1
|
Li Y, Li W, Ye Z, Ji C, Zhou Z. Antioxidant, Anti-Inflammatory, and Anticancer Activities of Five Citrus Peel Essential Oils. Antioxidants (Basel) 2024; 13:1562. [PMID: 39765890 PMCID: PMC11672981 DOI: 10.3390/antiox13121562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Citrus peel essential oil (CPEO) is favored by people for its aromatic scent, while also possessing numerous bioactive compounds that are advantageous to human health. This study evaluated the antioxidant, anti-inflammatory, and anticancer activities of CPEOs through cell experiments. The results showed that CPEOs could increase the activity of the antioxidant enzyme system and nonenzymatic defence system in H2O2-treated RAW 264.7 cells by reducing cellular lipid peroxidation. CPEOs also reduced the nitric oxide production induced by lipopolysaccharide treatment in RAW 264.7 cells while decreasing proinflammatory cytokines expression and increasing anti-inflammatory cytokine expression. Wound healing assays, flow cytometry, and quantitative real-time fluorescent quantitative PCR (qRT-PCR) revealed that CPEOs could induce apoptosis in U87 cells through the mitochondrial apoptotic pathway. These findings indicate that CPEOs possess excellent antioxidant, anti-inflammatory, and anticancer activity potential, making them suitable for use in functional antioxidant and anti-inflammatory foods and nutritional health products.
Collapse
Affiliation(s)
- Yurong Li
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei District, Chongqing 400715, China; (Y.L.); (Z.Y.); (C.J.)
| | - Wenji Li
- School of Design, Chongqing Industry Polytechnic College, Chongqing 401120, China;
| | - Zimao Ye
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei District, Chongqing 400715, China; (Y.L.); (Z.Y.); (C.J.)
| | - Chen Ji
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei District, Chongqing 400715, China; (Y.L.); (Z.Y.); (C.J.)
| | - Zhiqin Zhou
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei District, Chongqing 400715, China; (Y.L.); (Z.Y.); (C.J.)
- The Southwest Institute of Fruits Nutrition, Banan District, Chongqing 400054, China
| |
Collapse
|
2
|
Akgöl J, Kutlay Ö, Keskin Aktan A, Fırat F. Assessment of Modified Citrus Pectin's Effects on Dementia in the Scopolamine-Induced Alzheimer's Model in Adult Male Wistar Rats. Curr Issues Mol Biol 2024; 46:13922-13936. [PMID: 39727960 PMCID: PMC11727308 DOI: 10.3390/cimb46120832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/03/2024] [Accepted: 12/07/2024] [Indexed: 12/28/2024] Open
Abstract
Modified citrus pectin (MCP) modulates galectin-3, a key player in neuroinflammation linked to Alzheimer's disease. By inhibiting galectin-3, MCP reduces the brain's inflammatory response and may alleviate cognitive decline. This study examines MCP's impact on neuroinflammation, cognitive function, and its role in galectin-3 inhibition in a dementia model. Male Wistar rats were assigned to four groups: control (n = 6), scopolamine (SCP) (n = 7), SCP + MCP (n = 7), and MCP only (n = 7). MCP was administered orally at 100 mg/kg/day via drinking water for six weeks. SCP was injected intraperitoneally at 1 mg/kg for seven days to induce an Alzheimer's-type dementia model. The researchers assessed cognitive performance through the Morris Water Maze (MWM) test. After behavioral tests, blood and brain tissues, including the hippocampus, were collected and stored at -80 °C for analysis. Immunohistochemistry was used to evaluate superoxide dismutase (SOD) activity, malondialdehyde (MDA) levels, brain-derived neurotrophic factor (BDNF), and inflammatory markers (IL-1β, IL-6, TNF-α, and galectin-3). The data were analyzed with SPSS 22. SCP treatment increased lipid peroxidation (MDA) and elevated inflammatory markers (TNF-α, IL-6, and galectin-3), while reducing BDNF and impairing spatial memory. Co-administering MCP with SCP significantly reduced TNF-α, IL-6, and galectin-3 levels; increased BDNF; and improved memory performance. Although MCP did not lower MDA levels, it boosted SOD activity, suggesting antioxidant effects. Modified citrus pectin (MCP) alleviated cognitive impairments and reduced neuroinflammation in Alzheimer's-type dementia by inhibiting galectin-3. MCP also exhibited antioxidant potential, underscoring its therapeutic promise for neurodegenerative diseases.
Collapse
Affiliation(s)
- Jale Akgöl
- Department of Medical Pharmacology, Faculty of Medicine, Afyonkarahisar Health Sciences University, 03030 Afyonkarahisar, Turkey
| | - Özden Kutlay
- Department of Physiology, Faculty of Medicine, Afyonkarahisar Health Sciences University, 03030 Afyonkarahisar, Turkey; (Ö.K.); (A.K.A.)
| | - Arzu Keskin Aktan
- Department of Physiology, Faculty of Medicine, Afyonkarahisar Health Sciences University, 03030 Afyonkarahisar, Turkey; (Ö.K.); (A.K.A.)
| | - Fatma Fırat
- Department of Histology and Embryology, Faculty of Medicine, Afyonkarahisar Health Sciences University, 03030 Afyonkarahisar, Turkey;
| |
Collapse
|
3
|
Nguyen HVM, Ran Q, Salmon AB, Bumsoo A, Chiao YA, Bhaskaran S, Richardson A. Mouse models used to test the role of reactive oxygen species in aging and age-related chronic diseases. Free Radic Biol Med 2024; 225:617-629. [PMID: 39419456 PMCID: PMC11624111 DOI: 10.1016/j.freeradbiomed.2024.10.269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/13/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
With the development of the technology to generate transgenic and knockout mice in the 1990s, investigators had a powerful tool to directly test the impact of altering a specific gene on a biological process or disease. Over the past three decades, investigators have used transgenic and knockout mouse models, which have altered expression of antioxidant genes, to test the role of oxidative stress/damage in aging and age-related diseases. In this comprehensive review, we describe the studies using transgenic and knockout mouse models to test the role of oxidative stress/damage in aging (longevity) and three age-related diseases, e.g., sarcopenia, cardiac aging, and Alzheimer's Disease. While longevity was consistently altered only by one transgenic and one knockout mouse model as predicted by the Oxidative Stress Theory of Aging, the incidence/progression of the three age-related diseases (especially Alzheimer's disease) were robustly impacted when the expression of various antioxidant genes was altered using transgenic and knockout mouse models.
Collapse
Affiliation(s)
- Hoang Van M Nguyen
- Department of Nutritional Sciences, University of Oklahoma Health Sciences, Oklahoma City, OK, USA
| | - Qitao Ran
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; VA South Texas Health Care System, San Antonio, TX, USA
| | - Adam B Salmon
- Department of Molecular Medicine, Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; VA South Texas Health Care System, San Antonio, TX, USA
| | - Ahn Bumsoo
- Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Ying Ann Chiao
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Shylesh Bhaskaran
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Arlan Richardson
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences, Oklahoma City, OK, USA; VA Oklahoma Health Care System, Oklahoma City, OK, USA.
| |
Collapse
|
4
|
Özdemir AY, Hofbauerová K, Kopecký V, Novotný J, Rudajev V. Different amyloid β42 preparations induce different cell death pathways in the model of SH-SY5Y neuroblastoma cells. Cell Mol Biol Lett 2024; 29:143. [PMID: 39551742 PMCID: PMC11572474 DOI: 10.1186/s11658-024-00657-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/22/2024] [Indexed: 11/19/2024] Open
Abstract
Amyloid β42 (Aβ42) plays a decisive role in the pathology of Alzheimer's disease. The Aβ42 peptide can aggregate into various supramolecular structures, with oligomers being the most toxic form. However, different Aβ species that cause different effects have been described. Many cell death pathways can be activated in connection with Aβ action, including apoptosis, necroptosis, pyroptosis, oxidative stress, ferroptosis, alterations in mitophagy, autophagy, and endo/lysosomal functions. In this study, we used a model of differentiated SH-SY5Y cells and applied two different Aβ42 preparations for 2 and 4 days. Although we found no difference in the shape and size of Aβ species prepared by two different methods (NaOH or NH4OH for Aβ solubilization), we observed strong differences in their effects. Treatment of cells with NaOH-Aβ42 mainly resulted in damage of mitochondrial function and increased production of reactive oxygen species, whereas application of NH4OH-Aβ42 induced necroptosis and first steps of apoptosis, but also caused an increase in protective Hsp27. Moreover, the two Aβ42 preparations differed in the mechanism of interaction with the cells, with the effect of NaOH-Aβ42 being dependent on monosialotetrahexosylganglioside (GM1) content, whereas the effect of NH4OH-Aβ42 was independent of GM1. This suggests that, although both preparations were similar in size, minor differences in secondary/tertiary structure are likely to strongly influence the resulting processes. Our work reveals, at least in part, one of the possible causes of the inconsistency in the data observed in different studies on Aβ-toxicity pathways.
Collapse
Affiliation(s)
- Alp Yigit Özdemir
- Department of Physiology, Faculty of Sciences, Charles University, Viničná 7, 12844, Prague 2, Czech Republic
| | - Kateřina Hofbauerová
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 12116, Prague 2, Czech Republic
| | - Vladimír Kopecký
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 12116, Prague 2, Czech Republic
| | - Jiří Novotný
- Department of Physiology, Faculty of Sciences, Charles University, Viničná 7, 12844, Prague 2, Czech Republic
| | - Vladimír Rudajev
- Department of Physiology, Faculty of Sciences, Charles University, Viničná 7, 12844, Prague 2, Czech Republic.
| |
Collapse
|
5
|
Harshithkumar R, Shah P, Jadaun P, Mukherjee A. ROS Chronicles in HIV Infection: Genesis of Oxidative Stress, Associated Pathologies, and Therapeutic Strategies. Curr Issues Mol Biol 2024; 46:8852-8873. [PMID: 39194740 DOI: 10.3390/cimb46080523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/04/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Reactive oxygen species (ROS) are widely regarded as signaling molecules and play essential roles in various cellular processes, but when present in excess, they can lead to oxidative stress (OS). Growing evidence suggests that the OS plays a critical role in the pathogenesis of HIV infection and is associated with several comorbidities in HIV-infected individuals. ROS, generated both naturally during mitochondrial oxidative metabolism and as a response to various cellular processes, can trigger host antiviral responses but can also promote viral replication. While the multifaceted roles of ROS in HIV pathophysiology clearly need more investigation, this review paper unravels the mechanisms of OS generation in the context of HIV infections, offering insights into HIV viral protein-mediated and antiretroviral therapy-generated OS. Though the viral protein Tat is significantly attributed to the endogenous cellular increase in ROS post HIV infection, this paper sums up the contribution of other viral proteins in HIV-mediated elicitation of ROS. Given the investigations recognizing the significant role of ROS in the onset and progression of diverse pathologies, the paper also explores the critical function of ROS in the mediation of an of array of pathologies associated with HIV infection and retroviral therapy. HIV patients are observed with disruption to the antioxidant defense system, the antioxidant therapy is gaining focus as a potential therapeutic intervention and is well discussed. While ROS play a significant role in the HIV scenario, further exploratory studies are imperative to identifying alternative therapeutic strategies that could mitigate the toxicities and pathologies associated with ART-induced OS.
Collapse
Affiliation(s)
- R Harshithkumar
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, India
| | - Prachibahen Shah
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, India
| | - Pratiksha Jadaun
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, India
| | - Anupam Mukherjee
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, India
| |
Collapse
|
6
|
Ikram H, Zakir R, Haleem DJ. Memory enhancing and neuroprotective effects of apomorphine in a rat model of dementia. Metab Brain Dis 2024; 39:1051-1063. [PMID: 38896206 DOI: 10.1007/s11011-024-01372-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
Oxidative stress from generation of increased reactive oxygen species or has been reported to play an important role in dementia. Oxidative stress due to free radicals of oxygen or reactive oxygen species could be precipitating factors in the etiology of dementia. Apomorphine has been reported to have neuroprotective effects. To monitor memory enhancing and neuroprotective effects of apomorphine, we determined the antioxidant enzymes activities, lipid peroxidation, acetylcholine esterase (AChE) activity in brain and plasma, following repetitive administration of apomorphine in rat model of dementia. Biogenic amine levels were also monitored in hippocampus. Repeated administration of scopolamine was taken as an animal model of dementia. Decreased glutathione peroxidase, superoxide dismutase and catalase activities were observed in these animal models of dementia. While increased lipid peroxidation was also observed in the brain and plasma samples. The results showed significant effects of apomorphine. The activities of antioxidant enzymes displayed increased activities in both brain and plasma. Glutathione peroxidase and catalase activities were found to be significantly higher in brain and plasma of apomorphine treated rats. Superoxide dismutase (SOD) was significantly decreased in plasma of scopolamine injected rats; and a decreased tendency (non-significant) of SOD in brain was also observed. AChE activity in brain and plasma was significantly decreased in scopolamine treated rats. Learning and memory of rats in the present study was assessed by Morris Water Maze (MWM). Short-term memory and long-term memory was impaired significantly in scopolamine treated rats, which was prevented by apomorphine. Moreover, a marked decrease in biogenic amines was also found in the brain of scopolamine treated rats and was reverted in apomorphine treated rats. Results showed that scopolamine-treatment induced memory impairment and induced oxidative stress in rats as compared to saline-treated controls. These impairments were significantly restored by apomorphine administration. In conclusion, our data suggests that apomorphine at the dose of 1 mg/kg could be a potential therapeutic agent to treat dementia and related disorders.
