1
|
Baumgartner TJ, Dvorak NM, Goode NA, Haghighijoo Z, Marosi M, Singh J, Singh AK, Laezza F. Axin-binding domain of glycogen synthase kinase 3β facilitates functional interactions with voltage-gated Na+ channel Nav1.6. J Biol Chem 2025:108162. [PMID: 39793889 DOI: 10.1016/j.jbc.2025.108162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/09/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Voltage-gated Na+ (Nav) channels are the primary determinants of the action potential in excitable cells. Nav channels rely on a wide and diverse array of intracellular protein-protein interactions (PPIs) to achieve their full function. Glycogen synthase kinase 3 β (GSK3β) has been previously identified as a modulator of Nav1.6-encoded currents and neuronal excitability through PPI formation with Nav1.6 and phosphorylation of its C-terminal domain (CTD). Here, we hypothesized that GSK3β functions as a scaffold in a regulatory PPI complex with Nav1.6 CTD. Mutagenesis screening using the split-luciferase complementation assay indicated that the axin-binding domain (ABD) of GSK3β (262-299) is necessary for complex formation between the Nav1.6 CTD and GSK3β, and that residues within this domain are drivers of GSK3β-mediated regulation of the channel. Overexpression of an ABD-GFP fusion construct in HEK293 cells stably expressing Nav1.6 significantly reduced Nav1.6 nanocluster density compared to GFP alone. In addition, overexpression of the ABD-GFP fusion construct ablates GSK3β-mediated potentiation of Nav1.6 encoded currents and alters channel kinetics. Finally, in vivo AAV-mediated overexpression of the ABD-GFP construct in the CA1 hippocampal region induced a reduction in maximal action potential firing and an increase in action potential current threshold in a manner resembling previously reported effects of GSK3β silencing in neurons. Taken together, these results not only suggest that GSK3β-mediated regulation of Nav1.6 extends beyond transient phosphorylation, but also implicates the ABD as a critical regulatory domain that facilitates GSK3β's functional effects on Nav1.6 and neuronal excitability.
Collapse
Affiliation(s)
- T J Baumgartner
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555
| | - N M Dvorak
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555
| | - N A Goode
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555
| | - Z Haghighijoo
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555
| | - M Marosi
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555
| | - J Singh
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555
| | - A K Singh
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555
| | - F Laezza
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555.
| |
Collapse
|
2
|
Wen Q, Zhang R, Ye K, Yang J, Shi H, Liu Z, Li Y, Liu T, Zhang S, Chen W, Wu J, Liu W, Tan X, Lei M, Huang CLH, Ou X. Empagliflozin rescues pro-arrhythmic and Ca 2+ homeostatic effects of transverse aortic constriction in intact murine hearts. Sci Rep 2024; 14:15683. [PMID: 38977794 PMCID: PMC11231339 DOI: 10.1038/s41598-024-66098-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 06/27/2024] [Indexed: 07/10/2024] Open
Abstract
We explored physiological effects of the sodium-glucose co-transporter-2 inhibitor empagliflozin on intact experimentally hypertrophic murine hearts following transverse aortic constriction (TAC). Postoperative drug (2-6 weeks) challenge resulted in reduced late Na+ currents, and increased phosphorylated (p-)CaMK-II and Nav1.5 but not total (t)-CaMK-II, and Na+/Ca2+ exchanger expression, confirming previous cardiomyocyte-level reports. It rescued TAC-induced reductions in echocardiographic ejection fraction and fractional shortening, and diastolic anterior and posterior wall thickening. Dual voltage- and Ca2+-optical mapping of Langendorff-perfused hearts demonstrated that empagliflozin rescued TAC-induced increases in action potential durations at 80% recovery (APD80), Ca2+ transient peak signals and durations at 80% recovery (CaTD80), times to peak Ca2+ (TTP100) and Ca2+ decay constants (Decay30-90) during regular 10-Hz stimulation, and Ca2+ transient alternans with shortening cycle length. Isoproterenol shortened APD80 in sham-operated and TAC-only hearts, shortening CaTD80 and Decay30-90 but sparing TTP100 and Ca2+ transient alternans in all groups. All groups showed similar APD80, and TAC-only hearts showed greater CaTD80, heterogeneities following isoproterenol challenge. Empagliflozin abolished or reduced ventricular tachycardia and premature ventricular contractions and associated re-entrant conduction patterns, in isoproterenol-challenged TAC-operated hearts following successive burst pacing episodes. Empagliflozin thus rescues TAC-induced ventricular hypertrophy and systolic functional, Ca2+ homeostatic, and pro-arrhythmogenic changes in intact hearts.
Collapse
Affiliation(s)
- Qiang Wen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Rd, Wuhan, 430022, Hubei Province, China
| | - Rui Zhang
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Department of Cardiology of the Affiliated Hospital, Southwest Medical University, 1 Xianglin Rd, Luzhou, 646000, Sichuan Province, China
| | - Kejun Ye
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Department of Cardiology of the Affiliated Hospital, Southwest Medical University, 1 Xianglin Rd, Luzhou, 646000, Sichuan Province, China
| | - Jun Yang
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Department of Cardiology of the Affiliated Hospital, Southwest Medical University, 1 Xianglin Rd, Luzhou, 646000, Sichuan Province, China
| | - Hangchuan Shi
- Department of Clinical & Translational Research, University of Rochester Medical Center, 265 Crittenden Blvd, Rochester, NY, 14642, USA
- Department of Public Health Sciences, University of Rochester Medical Center, 265 Crittenden Blvd, Rochester, NY, 14642, USA
| | - Zhu Liu
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Department of Cardiology of the Affiliated Hospital, Southwest Medical University, 1 Xianglin Rd, Luzhou, 646000, Sichuan Province, China
| | - Yangpeng Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Department of Cardiology of the Affiliated Hospital, Southwest Medical University, 1 Xianglin Rd, Luzhou, 646000, Sichuan Province, China
| | - Ting Liu
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Department of Cardiology of the Affiliated Hospital, Southwest Medical University, 1 Xianglin Rd, Luzhou, 646000, Sichuan Province, China
| | - Shiyu Zhang
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Department of Cardiology of the Affiliated Hospital, Southwest Medical University, 1 Xianglin Rd, Luzhou, 646000, Sichuan Province, China
| | - Wanpei Chen
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Department of Cardiology of the Affiliated Hospital, Southwest Medical University, 1 Xianglin Rd, Luzhou, 646000, Sichuan Province, China
| | - Jingjing Wu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Rd, Wuhan, 430022, Hubei Province, China
| | - Weichao Liu
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Department of Cardiology of the Affiliated Hospital, Southwest Medical University, 1 Xianglin Rd, Luzhou, 646000, Sichuan Province, China
| | - Xiaoqiu Tan
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Department of Cardiology of the Affiliated Hospital, Southwest Medical University, 1 Xianglin Rd, Luzhou, 646000, Sichuan Province, China
| | - Ming Lei
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Department of Cardiology of the Affiliated Hospital, Southwest Medical University, 1 Xianglin Rd, Luzhou, 646000, Sichuan Province, China
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Christopher L-H Huang
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Department of Cardiology of the Affiliated Hospital, Southwest Medical University, 1 Xianglin Rd, Luzhou, 646000, Sichuan Province, China.
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK.
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK.
| | - Xianhong Ou
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Department of Cardiology of the Affiliated Hospital, Southwest Medical University, 1 Xianglin Rd, Luzhou, 646000, Sichuan Province, China.
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, 15 Yucai Rd, Guilin, 541004, Guangxi Province, China.
| |
Collapse
|
3
|
Park E, Yang CR, Raghuram V, Chen L, Chou CL, Knepper MA. Using CRISPR-Cas9/phosphoproteomics to identify substrates of calcium/calmodulin-dependent kinase 2δ. J Biol Chem 2023; 299:105371. [PMID: 37865316 PMCID: PMC10783575 DOI: 10.1016/j.jbc.2023.105371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/30/2023] [Accepted: 10/10/2023] [Indexed: 10/23/2023] Open
Abstract
Ca2+/Calmodulin-dependent protein kinase 2 (CAMK2) family proteins are involved in the regulation of cellular processes in a variety of tissues including brain, heart, liver, and kidney. One member, CAMK2δ (CAMK2D), has been proposed to be involved in vasopressin signaling in the renal collecting duct, which controls water excretion through regulation of the water channel aquaporin-2 (AQP2). To identify CAMK2D target proteins in renal collecting duct cells (mpkCCD), we deleted Camk2d and carried out LC-MS/MS-based quantitative phosphoproteomics. Specifically, we used CRISPR/Cas9 with two different guide RNAs targeting the CAMK2D catalytic domain to create multiple CAMK2D KO cell lines. AQP2 protein abundance was lower in the CAMK2D KO cells than in CAMK2D-intact controls. AQP2 phosphorylation at Ser256 and Ser269 (normalized for total AQP2) was decreased. However, trafficking of AQP2 to and from the apical plasma membrane was sustained. Large-scale quantitative phosphoproteomic analysis (TMT-labeling) in the presence of the vasopressin analog dDAVP (0.1 nM, 30 min) allowed quantification of 11,570 phosphosites of which 169 were significantly decreased, while 206 were increased in abundance in CAMK2D KO clones. These data are available for browsing or download at https://esbl.nhlbi.nih.gov/Databases/CAMK2D-proteome/. Motif analysis of the decreased phosphorylation sites revealed a target preference of -(R/K)-X-X-p(S/T)-X-(D/E), matching the motif identified in previous in vitro phosphorylation studies using recombinant CAMK2D. Thirty five of the significantly downregulated phosphorylation sites in CAMK2D KO cells had exactly this motif and are judged to be likely direct CAMK2D targets. This adds to the list of known CAMK2D target proteins found in prior reductionist studies.
Collapse
Affiliation(s)
- Euijung Park
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Chin-Rang Yang
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Viswanathan Raghuram
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Lihe Chen
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Chung-Lin Chou
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA.
| |
Collapse
|
4
|
Durço AO, Souza DS, Rhana P, Costa AD, Marques LP, Santos LABO, de Souza Araujo AA, de Aragão Batista MV, Roman-Campos D, Santos MRVD. d-Limonene complexed with cyclodextrin attenuates cardiac arrhythmias in an experimental model of doxorubicin-induced cardiotoxicity: Possible involvement of calcium/calmodulin-dependent protein kinase type II. Toxicol Appl Pharmacol 2023; 474:116609. [PMID: 37392997 DOI: 10.1016/j.taap.2023.116609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND Arrhythmias are one manifestation of the cardiotoxicity that results from doxorubicin (Doxo) administration. Although cardiotoxicity is an anticipated outcome in anticancer therapies, there is still a lack of treatment options available for its effective management. This study sought to evaluate the possible cardioprotective effect of complex d-limonene (DL) plus hydroxypropyl-β-cyclodextrin (HβDL) during treatment with Doxo, focusing on the arrhythmic feature. METHODS Cardiotoxicity was induced in Swiss mice with Doxo 20 mg/kg, with 10 mg/kg of HβDL being administered 30 min before the Doxo. Plasma CK-MB and LDH levels were analyzed. Cellular excitability and susceptibility to cardiac and cardiomyocyte arrhythmias were evaluated using in vivo (pharmacological cardiac stress) and in vitro (burst pacing) ECG protocols. Ca2+ dynamics were also investigated. The expression of CaMKII and its activation by phosphorylation and oxidation were evaluated by western blot, and molecular docking was used to analyze the possible interaction between DL and CaMKII. RESULTS Electrocardiograms showed that administration of 10 mg/kg of HβDL prevented Doxo-induced widening of the QRS complex and QT interval. HβDL also prevented cardiomyocyte electrophysiological changes that trigger cellular arrhythmias, such as increases in action potential duration and variability; decreased the occurrence of delayed afterdepolarizations (DADs) and triggered activities (TAs), and reduced the incidence of arrhythmia in vivo. Ca2+ waves and CaMKII overactivation caused by phosphorylation and oxidation were also decreased. In the in silico study, DL showed potential inhibitory interaction with CaMKII. CONCLUSION Our results show that 10 mg/kg of βDL protects the heart against Doxo-induced cardiotoxicity arrhythmias, and that this is probably due to its inhibitory effect on CaMKII hyperactivation.
Collapse
Affiliation(s)
- Aimée Obolari Durço
- Health Science Graduate Program, Federal University of Sergipe, Aracaju, Brazil
| | - Diego Santos Souza
- Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | - Paula Rhana
- Department of Physiology and Membrane Biology, University of California, Davis, USA
| | | | | | | | - Adriano Antunes de Souza Araujo
- Health Science Graduate Program, Federal University of Sergipe, Aracaju, Brazil; Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Brazil
| | | | - Danilo Roman-Campos
- Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | - Marcio Roberto Viana Dos Santos
- Health Science Graduate Program, Federal University of Sergipe, Aracaju, Brazil; Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil.
| |
Collapse
|
5
|
Ferreira G, Cardozo R, Sastre S, Costa C, Santander A, Chavarría L, Guizzo V, Puglisi J, Nicolson GL. Bacterial toxins and heart function: heat-labile Escherichia coli enterotoxin B promotes changes in cardiac function with possible relevance for sudden cardiac death. Biophys Rev 2023; 15:447-473. [PMID: 37681088 PMCID: PMC10480140 DOI: 10.1007/s12551-023-01100-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/11/2023] [Indexed: 09/09/2023] Open
Abstract
Bacterial toxins can cause cardiomyopathy, though it is not its most common cause. Some bacterial toxins can form pores in the membrane of cardiomyocytes, while others can bind to membrane receptors. Enterotoxigenic E. coli can secrete enterotoxins, including heat-resistant (ST) or labile (LT) enterotoxins. LT is an AB5-type toxin that can bind to specific cell receptors and disrupt essential host functions, causing several common conditions, such as certain diarrhea. The pentameric B subunit of LT, without A subunit (LTB), binds specifically to certain plasma membrane ganglioside receptors, found in lipid rafts of cardiomyocytes. Isolated guinea pig hearts and cardiomyocytes were exposed to different concentrations of purified LTB. In isolated hearts, mechanical and electrical alternans and an increment of heart rate variability, with an IC50 of ~0.2 μg/ml LTB, were observed. In isolated cardiomyocytes, LTB promoted significant decreases in the amplitude and the duration of action potentials. Na+ currents were inhibited whereas L-type Ca2+ currents were augmented at their peak and their fast inactivation was promoted. Delayed rectifier K+ currents decreased. Measurements of basal Ca2+ or Ca2+ release events in cells exposed to LTB suggest that LTB impairs Ca2+ homeostasis. Impaired calcium homeostasis is linked to sudden cardiac death. The results are consistent with the recent view that the B subunit is not merely a carrier of the A subunit, having a role explaining sudden cardiac death in children (SIDS) infected with enterotoxigenic E. coli, explaining several epidemiological findings that establish a strong relationship between SIDS and ETEC E. coli. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-023-01100-6.
