1
|
Suthakaran S, Homami S, Chavez D, Tang S, Moore SKL, Sussman C, Zhang J, Britto CJ, Prince A, May AJ, Kathiriya JJ, Hook JL. CFTR function in alveolar type 1 cells drives lung liquid secretion and host defense. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.25.645303. [PMID: 40196491 PMCID: PMC11974899 DOI: 10.1101/2025.03.25.645303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Loss of the liquid layer that lines the lung's air-facing surface underpins mechanisms of major lung diseases, but the development of therapies that restore liquid secretion is hampered by an incomplete understanding of the cell types that drive it. Here, we show CFTR function in alveolar type 1 (AT1) cells - a cell type that comprises 95% of the lung surface but is presumed to be unimportant in CFTR-related diseases - is critical to lung liquid secretion and the secretion-mediated clearance of particles and S. aureus from lung alveoli. Our findings reveal essential roles for AT1 cells in lung homeostasis and defense, and they call for a reevaluation of the role of AT1 cells in CFTR-related diseases. We suggest AT1 cells be considered key targets of secretion-restoring therapies.
Collapse
|
2
|
Hook JL, Kuebler WM. CFTR as a therapeutic target for severe lung infection. Am J Physiol Lung Cell Mol Physiol 2025; 328:L229-L238. [PMID: 39772994 DOI: 10.1152/ajplung.00289.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
Lung infection is one of the leading causes of morbidity and mortality worldwide. Even with appropriate antibiotic and antiviral treatment, mortality in hospitalized patients often exceeds 10%, highlighting the need for the development of new therapeutic strategies. Of late, cystic fibrosis transmembrane conductance regulator (CFTR) is-in addition to its well-established roles in the lung airway and extrapulmonary organs-increasingly recognized as a key regulator of alveolar homeostasis and defense. In the alveolar epithelium, CFTR mediates alveolar fluid secretion and liquid homeostasis; in the microvascular endothelium, CFTR maintains vascular barrier function. CFTR also contributes to alveolar immunity. Yet, in lung infection, diverse molecular mechanisms reduce CFTR abundance and otherwise impair its function, promoting alveolar inflammation, edema, and cell death. Preservation or restoration of CFTR function by CFTR modulator drugs thus presents a promising avenue to combat lung infection in a pathogen-independent manner.
Collapse
Affiliation(s)
- Jaime L Hook
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Meegan JE, Rizzo AN, Schmidt EP, Bastarache JA. Cellular Mechanisms of Lung Injury: Current Perspectives. Clin Chest Med 2024; 45:821-833. [PMID: 39443000 PMCID: PMC11499619 DOI: 10.1016/j.ccm.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The alveolar-capillary barrier includes microvascular endothelial and alveolar epithelial cells and their matrices, and its disruption is a critical driver of lung injury during development of acute respiratory distress syndrome. In this review, we provide an overview of the structure and function of the alveolar-capillary barrier during health and highlight several important signaling mechanisms that underlie endothelial and epithelial injury during critical illness, emphasizing areas with potential for development of therapeutic strategies targeting alveolar-capillary leak. We also emphasize the importance of biomarker and preclinical studies in developing novel therapies and highlight important areas warranting future investigation.
Collapse
Affiliation(s)
- Jamie E Meegan
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alicia N Rizzo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Bulfinch 148, Boston, MA 02114, USA
| | - Eric P Schmidt
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Bulfinch 148, Boston, MA 02114, USA
| | - Julie A Bastarache
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
4
|
Tang S, De Jesus AC, Chavez D, Suthakaran S, Moore SK, Suthakaran K, Homami S, Rathnasinghe R, May AJ, Schotsaert M, Britto CJ, Bhattacharya J, Hook JL. Rescue of alveolar wall liquid secretion blocks fatal lung injury due to influenza-staphylococcal coinfection. J Clin Invest 2023; 133:e163402. [PMID: 37581936 PMCID: PMC10541650 DOI: 10.1172/jci163402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/10/2023] [Indexed: 08/17/2023] Open
Abstract
Secondary lung infection by inhaled Staphylococcus aureus (SA) is a common and lethal event for individuals infected with influenza A virus (IAV). How IAV disrupts host defense to promote SA infection in lung alveoli, where fatal lung injury occurs, is not known. We addressed this issue using real-time determinations of alveolar responses to IAV in live, intact, perfused lungs. Our findings show that IAV infection blocked defensive alveolar wall liquid (AWL) secretion and induced airspace liquid absorption, thereby reversing normal alveolar liquid dynamics and inhibiting alveolar clearance of inhaled SA. Loss of AWL secretion resulted from inhibition of the cystic fibrosis transmembrane conductance regulator (CFTR) ion channel in the alveolar epithelium, and airspace liquid absorption was caused by stimulation of the alveolar epithelial Na+ channel (ENaC). Loss of AWL secretion promoted alveolar stabilization of inhaled SA, but rescue of AWL secretion protected against alveolar SA stabilization and fatal SA-induced lung injury in IAV-infected mice. These findings reveal a central role for AWL secretion in alveolar defense against inhaled SA and identify AWL inhibition as a critical mechanism of IAV lung pathogenesis. AWL rescue may represent a new therapeutic approach for IAV-SA coinfection.
Collapse
Affiliation(s)
- Stephanie Tang
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
- Graduate School of Biomedical Sciences
| | - Ana Cassandra De Jesus
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Deebly Chavez
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Sayahi Suthakaran
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
- Graduate School of Biomedical Sciences
| | - Sarah K.L. Moore
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Keshon Suthakaran
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Sonya Homami
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
- Graduate School of Biomedical Sciences
| | - Raveen Rathnasinghe
- Graduate School of Biomedical Sciences
- Global Health and Emerging Pathogens Institute, Department of Microbiology
| | - Alison J. May
- Department of Cell, Developmental and Regenerative Biology
- Department of Otolaryngology, and
- Institute of Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michael Schotsaert
- Global Health and Emerging Pathogens Institute, Department of Microbiology
| | - Clemente J. Britto
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jahar Bhattacharya
- Departments of Medicine and Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University Medical Center, New York, New York, USA
| | - Jaime L. Hook
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
- Global Health and Emerging Pathogens Institute, Department of Microbiology
| |
Collapse
|
5
|
Garavaglia ML, Bodega F, Porta C, Milzani A, Sironi C, Dalle-Donne I. Molecular Impact of Conventional and Electronic Cigarettes on Pulmonary Surfactant. Int J Mol Sci 2023; 24:11702. [PMID: 37511463 PMCID: PMC10380520 DOI: 10.3390/ijms241411702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
The alveolar epithelium is covered by a non-cellular layer consisting of an aqueous hypophase topped by pulmonary surfactant, a lipo-protein mixture with surface-active properties. Exposure to cigarette smoke (CS) affects lung physiology and is linked to the development of several diseases. The macroscopic effects of CS are determined by several types of cell and molecular dysfunction, which, among other consequences, lead to surfactant alterations. The purpose of this review is to summarize the published studies aimed at uncovering the effects of CS on both the lipid and protein constituents of surfactant, discussing the molecular mechanisms involved in surfactant homeostasis that are altered by CS. Although surfactant homeostasis has been the topic of several studies and some molecular pathways can be deduced from an analysis of the literature, it remains evident that many aspects of the mechanisms of action of CS on surfactant homeostasis deserve further investigation.
Collapse
Affiliation(s)
| | - Francesca Bodega
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, 20133 Milan, Italy
| | - Cristina Porta
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, 20133 Milan, Italy
| | - Aldo Milzani
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy
| | - Chiara Sironi
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, 20133 Milan, Italy
| | - Isabella Dalle-Donne
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
6
|
Zhou W, Hou Y, Yu T, Wang T, Ding Y, Nie H. Submersion and hypoxia inhibit alveolar epithelial Na + transport through ERK/NF-κB signaling pathway. Respir Res 2023; 24:117. [PMID: 37095538 PMCID: PMC10127099 DOI: 10.1186/s12931-023-02428-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/19/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Hypoxia is associated with many respiratory diseases, partly due to the accumulation of edema fluid and mucus on the surface of alveolar epithelial cell (AEC), which forms oxygen delivery barriers and is responsible for the disruption of ion transport. Epithelial sodium channel (ENaC) on the apical side of AEC plays a crucial role to maintain the electrochemical gradient of Na+ and water reabsorption, thus becomes the key point for edema fluid removal under hypoxia. Here we sought to explore the effects of hypoxia on ENaC expression and the further mechanism related, which may provide a possible treatment strategy in edema related pulmonary diseases. METHODS Excess volume of culture medium was added on the surface of AEC to simulate the hypoxic environment of alveoli in the state of pulmonary edema, supported by the evidence of increased hypoxia-inducible factor-1 expression. The protein/mRNA expressions of ENaC were detected, and extracellular signal-regulated kinase (ERK)/nuclear factor κB (NF-κB) inhibitor was applied to explore the detailed mechanism about the effects of hypoxia on epithelial ion transport in AEC. Meanwhile, mice were placed in chambers with normoxic or hypoxic (8%) condition for 24 h, respectively. The effects of hypoxia and NF-κB were assessed through alveolar fluid clearance and ENaC function by Ussing chamber assay. RESULTS Hypoxia (submersion culture mode) induced the reduction of protein/mRNA expression of ENaC, whereas increased the activation of ERK/NF-κB signaling pathway in parallel experiments using human A549 and mouse alveolar type 2 cells, respectively. Moreover, the inhibition of ERK (PD98059, 10 µM) alleviated the phosphorylation of IκB and p65, implying NF-κB as a downstream pathway involved with ERK regulation. Intriguingly, the expression of α-ENaC could be reversed by either ERK or NF-κB inhibitor (QNZ, 100 nM) under hypoxia. The alleviation of pulmonary edema was evidenced by the administration of NF-κB inhibitor, and enhancement of ENaC function was supported by recording amiloride-sensitive short-circuit currents. CONCLUSIONS The expression of ENaC was downregulated under hypoxia induced by submersion culture, which may be mediated by ERK/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yapeng Hou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Tong Yu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Tingyu Wang
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China.
| |
Collapse
|
7
|
Erfinanda L, Zou L, Gutbier B, Kneller L, Weidenfeld S, Michalick L, Lei D, Reppe K, Teixeira Alves LG, Schneider B, Zhang Q, Li C, Fatykhova D, Schneider P, Liedtke W, Sohara E, Mitchell TJ, Gruber AD, Hocke A, Hippenstiel S, Suttorp N, Olschewski A, Mall MA, Witzenrath M, Kuebler WM. Loss of endothelial CFTR drives barrier failure and edema formation in lung infection and can be targeted by CFTR potentiation. Sci Transl Med 2022; 14:eabg8577. [PMID: 36475904 DOI: 10.1126/scitranslmed.abg8577] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pneumonia is the most common cause of the acute respiratory distress syndrome (ARDS). Here, we identified loss of endothelial cystic fibrosis transmembrane conductance regulator (CFTR) as an important pathomechanism leading to lung barrier failure in pneumonia-induced ARDS. CFTR was down-regulated after Streptococcus pneumoniae infection ex vivo or in vivo in human or murine lung tissue, respectively. Analysis of isolated perfused rat lungs revealed that CFTR inhibition increased endothelial permeability in parallel with intracellular chloride ion and calcium ion concentrations ([Cl-]i and [Ca2+]i). Inhibition of the chloride ion-sensitive with-no-lysine kinase 1 (WNK1) protein with tyrphostin 47 or WNK463 replicated the effect of CFTR inhibition on endothelial permeability and endothelial [Ca2+]i, whereas WNK1 activation by temozolomide attenuated it. Endothelial [Ca2+]i transients and permeability in response to inhibition of either CFTR or WNK1 were prevented by inhibition of the cation channel transient receptor potential vanilloid 4 (TRPV4). Mice deficient in Trpv4 (Trpv4-/-) developed less lung edema and protein leak than their wild-type littermates after infection with S. pneumoniae. The CFTR potentiator ivacaftor prevented lung CFTR loss, edema, and protein leak after S. pneumoniae infection in wild-type mice. In conclusion, lung infection caused loss of CFTR that promoted lung edema formation through intracellular chloride ion accumulation, inhibition of WNK1, and subsequent disinhibition of TRPV4, resulting in endothelial calcium ion influx and vascular barrier failure. Ivacaftor prevented CFTR loss in the lungs of mice with pneumonia and may, therefore, represent a possible therapeutic strategy in people suffering from ARDS due to severe pneumonia.
