1
|
Mizuno HL, Kang JD, Mizuno S. Effects of hydrostatic pressure, osmotic pressure, and confinement on extracellular matrix associated responses in the nucleus pulposus cells ex vivo. Matrix Biol 2024:S0945-053X(24)00126-4. [PMID: 39428070 DOI: 10.1016/j.matbio.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/15/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
Spinal movement in both upright and recumbent positions generates changes in physicochemical stresses including hydrostatic pressure (HP), deviatoric stress, and confinement within the intradiscal compartment. The nucleus pulposus (NP) of the intervertebral disc is composed of highly negatively charged extracellular matrix (ECM), which increases osmotic pressure (OP) and generates tissue swelling. In pursuing regenerative therapies for intervertebral disc degeneration, the effects of HP on the cellular responses of NP cells and the ECM environment remain incompletely understood. We hypothesized that anabolic turnover of ECM in NP tissue is maintained under HP and confinement. We first clarified the effects of the relationships among HP, OP, and confinement on swelling NP explants isolated from bovine caudal intervertebral discs over 12 hours. We found that the application of confinement and constant HP significantly inhibits the free swelling of NP (p < 0.01) and helps retain the sulfated glycosaminoglycan. Since confinement and HP inhibited swelling, we incubated confined NPs under HP in high-osmolality medium mimicking ECM-associated OP for 7 days and demonstrated the effects of HP on metabolic turnover of ECM molecules in NP cells. The aggrecan core protein gene was significantly upregulated under confinement and constant HP compared to confinement and no HP (p < 0.01). We also found that confinement and constant HP helped to significantly retain smaller cell area (p < 0.01) and significantly prevent the severing of actin filaments compared to no confinement and HP (p < 0.01). Thus, we suggest that NP's metabolic turnover and cellular responses are regulated by the configuration of intracellular actin and fibrillar ECMs under HP.
Collapse
Affiliation(s)
- Hayato L Mizuno
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo
| | - James D Kang
- Department of Orthopedic Surgery, Brigham and Women's Hospital and Harvard Medical School
| | - Shuichi Mizuno
- Department of Orthopedic Surgery, Brigham and Women's Hospital and Harvard Medical School.
| |
Collapse
|
2
|
Nagy N, Czepiel KS, Kaber G, Stefanovski D, Hargil A, Pennetzdorfer N, Targ R, Reghupaty SC, Wight TN, Vernon RB, Hull-Meichle RL, Marshall P, Medina CO, Martinez H, Kalinowski A, Paladini RD, Garantziotis S, Knowles JW, Bollyky PL. Hymecromone Promotes Longevity and Insulin Sensitivity in Mice. Cells 2024; 13:1727. [PMID: 39451245 PMCID: PMC11506560 DOI: 10.3390/cells13201727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/12/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
Given that the extracellular matrix polymer hyaluronan (HA) has been implicated in longevity, we asked whether 4-methylumbelliferone (4-MU), an inhibitor of HA synthesis, impacts lifespan in mice. We designed a prospective study of long-term administration of 4-MU with conventional C57BL/6J mice. We find that 4-MU extends median survival from 122 weeks (control) to 154 weeks (4-MU), an increase of 32 weeks (p < 0.0001 by Log-rank Mantel Cox test). The maximum lifespan of 4-MU treated mice increased from 159 to 194 weeks. In tandem with these effects, 4-MU enhances insulin sensitivity, a metabolic parameter known to regulate lifespan, as measured by insulin tolerance testing (ITT) as well as frequent sampling intra venous glucose tolerance tests (FSIVGTTs). We further observed that 4-MU treated mice weigh less while consuming the same amount of food, indicating that 4-MU treatment alters energy expenditure. However, we do not observe changes in tissue HA content in this model. We conclude that 4-MU promotes insulin sensitivity and longevity but that the underlying mechanism, and the contribution of HA is unclear. 4-MU, already approved in various countries for hepatobiliary conditions, is currently under investigation and clinical development as a therapy for several chronic inflammatory conditions. These data suggest that the beneficial effects of 4-MU on tissue metabolism may include effects on longevity.
Collapse
Affiliation(s)
- Nadine Nagy
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA; (N.N.); (K.S.C.); (A.H.)
| | - Kathryn S. Czepiel
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA; (N.N.); (K.S.C.); (A.H.)
| | - Gernot Kaber
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA; (N.N.); (K.S.C.); (A.H.)
| | - Darko Stefanovski
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA 19348, USA;
| | - Aviv Hargil
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA; (N.N.); (K.S.C.); (A.H.)
| | - Nina Pennetzdorfer
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA; (N.N.); (K.S.C.); (A.H.)
| | - Robert Targ
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA; (N.N.); (K.S.C.); (A.H.)
| | - Saranya C. Reghupaty
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Thomas N. Wight
- Benaroya Research Institute, 1201 9th Ave, Seattle, WA 98101, USA (R.B.V.)
| | - Robert B. Vernon
- Benaroya Research Institute, 1201 9th Ave, Seattle, WA 98101, USA (R.B.V.)
| | - Rebecca L. Hull-Meichle
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, WA 98108, USA;
| | - Payton Marshall
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA; (N.N.); (K.S.C.); (A.H.)
| | - Carlos O. Medina
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA; (N.N.); (K.S.C.); (A.H.)
| | - Hunter Martinez
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA; (N.N.); (K.S.C.); (A.H.)
| | - Anissa Kalinowski
- Halo Biosciences, 125 University St., Palo Alto, CA 94301, USA (R.D.P.)
| | | | - Stavros Garantziotis
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA;
| | - Joshua W. Knowles
- Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Paul L. Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA; (N.N.); (K.S.C.); (A.H.)
| |
Collapse
|
3
|
Grilo LF, Zimmerman KD, Puppala S, Chan J, Huber HF, Li G, Jadhav AYL, Wang B, Li C, Clarke GD, Register TC, Oliveira PJ, Nathanielsz PW, Olivier M, Pereira SP, Cox LA. Cardiac Molecular Analysis Reveals Aging-Associated Metabolic Alterations Promoting Glycosaminoglycans Accumulation via Hexosamine Biosynthetic Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309211. [PMID: 39119859 PMCID: PMC11481188 DOI: 10.1002/advs.202309211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/17/2024] [Indexed: 08/10/2024]
Abstract
Age is a prominent risk factor for cardiometabolic disease, often leading to heart structural and functional changes. However, precise molecular mechanisms underlying cardiac remodeling and dysfunction exclusively resulting from physiological aging remain elusive. Previous research demonstrated age-related functional alterations in baboons, analogous to humans. The goal of this study is to identify early cardiac molecular alterations preceding functional adaptations, shedding light on the regulation of age-associated changes. Unbiased transcriptomics of left ventricle samples are performed from female baboons aged 7.5-22.1 years (human equivalent ≈30-88 years). Weighted-gene correlation network and pathway enrichment analyses are performed, with histological validation. Modules of transcripts negatively correlated with age implicated declined metabolism-oxidative phosphorylation, tricarboxylic acid cycle, glycolysis, and fatty-acid β-oxidation. Transcripts positively correlated with age suggested a metabolic shift toward glucose-dependent anabolic pathways, including hexosamine biosynthetic pathway (HBP). This shift is associated with increased glycosaminoglycan synthesis, modification, precursor synthesis via HBP, and extracellular matrix accumulation, verified histologically. Upregulated extracellular matrix-induced signaling coincided with glycosaminoglycan accumulation, followed by cardiac hypertrophy-related pathways. Overall, these findings revealed a transcriptional shift in metabolism favoring glycosaminoglycan accumulation through HBP before cardiac hypertrophy. Unveiling this metabolic shift provides potential targets for age-related cardiac diseases, offering novel insights into early age-related mechanisms.
Collapse
Affiliation(s)
- Luís F. Grilo
- CNC‐UCCenter for Neuroscience and Cell BiologyUniversity of CoimbraCoimbra3060Portugal
- CIBBCenter for Innovative Biomedicine and BiotechnologyUniversity of CoimbraCoimbra3060Portugal
- Institute for Interdisciplinary ResearchPDBEB – Doctoral Programme in Experimental Biology and BiomedicineUniversity of CoimbraCoimbra3060Portugal
- Center for Precision MedicineWake Forest University Health SciencesWinston‐SalemNC27157USA
| | - Kip D. Zimmerman
- Center for Precision MedicineWake Forest University Health SciencesWinston‐SalemNC27157USA
- Section on Molecular MedicineDepartment of Internal MedicineWake Forest University School of MedicineWinston‐SalemNC27157USA
| | - Sobha Puppala
- Center for Precision MedicineWake Forest University Health SciencesWinston‐SalemNC27157USA
- Section on Molecular MedicineDepartment of Internal MedicineWake Forest University School of MedicineWinston‐SalemNC27157USA
| | - Jeannie Chan
- Center for Precision MedicineWake Forest University Health SciencesWinston‐SalemNC27157USA
- Section on Molecular MedicineDepartment of Internal MedicineWake Forest University School of MedicineWinston‐SalemNC27157USA
| | - Hillary F. Huber
- Southwest National Primate Research CenterTexas Biomedical Research InstituteSan AntonioTX78245USA
| | - Ge Li
- Center for Precision MedicineWake Forest University Health SciencesWinston‐SalemNC27157USA
| | - Avinash Y. L. Jadhav
- Center for Precision MedicineWake Forest University Health SciencesWinston‐SalemNC27157USA
| | - Benlian Wang
- Center for Precision MedicineWake Forest University Health SciencesWinston‐SalemNC27157USA
| | - Cun Li
- Texas Pregnancy & Life‐Course Health Research CenterDepartment of Animal ScienceUniversity of WyomingLaramieWY82071USA
| | - Geoffrey D. Clarke
- Department of RadiologyUniversity of Texas Health Science CenterSan AntonioTX78229USA
| | - Thomas C. Register
- Center for Precision MedicineWake Forest University Health SciencesWinston‐SalemNC27157USA
- Section on Comparative MedicineDepartment of PathologyWake Forest University School of MedicineWinston‐SalemNC27157USA
| | - Paulo J. Oliveira
- CNC‐UCCenter for Neuroscience and Cell BiologyUniversity of CoimbraCoimbra3060Portugal
- CIBBCenter for Innovative Biomedicine and BiotechnologyUniversity of CoimbraCoimbra3060Portugal
| | - Peter W. Nathanielsz
- Texas Pregnancy & Life‐Course Health Research CenterDepartment of Animal ScienceUniversity of WyomingLaramieWY82071USA
| | - Michael Olivier
- Center for Precision MedicineWake Forest University Health SciencesWinston‐SalemNC27157USA
- Section on Molecular MedicineDepartment of Internal MedicineWake Forest University School of MedicineWinston‐SalemNC27157USA
| | - Susana P. Pereira
- CNC‐UCCenter for Neuroscience and Cell BiologyUniversity of CoimbraCoimbra3060Portugal
- CIBBCenter for Innovative Biomedicine and BiotechnologyUniversity of CoimbraCoimbra3060Portugal
- Laboratory of Metabolism and Exercise (LaMetEx)Research Centre in Physical ActivityHealth and Leisure (CIAFEL)Laboratory for Integrative and Translational Research in Population Health (ITR)Faculty of SportsUniversity of PortoPorto4050Portugal
| | - Laura A. Cox
- Center for Precision MedicineWake Forest University Health SciencesWinston‐SalemNC27157USA
- Section on Molecular MedicineDepartment of Internal MedicineWake Forest University School of MedicineWinston‐SalemNC27157USA
- Southwest National Primate Research CenterTexas Biomedical Research InstituteSan AntonioTX78245USA
- Section on Comparative MedicineDepartment of PathologyWake Forest University School of MedicineWinston‐SalemNC27157USA
| |
Collapse
|
4
|
Liu Z, Hou P, Fang J, Shao C, Shi Y, Melino G, Peschiaroli A. Hyaluronic acid metabolism and chemotherapy resistance: recent advances and therapeutic potential. Mol Oncol 2024; 18:2087-2106. [PMID: 37953485 PMCID: PMC11467803 DOI: 10.1002/1878-0261.13551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/04/2023] [Accepted: 11/10/2023] [Indexed: 11/14/2023] Open
Abstract
Hyaluronic acid (HA) is a major component of the extracellular matrix, providing essential mechanical scaffolding for cells and, at the same time, mediating essential biochemical signals required for tissue homeostasis. Many solid tumors are characterized by dysregulated HA metabolism, resulting in increased HA levels in cancer tissues. HA interacts with several cell surface receptors, such as cluster of differentiation 44 and receptor for hyaluronan-mediated motility, thus co-regulating important signaling pathways in cancer development and progression. In this review, we describe the enzymes controlling HA metabolism and its intracellular effectors emphasizing their impact on cancer chemotherapy resistance. We will also explore the current and future prospects of HA-based therapy, highlighting the opportunities and challenges in the field.