Collapse
Affiliation(s)
- Gonzalo Ferreira
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Romina Cardozo
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Santiago Sastre
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics and Centro de Investigaciones Biomédicas (CeInBio), Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Carlos Costa
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Axel Santander
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Luisina Chavarría
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Valentina Guizzo
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - José Puglisi
- College of Medicine, California North State University, 9700 West Taron Drive, Elk Grove, CA 95757 USA
| | - G. L. Nicolson
- Institute for Molecular Medicine, Beach, Huntington, CA USA
| |
Collapse
|
6
|
Baumgartner TJ, Haghighijoo Z, Goode NA, Dvorak NM, Arman P, Laezza F. Voltage-Gated Na + Channels in Alzheimer's Disease: Physiological Roles and Therapeutic Potential. Life (Basel) 2023; 13:1655. [PMID: 37629512 PMCID: PMC10455313 DOI: 10.3390/life13081655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/11/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and is classically characterized by two major histopathological abnormalities: extracellular plaques composed of amyloid beta (Aβ) and intracellular hyperphosphorylated tau. Due to the progressive nature of the disease, it is of the utmost importance to develop disease-modifying therapeutics that tackle AD pathology in its early stages. Attenuation of hippocampal hyperactivity, one of the earliest neuronal abnormalities observed in AD brains, has emerged as a promising strategy to ameliorate cognitive deficits and abate the spread of neurotoxic species. This aberrant hyperactivity has been attributed in part to the dysfunction of voltage-gated Na+ (Nav) channels, which are central mediators of neuronal excitability. Therefore, targeting Nav channels is a promising strategy for developing disease-modifying therapeutics that can correct aberrant neuronal phenotypes in early-stage AD. This review will explore the role of Nav channels in neuronal function, their connections to AD pathology, and their potential as therapeutic targets.
Collapse
Affiliation(s)
| | | | | | | | | | - Fernanda Laezza
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA; (T.J.B.); (Z.H.); (N.A.G.); (N.M.D.); (P.A.)
| |
Collapse
|
7
|
Filho CEB, Barbosa AHP, Nicolau LAD, Medeiros JVR, Pires-Oliveira M, dos Santos Póvoa RM, Govato TCP, Júnior HJF, de Carvalho RG, Luna-Filho B, Sabia Tallo F, de Araújo EA, Padrão Tavares JG, Arida RM, Caricati-Neto A, Menezes-Rodrigues FS. Pharmacological Modulation by Low Molecular Weight Heparin of Purinergic Signaling in Cardiac Cells Prevents Arrhythmia and Lethality Induced by Myocardial Infarction. J Cardiovasc Dev Dis 2023; 10:jcdd10030103. [PMID: 36975867 PMCID: PMC10058697 DOI: 10.3390/jcdd10030103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Background: Although several studies suggest that heparins prevent arrhythmias caused by acute myocardial infarction (AMI), the molecular mechanisms involved remain unclear. To investigate the involvement of pharmacological modulation of adenosine (ADO) signaling in cardiac cells by a low-molecular weight heparin (enoxaparin; ENOX) used in AMI therapy, the effects of ENOX on the incidences of ventricular arrhythmias (VA), atrioventricular block (AVB), and lethality (LET) induced by cardiac ischemia and reperfusion (CIR) were evaluated, with or without ADO signaling blockers. Methods: To induce CIR, adult male Wistar rats were anesthetized and subjected to CIR. Electrocardiogram (ECG) analysis was used to evaluate CIR-induced VA, AVB, and LET incidence, after treatment with ENOX. ENOX effects were evaluated in the absence or presence of an ADO A1-receptor antagonist (DPCPX) and/or an inhibitor of ABC transporter-mediated cAMP efflux (probenecid, PROB). Results: VA incidence was similar between ENOX-treated (66%) and control rats (83%), but AVB (from 83% to 33%) and LET (from 75% to 25%) incidences were significantly lower in rats treated with ENOX. These cardioprotective effects were blocked by either PROB or DPCPX. Conclusion: These results indicate that ENOX was effective in preventing severe and lethal arrhythmias induced by CIR due to pharmacological modulation of ADO signaling in cardiac cells, suggesting that this cardioprotective strategy could be promising in AMI therapy.
Collapse
Affiliation(s)
- Carlos Eduardo Braga Filho
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil
| | | | | | - Jand Venes Rolim Medeiros
- Department of Biotechnology, Universidade Federal do Delta do Parnaíba (UFDPar), Parnaíba 64202-020, PI, Brazil
| | - Marcelo Pires-Oliveira
- União Metropolitana de Educação e Cultura–School of Medicine (UNIME), Lauro de Freitas 42700-000, BA, Brazil
| | - Rui Manuel dos Santos Póvoa
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil
| | | | - Hézio Jadir Fernandes Júnior
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil
| | - Rafael Guzella de Carvalho
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil
| | - Bráulio Luna-Filho
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil
| | - Fernando Sabia Tallo
- Department of Urgency and Emergency Care, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil
| | - Erisvaldo Amarante de Araújo
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil
| | | | - Ricardo Mario Arida
- Department of Physiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, SP, Brazil
| | - Afonso Caricati-Neto
- Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, SP, Brazil
| | | |
Collapse
|
8
|
Yuan G, Cao C, Cao D, Li B, Li X, Li H, Shen H, Wang Z, Chen G. Receptor-interacting protein 3-phosphorylated Ca 2+ /calmodulin-dependent protein kinase II and mixed lineage kinase domain-like protein mediate intracerebral hemorrhage-induced neuronal necroptosis. J Neurochem 2023; 164:94-114. [PMID: 36424866 DOI: 10.1111/jnc.15731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/15/2022] [Accepted: 11/13/2022] [Indexed: 11/26/2022]
Abstract
Necroptosis-mediated cell death is an important mechanism in intracerebral hemorrhage (ICH)-induced secondary brain injury (SBI). Our previous study has demonstrated that receptor-interacting protein 1 (RIP1) mediated necroptosis in SBI after ICH. However, further mechanisms, such as the roles of receptor-interacting protein 3 (RIP3), mixed lineage kinase domain-like protein (MLKL), and Ca2+ /calmodulin-dependent protein kinase II (CaMK II), remain unclear. We hypothesized that RIP3, MLKL, and CaMK II might participate in necroptosis after ICH, including their phosphorylation. The ICH model was induced by autologous blood injection. First, we found the activation of necroptosis after ICH in brain tissues surrounding the hematoma (propidium iodide staining). Meanwhile, the phosphorylation and expression of RIP3, MLKL, and CaMK II were differently up-regulated (western blotting and immunofluorescent staining). The specific inhibitors could suppress RIP3, MLKL, and CaMK II (GSK'872 for RIP3, necrosulfonamide for MLKL, and KN-93 for CaMK II). We found the necroptosis surrounding the hematoma and the concrete interactions in RIP3-MLKL/RIP3-CaMK II also both decreased after the specific intervention (co-immunoprecipitation). Then we conducted the short-/long-term neurobehavioral tests, and the rats with specific inhibition mostly had better performance. We also found less blood-brain barrier (BBB) injury, and less neuron loss (Nissl staining) in intervention groups, which supported the neurobehavioral tests. Besides, oxidative stress and inflammation were also alleviated with intervention, which had significant less reactive oxygen species (ROS), tumor necrosis factor (TNF)-α, lactate dehydrogenase (LDH), Iba1, and GFAP surrounding the hematoma. These results confirmed that RIP3-phosphorylated MLKL and CaMK II participate in ICH-induced necroptosis and could provide potential targets for the treatment of ICH patients.
Collapse
Affiliation(s)
- Guiqiang Yuan
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Cheng Cao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Demao Cao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bing Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
9
|
Beghi S, Furmanik M, Jaminon A, Veltrop R, Rapp N, Wichapong K, Bidar E, Buschini A, Schurgers LJ. Calcium Signalling in Heart and Vessels: Role of Calmodulin and Downstream Calmodulin-Dependent Protein Kinases. Int J Mol Sci 2022; 23:ijms232416139. [PMID: 36555778 PMCID: PMC9783221 DOI: 10.3390/ijms232416139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Cardiovascular disease is the major cause of death worldwide. The success of medication and other preventive measures introduced in the last century have not yet halted the epidemic of cardiovascular disease. Although the molecular mechanisms of the pathophysiology of the heart and vessels have been extensively studied, the burden of ischemic cardiovascular conditions has risen to become a top cause of morbidity and mortality. Calcium has important functions in the cardiovascular system. Calcium is involved in the mechanism of excitation-contraction coupling that regulates numerous events, ranging from the production of action potentials to the contraction of cardiomyocytes and vascular smooth muscle cells. Both in the heart and vessels, the rise of intracellular calcium is sensed by calmodulin, a protein that regulates and activates downstream kinases involved in regulating calcium signalling. Among them is the calcium calmodulin kinase family, which is involved in the regulation of cardiac functions. In this review, we present the current literature regarding the role of calcium/calmodulin pathways in the heart and vessels with the aim to summarize our mechanistic understanding of this process and to open novel avenues for research.
Collapse
Affiliation(s)
- Sofia Beghi
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 11A, 43124 Parma, Italy
- Correspondence: ; Tel.: +39-3408473527
| | - Malgorzata Furmanik
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Armand Jaminon
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Rogier Veltrop
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Nikolas Rapp
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Kanin Wichapong
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Elham Bidar
- Department of Cardiothoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands
| | - Annamaria Buschini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 11A, 43124 Parma, Italy
| | - Leon J. Schurgers
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
10
|
Dago M, Crespo-García T, Cámara-Checa A, Rapún J, Rubio-Alarcón M, Marín M, Tamargo J, Caballero R, Delpón E. Empagliflozin and Dapagliflozin Increase Na + and Inward Rectifier K + Current Densities in Human Cardiomyocytes Derived from Induced Pluripotent Stem Cells (hiPSC-CMs). Cells 2022; 11:3707. [PMID: 36496967 PMCID: PMC9738206 DOI: 10.3390/cells11233707] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022] Open
Abstract
Dapagliflozin (dapa) and empagliflozin (empa) are sodium-glucose cotransporter-2 inhibitors (SGLT2is) that reduce morbidity and mortality in heart failure (HF) patients. Sodium and inward rectifier K+ currents (INa and IK1), carried by Nav1.5 and Kir2.1 channels, respectively, are responsible for cardiac excitability, conduction velocity, and refractoriness. In HF patients, Nav1.5 and Kir2.1 expression are reduced, enhancing risk of arrhythmia. Incubation with dapa or empa (24-h,1 µM) significantly increased INa and IK1 densities recorded in human-induced pluripotent stem cell-cardiomyocytes (hiPSC-CMs) using patch-clamp techniques. Dapa and empa, respectively, shifted to more hyperpolarized potentials the INa activation and inactivation curves. Identical effects were observed in Chinese hamster ovary (CHO) cells that were incubated with dapa or empa and transiently expressed human Nav1.5 channels. Conversely, empa but not dapa significantly increased human Kir2.1 currents in CHO cells. Dapa and empa effects on INa and IK1 were also apparent in Ca-calmodulin kinase II-silenced CHO cells. Cariporide, a Na+/H+ exchanger type 1 (NHE1) inhibitor, did not increase INa or IK1 in hiPSC-CMs. Dapa and empa at therapeutic concentrations increased INa and IK1 in healthy human cardiomyocytes. These SGLT2is could represent a new class of drugs with a novel and long-pursued antiarrhythmic mechanism of action.
Collapse
Affiliation(s)
- María Dago
- Department of Pharmacology and Toxicology, School of Medicine, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Teresa Crespo-García
- Department of Pharmacology and Toxicology, School of Medicine, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Anabel Cámara-Checa
- Department of Pharmacology and Toxicology, School of Medicine, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Josu Rapún
- Department of Pharmacology and Toxicology, School of Medicine, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marcos Rubio-Alarcón
- Department of Pharmacology and Toxicology, School of Medicine, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María Marín
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Juan Tamargo
- Department of Pharmacology and Toxicology, School of Medicine, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Ricardo Caballero
- Department of Pharmacology and Toxicology, School of Medicine, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Eva Delpón
- Department of Pharmacology and Toxicology, School of Medicine, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
11
|
Abdelsayed M, Page D, Ruben PC. ARumenamides: A novel class of potential antiarrhythmic compounds. Front Pharmacol 2022; 13:976903. [PMID: 36249789 PMCID: PMC9554508 DOI: 10.3389/fphar.2022.976903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Most therapeutics targeting cardiac voltage-gated sodium channels (Nav1.5) attenuate the sodium current (INa) conducted through the pore of the protein. Whereas these drugs may be beneficial for disease states associated with gain-of-function (GoF) in Nav1.5, few attempts have been made to therapeutically treat loss-of-function (LoF) conditions. The primary impediment to designing efficacious therapies for LoF is a tendency for drugs to occlude the Nav1.5 central pore. We hypothesized that molecular candidates with a high affinity for the fenestrations would potentially reduce pore block.Methods and Results: Virtual docking was performed on 21 compounds, selected based on their affinity for the fenestrations in Nav1.5, which included a class of sulfonamides and carboxamides we identify as ARumenamide (AR). Six ARs, AR-051, AR-189, AR-674, AR-802, AR-807 and AR-811, were further docked against Nav1.5 built on NavAb and rNav1.5. Based on the virtual docking results, these particular ARs have a high affinity for Domain III-IV and Domain VI-I fenestrations. Upon functional characterization, a trend was observed in the effects of the six ARs on INa. An inverse correlation was established between the aromaticity of the AR’s functional moieties and compound block. Due to its aromaticity, AR-811 blocked INa the least compared with other aromatic ARs, which also decelerated fast inactivation onset. AR-674, with its aliphatic functional group, significantly suppresses INa and enhances use-dependence in Nav1.5. AR-802 and AR-811, in particular, decelerated fast inactivation kinetics in the most common Brugada Syndrome Type 1 and Long-QT Syndrome Type 3 mutant, E1784K, without affecting peak or persistent INa.Conclusion: Our hypothesis that LoF in Nav1.5 may be therapeutically treated was supported by the discovery of ARs, which appear to preferentially block the fenestrations. ARs with aromatic functional groups as opposed to aliphatic groups efficaciously maintained Nav1.5 availability. We predict that these bulkier side groups may have a higher affinity for the hydrophobic milieu of the fenestrations, remaining there rather than in the central pore of the channel. Future refinements of AR compound structures and additional validation by molecular dynamic simulations and screening against more Brugada variants will further support their potential benefits in treating certain LoF cardiac arrhythmias.
