1
|
Bögel G, Sváb G, Murányi J, Szokol B, Kukor Z, Kardon T, Őrfi L, Tretter L, Hrabák A. The role of PI3K-Akt-mTOR axis in Warburg effect and its modification by specific protein kinase inhibitors in human and rat inflammatory macrophages. Int Immunopharmacol 2024; 141:112957. [PMID: 39197292 DOI: 10.1016/j.intimp.2024.112957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/25/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024]
Abstract
The Warburg effect occurs both in cancer cells and in inflammatory macrophages. The aim of our work was to demonstrate the role of PI3K-Akt-mTOR axis in the Warburg effect in HL-60 derived, rat peritoneal and human blood macrophages and to investigate the potential of selected inhibitors of this pathway to antagonize it. M1 polarization in HL-60-derived and human blood monocyte-derived macrophages was supported by the increased expression of NOS2 and inflammatory cytokines. All M1 polarized and inflammatory macrophages investigated expressed higher levels of HIF-1α and NOS2, which were reduced by selected kinase inhibitors, supporting the role of PI3K-Akt-mTOR axis. Using Seahorse XF plates, we found that in HL-60-derived and human blood-derived macrophages, glucose loading reduced oxygen consumption (OCR) and increased glycolysis (ECAR) in M1 polarization, which was antagonized by selected kinase inhibitors and by dichloroacetate. In rat peritoneal macrophages, the changes in oxidative and glycolytic metabolism were less marked and the NOS2 inhibitor decreased OCR and increased ECAR. Non-mitochondrial oxygen consumption and ROS production were likely due to NADPH oxidase, expressed in each macrophage type, independently of PI3K-Akt-mTOR axis. Our results suggest that inflammation changed the metabolism in each macrophage model, but a clear relationship between polarization and Warburg effect was confirmed only after glucose loading in HL-60 and human blood derived macrophages. The effect of kinase inhibitors on Warburg effect was variable in different cell types, whereas dichloroacetate caused a shift toward oxidative metabolism. Our findings suggest that these originally anti-cancer inhibitors may also be candidates for anti-inflammatory therapy.
Collapse
Affiliation(s)
- Gábor Bögel
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, H-1094 Tűzoltó u. 37-47, Hungary
| | - Gergely Sváb
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, H-1094 Tűzoltó u. 37-47, Hungary
| | - József Murányi
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, H-1094 Tűzoltó u. 37-47, Hungary
| | - Bálint Szokol
- Vichem Chemie Research Ltd., Veszprém, H-8200, Viola u. 2., Hungary
| | - Zoltán Kukor
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, H-1094 Tűzoltó u. 37-47, Hungary
| | - Tamás Kardon
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, H-1094 Tűzoltó u. 37-47, Hungary
| | - László Őrfi
- Vichem Chemie Research Ltd., Veszprém, H-8200, Viola u. 2., Hungary; Department of Pharmaceutical Chemistry, Semmelweis University, Budapest, H-1092 Hőgyes E. u. 9., Hungary
| | - László Tretter
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, H-1094 Tűzoltó u. 37-47, Hungary
| | - András Hrabák
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, H-1094 Tűzoltó u. 37-47, Hungary.
| |
Collapse
|
2
|
Zhu YY, Zhang Q, Jia YC, Hou MJ, Zhu BT. Protein disulfide isomerase plays a crucial role in mediating chemically-induced, glutathione depletion-associated hepatocyte injury in vitro and in vivo. Cell Commun Signal 2024; 22:431. [PMID: 39243059 PMCID: PMC11378433 DOI: 10.1186/s12964-024-01798-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 08/18/2024] [Indexed: 09/09/2024] Open
Abstract
Recently we have shown that protein disulfide isomerase (PDI or PDIA1) is involved in mediating chemically-induced, glutathione (GSH) depletion-associated ferroptotic cell death through NOS activation (dimerization) and NO accumulation. The present study aims to determine the role of PDI in mediating chemically-induced hepatocyte injury in vitro and in vivo and whether PDI inhibitors can effectively protect against chemically-induced hepatocyte injury. We show that during the development of erastin-induced ferroptotic cell death, accumulation of cellular NO, ROS and lipid-ROS follows a sequential order, i.e., cellular NO accumulation first, followed by accumulation of cellular ROS, and lastly cellular lipid-ROS. Cellular NO, ROS and lipid-ROS each play a crucial role in mediating erastin-induced ferroptosis in cultured hepatocytes. In addition, it is shown that PDI is an important upstream mediator of erastin-induced ferroptosis through PDI-mediated conversion of NOS monomer to its dimer, which then leads to accumulation of cellular NO, ROS and lipid-ROS, and ultimately ferroptotic cell death. Genetic manipulation of PDI expression or pharmacological inhibition of PDI function each can effectively abrogate erastin-induced ferroptosis. Lastly, evidence is presented to show that PDI is also involved in mediating acetaminophen-induced liver injury in vivo using both wild-type C57BL/6J mice and hepatocyte-specific PDI conditional knockout (PDIfl/fl Alb-cre) mice. Together, our work demonstrates that PDI is an important upstream mediator of chemically-induced, GSH depletion-associated hepatocyte ferroptosis, and inhibition of PDI can effectively prevent this injury.
Collapse
Affiliation(s)
- Yan-Yin Zhu
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Blvd., Longgang District, Shenzhen, 518172, Guangdong, China
| | - Qi Zhang
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Blvd., Longgang District, Shenzhen, 518172, Guangdong, China
| | - Yi-Chen Jia
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Blvd., Longgang District, Shenzhen, 518172, Guangdong, China
| | - Ming-Jie Hou
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Blvd., Longgang District, Shenzhen, 518172, Guangdong, China
| | - Bao Ting Zhu
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Blvd., Longgang District, Shenzhen, 518172, Guangdong, China.
- Shenzhen Bay Laboratory, Shenzhen, 518055, China.