Collapse
Affiliation(s)
- Huma Ikram
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi, 75270, Pakistan.
| | - Rumaisa Zakir
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Darakhshan Jabeen Haleem
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi, 75270, Pakistan
- Neuroscience Research Laboratory, Dr Panjwani Center for Molecular Medicine and Drug Research-ICCBS, University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|
7
|
Shaikh A, Ahmad F, Teoh SL, Kumar J, Yahaya MF. Unveiling the Therapeutic Potential of Kelulut (Stingless Bee) Honey in Alzheimer's Disease: Findings from a Rat Model Study. Antioxidants (Basel) 2024; 13:926. [PMID: 39199172 PMCID: PMC11351951 DOI: 10.3390/antiox13080926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 09/01/2024] Open
Abstract
Alzheimer's disease (AD) poses a major worldwide health challenge because of its profound impact on cognitive abilities and overall well-being. Despite extensive research and numerous clinical trials, therapeutic options remain limited. Our study aimed to investigate the potential of Kelulut honey (KH) as a novel therapeutic agent for addressing the multifactorial pathology of AD. We tried to evaluate the disease-attenuating and neuroprotective potential of KH in the intrahippocampally induced AD rat model by utilizing histochemistry and enzyme-linked immunosorbent assay (ELISA) studies. A total of 26 male Sprague Dawley rats weighing ~280-380 g were randomly divided into three groups: Control, AD-induced (Aβ), and AD-induced and treated with KH (Aβ+KH). The latter two groups underwent stereotaxic surgery, where 6.25 µg of amyloid β1-42 peptides were injected intrahippocampally. One-week post-surgery, KH was administered to the treatment group at a dose of 1 g/kg body weight for a period of four weeks, after which the rats went through behavior tests. After completion of behavior analysis, the rats were sacrificed, and the brains were processed for histochemistry and ELISA studies. The open field test analysis demonstrated that KH improved the locomotion of Aβ+KH compared to Aβ (p = 0.0013). In comparison, the Morris water maze did not show any nootropic effects on cognition with a paradoxical increase in time spent in the target quadrant by the Aβ group (p = 0.029). Histochemical staining showed markedly increased Congo-red-stained amyloid plaques, which were significantly reduced in dentate gyrus of Aβ+KH compared to Aβ (p < 0.05). Moreover, significantly higher apoptosis was seen in the Aβ group compared to Aβ+KH (p < 0.01) and control groups (p < 0.001). Furthermore, the ELISA studies deduced more phosphorylated tau in the diseased group compared to Aβ+KH (p = 0.038) and controls (p = 0.016). These findings suggest that KH consumption for twenty-eight days has the potential to attenuate the pathological burden of disease while exerting neuroprotective effects in rodent models of AD.
Collapse
Affiliation(s)
- Ammara Shaikh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (A.S.); (F.A.); (S.L.T.)
| | - Fairus Ahmad
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (A.S.); (F.A.); (S.L.T.)
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (A.S.); (F.A.); (S.L.T.)
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (A.S.); (F.A.); (S.L.T.)
| |
Collapse
|
8
|
Li Y, Jiang Y, Zhang Z, Loake VIP, Bao X, Loake GJ. Improvement of both human and animal memory by synergy between fructooligosaccharide and L-theanine function establishing a safe and effective food supplement. Food Sci Nutr 2024; 12:4966-4980. [PMID: 39055226 PMCID: PMC11266938 DOI: 10.1002/fsn3.4145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/24/2024] [Accepted: 03/19/2024] [Indexed: 07/27/2024] Open
Abstract
Aging is classically associated with a decline of cognitive abilities, especially in relation to memory. While the development of potential treatments for neurodegenerative diseases has been in sharp focus, mild cognitive impairment (MCI), a form of age-related memory loss, in the absence of severe functional impairment, a condition experienced by many healthy adults, has received relatively little attention. Advances in this space would make significant contributions to the goal of healthy aging and may also help promote cognitive performance across the wider population. The individual action of either fructooligosaccharide (FOS) or L-theanine, both natural plant-derived molecules, has been tentatively linked with improvements in cognition, but our understanding remains far from complete. We therefore determined the effect of different dose combinations of FOS and L-theanine (termed MT-01/GBL-Memory1) in mice against FOS and L-theanine monotherapy. FOS and L-theanine were found to synergistically enhance murine memory in our animal tests at a dose of 100 mg/kg (coefficient of drug interaction (CDI) < 1). In a subsequent human trial, we demonstrated that MT-01 improved the memory of healthy adults after 1 month of consumption. Our results suggest that a combination of FOS and L-theanine synergistically enhances murine memory within a specific dose range. We show that this plant natural product regimen also improves human memory in a population of healthy adults. MT-01 therefore represents a novel, safe, and effective dietary supplement to promote human memory and cognition.
Collapse
Affiliation(s)
- Yuan Li
- Green Bioactives Limited, Pentland Science ParkPenicuikUK
| | - Yuying Jiang
- Department of Pharmacology, West China School of PharmacySichuan UniversityChengduChina
| | - Zubing Zhang
- Yiping Medical Science & Technology Development Co. LtdChengduChina
| | | | - Xu Bao
- Department of Pharmacology, West China School of PharmacySichuan UniversityChengduChina
| | - Gary J. Loake
- Green Bioactives Limited, Pentland Science ParkPenicuikUK
- Institute of Molecular Plant Sciences, School of Biological SciencesUniversity of EdinburghEdinburghUK
- Centre for Engineering Biology, School of Biological SciencesUniversity of EdinburghEdinburghUK
| |
Collapse
|
9
|
Ulloa M, Macías F, Clapp C, Martínez de la Escalera G, Arnold E. Prolactin is an Endogenous Antioxidant Factor in Astrocytes That Limits Oxidative Stress-Induced Astrocytic Cell Death via the STAT3/NRF2 Signaling Pathway. Neurochem Res 2024; 49:1879-1901. [PMID: 38755517 PMCID: PMC11144156 DOI: 10.1007/s11064-024-04147-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/29/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
Oxidative stress-induced death of neurons and astrocytes contributes to the pathogenesis of numerous neurodegenerative diseases. While significant progress has been made in identifying neuroprotective molecules against neuronal oxidative damage, little is known about their counterparts for astrocytes. Prolactin (PRL), a hormone known to stimulate astroglial proliferation, viability, and cytokine expression, exhibits antioxidant effects in neurons. However, its role in protecting astrocytes from oxidative stress remains unexplored. Here, we investigated the effect of PRL against hydrogen peroxide (H2O2)-induced oxidative insult in primary cortical astrocyte cultures. Incubation of astrocytes with PRL led to increased enzymatic activity of superoxide dismutase (SOD) and glutathione peroxidase (GPX), resulting in higher total antioxidant capacity. Concomitantly, PRL prevented H2O2-induced cell death, reactive oxygen species accumulation, and protein and lipid oxidation. The protective effect of PRL upon H2O2-induced cell death can be explained by the activation of both signal transducer and activator of transcription 3 (STAT3) and NFE2 like bZIP transcription factor 2 (NRF2) transduction cascades. We demonstrated that PRL induced nuclear translocation and transcriptional upregulation of Nrf2, concurrently with the transcriptional upregulation of the NRF2-dependent genes heme oxygenase 1, Sod1, Sod2, and Gpx1. Pharmacological blockade of STAT3 suppressed PRL-induced transcriptional upregulation of Nrf2, Sod1 and Gpx1 mRNA, and SOD and GPX activities. Furthermore, genetic ablation of the PRL receptor increased astroglial susceptibility to H2O2-induced cell death and superoxide accumulation, while diminishing their intrinsic antioxidant capacity. Overall, these findings unveil PRL as a potent antioxidant hormone that protects astrocytes from oxidative insult, which may contribute to brain neuroprotection.
Collapse
Affiliation(s)
- Miriam Ulloa
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, 76230, Querétaro, México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Mexico City, México
| | - Fernando Macías
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, 76230, Querétaro, México
| | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, 76230, Querétaro, México
| | | | - Edith Arnold
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, 76230, Querétaro, México.
- CONAHCYT-Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, Querétaro, México.
| |
Collapse
|
10
|
Yang Y, Qiu L. Research Progress on the Pathogenesis, Diagnosis, and Drug Therapy of Alzheimer's Disease. Brain Sci 2024; 14:590. [PMID: 38928590 PMCID: PMC11201671 DOI: 10.3390/brainsci14060590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
As the population ages worldwide, Alzheimer's disease (AD), the most prevalent kind of neurodegenerative disorder among older people, has become a significant factor affecting quality of life, public health, and economies. However, the exact pathogenesis of Alzheimer's remains elusive, and existing highly recognized pathogenesis includes the amyloid cascade hypothesis, Tau neurofibrillary tangles hypothesis, and neuroinflammation hypothesis. The major diagnoses of Alzheimer's disease include neuroimaging positron emission computed tomography, magnetic resonance imaging, and cerebrospinal fluid molecular diagnosis. The therapy of Alzheimer's disease primarily relies on drugs, and the approved drugs on the market include acetylcholinesterase drugs, glutamate receptor antagonists, and amyloid-β monoclonal antibodies. Still, the existing drugs can only alleviate the symptoms of the disease and cannot completely reverse it. This review aims to summarize existing research results on Alzheimer's disease pathogenesis, diagnosis, and drug therapy, with the objective of facilitating future research in this area.
Collapse
Affiliation(s)
- Yixuan Yang
- College of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China;
| | - Lina Qiu
- College of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China;
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
11
|
Mahajan E, Raja A, Sharma AR, Jain A, K Prabha P, Prakash A, Medhi B. To evaluate the effect of endothelin receptor agonist IRL-1620 alone and in combination with donepezil in modulating neurodegeneration elicited by amyloid-β in rats. Exp Neurol 2024; 375:114720. [PMID: 38342181 DOI: 10.1016/j.expneurol.2024.114720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/20/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND The development of efficient therapies for Alzheimer''s disease is essential since it is a serious public health problem. This investigation sought to ascertain any potential synergistic benefits of treating Alzheimer's disease with IRL-1620 monotherapy in addition to Donepezil. Additionally, the effect of IRL-1620 was evaluated using different doses (5 μg/kg,7 μg/kg, and 9 μg/kg). The study further assessed neurobehavioral, biochemical, molecular, and histopathological parameters to evaluate the efficacy of both IRL1620 by its own and in association with Donepezil. Fifty-eight adult male Wistar rats were allocated to eight experimental groups. A dose-ranging study of IRL-1620 was conducted using different doses administered via intravenous injection. Alzheimer's disease was induced by Aβ administration, and treatment arms included disease Control (Sham), Donepezil monotherapy, and combination treatment with IRL-1620 5 μg/kg (Dose selected from the dose-ranging study). The treatment using IRL-1620 (9 μg/kg) intravenously and Donepezil (1 mg/kg orally) both on its own and in addition substantially enhanced memory in comparison with the control group (p < 0.05). Dose of IRL-1620 (9 μg/kg) intravenously, escape latency decreased and the time spent in the target quadrant was considerably increased, and they further benefited from combination therapy. Moreover, IRL-1620 (9 μg/kg) intravenously and combination treatment reduced lipid peroxidation and acetylcholinesterase levels while increasing antioxidant enzyme levels. Immunohistochemistry and molecular analysis revealed enhanced expression of neurotrophic factors with combination treatment. The combination of IRL-1620 and Donepezil showed significant improvements in memory and neurobehavioral parameters (p < 0.05). Alzheimer's disease in male Wistar rats. These results indicate to the probable therapeutic advantages of IRL-1620 and Donepezil in the management of Alzheimer's disease. The combination treatment exhibited enhanced effects compared to monotherapy, highlighting its potential promising therapeutic approach. Additional research is required to understand the mechanisms behind these synergistic benefits and to establish the ideal dosage and duration of therapy for therapeutic applications.
Collapse
Affiliation(s)
- Eshani Mahajan
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Anupam Raja
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Amit Raj Sharma
- Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Ashish Jain
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Praisy K Prabha
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Ajay Prakash
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India.
| |
Collapse
|
12
|
Ryoo SW, Choi BY, Son SY, Oh KH, Min JY, Min KB. Association between Multiple Trace Elements, Executive Function, and Cognitive Impairment with No Dementia in Older Adults. Nutrients 2024; 16:1001. [PMID: 38613034 PMCID: PMC11013674 DOI: 10.3390/nu16071001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Many studies suggest a significant association between individual essential trace elements (ETEs) and cognitive impairment in older adults, but evidence of the synchronized effect of multiple ETEs on cognitive function is lacking. We investigated the association between multiple ETEs, cognitive impairment with no dementia (CIND), and executive function in older Korean adults, using the Bayesian kernel machine regression (BKMR) model. Three hundred and thirty-six older adults were included as the study population and classified as the CIND and control groups. Blood manganese (Mn), copper (Cu), zinc (Zn), selenium (Se), and molybdenum (Mo) were measured as relevant ETEs. The frontal/executive tests included digit symbol coding (DSC), the Korean color word Stroop test (K-CWST), a controlled oral word association test (COWAT), and a trial-making test (TMT). Overall, the BKMR showed a negative association between multiple ETEs and the odds of CIND. Mn was designated as the most dominant element associated with the CIND (PIP = 0.6184), with a U-shaped relationship. Cu and Se levels were positively associated with the K-CWST percentiles (β = 31.78; 95% CI: 13.51, 50.06) and DSC percentiles (β = 25.10; 95% CI: 7.66, 42.53), respectively. Our results suggest that exposure to multiple ETEs may be linked to a protective mechanism against cognitive impairment in older adults.
