1
|
Fu Q, Jiang H, Yang J, Qin H, Huo L, Ren Y, Lin S, Liu M, Yao J. The synergistic effect of pulsed red light and leonurus inhibits primary dysmenorrhea induced by oxytocin in mice by modulating calcium signaling and inhibiting inflammatory responses. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 262:113079. [PMID: 39662253 DOI: 10.1016/j.jphotobiol.2024.113079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/21/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
Despite increasing evidence suggesting that red light photobiomodulation (R-PBM) and leonurus play important roles in analgesic and anti-inflammatory processes, data on their combined effect on primary dysmenorrhea (PD) are scarce. In this study, we reported the pain assessment of red light at various modes combined with leonurus on the oxytocin-induced model of PD mice. The combined intervention of pulsed R-PBM and leonurus decreased pain responses and PGF2α/PGE2 levels, alleviated uterine swelling and inflammatory infiltration, enhanced antioxidant levels (T-AOC, GSH-PX, SOD), and reduced lipid peroxidation (MDA, LPO) in the uterus, with its synergistic effect surpassing either treatment alone or the combination of continuous wave R-PBM with leonurus. Transcriptomic analysis demonstrated significant changes in differentially expressed genes associated with calcium signaling (Cav1, Cacna1c, Kcnmb1, Cnn1, and Myh11) and inflammatory response (Ptgs2, Jun, Fos, IL1rn, and IL17b) in the combination group, with concurrent downregulation of MLCK, COX-2, p-JNK/JNK, and IL17b protein levels, and upregulation of IL1rn, suggesting that the combined intervention of pulsed R-PBM and leonurus may alleviate pain through disruption of calcium homeostasis and induction of ROS-mediated inflammatory responses. Metabolomics studies of plasma revealed significant changes in lipid metabolism after the combined intervention, consistent with the transcriptomic findings. Hence, pulsed R-PBM combined leonurus has the potential to be an effective therapeutic approach for PD, as well as an alternative option for painful and inflammatory diseases; however, further exploration of its underlying mechanism is still necessary.
Collapse
Affiliation(s)
- Qiqi Fu
- School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Hui Jiang
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| | - Jiali Yang
- School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Haokuan Qin
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| | - Longfei Huo
- School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Yi Ren
- School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Shangfei Lin
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China; College of Physics and Optoelectronic Engineering, Foshan University, Guangdong Province 528231, China.
| | - Muqing Liu
- School of Information Science and Technology, Fudan University, Shanghai 200433, China; Zhongshan Fudan Joint Innovation Center, Zhongshan 528400, Guangdong Province, China.
| | - Jinghui Yao
- Department of Pediatric Orthopedic, Center for Orthopedic Surgery, The Third School of Clinical Medicine, The Third Affiliated Hospital of Southern Medical University; Guangzhou 510515, Guangdong Province, China.
| |
Collapse
|
2
|
Wong D, Qiu H. New insights into the pharmacological inhibition of SRF activity: Key inhibitory targets and mechanisms. Vascul Pharmacol 2024; 157:107443. [PMID: 39586415 DOI: 10.1016/j.vph.2024.107443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 11/27/2024]
Abstract
Serum Response Factor (SRF) is a critical regulatory transcription factor widely expressed across cell types and is essential for animal survival. Excessive SRF activity has been linked to various pathological conditions and diseases, including cardiovascular diseases, cancers and neurodegenerative disorders, making the inhibition of SRF hyperactivity a promising therapeutic strategy. This review summarizes recent advancements in the discovery and development of SRF inhibitors, their regulatory mechanisms, and their respective molecular foundations. These insights deepen our understanding of current therapeutic potentials, paving the way for novel approaches to treat diseases associated with SRF hyperactivity.
Collapse
Affiliation(s)
- Daniel Wong
- Translational Cardiovascular Research Center, Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA.
| | - Hongyu Qiu
- Translational Cardiovascular Research Center, Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA; Clinical Translational Sciences (CTS) and Bio5 Institution, University of Arizona, Tucson, AZ 8572, USA.
| |
Collapse
|
3
|
Signoretti C, Matsumura S, Fatehi S, D'Silva M, Mathew R, Cendali F, D'Alessandro A, Alam SMS, Garcia V, Miano JM, Gupte SA. G6pdN126D Variant Increases the Risk of Developing VEGFR (Vascular Endothelial Growth Factor Receptor) Blocker-Induced Pulmonary Vascular Disease. J Am Heart Assoc 2024; 13:e035174. [PMID: 39291493 DOI: 10.1161/jaha.123.035174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/09/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND G6PD (glucose-6-phosphate-dehydrogenase) is a key enzyme in the glycolytic pathway and has been implicated in the pathogenesis of cancer and pulmonary hypertension-associated vascular remodeling. Here, we investigated the role of an X-linked G6pd mutation (N126D polymorphism), which is known to increase the risk of cardiovascular disease in individuals from sub-Saharan Africa and many others with African ancestry, in the pathogenesis of pulmonary hypertension induced by a vascular endothelial cell growth factor receptor blocker used for treating cancer. METHODS AND RESULTS CRISPR-Cas9 genome editing was used to generate the G6pd variant (N126D; G6pdN126D) in rats. A single dose of the vascular endothelial cell growth factor receptor blocker sugen-5416 (SU; 20 mg/kg in DMSO), which is currently in a Phase 2/3 clinical trial for cancer treatment, was subcutaneously injected into G6pdN126D rats and their wild-type littermates. After 8 weeks of normoxic conditions, right ventricular pressure and hypertrophy, pulmonary artery remodeling, the metabolic profile, and cytokine expression were assessed. Right ventricular pressure and pulmonary arterial wall thickness were increased in G6PDN126D+SU/normoxic rats. Simultaneously, levels of oxidized glutathione, inositol triphosphate, and intracellular Ca2+ were increased in the lungs of G6PDN126D+SU/normoxic rats, whereas nitric oxide was decreased. Also increased in G6PDN126D+SU/normoxic rats were pulmonary levels of plasminogen activator inhibitor-1, thrombin-antithrombin complex, and expression of proinflammatory cytokines CCL3 (chemokine [C-C motif] ligand), CCL5, and CCL7. CONCLUSIONS Our results suggest G6PDN126D increases inositol triphosphate-Ca2+ signaling, inflammation, thrombosis, and hypertrophic pulmonary artery remodeling in SU-treated rats. This suggests an increased risk of vascular endothelial cell growth factor receptor blocker-induced pulmonary hypertension in those carrying this G6PD variant.
Collapse
MESH Headings
- Animals
- Glucosephosphate Dehydrogenase/genetics
- Glucosephosphate Dehydrogenase/metabolism
- Receptors, Vascular Endothelial Growth Factor/genetics
- Rats
- Male
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/physiopathology
- Hypertension, Pulmonary/chemically induced
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/physiopathology
- Disease Models, Animal
- Vascular Remodeling/drug effects
- Rats, Sprague-Dawley
- Indoles/pharmacology
- Hypertrophy, Right Ventricular/genetics
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/physiopathology
- Pyrroles
Collapse
Affiliation(s)
| | - Shun Matsumura
- Department of Pharmacology New York Medical College Valhalla NY USA
| | - Samuel Fatehi
- Department of Pharmacology New York Medical College Valhalla NY USA
| | - Melinee D'Silva
- Department of Pharmacology New York Medical College Valhalla NY USA
| | - Rajamma Mathew
- Department of Medicine, Division of Pediatric Cardiology, Physiology New York Medical College Valhalla NY USA
| | - Francesca Cendali
- Department of Biochemistry and Molecular Genetics University of Colorado Anschutz Medical Campus Aurora CO USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics University of Colorado Anschutz Medical Campus Aurora CO USA
| | - S M Shafiqul Alam
- Department of Pathology, Microbiology, and Immunology (PMI) New York Medical College Valhalla NY USA
| | - Victor Garcia
- Department of Pharmacology New York Medical College Valhalla NY USA
| | - Joseph M Miano
- Department of Medicine Vascular Biology Center, Medical College of Georgia at Augusta University Augusta GA USA
| | - Sachin A Gupte
- Department of Pharmacology New York Medical College Valhalla NY USA
| |
Collapse
|
4
|
Visconti A, Qiu H. Recent advances in serum response factor posttranslational modifications and their therapeutic potential in cardiovascular and neurological diseases. Vascul Pharmacol 2024; 156:107421. [PMID: 39209126 PMCID: PMC11626983 DOI: 10.1016/j.vph.2024.107421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Serum Response Factor (SRF) is a key regulatory transcription factor present in various cell types throughout the body, playing essential roles in cellular functions under physiological conditions. Mutations and abnormal expression of SRF have been linked to the development of various diseases and disorders. Recent evidence highlights that post-translational modifications (PTMs) are critical for regulating SRF function in different cell types and contribute to disease pathogenesis. Targeting SRF-related PTMs is emerging as a promising therapeutic approach for treating SRF-associated diseases. In this review, we summarize recent advances in understanding SRF PTMs and their underlying regulatory mechanisms. We also explore the implications of SRF-PTM in related cardiovascular and neurological diseases and their potential for therapeutic intervention. This information underscores the significance of SRF PTMs in both physiological and pathological contexts, enhancing our understanding of disease mechanisms and paving the way for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Alexander Visconti
- Cardiovascular Translational Research Center, Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA.
| | - Hongyu Qiu
- Cardiovascular Translational Research Center, Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA; Clinical Translational Sciences (CTS) and Bio5 Institution, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
5
|
Bankell E, Liu L, van der Horst J, Rippe C, Jepps TA, Nilsson BO, Swärd K. Suppression of smooth muscle cell inflammation by myocardin-related transcription factors involves inactivation of TANK-binding kinase 1. Sci Rep 2024; 14:13321. [PMID: 38858497 PMCID: PMC11164896 DOI: 10.1038/s41598-024-63901-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024] Open
Abstract
Myocardin-related transcription factors (MRTFs: myocardin/MYOCD, MRTF-A/MRTFA, and MRTF-B/MRTFB) suppress production of pro-inflammatory cytokines and chemokines in human smooth muscle cells (SMCs) through sequestration of RelA in the NF-κB complex, but additional mechanisms are likely involved. The cGAS-STING pathway is activated by double-stranded DNA in the cytosolic compartment and acts through TANK-binding kinase 1 (TBK1) to spark inflammation. The present study tested if MRTFs suppress inflammation also by targeting cGAS-STING signaling. Interrogation of a transcriptomic dataset where myocardin was overexpressed using a panel of 56 cGAS-STING cytokines showed the panel to be repressed. Moreover, MYOCD, MRTFA, and SRF associated negatively with the panel in human arteries. RT-qPCR in human bronchial SMCs showed that all MRTFs reduced pro-inflammatory cytokines on the panel. MRTFs diminished phosphorylation of TBK1, while STING phosphorylation was marginally affected. The TBK1 inhibitor amlexanox, but not the STING inhibitor H-151, reduced the anti-inflammatory effect of MRTF-A. Co-immunoprecipitation and proximity ligation assays supported binding between MRTF-A and TBK1 in SMCs. MRTFs thus appear to suppress cellular inflammation in part by acting on the kinase TBK1. This may defend SMCs against pro-inflammatory insults in disease.
Collapse
Affiliation(s)
- Elisabeth Bankell
- Cellular Biomechanics/Vascular Physiology, Department of Experimental Medical Science, BMC D12, Lund University, 22184, Lund, Sweden
| | - Li Liu
- Cellular Biomechanics/Vascular Physiology, Department of Experimental Medical Science, BMC D12, Lund University, 22184, Lund, Sweden
- Department of Urology, Qingyuan Hospital Affiliated to Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Jennifer van der Horst
- Vascular Biology Group, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen N, Denmark
| | - Catarina Rippe
- Cellular Biomechanics/Vascular Physiology, Department of Experimental Medical Science, BMC D12, Lund University, 22184, Lund, Sweden
| | - Thomas A Jepps
- Vascular Biology Group, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen N, Denmark
| | - Bengt-Olof Nilsson
- Cellular Biomechanics/Vascular Physiology, Department of Experimental Medical Science, BMC D12, Lund University, 22184, Lund, Sweden
| | - Karl Swärd
- Cellular Biomechanics/Vascular Physiology, Department of Experimental Medical Science, BMC D12, Lund University, 22184, Lund, Sweden.
| |
Collapse
|
6
|
Wang M, Li S, Liu H, Liu M, Zhang J, Wu Y, Xiao C, Huang H. Large-conductance Ca 2 +-activated K + channel β1-subunit maintains the contractile phenotype of vascular smooth muscle cells. Front Cardiovasc Med 2022; 9:1062695. [PMID: 36568562 PMCID: PMC9780463 DOI: 10.3389/fcvm.2022.1062695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
Background Vascular smooth muscle cells (VSMCs) phenotype switching is very important during the pathogenesis and progression of vascular diseases. However, it is not well understood how normal VSMCs maintain the differentiated state. The large-conductance Ca2+-activated K+ (BKCa) channels are widely expressed in VSMCs and regulate vascular tone. Nevertheless, there is limited understanding of the role of the BKCa channel in modulation of the VSMC phenotype. Methods and results We assessed BKCa channel expression levels in normal and injured carotid arteries from rats of the balloon-injury model. A strong decrease of BKCa-β1 was seen in the injured carotid arteries, accompanied by a parallel decrease of the VSMC contractile markers. BKCa-β1 in primary rat aortic VSMCs was decreased with the increase of passage numbers and the stimulation of platelet-derived growth factor (PDGF)-BB. Conversely, transforming growth factor β upregulated BKCa-β1. Meanwhile, the BKCa-β1 level was positively associated with the levels of VSMC contractile proteins. Intravenous injection of PDGF-BB induced downregulation of BKCa-β1 expression in the carotid arteries. Knockdown of BKCa-β1 favored VSMC dedifferentiation, characterized by altered morphology, abnormal actin fiber organization, decreased contractile proteins expression and reduced contractile ability. Furthermore, the resultant VSMC dedifferentiated phenotype rendered increased proliferation, migration, enhanced inflammatory factors levels, and matrix metalloproteinases activity. Studies using primary cultured aortic VSMCs from human recapitulated key findings. Finally, protein level of BKCa-β1 was reduced in human atherosclerotic arteries. Conclusion BKCa-β1 is important in the maintenance of the contractile phenotype of VSMCs. As a novel endogenous defender that prevents pathological VSMC phenotype switching, BKCa-β1 may serve as a potential therapeutic target for treating vascular diseases including post-injury restenosis and atherosclerosis.
