1
|
Chang TT, Li YZ, Mo HW, Chen C, Lin LY, Chang CC, Chen JW. Inhibition of CCL7 improves endothelial dysfunction and vasculopathy in mouse models of diabetes mellitus. Sci Transl Med 2024; 16:eadn1507. [PMID: 39231238 DOI: 10.1126/scitranslmed.adn1507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 05/05/2024] [Accepted: 08/13/2024] [Indexed: 09/06/2024]
Abstract
Diabetic vascular disease is a major complication of diabetes mellitus (DM). Chemokine C-C motif ligand 7 (CCL7) attracts macrophages and monocytes, amplifying inflammatory processes in the vasculature. We hypothesized a causal role for CCL7 in diabetic vasculopathy. CCL7 concentrations were higher in the plasma of patients with type 2 DM, as well as in supernatants from their endothelial progenitor cells (EPCs). High-glucose stimulation increased the secretion of CCL7 from human dermal microvascular endothelial cells (HDMECs) through the c-Fos and c-Jun signaling pathways. CCL7 inhibition using knockdown or neutralization antibody treatment reversed the high glucose-induced impaired tube formation and migration abilities of EPCs, human aortic endothelial cells, human coronary artery endothelial cells, and HDMECs. Administration of recombinant human CCL7 protein impaired tube formation and migration abilities by down-regulating the AKT-endothelial nitric oxide synthase and AKT/nuclear factor erythroid 2-related factor 2/heme oxygenase-1/vascular endothelial growth factor/stromal cell-derived factor-1 pathways and by up-regulating ERK/phosphorylated p65/interleukin-1β/interleukin-6/tumor necrosis factor-α pathways through CC chemokine receptor 3 in endothelial cells. Ccl7 knockout in streptozotocin-treated mice showed improved neovasculogenesis in ischemic limbs and accelerated wound repair, with increased circulating EPCs and capillary density. CCL7 antibody treatment in db/db mice and high-fat diet-induced hyperglycemia mice showed improved neovasculogenesis in ischemic limbs and wound areas, accompanied by up-regulation of angiogenic proteins and down-regulation of inflammatory proteins. Endothelial cell-specific Ccl7-knockout mice showed ameliorated diabetic vasculopathy in streptozotocin-induced DM. This study highlights the potential of CCL7 as a therapeutic target for diabetic vasculopathy.
Collapse
Affiliation(s)
- Ting-Ting Chang
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Cardiovascular Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - You-Zhen Li
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Hsiao-Wei Mo
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Ching Chen
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Liang-Yu Lin
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Chia-Chi Chang
- Faculty of Medicine, Colleague of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Jaw-Wen Chen
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Cardiovascular Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
- Faculty of Medicine, Colleague of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
2
|
Choi Y, Saron WA, O'Neill A, Senanayake M, Wilder-Smith A, Rathore AP, St John AL. NKT cells promote Th1 immune bias to dengue virus that governs long-term protective antibody dynamics. J Clin Invest 2024; 134:e169251. [PMID: 39088280 PMCID: PMC11405039 DOI: 10.1172/jci169251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/23/2024] [Indexed: 08/03/2024] Open
Abstract
NKT cells are innate-like T cells, recruited to the skin during viral infection, yet their contributions to long-term immune memory to viruses are unclear. We identified granzyme K, a product made by cytotoxic cells including NKT cells, as linked to induction of Th1-associated antibodies during primary dengue virus (DENV) infection in humans. We examined the role of NKT cells in vivo using DENV-infected mice lacking CD1d-dependent (CD1ddep) NKT cells. In CD1d-KO mice, Th1-polarized immunity and infection resolution were impaired, which was dependent on intrinsic NKT cell production of IFN-γ, since it was restored by adoptive transfer of WT but not IFN-γ-KO NKT cells. Furthermore, NKT cell deficiency triggered immune bias, resulting in higher levels of Th2-associated IgG1 than Th1-associated IgG2a, which failed to protect against a homologous DENV rechallenge and promoted antibody-dependent enhanced disease during secondary heterologous infections. Similarly, Th2 immunity, typified by a higher IgG4/IgG3 ratio, was associated with worsened human disease severity during secondary infections. Thus, CD1ddep NKT cells establish Th1 polarity during the early innate response to DENV, which promotes infection resolution, memory formation, and long-term protection from secondary homologous and heterologous infections in mice, with consistent associations observed in humans. These observations illustrate how early innate immune responses during primary infections can influence secondary infection outcomes.
