1
|
Yi YS. Functional interplay between non-canonical inflammasomes and autophagy in inflammatory responses and diseases. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2025; 29:129-138. [PMID: 39539180 PMCID: PMC11842290 DOI: 10.4196/kjpp.24.240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/19/2024] [Revised: 08/16/2024] [Accepted: 09/03/2024] [Indexed: 11/16/2024]
Abstract
The inflammasome is a cytosolic multiprotein platform that plays a key role in the inflammatory response, an essential innate immune response that protects the body from pathogens and cellular danger signals. Autophagy is a fundamental cellular mechanism that maintains homeostasis through the elimination and recycling of dysfunctional molecules and subcellular elements. Many previous studies have demonstrated a functional interplay between canonical inflammasomes that were earlier discovered and autophagy in inflammatory responses and diseases. Given the increasing evidence that non-canonical inflammasomes are unique and key factors in inflammatory responses, the functional interplay between non-canonical inflammasomes and autophagy is noteworthy. Recent studies have demonstrated that non-canonical inflammasomes and autophagy are functionally correlated with inflammatory responses and diseases. This review comprehensively discusses recent studies that have investigated the functional interplay of non-canonical inflammasomes, such as mouse caspase-11 and human caspase-4, with autophagy and autophagy-related proteins in inflammatory responses and diseases and provides insight into the development of novel anti-inflammatory therapeutics by modulating the functional interplay between non-canonical inflammasomes and autophagy.
Collapse
Affiliation(s)
- Young-Su Yi
- Department of Life Sciences, Kyonggi University, Suwon 16227, Korea
| |
Collapse
|
2
|
Fee BE, Fee LR, Menechella M, Affeldt B, Sprouse AR, Bounini A, Alwarawrah Y, Molloy CT, Ilkayeva OR, Prinz JA, Lenz DS, MacIver NJ, Rai P, Fessler MB, Coers J, Taylor GA. Type I interferon signaling and peroxisomal dysfunction contribute to enhanced inflammatory cytokine production in IRGM1-deficient macrophages. J Biol Chem 2024; 300:107883. [PMID: 39395806 DOI: 10.1016/j.jbc.2024.107883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/01/2024] [Revised: 09/30/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024] Open
Abstract
The human IRGM gene has been linked to inflammatory diseases including sepsis and Crohn's disease. Decreased expression of human IRGM, or the mouse orthologues Irgm1 and Irgm2, leads to increased production of a number of inflammatory chemokines and cytokines in vivo and/or in cultured macrophages. Prior work has indicated that increased cytokine production is instigated by metabolic alterations and changes in mitochondrial homeostasis; however, a comprehensive mechanism has not been elucidated. In the studies presented here, RNA deep sequencing and quantitative PCR were used to show that increases in cytokine production, as well as most changes in the transcriptional profile of Irgm1-/- bone marrow-derived macrophages (BMM), are dependent on increased type I IFN production seen in those cells. Metabolic alterations that drive increased cytokines in Irgm1-/- BMM - specifically increases in glycolysis and increased accumulation of acyl-carnitines - were unaffected by quenching type I IFN signaling. Dysregulation of peroxisomal homeostasis was identified as a novel upstream pathway that governs type I IFN production and inflammatory cytokine production. Collectively, these results enhance our understanding of the complex biochemical changes that are triggered by lack of Irgm1 and contribute to inflammatory disease seen with Irgm1-deficiency.
Collapse
Affiliation(s)
- Brian E Fee
- Department of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development; Duke University Medical Center, Durham, North Carolina, USA
| | - Lanette R Fee
- Department of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development; Duke University Medical Center, Durham, North Carolina, USA
| | - Mark Menechella
- Department of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development; Duke University Medical Center, Durham, North Carolina, USA
| | - Bethann Affeldt
- Department of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development; Duke University Medical Center, Durham, North Carolina, USA
| | - Aemilia R Sprouse
- Department of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development; Duke University Medical Center, Durham, North Carolina, USA
| | - Amina Bounini
- Department of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development; Duke University Medical Center, Durham, North Carolina, USA
| | - Yazan Alwarawrah
- Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes, and Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Caitlyn T Molloy
- Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes, and Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Olga R Ilkayeva
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, North Carolina, USA; Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Joseph A Prinz
- Duke University School of Medicine, Sequencing and Genomic Technologies, Durham, North Carolina, USA
| | - Devi Swain Lenz
- Duke University School of Medicine, Sequencing and Genomic Technologies, Durham, North Carolina, USA; Departments of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Nancie J MacIver
- Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes, and Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Prashant Rai
- Immunity, Inflammation and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Jörn Coers
- Departments of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA; Department of Immunobiology; Duke University Medical Center, Durham, North Carolina, USA
| | - Gregory A Taylor
- Department of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development; Duke University Medical Center, Durham, North Carolina, USA; Departments of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA; Department of Immunobiology; Duke University Medical Center, Durham, North Carolina, USA; Geriatric Research, Education, and Clinical Center, Durham VA Health Care System, Durham, North Carolina, USA.
| |
Collapse
|
3
|
Murillo-Léon M, Bastidas-Quintero AM, Steinfeldt T. Decoding Toxoplasma gondii virulence: the mechanisms of IRG protein inactivation. Trends Parasitol 2024; 40:805-819. [PMID: 39168720 DOI: 10.1016/j.pt.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/31/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024]
Abstract
Toxoplasmosis is a common parasitic zoonosis that can be life-threatening in immunocompromised patients. About one-third of the human population is infected with Toxoplasma gondii. Primary infection triggers an innate immune response wherein IFN-γ-induced host cell GTPases, namely IRG and GBP proteins, serve as a vital component for host cell resistance. In the past decades, interest in elucidating the function of these GTPase families in controlling various intracellular pathogens has emerged. Numerous T. gondii effectors were identified to inactivate particular IRG proteins. T. gondii is re-optimizing its effectors to combat IRG function and in this way secures transmission. We discuss the IRG-specific effectors employed by the parasite in murine infections, contributing to a better understanding of T. gondii virulence.
Collapse
Affiliation(s)
- Mateo Murillo-Léon
- Institute of Medical Microbiology and Hygiene, Medical Center University of Freiburg, 79104 Freiburg, Germany; CIBSS, Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Aura María Bastidas-Quintero
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Institute of Virology, Medical Center University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Tobias Steinfeldt
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Institute of Virology, Medical Center University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
4
|
Reitano JR, Coers J. Restriction and evasion: a review of IFNγ-mediated cell-autonomous defense pathways during genital Chlamydia infection. Pathog Dis 2024; 82:ftae019. [PMID: 39210512 PMCID: PMC11407441 DOI: 10.1093/femspd/ftae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/13/2024] [Revised: 08/09/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Chlamydia trachomatis is the most common cause of bacterial sexually transmitted infection (STI) in the USA. As an STI, C. trachomatis infections can cause inflammatory damage to the female reproductive tract and downstream sequelae including infertility. No vaccine currently exists to C. trachomatis, which evades sterilizing immune responses in its human host. A better understanding of this evasion will greatly benefit the production of anti-Chlamydia therapeutics and vaccination strategies. This minireview will discuss a single branch of the immune system, which activates in response to genital Chlamydia infection: so-called "cell-autonomous immunity" activated by the cytokine interferon-gamma. We will also discuss the mechanisms by which human and mouse-adapted Chlamydia species evade cell-autonomous immune responses in their native hosts. This minireview will examine five pathways of host defense and their evasion: (i) depletion of tryptophan and other nutrients, (ii) immunity-related GTPase-mediated defense, (iii) production of nitric oxide, (iv) IFNγ-induced cell death, and (v) RNF213-mediated destruction of inclusions.
Collapse
Affiliation(s)
- Jeffrey R Reitano
- Department of Integrative Immunobiology, Duke University Medical School, 207 Research Dr. Box 3010, Durham, NC 27710, United States
| | - Jörn Coers
- Department of Integrative Immunobiology, Duke University Medical School, 207 Research Dr. Box 3010, Durham, NC 27710, United States
- Department of Molecular Genetics and Microbiology, Duke University Medical School, 213 Research Dr. Box 3054, Durham, NC 27710, United States
| |
Collapse
|
5
|
Overview of Apoptosis, Autophagy, and Inflammatory Processes in Toxoplasma gondii Infected Cells. Pathogens 2023; 12:pathogens12020253. [PMID: 36839525 PMCID: PMC9966443 DOI: 10.3390/pathogens12020253] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/30/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Toxoplasma gondii (T. gondii) is an obligate intracellular parasite. During the parasitic invasion, T. gondii creates a parasitophorous vacuole, which enables the modulation of cell functions, allowing its replication and host infection. It has effective strategies to escape the immune response and reach privileged immune sites and remain inactive in a controlled environment in tissue cysts. This current review presents the factors that affect host cells and the parasite, as well as changes in the immune system during host cell infection. The secretory organelles of T. gondii (dense granules, micronemes, and rhoptries) are responsible for these processes. They are involved with proteins secreted by micronemes and rhoptries (MIC, AMA, and RONs) that mediate the recognition and entry into host cells. Effector proteins (ROP and GRA) that modify the STAT signal or GTPases in immune cells determine their toxicity. Interference byhost autonomous cells during parasitic infection, gene expression, and production of microbicidal molecules such as reactive oxygen species (ROS) and nitric oxide (NO), result in the regulation of cell death. The high level of complexity in host cell mechanisms prevents cell death in its various pathways. Many of these abilities play an important role in escaping host immune responses, particularly by manipulating the expression of genes involved in apoptosis, necrosis, autophagy, and inflammation. Here we present recent works that define the mechanisms by which T. gondii interacts with these processes in infected host cells.
Collapse
|
6
|
Maliah A, Parikh R, Tayer-Shifman OE, Kimhi O, Gepstein R, Halperin T, Levy Y, Levy C, Basson YPP, Kivity S. Steroid treatment suppresses the CD4 + T-cell response to the third dose of mRNA COVID-19 vaccine in systemic autoimmune rheumatic disease patients. Sci Rep 2022; 12:21056. [PMID: 36474011 PMCID: PMC9727118 DOI: 10.1038/s41598-022-25642-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Prolonged steroid treatment has a suppressive effect on the immune system, however, its effect on the cellular response to mRNA vaccine is unknown. Here we assessed the impact of prolonged steroid treatment on the T-cell and humoral response to the SARS-CoV-2 spike (S) peptide following the third dose of the BNT162b2 vaccine in systemic autoimmune rheumatic disease patients. We found that CD4 T-cell response to the S peptide in patients on high-dose long-term steroid treatment showed significantly less S-peptide specific response, compare to low-dose or untreated patients. Remarkably, these results were not reflected in their humoral response, since almost all patients in the cohort had sufficient antibody levels. Moreover, S-peptide activation failed to induce significant mRNA levels of IFNγ and TNFα in patients receiving high-dose steroids. RNA-sequencing datasets analysis implies that steroid treatments' inhibitory effect of nuclear factor kappa-B signaling may interfere with the activation of S-specific CD4 T-cells. This reveals that high-dose steroid treatment inhibits T-cell response to the mRNA vaccine, despite having sufficient antibody levels. Since T-cell immunity is a crucial factor in the immune response to viruses, our findings highlight the need for enhancing the efficiency of vaccines in immune-suppressive patients, by modulation of the T-cell response.
Collapse
Affiliation(s)
- Avishai Maliah
- grid.12136.370000 0004 1937 0546Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Roma Parikh
- grid.12136.370000 0004 1937 0546Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Oshrat E. Tayer-Shifman
- grid.415250.70000 0001 0325 0791Rheumatology Unit, Meir Medical Center, Tchernichovsky St 59, Kfar Saba, Israel ,grid.12136.370000 0004 1937 0546Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Oded Kimhi
- grid.415250.70000 0001 0325 0791Department of Internal Medicine A, Meir Medical Center, Kfar Saba, Israel
| | - Raz Gepstein
- grid.415250.70000 0001 0325 0791Department of Ophthalmology, Meir Medical Center, Kfar Saba, Israel
| | - Tami Halperin
- grid.12136.370000 0004 1937 0546Department of Infectious Diseases, Tel-Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yair Levy
- grid.12136.370000 0004 1937 0546Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel ,grid.415250.70000 0001 0325 0791Department of Internal Medicine E, Meir Medical Center, Kfar Saba, Israel
| | - Carmit Levy
- grid.12136.370000 0004 1937 0546Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Yael Pri-Paz Basson
- grid.415250.70000 0001 0325 0791Rheumatology Unit, Meir Medical Center, Tchernichovsky St 59, Kfar Saba, Israel
| | - Shaye Kivity
- grid.415250.70000 0001 0325 0791Rheumatology Unit, Meir Medical Center, Tchernichovsky St 59, Kfar Saba, Israel ,grid.12136.370000 0004 1937 0546Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
7
|
Pant A, Yao X, Lavedrine A, Viret C, Dockterman J, Chauhan S, Chong-Shan Shi, Manjithaya R, Cadwell K, Kufer TA, Kehrl JH, Coers J, Sibley LD, Faure M, Taylor GA, Chauhan S. Interactions of Autophagy and the Immune System in Health and Diseases. AUTOPHAGY REPORTS 2022; 1:438-515. [PMID: 37425656 PMCID: PMC10327624 DOI: 10.1080/27694127.2022.2119743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 10/07/2023]
Abstract
Autophagy is a highly conserved process that utilizes lysosomes to selectively degrade a variety of intracellular cargo, thus providing quality control over cellular components and maintaining cellular regulatory functions. Autophagy is triggered by multiple stimuli ranging from nutrient starvation to microbial infection. Autophagy extensively shapes and modulates the inflammatory response, the concerted action of immune cells, and secreted mediators aimed to eradicate a microbial infection or to heal sterile tissue damage. Here, we first review how autophagy affects innate immune signaling, cell-autonomous immune defense, and adaptive immunity. Then, we discuss the role of non-canonical autophagy in microbial infections and inflammation. Finally, we review how crosstalk between autophagy and inflammation influences infectious, metabolic, and autoimmune disorders.