Collapse
Affiliation(s)
- Seung-Woo Ryoo
- Department of Preventive Medicine, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; (S.-W.R.)
| | - Baek-Yong Choi
- Department of Preventive Medicine, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; (S.-W.R.)
| | - Seok-Yoon Son
- Department of Preventive Medicine, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; (S.-W.R.)
| | - Kun-Hee Oh
- Department of Preventive Medicine, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; (S.-W.R.)
| | - Jin-Young Min
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul 05368, Republic of Korea
| | - Kyoung-Bok Min
- Department of Preventive Medicine, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; (S.-W.R.)
- Institute of Health Policy and Management, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea
| |
Collapse
|
13
|
Ismail H, Khalid D, Waseem D, Ijaz MU, Dilshad E, Haq IU, Bhatti MZ, Anwaar S, Ahmed M, Saleem S. Bioassays guided isolation of berberine from Berberis lycium and its neuroprotective role in aluminium chloride induced rat model of Alzheimer's disease combined with insilico molecular docking. PLoS One 2023; 18:e0286349. [PMID: 37910530 PMCID: PMC10619822 DOI: 10.1371/journal.pone.0286349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 05/13/2023] [Indexed: 11/03/2023] Open
Abstract
OBJECTIVE Berberis lycium is an indigenous plant of Pakistan that is known for its medicinal properties. In the current study, we investigated the anti-Alzheimer's effect of berberine isolated from Berberis lycium. METHODS Root extract of B. lycium was subjected to acetylcholinesterase inhibition assay and column chromatography for bioassays guided isolation of a compound. The neuroprotective and memory improving effects of isolated compound were evaluated by aluminium chloride induced Alzheimer's disease rat model, elevated plus maze (EPM) and Morris water maze (MWM) tests., Levels of dopamine and serotonin in rats brains were determined using HPLC. Moreover, western blot and docking were performed to determine interaction between berberine and β-secretase. RESULTS During fractionation, ethyl acetate and methanol (3:7) fraction was collected from solvent mixture of ethyl acetate and methanol. This fraction showed the highest anti-acetylcholinesterase activity and was alkaloid positive. The results of TLC and HPLC analysis indicated the presence of the isolated compound as berberine. Additionally, the confirmation of isolated compound as berberine was carried out using FTIR and NMR analysis. In vivo EPM and MWM tests showed improved memory patterns after berberine treatment in Alzheimer's disease model. The levels of dopamine, serotonin and activity of antioxidant enzymes were significantly (p<0.05) enhanced in brain tissue homogenates of berberine treated group. This was supported by decreased expression of β-secretase in berberine treated rat brain homogenates and good binding affinity of berberine with β-secretase in docking studies. Binding energies for interaction of β-secretase with berberine and drug Rivastigmine is -7.0 kcal/mol and -5.8 kcal/mol respectively representing the strong interactions. The results of docked complex of secretase with berberine and Rivastigmine was carried out using Gromacs which showed significant stability of complex in terms of RMSD and radius of gyration. Overall, the study presents berberine as a potential drug against Alzheimer's disease by providing evidence of its effects in improving memory, neurotransmitter levels and reducing β-secretase expression in the Alzheimer's disease model.
Collapse
Affiliation(s)
- Hammad Ismail
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, Pakistan
| | - Dania Khalid
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, Pakistan
| | - Durdana Waseem
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Erum Dilshad
- Department of Bioinformatics and Biosciences, Faculty of Health and Life Sciences, Capital University of Science and Technology, Islamabad, Pakistan
| | - Ihsan-ul Haq
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Zeeshan Bhatti
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Sadaf Anwaar
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Madiha Ahmed
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Samreen Saleem
- Department of Nutrition and Lifestyle Medicine, Health Services Academy, Islamabad, Pakistan
| |
Collapse
|
14
|
Izuo N, Watanabe N, Noda Y, Saito T, Saido TC, Yokote K, Hotta H, Shimizu T. Insulin resistance induces earlier initiation of cognitive dysfunction mediated by cholinergic deregulation in a mouse model of Alzheimer's disease. Aging Cell 2023; 22:e13994. [PMID: 37822109 PMCID: PMC10652326 DOI: 10.1111/acel.13994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 10/13/2023] Open
Abstract
Although insulin resistance increases the risk of Alzheimer's disease (AD), the mechanisms remain unclear, partly because no animal model exhibits the insulin-resistant phenotype without persistent hyperglycemia. Here we established an AD model with whole-body insulin resistance without persistent hyperglycemia (APP/IR-dKI mice) by crossbreeding constitutive knock-in mice with P1195L-mutated insulin receptor (IR-KI mice) and those with mutated amyloid precursor protein (AppNL-G-F mice: APP-KI mice). APP/IR-dKI mice exhibited cognitive impairment at an earlier age than APP-KI mice. Since cholinergic dysfunction is a major characteristic of AD, pharmacological interventions on the cholinergic system were performed to investigate the mechanism. Antagonism to a nicotinic acetylcholine receptor α7 (nAChRα7) suppressed cognitive function and cortical blood flow (CBF) response to cholinergic-regulated peripheral stimulation in APP-KI mice but not APP/IR-dKI mice. Cortical expression of Chrna7, encoding nAChRα7, was downregulated in APP/IR-dKI mice compared with APP-KI. Amyloid β burden did not differ between APP-KI and APP/IR-dKI mice. Therefore, insulin resistance, not persistent hyperglycemia, induces the earlier onset of cognitive dysfunction and CBF deregulation mediated by nAChRα7 downregulation. Our mouse model will help clarify the association between type 2 diabetes mellitus and AD.
Collapse
Affiliation(s)
- Naotaka Izuo
- Department of Endocrinology, Hematology and Gerontology, Graduate School of MedicineChiba UniversityChibaJapan
- Department of Pharmaceutical Therapy and Neuropharmacology, Graduate School of Medical and Pharmaceutical SciencesUniversity of ToyamaToyamaJapan
| | - Nobuhiro Watanabe
- Department of Autonomic NeuroscienceTokyo Metropolitan Institute for Geriatrics and GerontologyTokyoJapan
| | - Yoshihiro Noda
- Department of Animal FacilityTokyo Metropolitan Institute for Geriatrics and GerontologyTokyoJapan
| | - Takashi Saito
- Laboratory for Proteolytic NeuroscienceRIKEN Center for Brain ScienceWakoJapan
- Department of Neurocognitive ScienceInstitute of Brain Science, Nagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Takaomi C. Saido
- Laboratory for Proteolytic NeuroscienceRIKEN Center for Brain ScienceWakoJapan
| | - Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Harumi Hotta
- Department of Autonomic NeuroscienceTokyo Metropolitan Institute for Geriatrics and GerontologyTokyoJapan
| | - Takahiko Shimizu
- Department of Endocrinology, Hematology and Gerontology, Graduate School of MedicineChiba UniversityChibaJapan
- Aging Stress Response Research Project TeamNational Center for Geriatrics and GerontologyObuJapan
| |
Collapse
|
15
|
Valverde-Salazar V, Ruiz-Gabarre D, García-Escudero V. Alzheimer's Disease and Green Tea: Epigallocatechin-3-Gallate as a Modulator of Inflammation and Oxidative Stress. Antioxidants (Basel) 2023; 12:1460. [PMID: 37507998 PMCID: PMC10376369 DOI: 10.3390/antiox12071460] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/05/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, characterised by a marked decline of both memory and cognition, along with pathophysiological hallmarks including amyloid beta peptide (Aβ) accumulation, tau protein hyperphosphorylation, neuronal loss and inflammation in the brain. Additionally, oxidative stress caused by an imbalance between free radicals and antioxidants is considered one of the main risk factors for AD, since it can result in protein, lipid and nucleic acid damage and exacerbate Aβ and tau pathology. To date, there is a lack of successful pharmacological approaches to cure or even ameliorate the terrible impact of this disease. Due to this, dietary compounds with antioxidative and anti-inflammatory properties acquire special relevance as potential therapeutic agents. In this context, green tea, and its main bioactive compound, epigallocatechin-3-gallate (EGCG), have been targeted as a plausible option for the modulation of AD. Specifically, EGCG acts as an antioxidant by regulating inflammatory processes involved in neurodegeneration such as ferroptosis and microglia-induced cytotoxicity and by inducing signalling pathways related to neuronal survival. Furthermore, it reduces tau hyperphosphorylation and aggregation and promotes the non-amyloidogenic route of APP processing, thus preventing the formation of Aβ and its subsequent accumulation. Taken together, these results suggest that EGCG may be a suitable candidate in the search for potential therapeutic compounds for neurodegenerative disorders involving inflammation and oxidative stress, including Alzheimer's disease.
Collapse
Affiliation(s)
- Víctor Valverde-Salazar
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Daniel Ruiz-Gabarre
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Vega García-Escudero
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, 28031 Madrid, Spain
- Institute for Molecular Biology-IUBM, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
16
|
Beathard KM, Georghiades N, Goulart JB, Riviere AJ, Sullivan C, Mascarro M, Riechman SE. The impact of nutrition on visual cognitive performance in the nutrition, vision, and cognition in sport study. Front Nutr 2023; 10:1208890. [PMID: 37426184 PMCID: PMC10327434 DOI: 10.3389/fnut.2023.1208890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction The purpose of this study was to examine the influence of nutritional intake on visual perceptual-cognitive performance (VCP) in young healthy adults. Methods Ninety-eight healthy men (n = 38) and women (n = 60) aged 18-33 years participated and maintained their usual dietary intake throughout the study. VCP was measured using the NeuroTracker™ CORE (NT) 3-Dimensional (3-D) software program (15 training sessions) over a 15-day period. Food logs and extensive lifestyle measures including body composition, cardiovascular health, sleep and exercise patterns, and general readiness to perform were collected. Mean intake from 10 food logs collected over the 15 days were analyzed using Nutribase software. Statistical analyses were performed in SPSS using repeated measures ANOVA including significant covariates when appropriate. Results Males consumed significantly more calories, macronutrients, cholesterol, choline, and zinc and performed significantly better on VCP than the females. Participants who consumed more than 40% of kcals from carbohydrates (p = 0.038), less than 24% of kcals from protein (p = 0.009), more than 2,000 μg/day lutein/zeaxanthin or more than 1.8 mg/ day vitamin B2 performed significantly better on VCP than those who consumed less than those amounts, respectively. Discussion VCP is an important dimension of cognitive function and in the present study is influenced by higher carbohydrate, lutein/ zeaxanthin, and vitamin B2 dietary intake while high protein consumption and the female sex negatively impacted VCP.
Collapse
Affiliation(s)
- Karen M. Beathard
- Department of Nutrition, Texas A&M University, College Station, TX, United States
| | - Nicos Georghiades
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, United States
| | - Jenna B. Goulart
- Department of Nutrition, Texas A&M University, College Station, TX, United States
| | - Aaron J. Riviere
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, United States
| | - Caroline Sullivan
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, United States
| | - Melanie Mascarro
- Department of Nutrition, Texas A&M University, College Station, TX, United States
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, United States
| | - Steven E. Riechman
- Department of Nutrition, Texas A&M University, College Station, TX, United States
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, United States
| |
Collapse
|
17
|
Langenbacher RE, Horoszko CP, Kim M, Heller DA. Hematoxylin Nuclear Stain Reports Oxidative Stress via Near-Infrared Emission. ACS Chem Biol 2023; 18:1237-1245. [PMID: 37070948 PMCID: PMC10289833 DOI: 10.1021/acschembio.3c00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Hematoxylin & eosin (H&E) is the gold standard histological stain used for medical diagnosis and has been used for over a century. Herein, we examined the near-infrared II (NIR-II) fluorescence of this stain. We observed significant NIR-II emission from the hematoxylin component of the H&E stain. We found that the emission intensity, using the common aluminum(III) hematoxylin mordant, could be modulated by the availability of endogenous iron(III), and this emission intensity increased at higher oxidative stress. Our mechanistic investigations found that hematoxylin emission reported the nuclear translocation of the iron via the protein ferritin. In human tumor tissue samples, oxidative stress biomarkers correlated with hematoxylin NIR-II emission intensity. Emission response of the stain was also observed in human Alzheimer's disease brain tissue regions affected by disease progression, suggesting that ferritin nuclear translocation is preserved in these regions as an oxidative stress response. These findings indicate that NIR-II emission from the H&E stain provides a new source of redox information in tissues with implications for biomedical research and clinical practice.
Collapse
Affiliation(s)
| | | | - Mijin Kim
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Daniel A. Heller
- Weill Cornell Medicine, Cornell University, New York, NY 10065, United States
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| |
Collapse
|
18
|
Fyfe-Desmarais G, Desmarais F, Rassart É, Mounier C. Apolipoprotein D in Oxidative Stress and Inflammation. Antioxidants (Basel) 2023; 12:antiox12051027. [PMID: 37237893 DOI: 10.3390/antiox12051027] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Apolipoprotein D (ApoD) is lipocalin able to bind hydrophobic ligands. The APOD gene is upregulated in a number of pathologies, including Alzheimer's disease, Parkinson's disease, cancer, and hypothyroidism. Upregulation of ApoD is linked to decreased oxidative stress and inflammation in several models, including humans, mice, Drosophila melanogaster and plants. Studies suggest that the mechanism through which ApoD modulates oxidative stress and regulate inflammation is via its capacity to bind arachidonic acid (ARA). This polyunsaturated omega-6 fatty acid can be metabolised to generate large variety of pro-inflammatory mediators. ApoD serves as a sequester, blocking and/or altering arachidonic metabolism. In recent studies of diet-induced obesity, ApoD has been shown to modulate lipid mediators derived from ARA, but also from eicosapentaenoic acid and docosahexaenoic acid in an anti-inflammatory way. High levels of ApoD have also been linked to better metabolic health and inflammatory state in the round ligament of morbidly obese women. Since ApoD expression is upregulated in numerous diseases, it might serve as a therapeutic agent against pathologies aggravated by OS and inflammation such as many obesity comorbidities. This review will present the most recent findings underlying the central role of ApoD in the modulation of both OS and inflammation.
