1
|
Rodriguez A, Yu M, Phoo MT, Holinstat M, Schwendeman A. Antiplatelet Effects of DMPC-Based Synthetic High-Density Lipoproteins: Exploring Particle Structure and Noncholesterol Efflux Mechanisms. Mol Pharm 2025; 22:1305-1317. [PMID: 39888835 DOI: 10.1021/acs.molpharmaceut.4c01000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
Platelet activation is a key factor in the development of cardiovascular diseases. High-density lipoprotein (HDL) is known for its cardioprotective activities including antithrombotic actions. While HDL mimetics have been explored for their potential to regulate thrombosis, their influence on platelet activity remains unclear. This study explores the capacity of synthetic HDL (sHDL) to modulate platelet function and investigates the underlying mechanisms. We examined the effects of sHDL, formulated with various ApoA1 mimetic peptides (18A, 5A, and 22A) and full-length ApoA1 protein, all complexed with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), on platelet function. DMPC-based sHDL demonstrated pronounced antiplatelet effects across all formulations. Comparison with DMPC micelles showed that all sHDL molecules were more effective, highlighting the crucial role of the protein-phospholipid complex in reducing platelet reactivity. Further analysis revealed that DMPC sHDL dose-dependently inhibited various platelet functions, including aggregation, integrin activation, α-granule secretion, protein kinase C (PKC) activation, and platelet spreading. Mechanistic studies demonstrated that DMPC sHDL's antiplatelet effects are not entirely dependent on cholesterol efflux, despite effectively reducing total platelet cholesterol. Furthermore, sHDL's activity was found to be independent of scavenger receptor BI (SR-BI). Notably, inhibition of the CD36 receptor markedly attenuated sHDL's antiplatelet activity and uptake, suggesting a novel mechanism distinct from that of native HDL. In summary, DMPC sHDL modulates platelet function through a synergistic action between protein and phospholipid components, primarily via CD36 receptor engagement. These insights pave the way for novel antiplatelet therapies utilizing sHDL's distinct properties.
Collapse
Affiliation(s)
- Antonela Rodriguez
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, NCRC, 2800 Plymouth Rd., Ann Arbor, Michigan 48109, United States
| | - Minzhi Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, NCRC, 2800 Plymouth Rd., Ann Arbor, Michigan 48109, United States
| | - May Thazin Phoo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, NCRC, 2800 Plymouth Rd., Ann Arbor, Michigan 48109, United States
| | - Michael Holinstat
- Department of Pharmacology, University of Michigan Medical School, 1150 W. Medical Center Dr., Room 2220D, Medical Sciences Research Building III, Ann Arbor, Michigan 48109, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, 1150 W. Medical Center Dr., Room 2220D, Medical Sciences Research Building III, Ann Arbor, Michigan 48109, United States
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, NCRC, 2800 Plymouth Rd., Ann Arbor, Michigan 48109, United States
| |
Collapse
|
2
|
Mata-Cruz C, Guerrero-Rodríguez SL, Gómez-Castellano K, Carballo-Uicab G, Almagro JC, Pérez-Tapia SM, Velasco-Velázquez MA. Discovery and in vitro characterization of a human anti-CD36 scFv. Front Immunol 2025; 16:1531171. [PMID: 39967671 PMCID: PMC11832482 DOI: 10.3389/fimmu.2025.1531171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/09/2025] [Indexed: 02/20/2025] Open
Abstract
Introduction CD36 is a membrane receptor that participates in the cellular uptake of fatty acids and lipid metabolism. CD36 overexpression favors progression of different pathologies, such as atherosclerosis and cancer. Thus, CD36 targeting has medicinal relevance. Herein, we aimed to identify human anti-CD36 single-chain variable fragment (scFv) with therapeutic potential. Methods The semisynthetic ALTHEA Gold Plus Libraries™ were panned using recombinant human CD36. Clone selection was performed by ELISA. Analysis of scFv binding and blocking function was evaluated by flow cytometry in macrophage-like THP-1 cells and hepatocellular carcinoma HepG2 cells. The phenotypic changes induced by CD36 ligands were assessed in vitro by: i) oil red staining, ii) tumorsphere assays, and iii) RT-qPCR. Results We identified an anti-CD36 scFv, called D11, that competes with a commercial anti-CD36 antibody with proven efficacy in disease models. D11 binds to CD36 expressed in the membrane of the cellular models employed and reduces the uptake of CD36 ligands. In macrophage-like THP-1 cells, D11 impaired the acquisition of foam cell phenotype induced by oxLDL, decreasing lipid droplet content and the expression of lipid metabolism genes. Treatment of HepG2 cells with D11 reduced lipid accumulation and the enhanced clonogenicity stimulated by palmitate. Conclusion We discovered a new fully human scFv that is an effective blocker of CD36. Since D11 reduces the acquisition of pathogenic features induced by CD36 ligands, it could support the generation of therapeutic proteins targeting CD36.
Collapse
Affiliation(s)
- Cecilia Mata-Cruz
- School of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Graduate Program in Biochemical Sciences, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Keyla Gómez-Castellano
- Research and Development in Biotherapeutics Unit (UDIBI), National School of Biological Sciences, National Polytechnic Institute, Mexico City, Mexico
| | - Gregorio Carballo-Uicab
- Research and Development in Biotherapeutics Unit (UDIBI), National School of Biological Sciences, National Polytechnic Institute, Mexico City, Mexico
| | - Juan Carlos Almagro
- Research and Development in Biotherapeutics Unit (UDIBI), National School of Biological Sciences, National Polytechnic Institute, Mexico City, Mexico
- GlobalBio, Inc., Cambridge, MA, United States
| | - S. Mayra Pérez-Tapia
- Research and Development in Biotherapeutics Unit (UDIBI), National School of Biological Sciences, National Polytechnic Institute, Mexico City, Mexico
- National Laboratory for Specialized Services of Investigation, Development and Innovation (I+D+i) for Pharma Chemicals and Biotechnological Products, LANSEIDI-FarBiotec-CONAHCYT, Mexico City, Mexico
- Immunology Department, National School of Biological Sciences, National Polytechnic Institute, Mexico City, Mexico
| | | |
Collapse
|
3
|
Mandal S, Nag S, Mukherjee O, Das N, Banerjee P, Majumdar T, Mukhopadhyay S, Maedler K, Kundu R. CD36 inhibition corrects lipid-FetuinA mediated insulin secretory defects by preventing intracellular lipid accumulation and inflammation in the pancreatic beta cells. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167580. [PMID: 39561856 DOI: 10.1016/j.bbadis.2024.167580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/03/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
CD36 is a multifunctional protein involved in long chain fatty acid uptake and immune modulation in different cells. Recently it was reported that increased expression of CD36 is evident in the islets of diabetic obese individuals. In this present study we investigated the role of CD36 in regulating intracellular lipid accumulation and inflammation in beta cells and its implication on secretory dysfunction. Additionally, we have elucidated the potential role of fetuinA, a circulatory glycoprotein and an endogenous ligand of TLR4, for aggravating lipid accumulation and insulin secretory defects in beta cells. MIN6 mouse insulinoma cells when incubated with palmitate and fetuinA together showed activation of TLR4-NFkB inflammatory cascade and increased uptake of palmitate, which was rescued by CD36 functional inhibition or knockdown. Moreover, glucose stimulated insulin secretion was restored with consequent downregulation of IL-1β secretion. TLR4 inhibition also decreased intracellular lipid content with a reduction of CD36, suggesting functional crosstalk between them. At physiological level, excess fetuinA in the islet milieu of HFD fed C57BL/6J mice or exogenous fetuinA administration (i.p.) promoted lipid accumulation in the islets resulting in decreased insulin secretion with increased CD36 expression. Interestingly, CD36 inhibition in HFD mice with a pharmacological inhibitor Salvianolic acid B attenuated inflammation, reduced intracellular lipid accumulation in beta cells and restored insulin secretory function. Therefore, our results suggest that inhibition of CD36 protects beta cells from the derogatory effects of lipid and fetuinA and restores secretory function and can be considered as a therapeutic target for obesity mediated beta cell dysfunction.
Collapse
Affiliation(s)
- Samanwita Mandal
- Cell Signaling Laboratory, Department of Zoology, Siksha Bhavana (Institute of Science), Visva-Bharati University, Santiniketan 731235, India
| | - Snehasish Nag
- Cell Signaling Laboratory, Department of Zoology, Siksha Bhavana (Institute of Science), Visva-Bharati University, Santiniketan 731235, India
| | - Oindrila Mukherjee
- Cell Signaling Laboratory, Department of Zoology, Siksha Bhavana (Institute of Science), Visva-Bharati University, Santiniketan 731235, India
| | - Nandita Das
- Cell Signaling Laboratory, Department of Zoology, Siksha Bhavana (Institute of Science), Visva-Bharati University, Santiniketan 731235, India
| | - Priyajit Banerjee
- Department of Biotechnology, School of Life Sciences, Swami Vivekananda University, Barrackpore 700121, India
| | - Tanmay Majumdar
- National Institute of Immunology (NII), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Satinath Mukhopadhyay
- Department of Endocrinology & Metabolism, Institute of Post-Graduate Medical Education & Research-Seth Sukhlal Karnani Memorial Hospital (IPGME&R-SSKM), Kolkata 700020, India
| | - Kathrin Maedler
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen 28359, Germany
| | - Rakesh Kundu
- Cell Signaling Laboratory, Department of Zoology, Siksha Bhavana (Institute of Science), Visva-Bharati University, Santiniketan 731235, India.
| |
Collapse
|
4
|
Wang BN, Du AY, Chen XH, Huang T, Mamun AA, Li P, Du ST, Feng YZ, Jiang LY, Xu J, Wang Y, Wang SS, Kim K, Zhou KL, Wu YQ, Hu SW, Xiao J. Inhibition of CD36 ameliorates mouse spinal cord injury by accelerating microglial lipophagy. Acta Pharmacol Sin 2025:10.1038/s41401-024-01463-w. [PMID: 39880928 DOI: 10.1038/s41401-024-01463-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/16/2024] [Indexed: 01/31/2025] Open
Abstract
Spinal cord injury (SCI) is a serious trauma of the central nervous system (CNS). SCI induces a unique lipid-dense environment that results in the deposition of large amounts of lipid droplets (LDs). The presence of LDs has been shown to contribute to the progression of other diseases. Lipophagy, a selective type of autophagy, is involved in intracellular LDs degradation. Fatty acid translocase CD36, a multifunctional transmembrane protein that facilitates the uptake of long-chain fatty acids, is implicated in the progression of certain metabolic diseases, and negatively regulates autophagy. However, the precise mechanisms of LDs generation and degradation in SCI, as well as whether CD36 regulates SCI via lipophagy, remain unknown. In this study, we investigated the role of LDs accumulation in microglia for SCI, as well as the regulatory mechanism of CD36 in microglia lipophagy during LDs elimination in vivo and in vitro. SCI was induced in mice by applying moderate compression on spina cord at T9-T10 level. Locomotion recovery was evaluated at days 0, 1, 3, 7 and 14 following the injury. PA-stimulated BV2 cells was established as the in vitro lipid-loaded model. We observed a marked buildup of LDs in microglial cells at the site of injury post-SCI. More importantly, microglial cells with excessive LDs exhibited elevated activation and stimulated inflammatory response, which drastically triggered the pyroptosis of microglial cells. Furthermore, we found significantly increased CD36 expression, and the breakdown of lipophagy in microglia following SCI. Sulfo-N-succinimidyl oleate sodium (SSO), a CD36 inhibitor, has been shown to promote the lipophagy of microglial cells in SCI mice and PA-treated BV2 cells, which enhanced LDs degradation, ameliorated inflammatory levels and pyroptosis of microglial cells, and ultimately promoted SCI recovery. As expected, inhibition of lipophagy with Baf-A1 reversed the effects of SSO. We conclude that microglial lipophagy is essential for the removal of LDs during SCI recovery. Our research implies that CD36 could be a potential therapeutic target for the treatment and management of SCI.
Collapse
Affiliation(s)
- Bei-Ni Wang
- Department of Arthroplasty, The First People's Hospital of Wenling, Affiliated Wenling Hospital, Wenzhou Medical University, Taizhou, 317500, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - An-Yu Du
- Department of Arthroplasty, The First People's Hospital of Wenling, Affiliated Wenling Hospital, Wenzhou Medical University, Taizhou, 317500, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiang-Hang Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ting Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Abdullah Al Mamun
- Central Laboratory of The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui, 323000, China
| | - Ping Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Si-Ting Du
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yan-Zheng Feng
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Lin-Yuan Jiang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jie Xu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yu Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Shuang-Shuang Wang
- Department of Arthroplasty, The First People's Hospital of Wenling, Affiliated Wenling Hospital, Wenzhou Medical University, Taizhou, 317500, China
| | - Kwonseop Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Kai-Liang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| | - Yan-Qing Wu
- The Institute of Life Sciences, Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou, 325035, China.
| | - Si-Wang Hu
- Department of Arthroplasty, The First People's Hospital of Wenling, Affiliated Wenling Hospital, Wenzhou Medical University, Taizhou, 317500, China.
| | - Jian Xiao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
5
|
Etxebeste-Mitxeltorena M, Flores-Romero H, Ramos-Inza S, Masiá E, Nenchova M, Montesinos J, Martinez-Gonzalez L, Porras G, Orzáez M, Vicent MJ, Gil C, Area-Gomez E, Garcia-Saez AJ, Martinez A. Modulation of Mitochondria-Endoplasmic Reticulum Contacts (MERCs) by Small Molecules as a New Strategy for Restoring Lipid Metabolism in an Amyotrophic Lateral Sclerosis Model. J Med Chem 2025; 68:1179-1194. [PMID: 39778888 PMCID: PMC11770630 DOI: 10.1021/acs.jmedchem.4c01368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease without effective treatment. The progressive motoneuron death in ALS is associated with alterations in lipid metabolism. As its regulation occurs in mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs), modulation of mitochondria-ER contacts (MERCs) is emerging as a crucial factor in MAM formation and lipid metabolism control. Using the MERLIN biosensor in a high-throughput screening within the EU-OPENSCREEN ERIC, we discovered small molecules that increase MERCs in HCT116 cells, enhancing their ability to uptake cholesterol. We demonstrated that cholesterol trafficking is decreased in an ALS patient-derived cell model, and this trafficking is restored after treatment with the discovered MERC modulator 24. Electron microscopy revealed that treatment with compound 24 increases MERCs, promotes lipid droplet formation, and restores mitochondrial cristae. Overall, the brain-permeable MERC modulator, compound 24, may serve as a valuable pharmacological tool for studying MAM function and holds potential for in vivo studies in ALS and other MAM dysfunction diseases.