Collapse
Affiliation(s)
- Meili Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Shuanglei Li
- Division of Adult Cardiac Surgery, Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hongshan Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Mingyuan Liu
- Department of Vascular Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jin Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yang Wu
- Division of Adult Cardiac Surgery, Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Cangsong Xiao
- Division of Adult Cardiac Surgery, Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China,Cangsong Xiao,
| | - Haixia Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China,*Correspondence: Haixia Huang,
| |
Collapse
|
7
|
Zheng G, He Z, Lu Y, Zhu Q, Jiang Y, Chen D, Lin S, Zhu C, Schwartz R. SRF-derived miR210 and miR30c both repress beating cardiomyocyte formation in the differentiation system of embryoid body. Biochem Biophys Res Commun 2022; 626:58-65. [PMID: 35970045 DOI: 10.1016/j.bbrc.2022.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/16/2022] [Accepted: 08/04/2022] [Indexed: 11/02/2022]
Abstract
Serum response factor (SRF) cooperates with various co-factors to manage the specification of diverse cell lineages during heart development. Many microRNAs mediate the function of SRF in this process. However, how are miR210 and miR30c involved in the decision of cardiac cell fates remains to be explored. In this study, we found that SRF directly controlled the cardiac expression of miR210. Both miR210 and miR30c blocked the formation of beating cardiomyocyte during embryoid body (EB) differentiation, a cellular model widely used for studying cardiogenesis. Both of anticipated microRNA targets and differentially expressed genes in day8 EBs were systematically determined and enriched with gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG) and Reactome. Functional enrichments of prediction microRNA targets and down-regulated genes in day8 EBs of miR210 suggested the importance of PI3K-Akt signal and ETS2 in miR210 inhibition of cardiomyocyte differentiation. Similar analyses revealed that miR30c repressed both developmental progress and the adrenergic signaling in cardiomyocytes during the differentiation of EBs. Taken together, SRF directs the expression of miR210 and miR30c, and they repress cardiac development via inhibiting the differentiation of cardiac muscle cell lineage as well as the cell proliferation. Through the regulation of specific microRNAs, the complication of SRF's function in heart development is emphasized.
Collapse
Affiliation(s)
- Guoxing Zheng
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China; Department of Biology and Biochemistry, The University of Houston, Houston, TX, USA.
| | - Zhuzhen He
- Shenzhen Amcare Maternity Hospital, Shenzhen, Guangdong, 518052, China
| | - Yingsi Lu
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Qingqing Zhu
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Yizhou Jiang
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Demeng Chen
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shuibin Lin
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chengming Zhu
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Robert Schwartz
- Department of Biology and Biochemistry, The University of Houston, Houston, TX, USA.
| |
Collapse
|
8
|
Chakraborty R, Chatterjee P, Dave JM, Ostriker AC, Greif DM, Rzucidlo EM, Martin KA. Targeting smooth muscle cell phenotypic switching in vascular disease. JVS Vasc Sci 2021; 2:79-94. [PMID: 34617061 PMCID: PMC8489222 DOI: 10.1016/j.jvssci.2021.04.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/01/2021] [Indexed: 12/26/2022] Open
Abstract
Objective The phenotypic plasticity of vascular smooth muscle cells (VSMCs) is central to vessel growth and remodeling, but also contributes to cardiovascular pathologies. New technologies including fate mapping, single cell transcriptomics, and genetic and pharmacologic inhibitors have provided fundamental new insights into the biology of VSMC. The goal of this review is to summarize the mechanisms underlying VSMC phenotypic modulation and how these might be targeted for therapeutic benefit. Methods We summarize findings from extensive literature searches to highlight recent discoveries in the mechanisms underlying VSMC phenotypic switching with particular relevance to intimal hyperplasia. PubMed was searched for publications between January 2001 and December 2020. Search terms included VSMCs, restenosis, intimal hyperplasia, phenotypic switching or modulation, and drug-eluting stents. We sought to highlight druggable pathways as well as recent landmark studies in phenotypic modulation. Results Lineage tracing methods have determined that a small number of mature VSMCs dedifferentiate to give rise to oligoclonal lesions in intimal hyperplasia and atherosclerosis. In atherosclerosis and aneurysm, single cell transcriptomics reveal a striking diversity of phenotypes that can arise from these VSMCs. Mechanistic studies continue to identify new pathways that influence VSMC phenotypic plasticity. We review the mechanisms by which the current drug-eluting stent agents prevent restenosis and note remaining challenges in peripheral and diabetic revascularization for which new approaches would be beneficial. We summarize findings on new epigenetic (DNA methylation/TET methylcytosine dioxygenase 2, histone deacetylation, bromodomain proteins), transcriptional (Hippo/Yes-associated protein, peroxisome proliferator-activity receptor-gamma, Notch), and β3-integrin-mediated mechanisms that influence VSMC phenotypic modulation. Pharmacologic and genetic targeting of these pathways with agents including ascorbic acid, histone deacetylase or bromodomain inhibitors, thiazolidinediones, and integrin inhibitors suggests potential therapeutic value in the setting of intimal hyperplasia. Conclusions Understanding the molecular mechanisms that underlie the remarkable plasticity of VSMCs may lead to novel approaches to treat and prevent cardiovascular disease and restenosis.
Collapse
Affiliation(s)
- Raja Chakraborty
- Department of Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Conn.,Department of Pharmacology, Yale University School of Medicine, New Haven, Conn
| | - Payel Chatterjee
- Department of Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Conn.,Department of Pharmacology, Yale University School of Medicine, New Haven, Conn
| | - Jui M Dave
- Department of Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Conn.,Department of Genetics, Yale University School of Medicine, New Haven, Conn
| | - Allison C Ostriker
- Department of Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Conn.,Department of Pharmacology, Yale University School of Medicine, New Haven, Conn
| | - Daniel M Greif
- Department of Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Conn.,Department of Genetics, Yale University School of Medicine, New Haven, Conn
| | - Eva M Rzucidlo
- Department Surgery, Section of Vascular Surgery, McLeod Regional Medical Center, Florence, SC
| | - Kathleen A Martin
- Department of Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Conn.,Department of Pharmacology, Yale University School of Medicine, New Haven, Conn
| |
Collapse
|
9
|
Liu L, Rippe C, Hansson O, Kryvokhyzha D, Fisher S, Ekman M, Swärd K. Regulation of the Muscarinic M 3 Receptor by Myocardin-Related Transcription Factors. Front Physiol 2021; 12:710968. [PMID: 34539433 PMCID: PMC8446542 DOI: 10.3389/fphys.2021.710968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/26/2021] [Indexed: 02/04/2023] Open
Abstract
Myocardin-related transcription factors (MRTFs: myocardin/MYOCD, MRTF-A/MRTFA, and MRTF-B/MRTFB) are co-factors of serum response factor (SRF) that activate the smooth muscle cell (SMC) gene program and that play roles in cardiovascular development and mechanobiology. Gain and loss of function experiments have defined the SMC gene program under control of MRTFs, yet full understanding of their impact is lacking. In the present study, we tested the hypothesis that the muscarinic M3 receptor (CHRM3) is regulated by MRTFs together with SRF. Forced expression of MYOCD (8d) in human coronary artery (SMC) followed by RNA-sequencing showed increased levels of M2, M3, and M5 receptors (CHRM2: 2-fold, CHRM3: 16-fold, and CHRM5: 2-fold). The effect of MYOCD on M3 was confirmed by RT-qPCR using both coronary artery and urinary bladder SMCs, and correlation analyses using human transcriptomic datasets suggested that M3 may also be regulated by MRTF-B. Head-to-head comparisons of MYOCD, MRTF-A and MRTF-B, argued that while all MRTFs are effective, MRTF-B is the most powerful transactivator of CHRM3, causing a 600-fold increase at 120h. Accordingly, MRTF-B conferred responsiveness to the muscarinic agonist carbachol in Ca2+ imaging experiments. M3 was suppressed on treatment with the MRTF-SRF inhibitor CCG-1423 using SMCs transduced with either MRTF-A or MRTF-B and using intact mouse esophagus in culture (by 92±2%). Moreover, silencing of SRF with a short hairpin reduced CHRM3 (by >60%) in parallel with α-actin (ACTA2). Tamoxifen inducible knockout of Srf in smooth muscle reduced Srf (by 54±4%) and Chrm3 (by 41±6%) in the urinary bladder at 10days, but Srf was much less reduced or unchanged in aorta, ileum, colon, trachea, and esophagus. Longer induction (21d) further accentuated the reduction of Chrm3 in the bladder and ileum, but no change was seen in the aorta. Single cell RNA-sequencing revealed that Mrtfb dominates in ECs, while Myocd dominates in SMCs, raising the possibility that Chrm3 may be driven by Mrtfb-Srf in the endothelium and by Myocd-Srf in SMCs. These findings define a novel transcriptional control mechanism for muscarinic M3 receptors in human cells, and in mice, that could be targeted for therapy.
Collapse
Affiliation(s)
- Li Liu
- Department of Experimental Medical Science, Lund, Sweden.,Department of Urology, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Catarina Rippe
- Department of Experimental Medical Science, Lund, Sweden
| | - Ola Hansson
- Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden.,Institute for Molecular Medicine Finland (FIMM), Helsinki University, Helsinki, Finland
| | - Dmytro Kryvokhyzha
- Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden
| | - Steven Fisher
- Department of Medicine (Cardiology) and Physiology and Biophysics, University of Maryland-Baltimore, Baltimore, MD, United States
| | - Mari Ekman
- Department of Experimental Medical Science, Lund, Sweden
| | - Karl Swärd
- Department of Experimental Medical Science, Lund, Sweden
| |
Collapse
|
10
|
Tharp DL, Bowles DK. K Ca3.1 Inhibition Decreases Size and Alters Composition of Atherosclerotic Lesions Induced by Low, Oscillatory Flow. Artery Res 2021; 27:93-100. [PMID: 34457083 PMCID: PMC8388312 DOI: 10.2991/artres.k.210202.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Low, oscillatory flow/shear patterns are associated with atherosclerotic lesion development. Increased expression of KCa3.1 has been found in Vascular Smooth Muscle (VSM), macrophages and T-cells in lesions from humans and mice. Increased expression of KCa3.1, is also required for VSM cell proliferation and migration. Previously, we showed that the specific KCa3.1 inhibitor, TRAM-34, could inhibit coronary neointimal development following balloon injury in swine. Atherosclerosis develops in regions with a low, oscillatory (i.e. atheroprone) flow pattern. Therefore, we used the Partial Carotid Ligation (PCL) model in high-fat fed, Apoe−/− mice to determine the role of KCa3.1 in atherosclerotic lesion composition and development. PCL was performed on 8–10 week old male Apoe−/− mice and subsequently placed on a Western diet (TD.88137, Teklad) for 4 weeks. Mice received daily s.c. injections of TRAM-34 (120 mg/kg) or equal volumes of vehicle (peanut oil, PO). 1-[(2-chlorophenyl) diphenylmethyl]-1H-pyrazole (TRAM-34) treatment reduced lesion size ~50% (p < 0.05). In addition, lesions from TRAM-34 treated mice contained less collagen (6% ± 1% vs. 15% ± 2%; p < 0.05), fibronectin (14% ± 3% vs. 32% ± 3%; p < 0.05) and smooth muscle content (19% ± 2% vs. 29% ± 3%; p < 0.05). Conversely, TRAM-34 had no effect on total cholesterol (1455 vs. 1334 mg/dl, PO and TRAM, resp.) or body weight (29.1 vs. 28.8 g, PO and TRAM, resp.). Medial smooth muscle of atherosclerotic carotids showed diminished RE1-Silencing Transcription Factor (REST)/Neural Restrictive Silencing Factor (NRSF) expression, while REST overexpression in vitro inhibited smooth muscle migration. Together, these data support a downregulation of REST/NRSF and upregulation of KCa3.1 in determining smooth muscle and matrix content of atherosclerotic lesions.
Collapse
Affiliation(s)
- Darla L Tharp
- Department of Biomedical Sciences, E102 Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Douglas K Bowles
- Department of Biomedical Sciences, E102 Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
11
|
Sharma S, Pei X, Xing F, Wu SY, Wu K, Tyagi A, Zhao D, Deshpande R, Ruiz MG, Singh R, Lyu F, Watabe K. Regucalcin promotes dormancy of prostate cancer. Oncogene 2021; 40:1012-1026. [PMID: 33323968 PMCID: PMC8958430 DOI: 10.1038/s41388-020-01565-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 02/08/2023]
Abstract
Prostate cancer is one of the leading causes of mortality in men. The major cause of death in prostate cancer patients can be attributed to metastatic spread of disease or tumor recurrence after initial treatment. Prostate tumors are known to remain undetected or dormant for a long period of time before they progress locoregionally or at distant sites as overt tumors. However, the molecular mechanism of dormancy is yet poorly understood. In this study, we performed a differential gene expression analysis and identified a gene, Regucalcin (RGN), which promotes dormancy of prostate cancer. We found that cancer patients expressing higher level of RGN showed significantly longer recurrence-free and overall- survival. Using a doxycycline-inducible RGN expression system, we showed that ectopic expression of RGN in prostate tumor cells induced dormancy in vivo, while following suppression of RGN triggered recurrence of tumor growth. On the other hand, silencing RGN in LNCap cells promoted its outgrowth in the tibia of mice. Importantly, RGN promoted multiple known hallmarks of tumor dormancy including activation of p38 MAPK, decrease in Erk signaling and inhibition of FOXM1 expression. Furthermore, we found that RGN significantly suppressed angiogenesis by increasing secretory miR-23c level in the exosomes. Intriguingly, FOXM1 was found to negatively regulate miR-23c expression in prostate cancer. In addition, we identified 11 RGN downstream target genes that independently predicted longer recurrence-free survival in patients. We found that expression of these genes was regulated by FOXM1 and/or p38 MAPK. These findings suggest a critical role of RGN in prostate cancer dormancy, and the utility of RGN signaling and exosomal miR-23c as biomarkers for predicting recurrence.
Collapse
Affiliation(s)
- Sambad Sharma
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Xinhong Pei
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Fei Xing
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Shih-Ying Wu
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Kerui Wu
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Abhishek Tyagi
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Dan Zhao
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Ravindra Deshpande
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Marco Gabriel Ruiz
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | | | - Feng Lyu
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Kounosuke Watabe
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA.
| |
Collapse
|
12
|
Barisón MJ, Pereira IT, Waloski Robert A, Dallagiovanna B. Reorganization of Metabolism during Cardiomyogenesis Implies Time-Specific Signaling Pathway Regulation. Int J Mol Sci 2021; 22:1330. [PMID: 33572750 PMCID: PMC7869011 DOI: 10.3390/ijms22031330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 11/17/2022] Open
Abstract
Understanding the cell differentiation process involves the characterization of signaling and regulatory pathways. The coordinated action involved in multilevel regulation determines the commitment of stem cells and their differentiation into a specific cell lineage. Cellular metabolism plays a relevant role in modulating the expression of genes, which act as sensors of the extra-and intracellular environment. In this work, we analyzed mRNAs associated with polysomes by focusing on the expression profile of metabolism-related genes during the cardiac differentiation of human embryonic stem cells (hESCs). We compared different time points during cardiac differentiation (pluripotency, embryoid body aggregation, cardiac mesoderm, cardiac progenitor and cardiomyocyte) and showed the immature cell profile of energy metabolism. Highly regulated canonical pathways are thoroughly discussed, such as those involved in metabolic signaling and lipid homeostasis. We reveal the critical relevance of retinoic X receptor (RXR) heterodimers in upstream retinoic acid metabolism and their relationship with thyroid hormone signaling. Additionally, we highlight the importance of lipid homeostasis and extracellular matrix component biosynthesis during cardiomyogenesis, providing new insights into how hESCs reorganize their metabolism during in vitro cardiac differentiation.