Collapse
Affiliation(s)
- Youngjoo Choi
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore
| | - Wilfried Aa Saron
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore
| | - Aled O'Neill
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore
| | - Manouri Senanayake
- Department of Paediatrics, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
- Lady Ridgeway Children's Hospital, Colombo, Sri Lanka
| | - Annelies Wilder-Smith
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Abhay Ps Rathore
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Ashley L St John
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- SingHealth Duke-NUS Global Health Institute, Singapore
| |
Collapse
|
3
|
Yu X, Duan G, Pei P, Chen L, Gu R, Hu W, Zhang H, Wang YD, Gong L, Liu L, Chu TT, Li JP, Luo SZ. Heparan sulfate-dependent phase separation of CCL5 and its chemotactic activity. eLife 2024; 13:RP93871. [PMID: 38949655 PMCID: PMC11216747 DOI: 10.7554/elife.93871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
Secreted chemokines form concentration gradients in target tissues to control migratory directions and patterns of immune cells in response to inflammatory stimulation; however, how the gradients are formed is much debated. Heparan sulfate (HS) binds to chemokines and modulates their activities. In this study, we investigated the roles of HS in the gradient formation and chemoattractant activity of CCL5 that is known to bind to HS. CCL5 and heparin underwent liquid-liquid phase separation and formed gradient, which was confirmed using CCL5 immobilized on heparin-beads. The biological implication of HS in CCL5 gradient formation was established in CHO-K1 (wild-type) and CHO-677 (lacking HS) cells by Transwell assay. The effect of HS on CCL5 chemoattractant activity was further proved by Transwell assay of human peripheral blood cells. Finally, peritoneal injection of the chemokines into mice showed reduced recruitment of inflammatory cells either by mutant CCL5 (lacking heparin-binding sequence) or by addition of heparin to wild-type CCL5. Our experimental data propose that co-phase separation of CCL5 with HS establishes a specific chemokine concentration gradient to trigger directional cell migration. The results warrant further investigation on other heparin-binding chemokines and allows for a more elaborate insight into disease process and new treatment strategies.
Collapse
Affiliation(s)
- Xiaolin Yu
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical TechnologyBeijingChina
| | - Guangfei Duan
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical TechnologyBeijingChina
| | - Pengfei Pei
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical TechnologyBeijingChina
| | - Long Chen
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical TechnologyBeijingChina
| | - Renji Gu
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical TechnologyBeijingChina
| | - Wenrui Hu
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical TechnologyBeijingChina
| | - Hongli Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical TechnologyBeijingChina
| | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical TechnologyBeijingChina
| | - Lili Gong
- Institute of Medical Science, China-Japan Friendship HospitalBeijingChina
| | - Lihong Liu
- Institute of Medical Science, China-Japan Friendship HospitalBeijingChina
| | - Ting-Ting Chu
- Greater Bay Biomedical InnoCenter, Shenzhen Bay LaboratoryShenzhenChina
| | - Jin-Ping Li
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical TechnologyBeijingChina
- Department of Medical Biochemistry and Microbiology, University of UppsalaUppsalaSweden
| | - Shi-Zhong Luo
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical TechnologyBeijingChina
| |
Collapse
|
4
|
Dawson JRD, Wadman GM, Zhang P, Tebben A, Carter PH, Gu S, Shroka T, Borrega-Roman L, Salanga CL, Handel TM, Kufareva I. Molecular determinants of antagonist interactions with chemokine receptors CCR2 and CCR5. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.15.567150. [PMID: 38014122 PMCID: PMC10680698 DOI: 10.1101/2023.11.15.567150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
By driving monocyte chemotaxis, the chemokine receptor CCR2 shapes inflammatory responses and the formation of tumor microenvironments. This makes it a promising target in inflammation and immuno-oncology; however, despite extensive efforts, there are no FDA-approved CCR2-targeting therapeutics. Cited challenges include the redundancy of the chemokine system, suboptimal properties of compound candidates, and species differences that confound the translation of results from animals to humans. Structure-based drug design can rationalize and accelerate the discovery and optimization of CCR2 antagonists to address these challenges. The prerequisites for such efforts include an atomic-level understanding of the molecular determinants of action of existing antagonists. In this study, using molecular docking and artificial-intelligence-powered compound library screening, we uncover the structural principles of small molecule antagonism and selectivity towards CCR2 and its sister receptor CCR5. CCR2 orthosteric inhibitors are shown to universally occupy an inactive-state-specific tunnel between receptor helices 1 and 7; we also discover an unexpected role for an extra-helical groove accessible through this tunnel, suggesting its potential as a new targetable interface for CCR2 and CCR5 modulation. By contrast, only shape complementarity and limited helix 8 hydrogen bonding govern the binding of various chemotypes of allosteric antagonists. CCR2 residues S1012.63 and V2446.36 are implicated as determinants of CCR2/CCR5 and human/mouse orthosteric and allosteric antagonist selectivity, respectively, and the role of S1012.63 is corroborated through experimental gain-of-function mutagenesis. We establish a critical role of induced fit in antagonist recognition, reveal strong chemotype selectivity of existing structures, and demonstrate the high predictive potential of a new deep-learning-based compound scoring function. Finally, this study expands the available CCR2 structural landscape with computationally generated chemotype-specific models well-suited for structure-based antagonist design.