Collapse
Affiliation(s)
- Aarti Pant
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Xiaomin Yao
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Aude Lavedrine
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM
| | - Christophe Viret
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM
| | - Jake Dockterman
- Department of Immunology, Duke University, Medical Center, Durham, North Carolina, USA
| | - Swati Chauhan
- Cell biology and Infectious diseases, Institute of Life Sciences, Bhubaneswar, India
| | - Chong-Shan Shi
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
- Division of Gastroenterology and Hepatology, Department of Medicine, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Thomas A. Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - John H. Kehrl
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jörn Coers
- Department of Immunology, Duke University, Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University, Medical Center, Durham, North Carolina, USA
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University Sch. Med., St Louis, MO, 63110, USA
| | - Mathias Faure
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM
| | - Gregory A Taylor
- Department of Immunology, Duke University, Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University, Medical Center, Durham, North Carolina, USA
- Department of Molecular Microbiology, Washington University Sch. Med., St Louis, MO, 63110, USA
- Geriatric Research, Education, and Clinical Center, VA Health Care Center, Durham, North Carolina, USA
- Departments of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development, Duke University, Medical Center, Durham, North Carolina, USA
| | - Santosh Chauhan
- Cell biology and Infectious diseases, Institute of Life Sciences, Bhubaneswar, India
- CSIR–Centre For Cellular And Molecular Biology (CCMB), Hyderabad, Telangana
| |
Collapse
|
8
|
Dockterman J, Coers J. How did we get here? Insights into mechanisms of immunity-related GTPase targeting to intracellular pathogens. Curr Opin Microbiol 2022; 69:102189. [PMID: 35963099 PMCID: PMC9745802 DOI: 10.1016/j.mib.2022.102189] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/17/2022] [Revised: 06/28/2022] [Accepted: 07/11/2022] [Indexed: 12/15/2022]
Abstract
The cytokine gamma-interferon activates cell-autonomous immunity against intracellular bacterial and protozoan pathogens by inducing a slew of antimicrobial proteins, some of which hinge upon immunity-related GTPases (IRGs) for their function. Three regulatory IRG clade M (Irgm) proteins chaperone about approximately 20 effector IRGs (GKS IRGs) to localize to pathogen-containing vacuoles (PVs) within mouse cells, initiating a cascade that results in PV elimination and killing of PV-resident pathogens. However, the mechanisms that allow IRGs to identify and traffic specifically to 'non-self' PVs have remained elusive. Integrating recent findings demonstrating direct interactions between GKS IRGs and lipids with previous work, we propose that three attributes mark PVs as GKS IRG targets: the absence of membrane-bound Irgm proteins, Atg8 lipidation, and the presence of specific lipid species. Combinatorial recognition of these three distinct signals may have evolved as a mechanism to ensure safe delivery of potent host antimicrobial effectors exclusively to PVs.
Collapse
Affiliation(s)
- Jacob Dockterman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
9
|
Tang H, Shao C, Wang X, Cao Y, Li Z, Luo X, Yang X, Zhang Y. 6-Gingerol attenuates subarachnoid hemorrhage-induced early brain injury via GBP2/PI3K/AKT pathway in the rat model. Front Pharmacol 2022; 13:882121. [PMID: 36091803 PMCID: PMC9453877 DOI: 10.3389/fphar.2022.882121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/23/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Numerous studies have elucidated the neuroprotective effect of 6-gingerol in central nervous system diseases. However, the potential role and mechanism of 6-gingerol on early brain injury (EBI) after subarachnoid hemorrhage (SAH) remains poorly understood. Here, we report that 6-gingerol exerts a neuroprotective effect on SAH-induced EBI through the GBP2/PI3K/AKT pathway. A SAH rat model was established by injecting femoral artery blood into the cisterna magna. 6-gingerol or vehicle was injected intraperitoneally 1 hour post-SAH induction. We found that the neurological function score and brain edema of SAH rats were significantly improved after 6-gingerol treatment, as well as neuronal apoptosis was attenuated in SAH rats by Nissl staining assay and TUNEL assay. To further explore potential molecular mechanisms associated with 6-gingerol, RNA sequencing was implemented to investigate the differences in transcriptomes between SAH rats with and without 6-gingerol treatment; and found that the expression of guanylate-binding protein 2 (GBP2) evidently was suppressed with 6-gingerol treatment compared to vehicle group. In addition, dual immunofluorescence was also employed to investigate changes in neurons, astrocytes, and microglia after 6-gingerol treatment. The results showed that GBP2 was expressed in neurons but not astrocytes or microglia. Western blotting analysis results demonstrated that the PI3K/AKT pathway was activated in the SAH rats treated with 6-gingerol. Furthermore, recombinant GBP2 protein and LY294002 (PI3K inhibitor) treatment reversed the effects of 6-gingerol treatment in SAH rats. These results indicate that 6-gingerol suppressed the expression of GBP2 to activate the PI3K/AKT pathway, improve neurologic outcomes, reduce brain edema and neuronal apoptosis. In summary, our findings suggest that 6-gingerol could attenuate EBI post-SAH in rats, and 6-gingerol may serve as a novel candidate neuroprotective drug for SAH-induced EBI.
Collapse
Affiliation(s)
- Hui Tang
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, SC, China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, SC, China
| | - Chuan Shao
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, SC, China
- Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Xiaoya Wang
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, SC, China
| | - Yi Cao
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, SC, China
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhou Li
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, SC, China
| | - Xiaoquan Luo
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, SC, China
- Department of Neurosurgery, Chengdu Second People’s Hospital, Chengdu, SC, China
| | - Xiang Yang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, SC, China
| | - Yuekang Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, SC, China
- *Correspondence: Yuekang Zhang,
| |
Collapse
|
10
|
Immunity-related GTPase IRGM at the intersection of autophagy, inflammation, and tumorigenesis. Inflamm Res 2022; 71:785-795. [PMID: 35699756 PMCID: PMC9192921 DOI: 10.1007/s00011-022-01595-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/05/2022] [Accepted: 05/25/2022] [Indexed: 12/26/2022] Open
Abstract
The human immunity-related GTPase M (IRGM) is a GTP-binding protein that regulates selective autophagy including xenophagy and mitophagy. IRGM impacts autophagy by (1) affecting mitochondrial fusion and fission, (2) promoting the co-assembly of ULK1 and Beclin 1, (3) enhancing Beclin 1 interacting partners (AMBRA1, ATG14L1, and UVRAG), (4) interacting with other key proteins (ATG16L1, p62, NOD2, cGAS, TLR3, and RIG-I), and (5) regulating lysosomal biogenesis. IRGM also negatively regulates NLRP3 inflammasome formation and therefore, maturation of the important pro-inflammatory cytokine IL-1β, impacting inflammation and pyroptosis. Ultimately, this affords protection against chronic inflammatory diseases. Importantly, ten IRGM polymorphisms (rs4859843, rs4859846, rs4958842, rs4958847, rs1000113, rs10051924, rs10065172, rs11747270, rs13361189, and rs72553867) have been associated with human inflammatory disorders including cancer, which suggests that these genetic variants are functionally relevant to the autophagic and inflammatory responses. The current review contextualizes IRGM, its modulation of autophagy, and inflammation, and emphasizes the role of IRGM as a cross point of immunity and tumorigenesis.
Collapse
|
11
|
Dockterman J, Fee BE, Taylor GA, Coers J. Murine Irgm Paralogs Regulate Nonredundant Functions To Execute Host Defense to Toxoplasma gondii. Infect Immun 2021; 89:e0020221. [PMID: 34338548 PMCID: PMC8519265 DOI: 10.1128/iai.00202-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/08/2021] [Accepted: 07/16/2021] [Indexed: 12/22/2022] Open
Abstract
Gamma interferon (IFN-γ)-induced immunity-related GTPases (IRGs) confer cell-autonomous immunity to the intracellular protozoan pathogen Toxoplasma gondii. Effector IRGs are loaded onto the Toxoplasma-containing parasitophorous vacuole (PV), where they recruit ubiquitin ligases, ubiquitin-binding proteins, and IFN-γ-inducible guanylate-binding proteins (Gbps), prompting PV lysis and parasite destruction. Host cells lacking the regulatory IRGs Irgm1 and Irgm3 fail to load effector IRGs, ubiquitin, and Gbps onto the PV and are consequently defective for cell-autonomous immunity to Toxoplasma. However, the role of the third regulatory IRG, Irgm2, in cell-autonomous immunity to Toxoplasma has remained unexplored. Here, we report that Irgm2 unexpectedly plays a limited role in the targeting of effector IRGs, ubiquitin, and Gbps to the Toxoplasma PV. Instead, Irgm2 is instrumental in the decoration of PVs with γ-aminobutyric acid receptor-associated protein-like 2 (GabarapL2). Cells lacking Irgm2 are as defective for cell-autonomous host defense to Toxoplasma as pan-Irgm-/- cells lacking all three Irgm proteins, and Irgm2-/- mice succumb to Toxoplasma infections as readily as pan-Irgm-/- mice. These findings demonstrate that, relative to Irgm1 and Irgm3, Irgm2 plays a distinct but critically important role in host resistance to Toxoplasma.
Collapse
Affiliation(s)
- Jacob Dockterman
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Brian E. Fee
- Geriatric Research, Education, and Clinical Center, VA Health Care Center, Durham, North Carolina, USA
- Departments of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, North Carolina, USA
| | - Gregory A. Taylor
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
- Geriatric Research, Education, and Clinical Center, VA Health Care Center, Durham, North Carolina, USA
- Departments of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Jörn Coers
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
12
|
Fisch D, Evans R, Clough B, Byrne SK, Channell WM, Dockterman J, Frickel EM. HRMAn 2.0: Next-generation artificial intelligence-driven analysis for broad host-pathogen interactions. Cell Microbiol 2021; 23:e13349. [PMID: 33930228 DOI: 10.1111/cmi.13349] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/06/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022]
Abstract
To study the dynamics of infection processes, it is common to manually enumerate imaging-based infection assays. However, manual counting of events from imaging data is biased, error-prone and a laborious task. We recently presented HRMAn (Host Response to Microbe Analysis), an automated image analysis program using state-of-the-art machine learning and artificial intelligence algorithms to analyse pathogen growth and host defence behaviour. With HRMAn, we can quantify intracellular infection by pathogens such as Toxoplasma gondii and Salmonella in a variety of cell types in an unbiased and highly reproducible manner, measuring multiple parameters including pathogen growth, pathogen killing and activation of host cell defences. Since HRMAn is based on the KNIME Analytics platform, it can easily be adapted to work with other pathogens and produce more readouts from quantitative imaging data. Here we showcase improvements to HRMAn resulting in the release of HRMAn 2.0 and new applications of HRMAn 2.0 for the analysis of host-pathogen interactions using the established pathogen T. gondii and further extend it for use with the bacterial pathogen Chlamydia trachomatis and the fungal pathogen Cryptococcus neoformans.
Collapse
Affiliation(s)
- Daniel Fisch
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, UK
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, London, UK
| | - Robert Evans
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, UK
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, London, UK
| | - Barbara Clough
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, UK
| | - Sophie K Byrne
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, UK
| | - Will M Channell
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, UK
| | - Jacob Dockterman
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Eva-Maria Frickel
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, UK
| |
Collapse
|
13
|
Rai P, Janardhan KS, Meacham J, Madenspacher JH, Lin WC, Karmaus PWF, Martinez J, Li QZ, Yan M, Zeng J, Grinstaff MW, Shirihai OS, Taylor GA, Fessler MB. IRGM1 links mitochondrial quality control to autoimmunity. Nat Immunol 2021; 22:312-321. [PMID: 33510463 PMCID: PMC7906953 DOI: 10.1038/s41590-020-00859-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/27/2019] [Accepted: 12/18/2020] [Indexed: 02/08/2023]
Abstract
Mitochondrial abnormalities have been noted in lupus, but the causes and consequences remain obscure. Autophagy-related genes ATG5, ATG7 and IRGM have been previously implicated in autoimmune disease. We reasoned that failure to clear defective mitochondria via mitophagy might be a foundational driver in autoimmunity by licensing mitochondrial DNA-dependent induction of type I interferon. Here, we show that mice lacking the GTPase IRGM1 (IRGM homolog) exhibited a type I interferonopathy with autoimmune features. Irgm1 deletion impaired the execution of mitophagy with cell-specific consequences. In fibroblasts, mitochondrial DNA soiling of the cytosol induced cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING)-dependent type I interferon, whereas in macrophages, lysosomal Toll-like receptor 7 was activated. In vivo, Irgm1-/- tissues exhibited mosaic dependency upon nucleic acid receptors. Whereas salivary and lacrimal gland autoimmune pathology was abolished and lung pathology was attenuated by cGAS and STING deletion, pancreatic pathology remained unchanged. These findings reveal fundamental connections between mitochondrial quality control and tissue-selective autoimmune disease.