Collapse
Affiliation(s)
- Zhanhong Liu
- Department of Experimental MedicineUniversity of Rome Tor VergataRomeItaly
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Pengbo Hou
- Department of Experimental MedicineUniversity of Rome Tor VergataRomeItaly
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Jiankai Fang
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Changshun Shao
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Yufang Shi
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Gerry Melino
- Department of Experimental MedicineUniversity of Rome Tor VergataRomeItaly
| | - Angelo Peschiaroli
- Institute of Translational Pharmacology (IFT), National Research Council (CNR)RomeItaly
| |
Collapse
|
5
|
Rabelink TJ, Wang G, van der Vlag J, van den Berg BM. The roles of hyaluronan in kidney development, physiology and disease. Nat Rev Nephrol 2024:10.1038/s41581-024-00883-5. [PMID: 39191935 DOI: 10.1038/s41581-024-00883-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 08/29/2024]
Abstract
The hyaluronan (HA) matrix in the tissue microenvironment is crucial for maintaining homeostasis by regulating inflammatory signalling, endothelial-mesenchymal transition and cell migration. During development, covalent modifications and osmotic swelling of HA create mechanical forces that initiate midgut rotation, vascular patterning and branching morphogenesis. Together with its main cell surface receptor, CD44, HA establishes a physicochemical scaffold at the cell surface that facilitates the interaction and clustering of growth factors and receptors that is required for normal physiology. High-molecular-weight HA, tumour necrosis factor-stimulated gene 6, pentraxin 3 and CD44 form a stable pericellular matrix that promotes tissue regeneration and reduces inflammation. By contrast, breakdown of high-molecular-weight HA into depolymerized fragments by hyaluronidases triggers inflammatory signalling, leukocyte migration and angiogenesis, contributing to tissue damage and fibrosis in kidney disease. Targeting HA metabolism is challenging owing to its dynamic regulation and tissue-specific functions. Nonetheless, modulating HA matrix functions by targeting its binding partners holds promise as a therapeutic strategy for restoring tissue homeostasis and mitigating pathological processes. Further research in this area is warranted to enable the development of novel therapeutic approaches for kidney and other diseases characterized by dysregulated HA metabolism.
Collapse
Affiliation(s)
- Ton J Rabelink
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands.
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands.
| | - Gangqi Wang
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Johan van der Vlag
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bernard M van den Berg
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
6
|
Chatham JC, Patel RP. Protein glycosylation in cardiovascular health and disease. Nat Rev Cardiol 2024; 21:525-544. [PMID: 38499867 DOI: 10.1038/s41569-024-00998-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 03/20/2024]
Abstract
Protein glycosylation, which involves the attachment of carbohydrates to proteins, is one of the most abundant protein co-translational and post-translational modifications. Advances in technology have substantially increased our knowledge of the biosynthetic pathways involved in protein glycosylation, as well as how changes in glycosylation can affect cell function. In addition, our understanding of the role of protein glycosylation in disease processes is growing, particularly in the context of immune system function, infectious diseases, neurodegeneration and cancer. Several decades ago, cell surface glycoproteins were found to have an important role in regulating ion transport across the cardiac sarcolemma. However, with very few exceptions, our understanding of how changes in protein glycosylation influence cardiovascular (patho)physiology remains remarkably limited. Therefore, in this Review, we aim to provide an overview of N-linked and O-linked protein glycosylation, including intracellular O-linked N-acetylglucosamine protein modification. We discuss our current understanding of how all forms of protein glycosylation contribute to normal cardiovascular function and their roles in cardiovascular disease. Finally, we highlight potential gaps in our knowledge about the effects of protein glycosylation on the heart and vascular system, highlighting areas for future research.
Collapse
Affiliation(s)
- John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Rakesh P Patel
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
7
|
Vitale DL, Parnigoni A, Viola M, Karousou E, Sevic I, Moretto P, Passi A, Alaniz L, Vigetti D. Deciphering Drug Resistance: Investigating the Emerging Role of Hyaluronan Metabolism and Signaling and Tumor Extracellular Matrix in Cancer Chemotherapy. Int J Mol Sci 2024; 25:7607. [PMID: 39062846 PMCID: PMC11276752 DOI: 10.3390/ijms25147607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Hyaluronan (HA) has gained significant attention in cancer research for its role in modulating chemoresistance. This review aims to elucidate the mechanisms by which HA contributes to chemoresistance, focusing on its interactions within the tumor microenvironment. HA is abundantly present in the extracellular matrix (ECM) and binds to cell-surface receptors such as CD44 and RHAMM. These interactions activate various signaling pathways, including PI3K/Akt, MAPK, and NF-κB, which are implicated in cell survival, proliferation, and drug resistance. HA also influences the physical properties of the tumor stroma, enhancing its density and reducing drug penetration. Additionally, HA-mediated signaling contributes to the epithelial-mesenchymal transition (EMT), a process associated with increased metastatic potential and resistance to apoptosis. Emerging therapeutic strategies aim to counteract HA-induced chemoresistance by targeting HA synthesis, degradation, metabolism, or its binding to CD44. This review underscores the complexity of HA's role in chemoresistance and highlights the potential for HA-targeted therapies to improve the efficacy of conventional chemotherapeutics.
Collapse
Affiliation(s)
- Daiana L. Vitale
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín B6000, Argentina; (D.L.V.); (I.S.); (L.A.)
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), UNNOBA-UNSAdA-CONICET, Junín 6000, Argentina
| | - Arianna Parnigoni
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden;
| | - Manuela Viola
- Dipartimento di Medicina e Chirurgia, Universitá degli Studi dell’Insubria, 21100 Varese, Italy; (M.V.); (E.K.); (P.M.); (A.P.)
| | - Evgenia Karousou
- Dipartimento di Medicina e Chirurgia, Universitá degli Studi dell’Insubria, 21100 Varese, Italy; (M.V.); (E.K.); (P.M.); (A.P.)
| | - Ina Sevic
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín B6000, Argentina; (D.L.V.); (I.S.); (L.A.)
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), UNNOBA-UNSAdA-CONICET, Junín 6000, Argentina
| | - Paola Moretto
- Dipartimento di Medicina e Chirurgia, Universitá degli Studi dell’Insubria, 21100 Varese, Italy; (M.V.); (E.K.); (P.M.); (A.P.)
| | - Alberto Passi
- Dipartimento di Medicina e Chirurgia, Universitá degli Studi dell’Insubria, 21100 Varese, Italy; (M.V.); (E.K.); (P.M.); (A.P.)
| | - Laura Alaniz
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín B6000, Argentina; (D.L.V.); (I.S.); (L.A.)
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), UNNOBA-UNSAdA-CONICET, Junín 6000, Argentina
| | - Davide Vigetti
- Dipartimento di Medicina e Chirurgia, Universitá degli Studi dell’Insubria, 21100 Varese, Italy; (M.V.); (E.K.); (P.M.); (A.P.)
| |
Collapse
|
8
|
Murray M, Davidson L, Ferenbach AT, Lefeber D, van Aalten DMF. Neuroectoderm phenotypes in a human stem cell model of O-GlcNAc transferase associated with intellectual disability. Mol Genet Metab 2024; 142:108492. [PMID: 38759397 DOI: 10.1016/j.ymgme.2024.108492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024]
Abstract
Pathogenic variants in the O-GlcNAc transferase gene (OGT) have been associated with a congenital disorder of glycosylation (OGT-CDG), presenting with intellectual disability which may be of neuroectodermal origin. To test the hypothesis that pathology is linked to defects in differentiation during early embryogenesis, we developed an OGT-CDG induced pluripotent stem cell line together with isogenic control generated by CRISPR/Cas9 gene-editing. Although the OGT-CDG variant leads to a significant decrease in OGT and O-GlcNAcase protein levels, there were no changes in differentiation potential or stemness. However, differentiation into ectoderm resulted in significant differences in O-GlcNAc homeostasis. Further differentiation to neuronal stem cells revealed differences in morphology between patient and control lines, accompanied by disruption of the O-GlcNAc pathway. This suggests a critical role for O-GlcNAcylation in early neuroectoderm architecture, with robust compensatory mechanisms in the earliest stages of stem cell differentiation.
Collapse
Affiliation(s)
- Marta Murray
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Lindsay Davidson
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Andrew T Ferenbach
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, DK, Denmark
| | - Dirk Lefeber
- Department of Neurology, Department of Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, NL, the Netherlands
| | - Daan M F van Aalten
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, DK, Denmark.
| |
Collapse
|
9
|
Alshareef SA. Metabolic analysis of the CAZy class glycosyltransferases in rhizospheric soil fungiome of the plant species Moringa oleifera. Saudi J Biol Sci 2024; 31:103956. [PMID: 38404538 PMCID: PMC10891331 DOI: 10.1016/j.sjbs.2024.103956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/03/2024] [Accepted: 02/10/2024] [Indexed: 02/27/2024] Open
Abstract
The target of the present work is to study the most abundant carbohydrate-active enzymes (CAZymes) of glycosyltransferase (GT) class, which are encoded by fungiome genes present in the rhizospheric soil of the plant species Moringa oleifera. The datasets of this CAZy class were recovered using metagenomic whole shotgun genome sequencing approach, and the resultant CAZymes were searched against the KEGG pathway database to identify function. High emphasis was given to the two GT families, GT4 and GT2, which were the highest within GT class in the number and abundance of gene queries in this soil compartment. These two GT families harbor CAZymes playing crucial roles in cell membrane and cell wall processes. These CAZymes are responsible for synthesizing essential structural components such as cellulose and chitin, which contribute to the integrity of cell walls in plants and fungi. The CAZyme beta-1,3-glucan synthase of GT2 family accumulates 1,3-β-glucan, which provides elasticity as well as tensile strength to the fungal cell wall. Other GT CAZymes contribute to the biosynthesis of several compounds crucial for cell membrane and wall integrity, including lipopolysaccharide, e.g., lipopolysaccharide N-acetylglucosaminyltransferase, cell wall teichoic acid, e.g., alpha-glucosyltransferase, and cellulose, e.g., cellulose synthase. These compounds also play pivotal roles in ion homeostasis, organic carbon mineralization, and osmoprotection against abiotic stresses in plants. This study emphasizes the major roles of these two CAZy GT families in connecting the structure and function of cell membranes and cell walls of fungal and plant cells. The study also sheds light on the potential occurrence of tripartite symbiotic relationships involving the plant, rhizospheric bacteriome, and fungiome via the action of CAZymes of GT4 and GT2 families. These findings provide valuable insights towards the generation of innovative agricultural practices to enhance the performance of crop plants in the future.
Collapse
Affiliation(s)
- Sahar A. Alshareef
- Department of Biology, College of Science and Arts at Khulis, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
10
|
Song C, Hu P, Peng R, Li F, Fang Z, Xu Y. Bioenergetic dysfunction in the pathogenesis of intervertebral disc degeneration. Pharmacol Res 2024; 202:107119. [PMID: 38417775 DOI: 10.1016/j.phrs.2024.107119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/16/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
Intervertebral disc (IVD) degeneration is a frequent cause of low back pain and is the most common cause of disability. Treatments for symptomatic IVD degeneration, including conservative treatments such as analgesics, physical therapy, anti-inflammatories and surgeries, are aimed at alleviating neurological symptoms. However, there are no effective treatments to prevent or delay IVD degeneration. Previous studies have identified risk factors for IVD degeneration such as aging, inflammation, genetic factors, mechanical overload, nutrient deprivation and smoking, but metabolic dysfunction has not been highlighted. IVDs are the largest avascular structures in the human body and determine the hypoxic and glycolytic features of nucleus pulposus (NP) cells. Accumulating evidence has demonstrated that intracellular metabolic dysfunction is associated with IVD degeneration, but a comprehensive review is lacking. Here, by reviewing the physiological features of IVDs, pathological processes and metabolic changes associated with IVD degeneration and the functions of metabolic genes in IVDs, we highlight that glycolytic pathway and intact mitochondrial function are essential for IVD homeostasis. In degenerated NPs, glycolysis and mitochondrial function are downregulated. Boosting glycolysis such as HIF1α overexpression protects against IVD degeneration. Moreover, the correlations between metabolic diseases such as diabetes, obesity and IVD degeneration and their underlying molecular mechanisms are discussed. Hyperglycemia in diabetic diseases leads to cell senescence, the senescence-associated phenotype (SASP), apoptosis and catabolism of extracellualr matrix in IVDs. Correcting the global metabolic disorders such as insulin or GLP-1 receptor agonist administration is beneficial for diabetes associated IVD degeneration. Overall, we summarized the recent progress of investigations on metabolic contributions to IVD degeneration and provide a new perspective that correcting metabolic dysfunction may be beneficial for treating IVD degeneration.