Collapse
Affiliation(s)
- Guillaume Fyfe-Desmarais
- Laboratory of Metabolism of Lipids, Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Department of Biological Sciences, University of Quebec in Montreal (UQAM), 141 Av. du Président-Kennedy, Montreal, QC H2X 1Y4, Canada
| | - Fréderik Desmarais
- Department of Medecine, Faculty of Medecine, Institut Universitaire de Cardiologie et de Pneumologie de Québec, 1050 Av. de la Médecine, Québec City, QC G1V 0A6, Canada
| | - Éric Rassart
- Laboratory of Metabolism of Lipids, Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Department of Biological Sciences, University of Quebec in Montreal (UQAM), 141 Av. du Président-Kennedy, Montreal, QC H2X 1Y4, Canada
| | - Catherine Mounier
- Laboratory of Metabolism of Lipids, Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Department of Biological Sciences, University of Quebec in Montreal (UQAM), 141 Av. du Président-Kennedy, Montreal, QC H2X 1Y4, Canada
| |
Collapse
|
19
|
Shadfar S, Parakh S, Jamali MS, Atkin JD. Redox dysregulation as a driver for DNA damage and its relationship to neurodegenerative diseases. Transl Neurodegener 2023; 12:18. [PMID: 37055865 PMCID: PMC10103468 DOI: 10.1186/s40035-023-00350-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/16/2023] [Indexed: 04/15/2023] Open
Abstract
Redox homeostasis refers to the balance between the production of reactive oxygen species (ROS) as well as reactive nitrogen species (RNS), and their elimination by antioxidants. It is linked to all important cellular activities and oxidative stress is a result of imbalance between pro-oxidants and antioxidant species. Oxidative stress perturbs many cellular activities, including processes that maintain the integrity of DNA. Nucleic acids are highly reactive and therefore particularly susceptible to damage. The DNA damage response detects and repairs these DNA lesions. Efficient DNA repair processes are therefore essential for maintaining cellular viability, but they decline considerably during aging. DNA damage and deficiencies in DNA repair are increasingly described in age-related neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and Huntington's disease. Furthermore, oxidative stress has long been associated with these conditions. Moreover, both redox dysregulation and DNA damage increase significantly during aging, which is the biggest risk factor for neurodegenerative diseases. However, the links between redox dysfunction and DNA damage, and their joint contributions to pathophysiology in these conditions, are only just emerging. This review will discuss these associations and address the increasing evidence for redox dysregulation as an important and major source of DNA damage in neurodegenerative disorders. Understanding these connections may facilitate a better understanding of disease mechanisms, and ultimately lead to the design of better therapeutic strategies based on preventing both redox dysregulation and DNA damage.
Collapse
Affiliation(s)
- Sina Shadfar
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Sonam Parakh
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia
| | - Md Shafi Jamali
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia
| | - Julie D Atkin
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia.
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
20
|
Wang M, Zhang H, Liang J, Huang J, Chen N. Exercise suppresses neuroinflammation for alleviating Alzheimer's disease. J Neuroinflammation 2023; 20:76. [PMID: 36935511 PMCID: PMC10026496 DOI: 10.1186/s12974-023-02753-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 02/28/2023] [Indexed: 03/21/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease, with the characteristics of neurofibrillary tangle (NFT) and senile plaque (SP) formation. Although great progresses have been made in clinical trials based on relevant hypotheses, these studies are also accompanied by the emergence of toxic and side effects, and it is an urgent task to explore the underlying mechanisms for the benefits to prevent and treat AD. Herein, based on animal experiments and a few clinical trials, neuroinflammation in AD is characterized by long-term activation of pro-inflammatory microglia and the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasomes. Damaged signals from the periphery and within the brain continuously activate microglia, thus resulting in a constant source of inflammatory responses. The long-term chronic inflammatory response also exacerbates endoplasmic reticulum oxidative stress in microglia, which triggers microglia-dependent immune responses, ultimately leading to the occurrence and deterioration of AD. In this review, we systematically summarized and sorted out that exercise ameliorates AD by directly and indirectly regulating immune response of the central nervous system and promoting hippocampal neurogenesis to provide a new direction for exploring the neuroinflammation activity in AD.
Collapse
Affiliation(s)
- Minghui Wang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, 430079, China
| | - Hu Zhang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, 430079, China
| | - Jiling Liang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, 430079, China
| | - Jielun Huang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, 430079, China
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, 430079, China.
| |
Collapse
|
21
|
Rudnicka-Drożak E, Drożak P, Mizerski G, Zaborowski T, Ślusarska B, Nowicki G, Drożak M. Links between COVID-19 and Alzheimer's Disease-What Do We Already Know? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2146. [PMID: 36767513 PMCID: PMC9915236 DOI: 10.3390/ijerph20032146] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Alzheimer's disease (AD) is a life-changing condition whose etiology is explained by several hypotheses. Recently, a new virus contributed to the evidence of viral involvement in AD: the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes the COVID-19 coronavirus disease. AD was found to be one of the most common COVID-19 comorbidities, and it was found to increase mortality from this disease as well. Moreover, AD patients were observed to present with the distinct clinical features of COVID-19, with delirium being prevalent in this group. The SARS-CoV-2 virus enters host cells through the angiotensin-converting enzyme 2 (ACE2) receptor. ACE2 is overexpressed in brains with AD, which thus increases the viral invasion. Furthermore, the inhibition of the ACE2 receptor by the SARS-CoV-2 virus may also decrease the brain-derived neurotrophic factor (BDNF), contributing to neurodegeneration. The ApoE ε4 allele, which increases the risk of AD, was found to facilitate the SARS-CoV-2 entry into cells. Furthermore, the neuroinflammation and oxidative stress existing in AD patients enhance the inflammatory response associated with COVID-19. Moreover, pandemic and associated social distancing measures negatively affected the mental health, cognitive function, and neuro-psychiatric symptoms of AD patients. This review comprehensively covers the links between COVID-19 and Alzheimer's disease, including clinical presentation, molecular mechanisms, and the effects of social distancing.
Collapse
Affiliation(s)
- Ewa Rudnicka-Drożak
- Chair and Department of Family Medicine, Medical University of Lublin, Langiewicza 6a, 20-035 Lublin, Poland
| | - Paulina Drożak
- Student Scientific Society, Chair and Department of Family Medicine, Medical University of Lublin, Langiewicza 6a, 20-035 Lublin, Poland
| | - Grzegorz Mizerski
- Chair and Department of Family Medicine, Medical University of Lublin, Langiewicza 6a, 20-035 Lublin, Poland
| | - Tomasz Zaborowski
- Chair and Department of Family Medicine, Medical University of Lublin, Langiewicza 6a, 20-035 Lublin, Poland
| | - Barbara Ślusarska
- Department of Family and Geriatric Nursing, Faculty of Health Sciences, Medical University of Lublin, 20-081 Lublin, Poland
| | - Grzegorz Nowicki
- Department of Family and Geriatric Nursing, Faculty of Health Sciences, Medical University of Lublin, 20-081 Lublin, Poland
| | - Martyna Drożak
- Student Scientific Society, Chair and Department of Family Medicine, Medical University of Lublin, Langiewicza 6a, 20-035 Lublin, Poland
| |
Collapse
|
22
|
The paradigm of amyloid precursor protein in amyotrophic lateral sclerosis: The potential role of the 682YENPTY 687 motif. Comput Struct Biotechnol J 2023; 21:923-930. [PMID: 36698966 PMCID: PMC9860402 DOI: 10.1016/j.csbj.2023.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/07/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
Neurodegenerative diseases are characterized by the progressive decline of neuronal function in several brain areas, and are always associated with cognitive, psychiatric, or motor deficits due to the atrophy of certain neuronal populations. Most neurodegenerative diseases share common pathological mechanisms, such as neurotoxic protein misfolding, oxidative stress, and impairment of autophagy machinery. Amyotrophic lateral sclerosis (ALS) is one of the most common adult-onset motor neuron disorders worldwide. It is clinically characterized by the selective and progressive loss of motor neurons in the motor cortex, brain stem, and spinal cord, ultimately leading to muscle atrophy and rapidly progressive paralysis. Multiple recent studies have indicated that the amyloid precursor protein (APP) and its proteolytic fragments are not only drivers of Alzheimer's disease (AD) but also one of the earliest signatures in ALS, preceding or anticipating neuromuscular junction instability and denervation. Indeed, altered levels of APP peptides have been found in the brain, muscles, skin, and cerebrospinal fluid of ALS patients. In this short review, we discuss the nature and extent of research evidence on the role of APP peptides in ALS, focusing on the intracellular C-terminal peptide and its regulatory motif 682YENPTY687, with the overall aim of providing new frameworks and perspectives for intervention and identifying key questions for future investigations.
Collapse
|
23
|
Maglione AV, do Nascimento BPP, Ribeiro MO, de Souza TJL, da Silva REC, Sato MA, Penatti CAA, Britto LRG, de Souza JS, Maciel RMB, da Conceição RR, Laureano-Melo R, Giannocco G. Triiodothyronine Treatment reverses Depression-Like Behavior in a triple-transgenic animal model of Alzheimer's Disease. Metab Brain Dis 2022; 37:2735-2750. [PMID: 35951206 DOI: 10.1007/s11011-022-01055-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022]
Abstract
Alzheimer disease's (AD) is a neurodegenerative disorder characterized by cognitive and behavioral impairment. The central nervous system is an important target of thyroid hormones (TH). An inverse association between serum triiodothyronine (T3) levels and the risk of AD symptoms and progression has been reported. We investigated the effects of T3 treatment on the depression-like behavior in male transgenic 3xTg-AD mice. Animals were divided into 2 groups treated with daily intraperitoneal injections of 20 ng/g of body weight (b.w.) L-T3 (T3 group) or saline (vehicle, control group). The experimental protocol lasted 21 days, and behavioral tests were conducted on days 18-20. At the end of the experiment, the TH profile and hippocampal gene expression were evaluated. The T3-treated group significantly increased serum T3 and decreased thyroxine (T4) levels. When compared to control hippocampal samples, the T3 group exhibited attenuated glycogen synthase kinase-3 (GSK3), metalloproteinase 10 (ADAM10), amyloid-beta precursor-protein (APP), serotonin transporter (SERT), 5HT1A receptor, monocarboxylate transporter 8 (MCT8) and bone morphogenetic protein 7 (BMP-7) gene expression, whereas augmented superoxide dismutase 2 (SOD2) and Hairless gene expression. T3-treated animals also displayed reduced immobility time in both the tail suspension and forced swim tests, and in the latter presented a higher latency time compared to the control group. Therefore, our findings suggest that in an AD mouse model, T3 supplementation promotes improvements in depression-like behavior, through the modulation of the serotonergic related genes involved in the transmission mediated by 5HT1A receptors and serotonin reuptake, and attenuated disease progression.