| |
Collapse
|
3
|
Zeiz A, Kawtharani R, Elmasri M, Khawaja G, Hamade E, Habib A, Ayoub AJ, Abarbri M, El-Dakdouki MH. Molecular properties prediction, anticancer and anti-inflammatory activities of some pyrimido[1,2-b]pyridazin-2-one derivatives. BIOIMPACTS : BI 2023; 14:27688. [PMID: 38505674 PMCID: PMC10945296 DOI: 10.34172/bi.2023.27688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 03/21/2024]
Abstract
Introduction The anticancer and anti-inflammatory activities of a novel series of eleven pyrimido[1,2-b]pyridazin-2-one analogues substituted at position 7 were assessed in the current study. Methods The physicochemical characteristics were studied using MolSoft software. The antiproliferative activity was investigated by MTT cell viability assay, and cell cycle analysis elucidated the antiproliferative mechanism of action. Western blot analysis examined the expression levels of key pro-apoptotic (Bax, p53) and pro-survival (Bcl-2) proteins. The anti-inflammatory activity was assessed by measuring the production levels of nitric oxide in RAW264.7 cells, and the expression levels of COX-2 enzyme in LPS-activated THP-1 cells. In addition, the gene expression of various pro-inflammatory cytokines (IL-6, IL-8, IL-1β, TNF-α) and chemokines (CCL2, CXCL1, CXCL2, CXCL3) was assessed by RT-qPCR. Results Compound 1 bearing a chlorine substituent displayed the highest cytotoxic activity against HCT-116 and MCF-7 cancer cells where IC50 values of 49.35 ± 2.685 and 69.32 ± 3.186 µM, respectively, were achieved. Compound 1 increased the expression of pro-apoptotic proteins p53 and Bax while reducing the expression of pro-survival protein Bcl-2. Cell cycle analysis revealed that compound 1 arrested cell cycle at the G0/G1 phase. Anti-inflammatory assessments revealed that compound 1 displayed the strongest inhibitory activity on NO production with IC50 of 29.94 ± 2.24 µM, and down-regulated the expression of COX-2. Compound 1 also induced a statistically significant decrease in the gene expression of various cytokines and chemokines. Conclusion These findings showed that the pyrimidine derivative 1 displayed potent anti-inflammatory and anticancer properties in vitro, and can be selected as a lead compound for further investigation.
Collapse
Affiliation(s)
- Ali Zeiz
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Debbieh, Lebanon
| | - Ranin Kawtharani
- Laboratory of Medicinal Chemistry and Natural Products, Lebanese University, Faculty of Science-I, Beirut, Lebanon
| | - Mirvat Elmasri
- Department of Chemistry and Biochemistry, Faculty of Science-I, Lebanese University, Beirut, Lebanon
| | - Ghada Khawaja
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Debbieh, Lebanon
| | - Eva Hamade
- Department of Chemistry and Biochemistry, Faculty of Science-I, Lebanese University, Beirut, Lebanon
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Aida Habib
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar
| | - Abeer J. Ayoub
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Mohamed Abarbri
- Laboratoire de Physico-Chimie des Matériaux et des Electrolytes pour l'Energie (PCM2E)., EA 6299. Avenue Monge Faculté des Sciences, Parc de Grandmont, 37200 Tours, France
| | | |
Collapse
|
4
|
Mauchauffée E, Leroy J, Chamcham J, Ejjoummany A, Maurel M, Nauton L, Ramassamy B, Mezghenna K, Boucher JL, Lajoix AD, Hernandez JF. S-Ethyl-Isothiocitrullin-Based Dipeptides and 1,2,4-Oxadiazole Pseudo-Dipeptides: Solid Phase Synthesis and Evaluation as NO Synthase Inhibitors. Molecules 2023; 28:5085. [PMID: 37446746 DOI: 10.3390/molecules28135085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
We previously reported dipeptidomimetic compounds as inhibitors of neuronal and/or inducible NO synthases (n/iNOS) with significant selectivity against endothelial NOS (eNOS). They were composed of an S-ethylisothiocitrullin-like moiety linked to an extension through a peptide bond or a 1,2,4-oxadiazole link. Here, we developed two further series where the extension size was increased to establish more favorable interactions in the NOS substrate access channel. The extension was introduced on the solid phase by the reductive alkylation of an amino-piperidine moiety or an aminoethyl segment in the case of dipeptide-like and 1,2,4-oxadiazole compounds, respectively, with various benzaldehydes. Compared to the previous series, more potent inhibitors were identified with IC50 in the micromolar to the submicromolar range, with significant selectivity toward nNOS. As expected, most compounds did not inhibit eNOS, and molecular modeling was carried out to characterize the reasons for the selectivity toward nNOS over eNOS. Spectral studies showed that compounds were interacting at the heme active site. Finally, selected inhibitors were found to inhibit intra-cellular iNOS and nNOS expressed in RAW264.7 and INS-1 cells, respectively.
Collapse
Affiliation(s)
- Elodie Mauchauffée
- Institut des Biomolécules Max Mousseron, CNRS, Univ. Montpellier, ENSCM, Pôle Chimie Balard, 34293 Montpellier, France
| | - Jérémy Leroy
- Centre Biocommunication en Cardio-Métabolique, Univ. Montpellier, UFR Pharmacie, 34093 Montpellier, France
| | - Jihanne Chamcham
- Institut des Biomolécules Max Mousseron, CNRS, Univ. Montpellier, ENSCM, Pôle Chimie Balard, 34293 Montpellier, France
| | - Abdelaziz Ejjoummany
- Institut des Biomolécules Max Mousseron, CNRS, Univ. Montpellier, ENSCM, Pôle Chimie Balard, 34293 Montpellier, France
| | - Manon Maurel
- Institut des Biomolécules Max Mousseron, CNRS, Univ. Montpellier, ENSCM, Pôle Chimie Balard, 34293 Montpellier, France
| | - Lionel Nauton
- Institut de Chimie de Clermont-Ferrand, Université Clermont-Auvergne, CNRS, 63178 Aubière, France
| | - Booma Ramassamy
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601, CNRS, Université Paris Descartes, CEDEX 06, 75270 Paris, France
| | - Karima Mezghenna
- Centre Biocommunication en Cardio-Métabolique, Univ. Montpellier, UFR Pharmacie, 34093 Montpellier, France
| | - Jean-Luc Boucher
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601, CNRS, Université Paris Descartes, CEDEX 06, 75270 Paris, France
| | - Anne-Dominique Lajoix
- Centre Biocommunication en Cardio-Métabolique, Univ. Montpellier, UFR Pharmacie, 34093 Montpellier, France
| | - Jean-François Hernandez
- Institut des Biomolécules Max Mousseron, CNRS, Univ. Montpellier, ENSCM, Pôle Chimie Balard, 34293 Montpellier, France
| |
Collapse
|
5
|
Russell TM, Richardson DR. The good Samaritan glutathione-S-transferase P1: An evolving relationship in nitric oxide metabolism mediated by the direct interactions between multiple effector molecules. Redox Biol 2023; 59:102568. [PMID: 36563536 PMCID: PMC9800640 DOI: 10.1016/j.redox.2022.102568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Glutathione-S-transferases (GSTs) are phase II detoxification isozymes that conjugate glutathione (GSH) to xenobiotics and also suppress redox stress. It was suggested that GSTs have evolved not to enhance their GSH affinity, but to better interact with and metabolize cytotoxic nitric oxide (NO). The interactions between NO and GSTs involve their ability to bind and store NO as dinitrosyl-dithiol iron complexes (DNICs) within cells. Additionally, the association of GSTP1 with inducible nitric oxide synthase (iNOS) results in its inhibition. The function of NO in vasodilation together with studies associating GSTM1 or GSTT1 null genotypes with preeclampsia, additionally suggests an intriguing connection between NO and GSTs. Furthermore, suppression of c-Jun N-terminal kinase (JNK) activity occurs upon increased levels of GSTP1 or NO that decreases transcription of JNK target genes such as c-Jun and c-Fos, which inhibit apoptosis. This latter effect is mediated by the direct association of GSTs with MAPK proteins. GSTP1 can also inhibit nuclear factor kappa B (NF-κB) signaling through its interactions with IKKβ and Iκα, resulting in decreased iNOS expression and the stimulation of apoptosis. It can be suggested that the inhibitory activity of GSTP1 within the JNK and NF-κB pathways may be involved in crosstalk between survival and apoptosis pathways and modulating NO-mediated ROS generation. These studies highlight an innovative role of GSTs in NO metabolism through their interaction with multiple effector proteins, with GSTP1 functioning as a "good Samaritan" within each pathway to promote favorable cellular conditions and NO levels.