Collapse
Affiliation(s)
- Chao Song
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Peixuan Hu
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Renpeng Peng
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Feng Li
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Zhong Fang
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Yong Xu
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| |
Collapse
|
11
|
Costa TJ, Wilson EW, Fontes MT, Pernomian L, Tostes RC, Wenceslau CF, McCarthy CG. The O-GlcNAc dichotomy: when does adaptation become pathological? Clin Sci (Lond) 2023; 137:1683-1697. [PMID: 37986614 DOI: 10.1042/cs20220309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023]
Abstract
O-Linked attachment of β-N-acetylglucosamine (O-GlcNAc) on serine and threonine residues of nuclear, cytoplasmic, and mitochondrial proteins is a highly dynamic and ubiquitous post-translational modification that impacts the function, activity, subcellular localization, and stability of target proteins. Physiologically, acute O-GlcNAcylation serves primarily to modulate cellular signaling and transcription regulatory pathways in response to nutrients and stress. To date, thousands of proteins have been revealed to be O-GlcNAcylated and this number continues to grow as the technology for the detection of O-GlcNAc improves. The attachment of a single O-GlcNAc is catalyzed by the enzyme O-GlcNAc transferase (OGT), and their removal is catalyzed by O-GlcNAcase (OGA). O-GlcNAcylation is regulated by the metabolism of glucose via the hexosamine biosynthesis pathway, and the metabolic abnormalities associated with pathophysiological conditions are all associated with increased flux through this pathway and elevate O-GlcNAc levels. While chronic O-GlcNAcylation is well associated with cardiovascular dysfunction, only until recently, and with genetically modified animals, has O-GlcNAcylation as a contributing mechanism of cardiovascular disease emerged. This review will address and critically evaluate the current literature on the role of O-GlcNAcylation in vascular physiology, with a view that this pathway can offer novel targets for the treatment and prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Tiago J Costa
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, SC, U.S.A
| | - Emily W Wilson
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine-Columbia, SC, U.S.A
| | - Milene T Fontes
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, SC, U.S.A
| | - Laena Pernomian
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, SC, U.S.A
| | - Rita C Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Camilla F Wenceslau
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, SC, U.S.A
| | - Cameron G McCarthy
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, SC, U.S.A
| |
Collapse
|
12
|
Grilo LF, Zimmerman KD, Puppala S, Chan J, Huber HF, Li G, Jadhav AYL, Wang B, Li C, Clarke GD, Register TC, Oliveira PJ, Nathanielsz PW, Olivier M, Pereira SP, Cox LA. Cardiac Molecular Analysis Reveals Aging-Associated Metabolic Alterations Promoting Glycosaminoglycans Accumulation Via Hexosamine Biosynthetic Pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.567640. [PMID: 38014295 PMCID: PMC10680868 DOI: 10.1101/2023.11.17.567640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Age is a prominent risk factor for cardiometabolic disease, and often leads to heart structural and functional changes. However, precise molecular mechanisms underlying cardiac remodeling and dysfunction resulting from physiological aging per se remain elusive. Understanding these mechanisms requires biological models with optimal translation to humans. Previous research demonstrated that baboons undergo age-related reduction in ejection fraction and increased heart sphericity, mirroring changes observed in humans. The goal of this study was to identify early cardiac molecular alterations that precede functional adaptations, shedding light on the regulation of age-associated changes. We performed unbiased transcriptomics of left ventricle (LV) samples from female baboons aged 7.5-22.1 years (human equivalent ~30-88 years). Weighted-gene correlation network and pathway enrichment analyses were performed to identify potential age-associated mechanisms in LV, with histological validation. Myocardial modules of transcripts negatively associated with age were primarily enriched for cardiac metabolism, including oxidative phosphorylation, tricarboxylic acid cycle, glycolysis, and fatty-acid β-oxidation. Transcripts positively correlated with age suggest upregulation of glucose uptake, pentose phosphate pathway, and hexosamine biosynthetic pathway (HBP), indicating a metabolic shift towards glucose-dependent anabolic pathways. Upregulation of HBP commonly results in increased glycosaminoglycan precursor synthesis. Transcripts involved in glycosaminoglycan synthesis, modification, and intermediate metabolism were also upregulated in older animals, while glycosaminoglycan degradation transcripts were downregulated with age. These alterations would promote glycosaminoglycan accumulation, which was verified histologically. Upregulation of extracellular matrix (ECM)-induced signaling pathways temporally coincided with glycosaminoglycan accumulation. We found a subsequent upregulation of cardiac hypertrophy-related pathways and an increase in cardiomyocyte width. Overall, our findings revealed a transcriptional shift in metabolism from catabolic to anabolic pathways that leads to ECM glycosaminoglycan accumulation through HBP prior to upregulation of transcripts of cardiac hypertrophy-related pathways. This study illuminates cellular mechanisms that precede development of cardiac hypertrophy, providing novel potential targets to remediate age-related cardiac diseases.
Collapse
Affiliation(s)
- Luís F. Grilo
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
- CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
- University of Coimbra, Institute for Interdisciplinary Research, PDBEB - Doctoral Programme in Experimental Biology and Biomedicine
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Kip D. Zimmerman
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Sobha Puppala
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jeannie Chan
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Hillary F. Huber
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Ge Li
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Avinash Y. L. Jadhav
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Benlian Wang
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Cun Li
- Texas Pregnancy & Life-Course Health Research Center, Department of Animal Science, University of Wyoming, Laramie, Wyoming, USA
| | - Geoffrey D. Clarke
- Department of Radiology, University of Texas Health Science Center, San Antonio, Texas
| | - Thomas C. Register
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
- Section on Comparative Medicine, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Paulo J. Oliveira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
- CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Peter W. Nathanielsz
- Texas Pregnancy & Life-Course Health Research Center, Department of Animal Science, University of Wyoming, Laramie, Wyoming, USA
| | - Michael Olivier
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Susana P. Pereira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
- CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, Porto, Portugal
| | - Laura A. Cox
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
- Section on Comparative Medicine, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
13
|
Parnigoni A, Moretto P, Viola M, Karousou E, Passi A, Vigetti D. Effects of Hyaluronan on Breast Cancer Aggressiveness. Cancers (Basel) 2023; 15:3813. [PMID: 37568628 PMCID: PMC10417239 DOI: 10.3390/cancers15153813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
The expression of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) in breast cancer cells is critical for determining tumor aggressiveness and targeting therapies. The presence of such receptors allows for the use of antagonists that effectively reduce breast cancer growth and dissemination. However, the absence of such receptors in triple-negative breast cancer (TNBC) reduces the possibility of targeted therapy, making these tumors very aggressive with a poor outcome. Cancers are not solely composed of tumor cells, but also include several types of infiltrating cells, such as fibroblasts, macrophages, and other immune cells that have critical functions in regulating cancer cell behaviors. In addition to these cells, the extracellular matrix (ECM) has become an important player in many aspects of breast cancer biology, including cell growth, motility, metabolism, and chemoresistance. Hyaluronan (HA) is a key ECM component that promotes cell proliferation and migration in several malignancies. Notably, HA accumulation in the tumor stroma is a negative prognostic factor in breast cancer. HA metabolism depends on the fine balance between HA synthesis by HA synthases and degradation yielded by hyaluronidases. All the different cell types present in the tumor can release HA in the ECM, and in this review, we will describe the role of HA and HA metabolism in different breast cancer subtypes.
Collapse
Affiliation(s)
| | | | | | | | | | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.P.); (P.M.); (M.V.); (E.K.); (A.P.)
| |
Collapse
|
14
|
Ben Ahmed A, Lemaire Q, Scache J, Mariller C, Lefebvre T, Vercoutter-Edouart AS. O-GlcNAc Dynamics: The Sweet Side of Protein Trafficking Regulation in Mammalian Cells. Cells 2023; 12:1396. [PMID: 37408229 PMCID: PMC10216988 DOI: 10.3390/cells12101396] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 07/07/2023] Open
Abstract
The transport of proteins between the different cellular compartments and the cell surface is governed by the secretory pathway. Alternatively, unconventional secretion pathways have been described in mammalian cells, especially through multivesicular bodies and exosomes. These highly sophisticated biological processes rely on a wide variety of signaling and regulatory proteins that act sequentially and in a well-orchestrated manner to ensure the proper delivery of cargoes to their final destination. By modifying numerous proteins involved in the regulation of vesicular trafficking, post-translational modifications (PTMs) participate in the tight regulation of cargo transport in response to extracellular stimuli such as nutrient availability and stress. Among the PTMs, O-GlcNAcylation is the reversible addition of a single N-acetylglucosamine monosaccharide (GlcNAc) on serine or threonine residues of cytosolic, nuclear, and mitochondrial proteins. O-GlcNAc cycling is mediated by a single couple of enzymes: the O-GlcNAc transferase (OGT) which catalyzes the addition of O-GlcNAc onto proteins, and the O-GlcNAcase (OGA) which hydrolyses it. Here, we review the current knowledge on the emerging role of O-GlcNAc modification in the regulation of protein trafficking in mammalian cells, in classical and unconventional secretory pathways.
Collapse
|
15
|
Derwich M, Górski B, Amm E, Pawłowska E. Oral Glucosamine in the Treatment of Temporomandibular Joint Osteoarthritis: A Systematic Review. Int J Mol Sci 2023; 24:4925. [PMID: 36902359 PMCID: PMC10003243 DOI: 10.3390/ijms24054925] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/18/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Temporomandibular disorders (TMDs) occur frequently within the general population and are the most common non-dental cause of orofacial pain. Temporomandibular joint osteoarthritis (TMJ OA) is a degenerative joint disease (DJD). There have been several different methods of treatment of TMJ OA listed, including pharmacotherapy among others. Due to its anti-aging, antioxidative, bacteriostatic, anti-inflammatory, immuno-stimulating, pro-anabolic and anti-catabolic properties, oral glucosamine seems to be a potentially very effective agent in the treatment of TMJ OA. The aim of this review was to critically assess the efficacy of oral glucosamine in the treatment of TMJ OA on the basis of the literature. PubMed and Scopus databases were analyzed with the keywords: (temporomandibular joints) AND ((disorders) OR (osteoarthritis)) AND (treatment) AND (glucosamine). After the screening of 50 results, eight studies have been included in this review. Oral glucosamine is one of the symptomatic slow-acting drugs for osteoarthritis. There is not enough scientific evidence to unambiguously confirm the clinical effectiveness of glucosamine supplements in the treatment of TMJ OA on the basis of the literature. The most important aspect affecting the clinical efficacy of oral glucosamine in the treatment of TMJ OA was the total administration time. Administration of oral glucosamine for a longer period of time, i.e., 3 months, led to a significant reduction in TMJ pain and a significant increase in maximum mouth opening. It also resulted in long-term anti-inflammatory effects within the TMJs. Further long-term, randomized, double-blind studies, with a unified methodology, ought to be performed to draw the general recommendations for the use of oral glucosamine in the treatment of TMJ OA.
Collapse
Affiliation(s)
- Marcin Derwich
- Department of Pediatric Dentistry, Medical University of Lodz, 90-419 Łódź, Poland
| | - Bartłomiej Górski
- Department of Periodontology and Oral Mucosa Diseases, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Elie Amm
- Department of Orthodontics and Dentofacial Orthopedics, Boston University, Boston, MA 02118, USA
| | - Elżbieta Pawłowska
- Department of Pediatric Dentistry, Medical University of Lodz, 90-419 Łódź, Poland
| |
Collapse
|
16
|
Karousou E, Parnigoni A, Moretto P, Passi A, Viola M, Vigetti D. Hyaluronan in the Cancer Cells Microenvironment. Cancers (Basel) 2023; 15:cancers15030798. [PMID: 36765756 PMCID: PMC9913668 DOI: 10.3390/cancers15030798] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
The presence of the glycosaminoglycan hyaluronan in the extracellular matrix of tissues is the result of the cooperative synthesis of several resident cells, that is, macrophages and tumor and stromal cells. Any change in hyaluronan concentration or dimension leads to a modification in stiffness and cellular response through receptors on the plasma membrane. Hyaluronan has an effect on all cancer cell behaviors, such as evasion of apoptosis, limitless replicative potential, sustained angiogenesis, and metastasis. It is noteworthy that hyaluronan metabolism can be dramatically altered by growth factors and matrikines during inflammation, as well as by the metabolic homeostasis of cells. The regulation of HA deposition and its dimensions are pivotal for tumor progression and cancer patient prognosis. Nevertheless, because of all the factors involved, modulating hyaluronan metabolism could be tough. Several commercial drugs have already been described as potential or effective modulators; however, deeper investigations are needed to study their possible side effects. Moreover, other matrix molecules could be identified and targeted as upstream regulators of synthetic or degrading enzymes. Finally, co-cultures of cancer, fibroblasts, and immune cells could reveal potential new targets among secreted factors.
Collapse
|
17
|
Parnigoni A, Moretto P, Rovera S, Viola M, Karousou E, Passi A, Vigetti D. Particle Exclusion Assay: A Tool for Measuring Hyaluronan Pericellular Matrix. Methods Mol Biol 2023; 2619:53-60. [PMID: 36662461 DOI: 10.1007/978-1-0716-2946-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Hyaluronan (HA) is the most abundant glycosaminoglycan in the extracellular matrix, and its deposition is strictly related to changes in cellular behaviors, such as cell migration, proliferation, and adhesion. Pericellular HA is abundant in a variety of cell types, and its amount could reflect specific conditions, thus suggesting a particular cellular status.Particle exclusion assay is a useful tool to visualize pericellular matrices with a high HA content, simply employing microscope image analysis. This approach is quick and allows to visualize the presence of a clear pericellular region around single cells, where fixed red blood cells are excluded if the pericellular matrix has been deposited.