Collapse
Affiliation(s)
- Lasti Erfinanda
- Institute of Physiology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Lin Zou
- Institute of Physiology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.,German Heart Center, 13353 Berlin, Germany.,Department of Endocrinology, Shanghai Pudong New Area Gongli Hospital, 200135 Shanghai, China
| | - Birgitt Gutbier
- Department of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Laura Kneller
- Department of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Sarah Weidenfeld
- Institute of Physiology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Laura Michalick
- Institute of Physiology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Disi Lei
- Institute of Physiology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.,German Heart Center, 13353 Berlin, Germany
| | - Katrin Reppe
- Department of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Luiz Gustavo Teixeira Alves
- Department of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Bill Schneider
- Department of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Qi Zhang
- Institute of Physiology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Caihong Li
- Institute of Physiology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Diana Fatykhova
- Department of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Paul Schneider
- Department for General and Thoracic Surgery, DRK Clinics, 13359 Berlin, Germany
| | - Wolfgang Liedtke
- Departments of Neurology, Neurobiology, and Clinics for Pain and Palliative Care, Duke University Medical Center, Durham, NC 27710, USA
| | - Eisei Sohara
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Timothy J Mitchell
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15-2TT, UK
| | - Achim D Gruber
- Institute of Veterinary Pathology, Freie Universität Berlin, 14163 Berlin, Germany
| | - Andreas Hocke
- Department of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.,German Center for Lung Research (DZL), associated partner site, 10117 Berlin, Germany
| | - Stefan Hippenstiel
- Department of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.,German Center for Lung Research (DZL), associated partner site, 10117 Berlin, Germany
| | - Norbert Suttorp
- Department of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.,German Center for Lung Research (DZL), associated partner site, 10117 Berlin, Germany
| | - Andrea Olschewski
- Experimental Anaesthesiology, Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Marcus A Mall
- German Center for Lung Research (DZL), associated partner site, 10117 Berlin, Germany.,Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Martin Witzenrath
- Department of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.,German Center for Lung Research (DZL), associated partner site, 10117 Berlin, Germany
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.,German Center for Lung Research (DZL), associated partner site, 10117 Berlin, Germany
| |
Collapse
|
8
|
Hill DB, Button B, Rubinstein M, Boucher RC. Physiology and pathophysiology of human airway mucus. Physiol Rev 2022; 102:1757-1836. [PMID: 35001665 PMCID: PMC9665957 DOI: 10.1152/physrev.00004.2021] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 01/27/2023] Open
Abstract
The mucus clearance system is the dominant mechanical host defense system of the human lung. Mucus is cleared from the lung by cilia and airflow, including both two-phase gas-liquid pumping and cough-dependent mechanisms, and mucus transport rates are heavily dependent on mucus concentration. Importantly, mucus transport rates are accurately predicted by the gel-on-brush model of the mucociliary apparatus from the relative osmotic moduli of the mucus and periciliary-glycocalyceal (PCL-G) layers. The fluid available to hydrate mucus is generated by transepithelial fluid transport. Feedback interactions between mucus concentrations and cilia beating, via purinergic signaling, coordinate Na+ absorptive vs Cl- secretory rates to maintain mucus hydration in health. In disease, mucus becomes hyperconcentrated (dehydrated). Multiple mechanisms derange the ion transport pathways that normally hydrate mucus in muco-obstructive lung diseases, e.g., cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), non-CF bronchiectasis (NCFB), and primary ciliary dyskinesia (PCD). A key step in muco-obstructive disease pathogenesis is the osmotic compression of the mucus layer onto the airway surface with the formation of adherent mucus plaques and plugs, particularly in distal airways. Mucus plaques create locally hypoxic conditions and produce airflow obstruction, inflammation, infection, and, ultimately, airway wall damage. Therapies to clear adherent mucus with hydrating and mucolytic agents are rational, and strategies to develop these agents are reviewed.
Collapse
Affiliation(s)
- David B Hill
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina
| | - Brian Button
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael Rubinstein
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Mechanical Engineering and Materials Science, Biomedical Engineering, Physics, and Chemistry, Duke University, Durham, North Carolina
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
9
|
Sanches Santos Rizzo Zuttion M, Moore SKL, Chen P, Beppu AK, Hook JL. New Insights into the Alveolar Epithelium as a Driver of Acute Respiratory Distress Syndrome. Biomolecules 2022; 12:biom12091273. [PMID: 36139112 PMCID: PMC9496395 DOI: 10.3390/biom12091273] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 11/29/2022] Open
Abstract
The alveolar epithelium serves as a barrier between the body and the external environment. To maintain efficient gas exchange, the alveolar epithelium has evolved to withstand and rapidly respond to an assortment of inhaled, injury-inducing stimuli. However, alveolar damage can lead to loss of alveolar fluid barrier function and exuberant, non-resolving inflammation that manifests clinically as acute respiratory distress syndrome (ARDS). This review discusses recent discoveries related to mechanisms of alveolar homeostasis, injury, repair, and regeneration, with a contemporary emphasis on virus-induced lung injury. In addition, we address new insights into how the alveolar epithelium coordinates injury-induced lung inflammation and review maladaptive lung responses to alveolar damage that drive ARDS and pathologic lung remodeling.
Collapse
Affiliation(s)
- Marilia Sanches Santos Rizzo Zuttion
- Women’s Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sarah Kathryn Littlehale Moore
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter Chen
- Women’s Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Andrew Kota Beppu
- Women’s Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jaime Lynn Hook
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence:
| |
Collapse
|
10
|
Sengupta A, Roldan N, Kiener M, Froment L, Raggi G, Imler T, de Maddalena L, Rapet A, May T, Carius P, Schneider-Daum N, Lehr CM, Kruithof-de Julio M, Geiser T, Marti TM, Stucki JD, Hobi N, Guenat OT. A New Immortalized Human Alveolar Epithelial Cell Model to Study Lung Injury and Toxicity on a Breathing Lung-On-Chip System. FRONTIERS IN TOXICOLOGY 2022; 4:840606. [PMID: 35832493 PMCID: PMC9272139 DOI: 10.3389/ftox.2022.840606] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
The evaluation of inhalation toxicity, drug safety and efficacy assessment, as well as the investigation of complex disease pathomechanisms, are increasingly relying on in vitro lung models. This is due to the progressive shift towards human-based systems for more predictive and translational research. While several cellular models are currently available for the upper airways, modelling the distal alveolar region poses several constraints that make the standardization of reliable alveolar in vitro models relatively difficult. In this work, we present a new and reproducible alveolar in vitro model, that combines a human derived immortalized alveolar epithelial cell line (AXiAEC) and organ-on-chip technology mimicking the lung alveolar biophysical environment (AXlung-on-chip). The latter mimics key features of the in vivo alveolar milieu: breathing-like 3D cyclic stretch (10% linear strain, 0.2 Hz frequency) and an ultrathin, porous and elastic membrane. AXiAECs cultured on-chip were characterized for their alveolar epithelial cell markers by gene and protein expression. Cell barrier properties were examined by TER (Transbarrier Electrical Resistance) measurement and tight junction formation. To establish a physiological model for the distal lung, AXiAECs were cultured for long-term at air-liquid interface (ALI) on-chip. To this end, different stages of alveolar damage including inflammation (via exposure to bacterial lipopolysaccharide) and the response to a profibrotic mediator (via exposure to Transforming growth factor β1) were analyzed. In addition, the expression of relevant host cell factors involved in SARS-CoV-2 infection was investigated to evaluate its potential application for COVID-19 studies. This study shows that AXiAECs cultured on the AXlung-on-chip exhibit an enhanced in vivo-like alveolar character which is reflected into: 1) Alveolar type 1 (AT1) and 2 (AT2) cell specific phenotypes, 2) tight barrier formation (with TER above 1,000 Ω cm2) and 3) reproducible long-term preservation of alveolar characteristics in nearly physiological conditions (co-culture, breathing, ALI). To the best of our knowledge, this is the first time that a primary derived alveolar epithelial cell line on-chip representing both AT1 and AT2 characteristics is reported. This distal lung model thereby represents a valuable in vitro tool to study inhalation toxicity, test safety and efficacy of drug compounds and characterization of xenobiotics.
Collapse
Affiliation(s)
- Arunima Sengupta
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | - Nuria Roldan
- Alveolix AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | - Mirjam Kiener
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research DBMR, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Laurène Froment
- Alveolix AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | - Giulia Raggi
- Alveolix AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | - Theo Imler
- Alveolix AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | | | - Aude Rapet
- Alveolix AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | | | - Patrick Carius
- Department of Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany.,Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany
| | - Nicole Schneider-Daum
- Department of Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany.,Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany
| | - Claus-Michael Lehr
- Department of Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany.,Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany
| | - Marianna Kruithof-de Julio
- Department for BioMedical Research DBMR, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Thomas Geiser
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Thomas Michael Marti
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Janick D Stucki
- Alveolix AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | - Nina Hobi
- Alveolix AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | - Olivier T Guenat
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland.,Department of Pulmonary Medicine, Inselspital, Bern University Hospital, Bern, Switzerland.,Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
11
|
Xi M, Shen D, Dai P, Han G, Li C. TBHQ alleviates pyroptosis and necroptosis in chicken alveolar epithelial cells induced by fine particulate matter from broiler houses. Poult Sci 2022; 101:101593. [PMID: 34963088 PMCID: PMC8717573 DOI: 10.1016/j.psj.2021.101593] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/30/2021] [Accepted: 11/04/2021] [Indexed: 01/23/2023] Open
Abstract
Fine particulate matter (PM2.5) from poultry houses has adverse effects on the health of animals and workers. Tert-butylhydroquinone (TBHQ), an antioxidant, is widely used in feed additives. The present study investigated the effects of TBHQ on broiler house PM2.5-induced damage in chicken primary alveolar epithelial cells (AECII) extracted from 16-day-old chicken embryos using the method of differential adhesion. AECII were exposed to PM2.5 and TBHQ alone or in combination, and then, cell membrane integrity, pyroptosis, and necroptosis were detected. Our results showed that PM2.5 from broiler houses caused cell rupture and loss of cell membrane integrity. This result was confirmed by the obvious increases in lactate dehydrogenase (LDH) release and propidium iodide (PI)-positive cells compared to the control group. In addition, the intracellular reactive oxygen species (ROS) levels and the expression levels of pyroptosis-related genes (NLRP3, IL-18, IL-1β) and necroptosis-related genes (RIPK3) were also significantly enhanced. However, TBHQ significantly inhibited intracellular ROS, improved cell viability, and reduced the release of LDH and the number of PI-positive cells compared to those in the PM2.5 group. The expression levels of pyroptosis-related genes (Caspase-1, NLRP3, IL-18, IL-1β) and necroptosis-related genes (RIPK3) were also significantly decreased in the co-treatment group. In summary, these results indicated that TBHQ can alleviate PM2.5-mediated cell pyroptosis and necroptosis in chicken AECII and provide a basis for overcoming the danger that air pollutants from broiler houses pose to the health of chickens.
Collapse
Affiliation(s)
- Mengxue Xi
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Dan Shen
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Pengyuan Dai
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Guofeng Han
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunmei Li
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
12
|
Palma AG, Kotsias BA. The Effect of Dynasore Upon the Negative Interaction Between ENaC and CFTR Channels in Xenopus laevis Oocytes. J Membr Biol 2022; 255:61-69. [DOI: 10.1007/s00232-021-00212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/22/2021] [Indexed: 11/29/2022]
|
13
|
Orr JC, Hynds RE. Stem Cell-derived Respiratory Epithelial Cell Cultures as Human Disease Models. Am J Respir Cell Mol Biol 2021; 64:657-668. [PMID: 33428856 PMCID: PMC8456877 DOI: 10.1165/rcmb.2020-0440tr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
Advances in stem cell biology and the understanding of factors that determine lung stem cell self-renewal have enabled long-term in vitro culture of human lung cells derived from airway basal and alveolar type II cells. Improved capability to expand and study primary cells long term, including in clonal cultures that are recently derived from a single cell, will allow experiments that address fundamental questions about lung homeostasis and repair, as well as translational questions in asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, and lung cancer research. Here, we provide a brief history of postnatal lung epithelial cell culture and describe recent methodological advances. We further discuss the applications of primary cultures in defining "normal" epithelium, in modeling lung disease, and in future cell therapies.
Collapse
Affiliation(s)
- Jessica C Orr
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, and
| | - Robert E Hynds
- UCL Cancer Institute, University College London, London, United Kingdom
| |
Collapse
|
14
|
Llamazares-Prada M, Espinet E, Mijošek V, Schwartz U, Lutsik P, Tamas R, Richter M, Behrendt A, Pohl ST, Benz NP, Muley T, Warth A, Heußel CP, Winter H, Landry JJM, Herth FJ, Mertens TC, Karmouty-Quintana H, Koch I, Benes V, Korbel JO, Waszak SM, Trumpp A, Wyatt DM, Stahl HF, Plass C, Jurkowska RZ. Versatile workflow for cell type-resolved transcriptional and epigenetic profiles from cryopreserved human lung. JCI Insight 2021; 6:140443. [PMID: 33630765 PMCID: PMC8026197 DOI: 10.1172/jci.insight.140443] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
Complexity of lung microenvironment and changes in cellular composition during disease make it exceptionally hard to understand molecular mechanisms driving development of chronic lung diseases. Although recent advances in cell type-resolved approaches hold great promise for studying complex diseases, their implementation relies on local access to fresh tissue, as traditional tissue storage methods do not allow viable cell isolation. To overcome these hurdles, we developed a versatile workflow that allows storage of lung tissue with high viability, permits thorough sample quality check before cell isolation, and befits sequencing-based profiling. We demonstrate that cryopreservation enables isolation of multiple cell types from both healthy and diseased lungs. Basal cells from cryopreserved airways retain their differentiation ability, indicating that cellular identity is not altered by cryopreservation. Importantly, using RNA sequencing and EPIC Array, we show that gene expression and DNA methylation signatures are preserved upon cryopreservation, emphasizing the suitability of our workflow for omics profiling of lung cells. Moreover, we obtained high-quality single-cell RNA-sequencing data of cells from cryopreserved human lungs, demonstrating that cryopreservation empowers single-cell approaches. Overall, thanks to its simplicity, our workflow is well suited for prospective tissue collection by academic collaborators and biobanks, opening worldwide access to viable human tissue.
Collapse
Affiliation(s)
| | - Elisa Espinet
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
| | | | | | - Pavlo Lutsik
- Division of Cancer Epigenomics, DKFZ, Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | | | | | | | | | | | - Thomas Muley
- Translational Research Unit, Thoraxklinik, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center, Member of the DZL, Heidelberg, Germany
| | - Arne Warth
- Translational Research Unit, Thoraxklinik, University Hospital Heidelberg, Heidelberg, Germany
| | - Claus Peter Heußel
- Translational Lung Research Center, Member of the DZL, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik, University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Hauke Winter
- Translational Lung Research Center, Member of the DZL, Heidelberg, Germany
- Department of Surgery, Thoraxklinik, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Felix J.F. Herth
- Translational Research Unit, Thoraxklinik, University Hospital Heidelberg, Heidelberg, Germany
- Department of Pneumology and Critical Care Medicine and Translational Research Unit, Thoraxklinik, University Hospital Heidelberg, Heidelberg, Germany
| | - Tinne C.J. Mertens
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, USA
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, USA
| | - Ina Koch
- Asklepios Biobank for Lung Diseases, Department of Thoracic Surgery, Asklepios Fachkliniken München-Gauting, DZL, Gauting, Germany
| | | | | | | | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
| | | | - Heiko F. Stahl
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, DKFZ, Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Renata Z. Jurkowska
- BioMed X Institute, Heidelberg, Germany
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
15
|
Chen Y, Xue Y, Jin Y, Ji H. Lung stem cells in regeneration and tumorigenesis. J Genet Genomics 2021; 48:268-276. [PMID: 33896738 DOI: 10.1016/j.jgg.2020.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/11/2020] [Accepted: 12/30/2020] [Indexed: 12/25/2022]
Abstract
Adult lung is a highly quiescent organ, with extremely low cell turnover frequency. However, emerging evidences support the occurrence of repair and regeneration in pulmonary epithelia in response to various injuries. Lung regeneration mainly depends on the proliferation of regionally distributed pulmonary stem cells that re-enter the cell cycle. Genetic lineage-tracing approaches help to track the lung epithelial differentiation and/or de-differentiation path, and single-cell transcriptomic technique reveals the essential molecular signaling involved in lung regeneration. Dysregulation of the molecular signaling that balances quiescence and self-renewal leads to the transformation of lung stem cells, and thus promotes lung cancer development. Interestingly, different subtypes of lung cancer share common cells of origin and the pathological transition among various subtypes is responsible for drug resistance in the clinic. In this review, we summarize the recent understanding of lung stem cells in regeneration and tumorigenesis as well as related molecular mechanisms, with the hope to provide helpful insights for clinical treatments of respiratory diseases.