Collapse
Affiliation(s)
- Tiffany M Russell
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, 4111, Australia.
| |
Collapse
|
6
|
Mechanism of Erastin-Induced Ferroptosis in MDA-MB-231 Human Breast Cancer Cells: Evidence for a Critical Role of Protein Disulfide Isomerase. Mol Cell Biol 2022; 42:e0052221. [PMID: 35499331 PMCID: PMC9202373 DOI: 10.1128/mcb.00522-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Ferroptosis is a form of regulated cell death resulting predominantly from catastrophic accumulation of lipid reactive oxygen species (ROS). While the antioxidant systems that counter ferroptosis have been well characterized, the mechanism underlying ferroptosis-associated accumulation of lipid ROS remains unclear. In this study, we demonstrated that protein disulfide isomerase (PDI) is a novel mediator of ferroptosis, which is responsible for the accumulation of lipid ROS and ultimately ferroptosis in MDA-MB-231 human breast cancer cells. Treatment with erastin led to a significant increase in inducible nitric oxide synthase (iNOS)-mediated nitric oxide production, which contributes to the accumulation of the death-inducing cellular lipid ROS. Small interfering RNA (siRNA)-mediated PDI knockdown or pharmacological inhibition of PDI’s isomerase activity with cystamine strongly suppressed iNOS dimerization and its catalytic activation, subsequently prevented lipid ROS accumulation, and conferred strong protection against erastin-induced ferroptosis. Remarkably, PDI knockdown in MDA-MB-231 cells also largely abrogated the protective effect of cystamine against erastin-induced ferroptotic cell death. Together, these experimental observations demonstrate a noncanonical role of PDI in ferroptosis, which may serve as a potential therapeutic target for ferroptosis-related diseases.
Collapse
|
7
|
Camp OG, Bai D, Awonuga A, Goud P, Abu-Soud HM. Hypochlorous acid facilitates inducible nitric oxide synthase subunit dissociation: The link between heme destruction, disturbance of the zinc-tetrathiolate center, and the prevention by melatonin. Nitric Oxide 2022; 124:32-38. [PMID: 35513289 DOI: 10.1016/j.niox.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/20/2022] [Accepted: 04/29/2022] [Indexed: 11/25/2022]
Abstract
Inducible nitric oxide synthase (iNOS) is a zinc-containing hemoprotein composed of two identical subunits, each containing a reductase and an oxygenase domain. The reductase domain contains binding sites for NADPH, FAD, FMN, and tightly bound calmodulin and the oxygenase domain contains binding sites for heme, tetrahydrobiopterin (H4B), and l-arginine. The enzyme converts l-arginine into nitric oxide (NO) and citrulline in the presence of O2. It has previously been demonstrated that myeloperoxidase (MPO), which catalyzes formation of hypochlorous acid (HOCl) from hydrogen peroxide (H2O2) and chloride (Cl-), is enhanced in inflammatory diseases and could be a potent scavenger of NO. Using absorbance spectroscopy and gel filtration chromatography, we investigated the role of increasing concentrations of HOCl in mediating iNOS heme destruction and subsequent subunit dissociation and unfolding. The results showed that dimer iNOS dissociation between 15 and 100 μM HOCl was accompanied by loss of heme content and NO synthesis activity. The dissociated subunits-maintained cytochrome c and ferricyanide reductase activities. There was partial unfolding of the subunits at 300 μM HOCl and above, and the subunit unfolding transition was accompanied by loss of reductase activities. These events can be prevented when the enzyme is preincubated with melatonin prior to HOCl addition. Melatonin supplementation to patients experiencing low NO levels due to inflammatory diseases may be helpful to restore physiological NO functions.
Collapse
Affiliation(s)
- Olivia G Camp
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - David Bai
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Awoniyi Awonuga
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Pravin Goud
- Division of Reproductive Endocrinology and Infertility & California IVF Fertility Center, Department of Obstetrics and Gynecology, University of California Davis, Sacramento, CA, 95833, USA; California Northstate University Medical College, Elk Grove, CA, 95757, USA
| | - Husam M Abu-Soud
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
8
|
Nagpal L, Kornberg MD, Snyder SH. Inositol hexakisphosphate kinase-2 non-catalytically regulates mitophagy by attenuating PINK1 signaling. Proc Natl Acad Sci U S A 2022; 119:e2121946119. [PMID: 35353626 PMCID: PMC9169102 DOI: 10.1073/pnas.2121946119] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/08/2022] [Indexed: 11/18/2022] Open
Abstract
Inositol pyrophosphates, such as 5-diphosphoinositol pentakisphosphate (IP7), are generated by a family of inositol hexakisphosphate kinases (IP6Ks), of which IP6K2 has been implicated in various cellular functions including neuroprotection. Absence of IP6K2 causes impairment of oxidative phosphorylation regulated by creatine kinase-B. In the present study, we show that IP6K2 is involved in attenuation of PINK1-mediated mitochondrial autophagy (mitophagy) in the brain. Up-regulation of dynamin-related protein (Drp-1), as well as increased expression of mitochondrial biogenesis markers (PGC1-α and NRF-1) in the cerebella of IP6K2-deleted mice (IP6K2-knockout), point to the involvement of IP6K2 in the regulation of mitochondrial fission. Knockdown of IP6K2 also leads to augmented glycolysis, potentially as a compensatory mechanism for decreased mitochondrial respiration. Overexpressing IP6K2 as well as IP6K2-kinase dead mutant in IP6K2-knockdown N2A cells reverses the expression of mitophagy markers, demonstrating that IP6K2-induced mitoprotection is catalytically/kinase independent. IP6K2 supplementation in K2-PINK1 double-knockdown N2A cells fails to reverse the expression of the mitophagic marker, LC3-II, indicating that the mitoprotective effect of IP6K2 is dependent on PINK1. Overall, our study reveals a key neuroprotective role of IP6K2 in the prevention of PINK1-mediated mitophagy in the brain.