Collapse
Affiliation(s)
| | - Hector Flores-Romero
- Institute
for Genetics, CECAD, University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
- Ikerbasque,
Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
- Achucarro
Basque Center for Neuroscience, Barrio Sarriena, 48940 Leioa, Spain
| | - Sandra Ramos-Inza
- Centro
de Investigaciones Biológicas “Margarita Salas”-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Esther Masiá
- Polymer
Therapeutics Lab and Screening Platform, Príncipe Felipe Research Center (CIPF), Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain
- Centro de
Investigación Biomédica en Red en Cancer, (CIBERONC), Instituto de Salud Carlos III, Av. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Maria Nenchova
- Institute
for Genetics, CECAD, University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Jorge Montesinos
- Centro
de Investigaciones Biológicas “Margarita Salas”-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Loreto Martinez-Gonzalez
- Centro
de Investigaciones Biológicas “Margarita Salas”-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
- Centro
de Investigación Biomédica en Red en Enfermedades Neurodegenerativas,
(CIBERNED), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Gracia Porras
- Centro
de Investigaciones Biológicas “Margarita Salas”-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Mar Orzáez
- Targeted
Therapies on Cancer and Inflammation, Príncipe
Felipe Research Center (CIPF), Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - María J. Vicent
- Polymer
Therapeutics Lab and Screening Platform, Príncipe Felipe Research Center (CIPF), Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain
- Centro de
Investigación Biomédica en Red en Cancer, (CIBERONC), Instituto de Salud Carlos III, Av. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Carmen Gil
- Centro
de Investigaciones Biológicas “Margarita Salas”-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
- Centro
de Investigación Biomédica en Red en Enfermedades Neurodegenerativas,
(CIBERNED), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Estela Area-Gomez
- Centro
de Investigaciones Biológicas “Margarita Salas”-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ana J. Garcia-Saez
- Institute
for Genetics, CECAD, University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
- Max
Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60439 Frankfurt am Main, Germany
| | - Ana Martinez
- Centro
de Investigaciones Biológicas “Margarita Salas”-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
- Centro
de Investigación Biomédica en Red en Enfermedades Neurodegenerativas,
(CIBERNED), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| |
Collapse
|
6
|
Liu Q, Xue Y, Guo J, Tao L, Zhu Y. Citrate: a key signalling molecule and therapeutic target for bone remodeling disorder. Front Endocrinol (Lausanne) 2025; 15:1512398. [PMID: 39886032 PMCID: PMC11779597 DOI: 10.3389/fendo.2024.1512398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/20/2024] [Indexed: 02/01/2025] Open
Abstract
Bone remodeling is a continuous cyclic process that maintains and regulates bone structure and strength. The disturbance of bone remodeling leads to a series of bone metabolic diseases. Recent studies have shown that citrate, an intermediate metabolite of the tricarboxylic acid (TCA) cycle, plays an important role in bone remodeling. But the exact mechanism is still unclear. In this study, we focused on the systemic regulatory mechanism of citrate on bone remodeling, and found that citrate is involved in bone remodeling in multiple ways. The participation of citrate in oxidative phosphorylation (OXPHOS) facilitates the generation of ATP, thereby providing substantial energy for bone formation and resorption. Osteoclast-mediated bone resorption releases citrate from bone mineral salts, which is subsequently released as an energy source to activate the osteogenic differentiation of stem cells. Finally, the differentiated osteoblasts secrete into the bone matrix and participate in bone mineral salts formation. As a substrate of histone acetylation, citrate regulates the expression of genes related to bone formation and bone reabsorption. Citrate is also a key intermediate in the metabolism and synthesis of glucose, fatty acids and amino acids, which are three major nutrients in the organism. Citrate can also be used as a biomarker to monitor bone mass transformation and plays an important role in the diagnosis and therapeutic evaluation of bone remodeling disorders. Citrate imbalance due to citrate transporter could result in the supression of osteoblast/OC function through histone acetylation, thereby contributing to disorders in bone remodeling. Therefore, designing drugs targeting citrate-related proteins to regulate bone citrate content provides a new direction for the drug treatment of diseases related to bone remodeling disorders.
Collapse
Affiliation(s)
| | | | | | - Lin Tao
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| | - Yue Zhu
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Zhang J, Xu S, Yue L, Lei H, Zhai X. A Collection of Novel Antitumor Agents That Regulate Lipid Metabolism in the Tumor Microenvironment. J Med Chem 2025; 68:49-80. [PMID: 39726379 DOI: 10.1021/acs.jmedchem.4c02809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Lipid metabolism disorder is the cause of one of the most significant metabolic changes in tumors. In the process of tumor occurrence and development, tumor cells choose a continuous metabolic adaptation to accommodate the changing environment to the maximum extent possible. In a variety of tumors, the uptake, production, and storage of lipids are generally upregulated. Tumor cells take advantage of lipid metabolism to access basic energy, biofilm components, and signal molecules of the tumor microenvironment required for proliferation, survival, invasion, and metastasis. This Perspective briefly uncovers the main metabolic processes and key factors involved in lipid metabolism reprogramming, mainly related to lipid uptake, de novo synthesis and storage of fatty acids, oxidation of fatty acids, cholesterol synthesis, and related regulatory factors. From a medicinal chemistry perspective, agents against related key targets are reviewed, expecting to pave the way for promising antitumor drugs with prospects for application through lipid metabolism reprogramming.
Collapse
Affiliation(s)
- Jiahao Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Sha Xu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Lingfeng Yue
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Hongrui Lei
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Xin Zhai
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| |
Collapse
|
8
|
Wang Y, Ma H, Zhang B, Li S, Lu B, Qi Y, Liu T, Wang H, Kang X, Liang Y, Kong E, Cao L, Zhou B. Protein palmitoylation in hepatic diseases: Functional insights and therapeutic strategies. J Adv Res 2024:S2090-1232(24)00619-2. [PMID: 39732335 DOI: 10.1016/j.jare.2024.12.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/24/2024] [Accepted: 12/25/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Liver pathologies represent a spectrum of conditions ranging from fatty liver to the aggressive hepatocellular carcinoma (HCC), as well as parasitic infections, which collectively pose substantial global health challenges. S-palmitoylation (commonly referred to as palmitoylation), a post-translational modification (PTM) characterized by the covalent linkage of a 16-carbon palmitic acid (PA) chain to specific cysteine residues on target proteins, plays a pivotal role in diverse cellular functions and is intimately associated with the liver's physiological and pathological states. AIM OF REVIEW This study aims to elucidate how protein palmitoylation affects liver disease pathophysiology and evaluates its potential as a target for diagnostic and therapeutic interventions. KEY SCIENTIFIC CONCEPTS OF REVIEW Recent studies have identified the key role of protein palmitoylation in regulating the development and progression of liver diseases. This review summarizes the intricate mechanisms by which protein palmitoylation modulates the pathophysiological processes of liver diseases and explores the potential of targeting protein palmitoylation modifications or the enzymes regulating this modification as prospective diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Ying Wang
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, PR China; Institute of Psychiatry and Neuroscience of Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Haoyuan Ma
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Bowen Zhang
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Sainan Li
- Institute of Psychiatry and Neuroscience of Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Beijia Lu
- Institute of Psychiatry and Neuroscience of Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Yingcheng Qi
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Tingting Liu
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, PR China.
| | - Xiaohong Kang
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, PR China.
| | - Yinming Liang
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, PR China.
| | - Eryan Kong
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, PR China; Institute of Psychiatry and Neuroscience of Xinxiang Medical University, Xinxiang, Henan, PR China.
| | - Liu Cao
- Institute of Psychiatry and Neuroscience of Xinxiang Medical University, Xinxiang, Henan, PR China.
| | - Binhui Zhou
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, PR China; Institute of Psychiatry and Neuroscience of Xinxiang Medical University, Xinxiang, Henan, PR China; Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, PR China.
| |
Collapse
|
9
|
Kim MH, Lim H, Kim OH, Oh BC, Jung Y, Ryu KH, Park JW, Park WJ. CD36 deficiency protects lipopolysaccharide-induced sepsis via inhibiting CerS6-mediated endoplasmic reticulum stress. Int Immunopharmacol 2024; 143:113441. [PMID: 39461238 DOI: 10.1016/j.intimp.2024.113441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024]
Abstract
The type 2 scavenger receptor CD36 functions not only as a long chain fatty acid transporter, but also as a pro-inflammatory mediator. Ceramide is the simple N-acylated form of sphingosine and exerts distinct biological activity depending on its acyl chain length. Six ceramide synthases (CerS) in mammals determine the chain length of ceramide species, and CerS6 mainly produces C16-ceramide. Endotoxin-induced septic shock shows high mortality, but the pathophysiologic role of sphingolipids involved in this process has been hardly investigated. This paper aims to highlight the different role of CerS isoforms in endotoxin-induced inflammatory responses and the regulatory role of CD36 in CerS6 protein degradation with an emphasis as the potential therapeutic candidates in humans. Lipopolysaccharide (LPS), the endotoxin of the Gram-negative bacterial cell wall, was treated to induce endotoxin-induced inflammation both in vitro and in vivo. CerS6-derived C16-ceramide propagated LPS-induced inflammatory responses activating various intracellular signaling pathways, such as mitogen-activated protein kinase and nuclear factor-κB, resulting in the formation of inflammasome complex and pro-inflammatory cytokines. Mechanistically, CerS6-derived C16-ceramide augmented inflammatory responses via endoplasmic reticulum stress, and CerS6 protein stability was regulated by CD36. Finally, CerS6 protein expression and LPS-induced lethality were strikingly reduced in CD36 knockout mice. Collectively, our findings show that CerS6-derived C16-ceramide plays a pivotal role in endotoxin-induced inflammation and suggest CerS6 and its regulator CD36 as possible targets for therapy under life-threatening inflammation such as septic shock.
Collapse
Affiliation(s)
- Min Hee Kim
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07084, Republic of Korea
| | - Hyomin Lim
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07084, Republic of Korea
| | - Ok-Hee Kim
- Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea; Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| | - Byung-Chul Oh
- Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea; Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| | - YunJae Jung
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea; Department of Microbiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Kyung-Ha Ryu
- Department of Pediatrics, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea
| | - Joo-Won Park
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07084, Republic of Korea.
| | - Woo-Jae Park
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea.
| |
Collapse
|
10
|
Yue N, Jin Q, Li C, Zhang L, Cao J, Wu C. CD36: a promising therapeutic target in hematologic tumors. Leuk Lymphoma 2024; 65:1749-1765. [PMID: 38982639 DOI: 10.1080/10428194.2024.2376178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/11/2024]
Abstract
Cluster of differentiation 36 (CD36) is a multiligand receptor with important roles in lipid metabolism, angiogenesis and innate immunity, and its diverse effects may depend on the binding of specific ligands in different contexts. CD36 is expressed not only on immune cells in the tumor microenvironment (TME) but also on some hematopoietic cells. CD36 is associated with the growth, metastasis and drug resistance in some hematologic tumors, such as leukemia, lymphoma and myelodysplastic syndrome. Currently, some targeted therapeutic agents against CD36 have been developed, such as anti-CD36 antibodies, CD36 antagonists (small molecules) and CD36 expression inhibitors. This paper not only innovatively addresses the role of CD36 in some hematopoietic cells, such as erythrocytes, hematopoietic stem cells and platelets, but also pays special attention to the role of CD36 in the development of hematologic tumors, and suggests that CD36 may be a potential cancer therapeutic target in hematologic tumors.
Collapse
Affiliation(s)
- Ningning Yue
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Qiqi Jin
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Cuicui Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Litian Zhang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Jiajia Cao
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Chongyang Wu
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
11
|
Chen J, Yin T, Hu X, Chang L, Sang Y, Xu L, Zhao W, Liu L, Xu C, Lin Y, Li Y, Wu Q, Li D, Li Y, Du M. CD36-mediated arachidonic acid influx from decidual stromal cells increases inflammatory macrophages in miscarriage. Cell Rep 2024; 43:114881. [PMID: 39427314 DOI: 10.1016/j.celrep.2024.114881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/09/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
Spontaneous abortion is associated with aberrant lipid metabolism, but the underlying mechanisms remain unclear. Here, we show that lipids are accumulated in decidual stromal cells (DSCs) and macrophages (dMφs) in women with miscarriage and mouse abortion-prone models. Moreover, we show that excessive lipids from DSCs are transferred to dMφs via a CD36-dependent mechanism that induces inflammation in dMφs. In particular, DSC-derived arachidonic acid (AA) is internalized by dMφs via CD36, which activates cyclooxygenase 2-dependent prostaglandin E2 production and interleukin (IL)-1β expression. In mice, AA injection induces miscarriage, whereas conditional knockout of Cd36 in dMφs ameliorates AA-induced embryo loss. Additionally, DSC-derived prolactin (PRL) inhibits CD36-mediated lipid intake in dMφs, and PRL administration reduces embryo loss in pregnant mice treated with CD36+ Mφs. Our findings reveal a critical interplay between DSCs and dMφs in dysregulated lipid metabolism that may contribute to miscarriage, in which PRL may be harnessed as a therapeutic agent.
Collapse
Affiliation(s)
- Jiajia Chen
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Tingxuan Yin
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Xianyang Hu
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Lingyu Chang
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Yifei Sang
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Ling Xu
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Weijie Zhao
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Lu Liu
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Chunfang Xu
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Yikong Lin
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Yue Li
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215031, China
| | - Dajin Li
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, Shanghai 200032, China.
| | - Yanhong Li
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, Shanghai 200032, China.
| | - Meirong Du
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, Shanghai 200032, China; Department of Obstetrics and Gynecology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China; State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau 999078, China.
| |
Collapse
|
12
|
Liermann-Wooldrik KT, Kosmacek EA, Oberley-Deegan RE. Adipose Tissues Have Been Overlooked as Players in Prostate Cancer Progression. Int J Mol Sci 2024; 25:12137. [PMID: 39596205 PMCID: PMC11594286 DOI: 10.3390/ijms252212137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/07/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
Obesity is a common risk factor in multiple tumor types, including prostate cancer. Obesity has been associated with driving metastasis, therapeutic resistance, and increased mortality. The effect of adipose tissue on the tumor microenvironment is still poorly understood. This review aims to highlight the work conducted in the field of obesity and prostate cancer and bring attention to areas where more research is needed. In this review, we have described key differences between healthy adipose tissues and obese adipose tissues, as they relate to the tumor microenvironment, focusing on mechanisms related to metabolic changes, abnormal adipokine secretion, altered immune cell presence, and heightened oxidative stress as drivers of prostate cancer formation and progression. Interestingly, common treatment options for prostate cancer ignore the adipose tissue located near the site of the tumor. Because of this, we have outlined how excess adipose tissue potentially affects therapeutics' efficacy, such as androgen deprivation, chemotherapy, and radiation treatment, and identified possible drug targets to increase prostate cancer responsiveness to clinical treatments. Understanding how obesity affects the tumor microenvironment will pave the way for understanding why some prostate cancers become metastatic or treatment-resistant, and why patients experience recurrence.