Collapse
Affiliation(s)
- John R D Dawson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Grant M Wadman
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | | | | | - Percy H Carter
- Bristol Myers Squibb Company, Princeton, NJ, USA
- (current affiliation) Blueprint Medicines, Cambridge, MA, USA
| | - Siyi Gu
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- (current affiliation) Lycia Therapeutics, South San Francisco, CA
| | - Thomas Shroka
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- (current affiliation) Avidity Biosciences Inc., San Diego, CA
| | - Leire Borrega-Roman
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Catherina L Salanga
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
5
|
Giblin SP, Ranawana S, Hassibi S, Birchenough HL, Mincham KT, Snelgrove RJ, Tsuchiya T, Kanegasaki S, Dyer D, Pease JE. CXCL17 binds efficaciously to glycosaminoglycans with the potential to modulate chemokine signaling. Front Immunol 2023; 14:1254697. [PMID: 37942327 PMCID: PMC10628517 DOI: 10.3389/fimmu.2023.1254697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Introduction CXCL17 is a mucosally secreted protein, and the most recently identified human chemokine, an assignment based on protein fold prediction and chemotactic activity for leukocytes. However, these credentials have been the subject of much recent discussion and no experimental evidence has been presented regarding the definitive structure of CXCL17. In this study, we evaluated the structural and chemoattractant credentials of CXCL17 to better characterize this molecule, and gain deeper insights into its functional role as a glycosaminoglycan (GAG) binding protein. Methods In the absence of structural information, in silico modeling techniques assessed the likelihood of CXCL17 adopting a chemokine fold. Recombinant CXCL17 was synthesized in mammalian and prokaryotic systems. Modified Boyden chamber and real-time chemotaxis assays assessed the ability of CXCL17 to promote chemotaxis of murine splenocytes, human neutrophils, and CXCR1 transfectants. The efficacy of CXCL17 binding to GAGs was quantified with solid-phase assays and bio-layer interferometry techniques. Results All modeling efforts failed to support classification of CXCL17 as a chemokine based on its predicted conformation. Recombinant CXCL17 was observed to dimerize as a function of concentration, a characteristic of several chemokines. Contrary to a previous report, CXCL17 was not chemotactic for murine splenocytes, although it was a low-potency chemoattractant for human neutrophils at micromolar concentrations, several orders of magnitude higher than those required for CXCL8. As anticipated owing to its highly basic nature, CXCL17 bound to GAGs robustly, with key C-terminal motifs implicated in this process. While inactive via CXCR1, CXCL17 was found to inhibit CXCR1-mediated chemotaxis of transfectants to CXCL8 in a dose-dependent manner. Discussion In summary, despite finding little evidence for chemokine-like structure and function, CXCL17 readily bound GAGs, and could modulate chemotactic responses to another chemokine in vitro. We postulate that such modulation is a consequence of superior GAG binding, and that C-terminal fragments of CXCL17 may serve as prototypic inhibitors of chemokine function.
Collapse
Affiliation(s)
- Sean P. Giblin
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sashini Ranawana
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Shyreen Hassibi
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Holly L. Birchenough
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Kyle T. Mincham
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Robert J. Snelgrove
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Tomoko Tsuchiya
- Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Japan
| | | | - Douglas Dyer
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, United Kingdom
| | - James E. Pease
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
6
|
Parween F, Singh SP, Zhang HH, Kathuria N, Otaizo-Carrasquero FA, Shamsaddini A, Gardina PJ, Ganesan S, Kabat J, Lorenzi HA, Myers TG, Farber JM. Chemokine positioning determines mutually exclusive roles for their receptors in extravasation of pathogenic human T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525561. [PMID: 36789428 PMCID: PMC9928044 DOI: 10.1101/2023.01.25.525561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Pro-inflammatory T cells co-express multiple chemokine receptors, but the distinct functions of individual receptors on these cells are largely unknown. Human Th17 cells uniformly express the chemokine receptor CCR6, and we discovered that the subgroup of CD4+CCR6+ cells that co-express CCR2 possess a pathogenic Th17 signature, can produce inflammatory cytokines independent of TCR activation, and are unusually efficient at transendothelial migration (TEM). The ligand for CCR6, CCL20, was capable of binding to activated endothelial cells (ECs) and inducing firm arrest of CCR6+CCR2+ cells under conditions of flow - but CCR6 could not mediate TEM. By contrast, CCL2 and other ligands for CCR2, despite being secreted from both luminal and basal sides of ECs, failed to bind to the EC surfaces - and CCR2 could not mediate arrest. Nonetheless, CCR2 was required for TEM. To understand if CCR2's inability to mediate arrest was due solely to an absence of EC-bound ligands, we generated a CCL2-CXCL9 chimeric chemokine that could bind to the EC surface. Although display of CCL2 on the ECs did indeed lead to CCR2-mediated arrest of CCR6+CCR2+ cells, activating CCR2 with surface-bound CCL2 blocked TEM. We conclude that mediating arrest and TEM are mutually exclusive activities of chemokine receptors and/or their ligands that depend, respectively, on chemokines that bind to the EC luminal surfaces versus non-binding chemokines that form transendothelial gradients under conditions of flow. Our findings provide fundamental insights into mechanisms of lymphocyte extravasation and may lead to novel strategies to block or enhance their migration into tissue.