Collapse
Affiliation(s)
- Latika Nagpal
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Michael D. Kornberg
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Solomon H. Snyder
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
9
|
Inositol hexakisphosphate kinase-2 determines cellular energy dynamics by regulating creatine kinase-B. Proc Natl Acad Sci U S A 2021; 118:2020695118. [PMID: 33547244 DOI: 10.1073/pnas.2020695118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Inositol hexakisphosphate kinases (IP6Ks) regulate various biological processes. IP6Ks convert IP6 to pyrophosphates such as diphosphoinositol pentakisphosphate (IP7) and bis-diphosphoinositol tetrakisphosphate (IP8). IP7 is produced in mammals by a family of inositol hexakisphosphate kinases, IP6K1, IP6K2, and IP6K3, which have distinct biological functions. The inositol hexakisphosphate kinase 2 (IP6K2) controls cellular apoptosis. To explore roles for IP6K2 in brain function, we elucidated its protein interactome in mouse brain revealing a robust association of IP6K2 with creatine kinase-B (CK-B), a key enzyme in energy homeostasis. Cerebella of IP6K2-deleted mice (IP6K2-knockout [KO]) produced less phosphocreatine and ATP and generated higher levels of reactive oxygen species and protein oxidative damage. In IP6K2-KO mice, mitochondrial dysfunction was associated with impaired expression of the cytochrome-c1 subunit of complex III of the electron transport chain. We reversed some of these effects by combined treatment with N-acetylcysteine and phosphocreatine. These findings establish a role for IP6K2-CK-B interaction in energy homeostasis associated with neuroprotection.
Collapse
|
10
|
Zhu LQ, Fan XH, Li JF, Chen JH, Liang Y, Hu XL, Ma SM, Hao XY, Shi T, Wang Z. Discovery of a novel inhibitor of nitric oxide production with potential therapeutic effect on acute inflammation. Bioorg Med Chem Lett 2021; 44:128106. [PMID: 33991630 DOI: 10.1016/j.bmcl.2021.128106] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/28/2021] [Accepted: 05/08/2021] [Indexed: 10/21/2022]
Abstract
Inflammation as a host's excessive immune response to stimulation, is involved in the development of numerous diseases. To discover novel anti-inflammatory agents and based on our previous synthetic work on marine natural product Chrysamide B, it and a series of derivatives were synthesized and evaluated for their anti-inflammatory activity on inhibition of LPS-induced NO production. Then the preliminary structure-activity relationships were conducted. Among them, Chrysamide B is the most potent anti-inflammatory agent with low cytotoxicity and strong inhibition on the production of NO (IC50 = 0.010 μM) and the activity of iNOS (IC50 = 0.082 μM) in LPS-stimulated RAW 264.7 cells. Primary studies suggested that the mechanism of action may be that it interfered the formation of active dimeric iNOS but not affected transcription and translation. Furthermore, its good performance of anti-inflammatory effect on LPS-induced multiple inflammatory cytokines production, carrageenan-induced paw edema, and endotoxin-induced septic mice, was observed. We believe that these findings would provide an idea for the further modification and research of these analogs in the future.
Collapse
Affiliation(s)
- Long-Qing Zhu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xiao-Hong Fan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Jun-Fang Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Jin-Hong Chen
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yan Liang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xiao-Ling Hu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Shu-Meng Ma
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xiang-Yong Hao
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Tao Shi
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| | - Zhen Wang
- School of Pharmaceutical Science, University of South China, Hengyang 421001, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
11
|
Targeting protein self-association in drug design. Drug Discov Today 2021; 26:1148-1163. [PMID: 33548462 DOI: 10.1016/j.drudis.2021.01.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/24/2020] [Accepted: 01/26/2021] [Indexed: 01/05/2023]
Abstract
Protein self-association is a universal phenomenon essential for stability and molecular recognition. Disrupting constitutive homomers constitutes an original and emerging strategy in drug design. Inhibition of homomeric proteins can be achieved through direct complex disruption, subunit intercalation, or by promoting inactive oligomeric states. Targeting self-interaction grants several advantages over active site inhibition because of the stimulation of protein degradation, the enhancement of selectivity, substoichiometric inhibition, and by-pass of compensatory mechanisms. This new landscape in protein inhibition is driven by the development of biophysical and biochemical tools suited for the study of homomeric proteins, such as differential scanning fluorimetry (DSF), native mass spectrometry (MS), Förster resonance energy transfer (FRET) spectroscopy, 2D nuclear magnetic resonance (NMR), and X-ray crystallography. In this review, we discuss the different aspects of this new paradigm in drug design.
Collapse
|
12
|
Reddy S, Krogvold L, Martin C, Sun KX, Martin O, Al-Ani A, Dahl-Jørgensen K. Expression of immunoreactive inducible nitric oxide synthase in pancreatic islet cells from newly diagnosed and long-term type 1 diabetic donors is heterogeneous and not disease-associated. Cell Tissue Res 2021; 384:655-674. [PMID: 33427953 DOI: 10.1007/s00441-020-03340-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 11/05/2020] [Indexed: 11/26/2022]
Abstract
Exposure of isolated human islets to proinflammatory cytokines leads to up-regulation of inducible nitric oxide synthase (iNOS), raised NO, and beta cell toxicity. These findings have led to increasing interest in the clinical utility of iNOS blockade to mitigate beta cell destruction in human type 1 diabetes (T1D). However, recent studies show that iNOS-derived NO may also confer beta cell protection. To investigate this dichotomy, we compared islet cell distributions and intensity of iNOS immunostaining in pancreatic sections, co-stained for insulin and glucagon, from new-onset T1D donors (group 1), with non-diabetic autoantibody-negative (group 2), non-diabetic autoantibody-positive (group 3) and long-term diabetic donors (group 4). The cellular origins of iNOS, its frequency and graded intensities in islets and number in peri-islet, intra-islet and exocrine regions were determined. All donors showed iNOS positivity, irrespective of disease and presence of beta cells, had variable labelling intensities, without significant differences in the frequency of iNOS-positive islets among study groups. iNOS was co-localised in selective beta, alpha and other endocrine cells, and in beta cell-negative islets of diabetic donors. The number of peri- and intra-islet iNOS cells was low, being significantly higher in the peri-islet area. Exocrine iNOS cells also remained low, but were much lower in group 1. We demonstrate that iNOS expression in islet cells is variable, heterogeneous and independent of co-existing beta cells. Its distribution and staining intensities in islets and extra-islet areas do not correlate with T1D or its duration. Interventions to inactivate the enzyme to alleviate disease are currently not justified.