Collapse
Affiliation(s)
| | | | | | - Bruno Dallagiovanna
- Basic Stem Cell Biology Laboratory, Instituto Carlos Chagas-FIOCRUZ-PR, Rua Professor Algacyr Munhoz Mader, 3775, Curitiba, PR 81350-010, Brazil; (M.J.B.); (I.T.P.); (A.W.R.)
| |
Collapse
|
13
|
Integrated analysis of lncRNAs and mRNAs reveals key trans-target genes associated with ETEC-F4ac adhesion phenotype in porcine small intestine epithelial cells. BMC Genomics 2020; 21:780. [PMID: 33172394 PMCID: PMC7653856 DOI: 10.1186/s12864-020-07192-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 10/26/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) play crucial roles in gene regulation at the transcriptional and post-transcriptional levels. LncRNAs are belonging to a large class of transcripts with ≥200 nt in length which do not code for proteins, have been widely investigated in various physiological and pathological contexts by high-throughput sequencing techniques and bioinformatics analysis. However, little is known about the regulatory mechanisms by which lncRNAs regulate genes that are associated with Enterotoxigenic Escherichia coli F4 fimbriae (ETEC-F4ac) adhesion phenotype in small intestine epithelial cells of Large White piglets. To address this, we used RNA sequencing to profile lncRNAs and mRNAs of small intestine epithelial cells in Large White piglets differing in their ETEC-F4 adhesion phenotypes and ITGB5 genotypes. Eight male piglets were used in this study and were divided into two groups on the basis of their adhesion phenotype and ITGB5 genotypes, a candidate gene for F4ac receptor. Non-adhesive group (n = 4) with CC genotype and adhesive group (n = 4) with TT genotype. RESULTS In total, 78 differentially expressed lncRNAs (DE-lncRNA) and 223 differentially expressed mRNAs (log2 |FC| > 1, P < 0.05) were identified in the comparison of non-adhesive vs. adhesive small intestine epithelial cells. Furthermore, cis- and trans-regulatory target genes of DE-lncRNAs were identified, then interaction networks of lncRNAs and their cis- and trans-target differentially expressed genes (DEGs) were constructed separately. A total of 194 cis-targets were involved in the lncRNAs-cis genes interaction network and 61 trans-targets, were involved in lncRNA-trans gene interaction network that we constructed. We determined that cis-target genes were involved in alcoholism, systemic lupus erythematosus, viral carcinogenesis and malaria. Whereas trans-target DEGs were engaged in three important pathways related to the ETEC-F4 adhesion phenotype namely cGMP-PKG signaling pathway, focal adhesion, and adherens junction. The trans-target DEGs which directly involved in these pathways are KCNMB1 in cGMP-PKG signaling pathway, GRB2 in focal adhesion pathway and ACTN4 in focal adhesion and adherens junction pathways. CONCLUSION The findings of the current study provides an insight into biological functions and epigenetic regulatory mechanism of lncRNAs on porcine small intestine epithelial cells adhesion to ETEC-F4-ac and piglets' diarrhea susceptibility/resistance.
Collapse
|
14
|
Dusart P, Hallström BM, Renné T, Odeberg J, Uhlén M, Butler LM. A Systems-Based Map of Human Brain Cell-Type Enriched Genes and Malignancy-Associated Endothelial Changes. Cell Rep 2020; 29:1690-1706.e4. [PMID: 31693905 DOI: 10.1016/j.celrep.2019.09.088] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/09/2019] [Accepted: 09/27/2019] [Indexed: 02/02/2023] Open
Abstract
Changes in the endothelium of the cerebral vasculature can contribute to inflammatory, thrombotic, and malignant disorders. The importance of defining cell-type-specific genes and their modification in disease is increasingly recognized. Here, we develop a bioinformatics-based approach to identify normal brain cell-enriched genes, using bulk RNA sequencing (RNA-seq) data from 238 normal human cortex samples from 2 independent cohorts. We compare endothelial cell-enriched gene profiles with astrocyte, oligodendrocyte, neuron, and microglial cell profiles. Endothelial changes in malignant disease are explored using RNA-seq data from 516 lower-grade gliomas and 401 glioblastomas. Lower-grade gliomas appear to be an "endothelial intermediate" between normal brain and glioblastoma. We apply our method for the prediction of glioblastoma-specific endothelial biomarkers, providing potential diagnostic or therapeutic targets. In summary, we provide a roadmap of endothelial cell identity in normal and malignant brain, using a method developed to resolve bulk RNA-seq into constituent cell-type-enriched profiles.
Collapse
Affiliation(s)
- Philip Dusart
- Science for Life Laboratory, Department of Protein Science, Royal Institute of Technology (KTH), 171 21 Stockholm, Sweden; K.G. Jebsen Thrombosis Research and Expertise Centre, Department of Clinical Medicine, The Arctic University of Norway, 9019 Tromsø, Norway
| | - Björn Mikael Hallström
- Science for Life Laboratory, Department of Protein Science, Royal Institute of Technology (KTH), 171 21 Stockholm, Sweden
| | - Thomas Renné
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jacob Odeberg
- Science for Life Laboratory, Department of Protein Science, Royal Institute of Technology (KTH), 171 21 Stockholm, Sweden; K.G. Jebsen Thrombosis Research and Expertise Centre, Department of Clinical Medicine, The Arctic University of Norway, 9019 Tromsø, Norway; The University Hospital of North Norway (UNN), PB100, 9038 Tromsø, Norway; Department of Hematology, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, Department of Protein Science, Royal Institute of Technology (KTH), 171 21 Stockholm, Sweden
| | - Lynn Marie Butler
- Science for Life Laboratory, Department of Protein Science, Royal Institute of Technology (KTH), 171 21 Stockholm, Sweden; K.G. Jebsen Thrombosis Research and Expertise Centre, Department of Clinical Medicine, The Arctic University of Norway, 9019 Tromsø, Norway; Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; Clinical Chemistry and Blood Coagulation Research, Department of Molecular Medicine and Surgery, Karolinska Institute, 171 76 Stockholm, Sweden.
| |
Collapse
|
15
|
Gur S, Hellstrom WJ. Harnessing Stem Cell Potential for the Treatment of Erectile Function in Men with Diabetes Mellitus: From Preclinical/Clinical Perspectives to Penile Tissue Engineering. Curr Stem Cell Res Ther 2020; 15:308-320. [DOI: 10.2174/1574888x14666190828142045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/10/2019] [Accepted: 08/06/2019] [Indexed: 12/20/2022]
Abstract
Background::
According to the World Health Organization, more than 150 million people
are diabetic, and this number will increase twofold by the year 2025. Diabetes-related complications
affect all body organ systems, including the penis. Diabetes-induced Erectile Dysfunction (ED) is
caused by neuropathy of the penile nerves and vasculopathy involving the smooth muscle and endothelium
of the corpus cavernosum.
Objective::
This study aims to present an overview of Stem Cell (SC) research in diabetic animal models
of ED, focusing on the function, signaling, and niches that have a prominent role in the regeneration
of cavernosal cells and penile tissues. We highlight common erectile pathologies caused by diabetes
and review relevant preclinical trials. We also discuss paracrine mechanisms of various SC therapies
involved in the repair of endothelial cells and cavernous nerves in these diabetic models.
Method::
A PubMed search was performed, with dates ranging from inception until Mar 31, 2019.
Results::
This review provides a comprehensive evaluation of the various strategies that have been
investigated for improving SC delivery methods, through preclinical literature and published clinical
trials regarding ED in men with diabetes. Various cell-type applications have benefited erectile function
in diabetic models of ED.
Conclusion::
This review examines the progress and remaining challenges in diabetes-related SC research
regarding ED. Moving forward, it is only with a combined effort of basic biology and translational
work that the potential of SC-based therapies in diabetes in ED can be realized.
Collapse
Affiliation(s)
- Serap Gur
- Department of Urology, Tulane University Health Sciences Center, New Orleans, LA, United States
| | - Wayne J.G. Hellstrom
- Department of Urology, Tulane University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
16
|
Scruggs AM, Grabauskas G, Huang SK. The Role of KCNMB1 and BK Channels in Myofibroblast Differentiation and Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2020; 62:191-203. [PMID: 31486669 DOI: 10.1165/rcmb.2019-0163oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The differentiation of fibroblasts into myofibroblasts is critical for the development of fibrotic disorders, including idiopathic pulmonary fibrosis (IPF). Previously, we demonstrated that fibroblasts from patients with IPF exhibit changes in DNA methylation across the genome that contribute to a profibrotic phenotype. One of the top differentially methylated genes identified in our previous study was KCNMB1, which codes for the β subunit of the large-conductance potassium (BK, also known as MaxiK or KCa1.1) channel. Here, we examined how the expression of KCNMB1 differed between IPF fibroblasts and normal cells, and how BK channels affected myofibroblast differentiation. Fibroblasts from patients with IPF exhibited increased expression of KCNMB1, which corresponded to increased DNA methylation within the gene body. Patch-clamp experiments demonstrated that IPF fibroblasts had increased BK channel activity. Knockdown of KCNMB1 attenuated the ability of fibroblasts to contract collagen gels, and this was associated with a loss of α-smooth muscle actin (SMA) expression. Pharmacologic activation of BK channels stimulated α-SMA expression, whereas BK channel inhibitors blocked the upregulation of α-SMA. The ability of BK channels to enhance α-SMA expression was dependent on intracellular calcium, as activation of BK channels resulted in increased levels of intracellular calcium and the effects of BK agonists were abolished when calcium was removed. Together, our findings demonstrate that epigenetic upregulation of KCNMB1 contributes to increased BK channel activity in IPF fibroblasts, and identify a newfound role for BK channels in myofibroblast differentiation.
Collapse
Affiliation(s)
| | - Gintautas Grabauskas
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | | |
Collapse
|
17
|
Induced osteogenic differentiation of human smooth muscle cells as a model of vascular calcification. Sci Rep 2020; 10:5951. [PMID: 32249802 PMCID: PMC7136202 DOI: 10.1038/s41598-020-62568-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/14/2020] [Indexed: 01/09/2023] Open
Abstract
Vascular calcification is a severe pathological event in the manifestation of atherosclerosis. Pathogenic triggers mediating osteogenic differentiation of arterial smooth muscle cells (SMC) in humans remain insufficiently understood and are to a large extent investigated in animal models or cells derived thereof. Here, we describe an in vitro model based on SMC derived from healthy and diseased humans that allows to comprehensively investigate vascular calcification mechanisms. Comparing the impact of the commonly used SMC culture media VascuLife, DMEM, and M199, cells were characterised by immunofluorescence, flow cytometry, qPCR, and regarding their contractility and proliferative capacity. Irrespective of the arterial origin, the clinical background and the expansion medium used, all cells expressed typical molecular SMC marker while contractility varied between donors. Interestingly, the ability to induce an osteogenic differentiation strongly depended on the culture medium, with only SMC cultured in DMEM depositing calcified matrix upon osteogenic stimulation, which correlated with increased alkaline phosphatase activity, increased inorganic phosphate level and upregulation of osteogenic gene markers. Our optimized model is suitable for donor-oriented as well as broader screening of potential pathogenic mediators triggering vascular calcification. Translational studies aiming to identify and to evaluate therapeutic targets in a personalized fashion would be feasible.
Collapse
|
18
|
Zhu B, Daoud F, Zeng S, Matic L, Hedin U, Uvelius B, Rippe C, Albinsson S, Swärd K. Antagonistic relationship between the unfolded protein response and myocardin-driven transcription in smooth muscle. J Cell Physiol 2020; 235:7370-7382. [PMID: 32039481 DOI: 10.1002/jcp.29637] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/30/2020] [Indexed: 01/28/2023]
Abstract
Smooth muscle cells (SMCs) are characterized by a high degree of phenotypic plasticity. Contractile differentiation is governed by myocardin-related transcription factors (MRTFs), in particular myocardin (MYOCD), and when their drive is lost, the cells become proliferative and synthetic with an expanded endoplasmic reticulum (ER). ER is responsible for assembly and folding of secreted proteins. When the load on the ER surpasses its capacity, three stress sensors (activating transcription factor 6 [ATF6], inositol-requiring enzyme 1α [IRE1α]/X-box binding protein 1 [XBP1], and PERK/ATF4) are activated to expand the ER and increase its folding capacity. This is referred to as the unfolded protein response (UPR). Here, we hypothesized that there is a reciprocal relationship between SMC differentiation and the UPR. Tight negative correlations between SMC markers (MYH11, MYOCD, KCNMB1, SYNPO2) and UPR markers (SDF2L1, CALR, MANF, PDIA4) were seen in microarray data sets from carotid arterial injury, partial bladder outlet obstruction, and bladder denervation, respectively. The UPR activators dithiothreitol (DTT) and tunicamycin (TN) activated the UPR and reduced MYOCD along with SMC markers in vitro. The IRE1α inhibitor 4μ8C counteracted the effect of DTT and TN on SMC markers and MYOCD expression. Transfection of active XBP1s was sufficient to reduce both MYOCD and the SMC markers. MRTFs also antagonized the UPR as indicated by reduced TN and DTT-mediated induction of CRELD2, MANF, PDIA4, and SDF2L1 following overexpression of MRTFs. The latter effect did not involve the newly identified MYOCD/SRF target MSRB3, or reduced production of either XBP1s or cleaved ATF6. The UPR thus counteracts SMC differentiation via the IRE1α/XBP1 arm of the UPR and MYOCD repression.
Collapse
Affiliation(s)
- Baoyi Zhu
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University (Qingyuan People's Hospital), Guangdong, China.,Department of Experimental Medical Science, Lund, Sweden
| | - Fatima Daoud
- Department of Experimental Medical Science, Lund, Sweden
| | - Shaohua Zeng
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University (Qingyuan People's Hospital), Guangdong, China
| | - Ljubica Matic
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Uvelius
- Department of Clinical Science, Lund University, Lund, Sweden
| | - Catarina Rippe
- Department of Experimental Medical Science, Lund, Sweden
| | | | - Karl Swärd
- Department of Experimental Medical Science, Lund, Sweden
| |
Collapse
|
19
|
Arévalo-Martínez M, Cidad P, García-Mateo N, Moreno-Estar S, Serna J, Fernández M, Swärd K, Simarro M, de la Fuente MA, López-López JR, Pérez-García MT. Myocardin-Dependent Kv1.5 Channel Expression Prevents Phenotypic Modulation of Human Vessels in Organ Culture. Arterioscler Thromb Vasc Biol 2019; 39:e273-e286. [DOI: 10.1161/atvbaha.119.313492] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Objective:
We have previously described that changes in the expression of Kv channels associate to phenotypic modulation (PM), so that Kv1.3/Kv1.5 ratio is a landmark of vascular smooth muscle cells phenotype. Moreover, we demonstrated that the Kv1.3 functional expression is relevant for PM in several types of vascular lesions. Here, we explore the efficacy of Kv1.3 inhibition for the prevention of remodeling in human vessels, and the mechanisms linking the switch in Kv1.3 /Kv1.5 ratio to PM.