Collapse
Affiliation(s)
- Arianna Parnigoni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Paola Moretto
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Simona Rovera
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Manuela Viola
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Evgenia Karousou
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy.
| |
Collapse
|
18
|
Plaas AHK, Moran MM, Sandy JD, Hascall VC. Aggrecan and Hyaluronan: The Infamous Cartilage Polyelectrolytes - Then and Now. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1402:3-29. [PMID: 37052843 DOI: 10.1007/978-3-031-25588-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Cartilages are unique in the family of connective tissues in that they contain a high concentration of the glycosaminoglycans, chondroitin sulfate and keratan sulfate attached to the core protein of the proteoglycan, aggrecan. Multiple aggrecan molecules are organized in the extracellular matrix via a domain-specific molecular interaction with hyaluronan and a link protein, and these high molecular weight aggregates are immobilized within the collagen and glycoprotein network. The high negative charge density of glycosaminoglycans provides hydrophilicity, high osmotic swelling pressure and conformational flexibility, which together function to absorb fluctuations in biomechanical stresses on cartilage during movement of an articular joint. We have summarized information on the history and current knowledge obtained by biochemical and genetic approaches, on cell-mediated regulation of aggrecan metabolism and its role in skeletal development, growth as well as during the development of joint disease. In addition, we describe the pathways for hyaluronan metabolism, with particular focus on the role as a "metabolic rheostat" during chondrocyte responses in cartilage remodeling in growth and disease.Future advances in effective therapeutic targeting of cartilage loss during osteoarthritic diseases of the joint as an organ as well as in cartilage tissue engineering would benefit from 'big data' approaches and bioinformatics, to uncover novel feed-forward and feed-back mechanisms for regulating transcription and translation of genes and their integration into cell-specific pathways.
Collapse
Affiliation(s)
- Anna H K Plaas
- Department of Internal Medicine (Rheumatology), Rush University Medical Center, Chicago, IL, USA
| | - Meghan M Moran
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | - John D Sandy
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Vincent C Hascall
- Department of Biomedical Engineering, The Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
19
|
Zheng X, Wang B, Tang X, Mao B, Zhang Q, Zhang T, Zhao J, Cui S, Chen W. Absorption, metabolism, and functions of hyaluronic acid and its therapeutic prospects in combination with microorganisms: A review. Carbohydr Polym 2023; 299:120153. [PMID: 36876779 DOI: 10.1016/j.carbpol.2022.120153] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022]
Abstract
Hyaluronic acid (HA) is key to the stability of the internal environment of tissues. HA content in tissues gradually decreases with age, causing age-related health problems. Exogenous HA supplements are used to prevent or treat these problems including skin dryness and wrinkles, intestinal imbalance, xerophthalmia, and arthritis after absorption. Moreover, some probiotics are able to promote endogenous HA synthesis and alleviate symptoms caused by HA loss, thus introducing potential preventative or therapeutic applications of HA and probiotics. Here, we review the oral absorption, metabolism, and biological function of HA as well as the potential role of probiotics and HA in increasing the efficacy of HA supplements.
Collapse
Affiliation(s)
- Xueli Zheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Botao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Bloomage Biotechnology Co., Ltd, Jinan 250000, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Tianmeng Zhang
- Bloomage Biotechnology Co., Ltd, Jinan 250000, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
20
|
Karalis T, Shiau AK, Gahman TC, Skandalis SS, Heldin CH, Heldin P. Identification of a Small Molecule Inhibitor of Hyaluronan Synthesis, DDIT, Targeting Breast Cancer Cells. Cancers (Basel) 2022; 14:cancers14235800. [PMID: 36497283 PMCID: PMC9741431 DOI: 10.3390/cancers14235800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Breast cancer is a common cancer in women. Breast cancer cells synthesize large amounts of hyaluronan to assist their proliferation, survival, migration and invasion. Accumulation of hyaluronan and overexpression of its receptor CD44 and hyaluronidase TMEM2 in breast tumors correlate with tumor progression and reduced overall survival of patients. Currently, the only known small molecule inhibitor of hyaluronan synthesis is 4-methyl-umbelliferone (4-MU). Due to the importance of hyaluronan for breast cancer progression, our aim was to identify new, potent and chemically distinct inhibitors of its synthesis. Here, we report a new small molecule inhibitor of hyaluronan synthesis, the thymidine analog 5'-Deoxy-5'-(1,3-Diphenyl-2-Imidazolidinyl)-Thymidine (DDIT). This compound is more potent than 4-MU and displays significant anti-tumorigenic properties. Specifically, DDIT inhibits breast cancer cell proliferation, migration, invasion and cancer stem cell self-renewal by suppressing HAS-synthesized hyaluronan. DDIT appears as a promising lead compound for the development of inhibitors of hyaluronan synthesis with potential usefulness in breast cancer treatment.
Collapse
Affiliation(s)
- Theodoros Karalis
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 572, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Andrew K. Shiau
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Timothy C. Gahman
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | - Spyros S. Skandalis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 572, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Paraskevi Heldin
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 572, Uppsala University, SE-751 23 Uppsala, Sweden
- Correspondence: ; Tel.: +46-18-4714733
| |
Collapse
|
21
|
Shikina E, Kovalevsky R, Shirkovskaya A, Toukach P. Prospective bacterial and fungal sources of hyaluronic acid: A review. Comput Struct Biotechnol J 2022; 20:6214-6236. [PMID: 36420162 PMCID: PMC9676211 DOI: 10.1016/j.csbj.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/05/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
The unique biological and rheological properties make hyaluronic acid a sought-after material for medicine and cosmetology. Due to very high purity requirements for hyaluronic acid in medical applications, the profitability of streptococcal fermentation is reduced. Production of hyaluronic acid by recombinant systems is considered a promising alternative. Variations in combinations of expressed genes and fermentation conditions alter the yield and molecular weight of produced hyaluronic acid. This review is devoted to the current state of hyaluronic acid production by recombinant bacterial and fungal organisms.
Collapse
|
22
|
Liu X, Zhang L, Zhang W. Metabolic reprogramming: A novel metabolic model for pulmonary hypertension. Front Cardiovasc Med 2022; 9:957524. [PMID: 36093148 PMCID: PMC9458918 DOI: 10.3389/fcvm.2022.957524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Pulmonary arterial hypertension, or PAH, is a condition that is characterized by pulmonary artery pressures above 20 mmHg (at rest). In the treatment of PAH, the pulmonary vascular system is regulated to ensure a diastolic and contraction balance; nevertheless, this treatment does not prevent or reverse pulmonary vascular remodeling and still causes pulmonary hypertension to progress. According to Warburg, the link between metabolism and proliferation in PAH is similar to that of cancer, with a common aerobic glycolytic phenotype. By activating HIF, aerobic glycolysis is enhanced and cell proliferation is triggered. Aside from glutamine metabolism, the Randle cycle is also present in PAH. Enhanced glutamine metabolism replenishes carbon intermediates used by glycolysis and provides energy to over-proliferating and anti-apoptotic pulmonary vascular cells. By activating the Randle cycle, aerobic oxidation is enhanced, ATP is increased, and myocardial injury is reduced. PAH is predisposed by epigenetic dysregulation of DNA methylation, histone acetylation, and microRNA. This article discusses the abnormal metabolism of PAH and how metabolic therapy can be used to combat remodeling.
Collapse
|
23
|
Foote CA, Soares RN, Ramirez-Perez FI, Ghiarone T, Aroor A, Manrique-Acevedo C, Padilla J, Martinez-Lemus LA. Endothelial Glycocalyx. Compr Physiol 2022; 12:3781-3811. [PMID: 35997082 PMCID: PMC10214841 DOI: 10.1002/cphy.c210029] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The glycocalyx is a polysaccharide structure that protrudes from the body of a cell. It is primarily conformed of glycoproteins and proteoglycans, which provide communication, electrostatic charge, ionic buffering, permeability, and mechanosensation-mechanotransduction capabilities to cells. In blood vessels, the endothelial glycocalyx that projects into the vascular lumen separates the vascular wall from the circulating blood. Such a physical location allows a number of its components, including sialic acid, glypican-1, heparan sulfate, and hyaluronan, to participate in the mechanosensation-mechanotransduction of blood flow-dependent shear stress, which results in the synthesis of nitric oxide and flow-mediated vasodilation. The endothelial glycocalyx also participates in the regulation of vascular permeability and the modulation of inflammatory responses, including the processes of leukocyte rolling and extravasation. Its structural architecture and negative charge work to prevent macromolecules greater than approximately 70 kDa and cationic molecules from binding and flowing out of the vasculature. This also prevents the extravasation of pathogens such as bacteria and virus, as well as that of tumor cells. Due to its constant exposure to shear and circulating enzymes such as neuraminidase, heparanase, hyaluronidase, and matrix metalloproteinases, the endothelial glycocalyx is in a continuous process of degradation and renovation. A balance favoring degradation is associated with a variety of pathologies including atherosclerosis, hypertension, vascular aging, metastatic cancer, and diabetic vasculopathies. Consequently, ongoing research efforts are focused on deciphering the mechanisms that promote glycocalyx degradation or limit its syntheses, as well as on therapeutic approaches to improve glycocalyx integrity with the goal of reducing vascular disease. © 2022 American Physiological Society. Compr Physiol 12: 1-31, 2022.
Collapse
Affiliation(s)
- Christopher A. Foote
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Rogerio N. Soares
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | | | - Thaysa Ghiarone
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Annayya Aroor
- Department of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
| | - Camila Manrique-Acevedo
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
| | - Jaume Padilla
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - Luis A. Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
24
|
Parnigoni A, Viola M, Karousou E, Rovera S, Giaroni C, Passi A, Vigetti D. ROLE OF HYALURONAN IN PATHOPHYSIOLOGY OF VASCULAR1 ENDOTHELIAL AND SMOOTH MUSCLE CELLS. Am J Physiol Cell Physiol 2022; 323:C505-C519. [PMID: 35759431 DOI: 10.1152/ajpcell.00061.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
One of the main components of the extracellular matrix (ECM) of the blood vessel is hyaluronic acid or hyaluronan (HA). It is a ubiquitous polysaccharide belonging to the family of glycosaminoglycans, but, differently from other proteoglycan-associated glycosaminoglycans, it is synthesized on the plasma membrane by a family of three HA synthases (HAS). HA can be released as a free polymer in the extracellular space or remain associated with the membrane in the pericellular space via HAS or via binding proteins. In fact, several cell surface proteins can interact with HA working as HA receptors like CD44, RHAMM, and LYVE-1. In physiological conditions, HA is localized in the glycocalyx and in the adventitia and is responsible for the loose and hydrated vascular structure favoring flexibility and allowing the stretching of vessels in response to mechanical forces. During atherogenesis, ECM undergoes dramatic alterations which have a crucial role in lipoprotein retention and in triggering multiple signaling cascades that wake up cells from their quiescent status. HA becomes highly present in the media and neointima favoring smooth muscle cells dedifferentiation, migration, and proliferation that strongly contribute to vessel wall thickening. Further, HA is able to modulate immune cell recruitment both within the vessel wall and on the endothelial cell layer. This review is focused on the effects of HA on vascular cell behavior.
Collapse
Affiliation(s)
- Arianna Parnigoni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Manuela Viola
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Evgenia Karousou
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Simona Rovera
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Cristina Giaroni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
25
|
Karalis T, Skandalis SS. Hyaluronan network: a driving force in cancer progression. Am J Physiol Cell Physiol 2022; 323:C145-C158. [PMID: 35649255 DOI: 10.1152/ajpcell.00139.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hyaluronan is one of the most abundant macromolecules of the extracellular matrix and regulates several physiological cell and tissue properties. However, hyaluronan has been shown to accumulate together with its receptors in various cancers. In tumors, accumulation of hyaluronan system components (hyaluronan synthesizing/degrading enzymes and interacting proteins) associates with poor outcomes of the patients. In this article, we review the main roles of hyaluronan in normal physiology and cancer, and further discuss the targeting of hyaluronan system as an applicable therapeutic strategy.
Collapse
Affiliation(s)
- Theodoros Karalis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| |
Collapse
|
26
|
Zimmer BM, Barycki JJ, Simpson MA. Mechanisms of coordinating hyaluronan and glycosaminoglycan production by nucleotide sugars. Am J Physiol Cell Physiol 2022; 322:C1201-C1213. [PMID: 35442826 DOI: 10.1152/ajpcell.00130.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hyaluronan is a versatile macromolecule capable of an exceptional range of functions from cushioning and hydration to dynamic signaling in development and disease. Because of its critical roles, hyaluronan production is regulated at multiple levels including epigenetic, transcriptional, and post-translational control of the three hyaluronan synthase (HAS) enzymes. Precursor availability can dictate the rate and amount of hyaluronan synthesized and shed by the cells producing it. However, the nucleotide-activated sugar substrates for hyaluronan synthesis by HAS also participate in exquisitely fine tuned cross talking pathways that intersect with central carbohydrate metabolism. Multiple UDP-sugars have alternative metabolic fates and exhibit coordinated and reciprocal allosteric control of enzymes within their biosynthetic pathways to preserve appropriate precursor ratios for accurate partitioning among downstream products, while also sensing and maintaining energy homeostasis. Since the dysregulation of nucleotide sugar and hyaluronan synthesis is associated with multiple pathologies, these pathways offer opportunities for therapeutic intervention. Recent structures of several key rate-limiting enzymes in the UDP-sugar synthesis pathways have offered new insights to the overall regulation of hyaluronan production by precursor fate decisions. The details of UDP-sugar control and the structural basis for underlying mechanisms are discussed in this review.