Collapse
Affiliation(s)
- Prashant Rai
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA.
| | - Kyathanahalli S Janardhan
- Cellular & Molecular Pathology Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
- Integrated Laboratory Systems, Inc., Research Triangle Park, NC, USA
| | - Julie Meacham
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Jennifer H Madenspacher
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Wan-Chi Lin
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Peer W F Karmaus
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Jennifer Martinez
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Quan-Zhen Li
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Microarray Core Facility, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mei Yan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Microarray Core Facility, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jialiu Zeng
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Mark W Grinstaff
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Orian S Shirihai
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Division of Endocrinology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Gregory A Taylor
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
- Division of Geriatrics, Department of Medicine, Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, NC, USA
- Geriatric Research, Education, and Clinical Center, VA Medical Center, Durham, NC, USA
| | - Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA.
| |
Collapse
|
14
|
Finethy R, Dockterman J, Kutsch M, Orench‐Rivera N, Wallace GD, Piro AS, Luoma S, Haldar AK, Hwang S, Martinez J, Kuehn MJ, Taylor GA, Coers J. Dynamin-related Irgm proteins modulate LPS-induced caspase-11 activation and septic shock. EMBO Rep 2020; 21:e50830. [PMID: 33124745 PMCID: PMC7645254 DOI: 10.15252/embr.202050830] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/07/2020] [Revised: 09/08/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
Inflammation associated with gram-negative bacterial infections is often instigated by the bacterial cell wall component lipopolysaccharide (LPS). LPS-induced inflammation and resulting life-threatening sepsis are mediated by the two distinct LPS receptors TLR4 and caspase-11 (caspase-4/-5 in humans). Whereas the regulation of TLR4 activation by extracellular and phago-endosomal LPS has been studied in great detail, auxiliary host factors that specifically modulate recognition of cytosolic LPS by caspase-11 are largely unknown. This study identifies autophagy-related and dynamin-related membrane remodeling proteins belonging to the family of Immunity-related GTPases M clade (IRGM) as negative regulators of caspase-11 activation in macrophages. Phagocytes lacking expression of mouse isoform Irgm2 aberrantly activate caspase-11-dependent inflammatory responses when exposed to extracellular LPS, bacterial outer membrane vesicles, or gram-negative bacteria. Consequently, Irgm2-deficient mice display increased susceptibility to caspase-11-mediated septic shock in vivo. This Irgm2 phenotype is partly reversed by the simultaneous genetic deletion of the two additional Irgm paralogs Irgm1 and Irgm3, indicating that dysregulated Irgm isoform expression disrupts intracellular LPS processing pathways that limit LPS availability for caspase-11 activation.
Collapse
Affiliation(s)
- Ryan Finethy
- Department of Molecular Genetics and MicrobiologyDuke University Medical CenterDurhamNCUSA
| | - Jacob Dockterman
- Department of ImmunologyDuke University Medical CenterDurhamNCUSA
| | - Miriam Kutsch
- Department of Molecular Genetics and MicrobiologyDuke University Medical CenterDurhamNCUSA
| | | | - Graham D Wallace
- Department of Molecular Genetics and MicrobiologyDuke University Medical CenterDurhamNCUSA
| | - Anthony S Piro
- Department of Molecular Genetics and MicrobiologyDuke University Medical CenterDurhamNCUSA
| | - Sarah Luoma
- Department of Molecular Genetics and MicrobiologyDuke University Medical CenterDurhamNCUSA
| | - Arun K Haldar
- Department of Molecular Genetics and MicrobiologyDuke University Medical CenterDurhamNCUSA
- Present address:
Division of BiochemistryCentral Drug Research Institute (CDRI)Council of Scientific and Industrial Research (CSIR)LucknowIndia
| | - Seungmin Hwang
- Department of PathologyThe University of ChicagoChicagoILUSA
- Present address:
VIR BiotechnologySan FranciscoCAUSA
| | - Jennifer Martinez
- Immunity, Inflammation, and Disease LaboratoryNational Institute of Environmental Health SciencesNational Institutes of HealthResearch Triangle ParkNCUSA
| | - Meta J Kuehn
- Department of BiochemistryDuke University Medical CenterDurhamNCUSA
| | - Gregory A Taylor
- Department of Molecular Genetics and MicrobiologyDuke University Medical CenterDurhamNCUSA
- Department of ImmunologyDuke University Medical CenterDurhamNCUSA
- Division of GeriatricsDepartment of MedicineCenter for the Study of Aging and Human DevelopmentDuke University Medical CenterDurhamNCUSA
- Geriatric Research, Education, and Clinical Center, VA Medical CenterDurhamNCUSA
| | - Jörn Coers
- Department of Molecular Genetics and MicrobiologyDuke University Medical CenterDurhamNCUSA
- Department of ImmunologyDuke University Medical CenterDurhamNCUSA
| |
Collapse
|
15
|
Guo X, Zhang W, Wang C, Zhang B, Li R, Zhang L, Zhao K, Li Y, Tian L, Li B, Cheng H, Li L, Pei C, Xu H. IRGM promotes the PINK1‐mediated mitophagy through the degradation of Mitofilin in SH‐SY5Y cells. FASEB J 2020; 34:14768-14779. [PMID: 32939830 DOI: 10.1096/fj.202000943rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/23/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Xize Guo
- Department of Immunology Heilongjiang Provincial Key Laboratory for Infection and Immunity Harbin Medical University Harbin China
| | - Wanping Zhang
- Department of Immunology Heilongjiang Provincial Key Laboratory for Infection and Immunity Harbin Medical University Harbin China
| | - Chun Wang
- Department of Immunology Heilongjiang Provincial Key Laboratory for Infection and Immunity Harbin Medical University Harbin China
| | - Bo Zhang
- Department of Cardiology The Forth Affiliated Hospital of Harbin Medical University Harbin China
| | - Rui Li
- Department of Neurology University of Pennsylvania Philadelphia PA USA
| | - Lie Zhang
- Department of Immunology Heilongjiang Provincial Key Laboratory for Infection and Immunity Harbin Medical University Harbin China
| | - Kai Zhao
- Department of Neurosurgery The First Affiliate Hospital of Harbin Medical University Harbin China
| | - Yu Li
- Department of Neurosurgery The First Affiliate Hospital of Harbin Medical University Harbin China
| | - Linlu Tian
- Department of Immunology Heilongjiang Provincial Key Laboratory for Infection and Immunity Harbin Medical University Harbin China
| | - Bo Li
- Department of Immunology Heilongjiang Provincial Key Laboratory for Infection and Immunity Harbin Medical University Harbin China
| | - Huakun Cheng
- Department of Neurosurgery Heilongjiang Provincial Hospital Harbin China
| | - Lixian Li
- Department of Neurosurgery The First Affiliate Hospital of Harbin Medical University Harbin China
| | - Chunying Pei
- Department of Immunology Heilongjiang Provincial Key Laboratory for Infection and Immunity Harbin Medical University Harbin China
| | - Hongwei Xu
- Department of Immunology Heilongjiang Provincial Key Laboratory for Infection and Immunity Harbin Medical University Harbin China
| |
Collapse
|
16
|
Fisch D, Clough B, Domart MC, Encheva V, Bando H, Snijders AP, Collinson LM, Yamamoto M, Shenoy AR, Frickel EM. Human GBP1 Differentially Targets Salmonella and Toxoplasma to License Recognition of Microbial Ligands and Caspase-Mediated Death. Cell Rep 2020; 32:108008. [PMID: 32783936 PMCID: PMC7435695 DOI: 10.1016/j.celrep.2020.108008] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/21/2020] [Revised: 06/19/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
Interferon-inducible guanylate-binding proteins (GBPs) promote cell-intrinsic defense through host cell death. GBPs target pathogens and pathogen-containing vacuoles and promote membrane disruption for release of microbial molecules that activate inflammasomes. GBP1 mediates pyroptosis or atypical apoptosis of Salmonella Typhimurium (STm)- or Toxoplasma gondii (Tg)- infected human macrophages, respectively. The pathogen-proximal detection-mechanisms of GBP1 remain poorly understood, as humans lack functional immunity-related GTPases (IRGs) that assist murine Gbps. Here, we establish that GBP1 promotes the lysis of Tg-containing vacuoles and parasite plasma membranes, releasing Tg-DNA. In contrast, we show GBP1 targets cytosolic STm and recruits caspase-4 to the bacterial surface for its activation by lipopolysaccharide (LPS), but does not contribute to bacterial vacuole escape. Caspase-1 cleaves and inactivates GBP1, and a cleavage-deficient GBP1D192E mutant increases caspase-4-driven pyroptosis due to the absence of feedback inhibition. Our studies elucidate microbe-specific roles of GBP1 in infection detection and its triggering of the assembly of divergent caspase signaling platforms.
Collapse
Affiliation(s)
- Daniel Fisch
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, London NW1 1AT, UK; MRC Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK
| | - Barbara Clough
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Marie-Charlotte Domart
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Vesela Encheva
- Mass Spectrometry and Proteomics Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Hironori Bando
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Ambrosius P Snijders
- Mass Spectrometry and Proteomics Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Lucy M Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Avinash R Shenoy
- MRC Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK; The Francis Crick Institute, London NW1 1AT, UK.
| | - Eva-Maria Frickel
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
17
|
Taylor GA, Huang HI, Fee BE, Youssef N, Jewell ML, Cantillana V, Schoenborn AA, Rogala AR, Buckley AF, Feng CG, Vallance BA, Gulati AS, Hammer GE. Irgm1-deficiency leads to myeloid dysfunction in colon lamina propria and susceptibility to the intestinal pathogen Citrobacter rodentium. PLoS Pathog 2020; 16:e1008553. [PMID: 32453761 PMCID: PMC7274479 DOI: 10.1371/journal.ppat.1008553] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/19/2019] [Revised: 06/05/2020] [Accepted: 04/15/2020] [Indexed: 01/09/2023] Open
Abstract
IRGM and its mouse orthologue Irgm1 are dynamin-like proteins that regulate vesicular remodeling, intracellular microbial killing, and pathogen immunity. IRGM dysfunction is linked to inflammatory bowel disease (IBD), and while it is thought that defective intracellular killing of microbes underscores IBD susceptibility, studies have yet to address how IRGM/Irgm1 regulates immunity to microbes relevant to intestinal inflammation. Here we find that loss of Irgm1 confers marked susceptibility to Citrobacter rodentium, a noninvasive intestinal pathogen that models inflammatory responses to intestinal bacteria. Irgm1-deficient mice fail to control C. rodentium outgrowth in the intestine, leading to systemic pathogen spread and host mortality. Surprisingly, susceptibility due to loss of Irgm1 function was not linked to defective intracellular killing of C. rodentium or exaggerated inflammation, but was instead linked to failure to remodel specific colon lamina propria (C-LP) myeloid cells that expand in response to C. rodentium infection and are essential for C. rodentium immunity. Defective immune remodeling was most striking in C-LP monocytes, which were successfully recruited to the infected C-LP, but subsequently underwent apoptosis. Apoptotic susceptibility was induced by C. rodentium infection and was specific to this setting of pathogen infection, and was not apparent in other settings of intestinal inflammation. These studies reveal a novel role for Irgm1 in host defense and suggest that deficiencies in survival and remodeling of C-LP myeloid cells that control inflammatory intestinal bacteria may underpin IBD pathogenesis linked to IRGM dysfunction.
Collapse
Affiliation(s)
- Gregory A. Taylor
- Geriatric Research, Education, and Clinical Center, VA Health Care Center, Durham, North Carolina, United States of America
- Departments of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail: (GAT); (GEH)
| | - Hsin-I Huang
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Brian E. Fee
- Geriatric Research, Education, and Clinical Center, VA Health Care Center, Durham, North Carolina, United States of America
| | - Nourhan Youssef
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Mark L. Jewell
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Viviana Cantillana
- Departments of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Alexi A. Schoenborn
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Allison R. Rogala
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Pediatrics, Division of Gastroenterology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Anne F. Buckley
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Carl G. Feng
- Department of Infectious Diseases and Immunology, University of Sydney, Sydney, NSW, Australia
| | - Bruce A. Vallance
- Department of Pediatrics, Division of Gastroenterology, BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Ajay S. Gulati
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Pediatrics, Division of Gastroenterology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Gianna E. Hammer
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail: (GAT); (GEH)
| |
Collapse
|
18
|
Comprehensive Analysis of the Expression and Prognosis for GBPs in Head and neck squamous cell carcinoma. Sci Rep 2020; 10:6085. [PMID: 32269280 PMCID: PMC7142114 DOI: 10.1038/s41598-020-63246-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/22/2019] [Accepted: 03/23/2020] [Indexed: 12/14/2022] Open
Abstract
Guanylate binding proteins (GBPs) belongs to the interferons (IFNs) induced guanylate-binding protein family (Guanosine triphosphatases, GTPases) consisting of seven homologous members, termed GBP1 to GBP7. We used multidimensional survey ways to explore GBPs expression, regulation, mutations, immune infiltration and functional networks in head and neck squamous cell carcinoma (HNSCC) patient data based on various open databases. The study provides staggered evidence for the significance of GBPs in HNSCC and its potential role as a novel biomarker. Our results showed that over expressions of 7 GBPs members and multivariate analysis suggested that N-stage, high expressions of GBP1 and low expression of GBP6/7 were linked to shorter OS in HNSCC patients. In addition, B cells of immune infiltrates stimulant the prognosis and might have a medical prognostic significance linked to GBPs in HNSCC. We assume that GBPs play a synergistic role in the viral related HNSCC. Our results show that data mining efficiently reveals information about GBPs expression in HNSCC and more importance lays a foundation for further research on the role of GBPs in cancers.
Collapse
|
19
|
Baxter VK, Griffin DE. Interferon-Gamma Modulation of the Local T Cell Response to Alphavirus Encephalomyelitis. Viruses 2020; 12:E113. [PMID: 31963302 PMCID: PMC7019780 DOI: 10.3390/v12010113] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/11/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 12/18/2022] Open
Abstract
Infection of mice with Sindbis virus (SINV) provides a model for examining the role of the immune response to alphavirus infection of the central nervous system (CNS). Interferon-gamma (IFN-γ) is an important component of this response, and we show that SINV-infected differentiated neurons respond to IFN-γ in vitro by induction of antiviral genes and suppression of virus replication. To determine the in vivo effects of IFN-γ on SINV clearance and T cell responses, C57BL/6 mice lacking IFN-γ or IFN-γ receptor-1 were compared to wild-type (WT) mice after intracranial SINV infection. In WT mice, IFN-γ was first produced in the CNS by natural killer cells and then by CD4+ and CD8+ T cells. Mice with impaired IFN-γ signaling initiated clearance of viral RNA earlier than WT mice associated with CNS entry of more granzyme B-producing CD8+ T cells. However, these mice established fewer CD8+ tissue-resident memory T (TRM) cells and were more likely to experience reactivation of viral RNA synthesis late after infection. Therefore, IFN-γ suppresses the local development of granzyme B-expressing CD8+ T cells and slows viral RNA clearance but promotes CD8+ TRM cell establishment.