Collapse
Affiliation(s)
- Yuting Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yun Xue
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yujuan Jin
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China.
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Pulmonary Hospital, Tongji University, Shanghai 200092, China.
| |
Collapse
|
16
|
King NE, Suzuki S, Barillà C, Hawkins FJ, Randell SH, Reynolds SD, Stripp BR, Davis BR. Correction of Airway Stem Cells: Genome Editing Approaches for the Treatment of Cystic Fibrosis. Hum Gene Ther 2020; 31:956-972. [PMID: 32741223 PMCID: PMC7495916 DOI: 10.1089/hum.2020.160] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/30/2020] [Indexed: 12/26/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease caused by variations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Although CF affects multiple organs, the primary cause of mortality is respiratory failure resulting from poor clearance of hyperviscous secretions and subsequent airway infection. Recently developed CFTR modulators provide significant therapeutic benefit to the majority of CF individuals. However, treatments directed at the underlying cause are needed for the ∼7% of CF patients who are not expected to be responsive to these modulators. Genome editing can restore the native CFTR genetic sequence and function to mutant cells, representing an approach to establish durable physiologic CFTR correction. Although editing the CFTR gene in various airway cell types may transiently restore CFTR activity, effort is focused on editing airway basal stem/progenitor cells, since their correction would allow appropriate and durable expression of CFTR in stem cell-derived epithelial cell types. Substantial progress has been made to directly correct airway basal cells in vitro, theoretically enabling transplantation of autologous corrected cells to regenerate an airway with CFTR functional cells. Another approach to create autologous, gene-edited airway basal cells is derivation of CF donor-specific induced pluripotent stem cells, correction of the CFTR gene, and subsequent directed differentiation to airway basal cells. Further work is needed to translate these advances by developing effective transplantation methods. Alternatively, gene editing in vivo may enable CFTR correction. However, this approach will require robust delivery methods ensuring that basal cells are efficiently targeted and corrected. Recent advances in gene editing-based therapies provide hope that the genetic underpinning of CF can be durably corrected in airway epithelial stem cells, thereby preventing or treating lung disease in all people with CF.
Collapse
Affiliation(s)
- Nicholas E. King
- Center for Stem Cell and Regenerative Medicine, Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Shingo Suzuki
- Center for Stem Cell and Regenerative Medicine, Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Cristina Barillà
- Center for Stem Cell and Regenerative Medicine, Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Finn J. Hawkins
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Scott H. Randell
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Susan D. Reynolds
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Barry R. Stripp
- Lung and Regenerative Medicine Institutes, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Brian R. Davis
- Center for Stem Cell and Regenerative Medicine, Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
17
|
Diem K, Fauler M, Fois G, Hellmann A, Winokurow N, Schumacher S, Kranz C, Frick M. Mechanical stretch activates piezo1 in caveolae of alveolar type I cells to trigger ATP release and paracrine stimulation of surfactant secretion from alveolar type II cells. FASEB J 2020; 34:12785-12804. [PMID: 32744386 DOI: 10.1096/fj.202000613rrr] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022]
Abstract
Secretion of pulmonary surfactant in the alveoli of the lungs is essential to maintain lung function. Stretching of alveoli during lung inflation is the main trigger for surfactant secretion. Yet, the molecular mechanisms how mechanical distension of alveoli results in surfactant secretion are still elusive. The alveolar epithelium consists of alveolar epithelial type I (ATI) and surfactant secreting type II (ATII) cells. ATI, but not ATII cells, express caveolae, small plasma membrane invaginations that can respond to plasma membrane stresses and serve mechanotransductive roles. Within this study, we investigated the role of caveolae as mechanosensors in the alveolus. We generated a human caveolin-1 knockout ATI cell (hAELVicav-/- ) using CRISPR/Cas9. Wildtype (hAELViwt ) and hAELVicav-/- cells grown on flexible membranes responded to increasing stretch amplitudes with rises in intracellular Ca2+ . The response was less frequent and started at higher stretch amplitudes in hAELVicav-/- cells. Stretch-induced Ca2+ -signals depended on Ca2+ -entry via piezo1 channels, localized within caveolae in hAELViwt and primary ATI cells. Ca2+ -entry via piezo1 activated pannexin-1 hemichannels resulting in ATP release from ATI cells. ATP release was reduced in hAELVicav-/- cells. In co-cultures resembling the alveolar epithelium, released ATP stimulated Ca2+ signals and surfactant secretion from neighboring ATII cells when co-cultured with hAELViwt but not hAELVicav-/- cells. In summary, we propose that caveolae in ATI cells are mechanosensors within alveoli regulating stretch-induced surfactant secretion from ATII cells.
Collapse
Affiliation(s)
- Kathrin Diem
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Michael Fauler
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Giorgio Fois
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Andreas Hellmann
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany
| | - Natalie Winokurow
- Institute of Molecular and Cellular Anatomy, Ulm University, Ulm, Germany
| | - Stefan Schumacher
- Institute of Molecular and Cellular Anatomy, Ulm University, Ulm, Germany
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Ulm, Germany
| |
Collapse
|
18
|
Hou YJ, Okuda K, Edwards CE, Martinez DR, Asakura T, Dinnon KH, Kato T, Lee RE, Yount BL, Mascenik TM, Chen G, Olivier KN, Ghio A, Tse LV, Leist SR, Gralinski LE, Schäfer A, Dang H, Gilmore R, Nakano S, Sun L, Fulcher ML, Livraghi-Butrico A, Nicely NI, Cameron M, Cameron C, Kelvin DJ, de Silva A, Margolis DM, Markmann A, Bartelt L, Zumwalt R, Martinez FJ, Salvatore SP, Borczuk A, Tata PR, Sontake V, Kimple A, Jaspers I, O'Neal WK, Randell SH, Boucher RC, Baric RS. SARS-CoV-2 Reverse Genetics Reveals a Variable Infection Gradient in the Respiratory Tract. Cell 2020; 182:429-446.e14. [PMID: 32526206 DOI: 10.1016/j.cell.2020.05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/11/2020] [Accepted: 05/20/2020] [Indexed: 05/26/2023]
Abstract
The mode of acquisition and causes for the variable clinical spectrum of coronavirus disease 2019 (COVID-19) remain unknown. We utilized a reverse genetics system to generate a GFP reporter virus to explore severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogenesis and a luciferase reporter virus to demonstrate sera collected from SARS and COVID-19 patients exhibited limited cross-CoV neutralization. High-sensitivity RNA in situ mapping revealed the highest angiotensin-converting enzyme 2 (ACE2) expression in the nose with decreasing expression throughout the lower respiratory tract, paralleled by a striking gradient of SARS-CoV-2 infection in proximal (high) versus distal (low) pulmonary epithelial cultures. COVID-19 autopsied lung studies identified focal disease and, congruent with culture data, SARS-CoV-2-infected ciliated and type 2 pneumocyte cells in airway and alveolar regions, respectively. These findings highlight the nasal susceptibility to SARS-CoV-2 with likely subsequent aspiration-mediated virus seeding to the lung in SARS-CoV-2 pathogenesis. These reagents provide a foundation for investigations into virus-host interactions in protective immunity, host susceptibility, and virus pathogenesis.
Collapse
Affiliation(s)
- Yixuan J Hou
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenichi Okuda
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Caitlin E Edwards
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David R Martinez
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Takanori Asakura
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenneth H Dinnon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Takafumi Kato
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rhianna E Lee
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Boyd L Yount
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Teresa M Mascenik
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gang Chen
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenneth N Olivier
- Laboratory of Chronic Airway Infection, Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrew Ghio
- National Health and Environmental Effects Research Laboratory, Environmental Protection Agency, Chapel Hill, NC, USA
| | - Longping V Tse
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lisa E Gralinski
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hong Dang
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rodney Gilmore
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Satoko Nakano
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ling Sun
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - M Leslie Fulcher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Nathan I Nicely
- Protein Expression and Purification Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mark Cameron
- Department of Population and Quantitative Health Science, Case Western Reserve University, Cleveland, OH, USA
| | - Cheryl Cameron
- Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA
| | - David J Kelvin
- Department of Microbiology and Immunology, Canadian Center for Vaccinology, Dalhousie University, Halifax, NS, Canada; Laboratory of Immunology, Shantou University Medical College, Shantou, Guangdong, China
| | - Aravinda de Silva
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David M Margolis
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alena Markmann
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Luther Bartelt
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ross Zumwalt
- Department of Pathology, University of New Mexico, Albuquerque, NM, USA
| | - Fernando J Martinez
- Division of Pulmonary and Critical Care Medicine, Joan & Sanford I. Weill Medical College of Cornell University, New York, NY, USA
| | - Steven P Salvatore
- Department of Pathology, Joan & Sanford I. Weill Medical College of Cornell University, New York, NY, USA
| | - Alain Borczuk
- Department of Pathology, Joan & Sanford I. Weill Medical College of Cornell University, New York, NY, USA
| | - Purushothama R Tata
- Department of Cell Biology, Regeneration Next Initiative, Duke University Medical Center, Durham, NC, USA
| | - Vishwaraj Sontake
- Department of Cell Biology, Regeneration Next Initiative, Duke University Medical Center, Durham, NC, USA
| | - Adam Kimple
- Department of Otolaryngology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ilona Jaspers
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wanda K O'Neal
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Scott H Randell
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
19
|
Hou YJ, Okuda K, Edwards CE, Martinez DR, Asakura T, Dinnon KH, Kato T, Lee RE, Yount BL, Mascenik TM, Chen G, Olivier KN, Ghio A, Tse LV, Leist SR, Gralinski LE, Schäfer A, Dang H, Gilmore R, Nakano S, Sun L, Fulcher ML, Livraghi-Butrico A, Nicely NI, Cameron M, Cameron C, Kelvin DJ, de Silva A, Margolis DM, Markmann A, Bartelt L, Zumwalt R, Martinez FJ, Salvatore SP, Borczuk A, Tata PR, Sontake V, Kimple A, Jaspers I, O'Neal WK, Randell SH, Boucher RC, Baric RS. SARS-CoV-2 Reverse Genetics Reveals a Variable Infection Gradient in the Respiratory Tract. Cell 2020; 182:429-446.e14. [PMID: 32526206 PMCID: PMC7250779 DOI: 10.1016/j.cell.2020.05.042] [Citation(s) in RCA: 1137] [Impact Index Per Article: 227.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/11/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023]
Abstract
The mode of acquisition and causes for the variable clinical spectrum of coronavirus disease 2019 (COVID-19) remain unknown. We utilized a reverse genetics system to generate a GFP reporter virus to explore severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogenesis and a luciferase reporter virus to demonstrate sera collected from SARS and COVID-19 patients exhibited limited cross-CoV neutralization. High-sensitivity RNA in situ mapping revealed the highest angiotensin-converting enzyme 2 (ACE2) expression in the nose with decreasing expression throughout the lower respiratory tract, paralleled by a striking gradient of SARS-CoV-2 infection in proximal (high) versus distal (low) pulmonary epithelial cultures. COVID-19 autopsied lung studies identified focal disease and, congruent with culture data, SARS-CoV-2-infected ciliated and type 2 pneumocyte cells in airway and alveolar regions, respectively. These findings highlight the nasal susceptibility to SARS-CoV-2 with likely subsequent aspiration-mediated virus seeding to the lung in SARS-CoV-2 pathogenesis. These reagents provide a foundation for investigations into virus-host interactions in protective immunity, host susceptibility, and virus pathogenesis.