Collapse
Affiliation(s)
- Brenna M Zimmer
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, United States
| | - Joseph J Barycki
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, United States
| | - Melanie A Simpson
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
27
|
Parnigoni A, Caon I, Teo WX, Hua SH, Moretto P, Bartolini B, Viola M, Karousou E, Yip GW, Götte M, Heldin P, Passi A, Vigetti D. The natural antisense transcript HAS2-AS1 regulates breast cancer cells aggressiveness independently from hyaluronan metabolism. Matrix Biol 2022; 109:140-161. [PMID: 35395387 DOI: 10.1016/j.matbio.2022.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/08/2022] [Accepted: 03/31/2022] [Indexed: 12/13/2022]
Abstract
Hyaluronan (HA) is a ubiquitous extracellular matrix component playing a crucial role in the regulation of cell behaviors, including cancer. Aggressive breast cancer cells tend to proliferate, migrate and metastatize. Notably, triple-negative breast cancer cells lacking the expression of estrogen receptor (ER) as well as progesterone receptor and HER2 are more aggressive than ER-positive ones. As currently no targeted therapy is available for triple-negative breast cancer, the identification of novel therapeutic targets has a high clinical priority. In ER-negative cells, tumoral behavior can be reduced by inhibiting HA synthesis or silencing the enzymes involved in its metabolism, such as HA synthase 2 (HAS2). HAS2-AS1 is a long non-coding RNA belonging to the natural antisense transcript family which is known to favor HAS2 gene expression and HA synthesis, thus bolstering malignant progression in brain, ovary, and lung tumors. As the role of HAS2-AS1 has not yet been investigated in breast cancer, in this work we report that ER-positive breast cancers had lower HAS2-AS1 expression compared to ER-negative tumors. Moreover, the survival of patients with ER-negative tumors was higher when the expression of HAS2-AS1 was elevated. Experiments with ER-negative cell lines as MDA-MB-231 and Hs 578T revealed that the overexpression of either the full-length HAS2-AS1 or its exon 2 long or short isoforms alone, strongly reduced cell viability, migration, and invasion, whereas HAS2-AS1 silencing increased cell aggressiveness. Unexpectedly, in these ER-negative cell lines, HAS2-AS1 is involved neither in the regulation of HAS2 nor in HA deposition. Finally, transcriptome analysis revealed that HAS2-AS1 modulation affected several pathways, including apoptosis, proliferation, motility, adhesion, epithelial to mesenchymal transition, and signaling, describing this long non-coding RNA as an important regulator of breast cancer cells aggressiveness.
Collapse
Affiliation(s)
- Arianna Parnigoni
- From the Department of Medicine and Surgery - University of Insubria - via J.H. Dunant 5, 21100, Varese, Italy
| | - Ilaria Caon
- From the Department of Medicine and Surgery - University of Insubria - via J.H. Dunant 5, 21100, Varese, Italy
| | - Wei Xuan Teo
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore 4 Medical Drive, Block MD10, Singapore, 117594, Singapore
| | - San Hue Hua
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore 4 Medical Drive, Block MD10, Singapore, 117594, Singapore
| | - Paola Moretto
- From the Department of Medicine and Surgery - University of Insubria - via J.H. Dunant 5, 21100, Varese, Italy
| | - Barbara Bartolini
- From the Department of Medicine and Surgery - University of Insubria - via J.H. Dunant 5, 21100, Varese, Italy
| | - Manuela Viola
- From the Department of Medicine and Surgery - University of Insubria - via J.H. Dunant 5, 21100, Varese, Italy
| | - Evgenia Karousou
- From the Department of Medicine and Surgery - University of Insubria - via J.H. Dunant 5, 21100, Varese, Italy
| | - George W Yip
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore 4 Medical Drive, Block MD10, Singapore, 117594, Singapore
| | - Martin Götte
- Department of Gynecology and Obstetrics, University Hospital Münster, Albert-Schweitzer-Campus 1, D11, 48149, Münster, Germany
| | - Paraskevi Heldin
- Department Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Alberto Passi
- From the Department of Medicine and Surgery - University of Insubria - via J.H. Dunant 5, 21100, Varese, Italy
| | - Davide Vigetti
- From the Department of Medicine and Surgery - University of Insubria - via J.H. Dunant 5, 21100, Varese, Italy.
| |
Collapse
|
28
|
Vang S, Cochran P, Sebastian Domingo J, Krick S, Barnes JW. The Glycobiology of Pulmonary Arterial Hypertension. Metabolites 2022; 12:metabo12040316. [PMID: 35448503 PMCID: PMC9026683 DOI: 10.3390/metabo12040316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 01/27/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive pulmonary vascular disease of complex etiology. Cases of PAH that do not receive therapy after diagnosis have a low survival rate. Multiple reports have shown that idiopathic PAH, or IPAH, is associated with metabolic dysregulation including altered bioavailability of nitric oxide (NO) and dysregulated glucose metabolism. Multiple processes such as increased proliferation of pulmonary vascular cells, angiogenesis, apoptotic resistance, and vasoconstriction may be regulated by the metabolic changes demonstrated in PAH. Recent reports have underscored similarities between metabolic abnormalities in cancer and IPAH. In particular, increased glucose uptake and altered glucose utilization have been documented and have been linked to the aforementioned processes. We were the first to report a link between altered glucose metabolism and changes in glycosylation. Subsequent reports have highlighted similar findings, including a potential role for altered metabolism and aberrant glycosylation in IPAH pathogenesis. This review will detail research findings that demonstrate metabolic dysregulation in PAH with an emphasis on glycobiology. Furthermore, this report will illustrate the similarities in the pathobiology of PAH and cancer and highlight the novel findings that researchers have explored in the field.
Collapse
|
29
|
Prisco SZ, Eklund M, Raveendran R, Thenappan T, Prins KW. With No Lysine Kinase 1 Promotes Metabolic Derangements and RV Dysfunction in Pulmonary Arterial Hypertension. JACC. BASIC TO TRANSLATIONAL SCIENCE 2021; 6:834-850. [PMID: 34869947 PMCID: PMC8617575 DOI: 10.1016/j.jacbts.2021.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022]
Abstract
Small molecule inhibition of with no lysine kinase 1 (WNK1) (WNK463) signaling activates adenosine monophosphate-activated protein kinase signaling and mitigates membrane enrichment of glucose transporters 1 and 4, which decreases protein O-GlcNAcylation and glycation. Quantitative proteomics of right ventricular (RV) mitochondrial enrichments shows WNK463 prevents down-regulation of several mitochondrial metabolic enzymes. and metabolomics analysis suggests multiple metabolic processes are corrected. Physiologically, WNK463 augments RV systolic and diastolic function independent of pulmonary arterial hypertension severity. Hypochloremia, a condition of predicted WNK1 activation in patients with pulmonary arterial hypertension, is associated with more severe RV dysfunction. These results suggest WNK1 may be a druggable target to combat metabolic dysregulation and may improve RV function and survival in pulmonary arterial hypertension.
Collapse
Key Words
- AMPK, adenosine monophosphate-activated protein kinase
- AS160, 160 kDa substrate of the Akt serine/threonine kinase
- DCA, dicarboxylic fatty acid
- FAO, fatty acid oxidation
- GLO1, glyoxalase 1
- GLO2, glyoxalase 2
- GLUT1, glucose transporter 1
- GLUT4, glucose transporter 4
- LV, left ventricle/ventricular
- MCT, monocrotaline
- MCT-V, monocrotaline-vehicle
- PAH, pulmonary arterial hypertension
- PTM, post-translationally modify/modifications
- PV, pressure-volume
- PVR, pulmonary vascular resistance
- RA, right atrial
- RV, right ventricle/ventricular
- RVD, right ventricular dysfunction
- TCA, tricarboxylic acid
- Tau/τ, right ventricular relaxation time
- UDP-GlcNAC, uridine diphosphate N-acetylglucosamine
- WNK, with no lysine kinase
- lipotoxicity
- metabolism
- mitochondria
- pulmonary arterial hypertension
- right ventricular dysfunction
- with no lysine kinase 1
Collapse
Affiliation(s)
| | | | | | | | - Kurt W. Prins
- Address for correspondence: Dr Kurt Prins, Lillehei Heart Institute, Cardiovascular Division, University of Minnesota Medical School, 312 Church Street Southeast, Minneapolis, Minnesota 55455, USA.
| |
Collapse
|
30
|
Garantziotis S. Modulation of hyaluronan signaling as a therapeutic target in human disease. Pharmacol Ther 2021; 232:107993. [PMID: 34587477 DOI: 10.1016/j.pharmthera.2021.107993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022]
Abstract
The extracellular matrix is an active participant, modulator and mediator of the cell, tissue, organ and organismal response to injury. Recent research has highlighted the role of hyaluronan, an abundant glycosaminoglycan constituent of the extracellular matrix, in many fundamental biological processes underpinning homeostasis and disease development. From this basis, emerging studies have demonstrated the therapeutic potential of strategies which target hyaluronan synthesis, biology and signaling, with significant promise as therapeutics for a variety of inflammatory and immune diseases. This review summarizes the state of the art in this field and discusses challenges and opportunities in what could emerge as a new class of therapeutic agents, that we term "matrix biologics".
Collapse
Affiliation(s)
- Stavros Garantziotis
- Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA.
| |
Collapse
|
31
|
Ng YH, Okolo CA, Erickson JR, Baldi JC, Jones PP. Protein O-GlcNAcylation in the heart. Acta Physiol (Oxf) 2021; 233:e13696. [PMID: 34057811 DOI: 10.1111/apha.13696] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/30/2022]
Abstract
O-GlcNAcylation is a ubiquitous post-translational modification that is extremely labile and plays a significant role in physiology, including the heart. Sustained activation of cardiac O-GlcNAcylation is frequently associated with alterations in cellular metabolism, leading to detrimental effects on cardiovascular function. This is particularly true during conditions such as diabetes, hypertension, cardiac remodelling, heart failure and arrhythmogenesis. Paradoxically, transient elevation of cardiac protein O-GlcNAcylation can also exert beneficial effects in the heart. There is compelling evidence to suggest that a complex interaction between O-GlcNAcylation and phosphorylation also exists in the heart. Beyond direct functional consequences on cardiomyocytes, O-GlcNAcylation also acts indirectly by altering the function of transcription factors that affect downstream signalling. This review focuses on the potential cardioprotective role of protein O-GlcNAcylation during ischaemia-reperfusion injury, the deleterious consequences of chronically elevated O-GlcNAc levels, the interplay between O-GlcNAcylation and phosphorylation in the cardiomyocytes and the effects of O-GlcNAcylation on other major non-myocyte cell types in the heart.
Collapse
Affiliation(s)
- Yann Huey Ng
- Department of Medicine and HeartOtago University of Otago Dunedin New Zealand
| | - Chidinma A. Okolo
- Department of Physiology and HeartOtago University of Otago Dunedin New Zealand
- Life Sciences Division Diamond Light Source LtdHarwell Science and Innovation Campus Didcot UK
| | - Jeffrey R. Erickson
- Department of Physiology and HeartOtago University of Otago Dunedin New Zealand
| | - James C. Baldi
- Department of Medicine and HeartOtago University of Otago Dunedin New Zealand
| | - Peter P. Jones
- Department of Physiology and HeartOtago University of Otago Dunedin New Zealand
| |
Collapse
|
32
|
Parnigoni A, Caon I, Moretto P, Viola M, Karousou E, Passi A, Vigetti D. The role of the multifaceted long non-coding RNAs: A nuclear-cytosolic interplay to regulate hyaluronan metabolism. Matrix Biol Plus 2021; 11:100060. [PMID: 34435179 PMCID: PMC8377009 DOI: 10.1016/j.mbplus.2021.100060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
In the extracellular matrix (ECM), the glycosaminoglycan (GAG) hyaluronan (HA) has different physiological roles favouring hydration, elasticity and cell survival. Three different isoforms of HA synthases (HAS1, 2, and 3) are responsible for the production of HA. In several pathologies the upregulation of HAS enzymes leads to an abnormal HA accumulation causing cell dedifferentiation, proliferation and migration thus favouring cancer progression, fibrosis and vascular wall thickening. An intriguing new player in HAS2 gene expression regulation and HA production is the long non-coding RNA (lncRNA) hyaluronan synthase 2 antisense 1 (HAS2-AS1). A significant part of mammalian genomes corresponds to genes that transcribe lncRNAs; they can regulate gene expression through several mechanisms, being involved not only in maintaining the normal homeostasis of cells and tissues, but also in the onset and progression of different diseases, as demonstrated by the increasing number of studies published through the last decades. HAS2-AS1 is no exception: it can be localized both in the nucleus and in the cytosol, regulating cancer cells as well as vascular smooth muscle cells behaviour. Hyaluronan is a component of the extracellular matrix and is synthetised by three isoenzymes named HAS1, 2, and 3. In several pathologies an upregulation of HAS2 leads to an abnormal accumulation of HA. The long non-coding RNA is a new specific epigenetic regulator of HAS2. In the nucleus HAS2-AS1 modulates chromatin structure around HAS2 promoter increasing transcription. In the cytosol, HAS2-AS1 can interact with several miRNAs altering the expression of several genes as well as can stabilise HAS2 mRNA forming RNA: RNA duplex.