Collapse
Affiliation(s)
- Mena Abdelsayed
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
- Department of Medicine, Stanford University, Stanford, CA, United States
- *Correspondence: Mena Abdelsayed, ; Peter C. Ruben,
| | - Dana Page
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Peter C. Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- *Correspondence: Mena Abdelsayed, ; Peter C. Ruben,
| |
Collapse
|
12
|
Rhana P, Barros GM, Santos VCDO, Costa AD, Santos DMD, Fernandes-Braga W, Durço AO, Santos MRV, Roman-Campos D, Vasconcelos CMLD, Cruz JS, Souza DS. S-limonene protects the heart in an experimental model of myocardial infarction induced by isoproterenol: Possible involvement of mitochondrial reactive oxygen species. Eur J Pharmacol 2022; 930:175134. [PMID: 35843301 DOI: 10.1016/j.ejphar.2022.175134] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/19/2022] [Accepted: 06/30/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Myocardial infarction (MI) is associated with high mortality rates, despite the fact that there are therapies available. Importantly, excessive oxidative stress may contribute to ischemia/reperfusion injury leading to death related to MI. In this scenario, naturally occurring antioxidant compounds are an important source of possible therapeutic intervention. Thus, this study sought to elucidate the mechanisms of cardioprotection of s-limonene in an isoproterenol-induced MI animal model. METHODS Wistar rats were treated with 1 mg/kg s-limonene (SL) or 100 mg/kg N-acetylcysteine (NAC, positive control) once, 30 min after isoproterenol-induced MI (applied in two doses with a 24 h interval). The protective effects of SL in the heart were examined via the serum level of creatine kinase myocardial band (CK-MB), electrocardiographic profile, infarct size and histological parameters. Using isolated cardiomyocytes, we also assessed calcium transient amplitude, cytosolic and mitochondrial oxidative stress and the expression of proteins related to oxidative stress. RESULTS SL at a concentration of 1 mg/kg attenuated isoproterenol-induced MI injury, by preventing ST-segment elevation and QTc prolongation in the ECG. SL reduced the infarct size and collagen content in cardiac tissue. At the cellular level, SL prevented increased Ca2+, associated with attenuation of cytosolic and mitochondrial oxidative stress. These changes resulted in a reduction of the oxidized form of Ca2+ Calmodulin-Dependent Kinase II (CaMKII) and restored superoxide dismutase and glutathione peroxidase activity. CONCLUSION Our data show that s-limonene promotes cardioprotection against MI injury, probably through inhibition of increased Ca2+ and attenuation of oxidative stress via CaMKII.
Collapse
Affiliation(s)
- Paula Rhana
- Department of Physiology and Membrane Biology, University of California Davis, Davis, USA; Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Alexandre Dantas Costa
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Danillo Menezes Dos Santos
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil; Health Science Graduate Program, Federal University of Sergipe, Aracaju, Brazil
| | - Weslley Fernandes-Braga
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Aimée Obolari Durço
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil; Health Science Graduate Program, Federal University of Sergipe, Aracaju, Brazil
| | - Márcio Roberto Viana Santos
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil; Health Science Graduate Program, Federal University of Sergipe, Aracaju, Brazil
| | - Danilo Roman-Campos
- Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | | | - Jader Santos Cruz
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| | - Diego Santos Souza
- Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
13
|
Zybura AS, Sahoo FK, Hudmon A, Cummins TR. CaMKII Inhibition Attenuates Distinct Gain-of-Function Effects Produced by Mutant Nav1.6 Channels and Reduces Neuronal Excitability. Cells 2022; 11:2108. [PMID: 35805192 PMCID: PMC9266207 DOI: 10.3390/cells11132108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/16/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022] Open
Abstract
Aberrant Nav1.6 activity can induce hyperexcitability associated with epilepsy. Gain-of-function mutations in the SCN8A gene encoding Nav1.6 are linked to epilepsy development; however, the molecular mechanisms mediating these changes are remarkably heterogeneous and may involve post-translational regulation of Nav1.6. Because calcium/calmodulin-dependent protein kinase II (CaMKII) is a powerful modulator of Nav1.6 channels, we investigated whether CaMKII modulates disease-linked Nav1.6 mutants. Whole-cell voltage clamp recordings in ND7/23 cells show that CaMKII inhibition of the epilepsy-related mutation R850Q largely recapitulates the effects previously observed for WT Nav1.6. We also characterized a rare missense variant, R639C, located within a regulatory hotspot for CaMKII modulation of Nav1.6. Prediction software algorithms and electrophysiological recordings revealed gain-of-function effects for R639C mutant channel activity, including increased sodium currents and hyperpolarized activation compared to WT Nav1.6. Importantly, the R639C mutation ablates CaMKII phosphorylation at a key regulatory site, T642, and, in contrast to WT and R850Q channels, displays a distinct response to CaMKII inhibition. Computational simulations demonstrate that modeled neurons harboring the R639C or R850Q mutations are hyperexcitable, and simulating the effects of CaMKII inhibition on Nav1.6 activity in modeled neurons differentially reduced hyperexcitability. Acute CaMKII inhibition may represent a promising mechanism to attenuate gain-of-function effects produced by Nav1.6 mutations.
Collapse
Affiliation(s)
- Agnes S. Zybura
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Firoj K. Sahoo
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; (F.K.S.); (A.H.)
| | - Andy Hudmon
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; (F.K.S.); (A.H.)
| | - Theodore R. Cummins
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Biology Department, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| |
Collapse
|
14
|
Chakouri N, Rivas S, Roybal D, Yang L, Diaz J, Hsu A, Mahling R, Chen BX, Owoyemi JO, DiSilvestre D, Sirabella D, Corneo B, Tomaselli GF, Dick IE, Marx SO, Ben-Johny M. Fibroblast growth factor homologous factors serve as a molecular rheostat in tuning arrhythmogenic cardiac late sodium current. NATURE CARDIOVASCULAR RESEARCH 2022; 1:1-13. [PMID: 35662881 PMCID: PMC9161660 DOI: 10.1038/s44161-022-00060-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/04/2022] [Indexed: 05/20/2023]
Abstract
Voltage-gated sodium (Nav1.5) channels support the genesis and brisk spatial propagation of action potentials in the heart. Disruption of NaV1.5 inactivation results in a small persistent Na influx known as late Na current (I Na,L), which has emerged as a common pathogenic mechanism in both congenital and acquired cardiac arrhythmogenic syndromes. Here, using low-noise multi-channel recordings in heterologous systems, LQTS3 patient-derived iPSCs cardiomyocytes, and mouse ventricular myocytes, we demonstrate that the intracellular fibroblast growth factor homologous factors (FHF1-4) tune pathogenic I Na,L in an isoform-specific manner. This scheme suggests a complex orchestration of I Na,L in cardiomyocytes that may contribute to variable disease expressivity of NaV1.5 channelopathies. We further leverage these observations to engineer a peptide-inhibitor of I Na,L with a higher efficacy as compared to a well-established small-molecule inhibitor. Overall, these findings lend insights into molecular mechanisms underlying FHF regulation of I Na,L in pathophysiology and outline potential therapeutic avenues.
Collapse
Affiliation(s)
- Nourdine Chakouri
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Sharen Rivas
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Daniel Roybal
- Department of Pharmacology, Columbia University, New York, NY, USA
| | - Lin Yang
- Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| | - Johanna Diaz
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Allen Hsu
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Ryan Mahling
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Bi-Xing Chen
- Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| | | | - Deborah DiSilvestre
- Department Physiology, University of Maryland, Baltimore, MD, USA
- Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Dario Sirabella
- Columbia Stem Cell Initiative, Stem Cell Core, Columbia University Irving Medical Center, NY, USA
| | - Barbara Corneo
- Columbia Stem Cell Initiative, Stem Cell Core, Columbia University Irving Medical Center, NY, USA
| | - Gordon F. Tomaselli
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
- Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Ivy E. Dick
- Department Physiology, University of Maryland, Baltimore, MD, USA
| | - Steven O. Marx
- Department of Pharmacology, Columbia University, New York, NY, USA
- Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| | - Manu Ben-Johny
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| |
Collapse
|
15
|
Horváth B, Szentandrássy N, Almássy J, Dienes C, Kovács ZM, Nánási PP, Banyasz T. Late Sodium Current of the Heart: Where Do We Stand and Where Are We Going? Pharmaceuticals (Basel) 2022; 15:ph15020231. [PMID: 35215342 PMCID: PMC8879921 DOI: 10.3390/ph15020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 02/05/2023] Open
Abstract
Late sodium current has long been linked to dysrhythmia and contractile malfunction in the heart. Despite the increasing body of accumulating information on the subject, our understanding of its role in normal or pathologic states is not complete. Even though the role of late sodium current in shaping action potential under physiologic circumstances is debated, it’s unquestioned role in arrhythmogenesis keeps it in the focus of research. Transgenic mouse models and isoform-specific pharmacological tools have proved useful in understanding the mechanism of late sodium current in health and disease. This review will outline the mechanism and function of cardiac late sodium current with special focus on the recent advances of the area.
Collapse
Affiliation(s)
- Balázs Horváth
- Department of Physiology, University of Debrecen, 4032 Debrecen, Hungary; (B.H.); (N.S.); (J.A.); (C.D.); (Z.M.K.); (P.P.N.)
| | - Norbert Szentandrássy
- Department of Physiology, University of Debrecen, 4032 Debrecen, Hungary; (B.H.); (N.S.); (J.A.); (C.D.); (Z.M.K.); (P.P.N.)
- Department of Basic Medical Sciences, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary
| | - János Almássy
- Department of Physiology, University of Debrecen, 4032 Debrecen, Hungary; (B.H.); (N.S.); (J.A.); (C.D.); (Z.M.K.); (P.P.N.)
| | - Csaba Dienes
- Department of Physiology, University of Debrecen, 4032 Debrecen, Hungary; (B.H.); (N.S.); (J.A.); (C.D.); (Z.M.K.); (P.P.N.)
| | - Zsigmond Máté Kovács
- Department of Physiology, University of Debrecen, 4032 Debrecen, Hungary; (B.H.); (N.S.); (J.A.); (C.D.); (Z.M.K.); (P.P.N.)
| | - Péter P. Nánási
- Department of Physiology, University of Debrecen, 4032 Debrecen, Hungary; (B.H.); (N.S.); (J.A.); (C.D.); (Z.M.K.); (P.P.N.)
- Department of Dental Physiology and Pharmacology, University of Debrecen, 4032 Debrecen, Hungary
| | - Tamas Banyasz
- Department of Physiology, University of Debrecen, 4032 Debrecen, Hungary; (B.H.); (N.S.); (J.A.); (C.D.); (Z.M.K.); (P.P.N.)
- Correspondence: ; Tel.: +36-(52)-255-575; Fax: +36-(52)-255-116
| |
Collapse
|
16
|
Daimi H, Lozano-Velasco E, Aranega A, Franco D. Genomic and Non-Genomic Regulatory Mechanisms of the Cardiac Sodium Channel in Cardiac Arrhythmias. Int J Mol Sci 2022; 23:1381. [PMID: 35163304 PMCID: PMC8835759 DOI: 10.3390/ijms23031381] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 12/19/2022] Open
Abstract
Nav1.5 is the predominant cardiac sodium channel subtype, encoded by the SCN5A gene, which is involved in the initiation and conduction of action potentials throughout the heart. Along its biosynthesis process, Nav1.5 undergoes strict genomic and non-genomic regulatory and quality control steps that allow only newly synthesized channels to reach their final membrane destination and carry out their electrophysiological role. These regulatory pathways are ensured by distinct interacting proteins that accompany the nascent Nav1.5 protein along with different subcellular organelles. Defects on a large number of these pathways have a tremendous impact on Nav1.5 functionality and are thus intimately linked to cardiac arrhythmias. In the present review, we provide current state-of-the-art information on the molecular events that regulate SCN5A/Nav1.5 and the cardiac channelopathies associated with defects in these pathways.
Collapse
Affiliation(s)
- Houria Daimi
- Biochemistry and Molecular Biology Laboratory, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Estefanía Lozano-Velasco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| | - Amelia Aranega
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| |
Collapse
|
17
|
Detrimental proarrhythmogenic interaction of Ca 2+/calmodulin-dependent protein kinase II and Na V1.8 in heart failure. Nat Commun 2021; 12:6586. [PMID: 34782600 PMCID: PMC8593192 DOI: 10.1038/s41467-021-26690-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/14/2021] [Indexed: 12/19/2022] Open
Abstract
An interplay between Ca2+/calmodulin-dependent protein kinase IIδc (CaMKIIδc) and late Na+ current (INaL) is known to induce arrhythmias in the failing heart. Here, we elucidate the role of the sodium channel isoform NaV1.8 for CaMKIIδc-dependent proarrhythmia. In a CRISPR-Cas9-generated human iPSC-cardiomyocyte homozygous knock-out of NaV1.8, we demonstrate that NaV1.8 contributes to INaL formation. In addition, we reveal a direct interaction between NaV1.8 and CaMKIIδc in cardiomyocytes isolated from patients with heart failure (HF). Using specific blockers of NaV1.8 and CaMKIIδc, we show that NaV1.8-driven INaL is CaMKIIδc-dependent and that NaV1.8-inhibtion reduces diastolic SR-Ca2+ leak in human failing cardiomyocytes. Moreover, increased mortality of CaMKIIδc-overexpressing HF mice is reduced when a NaV1.8 knock-out is introduced. Cellular and in vivo experiments reveal reduced ventricular arrhythmias without changes in HF progression. Our work therefore identifies a proarrhythmic CaMKIIδc downstream target which may constitute a prognostic and antiarrhythmic strategy.
Collapse
|
18
|
Lee HL, Chang PC, Wo HT, Liu HT, Wen MS, Chou CC. Beneficial Electrophysiological Effects of Rotigaptide Are Unable to Suppress Therapeutic Hypothermia-Provoked Ventricular Fibrillation in Failing Rabbit Hearts With Acute Ischemia-Reperfusion Injury. Front Physiol 2021; 12:726389. [PMID: 34588996 PMCID: PMC8473906 DOI: 10.3389/fphys.2021.726389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/18/2021] [Indexed: 11/26/2022] Open
Abstract
Aims: Whether therapeutic hypothermia (TH) is proarrhythmic in preexisting failing hearts with acute ischemia–reperfusion (IR) injury is unknown. Additionally, the effectiveness of rotigaptide on improving conduction slowing in hearts with IR injury is ambiguous. We investigated the electrophysiological effects of TH and rotigaptide in failing rabbit hearts with acute IR injury and determined the underlying molecular mechanisms. Methods and Results: Heart failure was induced by right ventricular pacing (320 beats/min, 4 weeks). Rabbits with pacing-induced heart failure were randomly divided into TH (n = 14) and non-TH (n = 7) groups. The IR rabbit model was created by ligating the coronary artery for 60 min, followed by reperfusion for 15 min in vivo. Then, the hearts were excised quickly and Langendorff-perfused for simultaneous voltage and intracellular Ca2+ (Cai) optical mapping. Electrophysiological studies were conducted, and vulnerability to ventricular fibrillation (VF) was evaluated using pacing protocols. TH (33°C) was instituted after baseline studies, and electrophysiological studies were repeated. Rotigaptide (300 nM) was infused for 20 min, and electrophysiological studies were repeated under TH. Cardiac tissues were sampled for Western blotting. TH increased the dispersion and beat-to-beat variability of action potential duration (APD), aggravated conduction slowing, and prolonged Cai decay to facilitate spatially discordant alternans (SDA) and VF induction. Rotigaptide reduced the dispersion and beat-to-beat variability of APD and improved slowed conduction to defer the onset of arrhythmogenic SDA by dynamic pacing and elevate the pacing threshold of VF during TH. However, the effect of rotigaptide on TH-enhanced VF inducibility was statistically insignificant. TH attenuated IR-induced dysregulation of protein expression, but its functional role remained uncertain. Conclusion: Therapeutic hypothermia is proarrhythmic in failing hearts with acute IR injury. Rotigaptide improves TH-induced APD dispersion and beat-to-beat variability and conduction disturbance to defer the onset of arrhythmogenic SDA and elevate the VF threshold by dynamic pacing, but these beneficial electrophysiological effects are unable to suppress TH-enhanced VF inducibility significantly.