Collapse
Affiliation(s)
- Yixuan J Hou
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenichi Okuda
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Caitlin E Edwards
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David R Martinez
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Takanori Asakura
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenneth H Dinnon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Takafumi Kato
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rhianna E Lee
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Boyd L Yount
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Teresa M Mascenik
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gang Chen
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenneth N Olivier
- Laboratory of Chronic Airway Infection, Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrew Ghio
- National Health and Environmental Effects Research Laboratory, Environmental Protection Agency, Chapel Hill, NC, USA
| | - Longping V Tse
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lisa E Gralinski
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hong Dang
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rodney Gilmore
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Satoko Nakano
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ling Sun
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - M Leslie Fulcher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Nathan I Nicely
- Protein Expression and Purification Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mark Cameron
- Department of Population and Quantitative Health Science, Case Western Reserve University, Cleveland, OH, USA
| | - Cheryl Cameron
- Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA
| | - David J Kelvin
- Department of Microbiology and Immunology, Canadian Center for Vaccinology, Dalhousie University, Halifax, NS, Canada; Laboratory of Immunology, Shantou University Medical College, Shantou, Guangdong, China
| | - Aravinda de Silva
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David M Margolis
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alena Markmann
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Luther Bartelt
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ross Zumwalt
- Department of Pathology, University of New Mexico, Albuquerque, NM, USA
| | - Fernando J Martinez
- Division of Pulmonary and Critical Care Medicine, Joan & Sanford I. Weill Medical College of Cornell University, New York, NY, USA
| | - Steven P Salvatore
- Department of Pathology, Joan & Sanford I. Weill Medical College of Cornell University, New York, NY, USA
| | - Alain Borczuk
- Department of Pathology, Joan & Sanford I. Weill Medical College of Cornell University, New York, NY, USA
| | - Purushothama R Tata
- Department of Cell Biology, Regeneration Next Initiative, Duke University Medical Center, Durham, NC, USA
| | - Vishwaraj Sontake
- Department of Cell Biology, Regeneration Next Initiative, Duke University Medical Center, Durham, NC, USA
| | - Adam Kimple
- Department of Otolaryngology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ilona Jaspers
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wanda K O'Neal
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Scott H Randell
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
20
|
Wirsching E, Fauler M, Fois G, Frick M. P2 Purinergic Signaling in the Distal Lung in Health and Disease. Int J Mol Sci 2020; 21:E4973. [PMID: 32674494 PMCID: PMC7404078 DOI: 10.3390/ijms21144973] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
The distal lung provides an intricate structure for gas exchange in mammalian lungs. Efficient gas exchange depends on the functional integrity of lung alveoli. The cells in the alveolar tissue serve various functions to maintain alveolar structure, integrity and homeostasis. Alveolar epithelial cells secrete pulmonary surfactant, regulate the alveolar surface liquid (ASL) volume and, together with resident and infiltrating immune cells, provide a powerful host-defense system against a multitude of particles, microbes and toxicants. It is well established that all of these cells express purinergic P2 receptors and that purinergic signaling plays important roles in maintaining alveolar homeostasis. Therefore, it is not surprising that purinergic signaling also contributes to development and progression of severe pathological conditions like pulmonary inflammation, acute lung injury/acute respiratory distress syndrome (ALI/ARDS) and pulmonary fibrosis. Within this review we focus on the role of P2 purinergic signaling in the distal lung in health and disease. We recapitulate the expression of P2 receptors within the cells in the alveoli, the possible sources of ATP (adenosine triphosphate) within alveoli and the contribution of purinergic signaling to regulation of surfactant secretion, ASL volume and composition, as well as immune homeostasis. Finally, we summarize current knowledge of the role for P2 signaling in infectious pneumonia, ALI/ARDS and idiopathic pulmonary fibrosis (IPF).
Collapse
Affiliation(s)
| | | | | | - Manfred Frick
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (E.W.); (M.F.); (G.F.)
| |
Collapse
|
21
|
Tan JJ, Boudreault F, Adam D, Brochiero E, Grygorczyk R. Type 2 secretory cells are primary source of ATP release in mechanically stretched lung alveolar cells. Am J Physiol Lung Cell Mol Physiol 2019; 318:L49-L58. [PMID: 31596106 DOI: 10.1152/ajplung.00321.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Extracellular ATP and its metabolites are potent paracrine modulators of lung alveolar cell function, including surfactant secretion and fluid transport, but the sources and mechanism of intra-alveolar ATP release remain unclear. To determine the contribution of gas-exchanging alveolar type 1 (AT1) and surfactant-secreting type 2 (AT2) cells to stretch-induced ATP release, we used quantitative real-time luminescence ATP imaging and rat primary alveolar cells cultured on silicon substrate for 2-7 days. When cultured on solid support, primary AT2 cells progressively transdifferentiated into AT1-like cells with ~20% of cells showing AT1 phenotype by day 2-3 (AT2:AT1 ≈ 4:1), while on day 7, the AT2:AT1 cell ratio was reversed with up to 80% of the cells displaying characteristics of AT1 cells. Stretch (1 s, 5-35%) induced ATP release from AT2/AT1 cell cultures, and it was highest on days 2 and 3 but declined in older cultures. ATP release tightly correlated with the number of remaining AT2 cells in culture, consistent with ~10-fold lower ATP release by AT1 than AT2 cells. ATP release was unaffected by inhibitors of putative ATP channels carbenoxolone and probenecid but was significantly diminished in cells loaded with calcium chelator BAPTA. These pharmacological modulators had similar effects on stretch-induced intracellular Ca2+ responses measured by Fura2 fluorescence. The study revealed that AT2 cells are the primary source of stretch-induced ATP release in heterocellular AT2/AT1 cell cultures, suggesting similar contribution in intact alveoli. Our results support a role for calcium-regulated mechanism but not ATP-conducting channels in ATP release by alveolar epithelial cells.
Collapse
Affiliation(s)
- Ju Jing Tan
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.,Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Francis Boudreault
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Damien Adam
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.,Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Emmanuelle Brochiero
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.,Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Ryszard Grygorczyk
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.,Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
22
|
Moss J, Magenheim J, Neiman D, Zemmour H, Loyfer N, Korach A, Samet Y, Maoz M, Druid H, Arner P, Fu KY, Kiss E, Spalding KL, Landesberg G, Zick A, Grinshpun A, Shapiro AMJ, Grompe M, Wittenberg AD, Glaser B, Shemer R, Kaplan T, Dor Y. Comprehensive human cell-type methylation atlas reveals origins of circulating cell-free DNA in health and disease. Nat Commun 2018; 9:5068. [PMID: 30498206 PMCID: PMC6265251 DOI: 10.1038/s41467-018-07466-6] [Citation(s) in RCA: 601] [Impact Index Per Article: 85.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/05/2018] [Indexed: 01/12/2023] Open
Abstract
Methylation patterns of circulating cell-free DNA (cfDNA) contain rich information about recent cell death events in the body. Here, we present an approach for unbiased determination of the tissue origins of cfDNA, using a reference methylation atlas of 25 human tissues and cell types. The method is validated using in silico simulations as well as in vitro mixes of DNA from different tissue sources at known proportions. We show that plasma cfDNA of healthy donors originates from white blood cells (55%), erythrocyte progenitors (30%), vascular endothelial cells (10%) and hepatocytes (1%). Deconvolution of cfDNA from patients reveals tissue contributions that agree with clinical findings in sepsis, islet transplantation, cancer of the colon, lung, breast and prostate, and cancer of unknown primary. We propose a procedure which can be easily adapted to study the cellular contributors to cfDNA in many settings, opening a broad window into healthy and pathologic human tissue dynamics. The methylation status of circulating cell-free DNA (cfDNA) can be informative about recent cell death events. Here the authors present an approach to determine the tissue origins of cfDNA, using a reference methylation atlas of 25 human tissues and cell types, and find that cfDNA from patients reveals tissue contributions that agree with clinical findings.
Collapse
Affiliation(s)
- Joshua Moss
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, 9112001, Israel.,School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Judith Magenheim
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, 9112001, Israel
| | - Daniel Neiman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, 9112001, Israel
| | - Hai Zemmour
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, 9112001, Israel
| | - Netanel Loyfer
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Amit Korach
- Department of Cardio-Thoracic Surgery, Hadassah-Hebrew University Medical Center, Jerusalem, 9112001, Israel
| | - Yaacov Samet
- Department of Vascular Surgery, Hadassah-Hebrew University Medical Center, Jerusalem, 9112001, Israel
| | - Myriam Maoz
- Department of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, 9112001, Israel
| | - Henrik Druid
- Department of Oncology-Pathology, Karolinska Institutet, SE17177, Stockholm, Sweden.,Dept of Forensic Medicine, The National Board of Forensic Medicine, SE11120, Stockholm, Sweden
| | - Peter Arner
- Department of Medicine, Karolinska University Hospital, Karolinska Institutet, SE17176, Stockholm, Sweden
| | - Keng-Yeh Fu
- Department of Cell and Molecular Biology, Karolinska Institutet, SE17177, Stockholm, Sweden
| | - Endre Kiss
- Department of Cell and Molecular Biology, Karolinska Institutet, SE17177, Stockholm, Sweden
| | - Kirsty L Spalding
- Department of Medicine, Karolinska University Hospital, Karolinska Institutet, SE17176, Stockholm, Sweden.,Department of Cell and Molecular Biology, Karolinska Institutet, SE17177, Stockholm, Sweden
| | - Giora Landesberg
- Dept of Anesthesiology and Critical Care Medicine, Hadassah-Hebrew University Medical Center, 9112001, Jerusalem, Israel
| | - Aviad Zick
- Department of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, 9112001, Israel
| | - Albert Grinshpun
- Department of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, 9112001, Israel
| | - A M James Shapiro
- Department of Surgery and the Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Markus Grompe
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Avigail Dreazan Wittenberg
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, 9112001, Israel
| | - Benjamin Glaser
- Dept of Endocrinology and Metabolism Service, Hadassah-Hebrew University Medical Center, 9112001, Jerusalem, Israel
| | - Ruth Shemer
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, 9112001, Israel.
| | - Tommy Kaplan
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, 9112001, Israel.
| |
Collapse
|
23
|
Culture of human alveolar epithelial type II cells by sprouting. Respir Res 2018; 19:204. [PMID: 30340591 PMCID: PMC6195695 DOI: 10.1186/s12931-018-0906-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 10/01/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Type II alveolar epithelial cells (AT2) play a pivotal role in maintaining the integrity and function of the alveoli. Only recently, the role of impaired epithelial repair mechanisms after injury in the pathogenesis of idiopathic pulmonary fibrosis has been demonstrated, and has shifted the AT2 cell in the focus of interest. Therefore, using primary human AT2 cells instead of cell lines for in vitro experiments has become desirable. Several groups have developed methods to isolate human AT2 cells applying tissue digestion and consecutive filtration in their protocols. Here we present a technique to isolate primary human AT2 cells by sprouting directly from peripheral human lung tissue. METHODS Epithelial cell cultures were established from lung tissue obtained from patients undergoing diagnostic or therapeutic video-assisted thoracoscopic surgery or undergoing flexible bronchoscopy with transbronchial biopsy. Lung tissue was cut into small pieces and those were placed into cell culture flasks containing supplemented epithelial growth medium for cell sprouting. Cells were characterized by immunofluorescence stainings for E-cadherin, pan-cytokeratin, surfactant protein C (SP-C), and for lysotracker; fluorescent surfactant associated protein B (SP-B) uptake and secretion was assessed by live cell imaging; RNA levels of SP-A, SP-B, SP-C, and SP-D were determined by real-time PCR; Electron microscopy was used to search for the presence of lamellar bodies. RESULTS Sprouting of cells started two to four days after the start of culture. Epithelial differentiation was confirmed by positive staining for E-cadherin and pan-cytokeratin. Further characterization demonstrated positivity for the AT2 cell marker SP-C and for lysotracker which selectively labels lamellar bodies in cultured AT2 cells. The up-take and release of SP-B, a mechanism described for AT2 cells only, was demonstrated by live cell imaging. Real-time RT-PCR showed mRNA expression of all four surfactant proteins with highest levels for SP-B. The presence of lamellar bodies was demonstrated by electron microscopy. CONCLUSIONS This study describes a novel method for isolating AT2 cells from human adult lung tissue by sprouting. The characterization of the cultured AT2 cells complies with current criteria for an alveolar type 2 cell phenotype. Compared to current protocols for the culture of AT2 cells, isolating the cells by sprouting is simple, avoids proteolytic tissue digestion, and has the advantage to be successful even from as few tissue as attained from a transbronchial forceps biopsy.
Collapse
|
24
|
Someya T, Sano K, Hara K, Sagane Y, Watanabe T, Wijesekara RGS. Fibroblast and keratinocyte gene expression following exposure to the extracts of holy basil plant ( Ocimum tenuiflorum), malabar nut plant ( Justicia adhatoda), and emblic myrobalan plant ( Phyllanthus emblica). Data Brief 2018; 17:24-46. [PMID: 29876372 PMCID: PMC5988028 DOI: 10.1016/j.dib.2017.12.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/20/2017] [Accepted: 12/28/2017] [Indexed: 01/08/2023] Open
Abstract
This data article provides gene expression profiles, determined by using real-time PCR, of fibroblasts and keratinocytes treated with 0.01% and 0.001% extracts of holy basil plant (Ocimum tenuiflorum), sri lankan local name “maduruthala”, 0.1% and 0.01% extracts of malabar nut plant (Justicia adhatoda), sri lankan local name “adayhoda” and 0.003% and 0.001% extracts of emblic myrobalan plant (Phyllanthus emblica), sri lankan local name “nelli”, harvested in Sri Lanka. For fibroblasts, the dataset includes expression profiles for genes encoding hyaluronan synthase 1 (HAS1), hyaluronan synthase 2 (HAS2), hyaluronidase-1 (HYAL1), hyaluronidase-2 (HYAL2), versican, aggrecan, CD44, collagen, type I, alpha 1 (COL1A1), collagen, type III, alpha 1 (COL3A1), collagen, type VII, alpha 1 (COL7A1), matrix metalloproteinase 1 (MMP1), acid ceramidase, basic fibroblast growth factor (bFGF), fibroblast growth factor-7 (FGF7), vascular endothelial growth factor (VEGF), interleukin-1 alpha (IL-1α), cyclooxygenase-2 (cox2), transforming growth factor beta (TGF-β), and aquaporin 3 (AQP3). For keratinocytes, the expression profiles are for genes encoding HAS1, HAS2, HYAL1, HYAL2, versican, CD44, IL-1α, cox2, TGF-β, AQP3, Laminin5, collagen, type XVII, alpha 1 (COL17A1), integrin alpha-6 (ITGA6), ceramide synthase 3 (CERS3), elongation of very long chain fatty acids protein 1 (ELOVL1), elongation of very long chain fatty acids protein 4 (ELOVL4), filaggrin (FLG), transglutaminase 1 (TGM1), and keratin 1 (KRT1). The expression profiles are provided as bar graphs.