Collapse
Affiliation(s)
| | | | - Rebecca E. Oberley-Deegan
- Department of Biochemistry and Molecular Biology, 985870 University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.T.L.-W.)
| |
Collapse
|
13
|
Tamaki T, Fukushima N. Oleic acid stimulates proliferation of RMG-1 ovarian cancer cells by activating the pentose phosphate pathway and glutamine metabolism. Biochem Biophys Res Commun 2024; 722:150162. [PMID: 38801802 DOI: 10.1016/j.bbrc.2024.150162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Extracellular fatty acids (FAs) play an important role in regulating cellular functions such as cell proliferation, survival, and migration. The effects of oleic acid (OA) on cancer cells vary depending on the cell type. Our prior study showed that two distinct ovarian cancer cell lines, RMG-1 and HNOA, proliferate in response to OA, but they differ with respect to glucose utilization. Here, we aimed to elucidate the mechanism(s) by which OA stimulates proliferation of RMG-1 cells. We found that OA stimulates RMG-1 proliferation by activating the FA transporter CD36. OA also increases uptake of glucose and glutamine, which subsequently activate the pentose phosphate pathway (PPP) and glutamine metabolism, respectively. Given that ribose 5-phosphate derived from the PPP is utilized for glutamine metabolism and the subsequent de novo nucleotide synthesis, our findings suggest that OA affects the PPP associated with Gln metabolism, rather than glycolysis associated with glutaminolysis; this leads ultimately to activation of DNA synthesis, which is required for cell proliferation. This selective activation by OA contrasts with the mechanisms observed in HNOA cells, in which OA-induced cell proliferation is driven by transcriptional regulation of the GLUT gene. The diverse responses of cancer cells to OA may be attributed to distinct mechanisms of OA reception and/or different metabolic pathways activated by OA.
Collapse
Affiliation(s)
- Takeru Tamaki
- Department of Life Science, Kindai University, Higashiosaka, 577-8502, Japan
| | - Nobuyuki Fukushima
- Department of Life Science, Kindai University, Higashiosaka, 577-8502, Japan.
| |
Collapse
|
14
|
Zhang M, Dong K, Du Q, Xu J, Bai X, Chen L, Yang J. Chemically synthesized osteocalcin alleviates NAFLD via the AMPK-FOXO1/BCL6-CD36 pathway. J Transl Med 2024; 22:782. [PMID: 39175012 PMCID: PMC11340099 DOI: 10.1186/s12967-024-05592-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease worldwide. Osteocalcin plays an important role in energy metabolism. In this study, we investigated the mechanism of action of chemically synthesized osteocalcin (csOCN) in ameliorating NAFLD. We demonstrated for the first time that csOCN attenuates lipid accumulation in the liver and hepatocytes by modulating CD36 protein expression. In addition, we found that the expression of p-AMPK, FOXO1 and BCL6 decreased and the expression of CD36 increased after OA/PA induction compared to the control group, and these effects were reversed by the addition of csOCN. In contrast, the therapeutic effect of csOCN was inhibited by the addition of AMPK inhibitors and BCL6 inhibitors. This finding suggested that csOCN regulates CD36 expression via the AMPK-FOXO1/BCL6 axis. In NAFLD mice, oral administration of csOCN also activated the AMPK pathway and reduced CD36 expression. Molecular docking revealed that osteocalcin has a docking site with CD36. Compared to oleic acid and palmitic acid, osteocalcin bound more strongly to CD36. Laser confocal microscopy results showed that osteocalcin colocalized with CD36 at the cell membrane. In conclusion, we demonstrated the regulatory role of csOCN in fatty acid uptake pathways for the first time; it regulates CD36 expression via the AMPK-FOXO1/BCL6 axis to reduce fatty acid uptake, and it affects fatty acid transport by may directly binding to CD36. There are indications that csOCN has potential as a CD36-targeted drug for the treatment of NAFLD.
Collapse
Affiliation(s)
- Miao Zhang
- Medical School, University of Chinese Academy of Sciences, Beijing, 101400, China
| | - Keting Dong
- Medical School, University of Chinese Academy of Sciences, Beijing, 101400, China
| | - Qian Du
- Medical School, University of Chinese Academy of Sciences, Beijing, 101400, China
| | - Jiaojiao Xu
- Medical School, University of Chinese Academy of Sciences, Beijing, 101400, China
| | - Xue Bai
- Medical School, University of Chinese Academy of Sciences, Beijing, 101400, China
| | - Lei Chen
- Medical School, University of Chinese Academy of Sciences, Beijing, 101400, China
| | - Jianhong Yang
- Medical School, University of Chinese Academy of Sciences, Beijing, 101400, China.
| |
Collapse
|
15
|
Wu Z, Wang L, Yin Z, Gao Y, Song Y, Ma J, Zhao M, Wang J, Xue W, Pang X, Zhao Y, Li J, Tu P, Zheng J. Baoyuan decoction inhibits atherosclerosis progression through suppression peroxidized fatty acid and Src/MKK4/JNK pathway-mediated CD 36 expression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155668. [PMID: 38776739 DOI: 10.1016/j.phymed.2024.155668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/08/2024] [Accepted: 04/21/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Baoyuan decoction (BYD) has been widely utilized as a traditional prescription for the treatment of various conditions such as coronary heart disease, aplastic anemia, and chronic renal failure. However, its potential efficacy in improving atherosclerosis has not yet been investigated. PURPOSE Our research aimed to assess the potential of BYD as an inhibitor of atherosclerosis and uncover the underlying mechanism by which it acts on foam cell formation. STUDY DESIGN AND METHODS High-fat diet-induced ApoE-/- mice were employed to explore the effect of BYD on atherosclerosis. The differential metabolites in feces were identified and analyzed by LC-Qtrap-MS. In addition, we utilized pharmacological inhibition of BYD on foam cell formation induced by oxLDL in THP-1 cells to elucidate the underlying mechanisms specifically in macrophages. RESULTS The atherosclerotic plaque burden in the aortic sinus of ApoE-/- mice was notably reduced with BYD treatment, despite no significant alterations in plasma lipids. Metabolomic analysis revealed that BYD suppressed the increased levels of peroxidized fatty acids, specifically 9/13-hydroxyoctadecadienoic acid (9/13-HODE), in the feces of mice. As a prominent peroxidized fatty acid found in oxLDL, we confirmed that 9/13-HODE induced the overexpression of CD36 in THP-1 macrophages by upregulating PPARγ. In subsequent experiments, the decreased levels of CD36 triggered by oxLDL were observed after BYD treatment. This decrease occurred through the regulation of the Src/MMK4/JNK pathway, resulting in the suppression of lipid deposition in THP-1 macrophages. CONCLUSIONS These results illustrate that BYD exhibits potential anti-atherosclerotic effects by inhibiting CD36 expression to prevent foam cell formation.
Collapse
Affiliation(s)
- Zhen Wu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lingxiao Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ziyu Yin
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yun Gao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuelin Song
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jiale Ma
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Maoyuan Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Junjiao Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Weigang Xue
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xueping Pang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yunfang Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jun Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Jiao Zheng
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
16
|
Ji X, Yin H, Gu T, Xu H, Fang D, Wang K, Sun H, Tian S, Wu T, Nie Y, Zhang P, Bi Y. Excessive free fatty acid sensing in pituitary lactotrophs elicits steatotic liver disease by decreasing prolactin levels. Cell Rep 2024; 43:114465. [PMID: 38985678 DOI: 10.1016/j.celrep.2024.114465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 04/27/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024] Open
Abstract
The pituitary is the central endocrine gland with effects on metabolic dysfunction-associated steatotic liver disease (MASLD). However, it is not clear whether the pituitary responds to free fatty acid (FFA) toxicity, thus dysregulating hepatic lipid metabolism. Here, we demonstrate that decreased prolactin (PRL) levels are involved in the association between FFA and MASLD based on a liver biospecimen-based cohort. Moreover, overloaded FFAs decrease serum PRL levels, thus promoting liver steatosis in mice with both dynamic diet intervention and stereotactic pituitary FFA injection. Mechanistic studies show that excessive FFA sensing in pituitary lactotrophs inhibits the synthesis and secretion of PRL in a cell-autonomous manner. Notably, inhibiting excessive lipid uptake using pituitary stereotaxic virus injection or a specific drug delivery system effectively ameliorates hepatic lipid accumulation by improving PRL levels. Targeted inhibition of pituitary FFA sensing may be a potential therapeutic target for liver steatosis.
Collapse
Affiliation(s)
- Xinlu Ji
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Hongli Yin
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Tianwei Gu
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Hao Xu
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Da Fang
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Kai Wang
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Haixiang Sun
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Sai Tian
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Tianyu Wu
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Yuanyuan Nie
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Pengzi Zhang
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China.
| | - Yan Bi
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China.
| |
Collapse
|
17
|
Choi S, Lee JM, Kim KES, Park JH, Kim LH, Park J, Jeon Y, Jhun BW, Kim SY, Hong JJ, Shin SJ. Protein-energy restriction-induced lipid metabolism disruption causes stable-to-progressive disease shift in Mycobacterium avium-infected female mice. EBioMedicine 2024; 105:105198. [PMID: 38889480 PMCID: PMC11237864 DOI: 10.1016/j.ebiom.2024.105198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Disease susceptibility and progression of Mycobacterium avium complex pulmonary disease (MAC-PD) is associated with multiple factors, including low body mass index (BMI). However, the specific impact of low BMI on MAC-PD progression remains poorly understood. This study aims to examine the progression of MAC-PD in the context of low BMI, utilising a disease-resistant mouse model. METHODS We employed a MAC infection-resistant female A/J mouse model to compare the progression of MAC-PD under two dietary conditions: one group was fed a standard protein diet, representing protein-energy unrestricted conditions, and the other was fed a low protein diet (LPD), representing protein-energy restriction. FINDINGS Our results reveal that protein-energy restriction significantly exacerbates MAC-PD progression by disrupting lipid metabolism. Mice fed an LPD showed elevated fatty acid levels and related gene expressions in lung tissues, similar to findings of increased fatty acids in the serum of patients who exhibited the MAC-PD progression. These mice also exhibited increased CD36 expression and lipid accumulation in macrophages upon MAC infection. In vitro experiments emphasised the crucial role of CD36-mediated palmitic acid uptake in bacterial proliferation. Importantly, in vivo studies demonstrated that administering anti-CD36 antibody to LPD-fed A/J mice reduced macrophage lipid accumulation and impeded bacterial growth, resulting in remarkable slowing disease progression. INTERPRETATION Our findings indicate that the metabolic status of host immune cells critically influences MAC-PD progression. This study highlights the potential of adequate nutrient intake in preventing MAC-PD progression, suggesting that targeting CD36-mediated pathways might be a host-directed therapeutic strategy to managing MAC infection. FUNDING This research was funded by the National Research Foundation of Korea, the Korea Research Institute of Bioscience and Biotechnology, and the Korea National Institute of Health.
Collapse
Affiliation(s)
- Sangwon Choi
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Ju Mi Lee
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Keu Eun San Kim
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Ji-Hae Park
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Lee-Han Kim
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Jiyun Park
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Yaerin Jeon
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Byung Woo Jhun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
| | - Su-Young Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
| | - Jung Joo Hong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, South Korea; KRIBB School of Bioscience, Korea University of Science & Technology (UST), Daejeon, 34113, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| |
Collapse
|
18
|
Zheng Y, Feng J, Ling M, Yu Y, Tao Y, Wang X. A comprehensive review on targeting cluster of differentiation: An attractive strategy for inhibiting viruses through host proteins. Int J Biol Macromol 2024; 269:132200. [PMID: 38723834 DOI: 10.1016/j.ijbiomac.2024.132200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/20/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Viral infections continue to pose a significant global public health threat. Targeting host proteins, such as cluster of differentiation (CD) macromolecules, may offer a promising alternative approach to developing antiviral treatments. CDs are cell-surface biological macromolecules mainly expressed on leukocytes that viruses can use to enter cells, thereby evading immune detection and promoting their replication. The manipulation of CDs by viruses may represent an effective and clever means of survival through the prolonged co-evolution of hosts and viruses. Targeting of CDs is anticipated to hinder the invasion of related viruses, modulate the body's immune system, and diminish the incidence of subsequent inflammation. They have become crucial for biomedical diagnosis, and some have been used as valuable tools for resisting viral infections. However, a summary of the structures and functions of CDs involved in viral infection is currently lacking. The development of drugs targeting these biological macromolecules is restricted both in terms of their availability and the number of compounds currently identified. This review provides a comprehensive analysis of the critical role of CD proteins in virus invasion and a list of relevant targeted antiviral agents, which will serve as a valuable reference for future research in this field.
Collapse
Affiliation(s)
- Youle Zheng
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jin Feng
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Min Ling
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yixin Yu
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yanfei Tao
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
19
|
Yang Y, Liu X, Yang D, Li L, Li S, Lu S, Li N. Interplay of CD36, autophagy, and lipid metabolism: insights into cancer progression. Metabolism 2024; 155:155905. [PMID: 38548128 DOI: 10.1016/j.metabol.2024.155905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/17/2024] [Accepted: 03/23/2024] [Indexed: 04/05/2024]
Abstract
CD36, a scavenger receptor B2 that is dynamically distributed between cell membranes and organelle membranes, plays a crucial role in regulating lipid metabolism. Abnormal CD36 activity has been linked to a range of metabolic disorders, such as obesity, nonalcoholic fatty liver disease, insulin resistance and cardiovascular disease. CD36 undergoes various modifications, including palmitoylation, glycosylation, and ubiquitination, which greatly affect its binding affinity to various ligands, thereby triggering and influencing various biological effects. In the context of tumors, CD36 interacts with autophagy to jointly regulate tumorigenesis, mainly by influencing the tumor microenvironment. The central role of CD36 in cellular lipid homeostasis and recent molecular insights into CD36 in tumor development indicate the applicability of CD36 as a therapeutic target for cancer treatment. Here, we discuss the diverse posttranslational modifications of CD36 and their respective roles in lipid metabolism. Additionally, we delve into recent research findings on CD36 in tumors, outlining ongoing drug development efforts targeting CD36 and potential strategies for future development and highlighting the interplay between CD36 and autophagy in the context of cancer. Our aim is to provide a comprehensive understanding of the function of CD36 in both physiological and pathological processes, facilitating a more in-depth analysis of cancer progression and a better development and application of CD36-targeting drugs for tumor therapy in the near future.