Collapse
Affiliation(s)
- Andréa V Maglione
- Dept. Medicine, Laboratory of Endocrinology and Translational Medicine, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, Brazil
| | - Bruna P P do Nascimento
- Laboratory of Translational Medicine, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, Brazil
- Developmental Disorders Program, Center of Biological Science and Health, Mackenzie Presbyterian University, São Paulo, Brazil
| | - Miriam O Ribeiro
- Developmental Disorders Program, Center of Biological Science and Health, Mackenzie Presbyterian University, São Paulo, Brazil
| | - Talytha J L de Souza
- Dept. Medicine, Laboratory of Endocrinology and Translational Medicine, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, Brazil
| | - Renata E C da Silva
- Dept. Medicine, Laboratory of Endocrinology and Translational Medicine, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, Brazil
| | - Monica A Sato
- Dept. Morphology and Physiology, Faculdade de Medicina do ABC, Centro Universitário FMABC, Santo André- Brazil, São Paulo, Santo André, Brazil
| | - Carlos A A Penatti
- Laboratory of Human Physiology, Universidade Nove de Julho, São Paulo, Brazil
| | - Luiz R G Britto
- Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Janaina S de Souza
- Dept. Medicine, Laboratory of Endocrinology and Translational Medicine, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, Brazil
| | - Rui M B Maciel
- Dept. Medicine, Laboratory of Endocrinology and Translational Medicine, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, Brazil
| | - Rodrigo Rodrigues da Conceição
- Dept. Medicine, Laboratory of Endocrinology and Translational Medicine, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, Brazil.
| | - Roberto Laureano-Melo
- Laboratory of Physiopharmacoly and Behavior, Universidade de Barra Mansa, Rio de Janeiro, Brazil
| | - Gisele Giannocco
- Dept. Medicine, Laboratory of Endocrinology and Translational Medicine, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, Brazil.
| |
Collapse
|
24
|
Murakami K, Sakaguchi Y, Taniwa K, Izuo N, Hanaki M, Kawase T, Hirose K, Shimizu T, Irie K. Lysine-targeting inhibition of amyloid β oligomerization by a green perilla-derived metastable chalcone in vitro and in vivo. RSC Chem Biol 2022; 3:1380-1396. [PMID: 36544574 PMCID: PMC9709778 DOI: 10.1039/d2cb00194b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/16/2022] [Indexed: 12/05/2022] Open
Abstract
Oligomers of amyloid β (Aβ) represent an early aggregative form that causes neurotoxicity in the pathogenesis of Alzheimer's disease (AD). Thus, preventing Aβ aggregation is important for preventing AD. Despite intensive studies on dietary compounds with anti-aggregation properties, some identified compounds are susceptible to autoxidation and/or hydration upon incubation in water, leaving unanswered issues regarding which active structures in metastable compounds are actually responsible for the inhibition of Aβ aggregation. In this study, we observed the site-specific inhibition of 42-mer Aβ (Aβ42) oligomerization by the green perilla-derived chalcone 2',3'-dihydroxy-4',6'-dimethoxychalcone (DDC), which was converted to its decomposed flavonoids (dDDC, 1-3) via nucleophilic aromatic substitution with water molecules. DDC suppressed Aβ42 fibrillization and slowed the transformation of the β-sheet structure, which is rich in Aβ42 aggregates. To validate the contribution of dDDC to the inhibitory effects of DDC on Aβ42 aggregation, we synthesized 1-3 and identified 3, a catechol-type flavonoid, as one of the active forms of DDC. 1H-15N SOFAST-HMQC NMR revealed that 1-3 as well as DDC could interact with residues between His13 and Leu17, which were near the intermolecular β-sheet (Gln15-Ala21). The nucleation in Aβ42 aggregates involves the rate-limiting formation of low-molecular-weight oligomers. The formation of a Schiff base with dDDC at Lys16 and Lys28 in the dimer through autoxidation of dDDC was associated with the suppression of Aβ42 nucleation. Of note, in two AD mouse models using immunoaffinity purification-mass spectrometry, adduct formation between dDDC and brain Aβ was observed in a similar manner as reported in vitro. The present findings unraveled the lysine-targeting inhibitory mechanism of metastable dietary ingredients regarding Aβ oligomerization.
Collapse
Affiliation(s)
- Kazuma Murakami
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto UniversityKyoto606-8502Japan
| | - Yoshiki Sakaguchi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto UniversityKyoto606-8502Japan
| | - Kota Taniwa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto UniversityKyoto606-8502Japan
| | - Naotaka Izuo
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba UniversityChiba260-8670Japan
| | - Mizuho Hanaki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto UniversityKyoto606-8502Japan
| | | | | | - Takahiko Shimizu
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba UniversityChiba260-8670Japan
| | - Kazuhiro Irie
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto UniversityKyoto606-8502Japan
| |
Collapse
|
25
|
A new K +channel-independent mechanism is involved in the antioxidant effect of XE-991 in an in vitro model of glucose metabolism impairment: implications for Alzheimer's disease. Cell Death Dis 2022; 8:391. [PMID: 36127342 PMCID: PMC9489689 DOI: 10.1038/s41420-022-01187-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022]
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder that represents the first cause of dementia. Although there has been significant progress in AD research, the actual mechanisms underlying this pathology remain largely unknown. There is increasing evidence that oxidative stress, metabolic alterations, and mitochondrial dysfunction are key players in the development and worsening of AD. As a result, in the past few years, remarkable attempts have been made to develop neuroprotective strategies against the impairment of mitochondrial dynamics and cell redox status. In the present study, we reveal a novel antioxidant K+ channel-independent effect of the M-current inhibitor XE-991 in SH-SY5Y cells differentiated with retinoic acid (RA) and primary rat cortical neurons exposed to the glycolysis inhibitor glyceraldehyde (GA). This experimental approach aimed to create a condition of hypometabolism accompanied by mitochondrial dysfunction and redox imbalance, as frequently observed in the beginning stage of the disease. We found that XE-991 exerted a neuroprotective action most likely through the resumption of superoxide dismutase (SOD) activity, which was significantly compromised during GA challenge. We also observed that the enhancement of SOD activity was accompanied by a sequence of positive effects; these included the reduction in basal Ca2+ levels within cytoplasmic and mitochondrial compartments, the decrease in mitochondrial reactive oxygen species (ROS) production, the modulation of AMPK/mTOR pathway, the recovery of ΔΨm collapse, the increase in the intracellular ATP content and the decrease in amyloid-β (Aβ) and hyperphosphorylated form of tau protein (pTau) levels. Collectively, our study reveals an off-target antioxidant effect of XE-991 and paves the way toward the further evaluation of new therapeutic uses of already existing molecules to accelerate the process of developing an effective therapy to counteract AD.
Collapse
|
26
|
Kumar V, Kim SH, Bishayee K. Dysfunctional Glucose Metabolism in Alzheimer’s Disease Onset and Potential Pharmacological Interventions. Int J Mol Sci 2022; 23:ijms23179540. [PMID: 36076944 PMCID: PMC9455726 DOI: 10.3390/ijms23179540] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/05/2022] [Accepted: 08/21/2022] [Indexed: 12/04/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common age-related dementia. The alteration in metabolic characteristics determines the prognosis. Patients at risk show reduced glucose uptake in the brain. Additionally, type 2 diabetes mellitus increases the risk of AD with increasing age. Therefore, changes in glucose uptake in the cerebral cortex may predict the histopathological diagnosis of AD. The shifts in glucose uptake and metabolism, insulin resistance, oxidative stress, and abnormal autophagy advance the pathogenesis of AD syndrome. Here, we summarize the role of altered glucose metabolism in type 2 diabetes for AD prognosis. Additionally, we discuss diagnosis and potential pharmacological interventions for glucose metabolism defects in AD to encourage the development of novel therapeutic methods.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - So-Hyeon Kim
- Biomedical Science Core-Facility, Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan 31151, Korea
| | - Kausik Bishayee
- Biomedical Science Core-Facility, Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan 31151, Korea
- Correspondence: or
| |
Collapse
|
27
|
Azmi NH, Ismail N, Imam MU, Ooi DJ, Oslan SNH. Modulation of High-Fat Diet-Induced Brain Oxidative Stress by Ferulate-Rich Germinated Brown Rice Ethyl Acetate Extract. Molecules 2022; 27:molecules27154907. [PMID: 35956857 PMCID: PMC9369880 DOI: 10.3390/molecules27154907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
The oxidative stress resulting from the production of reactive oxygen species plays a vital role in inflammatory processes and is associated with neurodegenerative changes. In view of the ability of germinated brown rice (GBR) to improve learning and memory, this present study aimed to investigate the mechanistic basis of GBR’s neuroprotection in a high-fat diet (HFD)-induced oxidative changes in adult Sprague–Dawley rats. Ferulate-rich GBR ethyl acetate extract (GBR-EA; 100 mg/kg and 200 mg/kg body weight) was supplemented orally for the last 3 months of 6 months HFD feeding during the study. GBR-EA supplementation was found to improve lipid profile and serum antioxidant status, when compared to the HFD group. Elevated mRNA expressions of SOD1, SOD2, SOD3, Catalase, and GPX were demonstrated in the frontal cortex and hippocampus of GBR-EA treated animals. The pro-inflammatory changes induced by HFD in the hippocampus were attenuated by GBR-EA through the downregulation of CRP and TNF- α and upregulation of PPAR-γ. GBR also reduced the hippocampal mRNA expression and enzyme level of acetylcholinesterase. In conclusion, this study proposed the possible transcriptomic regulation of antioxidant and inflammation in neurodegenerative processes resulting from high cholesterol consumption, with an emphasis on GBR’s potential to ameliorate such changes.
Collapse
Affiliation(s)
- Nur Hanisah Azmi
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia;
- Correspondence: (N.H.A.); (N.I.)
| | - Norsharina Ismail
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
- Correspondence: (N.H.A.); (N.I.)
| | - Mustapha Umar Imam
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto P.M.B. 2346, Nigeria;
| | - Der Jiun Ooi
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Jenjarom 42610, Selangor, Malaysia;
| | - Siti Nur Hazwani Oslan
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia;
| |
Collapse
|
28
|
Li T, Shi H, Zhao Y. Acetaldehyde induces tau phosphorylation via activation of p38 MAPK/JNK and ROS production. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-021-00193-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
29
|
Zhao Y, Li L. Multimodal data integration via mediation analysis with high-dimensional exposures and mediators. Hum Brain Mapp 2022; 43:2519-2533. [PMID: 35129252 PMCID: PMC9057105 DOI: 10.1002/hbm.25800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/06/2022] [Accepted: 01/23/2022] [Indexed: 12/28/2022] Open
Abstract
Motivated by an imaging proteomics study for Alzheimer's disease (AD), in this article, we propose a mediation analysis approach with high-dimensional exposures and high-dimensional mediators to integrate data collected from multiple platforms. The proposed method combines principal component analysis with penalized least squares estimation for a set of linear structural equation models. The former reduces the dimensionality and produces uncorrelated linear combinations of the exposure variables, whereas the latter achieves simultaneous path selection and effect estimation while allowing the mediators to be correlated. Applying the method to the AD data identifies numerous interesting protein peptides, brain regions, and protein-structure-memory paths, which are in accordance with and also supplement existing findings of AD research. Additional simulations further demonstrate the effective empirical performance of the method.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Biostatistics and Health Data ScienceIndiana University School of MedicineIndianapolisIndianaUSA
| | - Lexin Li
- Department of Biostatistics and EpidemiologyUniversity of California, BerkeleyBerkeleyCaliforniaUSA
| | | |
Collapse
|
30
|
Norambuena A, Sun X, Wallrabe H, Cao R, Sun N, Pardo E, Shivange N, Wang DB, Post LA, Ferris HA, Hu S, Periasamy A, Bloom GS. SOD1 mediates lysosome-to-mitochondria communication and its dysregulation by amyloid-β oligomers. Neurobiol Dis 2022; 169:105737. [PMID: 35452786 PMCID: PMC9291271 DOI: 10.1016/j.nbd.2022.105737] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/24/2022] [Accepted: 04/15/2022] [Indexed: 11/29/2022] Open
Abstract
Altered mitochondrial DNA (mtDNA) occurs in neurodegenerative disorders like Alzheimer's disease (AD); how mtDNA synthesis is linked to neurodegeneration is poorly understood. We previously discovered Nutrient-induced Mitochondrial Activity (NiMA), an inter-organelle signaling pathway where nutrient-stimulated lysosomal mTORC1 activity regulates mtDNA replication in neurons by a mechanism sensitive to amyloid-β oligomers (AβOs), a primary factor in AD pathogenesis (Norambuena et al., 2018). Using 5-ethynyl-2'-deoxyuridine (EdU) incorporation into mtDNA of cultured neurons, along with photoacoustic and mitochondrial metabolic imaging of cultured neurons and mouse brains, we show these effects being mediated by mTORC1-catalyzed T40 phosphorylation of superoxide dismutase 1 (SOD1). Mechanistically, tau, another key factor in AD pathogenesis and other tauopathies, reduced the lysosomal content of the tuberous sclerosis complex (TSC), thereby increasing NiMA and suppressing SOD1 activity and mtDNA synthesis. AβOs inhibited these actions. Dysregulation of mtDNA synthesis was observed in fibroblasts derived from tuberous sclerosis (TS) patients, who lack functional TSC and elevated SOD1 activity was also observed in human AD brain. Together, these findings imply that tau and SOD1 couple nutrient availability to mtDNA replication, linking mitochondrial dysfunction to AD.
Collapse
Affiliation(s)
- Andrés Norambuena
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA.
| | - Xuehan Sun
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Horst Wallrabe
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Ruofan Cao
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA; W.M. Keck Center for Cellular Imaging, University of Virginia, Charlottesville, VA 22904, USA
| | - Naidi Sun
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Evelyn Pardo
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Nutan Shivange
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Dora Bigler Wang
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Lisa A Post
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22904, USA; Division of Endocrinology & Metabolism, School of Medicine, University of Virginia, Charlottesville, VA 22904, USA
| | - Heather A Ferris
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22904, USA; Division of Endocrinology & Metabolism, School of Medicine, University of Virginia, Charlottesville, VA 22904, USA
| | - Song Hu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Ammasi Periasamy
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA; W.M. Keck Center for Cellular Imaging, University of Virginia, Charlottesville, VA 22904, USA
| | - George S Bloom
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA; Department of Cell Biology, University of Virginia, Charlottesville, VA 22904, USA; Department of Neuroscience, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
31
|
Martin RM, Bereman MS, Marsden KC. The Cyanotoxin 2,4-DAB Reduces Viability and Causes Behavioral and Molecular Dysfunctions Associated with Neurodegeneration in Larval Zebrafish. Neurotox Res 2022; 40:347-364. [PMID: 35029765 PMCID: PMC9035002 DOI: 10.1007/s12640-021-00465-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/30/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022]
Abstract
Exposure to cyanotoxins has been linked to neurodegenerative diseases, including amyotrophic lateral sclerosis, Alzheimer's, and Parkinson's disease. While the cyanotoxin β-methylamino-L-alanine (BMAA) has received much attention, cyanobacteria produce many cyanotoxic compounds, several of which have been detected in nature alongside BMAA, including 2,4-diaminobutyric acid (2,4-DAB) and N-(2-aminoethyl)glycine (AEG). Thus, the question of whether 2,4-DAB and AEG also cause neurotoxic effects in vivo is of great interest, as is the question of whether they interact to enhance toxicity. Here, we evaluate the toxic and neurotoxic effects of these cyanotoxins alone or in combination by measuring zebrafish larval viability and behavior after exposure. 2,4-DAB was the most potent cyanotoxin as it decreased larval viability by approximately 50% at 6 days post fertilization, while BMAA and AEG decreased viability by just 16% and 8%, respectively. Although we only observed minor neurotoxic effects on spontaneous locomotion, BMAA and AEG enhanced acoustic startle sensitivity, and they interacted in an additive manner to exert their effects. 2,4-DAB; however, only modulated startle kinematics, an indication of motor dysfunction. To investigate the mechanisms of 2,4-DAB's effects, we analyzed the protein profile of larval zebrafish exposed to 500 µM 2,4-DAB at two time points and identified molecular signatures consistent with neurodegeneration, including disruption of metabolic pathways and downregulation of the ALS-associated genes SOD1 and UBQLN4. Together, our data demonstrate that BMAA and its isomers AEG and 2,4-DAB cause neurotoxic effects in vivo, with 2,4-DAB as the most potent of the three in the zebrafish model.