Collapse
Affiliation(s)
- Shiva Reddy
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Science, University of Auckland, Auckland, 1023, New Zealand.
| | - Lars Krogvold
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Charlton Martin
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Science, University of Auckland, Auckland, 1023, New Zealand
| | - Kevin Xueying Sun
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Science, University of Auckland, Auckland, 1023, New Zealand
| | - Owen Martin
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Science, University of Auckland, Auckland, 1023, New Zealand
| | - Aamenah Al-Ani
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Science, University of Auckland, Auckland, 1023, New Zealand
| | - Knut Dahl-Jørgensen
- Faculty of Dentistry, University of Oslo, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
13
|
Arginase 2 is a mediator of ischemia-reperfusion injury in the kidney through regulation of nitrosative stress. Kidney Int 2020; 98:673-685. [PMID: 32739205 DOI: 10.1016/j.kint.2020.03.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/23/2020] [Accepted: 03/16/2020] [Indexed: 01/09/2023]
Abstract
Kidney ischemia-reperfusion injury is a major cause of acute kidney injury (AKI). Following reduced kidney perfusion, the pathological overproduction of reactive oxygen and reactive nitrogen species play a substantial role in the development of kidney ischemia-reperfusion injury. Arginase 2 (ARG2) competes with nitric oxide synthase for the same substrate, L-arginine, and is implicated in the regulation of reactive nitrogen species. Therefore, we investigated the role of ARG2 in kidney ischemia-reperfusion injury using human proximal tubule cells (HK-2) and a mouse model of kidney ischemia-reperfusion injury. ARG2 was predominantly expressed in kidney tubules of the cortex, which was increased after ischemia-reperfusion injury. In HK-2 cells, ARG2 was expressed in punctate form in the cytoplasm and upregulated after hypoxia-reoxygenation. ARG2 knockdown reduced the level of reactive oxygen species and 3-nitrotyrosine after hypoxia-reoxygenation injury compared with control siRNA. Consistent with these results, in Arg2 knockout mice, abnormal kidney function and the increased acute tubular necrosis score induced by ischemia-reperfusion injury was significantly reduced without any obvious blood pressure changes. Additionally, an accumulation of 3-nitrotyrosine and apoptosis of renal tubule cells were attenuated in Arg2 knockout mice compared with wild-type mice. Inhibition of arginase by Nω-hydroxy-nor-L-arginine alleviated kidney ischemia-reperfusion injury like the results found in Arg2 knockout mice. Thus, ARG2 plays a pivotal role in ischemia-reperfusion-induced AKI by means of nitrosative stress. Hence, an ARG2-specific inhibitor may effectively treat kidney ischemia-reperfusion injury.
Collapse
|
14
|
Touati-Jallabe Y, Tintillier T, Mauchauffée E, Boucher JL, Leroy J, Ramassamy B, Hamzé A, Mezghenna K, Bouzekrini A, Verna C, Martinez J, Lajoix AD, Hernandez JF. Solid-Phase Synthesis of Substrate-Based Dipeptides and Heterocyclic Pseudo-dipeptides as Potential NO Synthase Inhibitors. ChemMedChem 2020; 15:517-531. [PMID: 32027778 DOI: 10.1002/cmdc.201900659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/03/2020] [Indexed: 11/06/2022]
Abstract
More than 160 arginine analogues modified on the C-terminus via either an amide bond or a heterocyclic moiety (1,2,4-oxadiazole, 1,3,4-oxadiazole and 1,2,4-triazole) were prepared as potential inhibitors of NO synthases (NOS). A methodology involving formation of a thiocitrulline intermediate linked through its side-chain on a solid support followed by modification of its carboxylate group was developed. Finally, the side-chain thiourea group was either let unchanged, S-alkylated (Me, Et) or guanidinylated (Me, Et) to yield respectively after TFA treatment the corresponding thiocitrulline, S-Me/Et-isothiocitrulline and N-Me/Et-arginine substrate analogues. They all were tested against three recombinant NOS isoforms. Several compounds containing a S-Et- or a S-Me-Itc moiety and mainly belonging to both the dipeptide-like and 1,2,4-oxadiazole series were shown to inhibit nNOS and iNOS with IC50 in the 1-50 μM range. Spectral studies confirmed that these new compounds interacted at the heme active site. The more active compounds were found to inhibit intra-cellular iNOS expressed in RAW264.7 and INS-1 cells with similar efficiency than the reference compounds L-NIL and SEIT.
Collapse
Affiliation(s)
- Youness Touati-Jallabe
- Institut des Biomolécules Max Mousseron, Université Montpellier, CNRS, ENSCM, Faculté de Pharmacie, 34000, Montpellier, France.,Avara Pharmaceutical Services, Boucherville, QC, J4B 7 K8, Canada
| | - Thibault Tintillier
- Institut des Biomolécules Max Mousseron, Université Montpellier, CNRS, ENSCM, Faculté de Pharmacie, 34000, Montpellier, France.,Asymptote Project Management, 1 rue Edisson, 69500, Bron, France
| | - Elodie Mauchauffée
- Institut des Biomolécules Max Mousseron, Université Montpellier, CNRS, ENSCM, Faculté de Pharmacie, 34000, Montpellier, France
| | - Jean-Luc Boucher
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques UMR8601, CNRS, Université Paris-Descartes, 45 rue des Saints Pères, 75270, Paris Cedex 06, France
| | - Jérémy Leroy
- Centre Biocommunication en Cardio-métabolique, Université Montpellier, Faculté de Pharmacie, 34000, Montpellier, France
| | - Booma Ramassamy
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques UMR8601, CNRS, Université Paris-Descartes, 45 rue des Saints Pères, 75270, Paris Cedex 06, France
| | - Abdallah Hamzé
- Institut des Biomolécules Max Mousseron, Université Montpellier, CNRS, ENSCM, Faculté de Pharmacie, 34000, Montpellier, France.,Current address: BioCIS, UMR 8076, CNRS, Université Paris Sud, Université Paris-Saclay, 92296, Châtenay-Malabry, France
| | - Karima Mezghenna
- Centre Biocommunication en Cardio-métabolique, Université Montpellier, Faculté de Pharmacie, 34000, Montpellier, France
| | - Amine Bouzekrini
- Centre Biocommunication en Cardio-métabolique, Université Montpellier, Faculté de Pharmacie, 34000, Montpellier, France
| | - Claudia Verna
- Institut des Biomolécules Max Mousseron, Université Montpellier, CNRS, ENSCM, Faculté de Pharmacie, 34000, Montpellier, France
| | - Jean Martinez
- Institut des Biomolécules Max Mousseron, Université Montpellier, CNRS, ENSCM, Faculté de Pharmacie, 34000, Montpellier, France
| | - Anne-Dominique Lajoix
- Centre Biocommunication en Cardio-métabolique, Université Montpellier, Faculté de Pharmacie, 34000, Montpellier, France
| | - Jean-François Hernandez
- Institut des Biomolécules Max Mousseron, Université Montpellier, CNRS, ENSCM, Faculté de Pharmacie, 34000, Montpellier, France
| |
Collapse
|
15
|
Small molecule inhibitors and stimulators of inducible nitric oxide synthase in cancer cells from natural origin (phytochemicals, marine compounds, antibiotics). Biochem Pharmacol 2020; 176:113792. [PMID: 31926145 DOI: 10.1016/j.bcp.2020.113792] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023]
Abstract
Nitric oxide synthases (NOS) are a family of isoforms, which generate nitric oxide (NO). NO is one of the smallest molecules in nature and acts mainly as a potent vasodilator. It participates in various biological processes ranging from physiological to pathological conditions. Inducible NOS (iNOS, NOS2) is a calcium-independent and inducible isoform. Despite high iNOS expression in many tumors, the role of iNOS is still unclear and complex with both enhancing and prohibiting actions in tumorigenesis. Nature presents a broad variety of natural stimulators and inhibitors, which may either promote or inhibit iNOS response. In the present review, we give an overview of iNOS-modulating agents with a special focus on both natural and synthetic molecules and their effects in related biological processes. The role of iNOS in physiological and pathological conditions is also discussed.