Collapse
Key Words
- 4-MU, 4-methylubelliferone
- 4-MUG, 4-methylumbelliferyl glucuronide
- Atherosclerosis
- Cancer
- ECM, extracellular matrix
- EMT, epithelial to mesenchymal transition
- Epigenetics
- Extracellular matrix
- GAG, glycosaminoglycans
- Glycosaminoglycans
- HA, hyaluronan
- HAS2
- HAS2, hyaluronan synthase 2
- HAS2-AS1
- HAS2–AS1, hyaluronan synthase 2 natural antisense 1
- HIFs, hypoxia-inducible factors
- NF-κB, nuclear factor κ–light-chain enhancer of activated B cell
- PG, proteoglycan
- PTM, post-translational modification
- Proteoglycans
- RBP, RNA-binding protein
- SIRT1, sirtuin 1
- SMCs, smooth muscle cells
- TNF-α, tumour necrosis factor alpha
- UDP-GlcNAc, UDP-N-acetylglucosamine
- UDP-GlcUA, UDP-glucuronic acid
- ceRNA, competitive endogenous RNA
- lncRNA, long non-coding RNA
- miRNA, micro-RNA
Collapse
Affiliation(s)
- Arianna Parnigoni
- Department of Medicine and Surgery, University of Insubria, via J.H. Dunant 5, 21100 Varese, Italy
| | - Ilaria Caon
- Department of Medicine and Surgery, University of Insubria, via J.H. Dunant 5, 21100 Varese, Italy
| | - Paola Moretto
- Department of Medicine and Surgery, University of Insubria, via J.H. Dunant 5, 21100 Varese, Italy
| | - Manuela Viola
- Department of Medicine and Surgery, University of Insubria, via J.H. Dunant 5, 21100 Varese, Italy
| | - Evgenia Karousou
- Department of Medicine and Surgery, University of Insubria, via J.H. Dunant 5, 21100 Varese, Italy
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, via J.H. Dunant 5, 21100 Varese, Italy
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, via J.H. Dunant 5, 21100 Varese, Italy
| |
Collapse
|
33
|
Marozzi M, Parnigoni A, Negri A, Viola M, Vigetti D, Passi A, Karousou E, Rizzi F. Inflammation, Extracellular Matrix Remodeling, and Proteostasis in Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms22158102. [PMID: 34360868 PMCID: PMC8346982 DOI: 10.3390/ijms22158102] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/11/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is a multifaceted and complex pathology characterized by uncontrolled cell proliferation and decreased apoptosis. Most cancers are recognized by an inflammatory environment rich in a myriad of factors produced by immune infiltrate cells that induce host cells to differentiate and to produce a matrix that is more favorable to tumor cells’ survival and metastasis. As a result, the extracellular matrix (ECM) is changed in terms of macromolecules content, degrading enzymes, and proteins. Altered ECM components, derived from remodeling processes, interact with a variety of surface receptors triggering intracellular signaling that, in turn, cancer cells exploit to their own benefit. This review aims to present the role of different aspects of ECM components in the tumor microenvironment. Particularly, we highlight the effect of pro- and inflammatory factors on ECM degrading enzymes, such as metalloproteases, and in a more detailed manner on hyaluronan metabolism and the signaling pathways triggered by the binding of hyaluronan with its receptors. In addition, we sought to explore the role of extracellular chaperones, especially of clusterin which is one of the most prominent in the extracellular space, in proteostasis and signaling transduction in the tumor microenvironment. Although the described tumor microenvironment components have different biological roles, they may engage common signaling pathways that favor tumor growth and metastasis.
Collapse
Affiliation(s)
- Marina Marozzi
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43125 Parma, Italy; (M.M.); (A.N.); (F.R.)
| | - Arianna Parnigoni
- Department of Medicine and Surgery, University of Insubria, Via J.H. Dunant 5, 21100 Varese, Italy; (A.P.); (M.V.); (D.V.); (A.P.)
| | - Aide Negri
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43125 Parma, Italy; (M.M.); (A.N.); (F.R.)
| | - Manuela Viola
- Department of Medicine and Surgery, University of Insubria, Via J.H. Dunant 5, 21100 Varese, Italy; (A.P.); (M.V.); (D.V.); (A.P.)
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, Via J.H. Dunant 5, 21100 Varese, Italy; (A.P.); (M.V.); (D.V.); (A.P.)
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Via J.H. Dunant 5, 21100 Varese, Italy; (A.P.); (M.V.); (D.V.); (A.P.)
| | - Evgenia Karousou
- Department of Medicine and Surgery, University of Insubria, Via J.H. Dunant 5, 21100 Varese, Italy; (A.P.); (M.V.); (D.V.); (A.P.)
- Correspondence:
| | - Federica Rizzi
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43125 Parma, Italy; (M.M.); (A.N.); (F.R.)
| |
Collapse
|
34
|
Kong CS, Ordoñez AA, Turner S, Tremaine T, Muter J, Lucas ES, Salisbury E, Vassena R, Tiscornia G, Fouladi-Nashta AA, Hartshorne G, Brosens JJ, Brighton PJ. Embryo biosensing by uterine natural killer cells determines endometrial fate decisions at implantation. FASEB J 2021; 35:e21336. [PMID: 33749894 PMCID: PMC8251835 DOI: 10.1096/fj.202002217r] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/25/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022]
Abstract
Decidualizing endometrial stromal cells (EnSC) critically determine the maternal response to an implanting conceptus, triggering either menstruation-like disposal of low-fitness embryos or creating an environment that promotes further development. However, the mechanism that couples maternal recognition of low-quality embryos to tissue breakdown remains poorly understood. Recently, we demonstrated that successful transition of the cycling endometrium to a pregnancy state requires selective elimination of pro-inflammatory senescent decidual cells by activated uterine natural killer (uNK) cells. Here we report that uNK cells express CD44, the canonical hyaluronan (HA) receptor, and demonstrate that high molecular weight HA (HMWHA) inhibits uNK cell-mediated killing of senescent decidual cells. In contrast, low molecular weight HA (LMWHA) did not attenuate uNK cell activity in co-culture experiments. Killing of senescent decidual cells by uNK cells was also inhibited upon exposure to medium conditioned by IVF embryos that failed to implant, but not successful embryos. Embryo-mediated inhibition of uNK cell activity was reversed by recombinant hyaluronidase 2 (HYAL2), which hydrolyses HMWHA. We further report a correlation between the levels of HYAL2 secretion by human blastocysts, morphological scores, and implantation potential. Taken together, the data suggest a pivotal role for uNK cells in embryo biosensing and endometrial fate decisions at implantation.
Collapse
Affiliation(s)
- Chow-Seng Kong
- Centre for Early Life, Warwick Medical School, University of Warwick, Coventry, UK
| | | | - Sarah Turner
- Centre for Reproductive Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Tina Tremaine
- Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Hatfield, UK
| | - Joanne Muter
- Centre for Early Life, Warwick Medical School, University of Warwick, Coventry, UK.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire NHS Trust, Coventry, UK
| | - Emma S Lucas
- Centre for Early Life, Warwick Medical School, University of Warwick, Coventry, UK
| | - Emma Salisbury
- Centre for Early Life, Warwick Medical School, University of Warwick, Coventry, UK
| | | | | | - Ali A Fouladi-Nashta
- Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Hatfield, UK
| | - Geraldine Hartshorne
- Centre for Early Life, Warwick Medical School, University of Warwick, Coventry, UK.,Centre for Reproductive Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Jan J Brosens
- Centre for Early Life, Warwick Medical School, University of Warwick, Coventry, UK.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire NHS Trust, Coventry, UK
| | - Paul J Brighton
- Centre for Early Life, Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
35
|
Akazawa Y, Yoshida H, Endo Y, Sugita J, Yakumaru M, Sayo T. 1-Ethyl-β-N-acetylglucosaminide increases hyaluronan production in human keratinocytes by being converted to N-acetylglucosamine via β-N-acetylglucosaminidase-dependent manner. Biosci Biotechnol Biochem 2021; 85:1433-1440. [PMID: 33836055 DOI: 10.1093/bbb/zbab060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/01/2021] [Indexed: 11/15/2022]
Abstract
Regulation of hyaluronan (HA) is important for the maintenance of epidermal homeostasis. Here, we examined the mechanism by which 1-ethyl-β-N-acetylglucosaminide (β-NAG2), a newly developed N-acetylglucosamine (NAG) derivative, increases HA production in cultured human epidermal keratinocytes. When keratinocytes were treated with β-NAG2, mRNA expression of HA synthase 3, which is responsible for HA production in human keratinocytes, was not influenced, but the intracellular level of UDP-NAG, a substrate used for HA synthesis, was increased. By using a synthetic substrate for β-N-acetylglucosaminidase (β-NAGase), keratinocytes were found to possess β-NAGase activity, and treatment of o-(2-acetamido-2-deoxy-d-glucopyranosylidene) amino N-phenyl carbamate (PUGNAc), an inhibitor of β-NAGase, abolished the release of NAG from β-NAG2 in keratinocytes. Furthermore, PUGNAc attenuated the β-NAG2-induced intracellular UDP-NAG and HA production in keratinocytes. These results suggest that β-NAG2 is converted to NAG by endogenous β-NAGase in keratinocytes, and the resulting NAG is further metabolized to UDP-NAG and utilized for HA production.
Collapse
Affiliation(s)
- Yumiko Akazawa
- Skin Care Products Research, Kao Corporation, Odawara-shi, Kanagawa, Japan
| | - Hiroyuki Yoshida
- Biological Science Research, Kao Corporation, Odawara-shi, Kanagawa, Japan
| | - Yoko Endo
- Biological Science Research, Kao Corporation, Odawara-shi, Kanagawa, Japan
| | - Jun Sugita
- Skin Care Products Research, Kao Corporation, Odawara-shi, Kanagawa, Japan
| | - Masafumi Yakumaru
- Skin Care Products Research, Kao Corporation, Odawara-shi, Kanagawa, Japan
| | - Tetsuya Sayo
- Biological Science Research, Kao Corporation, Odawara-shi, Kanagawa, Japan
| |
Collapse
|
36
|
Karamanos NK, Theocharis AD, Piperigkou Z, Manou D, Passi A, Skandalis SS, Vynios DH, Orian-Rousseau V, Ricard-Blum S, Schmelzer CEH, Duca L, Durbeej M, Afratis NA, Troeberg L, Franchi M, Masola V, Onisto M. A guide to the composition and functions of the extracellular matrix. FEBS J 2021; 288:6850-6912. [PMID: 33605520 DOI: 10.1111/febs.15776] [Citation(s) in RCA: 362] [Impact Index Per Article: 120.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022]
Abstract
Extracellular matrix (ECM) is a dynamic 3-dimensional network of macromolecules that provides structural support for the cells and tissues. Accumulated knowledge clearly demonstrated over the last decade that ECM plays key regulatory roles since it orchestrates cell signaling, functions, properties and morphology. Extracellularly secreted as well as cell-bound factors are among the major members of the ECM family. Proteins/glycoproteins, such as collagens, elastin, laminins and tenascins, proteoglycans and glycosaminoglycans, hyaluronan, and their cell receptors such as CD44 and integrins, responsible for cell adhesion, comprise a well-organized functional network with significant roles in health and disease. On the other hand, enzymes such as matrix metalloproteinases and specific glycosidases including heparanase and hyaluronidases contribute to matrix remodeling and affect human health. Several cell processes and functions, among them cell proliferation and survival, migration, differentiation, autophagy, angiogenesis, and immunity regulation are affected by certain matrix components. Structural alterations have been also well associated with disease progression. This guide on the composition and functions of the ECM gives a broad overview of the matrisome, the major ECM macromolecules, and their interaction networks within the ECM and with the cell surface, summarizes their main structural features and their roles in tissue organization and cell functions, and emphasizes the importance of specific ECM constituents in disease development and progression as well as the advances in molecular targeting of ECM to design new therapeutic strategies.