Approach and Results:
Vascular remodeling was explored using organ culture and primary cultures of vascular smooth muscle cells obtained from human vessels. We studied the effects of Kv1.3 inhibition on serum-induced remodeling, as well as the impact of viral vector-mediated overexpression of Kv channels or myocardin knock-down. Kv1.3 blockade prevented remodeling by inhibiting proliferation, migration, and extracellular matrix secretion. PM activated Kv1.3 via downregulation of Kv1.5. Hence, both Kv1.3 blockers and Kv1.5 overexpression inhibited remodeling in a nonadditive fashion. Finally, myocardin knock-down induced vessel remodeling and Kv1.5 downregulation and myocardin overexpression increased Kv1.5, while Kv1.5 overexpression inhibited PM without changing myocardin expression.
Conclusions:
We demonstrate that Kv1.5 channel gene is a myocardin-regulated, vascular smooth muscle cells contractile marker. Kv1.5 downregulation upon PM leaves Kv1.3 as the dominant Kv1 channel expressed in dedifferentiated cells. We demonstrated that the inhibition of Kv1.3 channel function with selective blockers or by preventing Kv1.5 downregulation can represent an effective, novel strategy for the prevention of intimal hyperplasia and restenosis of the human vessels used for coronary angioplasty procedures.
Collapse
Affiliation(s)
- Marycarmen Arévalo-Martínez
- From the Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Spain (M.A.-M., P.C., N.G.-M., S.M.-E., J.S., J.R.L.-L., M.T.P.-G.)
- Instituto de Biología y Genética Molecular (IBGM), CSIC, Universidad de Valladolid, Spain (M.A.-M., P.C., N.G.-M., S.M.-E., J.S., M.S., M.A.d.l.F.)
| | - Pilar Cidad
- From the Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Spain (M.A.-M., P.C., N.G.-M., S.M.-E., J.S., J.R.L.-L., M.T.P.-G.)
- Instituto de Biología y Genética Molecular (IBGM), CSIC, Universidad de Valladolid, Spain (M.A.-M., P.C., N.G.-M., S.M.-E., J.S., M.S., M.A.d.l.F.)
| | - Nadia García-Mateo
- From the Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Spain (M.A.-M., P.C., N.G.-M., S.M.-E., J.S., J.R.L.-L., M.T.P.-G.)
- Instituto de Biología y Genética Molecular (IBGM), CSIC, Universidad de Valladolid, Spain (M.A.-M., P.C., N.G.-M., S.M.-E., J.S., M.S., M.A.d.l.F.)
| | - Sara Moreno-Estar
- From the Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Spain (M.A.-M., P.C., N.G.-M., S.M.-E., J.S., J.R.L.-L., M.T.P.-G.)
- Instituto de Biología y Genética Molecular (IBGM), CSIC, Universidad de Valladolid, Spain (M.A.-M., P.C., N.G.-M., S.M.-E., J.S., M.S., M.A.d.l.F.)
| | - Julia Serna
- From the Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Spain (M.A.-M., P.C., N.G.-M., S.M.-E., J.S., J.R.L.-L., M.T.P.-G.)
- Instituto de Biología y Genética Molecular (IBGM), CSIC, Universidad de Valladolid, Spain (M.A.-M., P.C., N.G.-M., S.M.-E., J.S., M.S., M.A.d.l.F.)
| | - Mirella Fernández
- Cardiovascular Surgery Department, Hospital Clínico Universitario de Valladolid, Spain (M.F.)
| | - Karl Swärd
- Department of Experimental Medical Science, University of Lund, Sweden (K.S.)
| | - María Simarro
- Instituto de Biología y Genética Molecular (IBGM), CSIC, Universidad de Valladolid, Spain (M.A.-M., P.C., N.G.-M., S.M.-E., J.S., M.S., M.A.d.l.F.)
- Departamento de Enfermería, Universidad de Valladolid, Spain (M.S.)
| | - Miguel A. de la Fuente
- Instituto de Biología y Genética Molecular (IBGM), CSIC, Universidad de Valladolid, Spain (M.A.-M., P.C., N.G.-M., S.M.-E., J.S., M.S., M.A.d.l.F.)
- Departamento de Biología Celular, Universidad de Valladolid, Spain (M.A.d.l.F.)
| | - José R. López-López
- From the Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Spain (M.A.-M., P.C., N.G.-M., S.M.-E., J.S., J.R.L.-L., M.T.P.-G.)
| | - M. Teresa Pérez-García
- From the Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Spain (M.A.-M., P.C., N.G.-M., S.M.-E., J.S., J.R.L.-L., M.T.P.-G.)
| |
Collapse
|
20
|
Transcriptional control of a novel long noncoding RNA Mymsl in smooth muscle cells by a single Cis-element and its initial functional characterization in vessels. J Mol Cell Cardiol 2019; 138:147-157. [PMID: 31751568 DOI: 10.1016/j.yjmcc.2019.11.148] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/10/2019] [Accepted: 11/05/2019] [Indexed: 02/08/2023]
Abstract
Differentiated vascular smooth muscle cells (VSMCs) are crucial in maintaining vascular homeostasis. While the coding transcriptome of the differentiated VSMC phenotype has been defined, we know little about its noncoding signature. Herein, we identified a Myocardin-induced muscle specific long noncoding RNA (lncRNA) (Mymsl) downregulated upon VSMC phenotypic modulation. We demonstrated an essential role of a proximal consensus CArG element in response to MYOCD/SRF in vitro. To validate the in vivo role of this CArG element, we generated CArG mutant mice via CRISPR-Cas9 genome editing. While the CArG mutation had no impact on the expression of surrounding genes, it abolished Mymsl expression in SMCs, but not skeletal and cardiac muscle. Chromatin immunoprecipitation assays (ChIPs) showed decreased SRF binding to CArG region in mutants whereas the enrichment of H3K79Me2 remained the same. RNA-seq analysis showed a downregulation of matrix genes in aortas from Mymsl knockout mice, which was further validated in injured carotid arteries. Our study defined the transcriptional control of a novel lncRNA in SMCs via a single transcription factor binding site, which may offer a new strategy for generating SMC-specific knockout mouse models. We also provided in vivo evidence supporting the potential importance of Mymsl in vascular pathophysiology.
Collapse
|
21
|
Zhang M, Wang Z. Downregulation of miR143/145 gene cluster expression promotes the aortic media degeneration process via the TGF-β1 signaling pathway. Am J Transl Res 2019; 11:370-378. [PMID: 30787994 PMCID: PMC6357338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 12/23/2018] [Indexed: 06/09/2023]
Abstract
Aortic dissection (AD) is a serious threat to human health; however, the cause of this condition has not yet been fully elucidated. In this study, we found significantly increased expression of phospho-Smad2/3 and phospho-ERK in AD tissues and downregulated expression of miR143 and miR145 in AD tissues. Knockdown of the miR143/145 gene cluster induced phenotypic switching of vascular smooth muscle cells (VSMCs) and activation of the TGF-β1 signaling pathway. When the TFG-β1 signaling pathway was blocked by pretreatment with an LY364947 inhibitor, expression of miR143 and miR145, and VSMC phenotypic markers were not affected by knockdown of the miR143/145 gene cluster. Immunohistochemical staining of aortic tissues donated by AD patients and organ donors showed decrease alpha-smooth muscle actin (α-SMA) expression in pathological tissue, while osteopontin (OPN) expression increased and the arrangement of smooth muscle cells in the tunica media was dysregulated. In conclusion, our study suggests that downregulated expression of the miR143/145 gene cluster promotes phenotypic switching of VSMCs via the TGF-β1 signaling pathway. This may play an important role in the pathogenesis of AD.
Collapse
Affiliation(s)
- Min Zhang
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University Wuhan 430000, Hubei Province, People's Republic of China
| | - Zhiwei Wang
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University Wuhan 430000, Hubei Province, People's Republic of China
| |
Collapse
|
22
|
Mild Hypothermia Prevents NO-Induced Cytotoxicity in Human Neuroblastoma Cells Via Induction of COX-2. J Mol Neurosci 2018; 67:173-180. [DOI: 10.1007/s12031-018-1222-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/18/2018] [Indexed: 12/13/2022]
|
23
|
Gur S, Abdel-Mageed AB, Sikka SC, Hellstrom WJG. Advances in stem cell therapy for erectile dysfunction. Expert Opin Biol Ther 2018; 18:1137-1150. [PMID: 30301368 DOI: 10.1080/14712598.2018.1534955] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Stem cell (SC) application is a promising area of research in regenerative medicine, with the potential to treat, prevent, and cure disease. In recent years, the number of studies focusing on SCs for the treatment of erectile dysfunction (ED) and other sexual dysfunctions has increased significantly. AREAS COVERED This review includes critical ED targets and preclinical studies, including the use of SCs and animal models in diabetes, aging, cavernous nerve injury, and Peyronie's disease. A literature search was performed on PubMed for English articles. EXPERT OPINION Combination treatment offers better results than monotherapy to improve pathological changes in diabetic ED. Regenerative medicine is a promising approach for the maintenance of sexual health and erectile function later in life. Cavernous nerve regeneration and vascular recovery employing SC treatment may be focused on radical prostatectomy-induced ED. Notwithstanding, there are a number of hurdles to overcome before SC-based therapies for ED are considered in clinical settings. Paracrine action, not cellular differentiation, appears to be the principal mechanism of action underlying SC treatment of ED. Intracavernosal injection of a single SC type should be the choice protocol for future clinical trials.
Collapse
Affiliation(s)
- Serap Gur
- a Department of Urology , Tulane University Health Sciences Center , New Orleans , LA , USA.,b Department of Pharmacology, Faculty of Pharmacy , Ankara University , Ankara , Turkey
| | - Asim B Abdel-Mageed
- a Department of Urology , Tulane University Health Sciences Center , New Orleans , LA , USA
| | - Suresh C Sikka
- a Department of Urology , Tulane University Health Sciences Center , New Orleans , LA , USA
| | - Wayne J G Hellstrom
- a Department of Urology , Tulane University Health Sciences Center , New Orleans , LA , USA
| |
Collapse
|
24
|
Zhu B, Rippe C, Holmberg J, Zeng S, Perisic L, Albinsson S, Hedin U, Uvelius B, Swärd K. Nexilin/NEXN controls actin polymerization in smooth muscle and is regulated by myocardin family coactivators and YAP. Sci Rep 2018; 8:13025. [PMID: 30158653 PMCID: PMC6115340 DOI: 10.1038/s41598-018-31328-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/17/2018] [Indexed: 01/03/2023] Open
Abstract
Nexilin, encoded by the NEXN gene, is expressed in striated muscle and localizes to Z-discs, influencing mechanical stability. We examined Nexilin/NEXN in smooth muscle cells (SMCs), and addressed if Nexilin localizes to dense bodies and dense bands and whether it is regulated by actin-controlled coactivators from the MRTF (MYOCD, MKL1, MKL2) and YAP/TAZ (YAP1 and WWTR1) families. NEXN expression in SMCs was comparable to that in striated muscles. Immunofluorescence and immunoelectron microscopy suggested that Nexilin localizes to dense bodies and dense bands. Correlations at the mRNA level suggested that NEXN expression might be controlled by actin polymerization. Depolymerization of actin using Latrunculin B repressed the NEXN mRNA and protein in bladder and coronary artery SMCs. Overexpression and knockdown supported involvement of both YAP/TAZ and MRTFs in the transcriptional control of NEXN. YAP/TAZ and MRTFs appeared equally important in bladder SMCs, whereas MRTFs dominated in vascular SMCs. Expression of NEXN was moreover reduced in situations of SMC phenotypic modulation in vivo. The proximal promoter of NEXN conferred control by MRTF-A/MKL1 and MYOCD. NEXN silencing reduced actin polymerization and cell migration, as well as SMC marker expression. NEXN targeting by actin-controlled coactivators thus amplifies SMC differentiation through the actin cytoskeleton, probably via dense bodies and dense bands.
Collapse
Affiliation(s)
- Baoyi Zhu
- Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden. .,Department of Urology, the Sixth Affiliated Hospital of Guangzhou Medical University (Qingyuan People's Hospital), 511518, Guangdong, China.
| | - Catarina Rippe
- Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden
| | - Johan Holmberg
- Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden
| | - Shaohua Zeng
- Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden.,Department of Urology, the Sixth Affiliated Hospital of Guangzhou Medical University (Qingyuan People's Hospital), 511518, Guangdong, China
| | - Ljubica Perisic
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Sebastian Albinsson
- Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Uvelius
- Department of Clinical Science, Section of Urology, Lund University, SE-221 84, Lund, Sweden
| | - Karl Swärd
- Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden
| |
Collapse
|
25
|
Gao P, Wu W, Ye J, Lu YW, Adam AP, Singer HA, Long X. Transforming growth factor β1 suppresses proinflammatory gene program independent of its regulation on vascular smooth muscle differentiation and autophagy. Cell Signal 2018; 50:160-170. [PMID: 30006123 DOI: 10.1016/j.cellsig.2018.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/19/2018] [Accepted: 07/09/2018] [Indexed: 01/01/2023]
Abstract
Transforming growth factor β (TGFβ) signaling plays crucial roles in maintaining vascular integrity and homeostasis, and is established as a strong activator of vascular smooth muscle cell (VSMC) differentiation. Chronic inflammation is a hallmark of various vascular diseases. Although TGFβ signaling has been suggested to be protective against inflammatory aortic aneurysm progression, its exact effects on VSMC inflammatory process and the underlying mechanisms are not fully unraveled. Here we revealed that TGFβ1 suppressed the expression of a broad array of proinflammatory genes while potently induced the expression of contractile genes in cultured primary human coronary artery SMCs (HCASMCs). The regulation of TGFβ1 on VSMC contractile and proinflammatory gene programs appeared to occur in parallel and both processes were through a SMAD4-dependent canonical pathway. We also showed evidence that the suppression of TGFβ1 on VSMC proinflammatory genes was mediated, at least partially through the blockade of signal transducer and activator of transcription 3 (STAT3) and NF-κB pathways. Interestingly, our RNA-seq data also revealed that TGFβ1 suppressed gene expression of a battery of autophagy mediators, which was validated by western blot for the conversion of microtubule-associated protein light chain 3 (LC3) and by immunofluo-rescence staining for LC3 puncta. However, impairment of VSMC autophagy by ATG5 deletion failed to rescue TGFβ1 influence on both VSMC contractile and proinflammatory gene programs, suggesting that TGFβ1-regulated VSMC differentiation and inflammation are not attributed to TGFβ1 suppression on autophagy. In summary, our results demonstrated an important role of TGFβ signaling in suppressing proinflammatory gene program in cultured primary human VSMCs via the blockade on STAT3 and NF-κB pathway, therefore providing novel insights into the mechanisms underlying the protective role of TGFβ signaling in vascular diseases.
