPOTHESIS Free radicals generated in mitochondria play a crucial role in the toxic effects of cytokines upon insulin-producing cells. This study therefore investigated the role of manganese superoxide dismutase (MnSOD) in cytokine-mediated toxicity in insulin-producing cells. METHODS MnSOD was either stably overexpressed (MnSODsense) or stably suppressed (MnSODantisense) in insulin-producing RINm5F cells. Cell viability was quantified after incubation with different chemical reactive oxygen species (ROS) generators and with cytokines (IL-1beta alone or a mixture of IL-1beta, TNF-alpha and IFN-gamma). Additionally, cell proliferation and endogenous MnSOD protein expression were determined after exposure to cytokines. RESULTS After incubation with hydrogen peroxide (H(2)O(2)) or hypoxanthine/xanthine oxidase no significant differences were observed in viability between control and MnSODsense or MnSODantisense clones. MnSOD overexpression reduced the viability of MnSODsense cells after exposure to the intracellular ROS generator menadione compared with control and MnSODantisense cells. MnSODsense cells also showed the highest susceptibility to cytokine toxicity with more than 75% loss of viability and a significant reduction of the proliferation rate after 72 h of incubation with a cytokine mixture. In comparison with control cells (67% viability loss), the reduction of viability in MnSODantisense cells was lower (50%), indicating a sensitising role of MnSOD in the progression of cytokine toxicity. The cell proliferation rate decreased in parallel to the reduction of cell viability. The MnSOD expression level after exposure to cytokines was also significantly lower in MnSODantisense cells than in control or MnSODsense cells. CONCLUSIONS/INTERPRETATION The increase of the mitochondrial imbalance between the superoxide- and the H(2)O(2)-inactivating enzyme activities corresponds with a greater susceptibility to cytokines. Thus optimal antioxidative strategies to protect insulin-producing cells against cytokine toxicity may comprise a combined overexpression of H(2)O(2)-inactivating enzymes or suppression of MnSOD activity.
Collapse
Affiliation(s)
- S Lortz
- Institute of Clinical Biochemistry, Hanover Medical School, Hanover, Germany
| | | | | | | |
Collapse
|
49
|
Basta G, Lazzerini G, Del Turco S, Ratto GM, Schmidt AM, De Caterina R. At least 2 distinct pathways generating reactive oxygen species mediate vascular cell adhesion molecule-1 induction by advanced glycation end products. Arterioscler Thromb Vasc Biol 2005; 25:1401-7. [PMID: 15845907 DOI: 10.1161/01.atv.0000167522.48370.5e] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The interaction of advanced glycation end products (AGEs) with their main receptor RAGE in endothelial cells induces intracellular generation of reactive oxygen species (ROS) and the expression of vascular cell adhesion molecule (VCAM)-1. We investigated the role of distinct sources of ROS, including the mitochondrial electron transport chain, NAD(P)H oxidase, xanthine oxidase, and arachidonic acid metabolism, in AGE-induced VCAM-1 expression. METHODS AND RESULTS The induction of ROS and VCAM-1 by AGEs in cultured human umbilical vein endothelial cells was specifically blocked by an anti-RAGE antibody. The inhibition of NAD(P)H oxidase by apocynin and diphenylene iodonium, and of the mitochondrial electron transport system at complex II by thenoyltrifluoroacetone (TTFA), significantly inhibited both AGE-induced ROS production and VCAM-1 expression, whereas these effects were potentiated by rotenone and antimycin A, specific inhibitors of mitochondrial complex I and III, respectively. The inhibition of Cu/Zn superoxide dismutase inhibited both ROS and VCAM-1 induction, indicating that H2O2 by this source is involved as a mediator of VCAM-1 expression by AGEs. CONCLUSIONS Altogether, these results demonstrate that ROS generated by both NAD(P)H-oxidase and the mitochondrial electron transport system are involved in AGE signaling through RAGE, and indicate potential targets for the inhibition of the atherogenic signals triggered by AGE-RAGE interaction.
Collapse
|
50
|
Yune TY, Lee SM, Kim SJ, Park HK, Oh YJ, Kim YC, Markelonis GJ, Oh TH. Manganese superoxide dismutase induced by TNF-beta is regulated transcriptionally by NF-kappaB after spinal cord injury in rats. J Neurotrauma 2005; 21:1778-94. [PMID: 15684769 DOI: 10.1089/neu.2004.21.1778] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Antioxidant enzymes including superoxide dismutase (SOD) may play a role in the mechanism by which cells counteract the deleterious effects of reactive oxygen species (ROS) after spinal cord injury (SCI). Cu/Zn and MnSOD are especially potent scavengers of superoxide anion and likely serve important cytoprotective roles against cellular damage. We investigated expression of SOD after SCI to address its role during the early stages of injury. MnSOD activity was increased 4 h after SCI and persisted at elevated levels up to 24-48 h; by contrast, Cu/ZnSOD activity was not changed. RT-PCR and Western blot analyses showed increased levels of MnSOD mRNA and protein, respectively, by 4 h and reached maximum levels by 24-48 h. Double immunostaining revealed that MnSOD protein was localized within neurons and oligodendrocytes. Tumor necrosis factor-alpha (TNF-alpha) was administered locally into uninjured spinal cords to examine potential mechanisms for MnSOD induction after injury. TNF-alpha administered exogenously increased MnSOD expression in uninjured spinal cords. Western blot and immunostaining also revealed that a transcription factor, NF-kappaB, was activated and translocated into the nuclei of neurons and oligodendrocytes. By contrast, administration of neutralizing antibody against TNF-alpha into injured spinal cords attenuated the increase in MnSOD expression and activation of NF-kappaB. Double immunostaining revealed that MnSOD was co-localized with NF-kappaB in neurons and oligodendrocytes after SCI. These results suggest that TNF-alpha may be an inducer of NF-kappaB activation and MnSOD expression after SCI and that MnSOD expression induced by TNF-alpha is likely mediated through activation of NF-kappaB.
Collapse
Affiliation(s)
- Tae Y Yune
- Biomedical Research Center, Korea Institute of Science & Technology, Seoul, Korea.
| | | | | | | | | | | | | | | |
Collapse
|