Collapse
Affiliation(s)
- Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Dimitra Manou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Demitrios H Vynios
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Véronique Orian-Rousseau
- Karlsruhe Institute of Technology, Institute of Biological and Chemical Systems- Functional Molecular Systems, Eggenstein-Leopoldshafen, Germany
| | - Sylvie Ricard-Blum
- University of Lyon, UMR 5246, ICBMS, Université Lyon 1, CNRS, Villeurbanne Cedex, France
| | - Christian E H Schmelzer
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany.,Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Laurent Duca
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2: Matrix Aging and Vascular Remodelling, Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Madeleine Durbeej
- Department of Experimental Medical Science, Unit of Muscle Biology, Lund University, Sweden
| | - Nikolaos A Afratis
- Department Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Linda Troeberg
- Norwich Medical School, University of East Anglia, Bob Champion Research and Education Building, Norwich, UK
| | - Marco Franchi
- Department for Life Quality Study, University of Bologna, Rimini, Italy
| | | | - Maurizio Onisto
- Department of Biomedical Sciences, University of Padova, Italy
| |
Collapse
|
37
|
Bharadwaj S, Singh M, Kirtipal N, Kang SG. SARS-CoV-2 and Glutamine: SARS-CoV-2 Triggered Pathogenesis via Metabolic Reprograming of Glutamine in Host Cells. Front Mol Biosci 2021; 7:627842. [PMID: 33585567 PMCID: PMC7873863 DOI: 10.3389/fmolb.2020.627842] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, as coronavirus disease 2019 (COVID-19) pandemic, has killed more than a million people worldwide, and researchers are constantly working to develop therapeutics in the treatment and prevention of this new viral infection. To infect and induced pathogenesis as observed in other viral infections, we postulated that SARS-CoV-2 may also require an escalation in the anabolic metabolism, such as glucose and glutamine, to support its energy and biosynthetic requirements during the infection cycle. Recently, the requirement of altered glucose metabolism in SARS-CoV-2 pathogenesis was demonstrated, but the role of dysregulated glutamine metabolism is not yet mentioned for its infection. In this perspective, we have attempted to provide a summary of possible biochemical events on putative metabolic reprograming of glutamine in host cells upon SARS-CoV-2 infection by comparison to other viral infections/cancer metabolism and available clinical data or research on SARS-CoV-2 pathogenesis. This systematic hypothesis concluded the vital role of glutaminase-1 (GLS1), phosphoserine aminotransferase (PSAT1), hypoxia-inducible factor-1 alpha (HIF-1α), mammalian target of rapamycin complex 1 (mTORC1), glutamine-fructose amidotransferase 1/2 (GFAT1/2), and transcription factor Myc as key cellular factors to mediate and promote the glutamine metabolic reprogramming in SARS-CoV-2 infected cells. In absence of concrete data available for SARS-CoV-2 induced metabolic reprogramming of glutamine, this study efforts to connect the gaps with available clinical shreds of evidence in SARS-CoV-2 infection with altered glutamine metabolism and hopefully could be beneficial in the designing of strategic methods for therapeutic development with elucidation using in vitro or in vivo approaches.
Collapse
Affiliation(s)
- Shiv Bharadwaj
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan, South Korea
| | - Mahendra Singh
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan, South Korea
| | - Nikhil Kirtipal
- Department of Science, Modern Institute of Technology, Rishikesh, India
| | - Sang Gu Kang
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
38
|
Caon I, Parnigoni A, Viola M, Karousou E, Passi A, Vigetti D. Cell Energy Metabolism and Hyaluronan Synthesis. J Histochem Cytochem 2021; 69:35-47. [PMID: 32623953 PMCID: PMC7780193 DOI: 10.1369/0022155420929772] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023] Open
Abstract
Hyaluronan (HA) is a linear glycosaminoglycan (GAG) of extracellular matrix (ECM) synthesized by three hyaluronan synthases (HASes) at the plasma membrane using uridine diphosphate (UDP)-glucuronic acid (UDP-GlcUA) and UDP-N-acetylglucosamine (UDP-GlcNAc) as substrates. The production of HA is mainly regulated by hyaluronan synthase 2 (HAS2), that can be controlled at different levels, from epigenetics to transcriptional and post-translational modifications. HA biosynthesis is an energy-consuming process and, along with HA catabolism, is strongly connected to the maintenance of metabolic homeostasis. The cytoplasmic pool of UDP-sugars is critical for HA synthesis. UDP-GlcNAc is an important nutrient sensor and serves as donor substrate for the O-GlcNAcylation of many cytosolic proteins, including HAS2. This post-translational modification stabilizes HAS2 in the membrane and increases HA production. Conversely, HAS2 can be phosphorylated by AMP activated protein kinase (AMPK), a master metabolic regulator activated by low ATP/AMP ratios, which inhibits HA secretion. Similarly, HAS2 expression and the deposition of HA within the pericellular coat are inhibited by sirtuin 1 (SIRT1), another important energetic sensor, confirming the tight connection between nutrients availability and HA metabolism.
Collapse
Affiliation(s)
- Ilaria Caon
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Arianna Parnigoni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Manuela Viola
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Evgenia Karousou
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
39
|
Chen CG, Iozzo RV. Angiostatic cues from the matrix: Endothelial cell autophagy meets hyaluronan biology. J Biol Chem 2020; 295:16797-16812. [PMID: 33020183 PMCID: PMC7864073 DOI: 10.1074/jbc.rev120.014391] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/02/2020] [Indexed: 01/21/2023] Open
Abstract
The extracellular matrix encompasses a reservoir of bioactive macromolecules that modulates a cornucopia of biological functions. A prominent body of work posits matrix constituents as master regulators of autophagy and angiogenesis and provides molecular insight into how these two processes are coordinated. Here, we review current understanding of the molecular mechanisms underlying hyaluronan and HAS2 regulation and the role of soluble proteoglycan in affecting autophagy and angiogenesis. Specifically, we assess the role of proteoglycan-evoked autophagy in regulating angiogenesis via the HAS2-hyaluronan axis and ATG9A, a novel HAS2 binding partner. We discuss extracellular hyaluronan biology and the post-transcriptional and post-translational modifications that regulate its main synthesizer, HAS2. We highlight the emerging group of proteoglycans that utilize outside-in signaling to modulate autophagy and angiogenesis in cancer microenvironments and thoroughly review the most up-to-date understanding of endorepellin signaling in vascular endothelia, providing insight into the temporal complexities involved.
Collapse
Affiliation(s)
- Carolyn G Chen
- Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Renato V Iozzo
- Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
40
|
Kobayashi T, Chanmee T, Itano N. Hyaluronan: Metabolism and Function. Biomolecules 2020; 10:E1525. [PMID: 33171800 PMCID: PMC7695009 DOI: 10.3390/biom10111525] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/21/2022] Open
Abstract
As a major polysaccharide component of the extracellular matrix, hyaluronan plays essential roles in the organization of tissue architecture and the regulation of cellular functions, such as cell proliferation and migration, through interactions with cell-surface receptors and binding molecules. Metabolic pathways for biosynthesis and degradation tightly control the turnover rate, concentration, and molecular size of hyaluronan in tissues. Despite the relatively simple chemical composition of this polysaccharide, its wide range of molecular weights mediate diverse functions that depend on molecular size and tissue concentration. Genetic engineering and pharmacological approaches have demonstrated close associations between hyaluronan metabolism and functions in many physiological and pathological events, including morphogenesis, wound healing, and inflammation. Moreover, emerging evidence has suggested that the accumulation of hyaluronan extracellular matrix and fragments due to the altered expression of hyaluronan synthases and hyaluronidases potentiates cancer development and progression by remodeling the tumor microenvironment. In addition to the well-known functions exerted by extracellular hyaluronan, recent metabolomic approaches have also revealed that its synthesis can regulate cellular functions via the reprogramming of cellular metabolism. This review highlights the current advances in knowledge on the biosynthesis and catabolism of hyaluronan and describes the diverse functions associated with hyaluronan metabolism.
Collapse
Affiliation(s)
- Takashi Kobayashi
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Aichi 480-1195, Japan;
| | - Theerawut Chanmee
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Phutthamonthon, Nakhon Pathom 73170, Thailand;
| | - Naoki Itano
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto 603-8555, Japan
| |
Collapse
|
41
|
Arasu UT, Deen AJ, Pasonen-Seppänen S, Heikkinen S, Lalowski M, Kärnä R, Härkönen K, Mäkinen P, Lázaro-Ibáñez E, Siljander PRM, Oikari S, Levonen AL, Rilla K. HAS3-induced extracellular vesicles from melanoma cells stimulate IHH mediated c-Myc upregulation via the hedgehog signaling pathway in target cells. Cell Mol Life Sci 2020; 77:4093-4115. [PMID: 31820036 PMCID: PMC7532973 DOI: 10.1007/s00018-019-03399-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 11/11/2019] [Accepted: 11/26/2019] [Indexed: 12/17/2022]
Abstract
Intercellular communication is fundamental to the survival and maintenance of all multicellular systems, whereas dysregulation of communication pathways can drive cancer progression. Extracellular vesicles (EVs) are mediators of cell-to-cell communication that regulate a variety of cellular processes involved in tumor progression. Overexpression of a specific plasma membrane enzyme, hyaluronan synthase 3 (HAS3), is one of the factors that can induce EV shedding. HAS3, and particularly its product hyaluronan (HA), are carried by EVs and are known to be associated with the tumorigenic properties of cancer cells. To elucidate the specific effects of cancerous, HAS3-induced EVs on target cells, normal human keratinocytes and melanoma cells were treated with EVs derived from GFP-HAS3 expressing metastatic melanoma cells. We found that the HA receptor CD44 participated in the regulation of EV binding to target cells. Furthermore, GFP-HAS3-positive EVs induced HA secretion, proliferation and invasion of target cells. Our results suggest that HAS3-EVs contains increased quantities of IHH, which activates the target cell hedgehog signaling cascade and leads to the activation of c-Myc and regulation of claspin expression. This signaling of IHH in HAS3-EVs resulted in increased cell proliferation. Claspin immunostaining correlated with HA content in human cutaneous melanocytic lesions, supporting our in vitro findings and suggesting a reciprocal regulation between claspin expression and HA synthesis. This study shows for the first time that EVs originating from HAS3 overexpressing cells carry mitogenic signals that induce proliferation and epithelial-to-mesenchymal transition in target cells. The study also identifies a novel feedback regulation between the hedgehog signaling pathway and HA metabolism in melanoma, mediated by EVs carrying HA and IHH.
Collapse
Affiliation(s)
- Uma Thanigai Arasu
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.
| | - Ashik Jawahar Deen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Sami Heikkinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Maciej Lalowski
- Faculty of Medicine, Biochemistry and Developmental Biology, Meilahti Clinical Proteomics Core Facility, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Riikka Kärnä
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Kai Härkönen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Petri Mäkinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Elisa Lázaro-Ibáñez
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, Centre for Drug Research, University of Helsinki, Helsinki, Finland
| | - Pia R-M Siljander
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, Centre for Drug Research, University of Helsinki, Helsinki, Finland
- EV Group and EV Core, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Sanna Oikari
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Anna-Liisa Levonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kirsi Rilla
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
42
|
Zerbinati N, Esposito C, Cipolla G, Calligaro A, Monticelli D, Martina V, Golubovic M, Binic I, Sigova J, Gallo AL, D'Este E, Jafferany M, Pratosoni M, Tirant M, Van Thuong N, Sangalli F, Rauso R, Lotti T. Chemical and mechanical characterization of hyaluronic acid hydrogel cross‐linked with polyethylen glycol and its use in dermatology. Dermatol Ther 2020; 33:e13747. [DOI: 10.1111/dth.13747] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/05/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Nicola Zerbinati
- Department of Medicine and Surgery University of Insubria Varese Italy
| | | | | | - Alberto Calligaro
- Department of Public Health, Experimental and Forensic Medicine University of Pavia Pavia Italy
| | - Damiano Monticelli
- Department of Science and High Technology University of Insubria Como Italy
| | | | - Masa Golubovic
- Department of Dermatology Clinical Center University of Nis Niš Serbia
| | - Iva Binic
- Department of Psychiatry Clinical Center, University of Nis Niš Serbia
| | - Julia Sigova
- Department of Neonatology Faculty of Continued Medical Education of Pirogov Russian National Research Medical University Moscow Russia
| | | | | | | | - Marina Pratosoni
- Department of Medicine and Surgery University of Insubria Varese Italy
| | - Michael Tirant
- Department of Dermatology Hanoi Medical University Hanoi Vietnam
| | | | | | - Raffaele Rauso
- Maxillofacial Surgery Unit University of Campania “Luigi Vanvitelli” Naples Italy
| | - Torello Lotti
- Department of Dermatology University of Rome G. Marconi Rome Italy
| |
Collapse
|
43
|
Narvaez CJ, Grebenc D, Balinth S, Welsh JE. Vitamin D regulation of HAS2, hyaluronan synthesis and metabolism in triple negative breast cancer cells. J Steroid Biochem Mol Biol 2020; 201:105688. [PMID: 32360595 PMCID: PMC8432753 DOI: 10.1016/j.jsbmb.2020.105688] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/28/2020] [Accepted: 04/26/2020] [Indexed: 01/29/2023]
Abstract
The vitamin D receptor (VDR) and its ligand 1,25(OH)2D3 (1,25D) exert anti-tumor effects, but considerable heterogeneity has been reported in different model systems. In general, cell lines derived from aggressive tumor subtypes such as Triple Negative Breast Cancer (TNBC) express low levels of VDR and are less sensitive to 1,25D than those derived from more differentiated tumor types. We have previously reported that 1,25D inhibits hyaluronic acid synthase 2 (HAS2) expression and hyaluronic acid (HA) synthesis in murine TNBC cells. Here we confirmed the inhibitory effect of 1,25D on HA synthesis in human Hs578T cells representative of the mesenchymal/stem-like (MSL) subtype of TNBC. Because HA synthesis requires the production of hexoses for incorporation into HA, we predicted that the high HA production characteristic of Hs578T cells would require sustained metabolic changes through the hexosamine biosynthetic pathway (HBP). We thus examined metabolic gene expression in Hs578T cell variants sorted for High (HAHigh) and Low (HALow) HA production, and the ability of 1,25D to reverse these adaptive changes. HAHigh populations exhibited elevated HA production, smaller size, increased proliferation and higher motility than HALow populations. Despite their more aggressive phenotype, HAHigh populations retained expression of VDR protein at levels comparable to that of parental Hs578T cells and HALow subclones. Treatment with 1,25D decreased production of HA in both HAHigh and HALow populations. We also found that multiple metabolic enzymes were aberrantly expressed in HAHigh cells, especially those involved in glutamine and glucose metabolism. Notably, Glutaminase (GLS), a known oncogene for breast cancer, was strongly upregulated in HAHigh vs. HALow cells and its expression was significantly reduced by 1,25D (100 nM, 24 h). Consistent with this finding, Seahorse extracellular flux analysis indicated that respiration in HAHigh cells was significantly more dependent on exogenous glutamine than HALow cells, however, acute 1,25D exposure did not alter metabolic flux. In contrast to GLS, the glutamate transporter SLC1A7 was significantly reduced in HAHigh cells compared to HALow cells and its expression was enhanced by 1,25D. These findings support the concept that 1,25D can reverse the metabolic gene expression changes associated with HA production in cancer cells with aggressive phenotypes.