Collapse
Affiliation(s)
- Hui-Ling Lee
- Department of Anesthesia, Chang Gung Memorial Hospital, Taipei City, Taiwan
| | - Po-Cheng Chang
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Hung-Ta Wo
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Hao-Tien Liu
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Ming-Shien Wen
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,Chang Gung University College of Medicine, Taoyuan City, Taiwan
| | - Chung-Chuan Chou
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,Chang Gung University College of Medicine, Taoyuan City, Taiwan
| |
Collapse
|
19
|
Rivaud MR, Delmar M, Remme CA. Heritable arrhythmia syndromes associated with abnormal cardiac sodium channel function: ionic and non-ionic mechanisms. Cardiovasc Res 2021; 116:1557-1570. [PMID: 32251506 PMCID: PMC7341171 DOI: 10.1093/cvr/cvaa082] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/01/2020] [Accepted: 04/01/2020] [Indexed: 12/19/2022] Open
Abstract
The cardiac sodium channel NaV1.5, encoded by the SCN5A gene, is responsible for the fast upstroke of the action potential. Mutations in SCN5A may cause sodium channel dysfunction by decreasing peak sodium current, which slows conduction and facilitates reentry-based arrhythmias, and by enhancing late sodium current, which prolongs the action potential and sets the stage for early afterdepolarization and arrhythmias. Yet, some NaV1.5-related disorders, in particular structural abnormalities, cannot be directly or solely explained on the basis of defective NaV1.5 expression or biophysics. An emerging concept that may explain the large disease spectrum associated with SCN5A mutations centres around the multifunctionality of the NaV1.5 complex. In this alternative view, alterations in NaV1.5 affect processes that are independent of its canonical ion-conducting role. We here propose a novel classification of NaV1.5 (dys)function, categorized into (i) direct ionic effects of sodium influx through NaV1.5 on membrane potential and consequent action potential generation, (ii) indirect ionic effects of sodium influx on intracellular homeostasis and signalling, and (iii) non-ionic effects of NaV1.5, independent of sodium influx, through interactions with macromolecular complexes within the different microdomains of the cardiomyocyte. These indirect ionic and non-ionic processes may, acting alone or in concert, contribute significantly to arrhythmogenesis. Hence, further exploration of these multifunctional effects of NaV1.5 is essential for the development of novel preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Mathilde R Rivaud
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam UMC (location AMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, Meigberdreef 15, 1105AZ Amsterdam, The Netherlands
| | - Mario Delmar
- The Leon H. Charney Division of Cardiology, New York University School of Medicine, 435 E 30th St, NSB 707, New York, NY 10016, USA
| | - Carol Ann Remme
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam UMC (location AMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, Meigberdreef 15, 1105AZ Amsterdam, The Netherlands
| |
Collapse
|
20
|
Trum M, Riechel J, Wagner S. Cardioprotection by SGLT2 Inhibitors-Does It All Come Down to Na +? Int J Mol Sci 2021; 22:ijms22157976. [PMID: 34360742 PMCID: PMC8347698 DOI: 10.3390/ijms22157976] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022] Open
Abstract
Sodium-glucose co-transporter 2 inhibitors (SGLT2i) are emerging as a new treatment strategy for heart failure with reduced ejection fraction (HFrEF) and—depending on the wistfully awaited results of two clinical trials (DELIVER and EMPEROR-Preserved)—may be the first drug class to improve cardiovascular outcomes in patients suffering from heart failure with preserved ejection fraction (HFpEF). Proposed mechanisms of action of this class of drugs are diverse and include metabolic and hemodynamic effects as well as effects on inflammation, neurohumoral activation, and intracellular ion homeostasis. In this review we focus on the growing body of evidence for SGLT2i-mediated effects on cardiac intracellular Na+ as an upstream mechanism. Therefore, we will first give a short overview of physiological cardiomyocyte Na+ handling and its deterioration in heart failure. On this basis we discuss the salutary effects of SGLT2i on Na+ homeostasis by influencing NHE1 activity, late INa as well as CaMKII activity. Finally, we highlight the potential relevance of these effects for systolic and diastolic dysfunction as well as arrhythmogenesis.
Collapse
|
21
|
He J, Gong M, Wang Z, Liu D, Xie B, Luo C, Li G, Tse G, Liu T. Cardiac abnormalities after induction of endoplasmic reticulum stress are associated with mitochondrial dysfunction and connexin43 expression. Clin Exp Pharmacol Physiol 2021; 48:1371-1381. [PMID: 34133785 DOI: 10.1111/1440-1681.13541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/30/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023]
Abstract
The endoplasmic reticulum (ER) is responsible for protein synthesis and calcium storage. ER stress, reflected by protein unfolding and calcium handling abnormalities, has been studied as a pathogenic factor in cardiovascular diseases. The aim of this study is to examine the effects of ER stress on mechanical and electrophysiological functions in the heart and explore the underlying molecular mechanisms. A total of 30 rats were randomly divided into control, ER stress inducer (tunicamycin[TN]) and ER stress inhibitor (tunicamycin+4-phenylbutyric acid [4-PBA]) groups. ER stress induction led to significantly systolic and diastolic dysfunction as reflected by maximal increasing/decreasing rate of left intraventricular pressure (±dp/dt), left ventricular peaksystolic pressure(LVSP) and LV end-diastolic pressure(LVEDP). Epicardial mapping performed in vivo revealed reduced conduction velocity and increased conduction heterogeneity associated with the development of spontaneous ventricular tachycardia. Masson's trichrome staining revealed marked fibrosis in the myocardial interstitial and sub-pericardial regions, and thickened epicardium. Western blot analysis revealed increased pro-fibrotic factor transforming growth factor-β1 (TGF-β1), decreased mitochondrial biogenesis protein peroxlsome proliferator-activated receptor-γ coactlvator-1α (PGC-1a), and decreased mitochondrial fusion protein mitofusin-2 (MFN2). These changes were associated with mitochondria dysfunction and connexin 43(CX43)translocation to mitochondria. These abnormalities can be partially prevented by the ER stress inhibitor 4-PBA. Our study shows that ER stress induction can produce cardiac electrical and mechanism dysfunction as well as structural remodelling. Mitochondrial function alterations are contributed by CX43 transposition to mitochondria. These abnormalities can be partially prevented by the ER stress inhibitor 4-PBA.
Collapse
Affiliation(s)
- Jinli He
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Mengqi Gong
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China.,Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zaojia Wang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Daiqi Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Bingxin Xie
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Cunjin Luo
- School of Computer Science and Electronic Engineering, University of Essex, Colchester, UK
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.,Kent and Medway Medical School, Canterbury, UK
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
22
|
Non-Coding RNAs in the Cardiac Action Potential and Their Impact on Arrhythmogenic Cardiac Diseases. HEARTS 2021. [DOI: 10.3390/hearts2030026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cardiac arrhythmias are prevalent among humans across all age ranges, affecting millions of people worldwide. While cardiac arrhythmias vary widely in their clinical presentation, they possess shared complex electrophysiologic properties at cellular level that have not been fully studied. Over the last decade, our current understanding of the functional roles of non-coding RNAs have progressively increased. microRNAs represent the most studied type of small ncRNAs and it has been demonstrated that miRNAs play essential roles in multiple biological contexts, including normal development and diseases. In this review, we provide a comprehensive analysis of the functional contribution of non-coding RNAs, primarily microRNAs, to the normal configuration of the cardiac action potential, as well as their association to distinct types of arrhythmogenic cardiac diseases.
Collapse
|
23
|
Zybura A, Hudmon A, Cummins TR. Distinctive Properties and Powerful Neuromodulation of Na v1.6 Sodium Channels Regulates Neuronal Excitability. Cells 2021; 10:1595. [PMID: 34202119 PMCID: PMC8307729 DOI: 10.3390/cells10071595] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels (Navs) are critical determinants of cellular excitability. These ion channels exist as large heteromultimeric structures and their activity is tightly controlled. In neurons, the isoform Nav1.6 is highly enriched at the axon initial segment and nodes, making it critical for the initiation and propagation of neuronal impulses. Changes in Nav1.6 expression and function profoundly impact the input-output properties of neurons in normal and pathological conditions. While mutations in Nav1.6 may cause channel dysfunction, aberrant changes may also be the result of complex modes of regulation, including various protein-protein interactions and post-translational modifications, which can alter membrane excitability and neuronal firing properties. Despite decades of research, the complexities of Nav1.6 modulation in health and disease are still being determined. While some modulatory mechanisms have similar effects on other Nav isoforms, others are isoform-specific. Additionally, considerable progress has been made toward understanding how individual protein interactions and/or modifications affect Nav1.6 function. However, there is still more to be learned about how these different modes of modulation interact. Here, we examine the role of Nav1.6 in neuronal function and provide a thorough review of this channel's complex regulatory mechanisms and how they may contribute to neuromodulation.
Collapse
Affiliation(s)
- Agnes Zybura
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Biology Department, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Andy Hudmon
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA;
| | - Theodore R. Cummins
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Biology Department, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| |
Collapse
|
24
|
Kang PW, Chakouri N, Diaz J, Tomaselli GF, Yue DT, Ben-Johny M. Elementary mechanisms of calmodulin regulation of Na V1.5 producing divergent arrhythmogenic phenotypes. Proc Natl Acad Sci U S A 2021; 118:e2025085118. [PMID: 34021086 PMCID: PMC8166197 DOI: 10.1073/pnas.2025085118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In cardiomyocytes, NaV1.5 channels mediate initiation and fast propagation of action potentials. The Ca2+-binding protein calmodulin (CaM) serves as a de facto subunit of NaV1.5. Genetic studies and atomic structures suggest that this interaction is pathophysiologically critical, as human mutations within the NaV1.5 carboxy-terminus that disrupt CaM binding are linked to distinct forms of life-threatening arrhythmias, including long QT syndrome 3, a "gain-of-function" defect, and Brugada syndrome, a "loss-of-function" phenotype. Yet, how a common disruption in CaM binding engenders divergent effects on NaV1.5 gating is not fully understood, though vital for elucidating arrhythmogenic mechanisms and for developing new therapies. Here, using extensive single-channel analysis, we find that the disruption of Ca2+-free CaM preassociation with NaV1.5 exerts two disparate effects: 1) a decrease in the peak open probability and 2) an increase in persistent NaV openings. Mechanistically, these effects arise from a CaM-dependent switch in the NaV inactivation mechanism. Specifically, CaM-bound channels preferentially inactivate from the open state, while those devoid of CaM exhibit enhanced closed-state inactivation. Further enriching this scheme, for certain mutant NaV1.5, local Ca2+ fluctuations elicit a rapid recruitment of CaM that reverses the increase in persistent Na current, a factor that may promote beat-to-beat variability in late Na current. In all, these findings identify the elementary mechanism of CaM regulation of NaV1.5 and, in so doing, unravel a noncanonical role for CaM in tuning ion channel gating. Furthermore, our results furnish an in-depth molecular framework for understanding complex arrhythmogenic phenotypes of NaV1.5 channelopathies.
Collapse
Affiliation(s)
- Po Wei Kang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218;
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130
| | - Nourdine Chakouri
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032
| | - Johanna Diaz
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032
| | - Gordon F Tomaselli
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461
| | - David T Yue
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Manu Ben-Johny
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218;
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032
| |
Collapse
|
25
|
King DR, Entz M, Blair GA, Crandell I, Hanlon AL, Lin J, Hoeker GS, Poelzing S. The conduction velocity-potassium relationship in the heart is modulated by sodium and calcium. Pflugers Arch 2021; 473:557-571. [PMID: 33660028 PMCID: PMC7940307 DOI: 10.1007/s00424-021-02537-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/28/2021] [Accepted: 02/04/2021] [Indexed: 01/27/2023]
Abstract
The relationship between cardiac conduction velocity (CV) and extracellular potassium (K+) is biphasic, with modest hyperkalemia increasing CV and severe hyperkalemia slowing CV. Recent studies from our group suggest that elevating extracellular sodium (Na+) and calcium (Ca2+) can enhance CV by an extracellular pathway parallel to gap junctional coupling (GJC) called ephaptic coupling that can occur in the gap junction adjacent perinexus. However, it remains unknown whether these same interventions modulate CV as a function of K+. We hypothesize that Na+, Ca2+, and GJC can attenuate conduction slowing consequent to severe hyperkalemia. Elevating Ca2+ from 1.25 to 2.00 mM significantly narrowed perinexal width measured by transmission electron microscopy. Optically mapped, Langendorff-perfused guinea pig hearts perfused with increasing K+ revealed the expected biphasic CV-K+ relationship during perfusion with different Na+ and Ca2+ concentrations. Neither elevating Na+ nor Ca2+ alone consistently modulated the positive slope of CV-K+ or conduction slowing at 10-mM K+; however, combined Na+ and Ca2+ elevation significantly mitigated conduction slowing at 10-mM K+. Pharmacologic GJC inhibition with 30-μM carbenoxolone slowed CV without changing the shape of CV-K+ curves. A computational model of CV predicted that elevating Na+ and narrowing clefts between myocytes, as occur with perinexal narrowing, reduces the positive and negative slopes of the CV-K+ relationship but do not support a primary role of GJC or sodium channel conductance. These data demonstrate that combinatorial effects of Na+ and Ca2+ differentially modulate conduction during hyperkalemia, and enhancing determinants of ephaptic coupling may attenuate conduction changes in a variety of physiologic conditions.
Collapse
Affiliation(s)
- D Ryan King
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Michael Entz
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Grace A Blair
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Ian Crandell
- Center for Biostatistics and Health Data Science, Virginia Polytechnic Institute and State University, Roanoke, VA, USA
| | - Alexandra L Hanlon
- Center for Biostatistics and Health Data Science, Virginia Polytechnic Institute and State University, Roanoke, VA, USA
| | - Joyce Lin
- Department of Mathematics, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Gregory S Hoeker
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Steven Poelzing
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA.