Collapse
Affiliation(s)
- Ping Gao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - Wen Wu
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - Jiemei Ye
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - Yao Wei Lu
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - Alejandro Pablo Adam
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States; Department of Ophthalmology, Albany Medical College, Albany, NY, United States
| | - Harold A Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - Xiaochun Long
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States.
| |
Collapse
|
26
|
Li B, Wang Z, Hu Z, Zhang M, Ren Z, Zhou Z, Huang J, Hu X. P38 MAPK Signaling Pathway Mediates Angiotensin II-Induced miR143/145 Gene Cluster Downregulation during Aortic Dissection Formation. Ann Vasc Surg 2017; 40:262-273. [PMID: 28167124 DOI: 10.1016/j.avsg.2016.09.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/18/2016] [Accepted: 09/09/2016] [Indexed: 02/02/2023]
Abstract
BACKGROUND We endeavored to prove that angiotensin II (Ang II) regulates both the expression of micro-RNA143/145 (miR143/145) and differentiation of vascular smooth muscle cells (VSMCs) during the formation of aortic dissection (AD). We also studied the contribution of p38 mitogen-activated protein kinase (MAPK) signaling pathway toward this process. METHODS Ascending aortic tissues were harvested from the patients with AD and organ donors. Tissues were immunostained with labeled antibodies targeting p38 MAPK, phospho-p38 MAPK, alpha-smooth muscle actin (α-SMA), and osteopontin (OPN). Next, we treated mouse aortic VSMCs with different regimens of Ang II (duration and dosages) in vitro and determined expression levels of miR143/145 and VSMC phenotype marker proteins (α-SMA and OPN) by quantitative polymerase chain reaction and/or western blotting. SB203580 was used to inhibit the p38 MAPK signaling pathway. Finally, the VSMC phenotype was validated by immunofluorescence microscopy. RESULTS Expression of phospho-p38 MAPK was significantly greater in the AD tissue. Ang II induced the phenotypic switching of VSMCs along with the downregulation of an miR143/145 gene cluster. Expression of OPN and phospho-p38 was significantly increased in VSMCs treated with 0.1 μM Ang II for 12 hr. Furthermore, the expression of miR143 and miR145 was downregulated by Ang II treatment. When the p38 MAPK signaling pathway was blocked by pretreatment with an SB203580 inhibitor, the expression of miR143, miR145, and VSMC phenotypic markers was not affected by Ang II. Immunohistochemical staining of aortic tissues donated by AD patients and healthy donors showed that the expression of α-SMA decreased in pathological tissue, while the OPN increased and the arrangement of the smooth muscle cells of the media was dysregulated, which we verified in vitro. CONCLUSIONS Ang II could regulate the expression of miR143/145 gene cluster and the phenotypic switching of VSMCs via the p38 MAPK signaling pathway. This may play an important role in the pathogenesis of AD.
Collapse
MESH Headings
- Actins/metabolism
- Adult
- Aortic Dissection/enzymology
- Aortic Dissection/genetics
- Aortic Dissection/pathology
- Angiotensin II/pharmacology
- Animals
- Aortic Aneurysm/enzymology
- Aortic Aneurysm/genetics
- Aortic Aneurysm/pathology
- Case-Control Studies
- Cells, Cultured
- Dose-Response Relationship, Drug
- Female
- Humans
- Male
- Mice, Inbred C57BL
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Middle Aged
- Multigene Family
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Phosphorylation
- Signal Transduction/drug effects
- Time Factors
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Bowen Li
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Zhiwei Wang
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China.
| | - Zhipeng Hu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Min Zhang
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Zongli Ren
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Zhen Zhou
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Jizhen Huang
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Xiaoping Hu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| |
Collapse
|
27
|
Li H, Xiang Y, Fan LJ, Zhang XY, Li JP, Yu CX, Bao LY, Cao DS, Xing WB, Liao XH, Zhang TC. Myocardin inhibited the gap protein connexin 43 via promoted miR-206 to regulate vascular smooth muscle cell phenotypic switch. Gene 2017; 616:22-30. [PMID: 28342807 DOI: 10.1016/j.gene.2017.03.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 11/15/2022]
Abstract
Myocardin is regarded as a key mediator for the change of smooth muscle phenotype. The gap junction protein connexin 43 (Cx43) has been shown to be involved in vascular smooth muscle cells (VSMCs) proliferation and the development of atherosclerosis. However, the role of myocardin on gap junction of cell communication and the relation between myocardin and Cx43 in VSMC phenotypic switch has not been investigated. The goal of the present study is to investigate the molecular mechanism by which myocardin affects Cx43-regulated VSMC proliferation. Data presented in this study demonstrated that inhibition of the Cx43 activation process impaired VSMC proliferation. On the other hand, overexpression miR-206 inhibited VSMC proliferation. In additon, miR-206 silences the expression of Cx43 via targeting Cx43 3' Untranslated Regions. Importantly, myocardin can significantly promote the expression of miR-206. Cx43 regulates VSMCs' proliferation and metastasis through miR-206, which could be promoted by myocardin and used as a marker for diagnosis and a target for therapeutic intervention. Thus myocardin affected the gap junction by inhibited Cx43 and myocardin-miR-206-Cx43 formed a loop to regulate VSMC phenotypic switch.
Collapse
Affiliation(s)
- Hui Li
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China
| | - Yuan Xiang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China
| | - Li-Juan Fan
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China
| | - Xiao-Yu Zhang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China
| | - Jia-Peng Li
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China
| | - Cheng-Xi Yu
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China
| | - Le-Yuan Bao
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China
| | - Dong-Sun Cao
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China
| | - Wei-Bing Xing
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China
| | - Xing-Hua Liao
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, 300457, PR China.
| | - Tong-Cun Zhang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, 300457, PR China.
| |
Collapse
|
28
|
Zhao J, Wu W, Zhang W, Lu YW, Tou E, Ye J, Gao P, Jourd'heuil D, Singer HA, Wu M, Long X. Selective expression of TSPAN2 in vascular smooth muscle is independently regulated by TGF-β1/SMAD and myocardin/serum response factor. FASEB J 2017; 31:2576-2591. [PMID: 28258189 DOI: 10.1096/fj.201601021r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 02/13/2017] [Indexed: 01/07/2023]
Abstract
Tetraspanins (TSPANs) comprise a large family of 4-transmembrane domain proteins. The importance of TSPANs in vascular smooth muscle cells (VSMCs) is unexplored. Given that TGF-β1 and myocardin (MYOCD) are potent activators for VSMC differentiation, we screened for TGF-β1 and MYOCD/serum response factor (SRF)-regulated TSPANs in VSMC by using RNA-seq analyses and RNA-arrays. TSPAN2 was found to be the only TSPAN family gene induced by TGF-β1 and MYOCD, and reduced by SRF deficiency in VSMCs. We also found that TSPAN2 is highly expressed in smooth muscle-enriched tissues and down-regulated in in vitro models of VSMC phenotypic modulation. TSPAN2 expression is attenuated in mouse carotid arteries after ligation injury and in failed human arteriovenous fistula samples after occlusion by dedifferentiated neointimal VSMC. In vitro functional studies showed that TSPAN2 suppresses VSMC proliferation and migration. Luciferase reporter and chromatin immunoprecipitation assays demonstrated that TSPAN2 is regulated by 2 parallel pathways, MYOCD/SRF and TGF-β1/SMAD, via distinct binding elements within the proximal promoter. Thus, we identified the first VSMC-enriched and MYOCD/SRF and TGF-β1/SMAD-dependent TSPAN family member, whose expression is intimately associated with VSMC differentiation and negatively correlated with vascular disease. Our results suggest that TSPAN2 may play important roles in vascular disease.-Zhao, J., Wu, W., Zhang, W., Lu, Y. W., Tou, E., Ye, J., Gao, P., Jourd'heuil, D., Singer, H. A., Wu, M., Long, X. Selective expression of TSPAN2 in vascular smooth muscle is independently regulated by TGF-β1/SMAD and myocardin/serum response factor.
Collapse
Affiliation(s)
- Jinjing Zhao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Wen Wu
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Wei Zhang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Yao Wei Lu
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Emiley Tou
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Jiemei Ye
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Ping Gao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - David Jourd'heuil
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Harold A Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Mingfu Wu
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Xiaochun Long
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| |
Collapse
|
29
|
Xia XD, Zhou Z, Yu XH, Zheng XL, Tang CK. Myocardin: A novel player in atherosclerosis. Atherosclerosis 2017; 257:266-278. [PMID: 28012646 DOI: 10.1016/j.atherosclerosis.2016.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 11/29/2016] [Accepted: 12/01/2016] [Indexed: 12/21/2022]
|
30
|
Yang HJ, Ju F, Guo XX, Ma SP, Wang L, Cheng BF, Zhuang RJ, Zhang BB, Shi X, Feng ZW, Wang M. RNA-binding protein RBM3 prevents NO-induced apoptosis in human neuroblastoma cells by modulating p38 signaling and miR-143. Sci Rep 2017; 7:41738. [PMID: 28134320 PMCID: PMC5278414 DOI: 10.1038/srep41738] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/28/2016] [Indexed: 01/25/2023] Open
Abstract
Nitric oxide (NO)-induced apoptosis in neurons is an important cause of neurodegenerative disease in humans. The cold-inducible protein RBM3 mediates the protective effects of cooling on apoptosis induced by various insults. However, whether RBM3 protects neural cells from NO-induced apoptosis is unclear. This study aimed to investigate the neuroprotective effect of RBM3 on NO-induced apoptosis in human SH-SY5Y neuroblastoma cells. Firstly, we demonstrated that mild hypothermia (32 °C) induces RBM3 expression and confers a potent neuroprotective effect on NO-induced apoptosis, which was substantially diminished when RBM3 was silenced by siRNA. Moreover, overexpression of RBM3 exhibited a strong protective effect against NO-induced apoptosis. Signaling pathway screening demonstrated that only p38 inhibition by RBM3 provided neuroprotective effect, although RBM3 overexpression could affect the activation of p38, JNK, ERK, and AKT signaling in response to NO stimuli. Notably, RBM3 overexpression also blocked the activation of p38 signaling induced by transforming growth factor-β1. Furthermore, both RBM3 overexpression and mild hypothermia abolished the induction of miR-143 by NO, which was shown to mediate the cytotoxicity of NO in a p38-dependent way. These findings suggest that RBM3 protects neuroblastoma cells from NO-induced apoptosis by suppressing p38 signaling, which mediates apoptosis through miR-143 induction.
Collapse
Affiliation(s)
- Hai-Jie Yang
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China.,Henan Key Lab of Biological Psychiatry, Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
| | - Fei Ju
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Xin-Xin Guo
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Shuang-Ping Ma
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Lei Wang
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Bin-Feng Cheng
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Rui-Juan Zhuang
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Bin-Bin Zhang
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Xiang Shi
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Zhi-Wei Feng
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Mian Wang
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| |
Collapse
|
31
|
Chettimada S, Joshi SR, Dhagia V, Aiezza A, Lincoln TM, Gupte R, Miano JM, Gupte SA. Vascular smooth muscle cell contractile protein expression is increased through protein kinase G-dependent and -independent pathways by glucose-6-phosphate dehydrogenase inhibition and deficiency. Am J Physiol Heart Circ Physiol 2016; 311:H904-H912. [PMID: 27521420 PMCID: PMC5114469 DOI: 10.1152/ajpheart.00335.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/06/2016] [Indexed: 11/22/2022]
Abstract
Homeostatic control of vascular smooth muscle cell (VSMC) differentiation is critical for contractile activity and regulation of blood flow. Recently, we reported that precontracted blood vessels are relaxed and the phenotype of VSMC is regulated from a synthetic to contractile state by glucose-6-phosphate dehydrogenase (G6PD) inhibition. In the current study, we investigated whether the increase in the expression of VSMC contractile proteins by inhibition and knockdown of G6PD is mediated through a protein kinase G (PKG)-dependent pathway and whether it regulates blood pressure. We found that the expression of VSMC-restricted contractile proteins, myocardin (MYOCD), and miR-1 and miR-143 are increased by G6PD inhibition or knockdown. Importantly, RNA-sequence analysis of aortic tissue from G6PD-deficient mice revealed uniform increases in VSMC-restricted genes, particularly those regulated by the MYOCD-serum response factor (SRF) switch. Conversely, expression of Krüppel-like factor 4 (KLF4) is decreased by G6PD inhibition. Interestingly, the G6PD inhibition-induced expression of miR-1 and contractile proteins was blocked by Rp-β-phenyl-1,N2-etheno-8-bromo-guanosine-3',5'-cyclic monophosphorothioate, a PKG inhibitor. On the other hand, MYOCD and miR-143 levels are increased by G6PD inhibition through a PKG-independent manner. Furthermore, blood pressure was lower in the G6PD-deficient compared with wild-type mice. Therefore, our results suggest that the expression of VSMC contractile proteins induced by G6PD inhibition occurs via PKG1α-dependent and -independent pathways.
Collapse
MESH Headings
- Animals
- Aorta/drug effects
- Aorta/metabolism
- Blotting, Western
- Cattle
- Chromatography, Liquid
- Contractile Proteins/drug effects
- Contractile Proteins/genetics
- Contractile Proteins/metabolism
- Cyclic GMP-Dependent Protein Kinase Type I/antagonists & inhibitors
- Cyclic GMP-Dependent Protein Kinase Type I/metabolism
- Cyclic GMP-Dependent Protein Kinases/antagonists & inhibitors
- Cyclic GMP-Dependent Protein Kinases/metabolism
- Gene Knockdown Techniques
- Glucosephosphate Dehydrogenase/antagonists & inhibitors
- Glucosephosphate Dehydrogenase/genetics
- Immunoprecipitation
- Kruppel-Like Factor 4
- Kruppel-Like Transcription Factors/drug effects
- Kruppel-Like Transcription Factors/genetics
- Kruppel-Like Transcription Factors/metabolism
- Mice
- MicroRNAs/drug effects
- MicroRNAs/genetics
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Nuclear Proteins/drug effects
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Polymerase Chain Reaction
- Rats
- Serum Response Factor/drug effects
- Serum Response Factor/genetics
- Serum Response Factor/metabolism
- Tandem Mass Spectrometry
- Trans-Activators/drug effects
- Trans-Activators/genetics
- Trans-Activators/metabolism
Collapse
Affiliation(s)
- Sukrutha Chettimada
- Biochemistry & Molecular Biology, University of South Alabama, Mobile, Alabama; Pharmacology, New York Medical College, Valhalla, New York
| | - Sachindra Raj Joshi
- Biochemistry & Molecular Biology, University of South Alabama, Mobile, Alabama; Pharmacology, New York Medical College, Valhalla, New York
| | - Vidhi Dhagia
- Pharmacology, New York Medical College, Valhalla, New York
| | - Alessandro Aiezza
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York; and
| | | | - Rakhee Gupte
- Biochemistry & Molecular Biology, University of South Alabama, Mobile, Alabama; Pharmacology, New York Medical College, Valhalla, New York
| | - Joseph M Miano
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York; and
| | - Sachin A Gupte
- Biochemistry & Molecular Biology, University of South Alabama, Mobile, Alabama; Pharmacology, New York Medical College, Valhalla, New York
| |
Collapse
|
32
|
Butler LM, Hallström BM, Fagerberg L, Pontén F, Uhlén M, Renné T, Odeberg J. Analysis of Body-wide Unfractionated Tissue Data to Identify a Core Human Endothelial Transcriptome. Cell Syst 2016; 3:287-301.e3. [PMID: 27641958 DOI: 10.1016/j.cels.2016.08.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/23/2016] [Accepted: 08/03/2016] [Indexed: 12/11/2022]
Abstract
Endothelial cells line blood vessels and regulate hemostasis, inflammation, and blood pressure. Proteins critical for these specialized functions tend to be predominantly expressed in endothelial cells across vascular beds. Here, we present a systems approach to identify a panel of human endothelial-enriched genes using global, body-wide transcriptomics data from 124 tissue samples from 32 organs. We identified known and unknown endothelial-enriched gene transcripts and used antibody-based profiling to confirm expression across vascular beds. The majority of identified transcripts could be detected in cultured endothelial cells from various vascular beds, and we observed maintenance of relative expression in early passage cells. In summary, we describe a widely applicable method to determine cell-type-specific transcriptome profiles in a whole-organism context, based on differential abundance across tissues. We identify potential vascular drug targets or endothelial biomarkers and highlight candidates for functional studies to increase understanding of the endothelium in health and disease.