Collapse
Affiliation(s)
- Rubia M Martin
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Michael S Bereman
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Kurt C Marsden
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
32
|
Zhang MS, Liang JH, Yang MJ, Ren YR, Cheng DH, Wu QH, He Y, Yin J. Low Serum Superoxide Dismutase Is Associated With a High Risk of Cognitive Impairment After Mild Acute Ischemic Stroke. Front Aging Neurosci 2022; 14:834114. [PMID: 35296032 PMCID: PMC8920119 DOI: 10.3389/fnagi.2022.834114] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/07/2022] [Indexed: 12/20/2022] Open
Abstract
Background Post-stroke cognitive impairment (PSCI) is a common complication after stroke, but effective therapy is limited. Identifying potential risk factors for effective intervention is warranted. We investigated whether serum superoxide dismutase (SOD) levels were related to cognitive impairment after mild acute ischemic stroke (AIS) by using a prospective cohort design. Methods A total of 187 patients diagnosed with mild AIS (National Institutes of Health Stroke Scale ≤ 8) were recruited. Serum SOD, erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and interleukin-6 (IL-6) levels were measured, and cognitive assessments (Mini-Mental State Examination, MMSE; Montreal Cognitive Assessment, MoCA) were performed in the early phase (within 2 weeks). These indexes and assessments were repeated at 3 months after onset. MoCA < 22 was defined as early cognitive impairment (CI-E) within 2 weeks and late cognitive impairment (CI-L) at 3 months after stroke. Results In a survey, 105 of 187 (56.1%) patients were identified as CI-E after mild AIS. Lower serum SOD associated with higher inflammatory biomarkers (ESR, CRP, and IL-6) and worse cognitive scores was observed in CI-E patients. In a survey, 39 of 103 (37.9%) stroke patients who completed the 3-month follow-up were identified as CI-L. Serum SOD was consistently lower in CI-L patients at baseline and 3 months and positively associated with cognitive scores. In adjusted analyses, low serum SOD at baseline was independently associated with high risks of CI-E and CI-L, with odds ratios (ORs) of 0.64 and 0.33 per standard deviation increase in serum SOD, respectively. Multiple-adjusted spline regression models showed linear associations between serum SOD and CI-E (P = 0.044 for linearity) and CI-L (P = 0.006 for linearity). Moreover, 35.2% (19/54) of CI-E patients cognitively recovered during the 3-month follow-up. In multivariable analysis, SOD was identified as a protective factor for cognitive recovery after stroke (OR 1.04, 95% CI: 1.01-1.08, P = 0.024). Conclusion We demonstrate that low serum SOD is associated with a high risk of cognitive impairment after mild AIS, indicating SOD may be a potential modifiable factor for PSCI.
Collapse
Affiliation(s)
- Ming-Si Zhang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian-Hai Liang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Meng-Jia Yang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yue-Ran Ren
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dai-Hong Cheng
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qi-Heng Wu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan He
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medicine University, Guangzhou, China
| | - Jia Yin
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
33
|
Alam M, Ahmed S, Elasbali AM, Adnan M, Alam S, Hassan MI, Pasupuleti VR. Therapeutic Implications of Caffeic Acid in Cancer and Neurological Diseases. Front Oncol 2022; 12:860508. [PMID: 35359383 PMCID: PMC8960963 DOI: 10.3389/fonc.2022.860508] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/04/2022] [Indexed: 12/12/2022] Open
Abstract
Caffeic acid (CA) is found abundantly in fruits, vegetables, tea, coffee, oils, and more. CA and its derivatives have been used for many centuries due to their natural healing and medicinal properties. CA possesses various biological and pharmacological activities, including antioxidant, anti-inflammatory, anticancer, and neuroprotective effects. The potential therapeutic effects of CA are mediated via repression and inhibition of transcription and growth factors. CA possesses potential anticancer and neuroprotective effects in human cell cultures and animal models. However, the biomolecular interactions and pathways of CA have been described highlighting the target binding proteins and signaling molecules. The current review focuses on CA's chemical, physical, and pharmacological properties, including antioxidant, anti-inflammatory, anticancer, and neuroprotective effects. We further described CA's characteristics and therapeutic potential and its future directions.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Sarfraz Ahmed
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakakah, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Shoaib Alam
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Visweswara Rao Pasupuleti
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine & Health Sciences, University Malaysia Sabah, Kota Kinabalu, Malaysia
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Abdurrab University, Pekanbaru, Indonesia
- Centre for International Collaboration and Research, Reva University, Rukmini Knowledge Park, Kattigenahalli, Bangalore, India
| |
Collapse
|
34
|
Faborode OS, Dalle E, Mabandla MV. Inescapable footshocks induce molecular changes in the prefrontal cortex of rats in an amyloid-beta-42 model of Alzheimer's disease. Behav Brain Res 2022; 419:113679. [PMID: 34826515 DOI: 10.1016/j.bbr.2021.113679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 11/18/2022]
Abstract
Alzheimer's disease (AD) affects several brain areas, including the prefrontal cortex (PFC) involved in execution, working memory, and fear extinction. Despite these critical roles, the PFC is understudied in AD pathology. People with post-traumatic stress disorder (PTSD) have twice the risk of developing AD, and the underlying mechanisms linking these two diseases are less understood. Here, we investigated the effect of footshock stress on behavioural vis-a-vis molecular changes in the PFC of an amyloid-beta (Aβ)-42 lesion rat model of AD. Trauma-like conditions were induced by exposing the animals to several footshocks. AD-like condition was induced via intra-hippocampal injection of Aβ-42 peptide. Following Aβ-42 injections, animals were tested for behavioural changes using the Open Field Test (OFT) and Y-maze test. The PFC was later harvested for neurochemical analyses. Our results showed an interactive effect of footshocks and Aβ-42 lesion on: reduced percentage alternation in the Y-maze test, suggesting memory impairment; reduced number of line crosses and time spent in the centre square of the OFT, indicating anxiogenic responses. Similarly, there was an interactive effect of footshocks and Aβ-42 lesion on: increased FK506 binding protein 51 (FKBP5) expression, which can be associated with stress-induced anxiogenic behaviours; and increased neuronal apoptosis in the PFC of the animals. In addition, footshocks, as well as Aβ-42 lesion, reduced superoxide dismutase levels and Bridging Integrator-1 (BIN1) expression in the PFC of the animals, which can be linked to the observed memory impairment. In conclusion, our findings indicate that footshocks exaggerate PFC-associated behavioural and molecular changes induced by an AD-like pathology.
Collapse
MESH Headings
- Alzheimer Disease/chemically induced
- Alzheimer Disease/etiology
- Alzheimer Disease/metabolism
- Alzheimer Disease/physiopathology
- Amyloid beta-Peptides/pharmacology
- Animals
- Anxiety/chemically induced
- Anxiety/etiology
- Anxiety/metabolism
- Anxiety/physiopathology
- Apoptosis/drug effects
- Apoptosis/physiology
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Disease Models, Animal
- Electroshock
- Male
- Memory Disorders/chemically induced
- Memory Disorders/etiology
- Memory Disorders/metabolism
- Memory Disorders/physiopathology
- Memory, Short-Term/drug effects
- Memory, Short-Term/physiology
- Peptide Fragments/pharmacology
- Prefrontal Cortex/metabolism
- Prefrontal Cortex/physiopathology
- Rats
- Rats, Sprague-Dawley
- Stress Disorders, Post-Traumatic/chemically induced
- Stress Disorders, Post-Traumatic/etiology
- Stress Disorders, Post-Traumatic/metabolism
- Stress Disorders, Post-Traumatic/physiopathology
- Tacrolimus Binding Proteins/metabolism
Collapse
Affiliation(s)
- Oluwaseun Samuel Faborode
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa.
| | - Ernest Dalle
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa.
| | - Musa Vuyisile Mabandla
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa.
| |
Collapse
|
35
|
Oxidative Stress in Human Pathology and Aging: Molecular Mechanisms and Perspectives. Cells 2022; 11:cells11030552. [PMID: 35159361 PMCID: PMC8833991 DOI: 10.3390/cells11030552] [Citation(s) in RCA: 281] [Impact Index Per Article: 93.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Reactive oxygen and nitrogen species (RONS) are generated through various endogenous and exogenous processes; however, they are neutralized by enzymatic and non-enzymatic antioxidants. An imbalance between the generation and neutralization of oxidants results in the progression to oxidative stress (OS), which in turn gives rise to various diseases, disorders and aging. The characteristics of aging include the progressive loss of function in tissues and organs. The theory of aging explains that age-related functional losses are due to accumulation of reactive oxygen species (ROS), their subsequent damages and tissue deformities. Moreover, the diseases and disorders caused by OS include cardiovascular diseases [CVDs], chronic obstructive pulmonary disease, chronic kidney disease, neurodegenerative diseases and cancer. OS, induced by ROS, is neutralized by different enzymatic and non-enzymatic antioxidants and prevents cells, tissues and organs from damage. However, prolonged OS decreases the content of antioxidant status of cells by reducing the activities of reductants and antioxidative enzymes and gives rise to different pathological conditions. Therefore, the aim of the present review is to discuss the mechanism of ROS-induced OS signaling and their age-associated complications mediated through their toxic manifestations in order to devise effective preventive and curative natural therapeutic remedies.
Collapse
|
36
|
Cheng Y, Chen H. Aberrance of Zinc Metalloenzymes-Induced Human Diseases and Its Potential Mechanisms. Nutrients 2021; 13:nu13124456. [PMID: 34960004 PMCID: PMC8707169 DOI: 10.3390/nu13124456] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Zinc, an essential micronutrient in the human body, is a component in over 300 enzymes and participates in regulating enzymatic activity. Zinc metalloenzymes play a crucial role in physiological processes including antioxidant, anti-inflammatory, and immune responses, as well as apoptosis. Aberrant enzyme activity can lead to various human diseases. In this review, we summarize zinc homeostasis, the roles of zinc in zinc metalloenzymes, the physiological processes of zinc metalloenzymes, and aberrant zinc metalloenzymes in human diseases. In addition, potential mechanisms of action are also discussed. This comprehensive understanding of the mechanisms of action of the regulatory functions of zinc in enzyme activity could inform novel zinc-micronutrient-supply strategies for the treatment of diseases.
Collapse
Affiliation(s)
- Yunqi Cheng
- Queen Mary School, Medical College, Nanchang University, Nanchang 330006, China;
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
| | - Hongping Chen
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
- Correspondence:
| |
Collapse
|
37
|
Ma Y, Dammer EB, Felsky D, Duong DM, Klein HU, White CC, Zhou M, Logsdon BA, McCabe C, Xu J, Wang M, Wingo TS, Lah JJ, Zhang B, Schneider J, Allen M, Wang X, Ertekin-Taner N, Seyfried NT, Levey AI, Bennett DA, De Jager PL. Atlas of RNA editing events affecting protein expression in aged and Alzheimer's disease human brain tissue. Nat Commun 2021; 12:7035. [PMID: 34857756 PMCID: PMC8640037 DOI: 10.1038/s41467-021-27204-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 11/04/2021] [Indexed: 11/09/2022] Open
Abstract
RNA editing is a feature of RNA maturation resulting in the formation of transcripts whose sequence differs from the genome template. Brain RNA editing may be altered in Alzheimer's disease (AD). Here, we analyzed data from 1,865 brain samples covering 9 brain regions from 1,074 unrelated subjects on a transcriptome-wide scale to identify inter-regional differences in RNA editing. We expand the list of known brain editing events by identifying 58,761 previously unreported events. We note that only a small proportion of these editing events are found at the protein level in our proteome-wide validation effort. We also identified the occurrence of editing events associated with AD dementia, neuropathological measures and longitudinal cognitive decline in: SYT11, MCUR1, SOD2, ORAI2, HSDL2, PFKP, and GPRC5B. Thus, we present an extended reference set of brain RNA editing events, identify a subset that are found to be expressed at the protein level, and extend the narrative of transcriptomic perturbation in AD to RNA editing.