Collapse
Affiliation(s)
- Farhat Parween
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Satya P. Singh
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Hongwei H Zhang
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Nausheen Kathuria
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Francisco A. Otaizo-Carrasquero
- Research Technologies Branch, Genomic Technologies, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Amirhossein Shamsaddini
- Research Technologies Branch, Genomic Technologies, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Paul J. Gardina
- Research Technologies Branch, Genomic Technologies, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Sundar Ganesan
- Research Technologies Branch, Biological Imaging, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Juraj Kabat
- Research Technologies Branch, Biological Imaging, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Hernan A. Lorenzi
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Timothy G. Myers
- Research Technologies Branch, Genomic Technologies, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Joshua M. Farber
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| |
Collapse
|
7
|
Gray AL, Karlsson R, Roberts ARE, Ridley AJL, Pun N, Khan B, Lawless C, Luís R, Szpakowska M, Chevigné A, Hughes CE, Medina-Ruiz L, Birchenough HL, Mulholland IZ, Salanga CL, Yates EA, Turnbull JE, Handel TM, Graham GJ, Jowitt TA, Schiessl I, Richter RP, Miller RL, Dyer DP. Chemokine CXCL4 interactions with extracellular matrix proteoglycans mediate widespread immune cell recruitment independent of chemokine receptors. Cell Rep 2023; 42:111930. [PMID: 36640356 PMCID: PMC11064100 DOI: 10.1016/j.celrep.2022.111930] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/18/2022] [Accepted: 12/14/2022] [Indexed: 01/07/2023] Open
Abstract
Leukocyte recruitment from the vasculature into tissues is a crucial component of the immune system but is also key to inflammatory disease. Chemokines are central to this process but have yet to be therapeutically targeted during inflammation due to a lack of mechanistic understanding. Specifically, CXCL4 (Platelet Factor 4, PF4) has no established receptor that explains its function. Here, we use biophysical, in vitro, and in vivo techniques to determine the mechanism underlying CXCL4-mediated leukocyte recruitment. We demonstrate that CXCL4 binds to glycosaminoglycan (GAG) sugars on proteoglycans within the endothelial extracellular matrix, resulting in increased adhesion of leukocytes to the vasculature, increased vascular permeability, and non-specific recruitment of a range of leukocytes. Furthermore, GAG sulfation confers selectivity onto chemokine localization. These findings present mechanistic insights into chemokine biology and provide future therapeutic targets.
Collapse
Affiliation(s)
- Anna L Gray
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK
| | - Richard Karlsson
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Abigail R E Roberts
- University of Leeds, School of Biomedical Sciences, Faculty of Biological Sciences, School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, Astbury Centre for Structural Molecular Biology, and Bragg Centre for Materials Research, Leeds LS2 9JT, UK
| | - Amanda J L Ridley
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Nabina Pun
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Bakhtbilland Khan
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Craig Lawless
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Rafael Luís
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 4354 Esch-sur-Alzette, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg; Tumor Immunotherapy and Microenvironment, Department of Cancer Research, Luxembourg Institute of Health, 2012 Luxembourg, Luxembourg
| | - Martyna Szpakowska
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 4354 Esch-sur-Alzette, Luxembourg
| | - Andy Chevigné
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 4354 Esch-sur-Alzette, Luxembourg
| | - Catherine E Hughes
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Laura Medina-Ruiz
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Holly L Birchenough
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Iashia Z Mulholland
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Catherina L Salanga
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Edwin A Yates
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Jeremy E Turnbull
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark; Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; Centre for Glycosciences, Keele University, Keele, Staffordshire ST5 5BG, UK
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gerard J Graham
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Thomas A Jowitt
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Ingo Schiessl
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK; Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Ralf P Richter
- University of Leeds, School of Biomedical Sciences, Faculty of Biological Sciences, School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, Astbury Centre for Structural Molecular Biology, and Bragg Centre for Materials Research, Leeds LS2 9JT, UK
| | - Rebecca L Miller
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Douglas P Dyer
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK.
| |
Collapse
|
8
|
Chang TT, Chen C, Chen JW. CCL7 as a novel inflammatory mediator in cardiovascular disease, diabetes mellitus, and kidney disease. Cardiovasc Diabetol 2022; 21:185. [PMID: 36109744 PMCID: PMC9479413 DOI: 10.1186/s12933-022-01626-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/09/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractChemokines are key components in the pathology of chronic diseases. Chemokine CC motif ligand 7 (CCL7) is believed to be associated with cardiovascular disease, diabetes mellitus, and kidney disease. CCL7 may play a role in inflammatory events by attracting macrophages and monocytes to further amplify inflammatory processes and contribute to disease progression. However, CCL7-specific pathological signaling pathways need to be further confirmed in these chronic diseases. Given the multiple redundancy system among chemokines and their receptors, further experimental and clinical studies are needed to clarify whether direct CCL7 inhibition mechanisms could be a promising therapeutic approach to attenuating the development of cardiovascular disease, diabetes mellitus, and kidney disease.
Collapse
|
9
|
Gray AL, Pun N, Ridley AJL, Dyer DP. Role of extracellular matrix proteoglycans in immune cell recruitment. Int J Exp Pathol 2022; 103:34-43. [PMID: 35076142 PMCID: PMC8961502 DOI: 10.1111/iep.12428] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 12/28/2022] Open
Abstract
Leucocyte recruitment is a critical component of the immune response and is central to our ability to fight infection. Paradoxically, leucocyte recruitment is also a central component of inflammatory-based diseases such as rheumatoid arthritis, atherosclerosis and cancer. The role of the extracellular matrix, in particular proteoglycans, in this process has been largely overlooked. Proteoglycans consist of protein cores with glycosaminoglycan sugar side chains attached. Proteoglycans have been shown to bind and regulate the function of a number of proteins, for example chemokines, and also play a key structural role in the local tissue environment/niche. Whilst they have been implicated in leucocyte recruitment and inflammatory disease, their mechanistic function has yet to be fully understood, precluding therapeutic targeting. This review summarizes what is currently known about the role of proteoglycans in the different stages of leucocyte recruitment and proposes a number of areas where more research is needed. A better understanding of the mechanistic role of proteoglycans during inflammatory disease will inform the development of next-generation therapeutics.