Collapse
|
16
|
Cinelli MA, Do HT, Miley GP, Silverman RB. Inducible nitric oxide synthase: Regulation, structure, and inhibition. Med Res Rev 2020; 40:158-189. [PMID: 31192483 PMCID: PMC6908786 DOI: 10.1002/med.21599] [Citation(s) in RCA: 401] [Impact Index Per Article: 100.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/14/2019] [Accepted: 05/13/2019] [Indexed: 12/11/2022]
Abstract
A considerable number of human diseases have an inflammatory component, and a key mediator of immune activation and inflammation is inducible nitric oxide synthase (iNOS), which produces nitric oxide (NO) from l-arginine. Overexpressed or dysregulated iNOS has been implicated in numerous pathologies including sepsis, cancer, neurodegeneration, and various types of pain. Extensive knowledge has been accumulated about the roles iNOS plays in different tissues and organs. Additionally, X-ray crystal and cryogenic electron microscopy structures have shed new insights on the structure and regulation of this enzyme. Many potent iNOS inhibitors with high selectivity over related NOS isoforms, neuronal NOS, and endothelial NOS, have been discovered, and these drugs have shown promise in animal models of endotoxemia, inflammatory and neuropathic pain, arthritis, and other disorders. A major issue in iNOS inhibitor development is that promising results in animal studies have not translated to humans; there are no iNOS inhibitors approved for human use. In addition to assay limitations, both the dual modalities of iNOS and NO in disease states (ie, protective vs harmful effects) and the different roles and localizations of NOS isoforms create challenges for therapeutic intervention. This review summarizes the structure, function, and regulation of iNOS, with focus on the development of iNOS inhibitors (historical and recent). A better understanding of iNOS' complex functions is necessary before specific drug candidates can be identified for classical indications such as sepsis, heart failure, and pain; however, newer promising indications for iNOS inhibition, such as depression, neurodegenerative disorders, and epilepsy, have been discovered.
Collapse
Affiliation(s)
- Maris A. Cinelli
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Center for Developmental Therapeutics, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- Current address: Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824
| | - Ha T. Do
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Center for Developmental Therapeutics, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- Current address: Mersana Therapeutics, Inc., Cambridge, MA 02139
| | - Galen P. Miley
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Center for Developmental Therapeutics, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Richard B. Silverman
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Center for Developmental Therapeutics, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
17
|
Thomas A, South S, Vijayagopal P, Juma S. Effect of Tart Cherry Polyphenols on Osteoclast Differentiation and Activity. J Med Food 2019; 23:56-64. [PMID: 31436500 DOI: 10.1089/jmf.2019.0050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Bone is maintained by an intricate balance between bone formation and bone resorption. The presence of inflammation can contribute to an imbalance in bone homeostasis by enhancing differentiation and activity of osteoclasts, the cells that participate in the breakdown of bone. Polyphenols such as flavonoids found in plant-derived foods have been shown to have anti-inflammatory effects in various tissues. Tart cherries are a rich source of such polyphenolic compounds. Using mouse macrophage cells (RAW 264.7), we examined whether tart cherry polyphenols could dose dependently inhibit the proliferation and activity of receptor activator of nuclear factor kappa-B ligand (RANKL) differentiated osteoclasts under inflammatory conditions. Tartrate-resistant acid phosphatase (TRAP) activity and staining of TRAP-positive multinucleated cells, used as indicators of osteoclast differentiation and activity, tended to decrease with tart cherry polyphenols treatment. Osteoprotegerin expression by osteoclasts was decreased in a similar manner. A significant increase in nitrite concentration was observed with the lower doses of tart cherry polyphenols of 50 and 100 μg/mL (P < .05). However, higher doses of tart cherry polyphenols (200 and 300 μg/mL) reduced nitrite concentrations below that of the control that received no tart cherry polyphenols treatment (P < .05). Western blot analyses showed that protein expression of cyclooxygenase-2 (COX-2) followed a similar trend, although results were not statistically significant. On the other hand, tart cherry polyphenols treatments dose dependently increased inducible nitric oxide synthase protein expression, with statistical significance noted at doses of 200 and 300 μg/mL. Overall, our findings suggest that the polyphenols associated with tart cherries potentially inhibit osteoclast differentiation and activity, which may be beneficial to bone health.
Collapse
Affiliation(s)
- Amber Thomas
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, Texas, USA
| | - Sanique South
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, Texas, USA
| | - Parakat Vijayagopal
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, Texas, USA
| | - Shanil Juma
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, Texas, USA
| |
Collapse
|
18
|
Synthesis of Novel Anti-inflammatory Psoralen Derivatives - Structures with Distinct Anti-Inflammatory Activities. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Zhong L, Tran T, Baguley TD, Lee SJ, Henke A, To A, Li S, Yu S, Grieco FA, Roland J, Schultz PG, Eizirik DL, Rogers N, Chartterjee AK, Tremblay MS, Shen W. A novel inhibitor of inducible NOS dimerization protects against cytokine-induced rat beta cell dysfunction. Br J Pharmacol 2018; 175:3470-3485. [PMID: 29888783 PMCID: PMC6086989 DOI: 10.1111/bph.14388] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 05/14/2018] [Accepted: 05/28/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE Beta cell apoptosis is a major feature of type 1 diabetes, and pro-inflammatory cytokines are key drivers of the deterioration of beta cell mass through induction of apoptosis. Mitochondrial stress plays a critical role in mediating apoptosis by releasing cytochrome C into the cytoplasm, directly activating caspase-9 and its downstream signalling cascade. We aimed to identify new compounds that protect beta cells from cytokine-induced activation of the intrinsic (mitochondrial) pathway of apoptosis. EXPERIMENTAL APPROACH Diabetogenic media, composed of IL-1β, IFN-γ and high glucose, were used to induce mitochondrial stress in rat insulin-producing INS1E cells, and a high-content image-based screen of small molecule modulators of Casp9 pathway was performed. KEY RESULTS A novel small molecule, ATV399, was identified from a high-content image-based screen for compounds that inhibit cleaved caspase-9 activation and subsequent beta cell apoptosis induced by a combination of IL-1β, IFN-γ and high glucose, which together mimic the pathogenic diabetic milieu. Through medicinal chemistry optimization, potency was markedly improved (6-30 fold), with reduced inhibitory effects on CYP3A4. Improved analogues, such as CAT639, improved beta cell viability and insulin secretion in cytokine-treated rat insulin-producing INS1E cells and primary dispersed islet cells. Mechanistically, CAT639 reduced the production of NO by allosterically inhibiting dimerization of inducible NOS (iNOS) without affecting its mRNA levels. CONCLUSION AND IMPLICATIONS Taken together, these studies demonstrate a successful phenotypic screening campaign resulting in identification of an inhibitor of iNOS dimerization that protects beta cell viability and function through modulation of mitochondrial stress induced by cytokines.