Collapse
Affiliation(s)
- Victoria K. Baxter
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Diane E. Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| |
Collapse
|
20
|
Fox BA, Guevara RB, Rommereim LM, Falla A, Bellini V, Pètre G, Rak C, Cantillana V, Dubremetz JF, Cesbron-Delauw MF, Taylor GA, Mercier C, Bzik DJ. Toxoplasma gondii Parasitophorous Vacuole Membrane-Associated Dense Granule Proteins Orchestrate Chronic Infection and GRA12 Underpins Resistance to Host Gamma Interferon. mBio 2019; 10:e00589-19. [PMID: 31266861 PMCID: PMC6606796 DOI: 10.1128/mbio.00589-19] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/08/2019] [Accepted: 06/04/2019] [Indexed: 12/29/2022] Open
Abstract
Toxoplasma gondii evades host immunity to establish a chronic infection. Here, we assessed the role of parasitophorous vacuole (PV) membrane (PVM)- and intravacuolar network (IVN) membrane-localized dense granule (GRA) proteins in the development of acute and chronic Toxoplasma infection. Deletion of PVM-associated GRA3, GRA7, GRA8, and GRA14 or IVN membrane-associated GRA2, GRA9, and GRA12 in the low-virulence type II Prugniaud (Pru) strain induced severe defects in the development of chronic-stage cysts in vivo without affecting the parasite growth rate or the ability to differentiate into cysts in vitro Acute virulence of the PruΔgra2, PruΔgra3, and PruΔgra4 mutants was reduced but not abolished. In contrast, the PruΔgra12 mutant was avirulent in mice and PruΔgra12 parasites failed to establish a chronic infection. High-virulence type I strain RHΔgra12 parasites also exhibited a major defect in acute virulence. In gamma interferon (IFN-γ)-activated macrophages, type I RHΔgra12 and type II PruΔgra12 parasites resisted the coating of the PVM with host immunity-related GTPases as effectively as the parental type I RHΔku80 and type II PruΔku80 strains, respectively. Despite this resistance, Δgra12 PVs ultimately succumbed to IFN-γ-activated host cell innate immunity. Our findings uncover a key role for GRA12 in mediating resistance to host IFN-γ and reveal that many other IVN membrane-associated GRA proteins, as well as PVM-localized GRA proteins, play important roles in establishing chronic infection.IMPORTANCEToxoplasma gondii cysts reactivate during immune deficiency and cause fatal encephalitis. Parasite molecules that coordinate the development of acute and chronic infection are poorly characterized. Here, we show that many intravacuolar network membrane and parasitophorous vacuole membrane-associated dense granule (GRA) proteins orchestrate the development of chronic cysts in vivo A subset of these GRA proteins also modulate acute virulence, and one protein that associates with the intravacuolar network membranes, namely GRA12, was identified as a major virulence factor required for parasite resistance to host gamma interferon (IFN-γ). Our results revealed that many parasitophorous vacuole membrane and intravacuolar network membrane-associated GRA proteins are essential for successful chronic infection.
Collapse
Affiliation(s)
- Barbara A Fox
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Rebekah B Guevara
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Leah M Rommereim
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Alejandra Falla
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Valeria Bellini
- Laboratoire Techniques de l'Ingénierie Médicale et de la Complexité-Informatique, Mathématiques, Applications, Grenoble (TIMC-IMAG), Université Grenoble Alpes, Grenoble, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5525, Grenoble, France
| | - Graciane Pètre
- Laboratoire Techniques de l'Ingénierie Médicale et de la Complexité-Informatique, Mathématiques, Applications, Grenoble (TIMC-IMAG), Université Grenoble Alpes, Grenoble, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5525, Grenoble, France
| | - Camille Rak
- Laboratoire Techniques de l'Ingénierie Médicale et de la Complexité-Informatique, Mathématiques, Applications, Grenoble (TIMC-IMAG), Université Grenoble Alpes, Grenoble, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5525, Grenoble, France
| | - Viviana Cantillana
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
- Division of Geriatrics, Duke University Medical Center, Durham, North Carolina, USA
- Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, North Carolina, USA
| | - Jean-François Dubremetz
- Université Montpellier 2, Montpellier, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5235, Montpellier, France
| | - Marie-France Cesbron-Delauw
- Laboratoire Techniques de l'Ingénierie Médicale et de la Complexité-Informatique, Mathématiques, Applications, Grenoble (TIMC-IMAG), Université Grenoble Alpes, Grenoble, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5525, Grenoble, France
| | - Gregory A Taylor
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
- Division of Geriatrics, Duke University Medical Center, Durham, North Carolina, USA
- Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, North Carolina, USA
- Geriatric Research, Education and Clinical Center, VA Medical Center, Durham, North Carolina, USA
| | - Corinne Mercier
- Laboratoire Techniques de l'Ingénierie Médicale et de la Complexité-Informatique, Mathématiques, Applications, Grenoble (TIMC-IMAG), Université Grenoble Alpes, Grenoble, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5525, Grenoble, France
| | - David J Bzik
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| |
Collapse
|
21
|
Giebel AM, Hu S, Rajaram K, Finethy R, Toh E, Brothwell JA, Morrison SG, Suchland RJ, Stein BD, Coers J, Morrison RP, Nelson DE. Genetic Screen in Chlamydia muridarum Reveals Role for an Interferon-Induced Host Cell Death Program in Antimicrobial Inclusion Rupture. mBio 2019; 10:e00385-19. [PMID: 30967464 PMCID: PMC6456753 DOI: 10.1128/mbio.00385-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/12/2019] [Accepted: 02/27/2019] [Indexed: 01/02/2023] Open
Abstract
Interferon-regulated immune defenses protect mammals from pathogenically diverse obligate intracellular bacterial pathogens of the genus Chlamydia Interferon gamma (IFN-γ) is especially important in controlling the virulence of Chlamydia species and thus impacts the modeling of human chlamydial infection and disease in mice. How IFN-γ contributes to cell-autonomous defenses against Chlamydia species and how these pathogens evade IFN-γ-mediated immunity in their natural hosts are not well understood. We conducted a genetic screen which identified 31 IFN-γ-sensitive (Igs) mutants of the mouse model pathogen Chlamydia muridarum Genetic suppressor analysis and lateral gene transfer were used to map the phenotype of one of these mutants, Igs4, to a missense mutation in a putative chlamydial inclusion membrane protein, TC0574. We observed the lytic destruction of Igs4-occupied inclusions and accompanying host cell death in response to IFN-γ priming or various proapoptotic stimuli. However, Igs4 was insensitive to IFN-γ-regulated cell-autonomous defenses previously implicated in anti-Chlamydia trachomatis host defense in mice. Igs4 inclusion integrity was restored by caspase inhibitors, indicating that the IFN-γ-mediated destruction of Igs4 inclusions is dependent upon the function of caspases or related prodeath cysteine proteases. We further demonstrated that the Igs4 mutant is immune restricted in an IFN-γ-dependent manner in a mouse infection model, thereby implicating IFN-γ-mediated inclusion destruction and host cell death as potent in vivo host defense mechanisms to which wild-type C. muridarum is resistant. Overall, our results suggest that C. muridarum evolved resistance mechanisms to counter IFN-γ-elicited programmed cell death and the associated destruction of intravacuolar pathogens.IMPORTANCE Multiple obligatory intracellular bacteria in the genus Chlamydia are important pathogens. In humans, strains of C. trachomatis cause trachoma, chlamydia, and lymphogranuloma venereum. These diseases are all associated with extended courses of infection and reinfection that likely reflect the ability of chlamydiae to evade various aspects of host immune responses. Interferon-stimulated genes, driven in part by the cytokine interferon gamma, restrict the host range of various Chlamydia species, but how these pathogens evade interferon-stimulated genes in their definitive host is poorly understood. Various Chlamydia species can inhibit death of their host cells and may have evolved this strategy to evade prodeath signals elicited by host immune responses. We present evidence that chlamydia-induced programmed cell death resistance evolved to counter interferon- and immune-mediated killing of Chlamydia-infected cells.
Collapse
Affiliation(s)
- Amanda M Giebel
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Shuai Hu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Krithika Rajaram
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ryan Finethy
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Evelyn Toh
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Julie A Brothwell
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sandra G Morrison
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Robert J Suchland
- Division of Allergy and Infectious Disease, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Barry D Stein
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Richard P Morrison
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - David E Nelson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
22
|
Roles of Autophagy-Related Genes in the Pathogenesis of Inflammatory Bowel Disease. Cells 2019; 8:cells8010077. [PMID: 30669622 PMCID: PMC6356351 DOI: 10.3390/cells8010077] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/15/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 12/13/2022] Open
Abstract
Autophagy is an intracellular catabolic process that is essential for a variety of cellular responses. Due to its role in the maintenance of biological homeostasis in conditions of stress, dysregulation or disruption of autophagy may be linked to human diseases such as inflammatory bowel disease (IBD). IBD is a complicated inflammatory colitis disorder; Crohn’s disease and ulcerative colitis are the principal types. Genetic studies have shown the clinical relevance of several autophagy-related genes (ATGs) in the pathogenesis of IBD. Additionally, recent studies using conditional knockout mice have led to a comprehensive understanding of ATGs that affect intestinal inflammation, Paneth cell abnormality and enteric pathogenic infection during colitis. In this review, we discuss the various ATGs involved in macroautophagy and selective autophagy, including ATG16L1, IRGM, LRRK2, ATG7, p62, optineurin and TFEB in the maintenance of intestinal homeostasis. Although advances have been made regarding the involvement of ATGs in maintaining intestinal homeostasis, determining the precise contribution of autophagy has remained elusive. Recent efforts based on direct targeting of ATGs and autophagy will further facilitate the development of new therapeutic opportunities for IBD.
Collapse
|
23
|
Coers J, Brown HM, Hwang S, Taylor GA. Partners in anti-crime: how interferon-inducible GTPases and autophagy proteins team up in cell-intrinsic host defense. Curr Opin Immunol 2018; 54:93-101. [PMID: 29986303 PMCID: PMC6196122 DOI: 10.1016/j.coi.2018.06.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/15/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 02/08/2023]
Abstract
Once pathogens have breached the mechanical barriers to infection, survived extracellular immunity and successfully invaded host cells, cell-intrinsic immunity becomes the last line of defense to protect the mammalian host against viruses, bacteria, fungi and protozoa. Many cell-intrinsic defense programs act as high-precision weapons that specifically target intracellular microbes or cytoplasmic sites of microbial replication while leaving endogenous organelles unharmed. Critical executioners of cell-autonomous immunity include interferon-inducible dynamin-like GTPases and autophagy proteins, which often act cooperatively in locating and antagonizing intracellular pathogens. Here, we discuss possible mechanistic models to account for the functional interactions that occur between these two distinct classes of host defense proteins.
Collapse
Affiliation(s)
- Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Hailey M Brown
- Committee on Immunology, The University of Chicago, IL 60637, USA
| | - Seungmin Hwang
- Committee on Immunology, The University of Chicago, IL 60637, USA; Committee on Microbiology, The University of Chicago, IL 60637, USA; Department of Pathology, The University of Chicago, IL 60637, USA
| | - Gregory A Taylor
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA; Department of Medicine, Division of Geriatrics, Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, NC 27710, USA; Geriatric Research, Education, and Clinical Center, VA Medical Center, Durham, NC 27705, USA
| |
Collapse
|
24
|
Rennert C, Vlaic S, Marbach-Breitrück E, Thiel C, Sales S, Shevchenko A, Gebhardt R, Matz-Soja M. The Diurnal Timing of Starvation Differently Impacts Murine Hepatic Gene Expression and Lipid Metabolism - A Systems Biology Analysis Using Self-Organizing Maps. Front Physiol 2018; 9:1180. [PMID: 30271348 PMCID: PMC6146234 DOI: 10.3389/fphys.2018.01180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/29/2018] [Accepted: 08/06/2018] [Indexed: 12/24/2022] Open
Abstract
Organisms adapt their metabolism and draw on reserves as a consequence of food deprivation. The central role of the liver in starvation response is to coordinate a sufficient energy supply for the entire organism, which has frequently been investigated. However, knowledge of how circadian rhythms impact on and alter this response is scarce. Therefore, we investigated the influence of different timings of starvation on global hepatic gene expression. Mice (n = 3 each) were challenged with 24-h food deprivation started in the morning or evening, coupled with refeeding for different lengths and compared with ad libitum fed control groups. Alterations in hepatocyte gene expression were quantified using microarrays and confirmed or complemented with qPCR, especially for lowly detectable transcription factors. Analysis was performed using self-organizing maps (SOMs), which bases on clustering genes with similar expression profiles. This provides an intuitive overview of expression trends and allows easier global comparisons between complex conditions. Transcriptome analysis revealed a strong circadian-driven response to fasting based on the diurnal expression of transcription factors (e.g., Ppara, Pparg). Starvation initiated in the morning produced known metabolic adaptations in the liver; e.g., switching from glucose storage to consumption and gluconeogenesis. However, starvation initiated in the evening produced a different expression signature that was controlled by yet unknown regulatory mechanisms. For example, the expression of genes involved in gluconeogenesis decreased and fatty acid and cholesterol synthesis genes were induced. The differential regulation after morning and evening starvation were also reflected at the lipidome level. The accumulation of hepatocellular storage lipids (triacylglycerides, cholesteryl esters) was significantly higher after the initiation of starvation in the morning compared to the evening. Concerning refeeding, the gene expression pattern after a 12 h refeeding period largely resembled that of the corresponding starvation state but approached the ad libitum control state after refeeding for 21 h. Some components of these regulatory circuits are discussed. Collectively, these data illustrate a highly time-dependent starvation response in the liver and suggest that a circadian influence cannot be neglected when starvation is the focus of research or medicine, e.g., in the case of treating victims of sudden starvation events.