Collapse
Affiliation(s)
- Anna L. Gray
- Wellcome Centre for Cell‐Matrix ResearchFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreLydia Becker Institute of Immunology and InflammationUniversity of ManchesterManchesterUK
- Geoffrey Jefferson Brain Research CentreNorthern Care Alliance NHS GroupManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
| | - Nabina Pun
- Wellcome Centre for Cell‐Matrix ResearchFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreLydia Becker Institute of Immunology and InflammationUniversity of ManchesterManchesterUK
| | - Amanda J. L. Ridley
- Wellcome Centre for Cell‐Matrix ResearchFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreLydia Becker Institute of Immunology and InflammationUniversity of ManchesterManchesterUK
| | - Douglas P. Dyer
- Wellcome Centre for Cell‐Matrix ResearchFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreLydia Becker Institute of Immunology and InflammationUniversity of ManchesterManchesterUK
- Geoffrey Jefferson Brain Research CentreNorthern Care Alliance NHS GroupManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
| |
Collapse
|
10
|
Handel TM, Dyer DP. Perspectives on the Biological Role of Chemokine:Glycosaminoglycan Interactions. J Histochem Cytochem 2021; 69:87-91. [PMID: 33285085 PMCID: PMC7838337 DOI: 10.1369/0022155420977971] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/11/2020] [Indexed: 02/02/2023] Open
Affiliation(s)
- Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA
| | - Douglas P Dyer
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
11
|
Dyer DP. Understanding the mechanisms that facilitate specificity, not redundancy, of chemokine-mediated leukocyte recruitment. Immunology 2020; 160:336-344. [PMID: 32285441 PMCID: PMC7370109 DOI: 10.1111/imm.13200] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 12/29/2022] Open
Abstract
Chemokines (chemotactic cytokines) and their receptors are critical to recruitment and positioning of cells during development and the immune response. The chemokine system has long been described as redundant for a number of reasons, where multiple chemokine ligands can bind to multiple receptors and vice versa. This apparent redundancy has been thought to be a major reason for the failure of drugs targeting chemokines during inflammatory disease. We are now beginning to understand that chemokine biology is in fact based around a high degree of specificity, where each chemokine and receptor plays a particular role in the immune response. This specificity hypothesis is supported by a number of recent studies designed to address this problem. This review will detail these studies and the mechanisms that produce this specificity of function with an emphasis on the emerging role of chemokine–glycosaminoglycan interactions.
Collapse
Affiliation(s)
- Douglas P Dyer
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| |
Collapse
|
12
|
Crijns H, Vanheule V, Proost P. Targeting Chemokine-Glycosaminoglycan Interactions to Inhibit Inflammation. Front Immunol 2020; 11:483. [PMID: 32296423 PMCID: PMC7138053 DOI: 10.3389/fimmu.2020.00483] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
Leukocyte migration into tissues depends on the activity of chemokines that form concentration gradients to guide leukocytes to a specific site. Interaction of chemokines with their specific G protein-coupled receptors (GPCRs) on leukocytes induces leukocyte adhesion to the endothelial cells, followed by extravasation of the leukocytes and subsequent directed migration along the chemotactic gradient. Interaction of chemokines with glycosaminoglycans (GAGs) is crucial for extravasation in vivo. Chemokines need to interact with GAGs on endothelial cells and in the extracellular matrix in tissues in order to be presented on the endothelium of blood vessels and to create a concentration gradient. Local chemokine retention establishes a chemokine gradient and prevents diffusion and degradation. During the last two decades, research aiming at reducing chemokine activity mainly focused on the identification of inhibitors of the interaction between chemokines and their cognate GPCRs. This approach only resulted in limited success. However, an alternative strategy, targeting chemokine-GAG interactions, may be a promising approach to inhibit chemokine activity and inflammation. On this line, proteins derived from viruses and parasites that bind chemokines or GAGs may have the potential to interfere with chemokine-GAG interactions. Alternatively, chemokine mimetics, including truncated chemokines and mutant chemokines, can compete with chemokines for binding to GAGs. Such truncated or mutated chemokines are characterized by a strong binding affinity for GAGs and abrogated binding to their chemokine receptors. Finally, Spiegelmers that mask the GAG-binding site on chemokines, thereby preventing chemokine-GAG interactions, were developed. In this review, the importance of GAGs for chemokine activity in vivo and strategies that could be employed to target chemokine-GAG interactions will be discussed in the context of inflammation.
Collapse
Affiliation(s)
- Helena Crijns
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Vincent Vanheule
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Mathews JA, Ni YG, Wang C, Peterson JE, Ray C, Zhao X, Duan D, Hamon S, Allinson J, Hokom M, Wegner G. Considerations for Soluble Protein Biomarker Blood Sample Matrix Selection. AAPS JOURNAL 2020; 22:38. [PMID: 31997095 DOI: 10.1208/s12248-020-0412-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 12/23/2019] [Indexed: 11/30/2022]
Abstract
Blood-based soluble protein biomarkers provide invaluable clinical information about patients and are used as diagnostic, prognostic, and pharmacodynamic markers. The most commonly used blood sample matrices are serum and different types of plasma. In drug development research, the impact of sample matrix selection on successful protein biomarker quantification is sometimes overlooked. The sample matrix for a specific analyte is often chosen based on prior experience or literature searches, without good understanding of the possible effects on analyte quantification. Using a data set of 32 different soluble protein markers measured in matched serum and plasma samples, we examined the differences between serum and plasma and discussed how platelet or immune cell activation can change the quantified concentration of the analyte. We have also reviewed the effect of anticoagulant on analyte quantification. Finally, we provide specific recommendations for biomarker sample matrix selection and propose a systematic and data-driven approach for sample matrix selection. This review is intended to raise awareness of the impact and considerations of sample matrix selection on biomarker quantification.