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
- School of Medicine, Virginia Tech Carilion, Roanoke, VA, USA.
| |
Collapse
|
26
|
Saadeh K, Fazmin IT. Mitochondrial Dysfunction Increases Arrhythmic Triggers and Substrates; Potential Anti-arrhythmic Pharmacological Targets. Front Cardiovasc Med 2021; 8:646932. [PMID: 33659284 PMCID: PMC7917191 DOI: 10.3389/fcvm.2021.646932] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/26/2021] [Indexed: 12/31/2022] Open
Abstract
Incidence of cardiac arrhythmias increases significantly with age. In order to effectively stratify arrhythmic risk in the aging population it is crucial to elucidate the relevant underlying molecular mechanisms. The changes underlying age-related electrophysiological disruption appear to be closely associated with mitochondrial dysfunction. Thus, the present review examines the mechanisms by which age-related mitochondrial dysfunction promotes arrhythmic triggers and substrate. Namely, via alterations in plasmalemmal ionic currents (both sodium and potassium), gap junctions, cellular Ca2+ homeostasis, and cardiac fibrosis. Stratification of patients' mitochondrial function status permits application of appropriate anti-arrhythmic therapies. Here, we discuss novel potential anti-arrhythmic pharmacological interventions that specifically target upstream mitochondrial function and hence ameliorates the need for therapies targeting downstream changes which have constituted traditional antiarrhythmic therapy.
Collapse
Affiliation(s)
- Khalil Saadeh
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Ibrahim Talal Fazmin
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.,Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| |
Collapse
|
27
|
Lorenzini M, Burel S, Lesage A, Wagner E, Charrière C, Chevillard PM, Evrard B, Maloney D, Ruff KM, Pappu RV, Wagner S, Nerbonne JM, Silva JR, Townsend RR, Maier LS, Marionneau C. Proteomic and functional mapping of cardiac NaV1.5 channel phosphorylation sites. J Gen Physiol 2021; 153:211660. [PMID: 33410863 PMCID: PMC7797897 DOI: 10.1085/jgp.202012646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/23/2020] [Accepted: 12/03/2020] [Indexed: 12/16/2022] Open
Abstract
Phosphorylation of the voltage-gated Na+ (NaV) channel NaV1.5 regulates cardiac excitability, yet the phosphorylation sites regulating its function and the underlying mechanisms remain largely unknown. Using a systematic, quantitative phosphoproteomic approach, we analyzed NaV1.5 channel complexes purified from nonfailing and failing mouse left ventricles, and we identified 42 phosphorylation sites on NaV1.5. Most sites are clustered, and three of these clusters are highly phosphorylated. Analyses of phosphosilent and phosphomimetic NaV1.5 mutants revealed the roles of three phosphosites in regulating NaV1.5 channel expression and gating. The phosphorylated serines S664 and S667 regulate the voltage dependence of channel activation in a cumulative manner, whereas the nearby S671, the phosphorylation of which is increased in failing hearts, regulates cell surface NaV1.5 expression and peak Na+ current. No additional roles could be assigned to the other clusters of phosphosites. Taken together, our results demonstrate that ventricular NaV1.5 is highly phosphorylated and that the phosphorylation-dependent regulation of NaV1.5 channels is highly complex, site specific, and dynamic.
Collapse
Affiliation(s)
- Maxime Lorenzini
- Université de Nantes, Centre national de la recherche scientifique, Institut National de la Santé et de la Recherche Médicale, l'Institut du thorax, Nantes, France
| | - Sophie Burel
- Université de Nantes, Centre national de la recherche scientifique, Institut National de la Santé et de la Recherche Médicale, l'Institut du thorax, Nantes, France
| | - Adrien Lesage
- Université de Nantes, Centre national de la recherche scientifique, Institut National de la Santé et de la Recherche Médicale, l'Institut du thorax, Nantes, France
| | - Emily Wagner
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO
| | - Camille Charrière
- Université de Nantes, Centre national de la recherche scientifique, Institut National de la Santé et de la Recherche Médicale, l'Institut du thorax, Nantes, France
| | - Pierre-Marie Chevillard
- Université de Nantes, Centre national de la recherche scientifique, Institut National de la Santé et de la Recherche Médicale, l'Institut du thorax, Nantes, France
| | - Bérangère Evrard
- Université de Nantes, Centre national de la recherche scientifique, Institut National de la Santé et de la Recherche Médicale, l'Institut du thorax, Nantes, France
| | - Dan Maloney
- Bioinformatics Solutions Inc., Waterloo, Ontario, Canada
| | - Kiersten M Ruff
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO
| | - Rohit V Pappu
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO
| | - Stefan Wagner
- Department of Internal Medicine II, University Heart Center, University Hospital Regensburg, Regensburg, Germany
| | - Jeanne M Nerbonne
- Department of Developmental Biology, Washington University Medical School, St. Louis, MO.,Department of Medicine, Washington University Medical School, St. Louis, MO
| | - Jonathan R Silva
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO
| | - R Reid Townsend
- Department of Medicine, Washington University Medical School, St. Louis, MO.,Department of Cell Biology and Physiology, Washington University Medical School, St. Louis, MO
| | - Lars S Maier
- Department of Internal Medicine II, University Heart Center, University Hospital Regensburg, Regensburg, Germany
| | - Céline Marionneau
- Université de Nantes, Centre national de la recherche scientifique, Institut National de la Santé et de la Recherche Médicale, l'Institut du thorax, Nantes, France
| |
Collapse
|
28
|
Left Ventricular Hypertrophy Increases Susceptibility to Bupivacaine-induced Cardiotoxicity through Overexpression of Transient Receptor Potential Canonical Channels in Rats. Anesthesiology 2020; 133:1077-1092. [PMID: 32915958 DOI: 10.1097/aln.0000000000003554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Local anesthetics, particularly potent long acting ones such as bupivacaine, can cause cardiotoxicity by inhibiting sodium ion channels; however, the impact of left ventricular hypertrophy on the cardiotoxicity and the underlying mechanisms remain undetermined. Transient receptor potential canonical (TRPC) channels are upregulated in left ventricular hypertrophy. Some transient receptor potential channel subtypes have been reported to pass relatively large cations, including protonated local anesthetics; this is known as the "pore phenomenon." The authors hypothesized that bupivacaine-induced cardiotoxicity is more severe in left ventricular hypertrophy due to upregulated TRPC channels. METHODS The authors used a modified transverse aortic constriction model as a left ventricular hypertrophy. Cardiotoxicity caused by bupivacaine was compared between sham and aortic constriction male rats, and the underlying mechanisms were investigated by recording sodium ion channel currents and immunocytochemistry of TRPC protein in cardiomyocytes. RESULTS The time to cardiac arrest by bupivacaine was shorter in aortic constriction rats (n =11) than in sham rats (n = 12) (mean ± SD, 1,302 ± 324 s vs. 1,034 ± 211 s; P = 0.030), regardless of its lower plasma concentration. The half-maximal inhibitory concentrations of bupivacaine toward sodium ion currents were 4.5 and 4.3 μM, which decreased to 3.9 and 2.6 μM in sham and aortic constriction rats, respectively, upon coapplication of 1-oleoyl-2-acetyl-sn-glycerol, a TRPC3 channel activator. In both groups, sodium ion currents were unaffected by QX-314, a positively charged lidocaine derivative, that hardly permeates the cell membrane, but was significantly decreased with QX-314 and 1-oleoyl-2-acetyl-sn-glycerol coapplication (sham: 79 ± 10% of control; P = 0.004; aortic constriction: 47± 27% of control; P = 0.020; n = 5 cells per group). Effects of 1-oleoyl-2-acetyl-sn-glycerol were antagonized by a specific TRPC3 channel inhibitor. CONCLUSIONS Left ventricular hypertrophy exacerbated bupivacaine-induced cardiotoxicity, which could be a consequence of the "pore phenomenon" of TRPC3 channels upregulated in left ventricular hypertrophy. EDITOR’S PERSPECTIVE
Collapse
|
29
|
Saadeh K, Achercouk Z, Fazmin IT, Nantha Kumar N, Salvage SC, Edling CE, Huang CLH, Jeevaratnam K. Protein expression profiles in murine ventricles modeling catecholaminergic polymorphic ventricular tachycardia: effects of genotype and sex. Ann N Y Acad Sci 2020; 1478:63-74. [PMID: 32713021 DOI: 10.1111/nyas.14426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/27/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022]
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is associated with mutations in the cardiac ryanodine receptor (RyR2). These result in stress-induced ventricular arrhythmic episodes, with clinical symptoms and prognosis reported more severe in male than female patients. Murine homozygotic RyR2-P2328S (RyR2S/S ) hearts replicate the proarrhythmic CPVT phenotype of abnormal sarcoplasmic reticular Ca2+ leak and disrupted Ca2+ homeostasis. In addition, RyR2S/S hearts show decreased myocardial action potential conduction velocities (CV), all features implicated in arrhythmic trigger and substrate. The present studies explored for independent and interacting effects of RyR2S/S genotype and sex on expression levels of molecular determinants of Ca2+ homeostasis (CASQ2, FKBP12, SERCA2a, NCX1, and CaV 1.2) and CV (NaV 1.5, Connexin (Cx)-43, phosphorylated-Cx43, and TGF-β1) in mice. Expression levels of Ca2+ homeostasis proteins were not altered, hence implicating abnormal RyR2 function alone in disrupted cytosolic Ca2+ homeostasis. Furthermore, altered NaV 1.5, phosphorylated Cx43, and TGF-β1 expression were not implicated in the development of slowed CV. By contrast, decreased Cx43 expression correlated with slowed CV, in female, but not male, RyR2S/S mice. The CV changes may reflect acute actions of the increased cytosolic Ca2+ on NaV 1.5 and Cx43 function.
Collapse
Affiliation(s)
- Khalil Saadeh
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.,School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Zakaria Achercouk
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Ibrahim T Fazmin
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.,School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Nakulan Nantha Kumar
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.,Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Samantha C Salvage
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom.,Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Charlotte E Edling
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Christopher L-H Huang
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.,Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom.,Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Kamalan Jeevaratnam
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.,Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
30
|
Zybura AS, Baucum AJ, Rush AM, Cummins TR, Hudmon A. CaMKII enhances voltage-gated sodium channel Nav1.6 activity and neuronal excitability. J Biol Chem 2020; 295:11845-11865. [PMID: 32611770 DOI: 10.1074/jbc.ra120.014062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/30/2020] [Indexed: 11/06/2022] Open
Abstract
Nav1.6 is the primary voltage-gated sodium channel isoform expressed in mature axon initial segments and nodes, making it critical for initiation and propagation of neuronal impulses. Thus, Nav1.6 modulation and dysfunction may have profound effects on input-output properties of neurons in normal and pathological conditions. Phosphorylation is a powerful and reversible mechanism regulating ion channel function. Because Nav1.6 and the multifunctional Ca2+/CaM-dependent protein kinase II (CaMKII) are independently linked to excitability disorders, we sought to investigate modulation of Nav1.6 function by CaMKII signaling. We show that inhibition of CaMKII, a Ser/Thr protein kinase associated with excitability, synaptic plasticity, and excitability disorders, with the CaMKII-specific peptide inhibitor CN21 reduces transient and persistent currents in Nav1.6-expressing Purkinje neurons by 87%. Using whole-cell voltage clamp of Nav1.6, we show that CaMKII inhibition in ND7/23 and HEK293 cells significantly reduces transient and persistent currents by 72% and produces a 5.8-mV depolarizing shift in the voltage dependence of activation. Immobilized peptide arrays and nanoflow LC-electrospray ionization/MS of Nav1.6 reveal potential sites of CaMKII phosphorylation, specifically Ser-561 and Ser-641/Thr-642 within the first intracellular loop of the channel. Using site-directed mutagenesis to test multiple potential sites of phosphorylation, we show that Ala substitutions of Ser-561 and Ser-641/Thr-642 recapitulate the depolarizing shift in activation and reduction in current density. Computational simulations to model effects of CaMKII inhibition on Nav1.6 function demonstrate dramatic reductions in spontaneous and evoked action potentials in a Purkinje cell model, suggesting that CaMKII modulation of Nav1.6 may be a powerful mechanism to regulate neuronal excitability.
Collapse
Affiliation(s)
- Agnes S Zybura
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Anthony J Baucum
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Biology Department, Indiana University-Purdue University Indianapolis, School of Science, Indianapolis, Indiana, USA
| | | | - Theodore R Cummins
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Biology Department, Indiana University-Purdue University Indianapolis, School of Science, Indianapolis, Indiana, USA
| | - Andy Hudmon
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA .,Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
31
|
Bhagwan JR, Mosqueira D, Chairez-Cantu K, Mannhardt I, Bodbin SE, Bakar M, Smith JGW, Denning C. Isogenic models of hypertrophic cardiomyopathy unveil differential phenotypes and mechanism-driven therapeutics. J Mol Cell Cardiol 2020; 145:43-53. [PMID: 32531470 PMCID: PMC7487780 DOI: 10.1016/j.yjmcc.2020.06.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/18/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is a prevalent and complex cardiovascular condition. Despite being strongly associated with genetic alterations, wide variation of disease penetrance, expressivity and hallmarks of progression complicate treatment. We aimed to characterize different human isogenic cellular models of HCM bearing patient-relevant mutations to clarify genetic causation and disease mechanisms, hence facilitating the development of effective therapeutics. METHODS We directly compared the p.β-MHC-R453C and p.ACTC1-E99K HCM-associated mutations in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and their healthy isogenic counterparts, generated using CRISPR/Cas9 genome editing technology. By harnessing several state-of-the-art HCM phenotyping techniques, these mutations were investigated to identify similarities and differences in disease progression and hypertrophic signaling pathways, towards establishing potential targets for pharmacological treatment. CRISPR/Cas9 knock-in of the genetically-encoded calcium indicator R-GECO1.0 to the AAVS1 locus into these disease models resulted in calcium reporter lines. RESULTS Confocal line scan analysis identified calcium transient arrhythmias and intracellular calcium overload in both models. The use of optogenetics and 2D/3D contractility assays revealed opposing phenotypes in the two mutations. Gene expression analysis highlighted upregulation of CALM1, CASQ2 and CAMK2D, and downregulation of IRF8 in p.β-MHC-R453C mutants, whereas the opposite changes were detected in p.ACTC1-E99K mutants. Contrasting profiles of nuclear translocation of NFATc1 and MEF2 between the two HCM models suggest differential hypertrophic signaling pathway activation. Calcium transient abnormalities were rescued with combination of dantrolene and ranolazine, whilst mavacamten reduced the hyper-contractile phenotype of p.ACTC1-E99K hiPSC-CMs. CONCLUSIONS Our data show that hypercontractility and molecular signaling within HCM are not uniform between different gene mutations, suggesting that a 'one-size fits all' treatment underestimates the complexity of the disease. Understanding where the similarities (arrhythmogenesis, bioenergetics) and differences (contractility, molecular profile) lie will allow development of therapeutics that are directed towards common mechanisms or tailored to each disease variant, hence providing effective patient-specific therapy.