Collapse
Affiliation(s)
- Takao Someya
- ALBION Co. Ltd., 1-7-10 Ginza, Chuo-ku, Tokyo 104-0061, Japan
| | - Katsura Sano
- ALBION Co. Ltd., 1-7-10 Ginza, Chuo-ku, Tokyo 104-0061, Japan
| | - Kotaro Hara
- ALBION Co. Ltd., 1-7-10 Ginza, Chuo-ku, Tokyo 104-0061, Japan
| | - Yoshimasa Sagane
- Department of food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri, Hokkaido 099-2493, Japan
| | - Toshihiro Watanabe
- Department of food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri, Hokkaido 099-2493, Japan
| | - R G S Wijesekara
- Department of Aquaculture and Fisheries, Faculty of Livestock, Fisheries and Nutrition, Wayamba University of Sri Lanka, Makandura, Gonawila 60170, Sri Lanka
| |
Collapse
|
25
|
Wang K, Zhang T, Lei Y, Li X, Jiang J, Lan J, Liu Y, Chen H, Gao W, Xie N, Chen Q, Zhu X, Liu X, Xie K, Peng Y, Nice EC, Wu M, Huang C, Wei Y. Identification of ANXA2 (annexin A2) as a specific bleomycin target to induce pulmonary fibrosis by impeding TFEB-mediated autophagic flux. Autophagy 2018; 14:269-282. [PMID: 29172997 DOI: 10.1080/15548627.2017.1409405] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bleomycin is a clinically potent anticancer drug used for the treatment of germ-cell tumors, lymphomas and squamous-cell carcinomas. Unfortunately, the therapeutic efficacy of bleomycin is severely hampered by the development of pulmonary fibrosis. However, the mechanisms underlying bleomycin-induced pulmonary fibrosis, particularly the molecular target of bleomycin, remains unknown. Here, using a chemical proteomics approach, we identify ANXA2 (annexin A2) as a direct binding target of bleomycin. The interaction of bleomycin with ANXA2 was corroborated both in vitro and in vivo. Genetic depletion of anxa2 in mice mitigates bleomycin-induced pulmonary fibrosis. We further demonstrate that Glu139 (E139) of ANXA2 is required for bleomycin binding in lung epithelial cells. A CRISPR-Cas9-engineered ANXA2E139A mutation in lung epithelial cells ablates bleomycin binding and activates TFEB (transcription factor EB), a master regulator of macroautophagy/autophagy, resulting in substantial acceleration of autophagic flux. Pharmacological activation of TFEB elevates bleomycin-initiated autophagic flux, inhibits apoptosis and proliferation of epithelial cells, and ameliorates pulmonary fibrosis in bleomycin-treated mice. Notably, we observe lowered TFEB and LC3B levels in human pulmonary fibrosis tissues compared to normal controls, suggesting a critical role of TFEB-mediated autophagy in pulmonary fibrosis. Collectively, our data demonstrate that ANXA2 is a specific bleomycin target, and bleomycin binding with ANXA2 impedes TFEB-induced autophagic flux, leading to induction of pulmonary fibrosis. Our findings provide insight into the mechanisms of bleomycin-induced fibrosis and may facilitate development of optimized bleomycin therapeutics devoid of lung toxicity.
Collapse
Affiliation(s)
- Kui Wang
- a State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , China
| | - Tao Zhang
- b The School of Biomedical Sciences , Chengdu Medical College , Chengdu , China
| | - Yunlong Lei
- c Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center , Chongqing Medical University , Chongqing , China
| | - Xuefeng Li
- d State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , China.,e Department of Biomedical Sciences , University of North Dakota , Grand Forks , ND , USA
| | - Jingwen Jiang
- d State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , China
| | - Jiang Lan
- d State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , China
| | - Yuan Liu
- d State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , China
| | - Haining Chen
- f Department of Gastrointestinal Surgery , West China Hospital, Sichuan University , Chengdu , China
| | - Wei Gao
- d State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , China
| | - Na Xie
- d State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , China
| | - Qiang Chen
- d State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , China
| | - Xiaofeng Zhu
- g College of Life Science , Sichuan University , Chengdu , China
| | - Xiang Liu
- h Department of Pathology , Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital , Chengdu , China
| | - Ke Xie
- i Department of Oncology , Sichuan Provincial People's Hospital , Chengdu , China
| | - Yong Peng
- d State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , China
| | - Edouard C Nice
- j Department of Biochemistry and Molecular Biology , Monash University , Clayton , Victoria , Australia
| | - Min Wu
- e Department of Biomedical Sciences , University of North Dakota , Grand Forks , ND , USA
| | - Canhua Huang
- a State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , China
| | - Yuquan Wei
- d State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , China
| |
Collapse
|
26
|
Hamacher J, Hadizamani Y, Borgmann M, Mohaupt M, Männel DN, Moehrlen U, Lucas R, Stammberger U. Cytokine-Ion Channel Interactions in Pulmonary Inflammation. Front Immunol 2018; 8:1644. [PMID: 29354115 PMCID: PMC5758508 DOI: 10.3389/fimmu.2017.01644] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/10/2017] [Indexed: 12/12/2022] Open
Abstract
The lungs conceptually represent a sponge that is interposed in series in the bodies’ systemic circulation to take up oxygen and eliminate carbon dioxide. As such, it matches the huge surface areas of the alveolar epithelium to the pulmonary blood capillaries. The lung’s constant exposure to the exterior necessitates a competent immune system, as evidenced by the association of clinical immunodeficiencies with pulmonary infections. From the in utero to the postnatal and adult situation, there is an inherent vital need to manage alveolar fluid reabsorption, be it postnatally, or in case of hydrostatic or permeability edema. Whereas a wealth of literature exists on the physiological basis of fluid and solute reabsorption by ion channels and water pores, only sparse knowledge is available so far on pathological situations, such as in microbial infection, acute lung injury or acute respiratory distress syndrome, and in the pulmonary reimplantation response in transplanted lungs. The aim of this review is to discuss alveolar liquid clearance in a selection of lung injury models, thereby especially focusing on cytokines and mediators that modulate ion channels. Inflammation is characterized by complex and probably time-dependent co-signaling, interactions between the involved cell types, as well as by cell demise and barrier dysfunction, which may not uniquely determine a clinical picture. This review, therefore, aims to give integrative thoughts and wants to foster the unraveling of unmet needs in future research.
Collapse
Affiliation(s)
- Jürg Hamacher
- Internal Medicine and Pneumology, Lindenhofspital, Bern, Switzerland.,Internal Medicine V - Pneumology, Allergology, Respiratory and Environmental Medicine, Faculty of Medicine, Saarland University, Saarbrücken, Germany.,Lungen- und Atmungsstiftung Bern, Bern, Switzerland
| | - Yalda Hadizamani
- Internal Medicine and Pneumology, Lindenhofspital, Bern, Switzerland.,Lungen- und Atmungsstiftung Bern, Bern, Switzerland
| | - Michèle Borgmann
- Internal Medicine and Pneumology, Lindenhofspital, Bern, Switzerland.,Lungen- und Atmungsstiftung Bern, Bern, Switzerland
| | - Markus Mohaupt
- Internal Medicine, Sonnenhofspital Bern, Bern, Switzerland
| | | | - Ueli Moehrlen
- Paediatric Visceral Surgery, Universitäts-Kinderspital Zürich, Zürich, Switzerland
| | - Rudolf Lucas
- Department of Pharmacology and Toxicology, Vascular Biology Center, Medical College of Georgia, Augusta, GA, United States
| | - Uz Stammberger
- Lungen- und Atmungsstiftung Bern, Bern, Switzerland.,Novartis Institutes for Biomedical Research, Translational Clinical Oncology, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
27
|
Perez-Lanzon M, Kroemer G, Maiuri MC. Organoids for Modeling Genetic Diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 337:49-81. [DOI: 10.1016/bs.ircmb.2017.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Abstract
Alveolar type II (ATII) cells synthesize, store, and secrete pulmonary surfactant and restore the epithelium after damage to the alveolar epithelium. Isolation of human ATII cells provides a valuable tool to study their function under normal and pathophysiological conditions. Moreover, maintenance of their differentiated phenotype in vitro allows further study of their function. Here we describe a protocol for efficient ATII cell isolation, characterization, and culture.
Collapse
|
29
|
Fois G, Winkelmann VE, Bareis L, Staudenmaier L, Hecht E, Ziller C, Ehinger K, Schymeinsky J, Kranz C, Frick M. ATP is stored in lamellar bodies to activate vesicular P2X 4 in an autocrine fashion upon exocytosis. J Gen Physiol 2017; 150:277-291. [PMID: 29282210 PMCID: PMC5806682 DOI: 10.1085/jgp.201711870] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/12/2017] [Accepted: 11/17/2017] [Indexed: 12/14/2022] Open
Abstract
P2X4 receptor activation facilitates secretion of pulmonary surfactant from secretory vesicles called lamellar bodies in alveolar epithelial cells. Fois et al. reveal that P2X4 receptors on the lamellar body membranes are activated by ATP stored within the vesicles themselves upon vesicle exocytosis. Vesicular P2X4 receptors are known to facilitate secretion and activation of pulmonary surfactant in the alveoli of the lungs. P2X4 receptors are expressed in the membrane of lamellar bodies (LBs), large secretory lysosomes that store lung surfactant in alveolar type II epithelial cells, and become inserted into the plasma membrane after exocytosis. Subsequent activation of P2X4 receptors by adenosine triphosphate (ATP) results in local fusion-activated cation entry (FACE), facilitating fusion pore dilation, surfactant secretion, and surfactant activation. Despite the importance of ATP in the alveoli, and hence lung function, the origin of ATP in the alveoli is still elusive. In this study, we demonstrate that ATP is stored within LBs themselves at a concentration of ∼1.9 mM. ATP is loaded into LBs by the vesicular nucleotide transporter but does not activate P2X4 receptors because of the low intraluminal pH (5.5). However, the rise in intravesicular pH after opening of the exocytic fusion pore results in immediate activation of vesicular P2X4 by vesicular ATP. Our data suggest a new model in which agonist (ATP) and receptor (P2X4) are located in the same intracellular compartment (LB), protected from premature degradation (ATP) and activation (P2X4), and ideally placed to ensure coordinated and timely receptor activation as soon as fusion occurs to facilitate surfactant secretion.
Collapse
Affiliation(s)
- Giorgio Fois
- Institute of General Physiology, Ulm University, Ulm, Germany
| | | | - Lara Bareis
- Institute of General Physiology, Ulm University, Ulm, Germany
| | | | - Elena Hecht
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Charlotte Ziller
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany
| | | | - Jürgen Schymeinsky
- Immunology and Respiratory Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Ulm, Germany
| |
Collapse
|
30
|
Someya T, Sano K, Hara K, Sagane Y, Watanabe T, Wijesekara R. Fibroblast and keratinocyte gene expression following exposure to extracts of neem plant ( Azadirachta indica). Data Brief 2017; 16:982-992. [PMID: 29322079 PMCID: PMC5752095 DOI: 10.1016/j.dib.2017.12.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 12/05/2017] [Accepted: 12/14/2017] [Indexed: 01/08/2023] Open
Abstract
This data article provides gene expression profiles, determined by using real-time PCR, of fibroblasts and keratinocytes treated with 0.01% and 0.001% extracts of neem plant (Azadirachta indica), local name “Kohomba” in Sri Lanka, harvested in Sri Lanka. For fibroblasts, the dataset includes expression profiles for genes encoding hyaluronan synthase 1 (HAS1), hyaluronan synthase 2 (HAS2), hyaluronidase-1 (HYAL1), hyaluronidase-2 (HYAL2), versican, aggrecan, CD44, collagen, type I, alpha 1 (COL1A1), collagen, type III, alpha 1 (COL3A1), collagen, type VII, alpha 1 (COL7A1), matrix metalloproteinase 1 (MMP1), acid ceramidase, basic fibroblast growth factor (bFGF), fibroblast growth factor-7 (FGF7), vascular endothelial growth factor (VEGF), interleukin-1 alpha (IL-1α), cyclooxygenase-2 (cox2), transforming growth factor beta (TGF-β), and aquaporin 3 (AQP3). For keratinocytes, the expression profiles are for genes encoding HAS1, HAS2, HYAL1, HYAL2, versican, CD44, IL-1α, cox2, TGF-β, AQP3, Laminin5, collagen, type XVII, alpha 1 (COL17A1), integrin alpha-6 (ITGA6), ceramide synthase 3 (CERS3), elongation of very long chain fatty acids protein 1 (ELOVL1), elongation of very long chain fatty acids protein 4 (ELOVL4), filaggrin (FLG), transglutaminase 1 (TGM1), and keratin 1 (KRT1). The expression profiles are provided as bar graphs.
Collapse
Affiliation(s)
- Takao Someya
- ALBION Co. Ltd., 1–7-10 Ginza, Chuo-ku, Tokyo 104-0061, Japan
- Corresponding author.
| | - Katsura Sano
- ALBION Co. Ltd., 1–7-10 Ginza, Chuo-ku, Tokyo 104-0061, Japan
| | - Kotaro Hara
- ALBION Co. Ltd., 1–7-10 Ginza, Chuo-ku, Tokyo 104-0061, Japan
| | - Yoshimasa Sagane
- Department of food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri, Hokkaido 099–2493, Japan
| | - Toshihiro Watanabe
- Department of food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri, Hokkaido 099–2493, Japan
| | - R.G.S. Wijesekara
- Department of Aquaculture and Fisheries, Faculty of Livestock, Fisheries and Nutrition, Wayamba University of Sri Lanka, Makandura, Gonawila 60170, Sri Lanka
| |
Collapse
|
31
|
Wu J, Wang Y, Liu G, Jia Y, Yang J, Shi J, Dong J, Wei J, Liu X. Characterization of air-liquid interface culture of A549 alveolar epithelial cells. ACTA ACUST UNITED AC 2017; 51:e6950. [PMID: 29267508 PMCID: PMC5731333 DOI: 10.1590/1414-431x20176950] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/27/2017] [Indexed: 12/24/2022]
Abstract
Alveolar epithelia play an essential role in maintaining the integrity and homeostasis of lungs, in which alveolar epithelial type II cells (AECII) are a cell type with stem cell potential for epithelial injury repair and regeneration. However, mechanisms behind the physiological and pathological roles of alveolar epithelia in human lungs remain largely unknown, partially owing to the difficulty of isolation and culture of primary human AECII cells. In the present study, we aimed to characterize alveolar epithelia generated from A549 lung adenocarcinoma cells that were cultured in an air-liquid interface (ALI) state. Morphological analysis demonstrated that A549 cells could reconstitute epithelial layers in ALI cultures as evaluated by histochemistry staining and electronic microscopy. Immunofluorescent staining further revealed an expression of alveolar epithelial type I cell (AECI) markers aquaporin-5 protein (AQP-5), and AECII cell marker surfactant protein C (SPC) in subpopulations of ALI cultured cells. Importantly, molecular analysis further revealed the expression of AQP-5, SPC, thyroid transcription factor-1, zonula occludens-1 and Mucin 5B in A549 ALI cultures as determined by both immunoblotting and quantitative RT-PCR assay. These results suggest that the ALI culture of A549 cells can partially mimic the property of alveolar epithelia, which may be a feasible and alternative model for investigating roles and mechanisms of alveolar epithelia in vitro.