Collapse
Affiliation(s)
- Joel A Mathews
- Ionis Pharmaceuticals, 2855 Gazelle Rd., Carlsbad, California, 92010, USA.
| | - Yan G Ni
- Regeneron, Tarrytown, New York, USA
| | | | | | - Chad Ray
- Zoetis, Kalamazoo, Michigan, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Eustace AD, McNaughton EF, King S, Kehoe O, Kungl A, Mattey D, Nobbs AH, Williams N, Middleton J. Soluble syndecan-3 binds chemokines, reduces leukocyte migration in vitro and ameliorates disease severity in models of rheumatoid arthritis. Arthritis Res Ther 2019; 21:172. [PMID: 31300004 PMCID: PMC6625118 DOI: 10.1186/s13075-019-1939-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/10/2019] [Indexed: 01/04/2023] Open
Abstract
Background Syndecans are heparan sulfate proteoglycans that occur in membrane-bound or soluble forms. Syndecan-3, the least well-characterised of the syndecan family, is highly expressed on synovial endothelial cells in rheumatoid arthritis patients. Here, it binds pro-inflammatory chemokines with evidence for a role in chemokine presentation and leukocyte trafficking into the joint, promoting the inflammatory response. In this study, we explored the role of soluble syndecan-3 as a binder of chemokines and as an anti-inflammatory and therapeutic molecule. Methods A human monocytic cell line and CD14+ PBMCs were utilised in both Boyden chamber and trans-endothelial migration assays. Soluble syndecan-3 was tested in antigen-induced and collagen-induced in vivo arthritis models in mice. ELISA and isothermal fluorescence titration assays assessed the binding affinities. Syndecan-3 expression was identified by flow cytometry and PCR, and levels of shedding by ELISA. Results Using in vitro and in vivo models, soluble syndecan-3 inhibited leukocyte migration in vitro in response to CCL7 and its administration in murine models of rheumatoid arthritis reduced histological disease severity. Using isothermal fluorescence titration, the binding affinity of soluble syndecan-3 to inflammatory chemokines CCL2, CCL7 and CXCL8 was determined, revealing little difference, with Kds in the low nM range. TNFα increased cell surface expression and shedding of syndecan-3 from cultured human endothelial cells. Furthermore, soluble syndecan-3 occurred naturally in the sera of patients with rheumatoid arthritis and periodontitis, and its levels correlated with syndecan-1. Conclusions This study shows that the addition of soluble syndecan-3 may represent an alternative therapeutic approach in inflammatory disease. Electronic supplementary material The online version of this article (10.1186/s13075-019-1939-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrew D Eustace
- Bristol Dental School, University of Bristol, Lower Maudlin Street, BS1 2LY, Bristol, UK
| | - Emily F McNaughton
- Bristol Dental School, University of Bristol, Lower Maudlin Street, BS1 2LY, Bristol, UK
| | - Sophie King
- Bristol Dental School, University of Bristol, Lower Maudlin Street, BS1 2LY, Bristol, UK
| | - Oksana Kehoe
- Leopold Muller Arthritis Research Centre, Medical School, RJAH Orthopaedic Hospital, ISTM, Keele University, Oswestry, UK
| | - Andreas Kungl
- Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, Humboldtstrasse 46, A-8010, Graz, Austria
| | - Derek Mattey
- Staffordshire Rheumatology Centre, Haywood Hospital, Stoke-on-Trent, UK
| | - Angela H Nobbs
- Bristol Dental School, University of Bristol, Lower Maudlin Street, BS1 2LY, Bristol, UK.