Collapse
Affiliation(s)
- Yuxuan Yang
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiaokun Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Di Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Lianhui Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Sheng Li
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Sen Lu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Ning Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
20
|
Rybinska I, Mangano N, Romero-Cordoba SL, Regondi V, Ciravolo V, De Cecco L, Maffioli E, Paolini B, Bianchi F, Sfondrini L, Tedeschi G, Agresti R, Tagliabue E, Triulzi T. SAA1-dependent reprogramming of adipocytes by tumor cells is associated with triple negative breast cancer aggressiveness. Int J Cancer 2024; 154:1842-1856. [PMID: 38289016 DOI: 10.1002/ijc.34859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 03/14/2024]
Abstract
Triple negative breast cancers (TNBC) are characterized by a poor prognosis and a lack of targeted treatments. Their progression depends on tumor cell intrinsic factors, the tumor microenvironment and host characteristics. Although adipocytes, the primary stromal cells of the breast, have been determined to be plastic in physiology and cancer, the tumor-derived molecular mediators of tumor-adipocyte crosstalk have not been identified yet. In this study, we report that the crosstalk between TNBC cells and adipocytes in vitro beyond adipocyte dedifferentiation, induces a unique transcriptional profile that is characterized by inflammation and pathways that are related to interaction with the tumor microenvironment. Accordingly, increased cancer stem-like features and recruitment of pro-tumorigenic immune cells are induced by this crosstalk through CXCL5 and IL-8 production. We identified serum amyloid A1 (SAA1) as a regulator of the adipocyte reprogramming through CD36 and P2XR7 signaling. In human TNBC, SAA1 expression was associated with cancer-associated adipocyte infiltration, inflammation, stimulated lipolysis, stem-like properties, and a distinct tumor immune microenvironment. Our findings constitute evidence that the interaction between tumor cells and adipocytes through the release of SAA1 is relevant to the aggressiveness of TNBC.
Collapse
Affiliation(s)
- Ilona Rybinska
- Microenvironment and Biomarkers of Solid Tumors Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Nunzia Mangano
- Microenvironment and Biomarkers of Solid Tumors Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Sandra L Romero-Cordoba
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Mexico City, Mexico
| | - Viola Regondi
- Microenvironment and Biomarkers of Solid Tumors Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Valentina Ciravolo
- Microenvironment and Biomarkers of Solid Tumors Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Loris De Cecco
- Molecular Mechanisms Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Elisa Maffioli
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Milano, Italy
- CIMAINA, Università degli Studi di Milano, Milano, Italy
| | - Biagio Paolini
- Anatomic Pathology A Unit, Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Francesca Bianchi
- Department of Biomedical Science for Health, Università degli Studi di Milano, Milan, Italy
| | - Lucia Sfondrini
- Microenvironment and Biomarkers of Solid Tumors Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
- Department of Biomedical Science for Health, Università degli Studi di Milano, Milan, Italy
| | - Gabriella Tedeschi
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Milano, Italy
- CIMAINA, Università degli Studi di Milano, Milano, Italy
| | - Roberto Agresti
- Division of Surgical Oncology, Breast Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Elda Tagliabue
- Microenvironment and Biomarkers of Solid Tumors Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Tiziana Triulzi
- Microenvironment and Biomarkers of Solid Tumors Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| |
Collapse
|
21
|
Carrera P, Odenthal J, Risse KS, Jung Y, Kuerschner L, Bülow MH. The CD36 scavenger receptor Bez regulates lipid redistribution from fat body to ovaries in Drosophila. Development 2024; 151:dev202551. [PMID: 38713014 DOI: 10.1242/dev.202551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/12/2024] [Indexed: 05/08/2024]
Abstract
Lipid distribution in an organism is mediated by the interplay between lipoprotein particles, lipoprotein receptors and class B scavenger receptors of the CD36 family. CD36 is a multifunctional protein mediating lipid uptake, mobilization and signaling at the plasma membrane and inside of the cell. The CD36 protein family has 14 members in Drosophila melanogaster, which allows for the differentiated analysis of their functions. Here, we unravel a role for the so far uncharacterized scavenger receptor Bez in lipid export from Drosophila adipocytes. Bez shares the lipid binding residue with CD36 and is expressed at the plasma membrane of the embryonic, larval and adult fat body. Bez loss of function lowers the organismal availability of storage lipids and blocks the maturation of egg chambers in ovaries. We demonstrate that Bez interacts with the APOB homolog Lipophorin at the plasma membrane of adipocytes and trace the Bez-dependent transfer of an alkyne-labeled fatty acid from adipocytes to Lipophorin. Our study demonstrates how lipids are distributed by scavenger receptor-lipoprotein interplay and contribute to the metabolic control of development.
Collapse
Affiliation(s)
- Pilar Carrera
- Life and Medical Sciences (LIMES), University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany
| | - Johanna Odenthal
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine, University of Cologne, University Hospital Cologne, 50931 Cologne, Germany
| | - Katharina S Risse
- Life and Medical Sciences (LIMES), University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany
| | - Yerin Jung
- Life and Medical Sciences (LIMES), University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany
| | - Lars Kuerschner
- Life and Medical Sciences (LIMES), University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany
| | - Margret H Bülow
- Life and Medical Sciences (LIMES), University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany
| |
Collapse
|
22
|
Åbacka H, Masoni S, Poli G, Huang P, Gusso F, Granchi C, Minutolo F, Tuccinardi T, Hagström-Andersson AK, Lindkvist-Petersson K. SMS121, a new inhibitor of CD36, impairs fatty acid uptake and viability of acute myeloid leukemia. Sci Rep 2024; 14:9104. [PMID: 38643249 PMCID: PMC11032350 DOI: 10.1038/s41598-024-58689-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/02/2024] [Indexed: 04/22/2024] Open
Abstract
Acute myeloid leukemia (AML) is the most common form of acute leukemia in adults and the second most common among children. AML is characterized by aberrant proliferation of myeloid blasts in the bone marrow and impaired normal hematopoiesis. Despite the introduction of new drugs and allogeneic bone marrow transplantation, patients have poor overall survival rate with relapse as the major challenge, driving the demand for new therapeutic strategies. AML patients with high expression of the very long/long chain fatty acid transporter CD36 have poorer survival and very long chain fatty acid metabolism is critical for AML cell survival. Here we show that fatty acids are transferred from human primary adipocytes to AML cells upon co-culturing. A drug-like small molecule (SMS121) was identified by receptor-based virtual screening and experimentally demonstrated to target the lipid uptake protein CD36. SMS121 reduced the uptake of fatty acid into AML cells that could be reversed by addition of free fatty acids and caused decreased cell viability. The data presented here serves as a framework for the development of CD36 inhibitors to be used as future therapeutics against AML.
Collapse
Affiliation(s)
- Hannah Åbacka
- Department of Experimental Medical Science, Lund University, BMC C13, 221 84, Lund, Sweden
| | - Samuele Masoni
- Department of Pharmacy, University of Pisa, Pisa, Italy
- LINXS-Institute of Advanced Neutron and X-ray Science, Lund, Sweden
| | - Giulio Poli
- Department of Pharmacy, University of Pisa, Pisa, Italy.
| | - Peng Huang
- Department of Experimental Medical Science, Lund University, BMC C13, 221 84, Lund, Sweden
| | | | | | - Filippo Minutolo
- Department of Pharmacy, University of Pisa, Pisa, Italy
- LINXS-Institute of Advanced Neutron and X-ray Science, Lund, Sweden
| | | | | | - Karin Lindkvist-Petersson
- Department of Experimental Medical Science, Lund University, BMC C13, 221 84, Lund, Sweden.
- LINXS-Institute of Advanced Neutron and X-ray Science, Lund, Sweden.
| |
Collapse
|
23
|
Boutanquoi PM, Khan AS, Cabeza L, Jantzen L, Gautier T, Yesylevskyy S, Ramseyer C, Masson D, Van Waes V, Hichami A, Khan NA. A novel fatty acid analogue triggers CD36-GPR120 interaction and exerts anti-inflammatory action in endotoxemia. Cell Mol Life Sci 2024; 81:176. [PMID: 38598021 PMCID: PMC11006773 DOI: 10.1007/s00018-024-05207-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/11/2024]
Abstract
Inflammation is a mediator of a number of chronic pathologies. We synthesized the diethyl (9Z,12Z)-octadeca-9,12-dien-1-ylphosphonate, called NKS3, which decreased lipopolysaccharide (LPS)-induced mRNA upregulation of proinflammatory cytokines (IL-1β, IL-6 and TNF-α) not only in primary intraperitoneal and lung alveolar macrophages, but also in freshly isolated mice lung slices. The in-silico studies suggested that NKS3, being CD36 agonist, will bind to GPR120. Co-immunoprecipitation and proximity ligation assays demonstrated that NKS3 induced protein-protein interaction of CD36 with GPR120in RAW 264.7 macrophage cell line. Furthermore, NKS3, via GPR120, decreased LPS-induced activation of TAB1/TAK1/JNK pathway and the LPS-induced mRNA expression of inflammatory markers in RAW 264.7 cells. In the acute lung injury model, NKS3 decreased lung fibrosis and inflammatory cytokines (IL-1β, IL-6 and TNF-α) and nitric oxide (NO) production in broncho-alveolar lavage fluid. NKS3 exerted a protective effect on LPS-induced remodeling of kidney and liver, and reduced circulating IL-1β, IL-6 and TNF-α concentrations. In a septic shock model, NKS3 gavage decreased significantly the LPS-induced mortality in mice. In the last, NKS3 decreased neuroinflammation in diet-induced obese mice. Altogether, these results suggest that NKS3 is a novel anti-inflammatory agent that could be used, in the future, for the treatment of inflammation-associated pathologies.
Collapse
Affiliation(s)
- Pierre-Marie Boutanquoi
- Physiologie de la Nutrition & Toxicologie, UMR U1231 INSERM/Université de Bourgogne/Agro-Sup, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
| | - Amira Sayed Khan
- Physiologie de la Nutrition & Toxicologie, UMR U1231 INSERM/Université de Bourgogne/Agro-Sup, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
| | - Lidia Cabeza
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive-UR LINC, UFC, Besançon, France
| | - Lucas Jantzen
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive-UR LINC, UFC, Besançon, France
| | - Thomas Gautier
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
- LIPNESS, UMR U1231 INSERM/UB/Agro-Sup, Université Bourgogne Franche-Comté, 21000, Dijon, France
| | - Semen Yesylevskyy
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10, Prague 6, Czech Republic
- Laboratoire Chrono Environnement UMR CNRS6249, Université de Bourgogne Franche-Comté (UBFC), 16 route de Gray, 25030, Besançon, Cedex, France
- Receptor.AI Inc., 20-22 Wenlock Road, London, N1 7GU, UK
- Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46, Olomouc, Czech Republic
- Department of Physics of Biological Systems, Institute of Physics of the National Academy of Sciences of Ukraine, Prospect Nauky 46, Kiev, 03028, Ukraine
| | - Christophe Ramseyer
- Laboratoire Chrono Environnement UMR CNRS6249, Université de Bourgogne Franche-Comté (UBFC), 16 route de Gray, 25030, Besançon, Cedex, France
| | - David Masson
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
- LIPNESS, UMR U1231 INSERM/UB/Agro-Sup, Université Bourgogne Franche-Comté, 21000, Dijon, France
| | - Vincent Van Waes
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive-UR LINC, UFC, Besançon, France
| | - Aziz Hichami
- Physiologie de la Nutrition & Toxicologie, UMR U1231 INSERM/Université de Bourgogne/Agro-Sup, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
| | - Naim Akhtar Khan
- Physiologie de la Nutrition & Toxicologie, UMR U1231 INSERM/Université de Bourgogne/Agro-Sup, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France.
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France.
| |
Collapse
|
24
|
Glatz JFC, Heather LC, Luiken JJFP. CD36 as a gatekeeper of myocardial lipid metabolism and therapeutic target for metabolic disease. Physiol Rev 2024; 104:727-764. [PMID: 37882731 DOI: 10.1152/physrev.00011.2023] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/02/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023] Open
Abstract
The multifunctional membrane glycoprotein CD36 is expressed in different types of cells and plays a key regulatory role in cellular lipid metabolism, especially in cardiac muscle. CD36 facilitates the cellular uptake of long-chain fatty acids, mediates lipid signaling, and regulates storage and oxidation of lipids in various tissues with active lipid metabolism. CD36 deficiency leads to marked impairments in peripheral lipid metabolism, which consequently impact on the cellular utilization of multiple different fuels because of the integrated nature of metabolism. The functional presence of CD36 at the plasma membrane is regulated by its reversible subcellular recycling from and to endosomes and is under the control of mechanical, hormonal, and nutritional factors. Aberrations in this dynamic role of CD36 are causally associated with various metabolic diseases, in particular insulin resistance, diabetic cardiomyopathy, and cardiac hypertrophy. Recent research in cardiac muscle has disclosed the endosomal proton pump vacuolar-type H+-ATPase (v-ATPase) as a key enzyme regulating subcellular CD36 recycling and being the site of interaction between various substrates to determine cellular substrate preference. In addition, evidence is accumulating that interventions targeting CD36 directly or modulating its subcellular recycling are effective for the treatment of metabolic diseases. In conclusion, subcellular CD36 localization is the major adaptive regulator of cellular uptake and metabolism of long-chain fatty acids and appears a suitable target for metabolic modulation therapy to mend failing hearts.