Collapse
Affiliation(s)
- J Wu
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China.,Institute of Human Stem Cell Research, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Y Wang
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China.,Institute of Human Stem Cell Research, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - G Liu
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China.,Institute of Human Stem Cell Research, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Y Jia
- Institute of Human Stem Cell Research, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - J Yang
- Institute of Human Stem Cell Research, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.,Center of Laboratory Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - J Shi
- Institute of Human Stem Cell Research, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.,Center of Laboratory Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - J Dong
- Department of Pathology, Ningxia Medical University, Yinchuan, Ningxia, China
| | - J Wei
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China.,Institute of Human Stem Cell Research, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.,Center of Laboratory Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - X Liu
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China.,Institute of Human Stem Cell Research, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.,Center of Laboratory Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.,College of Life Science, Ningxia University, Yinchuan, Ningxia, China
| |
Collapse
|
32
|
Terryah ST, Fellner RC, Ahmad S, Moore PJ, Reidel B, Sesma JI, Kim CS, Garland AL, Scott DW, Sabater JR, Carpenter J, Randell SH, Kesimer M, Abraham WM, Arendshorst WJ, Tarran R. Evaluation of a SPLUNC1-derived peptide for the treatment of cystic fibrosis lung disease. Am J Physiol Lung Cell Mol Physiol 2017; 314:L192-L205. [PMID: 28982737 DOI: 10.1152/ajplung.00546.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In cystic fibrosis (CF) lungs, epithelial Na+ channel (ENaC) hyperactivity causes a reduction in airway surface liquid volume, leading to decreased mucocilliary clearance, chronic bacterial infection, and lung damage. Inhibition of ENaC is an attractive therapeutic option. However, ENaC antagonists have failed clinically because of off-target effects in the kidney. The S18 peptide is a naturally occurring short palate lung and nasal epithelial clone 1 (SPLUNC1)-derived ENaC antagonist that restores airway surface liquid height for up to 24 h in CF human bronchial epithelial cultures. However, its efficacy and safety in vivo are unknown. To interrogate the potential clinical efficacy of S18, we assessed its safety and efficacy using human airway cultures and animal models. S18-mucus interactions were tested using superresolution microscopy, quartz crystal microbalance with dissipation, and confocal microscopy. Human and murine airway cultures were used to measure airway surface liquid height. Off-target effects were assessed in conscious mice and anesthetized rats. Morbidity and mortality were assessed in the β-ENaC-transgenic (Tg) mouse model. Restoration of normal mucus clearance was measured in cystic fibrosis transmembrane conductance regulator inhibitor 172 [CFTR(inh)-172]-challenged sheep. We found that S18 does not interact with mucus and rapidly penetrated dehydrated CF mucus. Compared with amiloride, an early generation ENaC antagonist, S18 displayed a superior ability to slow airway surface liquid absorption, reverse CFTR(inh)-172-induced reduction of mucus transport, and reduce morbidity and mortality in the β-ENaC-Tg mouse, all without inducing any detectable signs of renal toxicity. These data suggest that S18 is the first naturally occurring ENaC antagonist to show improved preclinical efficacy in animal models of CF with no signs of renal toxicity.
Collapse
Affiliation(s)
- Shawn T Terryah
- Cystic Fibrosis Center/Marsico Lung Institute, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | - Robert C Fellner
- Cystic Fibrosis Center/Marsico Lung Institute, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | - Saira Ahmad
- Cystic Fibrosis Center/Marsico Lung Institute, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | - Patrick J Moore
- Cystic Fibrosis Center/Marsico Lung Institute, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | - Boris Reidel
- Cystic Fibrosis Center/Marsico Lung Institute, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | | | - Christine S Kim
- Cystic Fibrosis Center/Marsico Lung Institute, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | - Alaina L Garland
- Cystic Fibrosis Center/Marsico Lung Institute, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | | | - Juan R Sabater
- Department of Research, Mount Sinai Medical Center , Miami Beach, Florida
| | - Jerome Carpenter
- Cystic Fibrosis Center/Marsico Lung Institute, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | - Scott H Randell
- Cystic Fibrosis Center/Marsico Lung Institute, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina.,Cell Biology and Physiology, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | - Mehmet Kesimer
- Cystic Fibrosis Center/Marsico Lung Institute, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | - William M Abraham
- Department of Research, Mount Sinai Medical Center , Miami Beach, Florida
| | - William J Arendshorst
- Cell Biology and Physiology, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | - Robert Tarran
- Cystic Fibrosis Center/Marsico Lung Institute, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina.,Cell Biology and Physiology, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| |
Collapse
|
33
|
Shen H, Wu N, Wang Y, Zhang L, Hu X, Chen Z, Zhao M. Toll-like receptor 9 mediates paraquat-induced acute lung injury: an in vitro and in vivo study. Life Sci 2017; 178:109-118. [PMID: 28363843 DOI: 10.1016/j.lfs.2017.03.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 01/02/2023]
Abstract
AIMS This study aimed to investigate the role of Toll-like receptor 9 in paraquat-induced acute lung injury (ALI). MAIN METHODS For in vivo study,C57BL mice were randomly assigned into the vehicle control group, paraquat group, paraquat + TLR9 antagonist (ODN2088) group, and TLR9 antagonist (ODN2088) group (n=36 per group). After paraquat 30mg/kg ip for 2, 24 and 48h, serum samples and lung tissues were collected to evaluate ALI and TLR9 signaling by lung injury score, protein levels of TLR9, MyD88, p-IRAK4, p-p65, and serum TNF-α and IL-1β levels. As for in vitro research A549 cells were randomly divided into the control group, paraquat group, paraquat + TLR9 siRNA group, and TLR9 siRNA group. After paraquat treatment for 24h, the cells and supernatant were collected to measureTLR9, TNF-α, IL-1 mRNA expression, and detect activation of NF-κB, caspase-3. KEY FINDINGS In vivo, the lung injury score, the TLR9, MyD88, p-IRAK4 and p-p65 protein levels, and cytokines TNF-α and IL-1β levels in paraquat group were significantly higher than that in the control group;TLR9 blocker ODN2088 pretreatment attenuated lung injury, inhibited MyD88 and NF-κB activation, and reduced TNF-α and IL-1β in serum. In vitro result shows that the gene silencing of TLR9 reduced the mRNA expression of TLR9, TNF-α and IL-1, inhibited NF-κB and caspase-3 activation, attenuated cell apoptosis. SIGNIFICANCE TLR9 mediates paraquat-induced ALI, antagonizing TLR9 or silencing TLR9gene may attenuate paraquat-induced ALI.
Collapse
Affiliation(s)
- Haitao Shen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Na Wu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Yu Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Lichun Zhang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Xiao Hu
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Zhiguang Chen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Min Zhao
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.
| |
Collapse
|
34
|
Ren H, Birch NP, Suresh V. An Optimised Human Cell Culture Model for Alveolar Epithelial Transport. PLoS One 2016; 11:e0165225. [PMID: 27780255 PMCID: PMC5079558 DOI: 10.1371/journal.pone.0165225] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 10/07/2016] [Indexed: 12/31/2022] Open
Abstract
Robust and reproducible in vitro models are required for investigating the pathways involved in fluid homeostasis in the human alveolar epithelium. We performed functional and phenotypic characterisation of ion transport in the human pulmonary epithelial cell lines NCI-H441 and A549 to determine their similarity to primary human alveolar type II cells. NCI-H441 cells exhibited high expression of junctional proteins ZO-1, and E-cadherin, seal-forming claudin-3, -4, -5 and Na+-K+-ATPase while A549 cells exhibited high expression of pore-forming claudin-2. Consistent with this phenotype NCI-H441, but not A549, cells formed a functional barrier with active ion transport characterised by higher electrical resistance (529 ± 178 Ω cm2 vs 28 ± 4 Ω cm2), lower paracellular permeability ((176 ± 42) ×10−8 cm/s vs (738 ± 190) ×10−8 cm/s) and higher transepithelial potential difference (11.9 ± 4 mV vs 0 mV). Phenotypic and functional properties of NCI-H441 cells were tuned by varying cell seeding density and supplement concentrations. The cells formed a polarised monolayer typical of in vivo epithelium at seeding densities of 100,000 cells per 12-well insert while higher densities resulted in multiple cell layers. Dexamethasone and insulin-transferrin-selenium supplements were required for the development of high levels of electrical resistance, potential difference and expression of claudin-3 and Na+-K+-ATPase. Treatment of NCI-H441 cells with inhibitors and agonists of sodium and chloride channels indicated sodium absorption through ENaC under baseline and forskolin-stimulated conditions. Chloride transport was not sensitive to inhibitors of the cystic fibrosis transmembrane conductance regulator (CFTR) under either condition. Channels inhibited by 5-nitro-1-(3-phenylpropylamino) benzoic acid (NPPB) contributed to chloride secretion following forskolin stimulation, but not at baseline. These data precisely define experimental conditions for the application of NCI-H441 cells as a model for investigating ion and water transport in the human alveolar epithelium and also identify the pathways of sodium and chloride transport.
Collapse
Affiliation(s)
- Hui Ren
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- * E-mail:
| | - Nigel P. Birch
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Brain Research New Zealand, Rangahau Roro Aotearoa, New Zealand
| | - Vinod Suresh
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Department of Engineering Science, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
35
|
Plasmonic nanoparticles and their characterization in physiological fluids. Colloids Surf B Biointerfaces 2016; 137:39-49. [DOI: 10.1016/j.colsurfb.2015.05.053] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 05/20/2015] [Accepted: 05/27/2015] [Indexed: 11/19/2022]
|
36
|
|
37
|
Modulating Ca²⁺ signals: a common theme for TMEM16, Ist2, and TMC. Pflugers Arch 2015; 468:475-90. [PMID: 26700940 DOI: 10.1007/s00424-015-1767-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/24/2015] [Accepted: 11/26/2015] [Indexed: 12/21/2022]
Abstract
Since the discovery of TMEM16A (anoctamin 1, ANO1) as Ca(2+)-activated Cl(-) channel, the protein was found to serve different physiological functions, depending on the type of tissue. Subsequent reports on other members of the anoctamin family demonstrated a broad range of yet poorly understood properties. Compromised anoctamin function is causing a wide range of diseases, such as hearing loss (ANO2), bleeding disorder (ANO6), ataxia and dystonia (ANO3, 10), persistent borrelia and mycobacteria infection (ANO10), skeletal syndromes like gnathodiaphyseal dysplasia and limb girdle muscle dystrophy (ANO5), and cancer (ANO1, 6, 7). Animal models demonstrate CF-like airway disease, asthma, and intestinal hyposecretion (ANO1). Although present data indicate that ANO1 is a Ca(2+)-activated Cl(-) channel, it remains unclear whether all anoctamins form plasma membrane-localized or intracellular chloride channels. We find Ca(2+)-activated Cl(-) currents appearing by expression of most anoctamin paralogs, including the Nectria haematococca homologue nhTMEM16 and the yeast homologue Ist2. As recent studies show a role of anoctamins, Ist2, and the related transmembrane channel-like (TMC) proteins for intracellular Ca(2+) signaling, we will discuss the role of these proteins in generating compartmentalized Ca(2+) signals, which may give a hint as to the broad range of cellular functions of anoctamins.
Collapse
|
38
|
Betz T, Dehnert C, Bärtsch P, Schommer K, Mairbäurl H. Does High Alveolar Fluid Reabsorption Prevent HAPE in Individuals with Exaggerated Pulmonary Hypertension in Hypoxia? High Alt Med Biol 2015; 16:283-9. [DOI: 10.1089/ham.2015.0050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Theresa Betz
- Medical Clinic VII, Sports Medicine, University of Heidelberg, Heidelberg, Germany
| | - Christoph Dehnert
- Medical Clinic VII, Sports Medicine, University of Heidelberg, Heidelberg, Germany
| | - Peter Bärtsch
- Medical Clinic VII, Sports Medicine, University of Heidelberg, Heidelberg, Germany
| | - Kai Schommer
- Medical Clinic VII, Sports Medicine, University of Heidelberg, Heidelberg, Germany
| | - Heimo Mairbäurl
- Medical Clinic VII, Sports Medicine, University of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), German Center for Lung Research (DZL), Heidelberg, Germany
| |
Collapse
|
39
|
Bachler G, Losert S, Umehara Y, von Goetz N, Rodriguez-Lorenzo L, Petri-Fink A, Rothen-Rutishauser B, Hungerbuehler K. Translocation of gold nanoparticles across the lung epithelial tissue barrier: Combining in vitro and in silico methods to substitute in vivo experiments. Part Fibre Toxicol 2015; 12:18. [PMID: 26116549 PMCID: PMC4483206 DOI: 10.1186/s12989-015-0090-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 05/14/2015] [Indexed: 11/16/2022] Open
Abstract
Background The lung epithelial tissue barrier represents the main portal for entry of inhaled nanoparticles (NPs) into the systemic circulation. Thus great efforts are currently being made to determine adverse health effects associated with inhalation of NPs. However, to date very little is known about factors that determine the pulmonary translocation of NPs and their subsequent distribution to secondary organs. Methods A novel two-step approach to assess the biokinetics of inhaled NPs is presented. In a first step, alveolar epithelial cellular monolayers (CMLs) at the air-liquid interface (ALI) were exposed to aerosolized NPs to determine their translocation kinetics across the epithelial tissue barrier. Then, in a second step, the distribution to secondary organs was predicted with a physiologically based pharmacokinetic (PBPK) model. Monodisperse, spherical, well-characterized, negatively charged gold nanoparticles (AuNP) were used as model NPs. Furthermore, to obtain a comprehensive picture of the translocation kinetics in different species, human (A549) and mouse (MLE-12) alveolar epithelial CMLs were exposed to ionic gold and to various doses (i.e., 25, 50, 100, 150, 200 ng/cm2) and sizes (i.e., 2, 7, 18, 46, 80 nm) of AuNP, and incubated post-exposure for different time periods (i.e., 0, 2, 8, 24, 48, 72 h). Results The translocation kinetics of the AuNP across A549 and MLE-12 CMLs was similar. The translocated fraction was (1) inversely proportional to the particle size, and (2) independent of the applied dose (up to 100 ng/cm2). Furthermore, supplementing the A549 CML with two immune cells, i.e., macrophages and dendritic cells, did not significantly change the amount of translocated AuNP. Comparison of the measured translocation kinetics and modeled biodistribution with in vivo data from literature showed that the combination of in vitro and in silico methods can accurately predict the in vivo biokinetics of inhaled/instilled AuNP. Conclusion Our approach to combine in vitro and in silico methods for assessing the pulmonary translocation and biodistribution of NPs has the potential to replace short-term animal studies which aim to assess the pulmonary absorption and biodistribution of NPs, and to serve as a screening tool to identify NPs of special concern. Electronic supplementary material The online version of this article (doi:10.1186/s12989-015-0090-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gerald Bachler
- ETH Zürich, Institute for Chemical and Bioengineering, 8093, Zürich, Switzerland. .,University of Fribourg, Adolphe Merkle Institute, 1700, Fribourg, Switzerland.