Collapse
Affiliation(s)
- Jamie R Bhagwan
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, NG7 2RD, UK.
| | - Diogo Mosqueira
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, NG7 2RD, UK.
| | - Karolina Chairez-Cantu
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, NG7 2RD, UK
| | - Ingra Mannhardt
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Sara E Bodbin
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, NG7 2RD, UK
| | - Mine Bakar
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, NG7 2RD, UK
| | - James G W Smith
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, NG7 2RD, UK; Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia,NR4 7UQ, UK
| | - Chris Denning
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, NG7 2RD, UK.
| |
Collapse
|
32
|
Contribution of the neuronal sodium channel Na V1.8 to sodium- and calcium-dependent cellular proarrhythmia. J Mol Cell Cardiol 2020; 144:35-46. [PMID: 32418916 DOI: 10.1016/j.yjmcc.2020.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 04/17/2020] [Accepted: 05/05/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE In myocardial pathology such as heart failure a late sodium current (INaL) augmentation is known to be involved in conditions of arrhythmogenesis. However, the underlying mechanisms of the INaL generation are not entirely understood. By now evidence is growing that non-cardiac sodium channel isoforms could also be involved in the INaL generation. The present study investigates the contribution of the neuronal sodium channel isoform NaV1.8 to arrhythmogenesis in a clearly-defined setting of enhanced INaL by using anemone toxin II (ATX-II) in the absence of structural heart disease. METHODS Electrophysiological experiments were performed in order to measure INaL, action potential duration (APD), SR-Ca2+-leak and cellular proarrhythmic triggers in ATX-II exposed wild-type (WT) and SCN10A-/- mice cardiomyocytes. In addition, WT cardiomyocytes were stimulated with ATX-II in the presence or absence of NaV1.8 inhibitors. INCX was measured by using the whole cell patch clamp method. RESULTS In WT cardiomyocytes exposure to ATX-II augmented INaL, prolonged APD, increased SR-Ca2+-leak and induced proarrhythmic triggers such as early afterdepolarizations (EADs) and Ca2+-waves. All of them could be significantly reduced by applying NaV1.8 blockers PF-01247324 and A-803467. Both blockers had no relevant effects on cellular electrophysiology of SCN10A-/- cardiomyocytes. Moreover, in SCN10A-/--cardiomyocytes, the ATX-II-dependent increase in INaL, SR-Ca2+-leak and APD prolongation was less than in WT and comparable to the results which were obtained with WT cardiomyocytes being exposed to ATX-II and NaV1.8 inhibitors in parallel. Moreover, we found a decrease in reverse mode NCX current and reduced CaMKII-dependent RyR2-phosphorylation after application of PF-01247324 as an underlying explanation for the Na+-mediated Ca2+-dependent proarrhythmic triggers. CONCLUSION The current findings demonstrate that NaV1.8 is a significant contributor for INaL-induced arrhythmic triggers. Therefore, NaV1.8 inhibition under conditions of an enhanced INaL constitutes a promising antiarrhythmic strategy which merits further investigation.
Collapse
|
33
|
Horváth B, Hézső T, Kiss D, Kistamás K, Magyar J, Nánási PP, Bányász T. Late Sodium Current Inhibitors as Potential Antiarrhythmic Agents. Front Pharmacol 2020; 11:413. [PMID: 32372952 PMCID: PMC7184885 DOI: 10.3389/fphar.2020.00413] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/18/2020] [Indexed: 12/19/2022] Open
Abstract
Based on recent findings, an increased late sodium current (INa,late) plays an important pathophysiological role in cardiac diseases, including rhythm disorders. The article first describes what is INa,late and how it functions under physiological circumstances. Next, it shows the wide range of cellular mechanisms that can contribute to an increased INa,late in heart diseases, and also discusses how the upregulated INa,late can play a role in the generation of cardiac arrhythmias. The last part of the article is about INa,late inhibiting drugs as potential antiarrhythmic agents, based on experimental and preclinical data as well as in the light of clinical trials.
Collapse
Affiliation(s)
- Balázs Horváth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Tamás Hézső
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dénes Kiss
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Kornél Kistamás
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Magyar
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Division of Sport Physiology, University of Debrecen, Debrecen, Hungary
| | - Péter P. Nánási
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Department of Dental Physiology and Pharmacology, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Tamás Bányász
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
34
|
Chang PC, Wo HT, Lee HL, Lin SF, Chu Y, Wen MS, Chou CC. Sacubitril/Valsartan Therapy Ameliorates Ventricular Tachyarrhythmia Inducibility in a Rabbit Myocardial Infarction Model. J Card Fail 2020; 26:527-537. [PMID: 32209390 DOI: 10.1016/j.cardfail.2020.03.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Coronary artery disease is the most common cause of heart failure (HF) in developed countries. The aim of this study was to elucidate the mechanisms of reduction of arrhythmias after sacubitril/valsartan (LCZ696) therapy in a myocardial infarction (MI)-HF rabbit model. METHODS AND RESULTS Chronic MI in rabbits with HF were divided into 3 groups: placebo control, valsartan 30 mg/day and LCZ696 60 mg/day. After 4 weeks of therapy, an electrophysiologic study and a dual voltage-calcium optical mapping study were performed. The LCZ696 group had significantly better left ventricular ejection fraction and lower ventricular tachyarrhythmia inducibility than the valsartan and placebo groups. The most common ventricular tachyarrhythmia pattern was 1 or 2 ectopic beats originating from the peri-infarct areas, followed by re-entrant beats surrounding phase singularity points. Compared to the valsartan and placebo groups, the LCZ696 group had significantly shorter action-potential duration, shorter intracellular calcium tau constant, faster conduction velocity, and shorter pacing cycle length to induce arrhythmogenic alternans. LCZ696 therapy reduced the phosphorylated calmodulin-dependent protein kinase II (CaMKII-p) expression. CONCLUSIONS In a rabbit model with chronic MI and HF, LCZ696 therapy ameliorated postinfarct heart function impairment and electrophysiologic remodeling and altered CaMKII-p expression, leading to reduced ventricular tachyarrhythmia inducibility.
Collapse
Affiliation(s)
- Po-Cheng Chang
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou; Chang Gung University College of Medicine, Taoyuan
| | - Hung-Ta Wo
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou
| | - Hui-Ling Lee
- Department of Anesthesia, Chang Gung Memorial Hospital, Taipei
| | - Shien-Fong Lin
- Institute of Biomedical Engineering, National Chiao Tung University, Hsin Chu, Taiwan
| | - Yen Chu
- Division of Thoracic Surgery, Chang Gung Memorial Hospital, Linkou; Chang Gung University College of Medicine, Taoyuan
| | - Ming-Shien Wen
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou; Chang Gung University College of Medicine, Taoyuan
| | - Chung-Chuan Chou
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou; Chang Gung University College of Medicine, Taoyuan.
| |
Collapse
|
35
|
Zaitsev AV, Warren M. "Heart Oddity": Intrinsically Reduced Excitability in the Right Ventricle Requires Compensation by Regionally Specific Stress Kinase Function. Front Physiol 2020; 11:86. [PMID: 32132931 PMCID: PMC7040197 DOI: 10.3389/fphys.2020.00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/27/2020] [Indexed: 11/13/2022] Open
Abstract
The traditional view of ventricular excitation and conduction is an all-or-nothing response mediated by a regenerative activation of the inward sodium channel, which gives rise to an essentially constant conduction velocity (CV). However, whereas there is no obvious biological need to tune-up ventricular conduction, the principal molecular components determining CV, such as sodium channels, inward-rectifier potassium channels, and gap junctional channels, are known targets of the “stress” protein kinases PKA and calcium/calmodulin dependent protein kinase II (CaMKII), and are thus regulatable by signal pathways converging on these kinases. In this mini-review we will expose deficiencies and controversies in our current understanding of how ventricular conduction is regulated by stress kinases, with a special focus on the chamber-specific dimension in this regulation. In particular, we will highlight an odd property of cardiac physiology: uniform CV in ventricles requires co-existence of mutually opposing gradients in cardiac excitability and stress kinase function. While the biological advantage of this peculiar feature remains obscure, it is important to recognize the clinical implications of this phenomenon pertinent to inherited or acquired conduction diseases and therapeutic interventions modulating activity of PKA or CaMKII.
Collapse
Affiliation(s)
- Alexey V Zaitsev
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States
| | - Mark Warren
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
36
|
Zaitsev AV, Torres NS, Cawley KM, Sabry AD, Warren JS, Warren M. Conduction in the right and left ventricle is differentially regulated by protein kinases and phosphatases: implications for arrhythmogenesis. Am J Physiol Heart Circ Physiol 2019; 316:H1507-H1527. [PMID: 30875259 PMCID: PMC6620685 DOI: 10.1152/ajpheart.00660.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/19/2019] [Accepted: 03/07/2019] [Indexed: 12/19/2022]
Abstract
The "stress" kinases cAMP-dependent protein kinase (PKA) and calcium/calmodulin-dependent protein kinase II (CaMKII), phosphorylate the Na+ channel Nav1.5 subunit to regulate its function. However, how the channel regulation translates to ventricular conduction is poorly understood. We hypothesized that the stress kinases positively and differentially regulate conduction in the right (RV) and the left (LV) ventricles. We applied the CaMKII blocker KN93 (2.75 μM), PKA blocker H89 (10 μM), and broad-acting phosphatase blocker calyculin (30 nM) in rabbit hearts paced at a cycle length (CL) of 150-8,000 ms. We used optical mapping to determine the distribution of local conduction delays (inverse of conduction velocity). Control hearts exhibited constant and uniform conduction at all tested CLs. Calyculin (15-min perfusion) accelerated conduction, with greater effect in the RV (by 15.3%) than in the LV (by 4.1%; P < 0.05). In contrast, both KN93 and H89 slowed down conduction in a chamber-, time-, and CL-dependent manner, with the strongest effect in the RV outflow tract (RVOT). Combined KN93 and H89 synergistically promoted conduction slowing in the RV (KN93: 24.7%; H89: 29.9%; and KN93 + H89: 114.2%; P = 0.0016) but not the LV. The progressive depression of RV conduction led to conduction block and reentrant arrhythmias. Protein expression levels of both the CaMKII-δ isoform and the PKA catalytic subunit were higher in the RVOT than in the apical LV (P < 0.05). Thus normal RV conduction requires a proper balance between kinase and phosphatase activity. Dysregulation of this balance due to pharmacological interventions or disease is potentially proarrhythmic. NEW & NOTEWORTHY We show that uniform ventricular conduction requires a precise physiological balance of the activities of calcium/calmodulin-dependent protein kinase II (CaMKII), PKA, and phosphatases, which involves region-specific expression of CaMKII and PKA. Inhibiting CaMKII and/or PKA activity elicits nonuniform conduction depression, with the right ventricle becoming vulnerable to the development of conduction disturbances and ventricular fibrillation/ventricular tachycardia.
Collapse
Affiliation(s)
- Alexey V Zaitsev
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah , Salt Lake City, Utah
- Department of Bioengineering, University of Utah , Salt Lake City, Utah
| | - Natalia S Torres
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah , Salt Lake City, Utah
| | - Keiko M Cawley
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah , Salt Lake City, Utah
| | - Amira D Sabry
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah , Salt Lake City, Utah
| | - Junco S Warren
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah , Salt Lake City, Utah
- Department of Internal Medicine, School of Medicine, University of Utah , Salt Lake City, Utah
| | - Mark Warren
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah , Salt Lake City, Utah
- Department of Bioengineering, University of Utah , Salt Lake City, Utah
| |
Collapse
|
37
|
Ahmad S, Valli H, Smyth R, Jiang AY, Jeevaratnam K, Matthews HR, Huang CL. Reduced cardiomyocyte Na + current in the age-dependent murine Pgc-1β -/- model of ventricular arrhythmia. J Cell Physiol 2019; 234:3921-3932. [PMID: 30146680 PMCID: PMC6492124 DOI: 10.1002/jcp.27183] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 07/12/2018] [Indexed: 12/27/2022]
Abstract
Peroxisome proliferator-activated receptor-γ coactivator-1 deficient (Pgc-1β-/- ) murine hearts model the increased, age-dependent, ventricular arrhythmic risks attributed to clinical conditions associated with mitochondrial energetic dysfunction. These were accompanied by compromised action potential (AP) upstroke rates and impaired conduction velocities potentially producing arrhythmic substrate. We tested a hypothesis implicating compromised Na+ current in these electrophysiological phenotypes by applying loose patch-clamp techniques in intact young and aged, wild-type (WT) and Pgc-1β-/- , ventricular cardiomyocyte preparations for the first time. This allowed conservation of their in vivo extracellular and intracellular conditions. Depolarising steps elicited typical voltage-dependent activating and inactivating inward Na+ currents with peak amplitudes increasing or decreasing with their respective activating or preceding inactivating voltage steps. Two-way analysis of variance associated Pgc-1β-/- genotype with independent reductions in maximum peak ventricular Na+ currents from -36.63 ± 2.14 (n = 20) and -35.43 ± 1.96 (n = 18; young and aged WT, respectively), to -29.06 ± 1.65 (n = 23) and -27.93 ± 1.63 (n = 20; young and aged Pgc-1β-/- , respectively) pA/μm2 (p < 0.0001), without independent effects of, or interactions with age. Voltages at half-maximal current V*, and steepness factors k in plots of voltage dependences of both Na+ current activation and inactivation, and time constants for its postrepolarisation recovery from inactivation, remained indistinguishable through all experimental groups. So were the activation and rectification properties of delayed outward (K+ ) currents, demonstrated from tail currents reflecting current recoveries from respective varying or constant voltage steps. These current-voltage properties directly implicate decreases specifically in maximum available Na+ current with unchanged voltage dependences and unaltered K+ current properties, in proarrhythmic reductions in AP conduction velocity in Pgc-1β-/- ventricles.
Collapse
Affiliation(s)
- Shiraz Ahmad
- Physiological LaboratoryUniversity of CambridgeCambridgeUnited Kingdom
| | - Haseeb Valli
- Physiological LaboratoryUniversity of CambridgeCambridgeUnited Kingdom
| | - Robert Smyth
- Physiological LaboratoryUniversity of CambridgeCambridgeUnited Kingdom
| | - Anita Y. Jiang
- Physiological LaboratoryUniversity of CambridgeCambridgeUnited Kingdom
| | - Kamalan Jeevaratnam
- Physiological LaboratoryUniversity of CambridgeCambridgeUnited Kingdom
- Department of Veterinary Pre‐clinical Sciences, Faculty of Health and Medical SciencesUniversity of SurreyGuildfordUnited Kingdom
- Department of Physiology, PU‐RCSI School of Medicine, Perdana UniversitySerdangMalaysia
| | - Hugh R. Matthews
- Physiological LaboratoryUniversity of CambridgeCambridgeUnited Kingdom
| | - Christopher L.‐H. Huang
- Physiological LaboratoryUniversity of CambridgeCambridgeUnited Kingdom
- Department of BiochemistryUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
38
|
Iqbal SM, Lemmens‐Gruber R. Phosphorylation of cardiac voltage-gated sodium channel: Potential players with multiple dimensions. Acta Physiol (Oxf) 2019; 225:e13210. [PMID: 30362642 PMCID: PMC6590314 DOI: 10.1111/apha.13210] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 10/14/2018] [Accepted: 10/14/2018] [Indexed: 12/11/2022]
Abstract
Cardiomyocytes are highly coordinated cells with multiple proteins organized in micro domains. Minor changes or interference in subcellular proteins can cause major disturbances in physiology. The cardiac sodium channel (NaV1.5) is an important determinant of correct electrical activity in cardiomyocytes which are localized at intercalated discs, T‐tubules and lateral membranes in the form of a macromolecular complex with multiple interacting protein partners. The channel is tightly regulated by post‐translational modifications for smooth conduction and propagation of action potentials. Among regulatory mechanisms, phosphorylation is an enzymatic and reversible process which modulates NaV1.5 channel function by attaching phosphate groups to serine, threonine or tyrosine residues. Phosphorylation of NaV1.5 is implicated in both normal physiological and pathological processes and is carried out by multiple kinases. In this review, we discuss and summarize recent literature about the (a) structure of NaV1.5 channel, (b) formation and subcellular localization of NaV1.5 channel macromolecular complex, (c) post‐translational phosphorylation and regulation of NaV1.5 channel, and (d) how these phosphorylation events of NaV1.5 channel alter the biophysical properties and affect the channel during disease status. We expect, by reviewing these aspects will greatly improve our understanding of NaV1.5 channel biology, physiology and pathology, which will also provide an insight into the mechanism of arrythmogenesis at molecular level.