Collapse
Affiliation(s)
- Linlin Zhong
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| | - Tuan Tran
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| | - Tyler D Baguley
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| | - Sang Jun Lee
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| | - Adam Henke
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| | - Andrew To
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| | - Sijia Li
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| | - Shan Yu
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| | - Fabio A Grieco
- ULB Center for Diabetes ResearchUniversite´ Libre de Bruxelles (ULB)Brussels1070Belgium
| | - Jason Roland
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| | - Peter G Schultz
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
- Department of ChemistryThe Scripps Research InstituteLa JollaCA92037USA
| | - Decio L Eizirik
- ULB Center for Diabetes ResearchUniversite´ Libre de Bruxelles (ULB)Brussels1070Belgium
| | - Nikki Rogers
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| | | | | | - Weijun Shen
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| |
Collapse
|
20
|
Bignon E, Allega MF, Lucchetta M, Tiberti M, Papaleo E. Computational Structural Biology of S-nitrosylation of Cancer Targets. Front Oncol 2018; 8:272. [PMID: 30155439 PMCID: PMC6102371 DOI: 10.3389/fonc.2018.00272] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/02/2018] [Indexed: 12/15/2022] Open
Abstract
Nitric oxide (NO) plays an essential role in redox signaling in normal and pathological cellular conditions. In particular, it is well known to react in vivo with cysteines by the so-called S-nitrosylation reaction. S-nitrosylation is a selective and reversible post-translational modification that exerts a myriad of different effects, such as the modulation of protein conformation, activity, stability, and biological interaction networks. We have appreciated, over the last years, the role of S-nitrosylation in normal and disease conditions. In this context, structural and computational studies can help to dissect the complex and multifaceted role of this redox post-translational modification. In this review article, we summarized the current state-of-the-art on the mechanism of S-nitrosylation, along with the structural and computational studies that have helped to unveil its effects and biological roles. We also discussed the need to move new steps forward especially in the direction of employing computational structural biology to address the molecular and atomistic details of S-nitrosylation. Indeed, this redox modification has been so far an underappreciated redox post-translational modification by the computational biochemistry community. In our review, we primarily focus on S-nitrosylated proteins that are attractive cancer targets due to the emerging relevance of this redox modification in a cancer setting.
Collapse
Affiliation(s)
- Emmanuelle Bignon
- Computational Biology Laboratory Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Maria Francesca Allega
- Computational Biology Laboratory Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Marta Lucchetta
- Computational Biology Laboratory Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Matteo Tiberti
- Computational Biology Laboratory Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Elena Papaleo
- Computational Biology Laboratory Danish Cancer Society Research Center, Copenhagen, Denmark.,Translational Disease Systems Biology, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Inositol Hexakisphosphate Kinase-2 in Cerebellar Granule Cells Regulates Purkinje Cells and Motor Coordination via Protein 4.1N. J Neurosci 2018; 38:7409-7419. [PMID: 30006360 DOI: 10.1523/jneurosci.1165-18.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/28/2018] [Accepted: 07/10/2018] [Indexed: 11/21/2022] Open
Abstract
Inositol hexakisphosphate kinases (IP6Ks) regulate various biological processes. Among pyrophosphates generated by IP6Ks, diphosphoinositol pentakisphosphate (IP7), and bis-diphosphoinositol tetrakisphosphate have been extensively characterized. IP7 is produced in mammals by a family of inositol hexakisphosphate kinases, IP6K1, IP6K2, and IP6K3, which have distinct biological functions. We report that IP6K2 binds protein 4.1.N with high affinity and specificity. Nuclear translocation of 4.1N, which is required for its principal functions, is dependent on IP6K2. Both of these proteins are highly expressed in granule cells of the cerebellum where their interaction regulates Purkinje cell morphology and cerebellar synapses. The deletion of IP6K2 in male/female mice elicits substantial defects in synaptic influences of granule cells upon Purkinje cells as well as notable impairment of locomotor function. Moreover, the disruption of IP6K2-4.1N interactions impairs cell viability. Thus, IP6K2 and its interaction with 4.1N appear to be major determinants of cerebellar disposition and psychomotor behavior.SIGNIFICANCE STATEMENT Inositol phosphates are produced by a family of inositol hexakisphosphate kinases (IP6Ks)-IP6K1, IP6K2, and IP6K3. Of these, the physiological roles of IP6K2 in the brain have been least characterized. In the present study, we report that IP6K2 binds selectively to the neuronal protein 4.1N. Both of these proteins are highly expressed in granule cells of the cerebellum. Using IP6K2 knock-out (KO) mice, we establish that IP6K2-4.1N interactions in granule cells regulate Purkinje cell morphology, the viability of cerebellar neurons, and psychomotor behavior.
Collapse
|
22
|
Gamal M, Moawad J, Rashed L, Morcos MA, Sharawy N. Possible involvement of tetrahydrobiopterin in the disturbance of redox homeostasis in sepsis - Induced brain dysfunction. Brain Res 2018; 1685:19-28. [PMID: 29428597 DOI: 10.1016/j.brainres.2018.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/04/2018] [Accepted: 02/05/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIM Tetrahydrobiopterin (BH4) is an essential co-factor that regulates nitric oxide (NO) and reactive oxygen species (ROS) production by nitric oxide synthases (NOS). In this study, we evaluated the effects of sepsis on BH4 level and redox status in the brain by using the rat model of sepsis-induced by cecal ligation and puncture (CLP) and examined whether BH4 and/or acetyl-L-carnitine (ALC) could prevent the neuronal apoptosis and neurological changes induced by sepsis. MATERIAL AND METHOD Male albino rats were randomly and blindly divided into 8 groups: sham, sham + BH4, sham + ALC, sham +BH4+ ALC, CLP, CLP + BH4, CLP + ALC, and CLP+BH4+ ALC. We measured neurological indicators, brain levels of BH4, guanosine triphosphate cyclohydrolase (GTPCH), sepiapterin reductase (SR) and dihydropteridine reductase (DHPR) genes expression (Essential enzymes in BH4 biosynthesis and recycling pathways). We investigated also brain redox status and both endothelial and inducible NOS expressions. RESULTS Brain of septic rats demonstrated a reduced BH4 bioavailability, downregulation of BH4 synthetic enzymes, increased production of hydrogen peroxide and impaired antioxidant enzymes activities. Treatments with BH4 and/or ALC increased BH4 level, upregulated BH4 synthetic enzymes expressions, and attenuated oxidative-induced neuronal apoptosis. CONCLUSION Our results suggest that BH4 and/or ALC might protect the brain against oxidative stress induced neuronal apoptosis by restoring bioavailability of BH4 and upregulating of BH4 synthetic enzymes in the brain during sepsis.