Collapse
Affiliation(s)
- Jan F C Glatz
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Lisa C Heather
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Joost J F P Luiken
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
25
|
Feng M, Zhou Q, Xie H, Liu C, Zheng M, Zhang S, Zhou S, Zhao J. Role of CD36 in central nervous system diseases. Neural Regen Res 2024; 19:512-518. [PMID: 37721278 PMCID: PMC10581564 DOI: 10.4103/1673-5374.380821] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/12/2023] [Accepted: 05/04/2023] [Indexed: 09/19/2023] Open
Abstract
CD36 is a highly glycosylated integral membrane protein that belongs to the scavenger receptor class B family and regulates the pathological progress of metabolic diseases. CD36 was recently found to be widely expressed in various cell types in the nervous system, including endothelial cells, pericytes, astrocytes, and microglia. CD36 mediates a number of regulatory processes, such as endothelial dysfunction, oxidative stress, mitochondrial dysfunction, and inflammatory responses, which are involved in many central nervous system diseases, such as stroke, Alzheimer's disease, Parkinson's disease, and spinal cord injury. CD36 antagonists can suppress CD36 expression or prevent CD36 binding to its ligand, thereby achieving inhibition of CD36-mediated pathways or functions. Here, we reviewed the mechanisms of action of CD36 antagonists, such as Salvianolic acid B, tanshinone IIA, curcumin, sulfosuccinimidyl oleate, antioxidants, and small-molecule compounds. Moreover, we predicted the structures of binding sites between CD36 and antagonists. These sites can provide targets for more efficient and safer CD36 antagonists for the treatment of central nervous system diseases.
Collapse
Affiliation(s)
- Min Feng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Qiang Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Huimin Xie
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Chang Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Mengru Zheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Shuyu Zhang
- Medical College of Nantong University, Nantong, Jiangsu Province, China
| | - Songlin Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Jian Zhao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Department of Orthopedic Oncology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
26
|
Abstract
CD36 (also known as platelet glycoprotein IV) is expressed by a variety of different cell entities, where it possesses functions as a signaling receptor, but additionally acts as a transporter for long-chain fatty acids. This dual function of CD36 has been investigated for its relevance in immune and nonimmune cells. Although CD36 was first identified on platelets, the understanding of the role of CD36 in platelet biology remained scarce for decades. In the past few years, several discoveries have shed a new light on the CD36 signaling activity in platelets. Notably, CD36 has been recognized as a sensor for oxidized low-density lipoproteins in the circulation that mitigates the threshold for platelet activation under conditions of dyslipidemia. Thus, platelet CD36 transduces atherogenic lipid stress into an increased risk for thrombosis, myocardial infarction, and stroke. The underlying pathways that are affected by CD36 are the inhibition of cyclic nucleotide signaling pathways and simultaneously the induction of activatory signaling events. Furthermore, thrombospondin-1 secreted by activated platelets binds to CD36 and furthers paracrine platelet activation. CD36 also serves as a binding hub for different coagulation factors and, thus, contributes to the plasmatic coagulation cascade. This review provides a comprehensive overview of the recent findings on platelet CD36 and presents CD36 as a relevant target for the prevention of thrombotic events for dyslipidemic individuals with an elevated risk for thrombosis.
Collapse
Affiliation(s)
- Gerd Bendas
- Department of Pharmacy, University of Bonn, Bonn, Germany
| | - Martin Schlesinger
- Department of Pharmacy, University of Bonn, Bonn, Germany
- Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| |
Collapse
|
27
|
Ashaq MS, Zhang S, Xu M, Li Y, Zhao B. The regulatory role of CD36 in hematopoiesis beyond fatty acid uptake. Life Sci 2024; 339:122442. [PMID: 38244916 DOI: 10.1016/j.lfs.2024.122442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/07/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
CD36 is a transmembrane glycoprotein, located on surface of numerous cell types. This review is aimed to explore regulatory role of CD36 in hematopoiesis beyond fatty acid uptake. CD36 acts as a pattern recognition receptor, regulates cellular fatty acid homeostasis, and negatively monitors angiogenesis. CD36 also mediates free fatty acid transportation to hematopoietic stem cells in response to infections. During normal physiology and pathophysiology, CD36 significantly participates in the activation and metabolic needs of platelets, macrophages, monocytes, T cells, B cells, and dendritic cells. CD36 has shown a unique relationship with Plasmodium falciparum-infected erythrocytes (PfIEs) as a beneficiary for both parasite and host. CD36 actively participates in pathogenesis of various hematological cancers as a significant prognostic biomarker including AML, HL, and NHL. CD36-targeting antibodies, CD36 antagonists (small molecules), and CD36 expression inhibitors/modulators are used to target CD36, depicting its therapeutic potential. Many preclinical studies or clinical trials were performed to assess CD36 as a therapeutic target; some are still under investigation. This review reflects the role of CD36 in hematopoiesis which requires more consideration in future research.
Collapse
Affiliation(s)
- Muhammad Sameer Ashaq
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Shujing Zhang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Miaomiao Xu
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yuan Li
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Baobing Zhao
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
28
|
Jiang M, Karsenberg R, Bianchi F, van den Bogaart G. CD36 as a double-edged sword in cancer. Immunol Lett 2024; 265:7-15. [PMID: 38122906 DOI: 10.1016/j.imlet.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
The membrane protein CD36 is a lipid transporter, scavenger receptor, and receptor for the antiangiogenic protein thrombospondin 1 (TSP1). CD36 is expressed by cancer cells and by many associated cells including various cancer-infiltrating immune cell types. Thereby, CD36 plays critical roles in cancer, and it has been reported to affect cancer growth, metastasis, angiogenesis, and drug resistance. However, these roles are partly contradictory, as CD36 has been both reported to promote and inhibit cancer progression. Moreover, the mechanisms are also partly contradictory, because CD36 has been shown to exert opposite cellular effects such as cell division, senescence and cell death. This review provides an overview of the diverse effects of CD36 on tumor progression, aiming to shed light on its diverse pro- and anti-cancer roles, and the implications for therapeutic targeting.
Collapse
Affiliation(s)
- Muwei Jiang
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG, Nijenborgh 7, Groningen, the Netherlands
| | - Renske Karsenberg
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG, Nijenborgh 7, Groningen, the Netherlands
| | - Frans Bianchi
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG, Nijenborgh 7, Groningen, the Netherlands
| | - Geert van den Bogaart
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG, Nijenborgh 7, Groningen, the Netherlands.
| |
Collapse
|
29
|
Huang X, Wang M, Zhang D, Zhang C, Liu P. Advances in Targeted Drug Resistance Associated with Dysregulation of Lipid Metabolism in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:113-129. [PMID: 38250308 PMCID: PMC10799627 DOI: 10.2147/jhc.s447578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Hepatocellular carcinoma is the prevailing malignant neoplasm affecting the liver, often diagnosed at an advanced stage and associated with an unfavorable overall prognosis. Sorafenib and Lenvatinib have emerged as first-line therapeutic drugs for advanced hepatocellular carcinoma, improving the prognosis for these patients. Nevertheless, the issue of tyrosine kinase inhibitor (TKI) resistance poses a substantial obstacle in the management of advanced hepatocellular carcinoma. The pathogenesis and advancement of hepatocellular carcinoma exhibit a close association with metabolic reprogramming, yet the attention given to lipid metabolism dysregulation in hepatocellular carcinoma development remains relatively restricted. This review summarizes the potential significance and research progress of lipid metabolism dysfunction in Sorafenib and Lenvatinib resistance in hepatocellular carcinoma. Targeting hepatocellular carcinoma lipid metabolism holds promising potential as an effective strategy to overcome hepatocellular carcinoma drug resistance in the future.
Collapse
Affiliation(s)
- Xiaoju Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, People’s Republic of China
| | - Mengmeng Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, People’s Republic of China
| | - Dan Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, People’s Republic of China
| | - Chen Zhang
- Liver Transplant Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Pian Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, People’s Republic of China
| |
Collapse
|
30
|
Agarwal S, Saha S, Ghosh R, Sarmadhikari D, Asthana S, Maiti TK, Khadgawat R, Guchhait P. Elevated glycosylation of CD36 in platelets is a risk factor for oxLDL-mediated platelet activation in type 2 diabetes. FEBS J 2024; 291:376-391. [PMID: 37845743 DOI: 10.1111/febs.16976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/19/2023] [Accepted: 10/12/2023] [Indexed: 10/18/2023]
Abstract
Platelet activation and related cardiovascular complications are the hallmarks of type 2 diabetes (T2D). We investigated the mechanism of platelet activation in T2D using MS-based identification of differentially expressed platelet proteins with a focus on glycosylated forms. Glycosylation is considered one of the common post-translational modifications in T2D, and N/O-linked glycosylation of glycoproteins (GPs)/integrins is known to play crucial roles in platelet activation. Our platelet proteome data revealed elevated levels of GPs GPIbα, GPIIbIIIa, GPIV (CD36), GPV and integrins in T2D patients. T2D platelets had elevated N-linked glycosylation of CD36 at asparagine (Asn)408,417 . Enrichment analysis revealed a close association of glycosylated CD36 with thrombospondin-1, fibrinogen and SERPINA1 in T2D platelets. The glycosylation of CD36 has previously been reported to increase cellular uptake of long-chain fatty acids. Our in silico molecular docking data also showed a favorable binding of cholesterol with glycosylated Asn417 CD36 compared to the non-glycosylated form. We further investigated the CD36:LDL cholesterol axis in T2D. Elevated levels of oxidized-low density lipoprotein (oxLDL) were found to cause significant platelet activation via CD36-mediated stimulation of Lyn-JNK signaling. Sulfo-N-succinimidyl oleate, an inhibitor of CD36, effectively inhibited oxLDL-mediated platelet activation and adhesion in vitro. Our study suggests increased glycosylation of CD36 in T2D platelets as a potential route for oxLDL-mediated platelet activation. The oxLDL:CD36 axis may thus be exploited as a prospective target to develop therapeutics against thrombosis in T2D.
Collapse
Affiliation(s)
- Sakshi Agarwal
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Sandhini Saha
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Riya Ghosh
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Debapriyo Sarmadhikari
- Translational Health Science Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Shailendra Asthana
- Translational Health Science Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Tushar K Maiti
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | | | - Prasenjit Guchhait
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| |
Collapse
|
31
|
Cassau S, Krieger J. Evidence for a role of SNMP2 and antennal support cells in sensillum lymph clearance processes of moth pheromone-responsive sensilla. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 164:104046. [PMID: 38043913 DOI: 10.1016/j.ibmb.2023.104046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
In insect antenna, following the activation of olfactory sensory neurons, odorant molecules are inactivated by enzymes in the sensillum lymph. How the inactivation products are cleared from the sensillum lymph is presently unknown. Here we studied the role of support cells (SCs) and the so-called sensory neuron membrane protein 2 (SNMP2), a member of the CD36 family of lipid transporters abundantly expressed in SCs, in sensillum lymph clearance processes in the moths Heliothis virescens and Bombyx mori. In these species, the sex pheromone components are inactivated to long-chain fatty acids. To approach a role of SNMP2 in the removal of such inactivation products, we analyzed the uptake of a fluorescent long-chain fatty acid analog into a newly generated HvirSNMP2-expressing cell line. We found an increased uptake of the analog into SNMP2-cells compared to control cells, which could be blocked by the CD36 protein inhibitor, SSO. Furthermore, analyses of sensilla from antenna treated with the fatty acid analog indicated that SNMP2-expressing SCs are able to take up fatty acids from the sensillum lymph. In addition, sensilla from SSO-pretreated antenna of B. mori showed reduced removal of the fluorescent analog from the sensillum lymph. Finally, we revealed that SSO pretreatment of male silkmoth antenna significantly prolonged the duration of the female pheromone-induced wing-fluttering behavior, possibly as a result of impaired lymph clearance processes. Together our findings in H. virescens and B. mori support a pivotal role of olfactory SCs in sensillum lymph maintenance processes and suggest an integral role of SNMP2 in the removal of lipophilic "waste products" such as fatty acids resulting from sex pheromone inactivation.
Collapse
Affiliation(s)
- Sina Cassau
- Martin Luther University Halle-Wittenberg, Institute of Biology/Zoology, Department of Animal Physiology, 06120 Halle (Saale), Germany.
| | - Jürgen Krieger
- Martin Luther University Halle-Wittenberg, Institute of Biology/Zoology, Department of Animal Physiology, 06120 Halle (Saale), Germany.
| |
Collapse
|
32
|
Wen SY, Zhi X, Liu HX, Wang X, Chen YY, Wang L. Is the suppression of CD36 a promising way for atherosclerosis therapy? Biochem Pharmacol 2024; 219:115965. [PMID: 38043719 DOI: 10.1016/j.bcp.2023.115965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/05/2023]
Abstract
Atherosclerosis is the main underlying pathology of many cardiovascular diseases and is marked by plaque formation in the artery wall. It has posed a serious threat to the health of people all over the world. CD36 acts as a significant regulator of lipid homeostasis, which is closely associated with the onset and progression of atherosclerosis and may be a new therapeutic target. The abnormal overexpression of CD36 facilitates lipid accumulation, foam cell formation, inflammation, endothelial apoptosis, and thrombosis. Numerous natural products and lipid-lowering agents are found to target the suppression of CD36 or inhibit the upregulation of CD36 to prevent and treat atherosclerosis. Here, the structure, expression regulation and function of CD36 in atherosclerosis and its related pharmacological therapies are reviewed. This review highlights the importance of drugs targeting CD36 suppression in the treatment and prevention of atherosclerosis, in order to develop new therapeutic strategies and potential anti-atherosclerotic drugs both preclinically and clinically.
Collapse
Affiliation(s)
- Shi-Yuan Wen
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Xiaoyan Zhi
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Hai-Xin Liu
- School of Traditional Chinese Materia Medica, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Xiaohui Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Yan-Yan Chen
- School of Medicine, Jiangsu University, Zhenjiang, China.
| | - Li Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
33
|
Boohar RT, Vandepas LE, Traylor-Knowles N, Browne WE. Phylogenetic and Protein Structure Analyses Provide Insight into the Evolution and Diversification of the CD36 Domain "Apex" among Scavenger Receptor Class B Proteins across Eukarya. Genome Biol Evol 2023; 15:evad218. [PMID: 38035778 PMCID: PMC10715195 DOI: 10.1093/gbe/evad218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 11/07/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023] Open
Abstract
The cluster of differentiation 36 (CD36) domain defines the characteristic ectodomain associated with class B scavenger receptor (SR-B) proteins. In bilaterians, SR-Bs play critical roles in diverse biological processes including innate immunity functions such as pathogen recognition and apoptotic cell clearance, as well as metabolic sensing associated with fatty acid uptake and cholesterol transport. Although previous studies suggest this protein family is ancient, SR-B diversity across Eukarya has not been robustly characterized. We analyzed SR-B homologs identified from the genomes and transcriptomes of 165 diverse eukaryotic species. The presence of highly conserved amino acid motifs across major eukaryotic supergroups supports the presence of a SR-B homolog in the last eukaryotic common ancestor. Our comparative analyses of SR-B protein structure identify the retention of a canonical asymmetric beta barrel tertiary structure within the CD36 ectodomain across Eukarya. We also identify multiple instances of independent lineage-specific sequence expansions in the apex region of the CD36 ectodomain-a region functionally associated with ligand-sensing. We hypothesize that a combination of both sequence expansion and structural variation in the CD36 apex region may reflect the evolution of SR-B ligand-sensing specificity between diverse eukaryotic clades.