Collapse
Affiliation(s)
- Yiyi Ma
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, 630 West 168th street, New York, NY, 10032, USA
| | - Eric B Dammer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Integrated Proteomics Core Facility, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Daniel Felsky
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Duc M Duong
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Integrated Proteomics Core Facility, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Hans-Ulrich Klein
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, 630 West 168th street, New York, NY, 10032, USA
| | - Charles C White
- Cell Circuits Program, Broad Institute, 415 Main street, Cambridge, MA, 02142, USA
| | - Maotian Zhou
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Integrated Proteomics Core Facility, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | | | - Cristin McCabe
- Cell Circuits Program, Broad Institute, 415 Main street, Cambridge, MA, 02142, USA
| | - Jishu Xu
- Rush Alzheimer's Disease Center, Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Thomas S Wingo
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - James J Lah
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Julie Schneider
- Rush Alzheimer's Disease Center, Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Mariet Allen
- Mayo Clinic Florida, Department of Neuroscience, Jacksonville, FL, 32224, USA
| | - Xue Wang
- Mayo Clinic Florida, Department of Health Sciences Research, Jacksonville, FL, 32224, USA
| | - Nilüfer Ertekin-Taner
- Mayo Clinic Florida, Department of Neuroscience, Jacksonville, FL, 32224, USA
- Mayo Clinic Florida, Department of Neurology, Jacksonville, FL, 32224, USA
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Integrated Proteomics Core Facility, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Allan I Levey
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, 630 West 168th street, New York, NY, 10032, USA.
- Cell Circuits Program, Broad Institute, 415 Main street, Cambridge, MA, 02142, USA.
| |
Collapse
|
38
|
Shilpa O, Anupama KP, Antony A, Gurushankara HP. Lead (Pb)-induced oxidative stress mediates sex-specific autistic-like behaviour in Drosophila melanogaster. Mol Neurobiol 2021; 58:6378-6393. [PMID: 34528217 DOI: 10.1007/s12035-021-02546-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/21/2021] [Indexed: 01/24/2023]
Abstract
Autism spectrum disorder (ASD) is a highly prevalent neurodevelopmental disorder characterised by three main behavioural symptoms: abnormal social interaction, verbal and non-verbal communication impairments, and repetitive and restricted activities or interests. Even though the exact aetiology of ASD remains unknown, studies have shown a link between genetics and environmental pollutants. Heavy metal lead (Pb), the environmental pollutant, is associated with ASD. Pb may also exhibit sex-specific ASD behaviour, as has been demonstrated in the global human populations. Drosophila melanogaster as a model has been used in the present study to understand the involvement of Pb-induced oxidative stress in developing ASD behaviour. The larval feeding technique has been employed to administer different Pb concentrations (0.2-0.8 mM) to Oregon-R (ORR), superoxide dismutase (Sod), or catalase (Cat) antioxidants overexpressed or knockdown flies. Adult Drosophila (5-day old) were used for Pb content, biochemical, and behavioural analysis.Pb accumulated in the Drosophila brain induces oxidative stress and exhibited a human autistic-like behaviour such as reduced climbing, increased grooming, increased social spacing, and decreased learning and memory in a sex-specific manner.Pb-induced autistic-like behaviour was intensified in Sod or Cat-knockdown flies, whereas Sod or Cat-overexpressed flies overcome that behavioural alterations. These results unequivocally proved that Pb-induced oxidative stress causes ASD behaviour of humans in Drosophila. Thus, Drosophila is used as a model organism to analyse ASD-like human behaviour and underlines the importance of using antioxidant therapy in alleviating ASD symptoms in children.
Collapse
Affiliation(s)
- Olakkaran Shilpa
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya, 671320, Kasaragod, India
| | - Kizhakke Purayil Anupama
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya, 671320, Kasaragod, India
| | - Anet Antony
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya, 671320, Kasaragod, India
| | | |
Collapse
|
39
|
Jin S, Wang X, Xiang X, Wu Y, Hu J, Li Y, Lin Dong Y, Tan Y, Wu X. Inhibition of GPR17 with cangrelor improves cognitive impairment and synaptic deficits induced by Aβ 1-42 through Nrf2/HO-1 and NF-κB signaling pathway in mice. Int Immunopharmacol 2021; 101:108335. [PMID: 34781121 DOI: 10.1016/j.intimp.2021.108335] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/23/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022]
Abstract
The accumulation of amyloid beta (Aβ) in the brain is thought to be associated with cognitive deficits in Alzheimer's disease (AD). However, current methods to combat Aβ neurotoxicity are still lacking. G protein-coupled receptor 17 (GPR17) has become a target for treating inflammation in brain diseases, but it is unclear whether it has a role in AD. Here, we investigated the effects of cangrelor, a GPR17 antagonist, on neurotoxicity and memory impairment induced by intracerebroventricular (i.c.v.) injection of Aβ1-42 in mice. The behavior results showed that cangrelor (2.0 or 4.0 μg/mouse, i.c.v.) treatment reversed the deficits in memory and learning ability induced by Aβ1-42 in mice. Importantly, we demonstrated for the first time that GPR17 expression in the hippocampus and frontal cortex is increased in response to Aβ1-42 exposures. We also found that cangrelor treatment reduced the activity of β-secretase 1 (BACE1) and the levels of soluble Aβ1-42 in the hippocampus and frontal cortex. Meanwhile, cangrelor treatment suppressed oxidative stress induced by Aβ1-42, as proved by reduced production of malondialdehyde (MDA), and increased glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT), and promoted the expression of nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1). Furthermore, cangrelor also suppressed Aβ1-42-induced neuroinflammation, characterized by suppressed activation of microglia, decreased the levels of pro-inflammatory cytokines, and nuclear translocation of NF-κB p65, as well as ameliorated synaptic deficits by promoting the upregulation of synaptic proteins, and increasing the number of Golgi-Cox stained dendritic spines. These results suggest that cangrelor may reverse Aβ1-42-induced cognition deficits via inhibiting oxidative stress, neuroinflammation, and synaptic dysfunction mediated by Nrf2/HO-1 and NF-κB signaling.
Collapse
Affiliation(s)
- ShiYu Jin
- School of Pharmacy, Anhui Medical University, The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Xin Wang
- West Anhui Health Vocational College, Luan 237000, China
| | - XiaoTong Xiang
- School of Pharmacy, Anhui Medical University, The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - YuMei Wu
- School of Pharmacy, Anhui Medical University, The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Jie Hu
- School of Pharmacy, Anhui Medical University, The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - YueYue Li
- School of Pharmacy, Anhui Medical University, The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Yue Lin Dong
- School of Pharmacy, Anhui Medical University, The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - YueQiang Tan
- School of Pharmacy, Anhui Medical University, The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Xian Wu
- School of Pharmacy, Anhui Medical University, The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
40
|
Mitochondrial Electron Transport Chain Protein Abnormalities Detected in Plasma Extracellular Vesicles in Alzheimer's Disease. Biomedicines 2021; 9:biomedicines9111587. [PMID: 34829816 PMCID: PMC8615874 DOI: 10.3390/biomedicines9111587] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/12/2021] [Accepted: 10/27/2021] [Indexed: 12/18/2022] Open
Abstract
Mitochondria provide energy to neurons through oxidative phosphorylation and eliminate Reactive Oxygen Species (ROS) through Superoxide Dismutase 1 (SOD1). Dysfunctional mitochondria, manifesting decreased activity of electron transport chain (ETC) complexes and high ROS levels, are involved in Alzheimer’s disease (AD) pathogenesis. We hypothesized that neuronal mitochondrial dysfunction in AD is reflected in ETC and SOD1 levels and activity in plasma neuron-derived extracellular vesicles (NDEVs). We immunoprecipitated NDEVs targeting neuronal marker L1CAM from two cohorts: one including 22 individuals with early AD and 29 control subjects; and another including 14 individuals with early AD and 14 control subjects. In the first cohort, we measured levels of complexes I, III, IV, ATP synthase, and SOD1; in the second cohort, we measured levels and catalytic activity of complexes IV and ATP synthase. AD individuals had lower levels of complexes I (p < 0.0001), III (p < 0.0001), IV (p = 0.0061), and V (p < 0.0001), and SOD1 (p < 0.0001) compared to controls. AD individuals also had lower levels of catalytic activity of complex IV (p = 0.0214) and ATP synthase (p < 0.0001). NDEVs confirm quantitative and functional abnormalities in ECT complexes and SOD1 previously observed in AD models and during autopsy, opening the way for using them as biomarkers for mitochondrial dysfunction in AD.
Collapse
|
41
|
Angelova PR. Sources and triggers of oxidative damage in neurodegeneration. Free Radic Biol Med 2021; 173:52-63. [PMID: 34224816 DOI: 10.1016/j.freeradbiomed.2021.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/19/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
Neurodegeneration describes a group of more than 300 neurological diseases, characterised by neuronal loss and intra- or extracellular protein depositions, as key neuropathological features. Multiple factors play role in the pathogenesis of these group of disorders: mitochondrial dysfunction, membrane damage, calcium dyshomeostasis, metallostasis, defect clearance and renewal mechanisms, to name a few. All these factors, without exceptions, have in common the involvement of immensely increased generation of free radicals and occurrence of oxidative stress, and as a result - exhaustion of the scavenging potency of the cellular redox defence mechanisms. Besides genetic predisposition and environmental exposure to toxins, the main risk factor for developing neurodegeneration is age. And although the "Free radical theory of ageing" was declared dead, it is undisputable that accumulation of damage occurs with age, especially in systems that are regulated by free radical messengers and those that oppose oxidative stress, protein oxidation and the accuracy in protein synthesis and degradation machinery has difficulties to be maintained. This brief review provides a comprehensive summary on the main sources of free radical damage, occurring in the setting of neurodegeneration.
Collapse
|
42
|
Kim JH, Lim DK, Suh YH, Chang KA. Long-Term Treatment of Cuban Policosanol Attenuates Abnormal Oxidative Stress and Inflammatory Response via Amyloid Plaques Reduction in 5xFAD Mice. Antioxidants (Basel) 2021; 10:antiox10081321. [PMID: 34439569 PMCID: PMC8389325 DOI: 10.3390/antiox10081321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/27/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder resulting in cognitive decline or dementia, the number of patients with AD is continuously increasing. Although a lot of great progress has been made in research and development of AD therapeutics, there is no fundamental cure for this disease yet. This study demonstrated the memory-improving effects of Cuban policosanol (PCO) in 5xFAD mice, which is an animal model of AD. Following 4-months of treatment with PCO in 5xFAD mice, we found that the number of amyloid plaques decreased in the brain compared to the vehicle-treated 5xFAD mice. Long-term PCO treatment in 5xFAD mice resulted in the reduction of gliosis and abnormal inflammatory cytokines level (interleukin [IL]-1β, IL-6, and tumor necrosis factor [TNF]-α) in the cortex and hippocampus. Levels of lipid peroxide (4-hydroxynonenal [4-HNE]) and superoxide dismutase (SOD1 and SOD2) levels were also recoverd in the brains of PCO-treated 5xFAD mice. Notably, PCO administration reduced memory deficits in the passive avoidance test, as well as synaptic loss (PSD-95, synaptophysin) in 5xFAD mice. Collectively, we identified the potential effects of PCO as a useful supplement to delay or prevent AD progression by inhibiting the formation of Aβ plaques in the brain.
Collapse
Affiliation(s)
- Jin-Ho Kim
- Department of Health Sciences and Technology, Gachon Advanced Insiue for Healh Sciences & Technology (GAIHST), Gachon University, Incheon 21999, Korea;
| | - Dong-Kyun Lim
- Neuroscience Research Institute, Gachon University, Incheon 21565, Korea; (D.-K.L.); (Y.-H.S.)
| | - Yoo-Hun Suh
- Neuroscience Research Institute, Gachon University, Incheon 21565, Korea; (D.-K.L.); (Y.-H.S.)
- Department of Pharmacology, College of Medicine, Seoul National University, Seoul 03080, Korea
| | - Keun-A Chang
- Department of Health Sciences and Technology, Gachon Advanced Insiue for Healh Sciences & Technology (GAIHST), Gachon University, Incheon 21999, Korea;
- Neuroscience Research Institute, Gachon University, Incheon 21565, Korea; (D.-K.L.); (Y.-H.S.)
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21999, Korea
- Correspondence: ; Tel.: +82-32-899-6411
| |
Collapse
|
43
|
Oli V, Gupta R, Kumar P. FOXO and related transcription factors binding elements in the regulation of neurodegenerative disorders. J Chem Neuroanat 2021; 116:102012. [PMID: 34400291 DOI: 10.1016/j.jchemneu.2021.102012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/16/2021] [Accepted: 08/07/2021] [Indexed: 12/16/2022]
Abstract
Neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and others, are characterized by progressive loss of neuronal cells, which causes memory impairment and cognitive decline. Mounting evidence demonstrated the possible implications of diverse biological processes, namely oxidative stress, mitochondrial dysfunction, aberrant cell cycle re-entry, post-translational modifications, protein aggregation, impaired proteasome dysfunction, autophagy, and many others that cause neuronal cell death. The condition worsens as there is no effective treatment for such diseases due to their complex pathogenesis and mechanism. Mounting evidence demonstrated the role of regulatory transcription factors, such as NFκβ, FoxO, Myc, CREB, and others that regulate the biological processes and diminish the disease progression and pathogenesis. Studies demonstrated that forkhead box O (FoxO) transcription factors had been implicated in the regulation of aging and longevity. Further, the functions of FoxO proteins are regulated by different post-translational modifications (PTMs), namely acetylation, and ubiquitination. Various studies concluded that FoxO proteins exert both neuroprotective and neurotoxic properties depending on their regulation mechanism and activity in the brain. Thus, understanding the nature of FoxO expression and activity in the brain will help develop effective therapeutic strategies. Herein, firstly, we discuss the role of FoxO protein in cell cycle regulation and cell proliferation, followed by the regulation of FoxO proteins through acetylation and ubiquitination. We also briefly explain the activity and expression pattern of FoxO proteins in the neuronal cells and explain the mechanism through which FoxO proteins are rescued from oxidative stress-induced neurotoxicity. Later on, we present a detailed view of the implication of FoxO proteins in neurodegenerative disease and FoxO proteins as an effective therapeutic target.