Collapse
Affiliation(s)
- Christiane Rennert
- Rudolf-Schönheimer-Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Sebastian Vlaic
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | - Eugenia Marbach-Breitrück
- Rudolf-Schönheimer-Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany.,Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Carlo Thiel
- Rudolf-Schönheimer-Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Susanne Sales
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Rolf Gebhardt
- Rudolf-Schönheimer-Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Madlen Matz-Soja
- Rudolf-Schönheimer-Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany
| |
Collapse
|
25
|
Vallochi AL, Teixeira L, Oliveira KDS, Maya-Monteiro CM, Bozza PT. Lipid Droplet, a Key Player in Host-Parasite Interactions. Front Immunol 2018; 9:1022. [PMID: 29875768 PMCID: PMC5974170 DOI: 10.3389/fimmu.2018.01022] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/31/2018] [Accepted: 04/24/2018] [Indexed: 12/18/2022] Open
Abstract
Lipid droplets (lipid bodies, LDs) are dynamic organelles that have important roles in regulating lipid metabolism, energy homeostasis, cell signaling, membrane trafficking, and inflammation. LD biogenesis, composition, and functions are highly regulated and may vary according to the stimuli, cell type, activation state, and inflammatory environment. Increased cytoplasmic LDs are frequently observed in leukocytes and other cells in a number of infectious diseases. Accumulating evidence reveals LDs participation in fundamental mechanisms of host-pathogen interactions, including cell signaling and immunity. LDs are sources of eicosanoid production, and may participate in different aspects of innate signaling and antigen presentation. In addition, intracellular pathogens evolved mechanisms to subvert host metabolism and may use host LDs, as ways of immune evasion and nutrients source. Here, we review mechanisms of LDs biogenesis and their contributions to the infection progress, and discuss the latest discoveries on mechanisms and pathways involving LDs roles as regulators of the immune response to protozoan infection.
Collapse
Affiliation(s)
- Adriana Lima Vallochi
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | | | | | | | - Patricia T. Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
26
|
Encheva V, Foltz C, Snijders AP, Frickel EM. Murine Gbp1 and Gbp2 are ubiquitinated independent of Toxoplasma gondii infection. BMC Res Notes 2018; 11:166. [PMID: 29510761 PMCID: PMC5840767 DOI: 10.1186/s13104-018-3267-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/23/2017] [Accepted: 02/24/2018] [Indexed: 11/21/2022] Open
Abstract
Objective The intracellular parasite Toxoplasma gondii can invade any nucleated cell residing inside a parasitophorous vacuole (PV). Upon infection, the cytokine interferon gamma (IFNγ) is produced and elicits host defence mechanisms able to recognise the PV and destroy the parasite. Hereby, Guanylate binding proteins, ubiquitin and the E3 ubiquitin ligases Tripartite Motif Containing 21 (TRIM21) and TNF receptor associated factor 6 are targeted to the murine PV leading to its destruction. This study is the side product of research aiming to identify ubiquitinated substrates in a TRIM21-dependent fashion in murine cells infected with Toxoplasma. Results We infected IFNγ-stimulated murine embryonic fibroblasts (MEFs) from either C57BL/6×129 wild-type (WT) mice or C57BL/6 TRIM21−/− mice with Toxoplasma. Using mass spectrometry, we analysed proteins in both cell backgrounds presenting with the di-glycine remnant of ubiquitination. In addition, we compared peptide levels between WT and TRIM21−/− cells. In line with earlier reports, Gbp1 was expressed to higher levels in the C57BL/6×129 WT MEFs compared to the C57BL/6-only background TRIM21−/− MEFs. Protein expression differences in these different murine backgrounds thus precluded identification of TRIM21-dependent ubiquitinated substrates. Nevertheless, we identified and confirmed Gbp1 and Gbp2 as being ubiquitinated in a Toxoplasma-infection independent manner. Electronic supplementary material The online version of this article (10.1186/s13104-018-3267-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vesela Encheva
- Mass Spectrometry and Proteomics Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Clémence Foltz
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Ambrosius P Snijders
- Mass Spectrometry and Proteomics Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| | - Eva-Maria Frickel
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
27
|
Sharma A, Changotra H. Mutagenic primer-based PCR-RFLP assay for genotyping IRGM gene promoter variant rs4958843 (C/T). J Clin Lab Anal 2017; 32:e22346. [PMID: 29178192 DOI: 10.1002/jcla.22346] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/31/2017] [Accepted: 10/12/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Single-nucleotide polymorphisms play an important role in the susceptibility of many diseases, evolutionary studies, and genetic mapping. The rs4958843 in IRGM promoter is associated with tuberculosis and Crohn's disease. As this SNP is not present in any of the restriction sites, PCR-RFLP is not possible. Therefore, we have developed artificial-RFLP method to genotype this SNP. METHODS We designed forward primer with mismatches that resulted in the creation of a restriction site for enzyme NheI in the amplicon. Control samples of known genotypes were obtained by sequencing. The amplified product for SNP rs4958843 was digested with NheI restriction enzyme and resolved on an agarose gel to know the genotypes of the samples. RESULTS Results of sequencing and A-RFLP were concordant. The developed method was applied to genotype this polymorphism in 100 samples from healthy individuals. The allelic frequencies of SNP rs4958843 were C (0.16) and T (0.84), while corresponding genotypic distribution was CC (2), CT (29), and TT (69). CONCLUSION The newly developed method is simple, easy, and cost-effective which could be used to genotype IRGM polymorphism -1161 C/T (rs4958843) in various populations in the replication studies and has its applicability in the clinical settings. The developed method was applied for genotyping samples from healthy individuals from North India. For the first time, we report the frequency of this polymorphism from this region.
Collapse
Affiliation(s)
- Ambika Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, Himachal Pradesh, India
| | - Harish Changotra
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, Himachal Pradesh, India
| |
Collapse
|
28
|
Praefcke GJK. Regulation of innate immune functions by guanylate-binding proteins. Int J Med Microbiol 2017; 308:237-245. [PMID: 29174633 DOI: 10.1016/j.ijmm.2017.10.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/22/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 01/02/2023] Open
Abstract
Guanylate-binding proteins (GBP) are a family of dynamin-related large GTPases which are expressed in response to interferons and other pro-inflammatory cytokines. GBPs mediate a broad spectrum of innate immune functions against intracellular pathogens ranging from viruses to bacteria and protozoa. Several binding partners for individual GBPs have been identified and several different mechanisms of action have been proposed depending on the organisms, the cell type and the pathogen used. Many of these anti-pathogenic functions of GBPs involve the recruitment to and the subsequent destruction of pathogen containing vacuolar compartments, the assembly of large oligomeric innate immune complexes such as the inflammasome, or the induction of autophagy. Furthermore, GBPs often cooperate with immunity-related GTPases (IRGs), another family of dynamin-related GTPases, to exert their anti-pathogenic function, but since most IRGs have been lost in the evolution of higher primates, the anti-pathogenic function of human GBPs seems to be IRG-independent. GBPs and IRGs share biochemical and structural properties with the other members of the dynamin superfamily such as low nucleotide affinity and a high intrinsic GTPase activity which can be further enhanced by oligomerisation. Furthermore, GBPs and IRGs can interact with lipid membranes. In the case of three human and murine GBP isoforms this interaction is mediated by C-terminal isoprenylation. Based on cell biological studies, and in analogy to the function of other dynamins in membrane scission events, it has been postulated that both GBPs and IRGs might actively disrupt the outer membrane of pathogen-containing vacuole leading to the detection and destruction of the pathogen by the cytosolic innate immune system of the host. Recent evidence, however, indicates that GBPs might rather function by mediating membrane tethering events similar to the dynamin-related atlastin and mitofusin proteins, which mediate fusion of the ER and mitochondria, respectively. The aim of this review is to highlight the current knowledge on the function of GBPs in innate immunity and to combine it with the recent progress in the biochemical characterisation of this protein family.
Collapse
Affiliation(s)
- Gerrit J K Praefcke
- Division of Haematology / Transfusion Medicine, Paul-Ehrlich-Institut, Langen, Germany; Institute for Genetics, University of Cologne, Cologne, Germany.
| |
Collapse
|
29
|
Azzam KM, Madenspacher JH, Cain DW, Lai L, Gowdy KM, Rai P, Janardhan K, Clayton N, Cunningham W, Jensen H, Patel PS, Kearney JF, Taylor GA, Fessler MB. Irgm1 coordinately regulates autoimmunity and host defense at select mucosal surfaces. JCI Insight 2017; 2:91914. [PMID: 28814662 DOI: 10.1172/jci.insight.91914] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/21/2016] [Accepted: 07/11/2017] [Indexed: 01/06/2023] Open
Abstract
The pathogenesis of primary Sjogren's syndrome (SS), an autoimmune disease that targets the mucosa of exocrine tissues, is poorly understood. Although several mouse models have been developed that display features of SS, most of these are within the larger context of a lupus-like presentation. Immunity-related GTPase family M protein 1 (Irgm1) is an interferon-inducible cytoplasmic GTPase that is reported to regulate autophagy and mitochondrial homeostasis. Here, we report that naive Irgm1-/- mice display lymphocytic infiltration of multiple mucosal tissues including the lung in a manner reminiscent of SS, together with IgA class-predominant autoantibodies including anti-Ro and anti-La. This phenotype persists in the germ-free state, but is abolished by deletion of Irgm3. Irgm1-/- mice have increased local production in the lung of TECP15-idiotype IgA, a natural antibody with dual reactivity against host and pneumococcal phosphorylcholine. Associated with this, Irgm1-/- mice display enhanced opsonization and clearance of Streptococcus pneumoniae from the lung and increased survival from pneumococcal pneumonia. Taken together, our results identify Irgm1 as a master regulator of mucosal immunity that dually modulates evolutionarily conserved self- and other-directed immune responses at the interface of host with environment.
Collapse
Affiliation(s)
| | | | - Derek W Cain
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Lihua Lai
- Immunity, Inflammation and Disease Laboratory and
| | - Kymberly M Gowdy
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Prashant Rai
- Immunity, Inflammation and Disease Laboratory and
| | - Kyathanahalli Janardhan
- Cellular & Molecular Pathology Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA.,Integrated Laboratory Systems, Inc., Research Triangle Park, North Carolina, USA
| | - Natasha Clayton
- Cellular & Molecular Pathology Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Willie Cunningham
- Cellular & Molecular Pathology Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Heather Jensen
- Cellular & Molecular Pathology Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Preeyam S Patel
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - John F Kearney
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Gregory A Taylor
- Geriatric Research, Education, and Clinical Center, Durham VA Medical Center, Durham, North Carolina, USA
| | | |
Collapse
|
30
|
The Toxoplasma Parasitophorous Vacuole: An Evolving Host-Parasite Frontier. Trends Parasitol 2017; 33:473-488. [PMID: 28330745 DOI: 10.1016/j.pt.2017.02.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/09/2017] [Revised: 02/20/2017] [Accepted: 02/24/2017] [Indexed: 01/17/2023]
Abstract
The parasitophorous vacuole is a unique replicative niche for apicomplexan parasites, including Toxoplasma gondii. Derived from host plasma membrane, the vacuole is rendered nonfusogenic with the host endolysosomal system. Toxoplasma secretes numerous proteins to modify the forming vacuole, enable nutrient uptake, and set up mechanisms of host subversion. Here we describe the pathways of host-parasite interaction at the parasitophorous vacuole employed by Toxoplasma and host, leading to the intricate balance of host defence versus parasite survival.
Collapse
|
31
|
Schmidt EA, Fee BE, Henry SC, Nichols AG, Shinohara ML, Rathmell JC, MacIver NJ, Coers J, Ilkayeva OR, Koves TR, Taylor GA. Metabolic Alterations Contribute to Enhanced Inflammatory Cytokine Production in Irgm1-deficient Macrophages. J Biol Chem 2017; 292:4651-4662. [PMID: 28154172 PMCID: PMC5377780 DOI: 10.1074/jbc.m116.770735] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/01/2016] [Revised: 01/19/2017] [Indexed: 12/19/2022] Open
Abstract
The immunity-related GTPases (IRGs) are a family of proteins that are induced by interferon (IFN)-γ and play pivotal roles in immune and inflammatory responses. IRGs ostensibly function as dynamin-like proteins that bind to intracellular membranes and promote remodeling and trafficking of those membranes. Prior studies have shown that loss of Irgm1 in mice leads to increased lethality to bacterial infections as well as enhanced inflammation to non-infectious stimuli; however, the mechanisms underlying these phenotypes are unclear. In the studies reported here, we found that uninfected Irgm1-deficient mice displayed high levels of serum cytokines typifying profound autoinflammation. Similar increases in cytokine production were also seen in cultured, IFN-γ-primed macrophages that lacked Irgm1. A series of metabolic studies indicated that the enhanced cytokine production was associated with marked metabolic changes in the Irgm1-deficient macrophages, including increased glycolysis and an accumulation of long chain acylcarnitines. Cells were exposed to the glycolytic inhibitor, 2-deoxyglucose, or fatty acid synthase inhibitors to perturb the metabolic alterations, which resulted in dampening of the excessive cytokine production. These results suggest that Irgm1 deficiency drives metabolic dysfunction in macrophages in a manner that is cell-autonomous and independent of infectious triggers. This may be a significant contributor to excessive inflammation seen in Irgm1-deficient mice in different contexts.