Collapse
Affiliation(s)
- Reed T Boohar
- Department of Biology, University of Miami, Coral Gables, Florida, USA
| | - Lauren E Vandepas
- Department of Biology, University of Miami, Coral Gables, Florida, USA
| | - Nikki Traylor-Knowles
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, USA
| | - William E Browne
- Department of Biology, University of Miami, Coral Gables, Florida, USA
| |
Collapse
|
34
|
Kothari V, Savard C, Tang J, Lee SP, Subramanian S, Wang S, den Hartigh LJ, Bornfeldt KE, Ioannou GN. sTREM2 is a plasma biomarker for human NASH and promotes hepatocyte lipid accumulation. Hepatol Commun 2023; 7:e0265. [PMID: 37820278 PMCID: PMC10578746 DOI: 10.1097/hc9.0000000000000265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/28/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Pathogenetic mechanisms of the progression of NAFL to advanced NASH coupled with potential noninvasive biomarkers and novel therapeutic targets are active areas of investigation. The recent finding that increased plasma levels of a protein shed by myeloid cells -soluble Triggering Receptor Expressed on Myeloid cells 2 (sTREM2) -may be a biomarker for NASH has received much interest. We aimed to test sTREM2 as a biomarker for human NASH and investigate the role of sTREM2 in the pathogenesis of NASH. METHODS We conducted studies in both humans (comparing patients with NASH vs. NAFL) and in mice (comparing different mouse models of NASH) involving measurements of TREM2 gene and protein expression levels in the liver as well as circulating sTREM2 levels in plasma. We investigated the pathogenetic role of sTREM2 in hepatic steatosis using primary hepatocytes and bone marrow derived macrophages. RESULTS RNA sequencing analysis of livers from patients with NASH or NAFL as well as livers from 2 mouse models of NASH revealed elevated TREM2 expression in patients/mice with NASH as compared with NAFL. Plasma levels of sTREM2 were significantly higher in a well-characterized cohort of patients with biopsy-proven NASH versus NAFL (area under receiver-operating curve 0.807). Mechanistic studies revealed that cocultures of primary hepatocytes and macrophages with an impaired ability to shed sTREM2 resulted in reduced hepatocyte lipid droplet formation on palmitate stimulation, an effect that was counteracted by the addition of exogenous sTREM2 chimeric protein. Conversely, exogenous sTREM2 chimeric protein increased lipid droplet formation, triglyceride content, and expression of the lipid transporter CD36 in hepatocytes. Furthermore, inhibition of CD36 markedly attenuated sTREM2-induced lipid droplet formation in mouse primary hepatocytes. CONCLUSIONS Elevated levels of sTREM2 due to TREM2 shedding may directly contribute to the pathogenesis of NAFLD by promoting hepatocyte lipid accumulation, as well as serving as a biomarker for distinguishing patients with NASH versus NAFL. Further investigation of sTREM2 as a clinically useful diagnostic biomarker and of the therapeutic effects of targeting sTREM2 in NASH is warranted.
Collapse
Affiliation(s)
- Vishal Kothari
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| | - Christopher Savard
- Department of Medicine, Division of Gastroenterology, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
- Department of Medicine, Division of Gastroenterology, University of Washington, Seattle, Washington, USA
- Research and Development, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
| | - Jingjing Tang
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| | - Sum P. Lee
- Department of Medicine, Division of Gastroenterology, University of Washington, Seattle, Washington, USA
| | - Savitha Subramanian
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| | - Shari Wang
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| | - Laura J. den Hartigh
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| | - Karin E. Bornfeldt
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - George N. Ioannou
- Department of Medicine, Division of Gastroenterology, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
- Department of Medicine, Division of Gastroenterology, University of Washington, Seattle, Washington, USA
- Research and Development, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
| |
Collapse
|
35
|
Fan H, Xia S, Xiang J, Li Y, Ross MO, Lim SA, Yang F, Tu J, Xie L, Dougherty U, Zhang FQ, Zheng Z, Zhang R, Wu R, Dong L, Su R, Chen X, Althaus T, Riedell PA, Jonker PB, Muir A, Lesinski GB, Rafiq S, Dhodapkar MV, Stock W, Odenike O, Patel AA, Opferman J, Tsuji T, Matsuzaki J, Shah H, Faubert B, Elf SE, Layden B, Bissonnette BM, He YY, Kline J, Mao H, Odunsi K, Gao X, Chi H, He C, Chen J. Trans-vaccenic acid reprograms CD8 + T cells and anti-tumour immunity. Nature 2023; 623:1034-1043. [PMID: 37993715 PMCID: PMC10686835 DOI: 10.1038/s41586-023-06749-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/16/2023] [Indexed: 11/24/2023]
Abstract
Diet-derived nutrients are inextricably linked to human physiology by providing energy and biosynthetic building blocks and by functioning as regulatory molecules. However, the mechanisms by which circulating nutrients in the human body influence specific physiological processes remain largely unknown. Here we use a blood nutrient compound library-based screening approach to demonstrate that dietary trans-vaccenic acid (TVA) directly promotes effector CD8+ T cell function and anti-tumour immunity in vivo. TVA is the predominant form of trans-fatty acids enriched in human milk, but the human body cannot produce TVA endogenously1. Circulating TVA in humans is mainly from ruminant-derived foods including beef, lamb and dairy products such as milk and butter2,3, but only around 19% or 12% of dietary TVA is converted to rumenic acid by humans or mice, respectively4,5. Mechanistically, TVA inactivates the cell-surface receptor GPR43, an immunomodulatory G protein-coupled receptor activated by its short-chain fatty acid ligands6-8. TVA thus antagonizes the short-chain fatty acid agonists of GPR43, leading to activation of the cAMP-PKA-CREB axis for enhanced CD8+ T cell function. These findings reveal that diet-derived TVA represents a mechanism for host-extrinsic reprogramming of CD8+ T cells as opposed to the intrahost gut microbiota-derived short-chain fatty acids. TVA thus has translational potential for the treatment of tumours.
Collapse
Affiliation(s)
- Hao Fan
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Siyuan Xia
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology School of Medicine, Shenzhen, China
| | - Junhong Xiang
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Yuancheng Li
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Matthew O Ross
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Seon Ah Lim
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Fan Yang
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Jiayi Tu
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Lishi Xie
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | | | - Freya Q Zhang
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Zhong Zheng
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Rukang Zhang
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Rong Wu
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Lei Dong
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Rui Su
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Xiufen Chen
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Thomas Althaus
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Peter A Riedell
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Patrick B Jonker
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| | - Alexander Muir
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| | - Gregory B Lesinski
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Sarwish Rafiq
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Madhav V Dhodapkar
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Wendy Stock
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | | | - Anand A Patel
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Joseph Opferman
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Takemasa Tsuji
- Department of Obstetrics and Gynecology, The University of Chicago, Chicago, IL, USA
| | - Junko Matsuzaki
- Department of Obstetrics and Gynecology, The University of Chicago, Chicago, IL, USA
| | - Hardik Shah
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Brandon Faubert
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Shannon E Elf
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| | - Brian Layden
- Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | | | - Yu-Ying He
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Justin Kline
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Hui Mao
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Kunle Odunsi
- Department of Obstetrics and Gynecology, The University of Chicago, Chicago, IL, USA
| | - Xue Gao
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Medicine, The University of Chicago, Chicago, IL, USA
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Hongbo Chi
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
| | - Jing Chen
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
- Department of Medicine, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
36
|
Mallick R, Bhowmik P, Duttaroy AK. Targeting fatty acid uptake and metabolism in cancer cells: A promising strategy for cancer treatment. Biomed Pharmacother 2023; 167:115591. [PMID: 37774669 DOI: 10.1016/j.biopha.2023.115591] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023] Open
Abstract
Despite scientific development, cancer is still a fatal disease. The development of cancer is thought to be significantly influenced by fatty acids. Several mechanisms that control fatty acid absorption and metabolism are reported to be altered in cancer cells to support their survival. Cancer cells can use de novo synthesis or uptake of extracellular fatty acid if one method is restricted. This factor makes it more difficult to target one pathway while failing to treat the disease properly. Side effects may also arise if several inhibitors simultaneously target many targets. If a viable inhibitor could work on several routes, the number of negative effects might be reduced. Comparative investigations against cell viability have found several potent natural and manmade substances. In this review, we discuss the complex roles that fatty acids play in the development of tumors and the progression of cancer, newly discovered and potentially effective natural and synthetic compounds that block the uptake and metabolism of fatty acids, the adverse side effects that can occur when multiple inhibitors are used to treat cancer, and emerging therapeutic approaches.
Collapse
Affiliation(s)
- Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Prasenjit Bhowmik
- Department of Chemistry, Uppsala Biomedical Centre, Uppsala University, Sweden
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway.
| |
Collapse
|
37
|
Liu X, Zhang J, Chen Z, Xiao J, Zhou A, Fu Y, Cao Y. Cluster-determinant 36 (CD36) mediates intestinal absorption of dietary astaxanthin and affects its secretion. Food Res Int 2023; 173:113328. [PMID: 37803639 DOI: 10.1016/j.foodres.2023.113328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 10/08/2023]
Abstract
The functional activity of dietary astaxanthin is closely related to its absorption, and the absorption of dietary carotenoids mainly mediated by transmembrane transport protein (TTP) has become the mainstream research direction in recent years. However, the main TTP mediating astaxanthin absorption and its potential mechanisms are still unclear. Hence, based on the preliminary screening results, this study aims to elucidate the role of cluster-determinant 36 (CD36) mediating astaxanthin absorption from the perspective of expression levels through in vitro cell model, in situ single-pass intestinal perfusion model and in vivo mice model. The results showed that astaxanthin uptake was significantly increased by 45.13% in CD36 overexpressing cells and decreased by 20.92% in the case of sulfo-N-succinimidyl oleate (SSO) inhibition. A similar trend also appeared in the duodenum and jejunum by in situ model. Moreover, astaxanthin uptake in the small intestine of CD36 knockout mice was significantly reduced by 88.22%. Furthermore, the inhibition or knockout of CD36 suppressed the expression of other transporters (SR-BI and NPC1L1). Interestingly, CD36 was also involved in the downstream secretion pathway, which is manifested by interfering with the expression of related proteins (ERK1/2, MTP, ApoB48, and ApoAI). Therefore, these results indicate the important role of CD36 in astaxanthin transmembrane transport for the first time, providing vital exploration way for the absorption of dietary fat-soluble substances.
Collapse
Affiliation(s)
- Xiaojuan Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| | - Junlin Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zhiqing Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Aimei Zhou
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yongshui Fu
- Institute of Blood Transfusion, Guangzhou Blood Center, Guangzhou 510095, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
38
|
Zhang M, Bai X, Du Q, Xu J, Wang D, Chen L, Dong K, Chen Z, Yang J. The Different Mechanisms of Lipid Accumulation in Hepatocytes Induced by Oleic Acid/Palmitic Acid and High-Fat Diet. Molecules 2023; 28:6714. [PMID: 37764494 PMCID: PMC10536454 DOI: 10.3390/molecules28186714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the primary chronic liver disease worldwide, mainly manifested by hepatic steatosis. Hepatic lipids may be derived from dietary intake, plasma free fatty acid (FFA) uptake, or hepatic de novo lipogenesis (DNL). Currently, cellular and animal models of hepatocellular steatosis are widely used to study the pathogenesis of NAFLD and to investigate therapeutic agents. However, whether there are differences between the in vivo and in vitro models of the mechanisms that cause lipid accumulation has not been reported. We used OA/PA-induced NCTC 1469 cells and high-fat-diet-fed C57BL/6J mice to simulate a hepatocyte steatosis model of NAFLD and to detect indicators related to FFA uptake and DNL. In addition, when serological indicators were analysed in the mouse model, it was found that serum FASN levels decreased. The results revealed that, in the cellular model, indicators related to DNL were decreased, FASN enzyme activity was unchanged, and indicators related to FFA uptake were increased, including the high expression of CD36; while, in the animal model, indicators related to both FFA uptake and de novo synthesis were increased, including the high expression of CD36 and the increased protein levels of FASN with enhanced enzyme activity. In addition, after an analysis of the serological indicators in the mouse model, it was found that the serum levels of FASN were reduced. In conclusion, the OA/PA-induced cellular model can be used to study the mechanism of FFA uptake, whereas the high-fat-diet-induced mouse model can be used to study the mechanism of FFA uptake and DNL. Combined treatment with CD36 and FASN may be more effective against NAFLD. FASN in the serum can be used as one of the indicators for the clinical diagnosis of NAFLD.
Collapse
Affiliation(s)
- Miao Zhang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101400, China; (M.Z.); (X.B.); (Q.D.); (J.X.); (D.W.); (L.C.); (K.D.)
| | - Xue Bai
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101400, China; (M.Z.); (X.B.); (Q.D.); (J.X.); (D.W.); (L.C.); (K.D.)
| | - Qian Du
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101400, China; (M.Z.); (X.B.); (Q.D.); (J.X.); (D.W.); (L.C.); (K.D.)
| | - Jiaojiao Xu
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101400, China; (M.Z.); (X.B.); (Q.D.); (J.X.); (D.W.); (L.C.); (K.D.)
| | - Danqing Wang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101400, China; (M.Z.); (X.B.); (Q.D.); (J.X.); (D.W.); (L.C.); (K.D.)
| | - Lei Chen
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101400, China; (M.Z.); (X.B.); (Q.D.); (J.X.); (D.W.); (L.C.); (K.D.)
| | - Keting Dong
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101400, China; (M.Z.); (X.B.); (Q.D.); (J.X.); (D.W.); (L.C.); (K.D.)
| | - Ziyue Chen
- School of Nursing, Capital Medical University, Beijing 100069, China;
| | - Jianhong Yang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101400, China; (M.Z.); (X.B.); (Q.D.); (J.X.); (D.W.); (L.C.); (K.D.)
| |
Collapse
|
39
|
Chen L, Wang Y, Hu Q, Liu Y, Qi X, Tang Z, Hu H, Lin N, Zeng S, Yu L. Unveiling tumor immune evasion mechanisms: abnormal expression of transporters on immune cells in the tumor microenvironment. Front Immunol 2023; 14:1225948. [PMID: 37545500 PMCID: PMC10401443 DOI: 10.3389/fimmu.2023.1225948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023] Open
Abstract
The tumor microenvironment (TME) is a crucial driving factor for tumor progression and it can hinder the body's immune response by altering the metabolic activity of immune cells. Both tumor and immune cells maintain their proliferative characteristics and physiological functions through transporter-mediated regulation of nutrient acquisition and metabolite efflux. Transporters also play an important role in modulating immune responses in the TME. In this review, we outline the metabolic characteristics of the TME and systematically elaborate on the effects of abundant metabolites on immune cell function and transporter expression. We also discuss the mechanism of tumor immune escape due to transporter dysfunction. Finally, we introduce some transporter-targeted antitumor therapeutic strategies, with the aim of providing new insights into the development of antitumor drugs and rational drug usage for clinical cancer therapy.