| | - Sabrina Losert
- ETH Zürich, Institute for Chemical and Bioengineering, 8093, Zürich, Switzerland. .,EMPA, Swiss Federal Laboratories for Material Science and Technology, 8600, Dübendorf, Switzerland.
| | - Yuki Umehara
- University of Fribourg, Adolphe Merkle Institute, 1700, Fribourg, Switzerland.
| | - Natalie von Goetz
- ETH Zürich, Institute for Chemical and Bioengineering, 8093, Zürich, Switzerland.
| | | | - Alke Petri-Fink
- University of Fribourg, Adolphe Merkle Institute, 1700, Fribourg, Switzerland.
| | | | - Konrad Hungerbuehler
- ETH Zürich, Institute for Chemical and Bioengineering, 8093, Zürich, Switzerland.
| |
Collapse
|
40
|
Calle EA, Mendez JJ, Ghaedi M, Leiby KL, Bove PF, Herzog EL, Sundaram S, Niklason LE. Fate of distal lung epithelium cultured in a decellularized lung extracellular matrix. Tissue Eng Part A 2015; 21:1916-28. [PMID: 25789725 DOI: 10.1089/ten.tea.2014.0511] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Type II cells are the defenders of the alveolus. They produce surfactant to prevent alveolar collapse, they actively transport water to prevent filling of the air sacs that would otherwise prevent gas exchange, and they differentiate to type I epithelial cells. They are an indispensable component of functional lung tissue. To understand the functionality of type II cells in isolation, we sought to track their fate in decellularized matrices and to assess their ability to contribute to barrier function by differentiation to type I alveolar epithelial cells. Rat type II cells were isolated from neonatal rat lungs by labeling with the RTII-70 surface marker and separation using a magnetic column. This produced a population of ∼50% RTII-70-positive cells accompanied by few type I epithelial cells or α-actin-positive mesenchymal cells. This population was seeded into decellularized rat lung matrices and cultured for 1 or 7 days. Culture in Dulbecco's modified Eagle's medium +10% fetal bovine serum (FBS) resulted in reduced expression of epithelial markers and increased expression of mesenchymal markers. By 7 days, no epithelial markers were visible by immunostaining; nearly all cells were α-actin positive. Gene expression for the mesenchymal markers, α-actin, vimentin, and TGF-βR, was significantly upregulated on day 1 (p=0.0005, 0.0005, and 2.342E-5, respectively). Transcript levels of α-actin and TGF-βR remained high at 7 days (p=1.364E-10 and 0.0002). Interestingly, human type II cells cultured under the same conditions showed a similar trend in the loss of epithelial markers, but did not display high expression of mesenchymal markers. Rat cells additionally showed the ability to produce and degrade the basement membrane and extracellular matrix components, such as fibronectin, collagen IV, and collagen I. Quantitative real-time reverse transcription polymerase chain reaction (RT-PCR) showed significant increases in expression of the fibronectin and matrix metalloprotease-2 (MMP-2) genes after 1 day in culture (p=0.0135 and 0.0128, respectively) and elevated collagen I expression at 7 days (p=0.0016). These data suggest that the original type II-enriched population underwent a transition to increased expression of mesenchymal markers, perhaps as part of a survival or wound-healing program. These results suggest that additional medium components and/or the application of physiologically appropriate stimuli such as ventilation may be required to promote lung-specific epithelial phenotypes.
Collapse
Affiliation(s)
- Elizabeth A Calle
- 1Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Julio J Mendez
- 2Department of Anesthesia, Yale University School of Medicine, New Haven, Connecticut
| | - Mahboobe Ghaedi
- 2Department of Anesthesia, Yale University School of Medicine, New Haven, Connecticut
| | - Katherine L Leiby
- 1Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Peter F Bove
- 3Cystic Fibrosis/Pulmonary Research Treatment Center, University of North Carolina, Chapel Hill, North Carolina
| | - Erica L Herzog
- 4Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Sumati Sundaram
- 2Department of Anesthesia, Yale University School of Medicine, New Haven, Connecticut
| | - Laura E Niklason
- 1Department of Biomedical Engineering, Yale University, New Haven, Connecticut.,2Department of Anesthesia, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
41
|
Mao P, Wu S, Li J, Fu W, He W, Liu X, Slutsky AS, Zhang H, Li Y. Human alveolar epithelial type II cells in primary culture. Physiol Rep 2015; 3:e12288. [PMID: 25677546 PMCID: PMC4393197 DOI: 10.14814/phy2.12288] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 12/21/2014] [Accepted: 01/08/2015] [Indexed: 01/13/2023] Open
Abstract
Alveolar epithelial type II (AEII) cells are a key structure and defender in the lung but also are the targets in many lung diseases, including acute respiratory distress syndrome, ventilator-induced lung injury, and pulmonary fibrosis. We sought to establish an optimized method for high yielding and long maintenance of characteristics of primary human AEII cells to facilitate the investigation of the mechanisms of lung diseases at the cellular and molecular levels. Adult human peripheral normal lung tissues of oncologic patients undergoing lung resection were collected. The AEII cells were isolated and identified by the expression of pro-surfactant protein (SP)C, epithelial sodium channel (αENaC) and cytokeratin (CK)-8, the lamellar bodies specific for AEII cells, and confirmed by the histology using electron microscopy. The phenotype of AEII cells was characterized by the expression of surfactant proteins (SP-A, SP-B, SP-C, SP-D), CK-8, KL-6, αENaC, and aquaporin (AQP)-3, which was maintained over 20 days. The biological activity of the primary human AEII cells producing SP-C, cytokines, and intercellular adhesion molecule-1 was vigorous in response to stimulation with tumor necrosis factor-α. We have modified previous methods and optimized a method for isolation of high purity and long maintenance of the human AEII cell phenotype in primary culture. This method provides an important tool for studies aiming at elucidating the molecular mechanisms of lung diseases exclusively in AEII cells.
Collapse
Affiliation(s)
- Pu Mao
- State Key Laboratory of Respiratory Diseases and Guangzhou Institute of Respiratory DiseasesGuangzhou, Guangdong, China
- The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, Guangdong, China
| | - Songling Wu
- State Key Laboratory of Respiratory Diseases and Guangzhou Institute of Respiratory DiseasesGuangzhou, Guangdong, China
- The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, Guangdong, China
| | - Jianchun Li
- State Key Laboratory of Respiratory Diseases and Guangzhou Institute of Respiratory DiseasesGuangzhou, Guangdong, China
- The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, Guangdong, China
| | - Wei Fu
- State Key Laboratory of Respiratory Diseases and Guangzhou Institute of Respiratory DiseasesGuangzhou, Guangdong, China
- The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, Guangdong, China
| | - Weiqun He
- State Key Laboratory of Respiratory Diseases and Guangzhou Institute of Respiratory DiseasesGuangzhou, Guangdong, China
- The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, Guangdong, China
| | - Xiaoqing Liu
- State Key Laboratory of Respiratory Diseases and Guangzhou Institute of Respiratory DiseasesGuangzhou, Guangdong, China
- The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, Guangdong, China
| | - Arthur S Slutsky
- State Key Laboratory of Respiratory Diseases and Guangzhou Institute of Respiratory DiseasesGuangzhou, Guangdong, China
- The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, Guangdong, China
- Keenan Research Centre for Biomedical Science of St. Michael's HospitalToronto, Ontario, Canada
- Department of Medicine, University of TorontoToronto, Ontario, Canada
| | - Haibo Zhang
- State Key Laboratory of Respiratory Diseases and Guangzhou Institute of Respiratory DiseasesGuangzhou, Guangdong, China
- The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, Guangdong, China
- Keenan Research Centre for Biomedical Science of St. Michael's HospitalToronto, Ontario, Canada
- Department of Medicine, University of TorontoToronto, Ontario, Canada
- Department of Anesthesia, University of TorontoToronto, Ontario, Canada
- Department of Physiology, University of TorontoToronto, Ontario, Canada
| | - Yimin Li
- State Key Laboratory of Respiratory Diseases and Guangzhou Institute of Respiratory DiseasesGuangzhou, Guangdong, China
- The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, Guangdong, China
| |
Collapse
|
42
|
Chen Z, Zhao R, Zhao M, Liang X, Bhattarai D, Dhiman R, Shetty S, Idell S, Ji HL. Regulation of epithelial sodium channels in urokinase plasminogen activator deficiency. Am J Physiol Lung Cell Mol Physiol 2014; 307:L609-17. [PMID: 25172911 DOI: 10.1152/ajplung.00126.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Epithelial sodium channels (ENaC) govern transepithelial salt and fluid homeostasis. ENaC contributes to polarization, apoptosis, epithelial-mesenchymal transformation, etc. Fibrinolytic proteases play a crucial role in virtually all of these processes and are elaborated by the airway epithelium. We hypothesized that urokinase-like plasminogen activator (uPA) regulates ENaC function in airway epithelial cells and tested that possibility in primary murine tracheal epithelial cells (MTE). Both basal and cAMP-activated Na(+) flow through ENaC were significantly reduced in monolayers of uPA-deficient cells. The reduction in ENaC activity was further confirmed in basolateral membrane-permeabilized cells. A decrease in the Na(+)-K(+)-ATPase activity in the basolateral membrane could contribute to the attenuation of ENaC function in intact monolayer cells. Dysfunctional fluid resolution was seen in uPA-disrupted cells. Administration of uPA and plasmin partially restores ENaC activity and fluid reabsorption by MTEs. ERK1/2, but not Akt, phosphorylation was observed in the cells and lungs of uPA-deficient mice. On the other hand, cleavage of γ ENaC is significantly depressed in the lungs of uPA knockout mice vs. those of wild-type controls. Expression of caspase 8, however, did not differ between wild-type and uPA(-/-) mice. In addition, uPA deficiency did not alter transepithelial resistance. Taken together, the mechanisms for the regulation of ENaC by uPA in MTEs include augmentation of Na(+)-K(+)-ATPase, proteolysis, and restriction of ERK1/2 phosphorylation. We demonstrate for the first time that ENaC may serve as a downstream signaling target by which uPA controls the biophysical profiles of airway fluid and epithelial function.
Collapse
Affiliation(s)
- Zaixing Chen
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas; School of Pharmacy, China Medical University, Liaoning Shenyang, China
| | - Runzhen Zhao
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Meimi Zhao
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas; School of Pharmacy, China Medical University, Liaoning Shenyang, China
| | - Xinrong Liang
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Deepa Bhattarai
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Rohan Dhiman
- Department of Pulmonary Immunology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Sreerama Shetty
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Steven Idell
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas; Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler, Tyler, Texas; and Department of Medicine, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Hong-Long Ji
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas; Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler, Tyler, Texas; and
| |
Collapse
|
43
|
Matthay MA. Resolution of pulmonary edema. Thirty years of progress. Am J Respir Crit Care Med 2014; 189:1301-8. [PMID: 24881936 DOI: 10.1164/rccm.201403-0535oe] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In the last 30 years, we have learned much about the molecular, cellular, and physiological mechanisms that regulate the resolution of pulmonary edema in both the normal and the injured lung. Although the physiological mechanisms responsible for the formation of pulmonary edema were identified by 1980, the mechanisms that explain the resolution of pulmonary edema were not well understood at that time. However, in the 1980s several investigators provided novel evidence that the primary mechanism for removal of alveolar edema fluid depended on active ion transport across the alveolar epithelium. Sodium enters through apical channels, primarily the epithelial sodium channel, and is pumped into the lung interstitium by basolaterally located Na/K-ATPase, thus creating a local osmotic gradient to reabsorb the water fraction of the edema fluid from the airspaces of the lungs. The resolution of alveolar edema across the normally tight epithelial barrier can be up-regulated by cyclic adenosine monophosphate (cAMP)-dependent mechanisms through adrenergic or dopamine receptor stimulation, and by several cAMP-independent mechanisms, including glucocorticoids, thyroid hormone, dopamine, and growth factors. Whereas resolution of alveolar edema in cardiogenic pulmonary edema can be rapid, the rate of edema resolution in most patients with acute respiratory distress syndrome (ARDS) is markedly impaired, a finding that correlates with higher mortality. Several mechanisms impair the resolution of alveolar edema in ARDS, including cell injury from unfavorable ventilator strategies or pathogens, hypoxia, cytokines, and oxidative stress. In patients with severe ARDS, alveolar epithelial cell death is a major mechanism that prevents the resolution of lung edema.