Collapse
Affiliation(s)
- Lynn Marie Butler
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; Clinical Chemistry and Blood Coagulation, Department of Molecular Medicine and Surgery, Karolinska Institute, 171 76 Stockholm, Sweden.
| | - Björn Mikael Hallström
- Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology (KTH), 171 21 Stockholm, Sweden
| | - Linn Fagerberg
- Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology (KTH), 171 21 Stockholm, Sweden
| | - Fredrik Pontén
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology (KTH), 171 21 Stockholm, Sweden
| | - Thomas Renné
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; Clinical Chemistry and Blood Coagulation, Department of Molecular Medicine and Surgery, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Jacob Odeberg
- Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology (KTH), 171 21 Stockholm, Sweden; Coagulation Unit, Centre for Hematology, Karolinska University Hospital, 171 76 Stockholm, Sweden
| |
Collapse
|
33
|
Zhao J, Zhang W, Lin M, Wu W, Jiang P, Tou E, Xue M, Richards A, Jourd'heuil D, Asif A, Zheng D, Singer HA, Miano JM, Long X. MYOSLID Is a Novel Serum Response Factor-Dependent Long Noncoding RNA That Amplifies the Vascular Smooth Muscle Differentiation Program. Arterioscler Thromb Vasc Biol 2016; 36:2088-99. [PMID: 27444199 DOI: 10.1161/atvbaha.116.307879] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/05/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Long noncoding RNAs (lncRNA) represent a growing class of noncoding genes with diverse cellular functions. We previously reported on SENCR, an lncRNA that seems to support the vascular smooth muscle cell (VSMC) contractile phenotype. However, information about the VSMC-specific lncRNAs regulated by myocardin (MYOCD)/serum response factor, the master switch for VSMC differentiation, is unknown. APPROACH AND RESULTS To define novel lncRNAs with functions related to VSMC differentiation, we performed RNA sequencing in human coronary artery SMCs that overexpress MYOCD. Several novel lncRNAs showed altered expression with MYOCD overexpression and one, named MYOcardin-induced Smooth muscle LncRNA, Inducer of Differentiation (MYOSLID), was activated by MYOCD and selectively expressed in VSMCs. MYOSLID was a direct transcriptional target of both MYOCD/serum response factor and transforming growth factor-β/SMAD pathways. Functional studies revealed that MYOSLID promotes VSMC differentiation and inhibits VSMC proliferation. MYOSLID showed reduced expression in failed human arteriovenous fistula samples compared with healthy veins. Although MYOSLID did not affect gene expression of transcription factors, such as serum response factor and MYOCD, its depletion in VSMCs disrupted actin stress fiber formation and blocked nuclear translocation of MYOCD-related transcription factor A (MKL1). Finally, loss of MYOSLID abrogated transforming growth factor-β1-induced SMAD2 phosphorylation. CONCLUSIONS We have demonstrated that MYOSLID, the first human VSMC-selective and serum response factor/CArG-dependent lncRNA, is a novel modulator in amplifying the VSMC differentiation program, likely through feed-forward actions of both MKL1 and transforming growth factor-β/SMAD pathways.
Collapse
Affiliation(s)
- Jinjing Zhao
- From the Department of Molecular and Cellular Physiology (J.Z., W.Z., W.W., E.T., M.X., A.R., D.J., H.A.S., X.L.), Albany Medical College, NY; Department of Medicine, Jersey Shore University Medical Center, Neptune, NJ (A.A.); Departments of Genetics (M.L., D.Z.) and Neurology and Neuroscience (D.Z.), Albert Einstein College of Medicine, Bronx, NY; Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, NY (P.J., J.M.M.); and National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P.R. China (M.X.)
| | - Wei Zhang
- From the Department of Molecular and Cellular Physiology (J.Z., W.Z., W.W., E.T., M.X., A.R., D.J., H.A.S., X.L.), Albany Medical College, NY; Department of Medicine, Jersey Shore University Medical Center, Neptune, NJ (A.A.); Departments of Genetics (M.L., D.Z.) and Neurology and Neuroscience (D.Z.), Albert Einstein College of Medicine, Bronx, NY; Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, NY (P.J., J.M.M.); and National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P.R. China (M.X.)
| | - Mingyan Lin
- From the Department of Molecular and Cellular Physiology (J.Z., W.Z., W.W., E.T., M.X., A.R., D.J., H.A.S., X.L.), Albany Medical College, NY; Department of Medicine, Jersey Shore University Medical Center, Neptune, NJ (A.A.); Departments of Genetics (M.L., D.Z.) and Neurology and Neuroscience (D.Z.), Albert Einstein College of Medicine, Bronx, NY; Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, NY (P.J., J.M.M.); and National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P.R. China (M.X.)
| | - Wen Wu
- From the Department of Molecular and Cellular Physiology (J.Z., W.Z., W.W., E.T., M.X., A.R., D.J., H.A.S., X.L.), Albany Medical College, NY; Department of Medicine, Jersey Shore University Medical Center, Neptune, NJ (A.A.); Departments of Genetics (M.L., D.Z.) and Neurology and Neuroscience (D.Z.), Albert Einstein College of Medicine, Bronx, NY; Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, NY (P.J., J.M.M.); and National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P.R. China (M.X.)
| | - Pengtao Jiang
- From the Department of Molecular and Cellular Physiology (J.Z., W.Z., W.W., E.T., M.X., A.R., D.J., H.A.S., X.L.), Albany Medical College, NY; Department of Medicine, Jersey Shore University Medical Center, Neptune, NJ (A.A.); Departments of Genetics (M.L., D.Z.) and Neurology and Neuroscience (D.Z.), Albert Einstein College of Medicine, Bronx, NY; Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, NY (P.J., J.M.M.); and National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P.R. China (M.X.)
| | - Emiley Tou
- From the Department of Molecular and Cellular Physiology (J.Z., W.Z., W.W., E.T., M.X., A.R., D.J., H.A.S., X.L.), Albany Medical College, NY; Department of Medicine, Jersey Shore University Medical Center, Neptune, NJ (A.A.); Departments of Genetics (M.L., D.Z.) and Neurology and Neuroscience (D.Z.), Albert Einstein College of Medicine, Bronx, NY; Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, NY (P.J., J.M.M.); and National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P.R. China (M.X.)
| | - Min Xue
- From the Department of Molecular and Cellular Physiology (J.Z., W.Z., W.W., E.T., M.X., A.R., D.J., H.A.S., X.L.), Albany Medical College, NY; Department of Medicine, Jersey Shore University Medical Center, Neptune, NJ (A.A.); Departments of Genetics (M.L., D.Z.) and Neurology and Neuroscience (D.Z.), Albert Einstein College of Medicine, Bronx, NY; Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, NY (P.J., J.M.M.); and National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P.R. China (M.X.)
| | - Angelene Richards
- From the Department of Molecular and Cellular Physiology (J.Z., W.Z., W.W., E.T., M.X., A.R., D.J., H.A.S., X.L.), Albany Medical College, NY; Department of Medicine, Jersey Shore University Medical Center, Neptune, NJ (A.A.); Departments of Genetics (M.L., D.Z.) and Neurology and Neuroscience (D.Z.), Albert Einstein College of Medicine, Bronx, NY; Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, NY (P.J., J.M.M.); and National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P.R. China (M.X.)
| | - David Jourd'heuil
- From the Department of Molecular and Cellular Physiology (J.Z., W.Z., W.W., E.T., M.X., A.R., D.J., H.A.S., X.L.), Albany Medical College, NY; Department of Medicine, Jersey Shore University Medical Center, Neptune, NJ (A.A.); Departments of Genetics (M.L., D.Z.) and Neurology and Neuroscience (D.Z.), Albert Einstein College of Medicine, Bronx, NY; Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, NY (P.J., J.M.M.); and National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P.R. China (M.X.)
| | - Arif Asif
- From the Department of Molecular and Cellular Physiology (J.Z., W.Z., W.W., E.T., M.X., A.R., D.J., H.A.S., X.L.), Albany Medical College, NY; Department of Medicine, Jersey Shore University Medical Center, Neptune, NJ (A.A.); Departments of Genetics (M.L., D.Z.) and Neurology and Neuroscience (D.Z.), Albert Einstein College of Medicine, Bronx, NY; Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, NY (P.J., J.M.M.); and National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P.R. China (M.X.)
| | - Deyou Zheng
- From the Department of Molecular and Cellular Physiology (J.Z., W.Z., W.W., E.T., M.X., A.R., D.J., H.A.S., X.L.), Albany Medical College, NY; Department of Medicine, Jersey Shore University Medical Center, Neptune, NJ (A.A.); Departments of Genetics (M.L., D.Z.) and Neurology and Neuroscience (D.Z.), Albert Einstein College of Medicine, Bronx, NY; Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, NY (P.J., J.M.M.); and National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P.R. China (M.X.)
| | - Harold A Singer
- From the Department of Molecular and Cellular Physiology (J.Z., W.Z., W.W., E.T., M.X., A.R., D.J., H.A.S., X.L.), Albany Medical College, NY; Department of Medicine, Jersey Shore University Medical Center, Neptune, NJ (A.A.); Departments of Genetics (M.L., D.Z.) and Neurology and Neuroscience (D.Z.), Albert Einstein College of Medicine, Bronx, NY; Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, NY (P.J., J.M.M.); and National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P.R. China (M.X.)
| | - Joseph M Miano
- From the Department of Molecular and Cellular Physiology (J.Z., W.Z., W.W., E.T., M.X., A.R., D.J., H.A.S., X.L.), Albany Medical College, NY; Department of Medicine, Jersey Shore University Medical Center, Neptune, NJ (A.A.); Departments of Genetics (M.L., D.Z.) and Neurology and Neuroscience (D.Z.), Albert Einstein College of Medicine, Bronx, NY; Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, NY (P.J., J.M.M.); and National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P.R. China (M.X.)
| | - Xiaochun Long
- From the Department of Molecular and Cellular Physiology (J.Z., W.Z., W.W., E.T., M.X., A.R., D.J., H.A.S., X.L.), Albany Medical College, NY; Department of Medicine, Jersey Shore University Medical Center, Neptune, NJ (A.A.); Departments of Genetics (M.L., D.Z.) and Neurology and Neuroscience (D.Z.), Albert Einstein College of Medicine, Bronx, NY; Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, NY (P.J., J.M.M.); and National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P.R. China (M.X.).
| |
Collapse
|
34
|
Ro S. Multi-phenotypic Role of Serum Response Factor in the Gastrointestinal System. J Neurogastroenterol Motil 2016; 22:193-200. [PMID: 26727951 PMCID: PMC4819857 DOI: 10.5056/jnm15183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/26/2015] [Indexed: 12/12/2022] Open
Abstract
Serum response factor (SRF) is a master transcription factor of the actin cytoskeleton that binds to highly conserved CArG boxes located within the majority of smooth muscle cell (SMC)-restricted promoters/enhancers. Although most studies of SRF focus on skeletal muscle, cardiac muscle, and vascular SMCs, SRF research has recently expanded into the gastrointestinal (GI) system. Genome scale analyses of GI SMC transcriptome and CArG boxes (CArGome) have identified new SRF target genes. In addition to circular and longitudinal smooth muscle layers, SRF is also expressed in GI mucosa and cancers. In the GI tract, SRF is the central regulator of genes involved in apoptosis, dedifferentiation, proliferation, and migration of cells. Since SRF is the cell phenotypic modulator, it may play an essential role in the development of myopathy, hypertrophy, ulcers, gastric and colon cancers within the GI tract. Given the multi-functional role displayed by SRF in the digestive system, SRF has received more attention emerging as a potential therapeutic target. This review summarizes the findings in SRF research pertaining to the GI tract and provides valuable insight into future directions.
Collapse
Affiliation(s)
- Seungil Ro
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| |
Collapse
|
35
|
Freiberger SN, Cheng PF, Iotzova-Weiss G, Neu J, Liu Q, Dziunycz P, Zibert JR, Dummer R, Skak K, Levesque MP, Hofbauer GFL. Ingenol Mebutate Signals via PKC/MEK/ERK in Keratinocytes and Induces Interleukin Decoy Receptors IL1R2 and IL13RA2. Mol Cancer Ther 2015; 14:2132-42. [PMID: 26116359 DOI: 10.1158/1535-7163.mct-15-0023-t] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 06/02/2015] [Indexed: 11/16/2022]
Abstract
Squamous cell carcinoma (SCC) is the second most common human skin cancer and the second leading cause of skin cancer-related death. Recently, a new compound, ingenol mebutate, was approved for treatment of actinic keratosis, a precursor of SCC. As the mechanism of action is poorly understood, we have further investigated the mechanism of ingenol mebutate-induced cell death. We elucidate direct effects of ingenol mebutate on primary keratinocytes, patient-derived SCC cells, and a SCC cell line. Transcriptional profiling followed by pathway analysis was performed on ingenol mebutate-treated primary keratinocytes and patient-derived SCC cells to find key mediators and identify the mechanism of action. Activation of the resulting pathways was confirmed in cells and human skin explants and supported by a phosphorylation screen of treated primary cells. The necessity of these pathways was demonstrated by inhibition of certain pathway components. Ingenol mebutate inhibited viability and proliferation of all keratinocyte-derived cells in a biphasic manner. Transcriptional profiling identified the involvement of PKC/MEK/ERK signaling in the mechanism of action and inhibition of this signaling pathway rescued ingenol mebutate-induced cell death after treatment with 100 nmol/L ingenol mebutate, the optimal concentration for the first peak of response. We found the interleukin decoy receptors IL1R2 and IL13RA2 induced by ingenol mebutate in a PKC/MEK/ERK-dependent manner. Furthermore, siRNA knockdown of IL1R2 and IL13RA2 partially rescued ingenol mebutate-treated cells. In conclusion, we have shown that ingenol mebutate-induced cell death is mediated through the PKCδ/MEK/ERK pathway, and we have functionally linked the downstream induction of IL1R2 and IL13RA2 expression to the reduced viability of ingenol mebutate-treated cells.