Collapse
Affiliation(s)
- Shahid M. Iqbal
- Department of Pharmacology and Toxicology University of Vienna Vienna Austria
- Drugs Regulatory Authority of Pakistan Telecom Foundation (TF) Complex Islamabad Pakistan
| | - Rosa Lemmens‐Gruber
- Department of Pharmacology and Toxicology University of Vienna Vienna Austria
| |
Collapse
|
39
|
Marionneau C, Abriel H. Cardiac Sodium Current Under Sympathetic Control Protein Phosphatase 2A Regulates Cardiac Na+ Channels. Circ Res 2019; 124:674-676. [PMID: 30817259 DOI: 10.1161/circresaha.119.314680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - Hugues Abriel
- Ion Channels and Channelopathies Laboratory, Institute for Biochemistry and Molecular Medicine, University of Bern, Switzerland (H.A.)
| |
Collapse
|
40
|
Matthews HR, Tan SRX, Shoesmith JA, Ahmad S, Valli H, Jeevaratnam K, Huang CLH. Sodium current inhibition following stimulation of exchange protein directly activated by cyclic-3',5'-adenosine monophosphate (Epac) in murine skeletal muscle. Sci Rep 2019; 9:1927. [PMID: 30760734 PMCID: PMC6374420 DOI: 10.1038/s41598-018-36386-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023] Open
Abstract
We investigated effects of pharmacological triggering of exchange protein directly activated by cyclic-3',5'-adenosine monophosphate (Epac) on Nav1.4 currents from intact murine (C67BL6) skeletal muscle fibres for the first time. This employed a loose patch clamp technique which examined ionic currents in response to superimposed 10-ms V1 steps to varying degrees of depolarisation, followed by V2 steps to a fixed, +100 mV depolarisation relative to resting membrane potential following 40 mV hyperpolarising prepulses of 50 ms duration. The activation and inactivation properties of the resulting Na+ membrane current densities revealed reduced maximum currents and steepnesses in their voltage dependences after addition of the Epac activator 8-(4-chlorophenylthio)adenosine-3',5'-cyclic monophosphate (1 µM) to the bathing Krebs-Henseleit solutions. Contrastingly, voltages at half-maximal current and timecourses of currents obtained in response to the V1 depolarising steps were unchanged. These effects were abolished by further addition of the RyR-inhibitor dantrolene (10 µM). In contrast, challenge by dantrolene alone left both currents and their parameters intact. These effects of Epac activation in inhibiting skeletal muscle, Nav1.4, currents, complement similar effects previously reported in the homologous Nav1.5 in murine cardiomyocytes. They are discussed in terms of a hypothesis implicating Epac actions in increasing RyR-mediated SR Ca2+ release resulting in a Ca2+-mediated inhibition of Nav1.4. The latter effect may form the basis for Ca2+-dependent Na+ channel dysregulation in SCN4A channelopathies associated with cold- and K+-aggravated myotonias.
Collapse
Affiliation(s)
- Hugh R Matthews
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom
| | - Sapphire R X Tan
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom
| | - Jonathan A Shoesmith
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom
| | - Shiraz Ahmad
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom
| | - Haseeb Valli
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom
| | - Kamalan Jeevaratnam
- Faculty of Health and Medical Sciences, University of Surrey, GU2 7AL, Guildford, Surrey, United Kingdom
| | - Christopher L-H Huang
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom.
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, United Kingdom.
| |
Collapse
|
41
|
Hegyi B, Bers DM, Bossuyt J. CaMKII signaling in heart diseases: Emerging role in diabetic cardiomyopathy. J Mol Cell Cardiol 2019; 127:246-259. [PMID: 30633874 DOI: 10.1016/j.yjmcc.2019.01.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 01/04/2019] [Indexed: 02/07/2023]
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) is upregulated in diabetes and significantly contributes to cardiac remodeling with increased risk of cardiac arrhythmias. Diabetes is frequently associated with atrial fibrillation, coronary artery disease, and heart failure, which may further enhance CaMKII. Activation of CaMKII occurs downstream of neurohormonal stimulation (e.g. via G-protein coupled receptors) and involve various posttranslational modifications including autophosphorylation, oxidation, S-nitrosylation and O-GlcNAcylation. CaMKII signaling regulates diverse cellular processes in a spatiotemporal manner including excitation-contraction and excitation-transcription coupling, mechanics and energetics in cardiac myocytes. Chronic activation of CaMKII results in cellular remodeling and ultimately arrhythmogenic alterations in Ca2+ handling, ion channels, cell-to-cell coupling and metabolism. This review addresses the detrimental effects of the upregulated CaMKII signaling to enhance the arrhythmogenic substrate and trigger mechanisms in the heart. We also briefly summarize preclinical studies using kinase inhibitors and genetically modified mice targeting CaMKII in diabetes. The mechanistic understanding of CaMKII signaling, cardiac remodeling and arrhythmia mechanisms may reveal new therapeutic targets and ultimately better treatment in diabetes and heart disease in general.
Collapse
Affiliation(s)
- Bence Hegyi
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Donald M Bers
- Department of Pharmacology, University of California Davis, Davis, CA, USA.
| | - Julie Bossuyt
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| |
Collapse
|
42
|
Motloch LJ, Cacheux M, Ishikawa K, Xie C, Hu J, Aguero J, Fish KM, Hajjar RJ, Akar FG. Primary Effect of SERCA 2a Gene Transfer on Conduction Reserve in Chronic Myocardial Infarction. J Am Heart Assoc 2018; 7:e009598. [PMID: 30371209 PMCID: PMC6222964 DOI: 10.1161/jaha.118.009598] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/18/2018] [Indexed: 11/16/2022]
Abstract
Background SERCA 2a gene transfer ( GT ) improves mechano-electrical function in animal models of nonischemic heart failure Whether SERCA 2a GT reverses pre-established remodeling at an advanced stage of ischemic heart failure is unclear. We sought to uncover the electrophysiological effects of adeno-associated virus serotype 1. SERCA 2a GT following myocardial infarction ( MI ). Methods and Results Pigs developed mechanical dysfunction 1 month after anterior MI , at which point they received intracoronary adeno-associated virus serotype 1. SERCA 2a ( MI + SERCA 2a) or saline ( MI ) and were maintained for 2 months. Age-matched naive pigs served as controls (Control). In vivo ECG -and-hemodynamic properties were assessed before and after dobutamine stress. The electrophysiological substrate was measured using optical action potential ( AP ) mapping in controls, MI , and MI + SERCA 2a preparations. In vivo ECG measurements revealed comparable QT durations between groups. In contrast, prolonged QRS duration and increased frequency of R' waves were present in MI but not MI + SERCA 2a pigs relative to controls. SERCA 2a GT reduced in in vivo arrhythmias in response to dobutamine. Ex vivo preparations from MI but not MI + SERCA 2a or control pigs were prone to pacing-induced ventricular tachycardia and fibrillation. Underlying these arrhythmias was pronounced conduction velocity slowing in MI versus MI + SERCA 2a at elevated rates leading to ventricular tachycardia and fibrillation. Reduced susceptibility to ventricular tachycardia and fibrillation in MI + SERCA 2a pigs was not related to hemodynamic function, contractile reserve, fibrosis, or the expression of Cx43 and Nav1.5. Rather, SERCA 2a GT decreased phosphoactive CAMKII -delta levels by >50%, leading to improved excitability at fast rates. Conclusions SERCA 2a GT increases conduction velocity reserve, likely by preventing CAMKII overactivation. Our findings suggest a primary effect of SERCA 2a GT on myocardial excitability, independent of altered mechanical function.
Collapse
Affiliation(s)
- Lukas J. Motloch
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY
- Department of Internal Medicine IIParacelsus Medical UniversitySalzburgAustria
| | - Marine Cacheux
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY
| | - Kiyotake Ishikawa
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY
| | - Chaoqin Xie
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY
| | - Jun Hu
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY
| | - Jaume Aguero
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY
| | - Kenneth M. Fish
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY
| | - Roger J. Hajjar
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY
| | - Fadi G. Akar
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY
| |
Collapse
|
43
|
Hegyi B, Bányász T, Izu LT, Belardinelli L, Bers DM, Chen-Izu Y. β-adrenergic regulation of late Na + current during cardiac action potential is mediated by both PKA and CaMKII. J Mol Cell Cardiol 2018; 123:168-179. [PMID: 30240676 DOI: 10.1016/j.yjmcc.2018.09.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/28/2018] [Accepted: 09/16/2018] [Indexed: 12/12/2022]
Abstract
Late Na+ current (INaL) significantly contributes to shaping cardiac action potentials (APs) and increased INaL is associated with cardiac arrhythmias. β-adrenergic receptor (βAR) stimulation and its downstream signaling via protein kinase A (PKA) and Ca2+/calmodulin-dependent protein kinase II (CaMKII) pathways are known to regulate INaL. However, it remains unclear how each of these pathways regulates INaL during the AP under physiological conditions. Here we performed AP-clamp experiments in rabbit ventricular myocytes to delineate the impact of each signaling pathway on INaL at different AP phases to understand the arrhythmogenic potential. During the physiological AP (2 Hz, 37 °C) we found that INaL had a basal level current independent of PKA, but partially dependent on CaMKII. βAR activation (10 nM isoproterenol, ISO) further enhanced INaL via both PKA and CaMKII pathways. However, PKA predominantly increased INaL early during the AP plateau, whereas CaMKII mainly increased INaL later in the plateau and during rapid repolarization. We also tested the role of key signaling pathways through exchange protein activated by cAMP (Epac), nitric oxide synthase (NOS) and reactive oxygen species (ROS). Direct Epac stimulation enhanced INaL similar to the βAR-induced CaMKII effect, while NOS inhibition prevented the βAR-induced CaMKII-dependent INaL enhancement. ROS generated by NADPH oxidase 2 (NOX2) also contributed to the ISO-induced INaL activation early in the AP. Taken together, our data reveal differential modulations of INaL by PKA and CaMKII signaling pathways at different AP phases. This nuanced and comprehensive view on the changes in INaL during AP deepens our understanding of the important role of INaL in reshaping the cardiac AP and arrhythmogenic potential under elevated sympathetic stimulation, which is relevant for designing therapeutic treatment of arrhythmias under pathological conditions.
Collapse
Affiliation(s)
- Bence Hegyi
- Department of Pharmacology, University of California, Davis, CA, USA.
| | - Tamás Bányász
- Department of Pharmacology, University of California, Davis, CA, USA; Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Leighton T Izu
- Department of Pharmacology, University of California, Davis, CA, USA
| | | | - Donald M Bers
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Ye Chen-Izu
- Department of Pharmacology, University of California, Davis, CA, USA; Department of Biomedical Engineering, University of California, Davis, CA, USA; Department of Internal Medicine/Cardiology, University of California, Davis, CA, USA.
| |
Collapse
|
44
|
PKC and CaMK-II inhibitions coordinately rescue ischemia-induced GABAergic neuron dysfunction. Oncotarget 2018; 8:39309-39322. [PMID: 28445148 PMCID: PMC5503615 DOI: 10.18632/oncotarget.16947] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/15/2017] [Indexed: 01/01/2023] Open
Abstract
Cerebral ischemia leads to neuronal death for stroke, in which the imbalance between glutamatergic neurons and GABAergic neurons toward neural excitotoxicity is presumably involved. GABAergic neurons are vulnerable to pathological factors and impaired in an early stage of ischemia. The rescue of GABAergic neurons is expected to be the strategy to reserve ischemic neuronal impairment. As protein kinase C (PKC) and calmodulin-dependent protein kinase II (CaMK-II) are activated during ischemia, we have investigated whether the inhibitions of these kinases rescue the ischemic impairment of cortical GABAergic neurons. The functions of GABAergic neurons were analyzed by whole-cell recording in the cortical slices during ischemia and in presence of 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazine (CaMK-II inhibitor) and chelerythrine chloride (PKC inhibitor). Our results indicate that PKC inhibitor or CaMK-II inhibitor partially prevents ischemia-induced functional deficits of cortical GABAergic neurons. Moreover, the combination of PKC and CaMK-II inhibitors synergistically reverses this ischemia-induced deficit of GABAergic neurons. One of potential therapeutic strategies for ischemic stroke may be to rescue the ischemia-induced deficit of cortical GABAergic neurons by inhibiting PKC and CaMK-II.
Collapse
|
45
|
Salvage SC, Chandrasekharan KH, Jeevaratnam K, Dulhunty AF, Thompson AJ, Jackson AP, Huang CL. Multiple targets for flecainide action: implications for cardiac arrhythmogenesis. Br J Pharmacol 2018; 175:1260-1278. [PMID: 28369767 PMCID: PMC5866987 DOI: 10.1111/bph.13807] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/27/2017] [Accepted: 03/29/2017] [Indexed: 12/19/2022] Open
Abstract
Flecainide suppresses cardiac tachyarrhythmias including paroxysmal atrial fibrillation, supraventricular tachycardia and arrhythmic long QT syndromes (LQTS), as well as the Ca2+ -mediated, catecholaminergic polymorphic ventricular tachycardia (CPVT). However, flecainide can also exert pro-arrhythmic effects most notably following myocardial infarction and when used to diagnose Brugada syndrome (BrS). These divergent actions result from its physiological and pharmacological actions at multiple, interacting levels of cellular organization. These were studied in murine genetic models with modified Nav channel or intracellular ryanodine receptor (RyR2)-Ca2+ channel function. Flecainide accesses its transmembrane Nav 1.5 channel binding site during activated, open, states producing a use-dependent antagonism. Closing either activation or inactivation gates traps flecainide within the pore. An early peak INa related to activation of Nav channels followed by rapid de-activation, drives action potential (AP) upstrokes and their propagation. This is diminished in pro-arrhythmic conditions reflecting loss of function of Nav 1.5 channels, such as BrS, accordingly exacerbated by flecainide challenge. Contrastingly, pro-arrhythmic effects attributed to prolonged AP recovery by abnormal late INaL following gain-of-function modifications of Nav 1.5 channels in LQTS3 are reduced by flecainide. Anti-arrhythmic effects of flecainide that reduce triggering in CPVT models mediated by sarcoplasmic reticular Ca2+ release could arise from its primary actions on Nav channels indirectly decreasing [Ca2+ ]i through a reduced [Na+ ]i and/or direct open-state RyR2-Ca2+ channel antagonism. The consequent [Ca2+ ]i alterations could also modify AP propagation velocity and therefore arrhythmic substrate through its actions on Nav 1.5 channel function. This is consistent with the paradoxical differences between flecainide actions upon Na+ currents, AP conduction and arrhythmogenesis under circumstances of normal and increased RyR2 function. LINKED ARTICLES This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.