Collapse
Affiliation(s)
- Michael A Matthay
- Departments of Medicine and Anesthesia and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California
| |
Collapse
|
44
|
Bove PF, Dang H, Cheluvaraju C, Jones LC, Liu X, O'Neal WK, Randell SH, Schlegel R, Boucher RC. Breaking the in vitro alveolar type II cell proliferation barrier while retaining ion transport properties. Am J Respir Cell Mol Biol 2014; 50:767-76. [PMID: 24191670 DOI: 10.1165/rcmb.2013-0071oc] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Alveolar type (AT)I and ATII cells are central to maintaining normal alveolar fluid homeostasis. When disrupted, they contribute to the pathogenesis of acute lung injury (ALI) and acute respiratory distress syndrome. Research on ATII cells has been limited by the inability to propagate primary cells in vitro to study their specific functional properties. Moreover, primary ATII cells in vitro quickly transdifferentiate into nonproliferative "ATI-like" cells under traditional culture conditions. Recent studies have demonstrated that normal and tumor cells grown in culture with a combination of fibroblast (feeder cells) and a pharmacological Rho kinase inhibitor (Y-27632) exhibit indefinite cell proliferation that resembled a "conditionally reprogrammed cell" phenotype. Using this coculture system, we found that primary human ATII cells (1) proliferated at an exponential rate, (2) established epithelial colonies expressing ATII-specific and "ATI-like" mRNA and proteins after serial passage, (3) up-regulated genes important in cell proliferation and migration, and (4) on removal of feeder cells and Rho kinase inhibitor under air-liquid interface conditions, exhibited bioelectric and volume transport characteristics similar to freshly cultured ATII cells. Collectively, our results demonstrate that this novel coculture technique breaks the in vitro ATII cell proliferation barrier while retaining cell-specific functional properties. This work will allow for a significant increase in studies designed to elucidate ATII cell function with the goal of accelerating the development of novel therapies for alveolar diseases.
Collapse
Affiliation(s)
- Peter F Bove
- 1 Department of Medicine, Cystic Fibrosis/Pulmonary Research and Treatment Center and
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ghaedi M, Mendez JJ, Bove PF, Sivarapatna A, Raredon MSB, Niklason LE. Alveolar epithelial differentiation of human induced pluripotent stem cells in a rotating bioreactor. Biomaterials 2014; 35:699-710. [PMID: 24144903 PMCID: PMC3897000 DOI: 10.1016/j.biomaterials.2013.10.018] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 10/02/2013] [Indexed: 12/13/2022]
Abstract
Traditional stem cell differentiation protocols make use of a variety of cytokines including growth factors (GFs) and inhibitors in an effort to provide appropriate signals for tissue specific differentiation. In this study, iPSC-derived type II pneumocytes (iPSC-ATII) as well as native isolated human type II pneumocytes (hATII) were differentiated toward a type I phenotype using a unique air-liquid interface (ALI) system that relies on a rotating apparatus that mimics in vivo respiratory conditions. A relatively homogenous population of alveolar type II-like cells from iPSC was first generated (iPSC-ATII cells), which had phenotypic properties similar to mature human alveolar type II cells. iPSC-ATII cells were then cultured in a specially designed rotating culture apparatus. The effectiveness of the ALI bioreactor was compared with the effectiveness of small molecule-based differentiation of type II pneumocytes toward type 1 pneumocytes. The dynamics of differentiation were examined by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), flow cytometry and immunocytochemistry. iPSC-ATII and hATII cells cultured in the ALI bioreactor had higher levels of type I markers, including aquaporin-5(AQ5), caveolin-1, and T1α, at both the RNA and protein levels as compared with the flask-grown iPSC-ATII and hATII that had been treated with small molecules to induce differentiation. In summary, this study demonstrates that a rotating bioreactor culture system that provides an air-liquid interface is a potent inducer of type I epithelial differentiation for both iPS-ATII cells and hATII cells, and provides a method for large-scale production of alveolar epithelium for tissue engineering and drug discovery.
Collapse
Affiliation(s)
- Mahboobe Ghaedi
- Department of Anesthesiology, Yale University, New Haven, CT 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Julio J. Mendez
- Department of Anesthesiology, Yale University, New Haven, CT 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Peter F. Bove
- Cystic Fibrosis/Pulmonary Research Treatment Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Amogh Sivarapatna
- Department of Anesthesiology, Yale University, New Haven, CT 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Micha Sam B. Raredon
- Department of Anesthesiology, Yale University, New Haven, CT 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Laura E. Niklason
- Department of Anesthesiology, Yale University, New Haven, CT 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
46
|
Ghaedi M, Calle EA, Mendez JJ, Gard AL, Balestrini J, Booth A, Bove PF, Gui L, White ES, Niklason LE. Human iPS cell-derived alveolar epithelium repopulates lung extracellular matrix. J Clin Invest 2013; 123:4950-62. [PMID: 24135142 DOI: 10.1172/jci68793] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 08/15/2013] [Indexed: 01/11/2023] Open
Abstract
The use of induced pluripotent stem cells (iPSCs) has been postulated to be the most effective strategy for developing patient-specific respiratory epithelial cells, which may be valuable for lung-related cell therapy and lung tissue engineering. We generated a relatively homogeneous population of alveolar epithelial type II (AETII) and type I (AETI) cells from human iPSCs that had phenotypic properties similar to those of mature human AETII and AETI cells. We used these cells to explore whether lung tissue can be regenerated in vitro. Consistent with an AETII phenotype, we found that up to 97% of cells were positive for surfactant protein C, 95% for mucin-1, 93% for surfactant protein B, and 89% for the epithelial marker CD54. Additionally, exposing induced AETII to a Wnt/β-catenin inhibitor (IWR-1) changed the iPSC-AETII-like phenotype to a predominantly AETI-like phenotype. We found that of induced AET1 cells, more than 90% were positive for type I markers, T1α, and caveolin-1. Acellular lung matrices were prepared from whole rat or human adult lungs treated with decellularization reagents, followed by seeding these matrices with alveolar cells derived from human iPSCs. Under appropriate culture conditions, these progenitor cells adhered to and proliferated within the 3D lung tissue scaffold and displayed markers of differentiated pulmonary epithelium.
Collapse
|
47
|
Miklavc P, Thompson KE, Frick M. A new role for P2X4 receptors as modulators of lung surfactant secretion. Front Cell Neurosci 2013; 7:171. [PMID: 24115920 PMCID: PMC3792447 DOI: 10.3389/fncel.2013.00171] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 09/12/2013] [Indexed: 12/17/2022] Open
Abstract
In recent years, P2X receptors have attracted increasing attention as regulators of exocytosis and cellular secretion. In various cell types, P2X receptors have been found to stimulate vesicle exocytosis directly via Ca(2+) influx and elevation of the intracellular Ca(2+) concentration. Recently, a new role for P2X4 receptors as regulators of secretion emerged. Exocytosis of lamellar bodies (LBs), large storage organelles for lung surfactant, results in a local, fusion-activated Ca(2+) entry (FACE) in alveolar type II epithelial cells. FACE is mediated via P2X4 receptors that are located on the limiting membrane of LBs and inserted into the plasma membrane upon exocytosis of LBs. The localized Ca(2+) influx at the site of vesicle fusion promotes fusion pore expansion and facilitates surfactant release. In addition, this inward-rectifying cation current across P2X4 receptors mediates fluid resorption from lung alveoli. It is hypothesized that the concomitant reduction in the alveolar lining fluid facilitates insertion of surfactant into the air-liquid interphase thereby "activating" it. These findings constitute a novel role for P2X4 receptors in regulating vesicle content secretion as modulators of the secretory output during the exocytic post-fusion phase.
Collapse
Affiliation(s)
- Pika Miklavc
- Institute of General Physiology, University of Ulm Ulm, Germany
| | | | | |
Collapse
|
48
|
Scobey T, Yount BL, Sims AC, Donaldson EF, Agnihothram SS, Menachery VD, Graham RL, Swanstrom J, Bove PF, Kim JD, Grego S, Randell SH, Baric RS. Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus. Proc Natl Acad Sci U S A 2013; 110:16157-62. [PMID: 24043791 PMCID: PMC3791741 DOI: 10.1073/pnas.1311542110] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Severe acute respiratory syndrome with high mortality rates (~50%) is associated with a novel group 2c betacoronavirus designated Middle East respiratory syndrome coronavirus (MERS-CoV). We synthesized a panel of contiguous cDNAs that spanned the entire genome. Following contig assembly into genome-length cDNA, transfected full-length transcripts recovered several recombinant viruses (rMERS-CoV) that contained the expected marker mutations inserted into the component clones. Because the wild-type MERS-CoV contains a tissue culture-adapted T1015N mutation in the S glycoprotein, rMERS-CoV replicated ~0.5 log less efficiently than wild-type virus. In addition, we ablated expression of the accessory protein ORF5 (rMERS•ORF5) and replaced it with tomato red fluorescent protein (rMERS-RFP) or deleted the entire ORF3, 4, and 5 accessory cluster (rMERS-ΔORF3-5). Recombinant rMERS-CoV, rMERS-CoV•ORF5, and MERS-CoV-RFP replicated to high titers, whereas MERS-ΔORF3-5 showed 1-1.5 logs reduced titer compared with rMERS-CoV. Northern blot analyses confirmed the associated molecular changes in the recombinant viruses, and sequence analysis demonstrated that RFP was expressed from the appropriate consensus sequence AACGAA. We further show dipeptidyl peptidase 4 expression, MERS-CoV replication, and RNA and protein synthesis in human airway epithelial cell cultures, primary lung fibroblasts, primary lung microvascular endothelial cells, and primary alveolar type II pneumocytes, demonstrating a much broader tissue tropism than severe acute respiratory syndrome coronavirus. The availability of a MERS-CoV molecular clone, as well as recombinant viruses expressing indicator proteins, will allow for high-throughput testing of therapeutic compounds and provide a genetic platform for studying gene function and the rational design of live virus vaccines.
Collapse
MESH Headings
- Blotting, Northern
- Blotting, Western
- Cells, Cultured
- Communicable Diseases, Emerging/virology
- Coronavirus/genetics
- DNA Primers/genetics
- DNA, Complementary/genetics
- Dipeptidyl Peptidase 4/metabolism
- Gene Expression Regulation, Viral/genetics
- Gene Expression Regulation, Viral/physiology
- Humans
- Luminescent Proteins
- Middle East
- Polymorphism, Restriction Fragment Length
- Real-Time Polymerase Chain Reaction
- Severe Acute Respiratory Syndrome/virology
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/physiology
- Virus Attachment
- Virus Replication/physiology
- Red Fluorescent Protein
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Peter F. Bove
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7435; and
| | | | - Sonia Grego
- Center for Materials and Electronic Technologies, Research Triangle International, Durham, NC 27709
| | | | - Ralph S. Baric
- Departments of Epidemiology
- Microbiology and Immunology and
| |
Collapse
|
49
|
Dagenais A, Tessier MC, Tatur S, Brochiero E, Grygorczyk R, Berthiaume Y. Hypotonic shock modulates Na(+) current via a Cl(-) and Ca(2+)/calmodulin dependent mechanism in alveolar epithelial cells. PLoS One 2013; 8:e74565. [PMID: 24019969 PMCID: PMC3760838 DOI: 10.1371/journal.pone.0074565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 08/05/2013] [Indexed: 12/02/2022] Open
Abstract
Alveolar epithelial cells are involved in Na+ absorption via the epithelial Na+ channel (ENaC), an important process for maintaining an appropriate volume of liquid lining the respiratory epithelium and for lung oedema clearance. Here, we investigated how a 20% hypotonic shock modulates the ionic current in these cells. Polarized alveolar epithelial cells isolated from rat lungs were cultured on permeant filters and their electrophysiological properties recorded. A 20% bilateral hypotonic shock induced an immediate, but transient 52% rise in total transepithelial current and a 67% increase in the amiloride-sensitive current mediated by ENaC. Amiloride pre-treatment decreased the current rise after hypotonic shock, showing that ENaC current is involved in this response. Since Cl- transport is modulated by hypotonic shock, its contribution to the basal and hypotonic-induced transepithelial current was also assessed. Apical NPPB, a broad Cl- channel inhibitor and basolateral DIOA a potassium chloride co-transporter (KCC) inhibitor reduced the total and ENaC currents, showing that transcellular Cl- transport plays a major role in that process. During hypotonic shock, a basolateral Cl- influx, partly inhibited by NPPB is essential for the hypotonic-induced current rise. Hypotonic shock promoted apical ATP secretion and increased intracellular Ca2+. While apyrase, an ATP scavenger, did not inhibit the hypotonic shock current response, W7 a calmodulin antagonist completely prevented the hypotonic current rise. These results indicate that a basolateral Cl- influx as well as Ca2+/calmodulin, but not ATP, are involved in the acute transepithelial current rise elicited by hypotonic shock.
Collapse
Affiliation(s)
- André Dagenais
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada
- Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
- * E-mail:
| | | | - Sabina Tatur
- Centre de Recherche du CHUM (CRCHUM), Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| | - Emmanuelle Brochiero
- Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
- Centre de Recherche du CHUM (CRCHUM), Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| | - Ryszard Grygorczyk
- Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
- Centre de Recherche du CHUM (CRCHUM), Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| | - Yves Berthiaume
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada
- Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
50
|
Hobbs CA, Da Tan C, Tarran R. Does epithelial sodium channel hyperactivity contribute to cystic fibrosis lung disease? J Physiol 2013; 591:4377-87. [PMID: 23878362 DOI: 10.1113/jphysiol.2012.240861] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Airway epithelia absorb Na+ through the epithelial Na+ channel (ENaC) and secrete Cl- through the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel. This balance maintains sufficient airway surface liquid hydration to permit efficient mucus clearance, which is needed to maintain sterility of the lung. Cystic fibrosis (CF) is a common autosomal recessive inherited disease caused by mutations in the CFTR gene that lead to the reduction or elimination of the CFTR protein. CF is a multi-organ disease that affects epithelia lining the intestines, lungs, pancreas, sweat ducts and vas deferens, among others. CF lungs are characterized by viscous, dehydrated mucus, persistent neutrophilia and chronic infections. ENaC is negatively regulated by CFTR and, in patients with CF, the absence of CFTR results in a double hit of reduced Cl-/HCO3- and H2O secretion as well as ENaC hyperactivity and increased Na+ and H2O absorption. Together, these effects are hypothesized to trigger mucus dehydration, resulting in a failure to clear mucus. Rehydrating CF mucus has become a recent clinical focus and yields important end-points for clinical trials. However, while ENaC hyperactivity in CF airways has been detected in vivo and in vitro, recent data have brought the role of ENaC in CF lung disease pathogenesis into question. This review will focus on our current understanding of the contribution of ENaC to CF pathogenesis.
Collapse
Affiliation(s)
- Carey A Hobbs
- R. Tarran: 7125 Thurston Bowles Building, UNC, Chapel Hill, NC 27599-7248, USA.
| | | | | |
Collapse
|