Collapse
Affiliation(s)
| | - Phil F Cheng
- Department of Dermatology, University Hospital Zurich, Switzerland
| | | | - Johannes Neu
- Department of Dermatology, University Hospital Zurich, Switzerland
| | - Qinxiu Liu
- Department of Dermatology, University Hospital Zurich, Switzerland
| | - Piotr Dziunycz
- Department of Dermatology, University Hospital Zurich, Switzerland
| | | | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich, Switzerland
| | | | | | | |
Collapse
|
36
|
Turczyńska KM, Swärd K, Hien TT, Wohlfahrt J, Mattisson IY, Ekman M, Nilsson J, Sjögren J, Murugesan V, Hultgårdh-Nilsson A, Cidad P, Hellstrand P, Pérez-García MT, Albinsson S. Regulation of Smooth Muscle Dystrophin and Synaptopodin 2 Expression by Actin Polymerization and Vascular Injury. Arterioscler Thromb Vasc Biol 2015; 35:1489-97. [DOI: 10.1161/atvbaha.114.305065] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 03/27/2015] [Indexed: 01/25/2023]
Abstract
Objective—
Actin dynamics in vascular smooth muscle is known to regulate contractile differentiation and may play a role in the pathogenesis of vascular disease. However, the list of genes regulated by actin polymerization in smooth muscle remains incomprehensive. Thus, the objective of this study was to identify actin-regulated genes in smooth muscle and to demonstrate the role of these genes in the regulation of vascular smooth muscle phenotype.
Approach and Results—
Mouse aortic smooth muscle cells were treated with an actin-stabilizing agent, jasplakinolide, and analyzed by microarrays. Several transcripts were upregulated including both known and previously unknown actin-regulated genes. Dystrophin and synaptopodin 2 were selected for further analysis in models of phenotypic modulation and vascular disease. These genes were highly expressed in differentiated versus synthetic smooth muscle and their expression was promoted by the transcription factors myocardin and myocardin-related transcription factor A. Furthermore, the expression of both synaptopodin 2 and dystrophin was significantly reduced in balloon-injured human arteries. Finally, using a dystrophin mutant
mdx
mouse and synaptopodin 2 knockdown, we demonstrate that these genes are involved in the regulation of smooth muscle differentiation and function.
Conclusions—
This study demonstrates novel genes that are promoted by actin polymerization, that regulate smooth muscle function, and that are deregulated in models of vascular disease. Thus, targeting actin polymerization or the genes controlled in this manner can lead to novel therapeutic options against vascular pathologies that involve phenotypic modulation of smooth muscle cells.
Collapse
Affiliation(s)
- Karolina M. Turczyńska
- From the Department of Experimental Medical Science (K.M.T., K.S., T.T.H., J.W., I.Y.M., M.E., V.M., A.H.-N., P.H., S.A.) and Department of Clinical Science (J.N., J.S.), Lund University, Lund, Sweden; and Departamento de Bioquímica y Biología Molecular y Fisiología and Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain (P.C., M.T.P.-G.)
| | - Karl Swärd
- From the Department of Experimental Medical Science (K.M.T., K.S., T.T.H., J.W., I.Y.M., M.E., V.M., A.H.-N., P.H., S.A.) and Department of Clinical Science (J.N., J.S.), Lund University, Lund, Sweden; and Departamento de Bioquímica y Biología Molecular y Fisiología and Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain (P.C., M.T.P.-G.)
| | - Tran Thi Hien
- From the Department of Experimental Medical Science (K.M.T., K.S., T.T.H., J.W., I.Y.M., M.E., V.M., A.H.-N., P.H., S.A.) and Department of Clinical Science (J.N., J.S.), Lund University, Lund, Sweden; and Departamento de Bioquímica y Biología Molecular y Fisiología and Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain (P.C., M.T.P.-G.)
| | - Johan Wohlfahrt
- From the Department of Experimental Medical Science (K.M.T., K.S., T.T.H., J.W., I.Y.M., M.E., V.M., A.H.-N., P.H., S.A.) and Department of Clinical Science (J.N., J.S.), Lund University, Lund, Sweden; and Departamento de Bioquímica y Biología Molecular y Fisiología and Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain (P.C., M.T.P.-G.)
| | - Ingrid Yao Mattisson
- From the Department of Experimental Medical Science (K.M.T., K.S., T.T.H., J.W., I.Y.M., M.E., V.M., A.H.-N., P.H., S.A.) and Department of Clinical Science (J.N., J.S.), Lund University, Lund, Sweden; and Departamento de Bioquímica y Biología Molecular y Fisiología and Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain (P.C., M.T.P.-G.)
| | - Mari Ekman
- From the Department of Experimental Medical Science (K.M.T., K.S., T.T.H., J.W., I.Y.M., M.E., V.M., A.H.-N., P.H., S.A.) and Department of Clinical Science (J.N., J.S.), Lund University, Lund, Sweden; and Departamento de Bioquímica y Biología Molecular y Fisiología and Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain (P.C., M.T.P.-G.)
| | - Johan Nilsson
- From the Department of Experimental Medical Science (K.M.T., K.S., T.T.H., J.W., I.Y.M., M.E., V.M., A.H.-N., P.H., S.A.) and Department of Clinical Science (J.N., J.S.), Lund University, Lund, Sweden; and Departamento de Bioquímica y Biología Molecular y Fisiología and Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain (P.C., M.T.P.-G.)
| | - Johan Sjögren
- From the Department of Experimental Medical Science (K.M.T., K.S., T.T.H., J.W., I.Y.M., M.E., V.M., A.H.-N., P.H., S.A.) and Department of Clinical Science (J.N., J.S.), Lund University, Lund, Sweden; and Departamento de Bioquímica y Biología Molecular y Fisiología and Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain (P.C., M.T.P.-G.)
| | - Vignesh Murugesan
- From the Department of Experimental Medical Science (K.M.T., K.S., T.T.H., J.W., I.Y.M., M.E., V.M., A.H.-N., P.H., S.A.) and Department of Clinical Science (J.N., J.S.), Lund University, Lund, Sweden; and Departamento de Bioquímica y Biología Molecular y Fisiología and Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain (P.C., M.T.P.-G.)
| | - Anna Hultgårdh-Nilsson
- From the Department of Experimental Medical Science (K.M.T., K.S., T.T.H., J.W., I.Y.M., M.E., V.M., A.H.-N., P.H., S.A.) and Department of Clinical Science (J.N., J.S.), Lund University, Lund, Sweden; and Departamento de Bioquímica y Biología Molecular y Fisiología and Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain (P.C., M.T.P.-G.)
| | - Pilar Cidad
- From the Department of Experimental Medical Science (K.M.T., K.S., T.T.H., J.W., I.Y.M., M.E., V.M., A.H.-N., P.H., S.A.) and Department of Clinical Science (J.N., J.S.), Lund University, Lund, Sweden; and Departamento de Bioquímica y Biología Molecular y Fisiología and Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain (P.C., M.T.P.-G.)
| | - Per Hellstrand
- From the Department of Experimental Medical Science (K.M.T., K.S., T.T.H., J.W., I.Y.M., M.E., V.M., A.H.-N., P.H., S.A.) and Department of Clinical Science (J.N., J.S.), Lund University, Lund, Sweden; and Departamento de Bioquímica y Biología Molecular y Fisiología and Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain (P.C., M.T.P.-G.)
| | - M. Teresa Pérez-García
- From the Department of Experimental Medical Science (K.M.T., K.S., T.T.H., J.W., I.Y.M., M.E., V.M., A.H.-N., P.H., S.A.) and Department of Clinical Science (J.N., J.S.), Lund University, Lund, Sweden; and Departamento de Bioquímica y Biología Molecular y Fisiología and Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain (P.C., M.T.P.-G.)
| | - Sebastian Albinsson
- From the Department of Experimental Medical Science (K.M.T., K.S., T.T.H., J.W., I.Y.M., M.E., V.M., A.H.-N., P.H., S.A.) and Department of Clinical Science (J.N., J.S.), Lund University, Lund, Sweden; and Departamento de Bioquímica y Biología Molecular y Fisiología and Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain (P.C., M.T.P.-G.)
| |
Collapse
|
37
|
Miano JM, Long X. The short and long of noncoding sequences in the control of vascular cell phenotypes. Cell Mol Life Sci 2015; 72:3457-88. [PMID: 26022065 DOI: 10.1007/s00018-015-1936-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 05/21/2015] [Accepted: 05/22/2015] [Indexed: 12/13/2022]
Abstract
The two principal cell types of importance for normal vessel wall physiology are smooth muscle cells and endothelial cells. Much progress has been made over the past 20 years in the discovery and function of transcription factors that coordinate proper differentiation of these cells and the maintenance of vascular homeostasis. More recently, the converging fields of bioinformatics, genomics, and next generation sequencing have accelerated discoveries in a number of classes of noncoding sequences, including transcription factor binding sites (TFBS), microRNA genes, and long noncoding RNA genes, each of which mediates vascular cell differentiation through a variety of mechanisms. Alterations in the nucleotide sequence of key TFBS or deviations in transcription of noncoding RNA genes likely have adverse effects on normal vascular cell phenotype and function. Here, the subject of noncoding sequences that influence smooth muscle cell or endothelial cell phenotype will be summarized as will future directions to further advance our understanding of the increasingly complex molecular circuitry governing normal vascular cell differentiation and how such information might be harnessed to combat vascular diseases.
Collapse
Affiliation(s)
- Joseph M Miano
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA,
| | | |
Collapse
|
38
|
Chen C, Wang Y, Yang S, Li H, Zhao G, Wang F, Yang L, Wang DW. MiR-320a contributes to atherogenesis by augmenting multiple risk factors and down-regulating SRF. J Cell Mol Med 2015; 19:970-85. [PMID: 25728840 PMCID: PMC4420600 DOI: 10.1111/jcmm.12483] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/07/2014] [Indexed: 01/29/2023] Open
Abstract
Atherosclerosis progress is regulated by a variety of factors. Here, we show that miR-320a, an intergenic miRNA, is markedly elevated in the peripheral blood of coronary heart disease patients and high-risk patients. Microarray analysis and qRT-PCR assays showed that circulating miRNA-320a was highly expressed in coronary artery disease patients. In vivo study showed that overexpression of miR-320a resulted in significant increase in levels of plasma lipid (total cholesterol, Triglyceride and low-density lipoprotein) and serum inflammatory cytokines (IL-6, MCP-1, sICAM, pSelectin, TNF-α and fibrinogen). In ApoE(-/-) mice, miR-320a expression attenuates endothelium cell function and promotes atherogenesis. Bioinformatics analysis identified serum response factor as a potential target for miR-320a, which was validated by luciferase reporter activity assay and western-blot in vitro and in vivo. Moreover, miR-320a expression inhibits human-derived endothelium cell proliferation and induces apoptosis. We also found that SP1 transcriptionally up-regulates hsa-miR-320a expression. Our observations indicate that miR-320a is a key regulator contributing to multiple aspects of atherogenesis.
Collapse
Affiliation(s)
- Chen Chen
- Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Wan XJ, Zhao HC, Zhang P, Huo B, Shen BR, Yan ZQ, Qi YX, Jiang ZL. Involvement of BK channel in differentiation of vascular smooth muscle cells induced by mechanical stretch. Int J Biochem Cell Biol 2015; 59:21-9. [DOI: 10.1016/j.biocel.2014.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 11/13/2014] [Accepted: 11/25/2014] [Indexed: 12/26/2022]
|
40
|
Abstract
Myocardin (MYOCD) is a potent transcriptional coactivator that functions primarily in cardiac muscle and smooth muscle through direct contacts with serum response factor (SRF) over cis elements known as CArG boxes found near a number of genes encoding for contractile, ion channel, cytoskeletal, and calcium handling proteins. Since its discovery more than 10 years ago, new insights have been obtained regarding the diverse isoforms of MYOCD expressed in cells as well as the regulation of MYOCD expression and activity through transcriptional, post-transcriptional, and post-translational processes. Curiously, there are a number of functions associated with MYOCD that appear to be independent of contractile gene expression and the CArG-SRF nucleoprotein complex. Further, perturbations in MYOCD gene expression are associated with an increasing number of diseases including heart failure, cancer, acute vessel disease, and diabetes. This review summarizes the various biological and pathological processes associated with MYOCD and offers perspectives to several challenges and future directions for further study of this formidable transcriptional coactivator.
Collapse
Affiliation(s)
- Joseph M Miano
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
41
|
Shelton EL, Ector G, Galindo CL, Hooper CW, Brown N, Wilkerson I, Pfaltzgraff ER, Paria BC, Cotton RB, Stoller JZ, Reese J. Transcriptional profiling reveals ductus arteriosus-specific genes that regulate vascular tone. Physiol Genomics 2014; 46:457-66. [PMID: 24790087 DOI: 10.1152/physiolgenomics.00171.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Failure of the ductus arteriosus (DA) to close at birth can lead to serious complications. Conversely, certain profound congenital cardiac malformations require the DA to be patent until corrective surgery can be performed. In each instance, clinicians have a very limited repertoire of therapeutic options at their disposal - indomethacin or ibuprofen to close a patent DA (PDA) and prostaglandin E1 to maintain patency of the DA. Neither treatment is specific to the DA and both may have deleterious off-target effects. Therefore, more therapeutic options specifically targeted to the DA should be considered. We hypothesized the DA possesses a unique genetic signature that would set it apart from other vessels. A microarray was used to compare the genetic profiles of the murine DA and ascending aorta (AO). Over 4,000 genes were differentially expressed between these vessels including a subset of ion channel-related genes. Specifically, the alpha and beta subunits of large-conductance calcium-activated potassium (BKCa) channels are enriched in the DA. Gain- and loss-of-function studies showed inhibition of BKCa channels caused the DA to constrict, while activation caused DA relaxation even in the presence of O2. This study identifies subsets of genes that are enriched in the DA that may be used to develop DA-specific drugs. Ion channels that regulate DA tone, including BKCa channels, are promising targets. Specifically, BKCa channel agonists like NS1619 maintain DA patency even in the presence of O2 and may be clinically useful.
Collapse
Affiliation(s)
- Elaine L Shelton
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee;
| | - Gerren Ector
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Cristi L Galindo
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee; and
| | - Christopher W Hooper
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Naoko Brown
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Irene Wilkerson
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Elise R Pfaltzgraff
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Bibhash C Paria
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Robert B Cotton
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jason Z Stoller
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jeff Reese
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
42
|
Zheng XL. Myocardin and smooth muscle differentiation. Arch Biochem Biophys 2014; 543:48-56. [DOI: 10.1016/j.abb.2013.12.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/15/2013] [Accepted: 12/18/2013] [Indexed: 01/08/2023]
|
43
|
Wystub K, Besser J, Bachmann A, Boettger T, Braun T. miR-1/133a clusters cooperatively specify the cardiomyogenic lineage by adjustment of myocardin levels during embryonic heart development. PLoS Genet 2013; 9:e1003793. [PMID: 24068960 PMCID: PMC3777988 DOI: 10.1371/journal.pgen.1003793] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 07/29/2013] [Indexed: 11/19/2022] Open
Abstract
miRNAs are small RNAs directing many developmental processes by posttranscriptional regulation of protein-coding genes. We uncovered a new role for miR-1-1/133a-2 and miR-1-2/133a-1 clusters in the specification of embryonic cardiomyocytes allowing transition from an immature state characterized by expression of smooth muscle (SM) genes to a more mature fetal phenotype. Concomitant knockout of miR-1-1/133a-2 and miR-1-2/133a-1 released suppression of the transcriptional co-activator myocardin, a major regulator of SM gene expression, but not of its binding partner SRF. Overexpression of myocardin in the embryonic heart essentially recapitulated the miR-1/133a mutant phenotype at the molecular level, arresting embryonic cardiomyocytes in an immature state. Interestingly, the majority of postulated miR-1/133a targets was not altered in double mutant mice, indicating that the ability of miR-1/133a to suppress target molecules strongly depends on the cellular context. Finally, we show that myocardin positively regulates expression of miR-1/133a, thus constituting a negative feedback loop that is essential for early cardiac development.