Collapse
Affiliation(s)
| | - Brian E Fee
- the Geriatric Research, Education, and Clinical Center, Durham Veterans Affairs Health Care System, Durham, North Carolina 27705, and
| | - Stanley C Henry
- the Geriatric Research, Education, and Clinical Center, Durham Veterans Affairs Health Care System, Durham, North Carolina 27705, and
| | - Amanda G Nichols
- the Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes
| | - Mari L Shinohara
- From the Departments of Molecular Genetics and Microbiology
- the Department of Immunology
| | - Jeffrey C Rathmell
- the Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University, Nashville, Tennessee 37232
| | - Nancie J MacIver
- the Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes
| | - Jörn Coers
- From the Departments of Molecular Genetics and Microbiology
| | | | - Timothy R Koves
- the Duke Molecular Physiology Institute, and
- the Department of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, North Carolina 27710
| | - Gregory A Taylor
- From the Departments of Molecular Genetics and Microbiology,
- the Geriatric Research, Education, and Clinical Center, Durham Veterans Affairs Health Care System, Durham, North Carolina 27705, and
- the Department of Immunology
- the Department of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
32
|
Galectin-3 directs antimicrobial guanylate binding proteins to vacuoles furnished with bacterial secretion systems. Proc Natl Acad Sci U S A 2017; 114:E1698-E1706. [PMID: 28193861 DOI: 10.1073/pnas.1615771114] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022] Open
Abstract
Many invasive bacteria establish pathogen-containing vacuoles (PVs) as intracellular niches for microbial growth. Immunity to these infections is dependent on the ability of host cells to recognize PVs as targets for host defense. The delivery of several host defense proteins to PVs is controlled by IFN-inducible guanylate binding proteins (GBPs), which themselves dock to PVs through poorly characterized mechanisms. Here, we demonstrate that GBPs detect the presence of bacterial protein secretion systems as "patterns of pathogenesis" associated with PVs. We report that the delivery of GBP2 to Legionella-containing vacuoles is dependent on the bacterial Dot/Icm secretion system, whereas the delivery of GBP2 to Yersinia-containing vacuoles (YCVs) requires hypersecretion of Yersinia translocon proteins. We show that the presence of bacterial secretion systems directs cytosolic carbohydrate-binding protein Galectin-3 to PVs and that the delivery of GBP1 and GBP2 to Legionella-containing vacuoles or YCVs is substantially diminished in Galectin-3-deficient cells. Our results illustrate that insertion of bacterial secretion systems into PV membranes stimulates Galectin-3-dependent recruitment of antimicrobial GBPs to PVs as part of a coordinated host defense program.
Collapse
|
33
|
Haldar AK, Piro AS, Finethy R, Espenschied ST, Brown HE, Giebel AM, Frickel EM, Nelson DE, Coers J. Chlamydia trachomatis Is Resistant to Inclusion Ubiquitination and Associated Host Defense in Gamma Interferon-Primed Human Epithelial Cells. mBio 2016; 7:e01417-16. [PMID: 27965446 PMCID: PMC5156299 DOI: 10.1128/mbio.01417-16] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/29/2016] [Accepted: 11/10/2016] [Indexed: 12/02/2022] Open
Abstract
The cytokine gamma interferon (IFN-γ) induces cell-autonomous immunity to combat infections with intracellular pathogens, such as the bacterium Chlamydia trachomatis The present study demonstrates that IFN-γ-primed human cells ubiquitinate and eliminate intracellular Chlamydia-containing vacuoles, so-called inclusions. We previously described how IFN-γ-inducible immunity-related GTPases (IRGs) employ ubiquitin systems to mark inclusions for destruction in mouse cells and, furthermore, showed that the rodent pathogen Chlamydia muridarum blocks ubiquitination of its inclusions by interfering with mouse IRG function. Here, we report that ubiquitination of inclusions in human cells is independent of IRG and thus distinct from the murine pathway. We show that C. muridarum is susceptible to inclusion ubiquitination in human cells, while the closely related human pathogen C. trachomatis is resistant. C. muridarum, but not C. trachomatis, inclusions attract several markers of cell-autonomous immunity, including the ubiquitin-binding protein p62, the ubiquitin-like protein LC3, and guanylate-binding protein 1. Consequently, we find that IFN-γ priming of human epithelial cells triggers the elimination of C. muridarum, but not C. trachomatis, inclusions. This newly described defense pathway is independent of indole-2,3-dioxygenase, a known IFN-γ-inducible anti-Chlamydia resistance factor. Collectively, our observations indicate that C. trachomatis evolved mechanisms to avoid a human-specific, ubiquitin-mediated response as part of its unique adaptation to its human host. IMPORTANCE Chlamydia trachomatis is the leading cause of sexually transmitted bacterial infections and responsible for significant morbidity, including pelvic inflammatory disease, infertility, and ectopic pregnancies in women. As an obligate intracellular pathogen, C. trachomatis is in perpetual conflict with cell-intrinsic defense programs executed by its human host. Our study defines a novel anti-Chlamydia host resistance pathway active in human epithelial cells. This defense program promotes the deposition of the small antimicrobial protein ubiquitin on vacuoles containing Chlamydia We show that this ubiquitin-based resistance pathway of human cells is highly effective against a Chlamydia species adapted to rodents but ineffective against human-adapted C. trachomatis This observation indicates that C. trachomatis evolved strategies to avoid entrapment within ubiquitin-labeled vacuoles as part of its adaptation to the human innate immune system.
Collapse
Affiliation(s)
- Arun K Haldar
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Anthony S Piro
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Ryan Finethy
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Scott T Espenschied
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Hannah E Brown
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Amanda M Giebel
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Eva-Maria Frickel
- The Francis Crick Institute, Host-Toxoplasma Interaction Laboratory, London, United Kingdom
| | - David E Nelson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jörn Coers
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
34
|
Finethy R, Coers J. Sensing the enemy, containing the threat: cell-autonomous immunity to Chlamydia trachomatis. FEMS Microbiol Rev 2016; 40:875-893. [PMID: 28201690 PMCID: PMC5975928 DOI: 10.1093/femsre/fuw027] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Revised: 03/31/2016] [Accepted: 07/01/2016] [Indexed: 01/01/2023] Open
Abstract
The bacterium Chlamydia trachomatis is the etiological agent of the most common sexually transmitted infection in North America and Europe. Medical complications resulting from genital C. trachomatis infections arise predominantly in women where the initial infections often remain asymptomatic and thus unrecognized. Untreated asymptomatic infections in women can ascend into the upper genital tract and establish persistence, ultimately resulting in extensive scarring of the reproductive organs, pelvic inflammatory disease, infertility and ectopic pregnancies. Previously resolved C. trachomatis infections fail to provide protective immune memory, and no effective vaccine against C. trachomatis is currently available. Critical determinants of the pathogenesis and immunogenicity of genital C. trachomatis infections are cell-autonomous immune responses. Cell-autonomous immunity describes the ability of an individual host cell to launch intrinsic immune circuits that execute the detection, containment and elimination of cell-invading pathogens. As an obligate intracellular pathogen C. trachomatis is constantly under attack by cell-intrinsic host defenses. Accordingly, C. trachomatis evolved to subvert and co-opt cell-autonomous immune pathways. This review will provide a critical summary of our current understanding of cell-autonomous immunity to C. trachomatis and its role in shaping host resistance, inflammation and adaptive immunity to genital C. trachomatis infections.
Collapse
Affiliation(s)
- Ryan Finethy
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
35
|
Ingram JP, Brodsky IE, Balachandran S. Interferon-γ in Salmonella pathogenesis: New tricks for an old dog. Cytokine 2016; 98:27-32. [PMID: 27773552 DOI: 10.1016/j.cyto.2016.10.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/03/2016] [Revised: 10/13/2016] [Accepted: 10/15/2016] [Indexed: 12/21/2022]
Abstract
Salmonella enterica is a facultative intracellular bacterium that is the leading cause of food borne illnesses in humans. The cytokine IFN-γ has well-established antibacterial properties against Salmonella and other intracellular microbes, for example its capacity to activate macrophages, promote phagocytosis, and destroy phagocytosed microbes by free radical-driven toxification of phagosomes. But IFN-γ induces the expression of hundreds of uncharacterized genes, suggesting that this cytokine deploys additional antimicrobial strategies that await discovery. Recently, one such mechanism, mediated by a family of IFN-inducible small GTPases called Guanylate Binding Proteins (GBPs) has been uncovered. GBPs were shown to facilitate the pyroptotic clearance of Salmonella from infected macrophages by rupturing the protective intracellular vacuole this microbe forms around itself. Once this protective vacuole is lost, exposed Salmonella activates pyroptosis, which destroys the infected cell. In this review, we summarize such emerging roles for IFN-γ in restricting Salmonella pathogenesis.
Collapse
Affiliation(s)
- Justin P Ingram
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, United States
| | - Igor E Brodsky
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, United States
| | - Siddharth Balachandran
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, United States.
| |
Collapse
|
36
|
Pilla-Moffett D, Barber MF, Taylor GA, Coers J. Interferon-Inducible GTPases in Host Resistance, Inflammation and Disease. J Mol Biol 2016; 428:3495-513. [PMID: 27181197 PMCID: PMC5010443 DOI: 10.1016/j.jmb.2016.04.032] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/01/2016] [Revised: 04/23/2016] [Accepted: 04/30/2016] [Indexed: 01/18/2023]
Abstract
Cell-autonomous immunity is essential for host organisms to defend themselves against invasive microbes. In vertebrates, both the adaptive and the innate branches of the immune system operate cell-autonomous defenses as key effector mechanisms that are induced by pro-inflammatory interferons (IFNs). IFNs can activate cell-intrinsic host defenses in virtually any cell type ranging from professional phagocytes to mucosal epithelial cells. Much of this IFN-induced host resistance program is dependent on four families of IFN-inducible GTPases: the myxovirus resistance proteins, the immunity-related GTPases, the guanylate-binding proteins (GBPs), and the very large IFN-inducible GTPases. These GTPase families provide host resistance to a variety of viral, bacterial, and protozoan pathogens through the sequestration of microbial proteins, manipulation of vesicle trafficking, regulation of antimicrobial autophagy (xenophagy), execution of intracellular membranolytic pathways, and the activation of inflammasomes. This review discusses our current knowledge of the molecular function of IFN-inducible GTPases in providing host resistance, as well as their role in the pathogenesis of autoinflammatory Crohn's disease. While substantial advances were made in the recent past, few of the known functions of IFN-inducible GTPases have been explored in any depth, and new functions await discovery. This review will therefore highlight key areas of future exploration that promise to advance our understanding of the role of IFN-inducible GTPases in human diseases.
Collapse
Affiliation(s)
- Danielle Pilla-Moffett
- Department of Molecular Genetics and Microbiology, and Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Matthew F Barber
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Gregory A Taylor
- Department of Medicine, Duke University, Durham, NC 27708, USA; Department of Molecular Genetics and Microbiology, and Immunology, Duke University, Durham, NC 27708, USA; Center for the Study of Aging, Duke University, Durham, NC 27708, USA; Geriatric Research and Education and Clinical Center, Veteran Affairs Medical Center, Durham, NC 27710, USA.
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology, and Immunology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
37
|
Jurcic Smith KL, Lee S. Inhibition of apoptosis by Rv2456c through Nuclear factor-κB extends the survival of Mycobacterium tuberculosis. Int J Mycobacteriol 2016; 5:426-436. [PMID: 27931684 PMCID: PMC5975360 DOI: 10.1016/j.ijmyco.2016.06.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 02/03/2023] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, is an intracellular pathogen with several survival mechanisms aimed at subverting the host immune system. Apoptosis has been shown to be mycobactericidal, to activate CD8+ T cells, and to be modulated by mycobacterial proteins. Since few mycobacterial proteins have so far been directly implicated in the interactions between M. tuberculosis and host cell apoptosis, we screened M. tuberculosis H37Rv transposon mutants to identify mutants that fail to inhibit cell death (FID). One of these FID mutants, FID19, had a transposon insertion in Rv2456c and is important for survival in host cells. The lack of the protein resulted in enhanced caspase-3 mediated apoptosis, which is probably due to an inability to activate nuclear factor-κB. Additionally, FID19 infection enhanced polyfunctional CD8+ T cells and induced a higher frequency of interferon-γ secreting immune cells in a murine model. Taken together, our data suggest that Rv2456c is important for the survival of H37Rv by subduing the innate and ultimately adaptive immune responses of its host by preventing apoptosis of the infected cell. Better understanding of the host-mycobacterial interactions may be beneficial to develop novel drug targets and engineer more efficacious vaccine strains against tuberculosis.
Collapse
Affiliation(s)
- Kristen L Jurcic Smith
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Sunhee Lee
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA; Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
38
|
Choi J, Biering SB, Hwang S. Quo vadis? Interferon-inducible GTPases go to their target membranes via the LC3-conjugation system of autophagy. Small GTPases 2016; 8:199-207. [PMID: 27428166 PMCID: PMC5680725 DOI: 10.1080/21541248.2016.1213090] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/26/2023] Open
Abstract
Many intracellular pathogens survive and replicate within vacuole-like structures in the cytoplasm. It has been unclear how the host immune system controls such pathogen-containing vacuoles. Interferon-inducible GTPases are dynamin-like GTPases that target the membranes of pathogen-containing vacuoles. Upon their oligomerization on the membrane, the vacuole structure disintegrates and the pathogen gets exposed to the hostile cytoplasm. What has been obscure is how the immune system detects and directs the GTPases to these pathogen shelters. Using a common protist parasite of mice, Toxoplasma gondii, we found that the LC3 conjugation system of autophagy is necessary and sufficient for targeting the interferon-inducible GTPases to membranes. We dubbed this process Targeting by AutophaGy proteins (TAG). In canonical autophagy, the LC3 conjugation system is required to form membrane-bound autophagosomes, which encircle and deliver cytosolic materials to lysosomes for degradation. In TAG, however, the conjugation system is required to mark the membranes of pathogen-containing vacuoles with ubiquitin-like LC3 homologs, which function as molecular beacons to recruit the GTPases to their target membranes. Our data suggest that the LC3 conjugation system of autophagy plays an essential role in detecting and marking pathogen-containing vacuoles for immune effector targeting by the host immune system.
Collapse
Affiliation(s)
- Jayoung Choi
- a Department of Pathology , The University of Chicago , Chicago , IL , USA
| | - Scott B Biering
- b Committee on Microbiology, The University of Chicago , Chicago , IL , USA
| | - Seungmin Hwang
- a Department of Pathology , The University of Chicago , Chicago , IL , USA.,b Committee on Microbiology, The University of Chicago , Chicago , IL , USA
| |
Collapse
|
39
|
Abstract
Toxoplasma gondii is a widespread parasite of warm-blooded vertebrates that also causes opportunistic infections in humans. Rodents are a natural host for asexually replicating forms, whereas cats serve as the definitive host for sexual development. The laboratory mouse provides a model to study pathogenesis. Strains of T. gondii are globally diverse, with more than 16 distinct haplogroups clustered into 6 major clades. Forward genetic analysis of genetic crosses between different lineages has been used to define the molecular basis of acute virulence in the mouse. These studies have identified a family of secretory serine/threonine rhoptry kinases that target innate immune pathways to protect intracellular parasites from destruction. Rhoptry kinases target immunity-related GTPases, a family of immune effectors that is expanded in rodents. Similar forward genetic studies may be useful to define the basis of pathogenesis in other hosts, including humans, where infections of different strains present with variable clinical severity.