Collapse
Affiliation(s)
- Lu Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang, Department of Clinical Pharmacy, Affiliated Hangzhou First People’s Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuchen Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qingqing Hu
- The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Jinhua, China
| | - Yuxi Liu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xuchen Qi
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhihua Tang
- Department of Pharmacy, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Haihong Hu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Nengming Lin
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang, Department of Clinical Pharmacy, Affiliated Hangzhou First People’s Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Pharmacy, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, China
- Department of Pharmacy, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
40
|
Peche VS, Pietka TA, Jacome-Sosa M, Samovski D, Palacios H, Chatterjee-Basu G, Dudley AC, Beatty W, Meyer GA, Goldberg IJ, Abumrad NA. Endothelial cell CD36 regulates membrane ceramide formation, exosome fatty acid transfer and circulating fatty acid levels. Nat Commun 2023; 14:4029. [PMID: 37419919 PMCID: PMC10329018 DOI: 10.1038/s41467-023-39752-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/28/2023] [Indexed: 07/09/2023] Open
Abstract
Endothelial cell (EC) CD36 controls tissue fatty acid (FA) uptake. Here we examine how ECs transfer FAs. FA interaction with apical membrane CD36 induces Src phosphorylation of caveolin-1 tyrosine-14 (Cav-1Y14) and ceramide generation in caveolae. Ensuing fission of caveolae yields vesicles containing FAs, CD36 and ceramide that are secreted basolaterally as small (80-100 nm) exosome-like extracellular vesicles (sEVs). We visualize in transwells EC transfer of FAs in sEVs to underlying myotubes. In mice with EC-expression of the exosome marker emeraldGFP-CD63, muscle fibers accumulate circulating FAs in emGFP-labeled puncta. The FA-sEV pathway is mapped through its suppression by CD36 depletion, blocking actin-remodeling, Src inhibition, Cav-1Y14 mutation, and neutral sphingomyelinase 2 inhibition. Suppression of sEV formation in mice reduces muscle FA uptake, raises circulating FAs, which remain in blood vessels, and lowers glucose, mimicking prominent Cd36-/- mice phenotypes. The findings show that FA uptake influences membrane ceramide, endocytosis, and EC communication with parenchymal cells.
Collapse
Affiliation(s)
- V S Peche
- Department of Medicine, Division of Nutritional Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - T A Pietka
- Department of Medicine, Division of Nutritional Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - M Jacome-Sosa
- Department of Medicine, Division of Nutritional Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - D Samovski
- Department of Medicine, Division of Nutritional Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - H Palacios
- Department of Medicine, Division of Nutritional Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - G Chatterjee-Basu
- Department of Medicine, Division of Nutritional Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - A C Dudley
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, 22908, USA
| | - W Beatty
- Department of Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - G A Meyer
- Departments of Physical Therapy, Neurology and Orthopedic Surgery, Washington University School of Medicine, St. Louis, 63110, USA
| | - I J Goldberg
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - N A Abumrad
- Department of Medicine, Division of Nutritional Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
41
|
Feng WW, Zuppe HT, Kurokawa M. The Role of CD36 in Cancer Progression and Its Value as a Therapeutic Target. Cells 2023; 12:1605. [PMID: 37371076 PMCID: PMC10296821 DOI: 10.3390/cells12121605] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Cluster of differentiation 36 (CD36) is a cell surface scavenger receptor that plays critical roles in many different types of cancer, notably breast, brain, and ovarian cancers. While it is arguably most well-known for its fatty acid uptake functions, it is also involved in regulating cellular adhesion, immune response, and apoptosis depending on the cellular and environmental contexts. Here, we discuss the multifaceted role of CD36 in cancer biology, such as its role in mediating metastasis, drug resistance, and immune evasion to showcase its potential as a therapeutic target. We will also review existing approaches to targeting CD36 in pre-clinical studies, as well as discuss the only CD36-targeting drug to advance to late-stage clinical trials, VT1021. Given the roles of CD36 in the etiology of metabolic disorders, such as atherosclerosis, diabetes, and non-alcoholic fatty liver disease, the clinical implications of CD36-targeted therapy are wide-reaching, even beyond cancer.
Collapse
Affiliation(s)
- William W. Feng
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Hannah T. Zuppe
- School of Biomedical Sciences, Kent State University, Kent, OH 44240, USA
| | - Manabu Kurokawa
- School of Biomedical Sciences, Kent State University, Kent, OH 44240, USA
- Department of Biological Sciences, Kent State University, Kent, OH 44240, USA
| |
Collapse
|
42
|
Nóbrega-Pereira S, Santos F, Oliveira Santos M, Serafim TL, Lopes AP, Coutinho D, Carvalho FS, Domingues RM, Domingues P, Bernardes de Jesus B, Morais VA, Dias S. Mitochondrial Metabolism Drives Low-density Lipoprotein-induced Breast Cancer Cell Migration. CANCER RESEARCH COMMUNICATIONS 2023; 3:709-724. [PMID: 37377750 PMCID: PMC10132314 DOI: 10.1158/2767-9764.crc-22-0394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/17/2023] [Accepted: 03/29/2023] [Indexed: 06/29/2023]
Abstract
Most cancer-related deaths are due to metastases. Systemic factors, such as lipid-enriched environments [as low-density lipoprotein (LDL)-cholesterol], favor breast cancer, including triple-negative breast cancer (TNBC) metastasis formation. Mitochondria metabolism impacts TNBC invasive behavior but its involvement in a lipid-enriched setting is undisclosed. Here we show that LDL increases lipid droplets, induces CD36 and augments TNBC cells migration and invasion in vivo and in vitro. LDL induces higher mitochondrial mass and network spread in migrating cells, in an actin remodeling-dependent manner, and transcriptomic and energetic analyses revealed that LDL renders TNBC cells dependent on fatty acids (FA) usage for mitochondrial respiration. Indeed, engagement on FA transport into the mitochondria is required for LDL-induced migration and mitochondrial remodeling. Mechanistically, LDL treatment leads to mitochondrial long-chain fatty acid accumulation and increased reactive oxygen species (ROS) production. Importantly, CD36 or ROS blockade abolished LDL-induced cell migration and mitochondria metabolic adaptations. Our data suggest that LDL induces TNBC cells migration by reprogramming mitochondrial metabolism, revealing a new vulnerability in metastatic breast cancer. Significance LDL induces breast cancer cell migration that relies on CD36 for mitochondrial metabolism and network remodeling, providing an antimetastatic metabolic strategy.
Collapse
Affiliation(s)
- Sandrina Nóbrega-Pereira
- Instituto de Medicina Molecular João Lobo Antunes, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
- Instituto de Biomedicina (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Francisco Santos
- Instituto de Biomedicina (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Miguel Oliveira Santos
- Instituto de Medicina Molecular João Lobo Antunes, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Teresa L. Serafim
- Instituto de Medicina Molecular João Lobo Antunes, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Ana Patrícia Lopes
- Instituto de Medicina Molecular João Lobo Antunes, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Diogo Coutinho
- Instituto de Medicina Molecular João Lobo Antunes, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Filipa S. Carvalho
- Instituto de Medicina Molecular João Lobo Antunes, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Rosário M. Domingues
- Mass Spectrometry Center, QOPNA, University of Aveiro, Aveiro, Portugal
- Department of Chemistry and CESAM&ECOMARE, University of Aveiro, Aveiro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Center, QOPNA, University of Aveiro, Aveiro, Portugal
| | - Bruno Bernardes de Jesus
- Instituto de Biomedicina (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Vanessa A. Morais
- Instituto de Medicina Molecular João Lobo Antunes, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Sérgio Dias
- Instituto de Medicina Molecular João Lobo Antunes, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
43
|
Suprewicz Ł, Skłodowski K, Walewska A, Deptuła P, Sadzyńska A, Eljaszewicz A, Moniuszko M, Janmey PA, Bucki R. Plasma Gelsolin Enhances Phagocytosis of Candida auris by Human Neutrophils through Scavenger Receptor Class B. Microbiol Spectr 2023; 11:e0408222. [PMID: 36802172 PMCID: PMC10101141 DOI: 10.1128/spectrum.04082-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/30/2023] [Indexed: 02/23/2023] Open
Abstract
In addition to its role as an actin-depolymerizing factor in the blood, plasma gelsolin (pGSN) binds bacterial molecules and stimulates the phagocytosis of bacteria by macrophages. Here, using an in vitro system, we assessed whether pGSN could also stimulate phagocytosis of the fungal pathogen Candida auris by human neutrophils. The extraordinary ability of C. auris to evade immune responses makes it particularly challenging to eradicate in immunocompromised patients. We demonstrate that pGSN significantly enhances C. auris uptake and intracellular killing. Stimulation of phagocytosis was accompanied by decreased neutrophil extracellular trap (NET) formation and reduced secretion of proinflammatory cytokines. Gene expression studies revealed pGSN-dependent upregulation of scavenger receptor class B (SR-B). Inhibition of SR-B using sulfosuccinimidyl oleate (SSO) and block lipid transport-1 (BLT-1) decreased the ability of pGSN to enhance phagocytosis, indicating that pGSN potentiates the immune response through an SR-B-dependent pathway. These results suggest that the response of the host's immune system during C. auris infection may be enhanced by the administration of recombinant pGSN. IMPORTANCE The incidence of life-threatening multidrug-resistant Candida auris infections is rapidly growing, causing substantial economic costs due to outbreaks in hospital wards. Primary and secondary immunodeficiencies in susceptible individuals, such as those with leukemia, solid organ transplants, diabetes, and ongoing chemotherapy, often correlate with decreased plasma gelsolin concentration (hypogelsolinemia) and impairment of innate immune responses due to severe leukopenia. Immunocompromised patients are predisposed to superficial and invasive fungal infections. Morbidity caused by C. auris among immunocompromised patients can be as great as 60%. In the era of ever-growing fungal resistance in an aging society, it is critical to seek novel immunotherapies that may help combat these infections. The results reported here suggest the possibility of using pGSN as an immunomodulator of the immune response by neutrophils during C. auris infection.
Collapse
Affiliation(s)
- Łukasz Suprewicz
- Department of Medical Microbiology and Biomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Karol Skłodowski
- Department of Medical Microbiology and Biomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Alicja Walewska
- Department of Regenerative Medicine and Immune Regulation, Medical University of Białystok, Białystok, Poland
| | - Piotr Deptuła
- Department of Medical Microbiology and Biomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Alicja Sadzyńska
- Prof. Edward F. Szczepanik State Vocational University—Suwałki, Suwałki, Poland
| | - Andrzej Eljaszewicz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Białystok, Białystok, Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Białystok, Białystok, Poland
| | - Paul A. Janmey
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert Bucki
- Department of Medical Microbiology and Biomedical Engineering, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
44
|
Samovski D, Jacome-Sosa M, Abumrad NA. Fatty Acid Transport and Signaling: Mechanisms and Physiological Implications. Annu Rev Physiol 2023; 85:317-337. [PMID: 36347219 DOI: 10.1146/annurev-physiol-032122-030352] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Long-chain fatty acids (FAs) are components of plasma membranes and an efficient fuel source and also serve as metabolic regulators through FA signaling mediated by membrane FA receptors. Impaired tissue FA uptake has been linked to major complications of obesity, including insulin resistance, cardiovascular disease, and type 2 diabetes. Fatty acid interactions with a membrane receptor and the initiation of signaling can modify pathways related to nutrient uptake and processing, cell proliferation or differentiation, and secretion of bioactive factors. Here, we review the major membrane receptors involved in FA uptake and FA signaling. We focus on two types of membrane receptors for long-chain FAs: CD36 and the G protein-coupled FA receptors FFAR1 and FFAR4. We describe key signaling pathways and metabolic outcomes for CD36, FFAR1, and FFAR4 and highlight the parallels that provide insight into FA regulation of cell function.
Collapse
Affiliation(s)
- Dmitri Samovski
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA;
| | - Miriam Jacome-Sosa
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA;
| | - Nada A Abumrad
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA; .,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
45
|
Liu H, Ju A, Dong X, Luo Z, Tang J, Ma B, Fu Y, Luo Y. Young and undamaged recombinant albumin alleviates T2DM by improving hepatic glycolysis through EGFR and protecting islet β cells in mice. J Transl Med 2023; 21:89. [PMID: 36747238 PMCID: PMC9903539 DOI: 10.1186/s12967-023-03957-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Albumin is the most abundant protein in serum and serves as a transporter of free fatty acids (FFA) in blood vessels. In type 2 diabetes mellitus (T2DM) patients, the reduced serum albumin level is a risk factor for T2DM development and progression, although this conclusion is controversial. Moreover, there is no study on the effects and mechanisms of albumin administration to relieve T2DM. We examined whether the administration of young and undamaged recombinant albumin can alleviate T2DM in mice. METHODS The serum albumin levels and metabolic phenotypes including fasting blood glucose, glucose tolerance tests, and glucose-stimulated insulin secretion were studied in db/db mice or diet-induced obesity mice treated with saline or young, undamaged, and ultrapure rMSA. Apoptosis assays were performed at tissue and cell levels to determine the function of rMSA on islet β cell protection. Metabolic flux and glucose uptake assays were employed to investigate metabolic changes in saline-treated or rMSA-treated mouse hepatocytes and compared their sensitivity to insulin treatments. RESULTS In this study, treatment of T2DM mice with young, undamaged, and ultrapure recombinant mouse serum albumin (rMSA) increased their serum albumin levels, which resulted in a reversal of the disease including reduced fasting blood glucose levels, improved glucose tolerance, increased glucose-stimulated insulin secretion, and alleviated islet atrophy. At the cellular level, rMSA improved glucose uptake and glycolysis in hepatocytes. Mechanistically, rMSA reduced the binding between CAV1 and EGFR to increase EGFR activation leading to PI3K-AKT activation. Furthermore, rMSA extracellularly reduced the rate of fatty acid uptake by islet β-cells, which relieved the accumulation of intracellular ceramide, endoplasmic reticulum stress, and apoptosis. This study provided the first clear demonstration that injections of rMSA can alleviate T2DM in mice. CONCLUSION Our study demonstrates that increasing serum albumin levels can promote glucose homeostasis and protect islet β cells, which alleviates T2DM.