Collapse
Affiliation(s)
- Katharina Wystub
- Max-Planck-Institut für Herz- und Lungenforschung, Department of Cardiac Development and Remodelling, Bad Nauheim, Germany
| | - Johannes Besser
- Max-Planck-Institut für Herz- und Lungenforschung, Department of Cardiac Development and Remodelling, Bad Nauheim, Germany
| | - Angela Bachmann
- Max-Planck-Institut für Herz- und Lungenforschung, Department of Cardiac Development and Remodelling, Bad Nauheim, Germany
| | - Thomas Boettger
- Max-Planck-Institut für Herz- und Lungenforschung, Department of Cardiac Development and Remodelling, Bad Nauheim, Germany
| | - Thomas Braun
- Max-Planck-Institut für Herz- und Lungenforschung, Department of Cardiac Development and Remodelling, Bad Nauheim, Germany
| |
Collapse
|
44
|
Imamura M, Sugino Y, Long X, Slivano OJ, Nishikawa N, Yoshimura N, Miano JM. Myocardin and microRNA-1 modulate bladder activity through connexin 43 expression during post-natal development. J Cell Physiol 2013; 228:1819-26. [PMID: 23359472 DOI: 10.1002/jcp.24333] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 01/18/2013] [Indexed: 12/27/2022]
Abstract
Overactive bladder (OAB) is a pervasive clinical problem involving alterations in both neurogenic and myogenic activity. While there has been some progress in understanding neurogenic inputs to OAB, the mechanisms controlling myogenic bladder activity are unclear. We report the involvement of myocardin (MYOCD) and microRNA-1 (miR-1) in the regulation of connexin 43 (GJA1), a major gap junction in bladder smooth muscle, and the collective role of these molecules during post-natal bladder development. Wild-type (WT) mouse bladders showed normal development from early post-natal to adult including increases in bladder capacity and maintenance of normal sensitivity to cholinergic agents concurrent with down-regulation of MYOCD and several smooth muscle cell (SMC) contractile genes. Myocardin heterozygous-knockout mice exhibited reduced expression of Myocd mRNA and several SMC contractile genes concurrent with bladder SMC hypersensitivity that was mediated by gap junctions. In both cultured rat bladder SMC and in vivo bladders, MYOCD down-regulated GJA1 expression through miR-1 up-regulation. Interestingly, adult myocardin heterozygous-knockout mice showed normal increases in bladder and body weight but lower bladder capacity compared to WT mice. These results suggest that MYOCD down-regulates GJA1 expression via miR-1 up-regulation, thereby contributing to maintenance of normal sensitivity and development of bladder capacity.
Collapse
Affiliation(s)
- Masaaki Imamura
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Park WS, Heo SC, Jeon ES, Hong DH, Son YK, Ko JH, Kim HK, Lee SY, Kim JH, Han J. Functional expression of smooth muscle-specific ion channels in TGF-β(1)-treated human adipose-derived mesenchymal stem cells. Am J Physiol Cell Physiol 2013; 305:C377-91. [PMID: 23761629 DOI: 10.1152/ajpcell.00404.2012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Human adipose tissue-derived mesenchymal stem cells (hASCs) have the power to differentiate into various cell types including chondrocytes, osteocytes, adipocytes, neurons, cardiomyocytes, and smooth muscle cells. We characterized the functional expression of ion channels after transforming growth factor-β1 (TGF-β1)-induced differentiation of hASCs, providing insights into the differentiation of vascular smooth muscle cells. The treatment of hASCs with TGF-β1 dramatically increased the contraction of a collagen-gel lattice and the expression levels of specific genes for smooth muscle including α-smooth muscle actin, calponin, smooth mucle-myosin heavy chain, smoothelin-B, myocardin, and h-caldesmon. We observed Ca(2+), big-conductance Ca(2+)-activated K(+) (BKCa), and voltage-dependent K(+) (Kv) currents in TGF-β1-induced, differentiated hASCs and not in undifferentiated hASCs. The currents share the characteristics of vascular smooth muscle cells (SMCs). RT-PCR and Western blotting revealed that the L-type (Cav1.2) and T-type (Cav3.1, 3.2, and 3.3), known to be expressed in vascular SMCs, dramatically increased along with the Cavβ1 and Cavβ3 subtypes in TGF-β1-induced, differentiated hASCs. Although the expression-level changes of the β-subtype BKCa channels varied, the major α-subtype BKCa channel (KCa1.1) clearly increased in the TGF-β1-induced, differentiated hASCs. Most of the Kv subtypes, also known to be expressed in vascular SMCs, dramatically increased in the TGF-β1-induced, differentiated hASCs. Our results suggest that TGF-β1 induces the increased expression of vascular SMC-like ion channels and the differentiation of hASCs into contractile vascular SMCs.
Collapse
Affiliation(s)
- Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Turczyńska KM, Bhattachariya A, Säll J, Göransson O, Swärd K, Hellstrand P, Albinsson S. Stretch-sensitive down-regulation of the miR-144/451 cluster in vascular smooth muscle and its role in AMP-activated protein kinase signaling. PLoS One 2013; 8:e65135. [PMID: 23705032 PMCID: PMC3660603 DOI: 10.1371/journal.pone.0065135] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 04/22/2013] [Indexed: 11/25/2022] Open
Abstract
Vascular smooth muscle cells are constantly exposed to mechanical force by the blood pressure, which is thought to regulate smooth muscle growth, differentiation and contractile function. We have previously shown that the expression of microRNAs (miRNAs), small non-coding RNAs, is essential for regulation of smooth muscle phenotype including stretch-dependent contractile differentiation. In this study, we have investigated the effect of mechanical stretch on miRNA expression and the role of stretch-sensitive miRNAs for intracellular signaling in smooth muscle. MiRNA array analysis, comparing miRNA levels in stretched versus non-stretched portal veins, revealed a dramatic decrease in the miR-144/451 cluster level. Because this miRNA cluster is predicted to target AMPK pathway components, we next examined activation of this pathway. Diminished miR-144/451 expression was inversely correlated with increased phosphorylation of AMPKα at Thr172 in stretched portal vein. Similar to the effect of stretch, contractile differentiation could be induced in non-stretched portal veins by the AMPK activator, AICAR. Transfection with miR-144/451 mimics reduced the protein expression level of mediators in the AMPK pathway including MO25α, AMPK and ACC. This effect also decreased AICAR-induced activation of the AMPK signaling pathway. In conclusion, our results suggest that stretch-induced activation of AMPK in vascular smooth muscle is in part regulated by reduced levels of miR-144/451 and that this effect may play a role in promoting contractile differentiation of smooth muscle cells.
Collapse
|
47
|
Expression and promoter analysis of a highly restricted integrin alpha gene in vascular smooth muscle. Gene 2012; 513:82-9. [PMID: 23142384 DOI: 10.1016/j.gene.2012.10.073] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 09/18/2012] [Accepted: 10/29/2012] [Indexed: 11/19/2022]
Abstract
Full genome annotation requires gene expression analysis and elucidation of promoter activity. Here, we analyzed the expression and promoter of a highly restricted integrin gene, Itga8. RNase protection and quantitative RT-PCR showed Itga8 to be expressed most abundantly in vascular smooth muscle cells (SMC). Transcription start site mapping of Itga8 revealed the immediate 5' promoter region to be poorly conserved with orthologous sequences in the human genome. Further comparative sequence analysis showed a number of conserved non-coding sequence modules around the Itga8 gene. The immediate promoter region and an upstream conserved sequence module were each found to contain a CArG box, which is a binding site for serum response factor (SRF). Luciferase reporter assays revealed activity of several Itga8 promoter constructs with no apparent restricted activity to SMC types. Further, neither SRF nor its coactivator, Myocardin (MYOCD), was able to induce several distinct Itga8 promoter constructs. Transgenic mouse studies failed to reveal Itga8 promoter activity, indicating distal regulatory elements likely control this gene's in vivo expression profile. Interestingly, although the promoter was unresponsive to SRF/MYOCD, the endogenous Itga8 gene showed increases in expression upon ectopic MYOCD expression even though knockdown of SRF both in vitro and in vivo failed to demonstrate a corresponding change in Itga8. Collectively, these data demonstrate that Itga8 expression is CArG-SRF independent, but MYOCD dependent through an as yet unknown sequence module that is distal from the promoter region.
Collapse
|
48
|
Nanda V, Miano JM. Leiomodin 1, a new serum response factor-dependent target gene expressed preferentially in differentiated smooth muscle cells. J Biol Chem 2011; 287:2459-67. [PMID: 22157009 DOI: 10.1074/jbc.m111.302224] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Smooth muscle cell (SMC) differentiation is defined largely by a number of cell-restricted genes governed directly by the serum response factor (SRF)/myocardin (MYOCD) transcriptional switch. Here, we describe a new SRF/MYOCD-dependent, SMC-restricted gene known as Leiomodin 1 (Lmod1). Conventional and quantitative RT-PCRs indicate that Lmod1 mRNA expression is enriched in SMC-containing tissues of the mouse, whereas its two paralogs, Lmod2 and Lmod3, exhibit abundant expression in skeletal and cardiac muscle with very low levels in SMC-containing tissues. Western blotting and immunostaining of various adult and embryonic mouse tissues further confirm SMC-specific expression of the LMOD1 protein. Comparative genomic analysis of the human LMOD1 and LMOD2 genes with their respective mouse and rat orthologs shows high conservation between the three exons and several noncoding sequences, including the immediate 5' promoter region. Two conserved CArG boxes are present in both the LMOD1 and LMOD2 promoter regions, although LMOD1 displays much higher promoter activity and is more responsive to SRF/MYOCD stimulation. Gel shift assays demonstrate clear binding between SRF and the two CArG boxes in human LMOD1. Although the CArG boxes in LMOD1 and LMOD2 are similar, only LMOD1 displays SRF or MYOCD-dependent activation. Transgenic mouse studies reveal wild type LMOD1 promoter activity in cardiac and vascular SMC. Such activity is abolished upon mutation of both CArG boxes. Collectively, these data demonstrate that Lmod1 is a new SMC-restricted SRF/MYOCD target gene.
Collapse
Affiliation(s)
- Vivek Nanda
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | |
Collapse
|
49
|
Long X, Slivano OJ, Cowan SL, Georger MA, Lee TH, Miano JM. Smooth muscle calponin: an unconventional CArG-dependent gene that antagonizes neointimal formation. Arterioscler Thromb Vasc Biol 2011; 31:2172-80. [PMID: 21817093 PMCID: PMC3179981 DOI: 10.1161/atvbaha.111.232785] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Smooth muscle calponin (CNN1) contains multiple conserved intronic CArG elements that bind serum response factor and display enhancer activity in vitro. The objectives here were to evaluate these CArG elements for activity in transgenic mice and determine the effect of human CNN1 on injury-induced vascular remodeling. METHODS AND RESULTS Mice carrying a lacZ reporter under control of intronic CArG elements in the human CNN1 gene failed to show smooth muscle cell (SMC)-restricted activity. However, deletion of the orthologous sequences in mice abolished endogenous Cnn1 promoter activity, suggesting their necessity for in vivo Cnn1 expression. Mice carrying a 38-kb bacterial artificial chromosome (BAC) harboring the human CNN1 gene displayed SMC- restricted expression of the corresponding CNN1 protein, as measured by immunohistochemistry and Western blotting. Extensive BAC recombineering studies revealed the absolute necessity of a single intronic CArG element for correct SMC-restricted expression of human CNN1. Overexpressing human CNN1 suppressed neointimal formation following arterial injury. Mice with an identical BAC carrying mutations in CArG elements that inhibit human CNN1 expression showed outward remodeling and neointimal formation. CONCLUSIONS A single intronic CArG element is necessary but insufficient for proper CNN1 expression in vivo. CNN1 overexpression antagonizes arterial injury-induced neointimal formation.
Collapse
MESH Headings
- Animals
- Binding Sites
- Blotting, Western
- Calcium-Binding Proteins/deficiency
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- Carotid Arteries/metabolism
- Carotid Arteries/pathology
- Carotid Artery Injuries/genetics
- Carotid Artery Injuries/metabolism
- Carotid Artery Injuries/pathology
- Cell Line
- Cell Proliferation
- Chromosomes, Artificial, Bacterial
- Disease Models, Animal
- Gene Expression Regulation
- Genes, Reporter
- Humans
- Immunohistochemistry
- Introns
- Lac Operon
- Luciferases/genetics
- Luciferases/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Microfilament Proteins/deficiency
- Microfilament Proteins/genetics
- Microfilament Proteins/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Promoter Regions, Genetic
- Rats
- Serum Response Element
- Serum Response Factor/metabolism
- Transfection
- Tunica Intima/metabolism
- Tunica Intima/pathology
- Calponins
Collapse
Affiliation(s)
- Xiaochun Long
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Orazio J. Slivano
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Sarah L. Cowan
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Mary A. Georger
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Ting-Hein Lee
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Joseph M. Miano
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| |
Collapse
|
50
|
Benson CC, Zhou Q, Long X, Miano JM. Identifying functional single nucleotide polymorphisms in the human CArGome. Physiol Genomics 2011; 43:1038-48. [PMID: 21771879 DOI: 10.1152/physiolgenomics.00098.2011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Regulatory SNPs (rSNPs) reside primarily within the nonprotein coding genome and are thought to disturb normal patterns of gene expression by altering DNA binding of transcription factors. Nevertheless, despite the explosive rise in SNP association studies, there is little information as to the function of rSNPs in human disease. Serum response factor (SRF) is a widely expressed DNA-binding transcription factor that has variable affinity to at least 1,216 permutations of a 10 bp transcription factor binding site (TFBS) known as the CArG box. We developed a robust in silico bioinformatics screening method to evaluate sequences around RefSeq genes for conserved CArG boxes. Utilizing a predetermined phastCons threshold score, we identified 8,252 strand-specific CArGs within an 8 kb window around the transcription start site of 5,213 genes, including all previously defined SRF target genes. We then interrogated this CArG dataset for the presence of previously annotated common polymorphisms. We found a total of 118 unique CArG boxes harboring a SNP within the 10 bp CArG sequence and 1,130 CArG boxes with SNPs located just outside the CArG element. Gel shift and luciferase reporter assays validated SRF binding and functional activity of several new CArG boxes. Importantly, SNPs within or just outside the CArG box often resulted in altered SRF binding and activity. Collectively, these findings demonstrate a powerful approach to computationally define rSNPs in the human CArGome and provide a foundation for similar analyses of other TFBS. Such information may find utility in genetic association studies of human disease where little insight is known regarding the functionality of rSNPs.
Collapse
Affiliation(s)
- Craig C Benson
- University of Rochester Medical Center, Rochester, NY, USA
| | | | | | | |
Collapse
|