| | - Neil Williams
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, BS8 1TD, Bristol, UK
| | - Jim Middleton
- Bristol Dental School, University of Bristol, Lower Maudlin Street, BS1 2LY, Bristol, UK
| |
Collapse
|
15
|
Liu JQ, Chu SF, Zhou X, Zhang DY, Chen NH. Role of chemokines in Parkinson's disease. Brain Res Bull 2019; 152:11-18. [PMID: 31136787 DOI: 10.1016/j.brainresbull.2019.05.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 05/17/2019] [Accepted: 05/23/2019] [Indexed: 01/10/2023]
Abstract
Parkinson's disease (PD) is a chronic progressive neurodegenerative disorder with an increasing incidence year by year, particularly as the population ages. The most common neuropathologic manifestation in patients with Parkinson's disease is dopamine neurons degeneration and loss in substantia nigra of middle brain. The main neurochemistry problem is the lack of the neurotransmitter dopamine. Clinically, PD patients may also have higher levels of glutamate, gamma-aminobutyric acid, acetylcholine and other neurotransmitters. At present, many data have shown that some chemokines are involved in regulating the release and transmission of neurotransmitters, and the growth and development of related neurons. In recent years, most of the studies relative to PD is based on immune and inflammatory mechanisms, and chemokines is also the focus on this mechanism. Chemokines are a class of cytokines that have definite chemotaxis effects on the different target cells. They might be involved in the pathogenesis of PD by inducing neuronal apoptosis and microglia activation. Clinical data has shown that the levels of chemokines in plasma and cerebrospinal fluid of PD patients have corresponding changes compared with the healthy persons. This review summarizes recent studies on chemokines and their receptors in Parkinson's disease: (i) to explore the role of chemokines in Parkinson's disease; (ii) to provide new indicators for clinical diagnosis of PD; (iii) to provide new targets for drug research and development in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Jia-Qi Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing 211198, China
| | - Shi-Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xin Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Da-Yong Zhang
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing 211198, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
16
|
Ford J, Hughson A, Lim K, Bardina SV, Lu W, Charo IF, Lim JK, Fowell DJ. CCL7 Is a Negative Regulator of Cutaneous Inflammation Following Leishmania major Infection. Front Immunol 2019; 9:3063. [PMID: 30671055 PMCID: PMC6331479 DOI: 10.3389/fimmu.2018.03063] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/11/2018] [Indexed: 12/24/2022] Open
Abstract
The chemokine CCL7 (MCP3) is known to promote the recruitment of many innate immune cell types including monocytes and neutrophils to sites of bacterial and viral infection and eosinophils and basophils to sites of allergic inflammation. CCL7 upregulation has been associated with many inflammatory settings including infection, cardiovascular disease, and the tumor microenvironment. CCL7's pleotropic effects are due in part to its ability to bind numerous chemokine receptors, namely CCR1, CCR2, CCR3, CCR5, and CCR10. CCL7-blockade or CCL7-deficiency is often marked by decreased inflammation and poor pathogen control. In the context of Leishmania major infection, CCL7 is specifically upregulated in the skin one-2 weeks after infection but its role in L. major control is unclear. To determine CCL7's impact on the response to L. major we infected WT and CCL7-/- C57BL/6 mice. L. major infection of CCL7-deficient mice led to an unexpected increase in inflammation in the infected skin 2 weeks post-infection. A broad increase in immune cell subsets was observed but was dominated by enhanced neutrophilic infiltration. Increased neutrophil recruitment was associated with an enhanced IL-17 gene profile in the infected skin. CCL7 was shown to directly antagonize neutrophil migration in vitro and CCL7 add-back in vivo specifically reduced neutrophil influx into the infected skin revealing an unexpected role for CCL7 in limiting neutrophil recruitment during L. major infection. Enhanced neutrophilic infiltration in CCL7-deficient mice changed the balance of L. major infected host cells with an increase in the ratio of infected neutrophils over monocytes/macrophages. To determine the consequence of CCL7 deficiency on L. major control we analyzed parasite load cutaneously at the site of infection and viscerally in the draining LN and spleen. The CCL7-/- mice supported robust cutaneous parasite control similar to their WT C57BL/6 counterparts. In contrast, CCL7-deficiency led to greater parasite dissemination and poor parasite control in the spleen. Our studies reveal a novel role for CCL7 in negatively regulating cutaneous inflammation, specifically neutrophils, early during L. major infection. We propose that CCL7-mediated dampening of the early immune response in the skin may limit the ability of the parasite to disseminate without compromising cutaneous control.
Collapse
Affiliation(s)
- Jill Ford
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester, Rochester, NY, United States
| | - Angela Hughson
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester, Rochester, NY, United States
| | - Kihong Lim
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester, Rochester, NY, United States
| | - Susana V Bardina
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Wuyuan Lu
- Department of Biochemistry and Molecular Biology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Israel F Charo
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Jean K Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Deborah J Fowell
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester, Rochester, NY, United States
| |
Collapse
|
17
|
Farrugia BL, Lord MS, Melrose J, Whitelock JM. The Role of Heparan Sulfate in Inflammation, and the Development of Biomimetics as Anti-Inflammatory Strategies. J Histochem Cytochem 2018; 66:321-336. [PMID: 29290153 DOI: 10.1369/0022155417740881] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Key events that occur during inflammation include the recruitment, adhesion, and transmigration of leukocytes from the circulation to the site of inflammation. These events are modulated by chemokines, integrins, and selectins and the interaction of these molecules with glycosaminoglycans, predominantly heparan sulfate (HS). The development of HS/heparin mimetics that interfere or inhibit the interactions that occur between glycosaminoglycans and modulators of inflammation holds great potential for use as anti-inflammatory therapeutics. This review will detail the role of HS in the events that occur during inflammation, their interaction and modulation of inflammatory mediators, and the current advances in the development of HS/heparin mimetics as anti-inflammatory biotherapeutics.