Collapse
Affiliation(s)
- Maha Gamal
- Department of Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Jackline Moawad
- Department of Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Laila Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mary Attia Morcos
- Department of Histology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nivin Sharawy
- Department of Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt; Cairo University Hospitals, Cairo, Egypt.
| |
Collapse
|
23
|
Poulos TL, Li H. Nitric oxide synthase and structure-based inhibitor design. Nitric Oxide 2016; 63:68-77. [PMID: 27890696 DOI: 10.1016/j.niox.2016.11.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/09/2016] [Accepted: 11/21/2016] [Indexed: 11/24/2022]
Abstract
Once it was discovered that the enzyme nitric oxide synthase (NOS) is responsible for the biosynthesis of NO, NOS became a drug target. Particularly important is the over production of NO by neuronal NOS (nNOS) in various neurodegenerative disorders. After the various NOS isoforms were identified, inhibitor development proceeded rapidly. It soon became evident, however, that isoform selectivity presents a major challenge. All 3 human NOS isoforms, nNOS, eNOS (endothelial NOS), and iNOS (inducible NOS) have nearly identical active site structures thus making selective inhibitor design especially difficult. Of particular importance is the avoidance of inhibiting eNOS owing to its vital role in the cardiovascular system. This review summarizes some of the history of NOS inhibitor development and more recent advances in developing isoform selective inhibitors using primarily structure-based approaches.
Collapse
Affiliation(s)
- Thomas L Poulos
- Departments of Molecular Biology & Biochemistry, Pharmaceutical Sciences, and Chemistry, University of California, Irvine, Irvine, CA 92697-3900, USA.
| | - Huiying Li
- Departments of Molecular Biology & Biochemistry, Pharmaceutical Sciences, and Chemistry, University of California, Irvine, Irvine, CA 92697-3900, USA
| |
Collapse
|
24
|
Abstract
Modulation of protein-protein interactions (PPIs) is becoming increasingly important in drug discovery and chemical biology. While a few years ago this 'target class' was deemed to be largely undruggable an impressing number of publications and success stories now show that targeting PPIs with small, drug-like molecules indeed is a feasible approach. Here, we summarize the current state of small-molecule inhibition and stabilization of PPIs and review the active molecules from a structural and medicinal chemistry angle, especially focusing on the key examples of iNOS, LFA-1 and 14-3-3.
Collapse
|
25
|
Nagpal L, Panda K. Characterization of calmodulin-free murine inducible nitric-oxide synthase. PLoS One 2015; 10:e0121782. [PMID: 25822458 PMCID: PMC4379030 DOI: 10.1371/journal.pone.0121782] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/04/2015] [Indexed: 01/17/2023] Open
Abstract
Nitric-Oxide Synthase (NOS), that produces the biological signal molecule Nitric-Oxide (NO), exists in three different isoforms called, neuronal (nNOS), endothelial (eNOS) and inducible (iNOS). All NOS isoforms require post-translational interaction with the calcium-binding protein, calmodulin (CaM) for manifesting their catalytic activity. However, CaM has been suggested to control the translational assembly of the enzyme as well, particularly in helping its inducible isoform, iNOS assume a stable, heme-replete, dimeric and active form. Expression of recombinant murine iNOS in E.coli in the absence of CaM has been previously shown to give extremely poor yield of the enzyme which was claimed to be absolutely heme-free, devoid of flavins, completely monomeric and catalytically inactive when compared to the heme-replete, active, dimeric iNOS, generated through co-expression with CaM. In contrast, we found that although iNOS expressed without CaM does produce significantly low amounts of the CaM-free enzyme, the iNOS thus produced, is not completely devoid of heme and is neither entirely monomeric nor absolutely bereft of catalytic activity as reported before. In fact, iNOS synthesized in the absence of CaM undergoes compromised heme incorporation resulting in extremely poor dimerization and activity compared to its counterpart co-expressed with CaM. Moreover, such CaM-free iNOS has similar flavin content and reductase activity as iNOS co-expressed with CaM, suggesting that CaM may not be as much required for the functional assembly of the iNOS reductase domain as its oxygenase domain. LC-MS/MS-based peptide mapping of the CaM-free iNOS confirmed that it had the same full-length sequence as the CaM-replete iNOS. Isothermal calorimetric measurements also revealed high affinity for CaM binding in the CaM-free iNOS and thus the possible presence of a CaM-binding domain. Thus CaM is essential but not indispensible for the assembly of iNOS and such CaM-free iNOS may help in elucidating the role of CaM on iNOS catalysis.
Collapse
Affiliation(s)
- Latika Nagpal
- Department of Biotechnology & Guha Center for Genetic Engineering & Biotechnology, University of Calcutta, Kolkata, India
| | - Koustubh Panda
- Department of Biotechnology & Guha Center for Genetic Engineering & Biotechnology, University of Calcutta, Kolkata, India
- * E-mail:
| |
Collapse
|
26
|
Shanmuganathan MV, Krishnan S, Fu X, Prasadarao NV. Escherichia coli K1 induces pterin production for enhanced expression of Fcγ receptor I to invade RAW 264.7 macrophages. Microbes Infect 2014; 16:134-41. [PMID: 24161960 PMCID: PMC3946618 DOI: 10.1016/j.micinf.2013.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/04/2013] [Accepted: 10/15/2013] [Indexed: 11/16/2022]
Abstract
Macrophages serve as permissive niches for Escherichia coli (E. coli) K1 to attain high grade bacteremia in the pathogenesis of meningitis in neonates. Although pterin levels are a diagnostic marker for immune activation, the role of macrophages in pterin production and in the establishment of meningitis is unknown. Here, we demonstrate that macrophages infected with E. coli K1 produce both neopterin and biopterin through increased expression of GTP-cyclohydrolase 1 (GCH1). Of note, increased production of biopterin enhances the expression of Fc-gamma receptor I (CD64), which in turn, aided the entry of E. coli K1 in macrophages while increased neopterin suppresses reactive oxygen species (ROS), thereby aiding bacterial survival. Inhibition of GCH1 by 2, 4-Diamino-6-hydroxypyrimidine (DAHP) prevented the E. coli K1 induced expression of CD64 in macrophages in vitro and the development of bacteremia in a newborn mouse model of meningitis. These studies suggest that targeting GCH1 could be therapeutic strategy for preventing neonatal meningitis by E. coli K1.
Collapse
Affiliation(s)
- Muthusamy V Shanmuganathan
- Division of Infectious Diseases, Department of Pediatrics, Children's Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027, USA
| | - Subramanian Krishnan
- Division of Infectious Diseases, Department of Pediatrics, Children's Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027, USA
| | - Xiaowei Fu
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, University of Southern California, 4650 Sunset Blvd., Los Angeles, CA 90027, USA
| | - Nemani V Prasadarao
- Division of Infectious Diseases, Department of Pediatrics, Children's Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027, USA; Department of Surgery, Children's Hospital Los Angeles, University of Southern California, 4650 Sunset Blvd., Los Angeles, CA 90027, USA.
| |
Collapse
|