Collapse
Affiliation(s)
- Michael S Behnke
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana 70803
| | - J P Dubey
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, Maryland 20705
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110;
| |
Collapse
|
40
|
Loss of the interferon-γ-inducible regulatory immunity-related GTPase (IRG), Irgm1, causes activation of effector IRG proteins on lysosomes, damaging lysosomal function and predicting the dramatic susceptibility of Irgm1-deficient mice to infection. BMC Biol 2016; 14:33. [PMID: 27098192 PMCID: PMC4837601 DOI: 10.1186/s12915-016-0255-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/28/2016] [Accepted: 04/06/2016] [Indexed: 01/01/2023] Open
Abstract
Background The interferon-γ (IFN-γ)-inducible immunity-related GTPase (IRG), Irgm1, plays an essential role in restraining activation of the IRG pathogen resistance system. However, the loss of Irgm1 in mice also causes a dramatic but unexplained susceptibility phenotype upon infection with a variety of pathogens, including many not normally controlled by the IRG system. This phenotype is associated with lymphopenia, hemopoietic collapse, and death of the mouse. Results We show that the three regulatory IRG proteins (GMS sub-family), including Irgm1, each of which localizes to distinct sets of endocellular membranes, play an important role during the cellular response to IFN-γ, each protecting specific membranes from off-target activation of effector IRG proteins (GKS sub-family). In the absence of Irgm1, which is localized mainly at lysosomal and Golgi membranes, activated GKS proteins load onto lysosomes, and are associated with reduced lysosomal acidity and failure to process autophagosomes. Another GMS protein, Irgm3, is localized to endoplasmic reticulum (ER) membranes; in the Irgm3-deficient mouse, activated GKS proteins are found at the ER. The Irgm3-deficient mouse does not show the drastic phenotype of the Irgm1 mouse. In the Irgm1/Irgm3 double knock-out mouse, activated GKS proteins associate with lipid droplets, but not with lysosomes, and the Irgm1/Irgm3−/− does not have the generalized immunodeficiency phenotype expected from its Irgm1 deficiency. Conclusions The membrane targeting properties of the three GMS proteins to specific endocellular membranes prevent accumulation of activated GKS protein effectors on the corresponding membranes and thus enable GKS proteins to distinguish organellar cellular membranes from the membranes of pathogen vacuoles. Our data suggest that the generalized lymphomyeloid collapse that occurs in Irgm1−/− mice upon infection with a variety of pathogens may be due to lysosomal damage caused by off-target activation of GKS proteins on lysosomal membranes and consequent failure of autophagosomal processing. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0255-4) contains supplementary material, which is available to authorized users.
Collapse
|
41
|
Li L, Wang H, Jin H, Cao Z, Feng N, Zhao Y, Zheng X, Wang J, Li Q, Zhao G, Yan F, Wang L, Wang T, Gao Y, Tu C, Yang S, Xia X. Interferon-inducible GTPase: a novel viral response protein involved in rabies virus infection. Arch Virol 2016; 161:1285-93. [PMID: 26906695 DOI: 10.1007/s00705-016-2795-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/21/2015] [Accepted: 02/14/2016] [Indexed: 11/25/2022]
Abstract
Rabies virus infection is a major public health concern because of its wide host-interference spectrum and nearly 100 % lethality. However, the interactions between host and virus remain unclear. To decipher the authentic response in the central nervous system after rabies virus infection, a dynamic analysis of brain proteome alteration was performed. In this study, 104 significantly differentially expressed proteins were identified, and intermediate filament, interferon-inducible GTPases, and leucine-rich repeat-containing protein 16C were the three outstanding groups among these proteins. Interferon-inducible GTPases were prominent because of their strong upregulation. Moreover, quantitative real-time PCR showed distinct upregulation of interferon-inducible GTPases at the level of transcription. Several studies have shown that interferon-inducible GTPases are involved in many biological processes, such as viral infection, endoplasmic reticulum stress response, and autophagy. These findings indicate that interferon-inducible GTPases are likely to be a potential target involved in rabies pathogenesis or the antiviral process.
Collapse
Affiliation(s)
- Ling Li
- College of Veterinary Medicine, Jilin University, Changchun, 130062, China.,Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Hualei Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225000, China.
| | - Hongli Jin
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China.,Changchun SR Biological Technology Co., Ltd., Changchun, 130012, China
| | - Zengguo Cao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225000, China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225000, China
| | - Xuexing Zheng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225000, China
| | - Jianzhong Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China.,Department of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Qian Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Guoxing Zhao
- College of Veterinary Medicine, Jilin University, Changchun, 130062, China.,Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Lina Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Yuwei Gao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225000, China
| | - Changchun Tu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Songtao Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225000, China.
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225000, China.
| |
Collapse
|
42
|
Xu P, Wu M, Chen H, Xu J, Wu M, Li M, Qian F, Xu J. Bioinformatics analysis of hepatitis C virus genotype 2a-induced human hepatocellular carcinoma in Huh7 cells. Onco Targets Ther 2016; 9:191-202. [PMID: 26811688 PMCID: PMC4712971 DOI: 10.2147/ott.s91748] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a liver cancer that could be induced by hepatitis C virus genotype 2a Japanese fulminant hepatitis-1 (JFH-1) strain. The aim of this study was to investigate the molecular mechanisms of HCC. The microarray data GSE20948 includes 14 JFH-1- and 14 mock (equal volume of medium [control])-infected Huh7 samples. The data were downloaded from the Gene Expression Omnibus. After data processing, soft cluster analyses were performed to identify co-regulated genes with similar temporal expression patterns. Functional and pathway enrichment analyses, as well as functional annotation analysis, were performed. Subsequently, combined networks of protein–protein interaction network, microRNA regulatory network, and transcriptional regulatory network were constructed. Hub nodes, modules, and five clusters of co-regulated genes were also identified. In total, 173 up and 207 down co-regulated genes were separately identified in JFH-1-infected Huh7 cells compared with those of control cells. Functional enrichment analysis indicated that up co-regulated genes were related to skeletal system morphogenesis and neuron differentiation and down co-regulated genes were related to steroid/cholesterol/sterol metabolisms. Hub genes (such as IRF1, GBP1, ICAM1, Foxa1, DHCR7, HMGCS2, and MSMO1) were identified. Transcription factors IRF1 and Foxa1 were the targets of miR-130a, miR-17-5p, and miR-20a. PPARGC1A was targeted by miR-29 family, and MSMO1 was the target of miR-23 family. Hub nodes (such as IRF1, GBP1, ICAM1, Foxa1, DHCR7, HMGCS2, and MSMO1) and microRNAs might be used as candidate biomarkers of JFH-1-infected HCC.
Collapse
Affiliation(s)
- Ping Xu
- Inspection Center, Affiliated Infectious Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China; Key Laboratory of TB Prevention and Cure of Suzhou City, Suzhou, Jiangsu Province, People's Republic of China
| | - Meiying Wu
- Key Laboratory of TB Prevention and Cure of Suzhou City, Suzhou, Jiangsu Province, People's Republic of China; Department of Respiratory Medicine, Affiliated Infectious Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Hui Chen
- Inspection Center, Affiliated Infectious Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China; Key Laboratory of TB Prevention and Cure of Suzhou City, Suzhou, Jiangsu Province, People's Republic of China
| | - Junchi Xu
- Inspection Center, Affiliated Infectious Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China; Key Laboratory of TB Prevention and Cure of Suzhou City, Suzhou, Jiangsu Province, People's Republic of China
| | - Minjuan Wu
- Inspection Center, Affiliated Infectious Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Ming Li
- Department of Infectious Diseases, Affiliated Infectious Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Feng Qian
- Department of Infectious Diseases, Affiliated Infectious Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Junhua Xu
- Key Laboratory of TB Prevention and Cure of Suzhou City, Suzhou, Jiangsu Province, People's Republic of China; Department of Infectious Diseases, Affiliated Infectious Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| |
Collapse
|
43
|
Martins E, Santos RS, Bettencourt R. Vibrio diabolicus challenge in Bathymodiolus azoricus populations from Menez Gwen and Lucky Strike hydrothermal vent sites. FISH & SHELLFISH IMMUNOLOGY 2015; 47:962-977. [PMID: 26529571 DOI: 10.1016/j.fsi.2015.10.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/18/2015] [Revised: 10/23/2015] [Accepted: 10/27/2015] [Indexed: 06/05/2023]
Abstract
Menez Gwen (MG) and Lucky Strike (LS) deep-sea hydrothermal vents are located at 850 m and 1730 m depths respectively and support chemosynthesis-based ecosystems partially differing in heavy metal concentration, temperature range, and faunistic composition. The successfully adapted deep-sea vent mussel Bathymodiolus azoricus is found at both vent locations. In such inhospitable environments survival strategies rely on the establishment of bacteria-vent animal symbiosis In spite of the toxic nature of deep-sea vents, the problem of microbial threat and the need for immunity exist in B. azoricus. This study aims at investigating the immune system of B. azoricus from MG and LS populations by comparing immune gene expressions profiles using the deep-sea vent-related Vibrio diabolicus. Expression of nineteen immune genes was analyzed from gill, digestive gland and mantle tissues upon 3 h, 12 h and 24 h V. diabolicus challenges. Based on quantitative-Polymerase Chain Reaction (qPCR) significant gene expression differences were found among MG and LS populations and challenge times MG mussels revealed that gill and digestive gland gene expression levels were remarkably higher than those from LS mussels. Expression of Carcinolectin, Serpin-2, SRCR, IRGs, RTK, TLR2, NF-κB, HSP70 and Ferritin genes was greater in MG than LS mussels. In contrast, mantle tissue from LS mussels revealed the highest peak of expression at 24 h for most genes analyzed. The activation of immune signaling pathways demonstrated that gene expression profiles are distinct between the two mussel populations. These differences may possibly ensue from intrinsic immune transcriptional activities upon which host responses are modulated in presence of V. diabolicus. mRNA transcript variations were assessed during 24 h acclimatization taking into account the partial depuration to which mussels were subjected to. Additionally, gene expression differences may reflect still accountable effects from the presence of vent remaining microfluidic environments within the tissues analyzed.
Collapse
Affiliation(s)
- Eva Martins
- IMAR Institute of Marine Research Center, Portugal; MARE- Marine and Environmental Sciences Centre, Rua Prof. Dr. Frederico Machado, 9901-862 Horta, Portugal.
| | - Ricardo Serrão Santos
- IMAR Institute of Marine Research Center, Portugal; MARE- Marine and Environmental Sciences Centre, Rua Prof. Dr. Frederico Machado, 9901-862 Horta, Portugal; Department of Oceanography and Fisheries, University of the Azores, Portugal
| | - Raul Bettencourt
- IMAR Institute of Marine Research Center, Portugal; MARE- Marine and Environmental Sciences Centre, Rua Prof. Dr. Frederico Machado, 9901-862 Horta, Portugal.
| |
Collapse
|
44
|
Coers J, Haldar AK. Ubiquitination of pathogen-containing vacuoles promotes host defense to Chlamydia trachomatis and Toxoplasma gondii. Commun Integr Biol 2015; 8:e1115163. [PMID: 27066178 PMCID: PMC4802790 DOI: 10.1080/19420889.2015.1115163] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/12/2015] [Revised: 10/26/2015] [Accepted: 10/26/2015] [Indexed: 11/24/2022] Open
Abstract
Many intracellular bacterial and protozoan pathogens reside within host cell vacuoles customized by the microbial invaders to fit their needs. Within such pathogen-containing vacuoles (PVs) microbes procure nutrients and simultaneously hide from cytosolic host defense systems. Among the many PV-resident human pathogens are the bacterium Chlamydia trachomatis and the protozoan Toxoplasma gondii. Immune responses directed against their PVs are poorly characterized. We reported that activation of host cells with IFNγ triggers the attachment of polyubiquitin chains to Toxoplasma- and Chlamydia-containing vacuoles and thereby marks PVs for destruction. In murine cells PV ubiquitination is dependent on IFNγ-inducible Immunity Related GTPases (IRGs). Human cells also decorate PVs with ubiquitin upon IFNγ priming; however, the molecular machinery promoting PV ubiquitination in human cells remains unknown and is likely to be distinct from the IRG-dependent pathway we described in murine cells. Thus, IFNγ-inducible PV ubiquitination constitutes a critical event in cell-autonomous immunity to C. trachomatis and T. gondii in mice and humans, but the molecular machinery underlying PV ubiquitination is expected to be multifaceted and possibly host species-specific.
Collapse
Affiliation(s)
- Jörn Coers
- Department of Molecular Genetics and Microbiology; Durham, NC USA
- Department of Immunology; Duke University Medical Center; Durham, NC USA
| | - Arun K Haldar
- Department of Molecular Genetics and Microbiology; Durham, NC USA
| |
Collapse
|
45
|
Haldar AK, Foltz C, Finethy R, Piro AS, Feeley EM, Pilla-Moffett DM, Komatsu M, Frickel EM, Coers J. Ubiquitin systems mark pathogen-containing vacuoles as targets for host defense by guanylate binding proteins. Proc Natl Acad Sci U S A 2015; 112:E5628-37. [PMID: 26417105 PMCID: PMC4611635 DOI: 10.1073/pnas.1515966112] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/06/2023] Open
Abstract
Many microbes create and maintain pathogen-containing vacuoles (PVs) as an intracellular niche permissive for microbial growth and survival. The destruction of PVs by IFNγ-inducible guanylate binding protein (GBP) and immunity-related GTPase (IRG) host proteins is central to a successful immune response directed against numerous PV-resident pathogens. However, the mechanism by which IRGs and GBPs cooperatively detect and destroy PVs is unclear. We find that host cell priming with IFNγ prompts IRG-dependent association of Toxoplasma- and Chlamydia-containing vacuoles with ubiquitin through regulated translocation of the E3 ubiquitin ligase tumor necrosis factor (TNF) receptor associated factor 6 (TRAF6). This initial ubiquitin labeling elicits p62-mediated escort and deposition of GBPs to PVs, thereby conferring cell-autonomous immunity. Hypervirulent strains of Toxoplasma gondii evade this process via specific rhoptry protein kinases that inhibit IRG function, resulting in blockage of downstream PV ubiquitination and GBP delivery. Our results define a ubiquitin-centered mechanism by which host cells deliver GBPs to PVs and explain how hypervirulent parasites evade GBP-mediated immunity.