Collapse
Affiliation(s)
- Hongyi Liu
- grid.12527.330000 0001 0662 3178School of Life Sciences, Tsinghua University, Beijing, 100084 China ,grid.452723.50000 0004 7887 9190Tsinghua-Peking Joint Center for Life Sciences, Beijing, 100084 China ,The National Engineering Research Center for Protein Technology, Beijing, 100084 China ,Beijing Key Laboratory for Protein Therapeutics, Beijing, 100084 China
| | - Anji Ju
- grid.12527.330000 0001 0662 3178School of Life Sciences, Tsinghua University, Beijing, 100084 China ,The National Engineering Research Center for Protein Technology, Beijing, 100084 China ,Beijing Key Laboratory for Protein Therapeutics, Beijing, 100084 China
| | - Xuan Dong
- grid.12527.330000 0001 0662 3178School of Life Sciences, Tsinghua University, Beijing, 100084 China ,The National Engineering Research Center for Protein Technology, Beijing, 100084 China ,Beijing Key Laboratory for Protein Therapeutics, Beijing, 100084 China
| | - Zongrui Luo
- grid.12527.330000 0001 0662 3178School of Life Sciences, Tsinghua University, Beijing, 100084 China ,The National Engineering Research Center for Protein Technology, Beijing, 100084 China ,Beijing Key Laboratory for Protein Therapeutics, Beijing, 100084 China
| | - Jiaze Tang
- grid.12527.330000 0001 0662 3178School of Life Sciences, Tsinghua University, Beijing, 100084 China ,The National Engineering Research Center for Protein Technology, Beijing, 100084 China ,Beijing Key Laboratory for Protein Therapeutics, Beijing, 100084 China
| | - Boyuan Ma
- grid.12527.330000 0001 0662 3178School of Life Sciences, Tsinghua University, Beijing, 100084 China ,The National Engineering Research Center for Protein Technology, Beijing, 100084 China ,Beijing Key Laboratory for Protein Therapeutics, Beijing, 100084 China
| | - Yan Fu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China. .,The National Engineering Research Center for Protein Technology, Beijing, 100084, China. .,Beijing Key Laboratory for Protein Therapeutics, Beijing, 100084, China. .,School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yongzhang Luo
- School of Life Sciences, Tsinghua University, Beijing, 100084, China. .,Tsinghua-Peking Joint Center for Life Sciences, Beijing, 100084, China. .,The National Engineering Research Center for Protein Technology, Beijing, 100084, China. .,Beijing Key Laboratory for Protein Therapeutics, Beijing, 100084, China. .,School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
46
|
Jia Y, Zhu Y, Wang R, Ye Q, Xu D, Zhang W, Zhang Y, Shan G, Zhu L. Novel insights into the mediating roles of cluster of differentiation 36 in transmembrane transport and tissue partition of per- and polyfluoroalkyl substances in mice. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130129. [PMID: 36303356 DOI: 10.1016/j.jhazmat.2022.130129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Transmembrane transport is important for bioaccumulation of per- and polyfluoroalkyl substances (PFASs) in organisms, but has not yet been well understood. Here, the roles of cluster of differentiation 36 (CD36) in accumulation of PFASs were investigated. CD36 was overexpressed in Escherichia coli to get CD36-BL21 strain, and the binding affinities of 20 PFASs with CD36 were determined by microscale thermophoresis, which grew up to 17.5 μM with increasing carbon chain length. Consequently, the accumulation of most PFASs was remarkably promoted in CD36-BL21 in comparison to the wild strain, and the enhancement was proportional to their binding affinities with CD36 (r = -0.96). However, this effect was depressed greatly as CD36 was inhibited by sulfo-N-succinimidyl oleate (SSO). Additionally, as the mice received SSO pretreatment before they were exposed to perfluorododecanoic acid, its accumulation in the tissues rich in CD36, such as liver, was suppressed, but increased by 1.1 times in the serum. These indicated that CD36 played critical roles in the transmembrane transport and tissue partition of PFASs in organisms. The developed relationship between liver-blood partition of PFASs and their binding affinities with intracellular proteins was distinctly improved by incorporating that with CD36 (r = -0.97).
Collapse
Affiliation(s)
- Yibo Jia
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin 300350, PR China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin 300350, PR China; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Yumin Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin 300350, PR China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin 300350, PR China; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Rouyi Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin 300350, PR China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin 300350, PR China; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Qingqing Ye
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin 300350, PR China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin 300350, PR China; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Dashan Xu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin 300350, PR China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin 300350, PR China; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Wei Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin 300350, PR China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin 300350, PR China; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Yanfeng Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin 300350, PR China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin 300350, PR China; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Guoqiang Shan
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin 300350, PR China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin 300350, PR China; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin 300350, PR China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin 300350, PR China; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| |
Collapse
|
47
|
Yang R, Liu Q, Zhang M. The Past and Present Lives of the Intraocular Transmembrane Protein CD36. Cells 2022; 12:cells12010171. [PMID: 36611964 PMCID: PMC9818597 DOI: 10.3390/cells12010171] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Cluster of differentiation 36 (CD36) belongs to the B2 receptors of the scavenger receptor class B family, which is comprised of single-chain secondary transmembrane glycoproteins. It is present in a variety of cell types, including monocytes, macrophages, microvascular endothelial cells, adipocytes, hepatocytes, platelets, skeletal muscle cells, kidney cells, cardiomyocytes, taste bud cells, and a variety of other cell types. CD36 can be localized on the cell surface, mitochondria, endoplasmic reticulum, and endosomes, playing a role in lipid accumulation, oxidative stress injury, apoptosis, and inflammatory signaling. Recent studies have found that CD36 is expressed in a variety of ocular cells, including retinal pigment epithelium (RPE), retinal microvascular endothelial cells, retinal ganglion cells (RGC), Müller cells, and photoreceptor cells, playing an important role in eye diseases, such as age-related macular degeneration (AMD), diabetic retinopathy (DR), and glaucoma. Therefore, a comprehensive understanding of CD36 function and downstream signaling pathways is of great significance for the prevention and treatment of eye diseases. This article reviews the molecular characteristics, distribution, and function of scavenger receptor CD36 and its role in ophthalmology in order to deepen the understanding of CD36 in eye diseases and provide new ideas for treatment strategies.
Collapse
Affiliation(s)
- Rucui Yang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China
- Department of Ophthalmology, Shantou University Medical College, Shantou University, Shantou 515041, China
| | - Qingping Liu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China
| | - Mingzhi Zhang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China
| |
Collapse
|
48
|
Zierfuss B, Buda A, Villoria-González A, Logist M, Fabjan J, Parzer P, Battin C, Vandersteene S, Dijkstra IME, Waidhofer-Söllner P, Grabmeier-Pfistershammer K, Steinberger P, Kemp S, Forss-Petter S, Berger J, Weinhofer I. Saturated very long-chain fatty acids regulate macrophage plasticity and invasiveness. J Neuroinflammation 2022; 19:305. [PMID: 36528616 PMCID: PMC9759912 DOI: 10.1186/s12974-022-02664-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022] Open
Abstract
Saturated very long-chain fatty acids (VLCFA, ≥ C22), enriched in brain myelin and innate immune cells, accumulate in X-linked adrenoleukodystrophy (X-ALD) due to inherited dysfunction of the peroxisomal VLCFA transporter ABCD1. In its severest form, X-ALD causes cerebral myelin destruction with infiltration of pro-inflammatory skewed monocytes/macrophages. How VLCFA levels relate to macrophage activation is unclear. Here, whole transcriptome sequencing of X-ALD macrophages indicated that VLCFAs prime human macrophage membranes for inflammation and increased expression of factors involved in chemotaxis and invasion. When added externally to mimic lipid release in demyelinating X-ALD lesions, VLCFAs did not activate toll-like receptors in primary macrophages. In contrast, VLCFAs provoked pro-inflammatory responses through scavenger receptor CD36-mediated uptake, cumulating in JNK signalling and expression of matrix-degrading enzymes and chemokine release. Following pro-inflammatory LPS activation, VLCFA levels increased also in healthy macrophages. With the onset of the resolution, VLCFAs were rapidly cleared in control macrophages by increased peroxisomal VLCFA degradation through liver-X-receptor mediated upregulation of ABCD1. ABCD1 deficiency impaired VLCFA homeostasis and prolonged pro-inflammatory gene expression upon LPS treatment. Our study uncovers a pivotal role for ABCD1, a protein linked to neuroinflammation, and associated peroxisomal VLCFA degradation in regulating macrophage plasticity.
Collapse
Affiliation(s)
- Bettina Zierfuss
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
- Department of Neuroscience, Centre de Recherche du CHUM, Université de Montréal, Montréal, H2X 0A9, Canada
| | - Agnieszka Buda
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Andrea Villoria-González
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Maxime Logist
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
- Department of Chronic Diseases and Metabolism, Translational Research in GastroIntestinal Disorders, KU Leuven, 3000, Leuven, Belgium
| | - Jure Fabjan
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Patricia Parzer
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Claire Battin
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Streggi Vandersteene
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Inge M E Dijkstra
- Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam Gastroenterology Endocrinology Metabolism, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Petra Waidhofer-Söllner
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Katharina Grabmeier-Pfistershammer
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Stephan Kemp
- Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam Gastroenterology Endocrinology Metabolism, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Isabelle Weinhofer
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria.
| |
Collapse
|
49
|
Chu Q, An J, Liu P, Song Y, Zhai X, Yang R, Niu J, Yang C, Li B. Repurposing a tricyclic antidepressant in tumor and metabolism disease treatment through fatty acid uptake inhibition. J Exp Med 2022; 220:213757. [PMID: 36520461 PMCID: PMC9757841 DOI: 10.1084/jem.20221316] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/17/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Fatty acid uptake is essential for cell physiological function, but detailed mechanisms remain unclear. Here, we generated an acetyl-CoA carboxylases (ACC1/2) double-knockout cell line, which lacked fatty acid biosynthesis and survived on serum fatty acids and was used to screen for fatty acid uptake inhibitors. We identified a Food and Drug Administration-approved tricyclic antidepressant, nortriptyline, that potently blocked fatty acid uptake both in vitro and in vivo. We also characterized underlying mechanisms whereby nortriptyline provoked lysosomes to release protons and induce cell acidification to suppress macropinocytosis, which accounted for fatty acid endocytosis. Furthermore, nortriptyline alone or in combination with ND-646, a selective ACC1/2 inhibitor, significantly repressed tumor growth, lipogenesis, and hepatic steatosis in mice. Therefore, we show that cells actively take up fatty acids through macropinocytosis, and we provide a potential strategy suppressing tumor growth, lipogenesis, and hepatic steatosis through controlling the cellular level of fatty acids.
Collapse
Affiliation(s)
- Qiaoyun Chu
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China
| | - Jing An
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China
| | - Ping Liu
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China
| | - Yihan Song
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China
| | - Xuewei Zhai
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China
| | - Ronghui Yang
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China,Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Jing Niu
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China
| | - Chuanzhen Yang
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China
| | - Binghui Li
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China,Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China,Department of Cancer Cell Biology and National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China,Correspondence to Binghui Li:
| |
Collapse
|
50
|
Kobayashi Y, Watanabe N, Hiura R, Kubota M, Furuta K, Sugimoto K, Murota K, Nakamura E, Matsuura T, Kai K, Inui T, Kitakaze T, Harada N, Yamaji R. Transport Form and Pathway from the Intestine to the Peripheral Tissues and the Intestinal Absorption and Metabolism Properties of Oleamide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15499-15508. [PMID: 36458736 DOI: 10.1021/acs.jafc.2c06791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This study aimed to obtain information on the transport form and pathway from the intestine to the peripheral tissues and on the intestinal absorption and metabolism properties of oleamide (cis-9-octadecenamide). Oleamide was primarily transported via the portal vein. Density gradient centrifugation indicated that plasma oleamide was enriched in the fractions containing albumin in the portal and peripheral blood. Oleamide formed a complex with albumin in an endothermic reaction (apparent Kd = 4.4 μM). The CD36 inhibitor inhibited the oleamide uptake into the intestinal epithelial Caco-2 cells, and oleamide decreased the cell surface CD36 level. The fatty acid amide hydrolase (FAAH) inhibitor increased the transepithelial transport of oleamide across Caco-2 cells and the plasma oleamide concentration in mice intragastrically administered with oleamide. These results indicate that oleamide is transported primarily via the portal vein as a complex with albumin. Furthermore, we suggest that oleamide is taken up via CD36 in the small intestine and degraded intracellularly by FAAH.
Collapse
Affiliation(s)
- Yasuyuki Kobayashi
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 5998531, Japan
| | - Natsumi Watanabe
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 5998531, Japan
| | - Reina Hiura
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka 5998531, Japan
| | - Mai Kubota
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 5998531, Japan
| | - Kousuke Furuta
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 5998531, Japan
| | - Keiichiro Sugimoto
- Research and Development Center, Nagaoka Co., Ltd., Ibaraki, Osaka 5670005, Japan
- Center for Research and Development of Bioresources, Osaka Metropolitan University, Sakai, Osaka 5998531, Japan
| | - Kaeko Murota
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University, Matsue, Shimane 6908504, Japan
| | - Eri Nakamura
- Department of Innovative Food Sciences, School of Food Sciences and Nutrition, Mukogawa Women's University, Nishinomiya, Hyogo 6638558, Japan
| | - Toshiki Matsuura
- Department of Innovative Food Sciences, School of Food Sciences and Nutrition, Mukogawa Women's University, Nishinomiya, Hyogo 6638558, Japan
| | - Kenji Kai
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 5998531, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka 5998531, Japan
| | - Takashi Inui
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 5998531, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka 5998531, Japan
| | - Tomoya Kitakaze
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 5998531, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka 5998531, Japan
| | - Naoki Harada
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 5998531, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka 5998531, Japan
| | - Ryoichi Yamaji
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 5998531, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka 5998531, Japan
- Center for Research and Development of Bioresources, Osaka Metropolitan University, Sakai, Osaka 5998531, Japan
| |
Collapse
|