Collapse
Affiliation(s)
- Samantha C Salvage
- Department of BiochemistryUniversity of CambridgeCambridgeUK
- Physiological LaboratoryUniversity of CambridgeCambridgeUK
| | | | - Kamalan Jeevaratnam
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordUK
- School of MedicinePerdana University – Royal College of Surgeons IrelandSerdangSelangor Darul EhsanMalaysia
| | - Angela F Dulhunty
- Muscle Research Group, Eccles Institute of Neuroscience, John Curtin School of Medical ResearchAustralian National UniversityActonAustralia
| | | | | | - Christopher L‐H Huang
- Department of BiochemistryUniversity of CambridgeCambridgeUK
- Physiological LaboratoryUniversity of CambridgeCambridgeUK
| |
Collapse
|
46
|
Shugg T, Johnson DE, Shao M, Lai X, Witzmann F, Cummins TR, Rubart-Von-der Lohe M, Hudmon A, Overholser BR. Calcium/calmodulin-dependent protein kinase II regulation of I Ks during sustained β-adrenergic receptor stimulation. Heart Rhythm 2018; 15:895-904. [PMID: 29410121 DOI: 10.1016/j.hrthm.2018.01.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Indexed: 01/21/2023]
Abstract
BACKGROUND Sustained β-adrenergic receptor (β-AR) stimulation causes pathophysiological changes during heart failure (HF), including inhibition of the slow component of the delayed rectifier potassium current (IKs). Aberrant calcium handling, including increased activation of calcium/calmodulin-dependent protein kinase II (CaMKII), contributes to arrhythmia development during HF. OBJECTIVE The purpose of this study was to investigate CaMKII regulation of KCNQ1 (pore-forming subunit of IKs) during sustained β-AR stimulation and associated functional implications on IKs. METHODS KCNQ1 phosphorylation was assessed using liquid chromatography-tandem mass spectrometry after sustained β-AR stimulation with isoproterenol (ISO). Peptide fragments corresponding to KCNQ1 residues were synthesized to identify CaMKII phosphorylation at the identified sites. Dephosphorylated (alanine) and phosphorylated (aspartic acid) mimics were introduced at identified residues. Whole-cell, voltage-clamp experiments were performed in human endothelial kidney 293 cells coexpressing wild-type or mutant KCNQ1 and KCNE1 (auxiliary subunit) during ISO treatment or lentiviral δCaMKII overexpression. RESULTS Novel KCNQ1 carboxy-terminal sites were identified with enhanced phosphorylation during sustained β-AR stimulation at T482 and S484. S484 peptides demonstrated the strongest δCaMKII phosphorylation. Sustained β-AR stimulation reduced IKs activation (P = .02 vs control) similar to the phosphorylated mimic (P = .62 vs sustained β-AR). Individual phosphorylated mimics at S484 (P = .04) but not at T482 (P = .17) reduced IKs function. Treatment with CN21 (CaMKII inhibitor) reversed the reductions in IKs vs CN21-Alanine control (P < .01). δCaMKII overexpression reduced IKs similar to ISO treatment in wild type (P < .01) but not in the dephosphorylated S484 mimic (P = .99). CONCLUSION CaMKII regulates KCNQ1 at S484 during sustained β-AR stimulation to inhibit IKs. The ability of CaMKII to inhibit IKs may contribute to arrhythmogenicity during HF.
Collapse
Affiliation(s)
- Tyler Shugg
- Department of Pharmacy Practice, College of Pharmacy, Purdue University, West Lafayette, Indiana
| | - Derrick E Johnson
- Department of Biochemistry and Molecular Biology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana
| | - Minghai Shao
- Department of Pharmacy Practice, College of Pharmacy, Purdue University, West Lafayette, Indiana
| | - Xianyin Lai
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Frank Witzmann
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Theodore R Cummins
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Michael Rubart-Von-der Lohe
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Andy Hudmon
- Department of Biochemistry and Molecular Biology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana
| | - Brian R Overholser
- Department of Pharmacy Practice, College of Pharmacy, Purdue University, West Lafayette, Indiana; Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
47
|
Li M, Hothi SS, Salvage SC, Jeevaratnam K, Grace AA, Huang CLH. Arrhythmic effects of Epac-mediated ryanodine receptor activation in Langendorff-perfused murine hearts are associated with reduced conduction velocity. Clin Exp Pharmacol Physiol 2018; 44:686-692. [PMID: 28316073 PMCID: PMC5488224 DOI: 10.1111/1440-1681.12751] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/05/2017] [Accepted: 03/07/2017] [Indexed: 12/19/2022]
Abstract
Recent papers have attributed arrhythmic substrate in murine RyR2‐P2328S hearts to reduced action potential (AP) conduction velocities (CV), reflecting acute functional inhibition and/or reduced expression of sodium channels. We explored for acute effects of direct exchange protein directly activated by cAMP (Epac)‐mediated ryanodine receptor‐2 (RyR2) activation on arrhythmic substrate and CV. Monophasic action potential (MAP) recordings demonstrated that initial steady (8 Hz) extrinsic pacing elicited ventricular tachycardia (VT) in 0 of 18 Langendorff‐perfused wild‐type mouse ventricles before pharmacological intervention. The Epac activator 8‐CPT (8‐(4‐chlorophenylthio)‐2′‐O‐methyladenosine‐3′,5′‐cyclic monophosphate) (VT in 1 of 7 hearts), and the RyR2 blocker dantrolene, either alone (0 of 11) or with 8‐CPT (0 of 9) did not then increase VT incidence (P>.05). Both progressively increased pacing rates and programmed extrasystolic (S2) stimuli similarly produced no VT in untreated hearts (n=20 and n=9 respectively). 8‐CPT challenge then increased VT incidences (5 of 7 and 4 of 8 hearts respectively; P<.05). However, dantrolene, whether alone (0 of 10 and 1 of 13) or combined with 8‐CPT (0 of 10 and 0 of 13) did not increase VT incidence relative to those observed in untreated hearts (P>.05). 8‐CPT but not dantrolene, whether alone or combined with 8‐CPT, correspondingly increased AP latencies (1.14±0.04 (n=7), 1.04±0.03 (n=10), 1.09±0.05 (n=8) relative to respective control values). In contrast, AP durations, conditions for 2:1 conduction block and ventricular effective refractory periods remained unchanged throughout. We thus demonstrate for the first time that acute RyR2 activation reversibly induces VT in specific association with reduced CV.
Collapse
Affiliation(s)
- Mengye Li
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Sandeep S Hothi
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Samantha C Salvage
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom.,Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Kamalan Jeevaratnam
- Faculty of Health and Medical Sciences, VSM Building, University of Surrey, Guildford, United Kingdom
| | - Andrew A Grace
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Christopher L-H Huang
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom.,Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
48
|
Savio-Galimberti E, Argenziano M, Antzelevitch C. Cardiac Arrhythmias Related to Sodium Channel Dysfunction. Handb Exp Pharmacol 2018; 246:331-354. [PMID: 28965168 DOI: 10.1007/164_2017_43] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The voltage-gated cardiac sodium channel (Nav1.5) is a mega-complex comprised of a pore-forming α subunit and 4 ancillary β-subunits together with numerous protein partners. Genetic defects in the form of rare variants in one or more sodium channel-related genes can cause a loss- or gain-of-function of sodium channel current (INa) leading to the manifestation of various disease phenotypes, including Brugada syndrome, long QT syndrome, progressive cardiac conduction disease, sick sinus syndrome, multifocal ectopic Purkinje-related premature contractions, and atrial fibrillation. Some sodium channelopathies have also been shown to be responsible for sudden infant death syndrome (SIDS). Although these genetic defects often present as pure electrical diseases, recent studies point to a contribution of structural abnormalities to the electrocardiographic and arrhythmic manifestation in some cases, such as dilated cardiomyopathy. The same rare variants in SCN5A or related genes may present with different clinical phenotypes in different individuals and sometimes in members of the same family. Genetic background and epigenetic and environmental factors contribute to the expression of these overlap syndromes. Our goal in this chapter is to review and discuss what is known about the clinical phenotype and genotype of each cardiac sodium channelopathy, and to briefly discuss the underlying mechanisms.
Collapse
Affiliation(s)
| | - Mariana Argenziano
- Lankenau Institute for Medical Research, 100 E. Lancaster Avenue, Wynnewood, PA, 19096, USA
| | - Charles Antzelevitch
- Lankenau Institute for Medical Research, 100 E. Lancaster Avenue, Wynnewood, PA, 19096, USA.
| |
Collapse
|
49
|
Valli H, Ahmad S, Sriharan S, Dean LD, Grace AA, Jeevaratnam K, Matthews HR, Huang CLH. Epac-induced ryanodine receptor type 2 activation inhibits sodium currents in atrial and ventricular murine cardiomyocytes. Clin Exp Pharmacol Physiol 2017; 45:278-292. [PMID: 29027245 PMCID: PMC5814738 DOI: 10.1111/1440-1681.12870] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/23/2017] [Accepted: 09/27/2017] [Indexed: 12/16/2022]
Abstract
Acute RyR2 activation by exchange protein directly activated by cAMP (Epac) reversibly perturbs myocyte Ca2+ homeostasis, slows myocardial action potential conduction, and exerts pro‐arrhythmic effects. Loose patch‐clamp studies, preserving in vivo extracellular and intracellular conditions, investigated Na+ current in intact cardiomyocytes in murine atrial and ventricular preparations following Epac activation. Depolarising steps to varying test voltages activated typical voltage‐dependent Na+ currents. Plots of peak current against depolarisation from resting potential gave pretreatment maximum atrial and ventricular currents of −20.23 ± 1.48 (17) and −29.8 ± 2.4 (10) pA/μm2 (mean ± SEM [n]). Challenge by 8‐CPT (1 μmol/L) reduced these currents to −11.21 ± 0.91 (12) (P < .004) and −19.3 ± 1.6 (11) pA/μm2 (P < .04) respectively. Currents following further addition of the RyR2 inhibitor dantrolene (10 μmol/L) (−19.91 ± 2.84 (13) and −26.6 ± 1.7 (17)), and dantrolene whether alone (−19.53 ± 1.97 (8) and −27.6 ± 1.9 (14)) or combined with 8‐CPT (−19.93 ± 2.59 (12) and −29.9 ± 2.5(11)), were indistinguishable from pretreatment values (all P >> .05). Assessment of the inactivation that followed by applying subsequent steps to a fixed voltage 100 mV positive to resting potential gave concordant results. Half‐maximal inactivation voltages and steepness factors, and time constants for Na+ current recovery from inactivation in double‐pulse experiments, were similar through all the pharmacological conditions. Intracellular sharp microelectrode membrane potential recordings in intact Langendorff‐perfused preparations demonstrated concordant variations in maximum rates of atrial and ventricular action potential upstroke, (dV/dt)max. We thus demonstrate an acute, reversible, Na+ channel inhibition offering a possible mechanism for previously reported pro‐arrhythmic slowing of AP propagation following modifications of Ca2+ homeostasis, complementing earlier findings from chronic alterations in Ca2+ homeostasis in genetically‐modified RyR2‐P2328S hearts.
Collapse
Affiliation(s)
- Haseeb Valli
- Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - Shiraz Ahmad
- Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - Sujan Sriharan
- Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - Lydia D Dean
- Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - Andrew A Grace
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Kamalan Jeevaratnam
- Physiological Laboratory, University of Cambridge, Cambridge, UK.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK.,PU-RCSI School of Medicine, Perdana University, Serdang, Selangor Darul Ehsan, Malaysia
| | - Hugh R Matthews
- Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - Christopher L-H Huang
- Physiological Laboratory, University of Cambridge, Cambridge, UK.,Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
50
|
Valli H, Ahmad S, Jiang AY, Smyth R, Jeevaratnam K, Matthews HR, Huang CLH. Cardiomyocyte ionic currents in intact young and aged murine Pgc-1β -/- atrial preparations. Mech Ageing Dev 2017; 169:1-9. [PMID: 29197478 PMCID: PMC5846848 DOI: 10.1016/j.mad.2017.11.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/11/2017] [Accepted: 11/28/2017] [Indexed: 12/19/2022]
Abstract
Energetically-deficient Pgc-1β−/− murine atria show age-dependent arrhythmia. Voltage clamp studies investigated their underlying membrane current changes. Pgc-1β−/− atria showed reduced inward Na+ currents with normal voltage-dependences. Outward repolarising K+ currents retained normal activation and rectification. A resulting slowed action potential conduction explains the arrhythmic phenotype.
Introduction Recent studies reported that energetically deficient murine Pgc-1β−/− hearts replicate age-dependent atrial arrhythmic phenotypes associated with their corresponding clinical conditions, implicating action potential (AP) conduction slowing consequent upon reduced AP upstroke rates. Materials and methods We tested a hypothesis implicating Na+ current alterations as a mechanism underlying these electrophysiological phenotypes. We applied loose patch-clamp techniques to intact young and aged, WT and Pgc-1β−/−, atrial cardiomyocyte preparations preserving their in vivo extracellular and intracellular conditions. Results and discussion Depolarising steps activated typical voltage-dependent activating and inactivating inward (Na+) currents whose amplitude increased or decreased with the amplitudes of the activating, or preceding inactivating, steps. Maximum values of peak Na+ current were independently influenced by genotype but not age or interacting effects of genotype and age on two-way ANOVA. Neither genotype, nor age, whether independently or interactively, influenced voltages at half-maximal current, or steepness factors, for current activation and inactivation, or time constants for recovery from inactivation following repolarisation. In contrast, delayed outward (K+) currents showed similar activation and rectification properties through all experimental groups. These findings directly demonstrate and implicate reduced Na+ in contrast to unchanged K+ current, as a mechanism for slowed conduction causing atrial arrhythmogenicity in Pgc-1β−/− hearts.
Collapse
Affiliation(s)
- Haseeb Valli
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge CB2 3EG, United Kingdom
| | - Shiraz Ahmad
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge CB2 3EG, United Kingdom
| | - Anita Y Jiang
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge CB2 3EG, United Kingdom
| | - Robert Smyth
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge CB2 3EG, United Kingdom
| | - Kamalan Jeevaratnam
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge CB2 3EG, United Kingdom; Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7AL, Surrey, United Kingdom; PU-RCSI School of Medicine, Perdana University, 43400 Serdang, Selangor Darul Ehsan, Malaysia
| | - Hugh R Matthews
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge CB2 3EG, United Kingdom
| | - Christopher L-H Huang
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge CB2 3EG, United Kingdom; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, United Kingdom.
| |
Collapse
|