Collapse
Affiliation(s)
- Vaibhav Oli
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), India.
| |
Collapse
|
44
|
Daiber A, Steven S, Euler G, Schulz R. Vascular and Cardiac Oxidative Stress and Inflammation as Targets for Cardioprotection. Curr Pharm Des 2021; 27:2112-2130. [PMID: 33550963 DOI: 10.2174/1381612827666210125155821] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/11/2020] [Indexed: 11/22/2022]
Abstract
Cardiac and vascular diseases are often associated with increased oxidative stress and inflammation, and both may contribute to the disease progression. However, successful applications of antioxidants in the clinical setting are very rare and specific anti-inflammatory therapeutics only emerged recently. Reasons for this rely on the great diversity of oxidative stress and inflammatory cells that can either act as cardioprotective or cause tissue damage in the heart. Recent large-scale clinical trials found that highly specific anti-inflammatory therapies using monoclonal antibodies against cytokines resulted in lower cardiovascular mortality in patients with pre-existing atherosclerotic disease. In addition, unspecific antiinflammatory medication and established cardiovascular drugs with pleiotropic immunomodulatory properties such as angiotensin converting enzyme (ACE) inhibitors or statins have proven beneficial cardiovascular effects. Normalization of oxidative stress seems to be a common feature of these therapies, which can be explained by a close interaction/crosstalk of the cellular redox state and inflammatory processes. In this review, we give an overview of cardiac reactive oxygen species (ROS) sources and processes of cardiac inflammation as well as the connection of ROS and inflammation in ischemic cardiomyopathy in order to shed light on possible cardioprotective interventions.
Collapse
Affiliation(s)
- Andreas Daiber
- Department of Cardiology, Molecular Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Sebastian Steven
- Department of Cardiology, Molecular Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Gerhild Euler
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| |
Collapse
|
45
|
Diabetes and Alzheimer's Disease: Might Mitochondrial Dysfunction Help Deciphering the Common Path? Antioxidants (Basel) 2021; 10:antiox10081257. [PMID: 34439505 PMCID: PMC8389322 DOI: 10.3390/antiox10081257] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023] Open
Abstract
A growing number of clinical and epidemiological studies support the hypothesis of a tight correlation between type 2 diabetes mellitus (T2DM) and the development risk of Alzheimer's disease (AD). Indeed, the proposed definition of Alzheimer's disease as type 3 diabetes (T3D) underlines the key role played by deranged insulin signaling to accumulation of aggregated amyloid beta (Aβ) peptides in the senile plaques of the brain. Metabolic disturbances such as hyperglycemia, peripheral hyperinsulinemia, dysregulated lipid metabolism, and chronic inflammation associated with T2DM are responsible for an inefficient transport of insulin to the brain, producing a neuronal insulin resistance that triggers an enhanced production and deposition of Aβ and concomitantly contributes to impairment in the micro-tubule-associated protein Tau, leading to neural degeneration and cognitive decline. Furthermore, the reduced antioxidant capacity observed in T2DM patients, together with the impairment of cerebral glucose metabolism and the decreased performance of mitochondrial activity, suggests the existence of a relationship between oxidative damage, mitochondrial impairment, and cognitive dysfunction that could further reinforce the common pathophysiology of T2DM and AD. In this review, we discuss the molecular mechanisms by which insulin-signaling dysregulation in T2DM can contribute to the pathogenesis and progression of AD, deepening the analysis of complex mechanisms involved in reactive oxygen species (ROS) production under oxidative stress and their possible influence in AD and T2DM. In addition, the role of current therapies as tools for prevention or treatment of damage induced by oxidative stress in T2DM and AD will be debated.
Collapse
|
46
|
Role of Melatonin in Angiotensin and Aging. Molecules 2021; 26:molecules26154666. [PMID: 34361818 PMCID: PMC8347812 DOI: 10.3390/molecules26154666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 12/19/2022] Open
Abstract
The cellular utilization of oxygen leads to the generation of free radicals in organisms. The accumulation of these free radicals contributes significantly to aging and several age-related diseases. Angiotensin II can contribute to DNA damage through oxidative stress by activating the NAD(P)H oxidase pathway, which in turn results in the production of reactive oxygen species. This radical oxygen-containing molecule has been linked to aging and several age-related disorders, including renal damage. Considering the role of angiotensin in aging, melatonin might relieve angiotensin-II-induced stress by enhancing the mitochondrial calcium uptake 1 pathway, which is crucial in preventing the mitochondrial calcium overload that may trigger increased production of reactive oxygen species and oxidative stress. This review highlights the role and importance of melatonin together with angiotensin in aging and age-related diseases.
Collapse
|
47
|
Balendra V, Singh SK. Therapeutic potential of astaxanthin and superoxide dismutase in Alzheimer's disease. Open Biol 2021; 11:210013. [PMID: 34186009 PMCID: PMC8241491 DOI: 10.1098/rsob.210013] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress, the imbalance of the antioxidant system, results in an accumulation of neurotoxic proteins in Alzheimer's disease (AD). The antioxidant system is composed of exogenous and endogenous antioxidants to maintain homeostasis. Superoxide dismutase (SOD) is an endogenous enzymatic antioxidant that converts superoxide ions to hydrogen peroxide in cells. SOD supplementation in mice prevented cognitive decline in stress-induced cells by reducing lipid peroxidation and maintaining neurogenesis in the hippocampus. Furthermore, SOD decreased expression of BACE1 while reducing plaque burden in the brain. Additionally, Astaxanthin (AST), a potent exogenous carotenoid, scavenges superoxide anion radicals. Mice treated with AST showed slower memory decline and decreased depositions of amyloid-beta (Aβ) and tau protein. Currently, the neuroprotective potential of these supplements has only been examined separately in studies. However, a single antioxidant cannot sufficiently resist oxidative damage to the brain, therefore, a combinatory approach is proposed as a relevant therapy for ameliorating pathological changes in AD.
Collapse
Affiliation(s)
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology (ISET) Foundation, Lucknow 226002, India
| |
Collapse
|
48
|
Trist BG, Hilton JB, Hare DJ, Crouch PJ, Double KL. Superoxide Dismutase 1 in Health and Disease: How a Frontline Antioxidant Becomes Neurotoxic. Angew Chem Int Ed Engl 2021; 60:9215-9246. [PMID: 32144830 PMCID: PMC8247289 DOI: 10.1002/anie.202000451] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Indexed: 12/11/2022]
Abstract
Cu/Zn superoxide dismutase (SOD1) is a frontline antioxidant enzyme catalysing superoxide breakdown and is important for most forms of eukaryotic life. The evolution of aerobic respiration by mitochondria increased cellular production of superoxide, resulting in an increased reliance upon SOD1. Consistent with the importance of SOD1 for cellular health, many human diseases of the central nervous system involve perturbations in SOD1 biology. But far from providing a simple demonstration of how disease arises from SOD1 loss-of-function, attempts to elucidate pathways by which atypical SOD1 biology leads to neurodegeneration have revealed unexpectedly complex molecular characteristics delineating healthy, functional SOD1 protein from that which likely contributes to central nervous system disease. This review summarises current understanding of SOD1 biology from SOD1 genetics through to protein function and stability.
Collapse
Affiliation(s)
- Benjamin G. Trist
- Brain and Mind Centre and Discipline of PharmacologyThe University of Sydney, CamperdownSydneyNew South Wales2050Australia
| | - James B. Hilton
- Department of Pharmacology and TherapeuticsThe University of MelbourneParkvilleVictoria3052Australia
| | - Dominic J. Hare
- Brain and Mind Centre and Discipline of PharmacologyThe University of Sydney, CamperdownSydneyNew South Wales2050Australia
- School of BioSciencesThe University of MelbourneParkvilleVictoria3052Australia
- Atomic Medicine InitiativeThe University of Technology SydneyBroadwayNew South Wales2007Australia
| | - Peter J. Crouch
- Department of Pharmacology and TherapeuticsThe University of MelbourneParkvilleVictoria3052Australia
| | - Kay L. Double
- Brain and Mind Centre and Discipline of PharmacologyThe University of Sydney, CamperdownSydneyNew South Wales2050Australia
| |
Collapse
|
49
|
Watanabe K, Shibuya S, Ozawa Y, Toda T, Shimizu T. Pathological Relationship between Intracellular Superoxide Metabolism and p53 Signaling in Mice. Int J Mol Sci 2021; 22:3548. [PMID: 33805584 PMCID: PMC8037821 DOI: 10.3390/ijms22073548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 11/16/2022] Open
Abstract
Intracellular superoxide dismutases (SODs) maintain tissue homeostasis via superoxide metabolism. We previously reported that intracellular reactive oxygen species (ROS), including superoxide accumulation caused by cytoplasmic SOD (SOD1) or mitochondrial SOD (SOD2) insufficiency, induced p53 activation in cells. SOD1 loss also induced several age-related pathological changes associated with increased oxidative molecules in mice. To evaluate the contribution of p53 activation for SOD1 knockout (KO) (Sod1-/-) mice, we generated SOD1 and p53 KO (double-knockout (DKO)) mice. DKO fibroblasts showed increased cell viability with decreased apoptosis compared with Sod1-/- fibroblasts. In vivo experiments revealed that p53 insufficiency was not a great contributor to aging-like tissue changes but accelerated tumorigenesis in Sod1-/- mice. Furthermore, p53 loss failed to improve dilated cardiomyopathy or the survival in heart-specific SOD2 conditional KO mice. These data indicated that p53 regulated ROS-mediated apoptotic cell death and tumorigenesis but not ROS-mediated tissue degeneration in SOD-deficient models.
Collapse
Affiliation(s)
- Kenji Watanabe
- Aging Stress Response Research Project Team, National Center for Geriatrics and Gerontology, Obu 474-8511, Aichi, Japan; (K.W.); (S.S.)
| | - Shuichi Shibuya
- Aging Stress Response Research Project Team, National Center for Geriatrics and Gerontology, Obu 474-8511, Aichi, Japan; (K.W.); (S.S.)
| | - Yusuke Ozawa
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba 260-8677, Chiba, Japan; (Y.O.); (T.T.)
| | - Toshihiko Toda
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba 260-8677, Chiba, Japan; (Y.O.); (T.T.)
| | - Takahiko Shimizu
- Aging Stress Response Research Project Team, National Center for Geriatrics and Gerontology, Obu 474-8511, Aichi, Japan; (K.W.); (S.S.)
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba 260-8677, Chiba, Japan; (Y.O.); (T.T.)
| |
Collapse
|
50
|
Shibuya S, Watanabe K, Ozawa Y, Shimizu T. Xanthine Oxidoreductase-Mediated Superoxide Production Is Not Involved in the Age-Related Pathologies in Sod1-Deficient Mice. Int J Mol Sci 2021; 22:3542. [PMID: 33805516 PMCID: PMC8037342 DOI: 10.3390/ijms22073542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 12/21/2022] Open
Abstract
Reactive oxygen species (ROS) metabolism is regulated by the oxygen-mediated enzyme reaction and antioxidant mechanism within cells under physiological conditions. Xanthine oxidoreductase (XOR) exhibits two inter-convertible forms (xanthine oxidase (XO) and xanthine dehydrogenase (XDH)), depending on the substrates. XO uses oxygen as a substrate and generates superoxide (O2•-) in the catalytic pathway of hypoxanthine. We previously showed that superoxide dismutase 1 (SOD1) loss induced various aging-like pathologies via oxidative damage due to the accumulation of O2•- in mice. However, the pathological contribution of XO-derived O2•- production to aging-like tissue damage induced by SOD1 loss remains unclear. To investigate the pathological significance of O2•- derived from XOR in Sod1-/- mice, we generated Sod1-null and XO-type- or XDH-type-knock-in (KI) double-mutant mice. Neither XO-type- nor XDH-type KI mutants altered aging-like phenotypes, such as anemia, fatty liver, muscle atrophy, and bone loss, in Sod1-/- mice. Furthermore, allopurinol, an XO inhibitor, or apocynin, a nicotinamide adenine dinucleotide phosphate oxidase (NOX) inhibitor, failed to improve aging-like tissue degeneration and ROS accumulation in Sod1-/- mice. These results showed that XOR-mediated O2•- production is relatively uninvolved in the age-related pathologies in Sod1-/- mice.
Collapse
Affiliation(s)
- Shuichi Shibuya
- Aging Stress Response Research Project Team, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan; (S.S.); (K.W.)
| | - Kenji Watanabe
- Aging Stress Response Research Project Team, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan; (S.S.); (K.W.)
| | - Yusuke Ozawa
- Department of Endocrinology, Hematology, and Geriatrics, Chiba University Graduate School of Medicine, Chiba, Chiba 260-8670, Japan;
| | - Takahiko Shimizu
- Aging Stress Response Research Project Team, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan; (S.S.); (K.W.)
- Department of Endocrinology, Hematology, and Geriatrics, Chiba University Graduate School of Medicine, Chiba, Chiba 260-8670, Japan;
| |
Collapse
|