Collapse
Affiliation(s)
- Arun K Haldar
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, NC 27710
| | - Clémence Foltz
- The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, United Kingdom
| | - Ryan Finethy
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, NC 27710
| | - Anthony S Piro
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, NC 27710
| | - Eric M Feeley
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, NC 27710
| | - Danielle M Pilla-Moffett
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, NC 27710
| | - Masaki Komatsu
- Department of Biochemistry, School of Medicine Niigata University, Niigata-shi, 951-8510, Japan
| | - Eva-Maria Frickel
- The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, United Kingdom
| | - Jörn Coers
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, NC 27710;
| |
Collapse
|
46
|
A Noncanonical Autophagy Pathway Restricts Toxoplasma gondii Growth in a Strain-Specific Manner in IFN-γ-Activated Human Cells. mBio 2015; 6:e01157-15. [PMID: 26350966 PMCID: PMC4600106 DOI: 10.1128/mbio.01157-15] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
A core set of autophagy proteins is required for gamma interferon (IFN-γ)-mediated clearance of Toxoplasma gondii in the mouse because of their control of several downstream effectors, including immunity-related GTPases (IRGs) and guanylate-binding proteins (GBPs). However, these effectors are absent (i.e., IRGs) from or nonessential (i.e., GBPs) in IFN-γ-activated human cells, raising the question of how these cells control parasite replication. Here, we define a novel role for ubiquitination and recruitment of autophagy adaptors in the strain-specific control of T. gondii replication in IFN-γ-activated human cells. Vacuoles containing susceptible strains of T. gondii became ubiquitinated, recruited the adaptors p62 and NDP52, and were decorated with LC3. Parasites within LC3-positive vacuoles became enclosed in multiple layers of host membranes, resulting in stunting of parasite replication. However, LC3-positive T. gondii-containing vacuoles did not fuse with endosomes and lysosomes, indicating that this process is fundamentally different from xenophagy, a form of autophagy involved in the control of intracellular bacterial pathogens. Genetic knockout of ATG16L or ATG7 reverted the membrane encapsulation and restored parasite replication, indicating that core autophagy proteins involved in LC3 conjugation are important in the control of parasite growth. Despite a role for the core autophagy machinery in this process, upstream activation through Beclin 1 was not sufficient to enhance the ubiquitination of T. gondii-containing vacuoles, suggesting a lack of reliance on canonical autophagy. These findings demonstrate a new mechanism for IFN-γ-dependent control of T. gondii in human cells that depends on ubiquitination and core autophagy proteins that mediate membrane engulfment and restricted growth. Autophagy is a process of cellular remodeling that allows the cell to recycle senescent organelles and recapture nutrients. During innate immune responses in the mouse, autophagy is recruited to help target intracellular pathogens and thus eliminate them. However, the antimicrobial mediators that depend on autophagy in the mouse are not conserved in humans, raising the issue of how human cells control intracellular pathogens. Our study defines a new pathway for the control of the ubiquitous intracellular parasite T. gondii in human cells activated by IFN-γ. Recruitment of autophagy adaptors resulted in engulfment of the parasite in multiple membranes and growth impairment. Although susceptible type 2 and 3 stains of T. gondii were captured by this autophagy-dependent pathway, type 1 strains were able to avoid entrapment.
Collapse
|
47
|
Mahmoud ME, Ui F, Salman D, Nishimura M, Nishikawa Y. Mechanisms of interferon-beta-induced inhibition ofToxoplasma gondiigrowth in murine macrophages and embryonic fibroblasts: role of immunity-related GTPase M1. Cell Microbiol 2015; 17:1069-83. [DOI: 10.1111/cmi.12423] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/09/2014] [Revised: 01/22/2015] [Accepted: 01/24/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Motamed Elsayed Mahmoud
- National Research Center for Protozoan Diseases; Obihiro University of Agriculture and Veterinary Medicine; Inada-cho Obihiro Hokkaido 080-8555 Japan
- Department of Animal Behavior; Management; Genetics and Breeding; Faculty of Veterinary Medicine; Sohag University; Sohag City Sohag 82524 Egypt
| | - Fumiki Ui
- National Research Center for Protozoan Diseases; Obihiro University of Agriculture and Veterinary Medicine; Inada-cho Obihiro Hokkaido 080-8555 Japan
| | - Doaa Salman
- National Research Center for Protozoan Diseases; Obihiro University of Agriculture and Veterinary Medicine; Inada-cho Obihiro Hokkaido 080-8555 Japan
- Department of Animal Medicine; Faculty of Veterinary Medicine; Sohag University; Sohag City Sohag 82524 Egypt
| | - Maki Nishimura
- National Research Center for Protozoan Diseases; Obihiro University of Agriculture and Veterinary Medicine; Inada-cho Obihiro Hokkaido 080-8555 Japan
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases; Obihiro University of Agriculture and Veterinary Medicine; Inada-cho Obihiro Hokkaido 080-8555 Japan
| |
Collapse
|
48
|
Bettencourt R, Rodrigues M, Barros I, Cerqueira T, Freitas C, Costa V, Pinheiro M, Egas C, Santos RS. Site-related differences in gene expression and bacterial densities in the mussel Bathymodiolus azoricus from the Menez Gwen and Lucky Strike deep-sea hydrothermal vent sites. FISH & SHELLFISH IMMUNOLOGY 2014; 39:343-353. [PMID: 24882018 DOI: 10.1016/j.fsi.2014.05.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/25/2010] [Revised: 05/13/2014] [Accepted: 05/16/2014] [Indexed: 06/03/2023]
Abstract
The deep-sea hydrothermal vent mussel Bathymodiolus azoricus is a symbiont bearing bivalve that is found in great abundance at the Menez Gwen and Lucky Strike hydrothermal vent sites and in close vicinity of the Azores region near the Mid-Atlantic Ridge (MAR). The physiological relationships that vent mussels have developed with their physical and chemical environments are likely to influence global gene expression profiles providing thus the means to investigate distinct biological markers predicting the origin of Bathymodiolus sp. irrespectively of their geographical localization. Differences found at gene expression levels, and between fluorescence in situ hybridization (FISH) and 16S rRNA amplicon sequencing results provided experimental evidence for the distinction of both Menez Gwen and Lucky Strike vent mussel individuals based on bacterial and vent mussel gene expression signatures and on the constitutive distribution and relative abundance of endosymbiotic bacteria within gill tissues. Our results confirmed the presence of methanotroph endosymbionts in Menez Gwen vent mussels whereas Lucky Strike specimens seem to harbor a different bacterial morphotype when a methane monooxygenase gene specific probe was used. No qualitative differences could be visualized between Menez Gwen and Lucky Strike individuals when tested with a sulfur-oxidizing-related probe. Quantitative PCR (qPCR) studies revealed different gene expression profiles in both Menez Gwen and Lucky Strike mussel gill tissues for the immune genes selected. Genes encoding transcription factors presented noticeably low levels of fold expression whether in Menez Gwen or Lucky Strike animals whereas the genes encoding effector molecules appeared to have higher levels expression in gill tissues from Menez Gwen animals. The peptidoglycan recognition molecule encoding gene, PGRP, presented the highest level of transcriptional activity among the genes analyzed in Menez Gwen mussel gill tissues, seconded by carcinolectin and thus denoting the relevance of immune recognition molecules in early stage of the immune responses onset. Genes regarded as encoding molecules involved in signaling pathways were consistently expressed in both Menez Gwen and Lucky Strike mussel gill tissues. Remarkably, the immunity-related GTPase encoding gene demonstrated, in Lucky Strike samples, the highest level of expression among the signaling molecule encoding genes tested when expressions levels were compared between Menez Gwen and Lucky Strike animals. A differential expression analysis of bacterial genes between Menez Gwen and Lucky Strike mussels indicated a clear expression signature in the latter animal gill tissues. The bacterial community structure ensued from the 16S rRNA sequencing analyses pointed at an unpredicted conservation of endosymbiont bacterial loads between Menez Gwen and Lucky Strike samples. Taken together, our results support the hypothesis that B. azoricus exhibits different transcriptional statuses while living in distinct hydrothermal vent sites may result in distinct gene expressions because of physico-chemical and/or symbiont densities differences.
Collapse
Affiliation(s)
- Raul Bettencourt
- IMAR-Center, University of the Azores, 9901-862 Horta, Portugal; Department of Oceanography and Fisheries, University of the Azores, 9901-862 Horta, Portugal.
| | | | - Inês Barros
- IMAR-Center, University of the Azores, 9901-862 Horta, Portugal; Department of Oceanography and Fisheries, University of the Azores, 9901-862 Horta, Portugal
| | - Teresa Cerqueira
- IMAR-Center, University of the Azores, 9901-862 Horta, Portugal; Department of Oceanography and Fisheries, University of the Azores, 9901-862 Horta, Portugal
| | - Cátia Freitas
- Department of Oceanography and Fisheries, University of the Azores, 9901-862 Horta, Portugal
| | - Valentina Costa
- Department of Oceanography and Fisheries, University of the Azores, 9901-862 Horta, Portugal
| | - Miguel Pinheiro
- Biocant, Biotechnology Innovation Center, Cantanhede, Portugal
| | - Conceição Egas
- Biocant, Biotechnology Innovation Center, Cantanhede, Portugal
| | - Ricardo Serrão Santos
- IMAR-Center, University of the Azores, 9901-862 Horta, Portugal; Department of Oceanography and Fisheries, University of the Azores, 9901-862 Horta, Portugal
| |
Collapse
|
49
|
Henry SC, Schmidt EA, Fessler MB, Taylor GA. Palmitoylation of the immunity related GTPase, Irgm1: impact on membrane localization and ability to promote mitochondrial fission. PLoS One 2014; 9:e95021. [PMID: 24751652 PMCID: PMC3994021 DOI: 10.1371/journal.pone.0095021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/16/2013] [Accepted: 03/22/2014] [Indexed: 12/01/2022] Open
Abstract
The Immunity-Related GTPases (IRG) are a family of large GTPases that mediate innate immune responses. Irgm1 is particularly critical for immunity to bacteria and protozoa, and for inflammatory homeostasis in the intestine. Although precise functions for Irgm1 have not been identified, prior studies have suggested roles in autophagy/mitophagy, phagosome remodeling, cell motility, and regulating the activity of other IRG proteins. These functions ostensibly hinge on the ability of Irgm1 to localize to intracellular membranes, such as those of the Golgi apparatus and mitochondria. Previously, it has been shown that an amphipathic helix, the αK helix, in the C-terminal portion of the protein partially mediates membrane binding. However, in absence of αK, there is still substantial binding of Irgm1 to cellular membranes, suggesting the presence of other membrane binding motifs. In the current work, an additional membrane localization motif was found in the form of palmitoylation at a cluster of cysteines near the αK. An Irgm1 mutant possessing alanine to cysteine substitutions at these amino acids demonstrated little residual palmitoylation, yet it displayed only a small decrease in localization to the Golgi and mitochondria. In contrast, a mutant containing the palmitoylation mutations in combination with mutations disrupting the amphipathic character of the αK displayed a complete loss of apparent localization to the Golgi and mitochondria, as well as an overall loss of association with cellular membranes in general. Additionally, Irgm1 was found to promote mitochondrial fission, and this function was undermined in Irgm1 mutants lacking the palmitoylation domain, and to a greater extent in those lacking the αK, or the αK and palmitoylation domains combined. Our data suggest that palmitoylation together with the αK helix firmly anchor Irgm1 in the Golgi and mitochondria, thus facilitating function of the protein.
Collapse
Affiliation(s)
- Stanley C. Henry
- Geriatric Research, Education, and Clinical Center, VA Medical Center, Durham, North Carolina, United States of America
| | - Elyse A. Schmidt
- Departments of Medicine; Molecular Genetics and Microbiology; and Immunology; Division of Geriatrics, and Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Michael B. Fessler
- Laboratory of Respiratory Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Gregory A. Taylor
- Geriatric Research, Education, and Clinical Center, VA Medical Center, Durham, North Carolina, United States of America
- Departments of Medicine; Molecular Genetics and Microbiology; and Immunology; Division of Geriatrics, and Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
50
|
Caspase-11 activation requires lysis of pathogen-containing vacuoles by IFN-induced GTPases. Nature 2014; 509:366-70. [PMID: 24739961 DOI: 10.1038/nature13157] [Citation(s) in RCA: 366] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/31/2013] [Accepted: 02/14/2014] [Indexed: 12/28/2022]
Abstract
Lipopolysaccharide from Gram-negative bacteria is sensed in the host cell cytoplasm by a non-canonical inflammasome pathway that ultimately results in caspase-11 activation and cell death. In mouse macrophages, activation of this pathway requires the production of type-I interferons, indicating that interferon-induced genes have a critical role in initiating this pathway. Here we report that a cluster of small interferon-inducible GTPases, the so-called guanylate-binding proteins, is required for the full activity of the non-canonical caspase-11 inflammasome during infections with vacuolar Gram-negative bacteria. We show that guanylate-binding proteins are recruited to intracellular bacterial pathogens and are necessary to induce the lysis of the pathogen-containing vacuole. Lysis of the vacuole releases bacteria into the cytosol, thus allowing the detection of their lipopolysaccharide by a yet unknown lipopolysaccharide sensor. Moreover, recognition of the lysed vacuole by the danger sensor galectin-8 initiates the uptake of bacteria into autophagosomes, which results in a reduction of caspase-11 activation. These results indicate that host-mediated lysis of pathogen-containing vacuoles is an essential immune function and is necessary for efficient recognition of pathogens by inflammasome complexes in the cytosol.
Collapse
|