Collapse
Affiliation(s)
- C J Narvaez
- Cancer Research Center, University at Albany, Rensselaer, NY 12144, United States.
| | - D Grebenc
- Department of Biochemistry, Queens University, Kingston, ON K7L 3N6, Canada
| | - S Balinth
- Cancer Research Center, University at Albany, Rensselaer, NY 12144, United States
| | - J E Welsh
- Cancer Research Center, University at Albany, Rensselaer, NY 12144, United States
| |
Collapse
|
44
|
Masaki N, Feng B, Bretón‐Romero R, Inagaki E, Weisbrod RM, Fetterman JL, Hamburg NM. O-GlcNAcylation Mediates Glucose-Induced Alterations in Endothelial Cell Phenotype in Human Diabetes Mellitus. J Am Heart Assoc 2020; 9:e014046. [PMID: 32508185 PMCID: PMC7429031 DOI: 10.1161/jaha.119.014046] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Posttranslational protein modification with O-linked N-acetylglucosamine (O-GlcNAc) is linked to high glucose levels in type 2 diabetes mellitus (T2DM) and may alter cellular function. We sought to elucidate the involvement of O-GlcNAc modification in endothelial dysfunction in patients with T2DM. Methods and Results Freshly isolated endothelial cells obtained by J-wire biopsy from a forearm vein of patients with T2DM (n=18) was compared with controls (n=10). Endothelial O-GlcNAc levels were 1.8-ford higher in T2DM patients than in nondiabetic controls (P=0.003). Higher endothelial O-GlcNAc levels correlated with serum fasting blood glucose level (r=0.433, P=0.024) and hemoglobin A1c (r=0.418, P=0.042). In endothelial cells from patients with T2DM, normal glucose conditions (24 hours at 5 mmol/L) lowered O-GlcNAc levels and restored insulin-mediated activation of endothelial nitric oxide synthase, whereas high glucose conditions (30 mmol/L) maintained both O-GlcNAc levels and impaired insulin action. Treatment of endothelial cells with Thiamet G, an O-GlcNAcase inhibitor, increased O-GlcNAc levels and blunted the improvement of insulin-mediated endothelial nitric oxide synthase phosphorylation by glucose normalization. Conclusions Taken together, our findings indicate a role for O-GlcNAc modification in the dynamic, glucose-induced impairment of endothelial nitric oxide synthase activation in endothelial cells from patients with T2DM. O-GlcNAc protein modification may be a treatment target for vascular dysfunction in T2DM.
Collapse
Affiliation(s)
- Nobuyuki Masaki
- The Whitaker Cardiovascular InstituteDepartment of MedicineBoston University School of MedicineBostonMA
| | - Bihua Feng
- The Whitaker Cardiovascular InstituteDepartment of MedicineBoston University School of MedicineBostonMA
| | - Rosa Bretón‐Romero
- The Whitaker Cardiovascular InstituteDepartment of MedicineBoston University School of MedicineBostonMA
| | - Elica Inagaki
- The Whitaker Cardiovascular InstituteDepartment of MedicineBoston University School of MedicineBostonMA
| | - Robert M. Weisbrod
- The Whitaker Cardiovascular InstituteDepartment of MedicineBoston University School of MedicineBostonMA
| | - Jessica L. Fetterman
- The Whitaker Cardiovascular InstituteDepartment of MedicineBoston University School of MedicineBostonMA
| | - Naomi M. Hamburg
- The Whitaker Cardiovascular InstituteDepartment of MedicineBoston University School of MedicineBostonMA
| |
Collapse
|
45
|
Intracellular hyaluronan: Importance for cellular functions. Semin Cancer Biol 2020; 62:20-30. [DOI: 10.1016/j.semcancer.2019.07.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/25/2019] [Accepted: 07/02/2019] [Indexed: 02/06/2023]
|
46
|
Huang Y, Kyriakides TR. The role of extracellular matrix in the pathophysiology of diabetic wounds. Matrix Biol Plus 2020; 6-7:100037. [PMID: 33543031 PMCID: PMC7852307 DOI: 10.1016/j.mbplus.2020.100037] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/29/2022] Open
Abstract
Impaired healing leading to the formation of ulcerated wounds is a critical concern in patients with diabetes. Abnormalities in extracellular matrix (ECM) production and remodeling contribute to tissue dysfunction and delayed healing. Specifically, diabetes-induced changes in the expression and/or activity of structural proteins, ECM-modifying enzymes, proteoglycans, and matricellular proteins have been reported. In this review, we provide a summary of the key ECM molecules and associated changes in skin and diabetic wounds. Such information should allow for new insights in the understanding of impaired wound healing and lead to the development of ECM-based therapeutic strategies.
Collapse
Affiliation(s)
- Yaqing Huang
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06519, USA.,Department of Pathology, Yale University, New Haven, CT 06519, USA
| | - Themis R Kyriakides
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06519, USA.,Department of Pathology, Yale University, New Haven, CT 06519, USA.,Department of Biomedical Engineering, Yale University, New Haven, CT 06519, USA
| |
Collapse
|
47
|
Byon CH, Kim SW. Regulatory Effects of O-GlcNAcylation in Vascular Smooth Muscle Cells on Diabetic Vasculopathy. J Lipid Atheroscler 2020; 9:243-254. [PMID: 32821734 PMCID: PMC7379086 DOI: 10.12997/jla.2020.9.2.243] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 12/20/2022] Open
Abstract
Vascular complications from uncontrolled hyperglycemia are the leading cause of death in patients with diabetes mellitus. Previous reports have shown a strong correlation between hyperglycemia and vascular calcification, which increases mortality and morbidity in individuals with diabetes. However, the precise underlying molecular mechanisms of hyperglycemia-induced vascular calcification remain largely unknown. Transdifferentiation of vascular smooth muscle cells (VSMC) into osteoblast-like cells is a known culprit underlying the development of vascular calcification in the diabetic vasculature. Pathological conditions such as high glucose levels and oxidative stress are linked to enhanced osteogenic differentiation of VSMC both in vivo and in vitro. It has been demonstrated that increased expression of runt-related transcription factor 2 (Runx2), a bone-related transcription factor, in VSMC is necessary and sufficient for the induction of VSMC calcification. Addition of a single O-linked β-N-acetylglucosamine (O-GlcNAc) moiety to the serine/threonine residues of target proteins (O-GlcNAcylation) has been observed in the arteries of diabetic patients, as well as in animal models in association with the enhanced expression of Runx2 and aggravated vascular calcification. O-GlcNAcylation is a dynamic and tightly regulated process, that is mediated by 2 enzymes, O-GlcNAc transferase and O-GlcNAcase. Glucose is metabolized into UDP-β-D-N-acetylglucosamine, an active sugar donor of O-GlcNAcylation via the hexosamine biosynthetic pathway. Overall increases in the O-GlcNAcylation of cellular proteins have been closely associated with cardiovascular complications of diabetes. In this review, the authors provide molecular insights into cardiovascular complications, including diabetic vasculopathy, that feature increased O-GlcNAcylation in people with diabetes.
Collapse
Affiliation(s)
- Chang Hyun Byon
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
48
|
Salicylate suppresses the oncogenic hyaluronan network in metastatic breast cancer cells. Matrix Biol Plus 2020; 6-7:100031. [PMID: 33543028 PMCID: PMC7852211 DOI: 10.1016/j.mbplus.2020.100031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 01/05/2023] Open
Abstract
The oncogenic role of hyaluronan in several aspects of tumor biology has been well established. Recent studies by us and others suggest that inhibition of hyaluronan synthesis could represent an emerging therapeutic approach with significant clinical relevance in controlling different breast cancer subtypes, including triple-negative breast cancer. Epidemiological and preclinical studies have revealed the therapeutic potential of aspirin (acetyl salicylate), a classical anti-inflammatory drug, in patients with cancer. However, the underlying molecular mechanisms remain unknown. The present study demonstrates that salicylate, a break down product of aspirin in vivo, alters the organization of hyaluronan matrices by affecting the expression levels of hyaluronan synthesizing (HAS1, 2, 3) and degrading (HYAL-1, -2) enzymes, and that of hyaluronan receptor CD44. In particular, salicylate was found to potently activate AMPK, a kinase known to inhibit HAS2 activity, and caused a dose-dependent decrease of cell associated (intracellular and membrane-bound) as well as secreted hyaluronan, followed by the down-regulation of HAS2 and the induction of HYAL-2 and CD44 in metastatic breast cancer cells. These salicylate-mediated effects were associated with the redistribution of CD44 and actin cytoskeleton that resulted in a less motile cell phenotype. Interestingly, salicylate inhibited metastatic breast cancer cell proliferation and growth by inducing cell growth arrest without signs of apoptosis as evidenced by the substantial decrease of cyclin D1 protein and the absence of cleaved caspase-3, respectively. Collectively, our study offers a possible direction for the development of new matrix-based targeted treatments of metastatic breast cancer subtypes via inhibition of hyaluronan, a pro-angiogenic, pro-inflammatory and tumor promoting glycosaminoglycan.
Collapse
|
49
|
Wang G, Tiemeier GL, van den Berg BM, Rabelink TJ. Endothelial Glycocalyx Hyaluronan: Regulation and Role in Prevention of Diabetic Complications. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:781-790. [PMID: 32035886 DOI: 10.1016/j.ajpath.2019.07.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/13/2019] [Accepted: 07/30/2019] [Indexed: 10/25/2022]
Abstract
The endothelial glycocalyx is critically involved in vascular integrity and homeostasis, by regulating vascular permeability, regulating mechanotransduction, and reducing inflammation and coagulation. The turnover of the glycocalyx is dynamic to fine-tune these processes. This is in particular true for its main structural component, hyaluronan (HA). Degradation and shedding of the glycocalyx by enzymes, such as hyaluronidase 1 and hyaluronidase 2, are responsible for regulation of the glycocalyx thickness and hence access of circulating cells and factors to the endothelial cell membrane and its receptors. This degradation process will at the same time also allow for resynthesis and adaptive chemical modification of the glycocalyx. The (re)synthesis of HA is dependent on the availability of its sugar substrates, thus linking glycocalyx biology directly to cellular glucose metabolism. It is therefore of particular interest to consider the consequences of dysregulated cellular glucose in diabetes for glycocalyx biology and its implications for endothelial function. This review summarizes the metabolic regulation of endothelial glycocalyx HA and its potential as a therapeutic target in diabetic vascular complications.
Collapse
Affiliation(s)
- Gangqi Wang
- Division of Nephrology, Department of Internal Medicine, the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Gesa L Tiemeier
- Division of Nephrology, Department of Internal Medicine, the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Bernard M van den Berg
- Division of Nephrology, Department of Internal Medicine, the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Ton J Rabelink
- Division of Nephrology, Department of Internal Medicine, the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
50
|
Abstract
The extracellular matrix is part of the microenvironment and its functions are associated with the physical and chemical properties of the tissue. Among the extracellular components, the glycosaminoglycan hyaluronan is a key component, defining both the physical and biochemical characteristics of the healthy matrices. The hyaluronan metabolism is strictly regulated in physiological conditions, but in the tumoral tissues, its expression, size and binding proteins interaction are dysregulated. Hyaluronan from the tumor microenvironment promotes tumor cell proliferation, invasion, immune evasion, stemness alterations as well as drug resistance. This chapter describes data regarding novel concepts of hyaluronan functions in the tumor. Additionally, we discuss potential clinical applications of targeting HA metabolism in cancer therapy.
Collapse
|