Collapse
Affiliation(s)
- Brooke L Farrugia
- Graduate School of Biomedical Engineering, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Megan S Lord
- Graduate School of Biomedical Engineering, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales Sydney, Sydney, New South Wales, Australia.,Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, New South Wales, Australia.,Sydney Medical School-Northern, Royal North Shore Hospital, The University of Sydney, St. Leonards, New South Wales, Australia
| | - John M Whitelock
- Graduate School of Biomedical Engineering, University of New South Wales Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
18
|
Dyer DP, Migliorini E, Salanga CL, Thakar D, Handel TM, Richter RP. Differential structural remodelling of heparan sulfate by chemokines: the role of chemokine oligomerization. Open Biol 2017; 7:rsob.160286. [PMID: 28123055 PMCID: PMC5303277 DOI: 10.1098/rsob.160286] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/16/2016] [Indexed: 12/02/2022] Open
Abstract
Chemokines control the migration of cells in normal physiological processes and in the context of disease such as inflammation, autoimmunity and cancer. Two major interactions are involved: (i) binding of chemokines to chemokine receptors, which activates the cellular machinery required for movement; and (ii) binding of chemokines to glycosaminoglycans (GAGs), which facilitates the organization of chemokines into haptotactic gradients that direct cell movement. Chemokines can bind and activate their receptors as monomers; however, the ability to oligomerize is critical for the function of many chemokines in vivo. Chemokine oligomerization is thought to enhance their affinity for GAGs, and here we show that it significantly affects the ability of chemokines to accumulate on and be retained by heparan sulfate (HS). We also demonstrate that several chemokines differentially rigidify and cross-link HS, thereby affecting HS rigidity and mobility, and that HS cross-linking is significantly enhanced by chemokine oligomerization. These findings suggest that chemokine–GAG interactions may play more diverse biological roles than the traditional paradigms of physical immobilization and establishment of chemokine gradients; we hypothesize that they may promote receptor-independent events such as physical re-organization of the endothelial glycocalyx and extracellular matrix, as well as signalling through proteoglycans to facilitate leukocyte adhesion and transmigration.
Collapse
Affiliation(s)
- Douglas P Dyer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0684, USA.,Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Elisa Migliorini
- CIC biomaGUNE, 20009 Donostia-San Sebastian, Spain.,Département de Chimie Moléculaire, Université Grenoble Alpes-CNRS, 38041 Grenoble Cedex 9, France
| | - Catherina L Salanga
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0684, USA
| | - Dhruv Thakar
- Département de Chimie Moléculaire, Université Grenoble Alpes-CNRS, 38041 Grenoble Cedex 9, France
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0684, USA
| | - Ralf P Richter
- CIC biomaGUNE, 20009 Donostia-San Sebastian, Spain .,Département de Chimie Moléculaire, Université Grenoble Alpes-CNRS, 38041 Grenoble Cedex 9, France.,School of Biomedical Sciences and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
19
|
Yang J, Chi L. Characterization of structural motifs for interactions between glycosaminoglycans and proteins. Carbohydr Res 2017; 452:54-63. [PMID: 29065343 DOI: 10.1016/j.carres.2017.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/02/2017] [Accepted: 10/16/2017] [Indexed: 11/24/2022]
Abstract
Glycosaminoglycans (GAGs) are a family of linear and anionic polysaccharides that play essential roles in many biological and physiological processes. Interactions between GAGs and proteins regulate function in many proteins and are related to many human diseases and disorders. The structural motifs and mechanisms for interactions between GAGs and proteins are not fully understood. Specific bindings, including minor but unique sequences sporadically distributed along the GAG chains or variably sulfated domains interspersed by undersulfated regions, may be specifically recognized by defined domains of a variety of proteins. Understanding the molecular basis of these interactions will provide a template for developing novel glycotherapeutic agents. The present article reviews recent methodologies and progress on the characterization of structural motifs in both GAGs and proteins involved in GAG-protein interactions. The analytical approaches are categorized into three groups: affinity-based methods; molecular docking, nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography; and mass spectrometry (MS) techniques. The advantages and limitations of each category of methods are discussed and are based on examples of using these techniques to investigate binding between GAGs and proteins.
Collapse
Affiliation(s)
- Jiyuan Yang
- National Glycoengineering Research Center, Shandong University, Jinan 250100, China
| | - Lianli Chi
- National Glycoengineering Research Center, Shandong University, Jinan 250100, China.
| |
Collapse
|
20
|
Glycosaminoglycan Interactions with Chemokines Add Complexity to a Complex System. Pharmaceuticals (Basel) 2017; 10:ph10030070. [PMID: 28792472 PMCID: PMC5620614 DOI: 10.3390/ph10030070] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 07/24/2017] [Accepted: 07/24/2017] [Indexed: 12/12/2022] Open
Abstract
Chemokines have two types of interactions that function cooperatively to control cell migration. Chemokine receptors on migrating cells integrate signals initiated upon chemokine binding to promote cell movement. Interactions with glycosaminoglycans (GAGs) localize chemokines on and near cell surfaces and the extracellular matrix to provide direction to the cell movement. The matrix of interacting chemokine–receptor partners has been known for some time, precise signaling and trafficking properties of many chemokine–receptor pairs have been characterized, and recent structural information has revealed atomic level detail on chemokine–receptor recognition and activation. However, precise knowledge of the interactions of chemokines with GAGs has lagged far behind such that a single paradigm of GAG presentation on surfaces is generally applied to all chemokines. This review summarizes accumulating evidence which suggests that there is a great deal of diversity and specificity in these interactions, that GAG interactions help fine-tune the function of chemokines, and that GAGs have other roles in chemokine biology beyond localization and surface presentation. This suggests that chemokine–GAG interactions add complexity to the already complex functions of the receptors and ligands.
Collapse
|
21
|
Zong C, Venot A, Li X, Lu W, Xiao W, Wilkes JSL, Salanga CL, Handel TM, Wang L, Wolfert MA, Boons GJ. Heparan Sulfate Microarray Reveals That Heparan Sulfate-Protein Binding Exhibits Different Ligand Requirements. J Am Chem Soc 2017; 139:9534-9543. [PMID: 28651046 PMCID: PMC5588662 DOI: 10.1021/jacs.7b01399] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Heparan sulfates (HS) are linear sulfated polysaccharides that modulate a wide range of physiological and disease-processes. Variations in HS epimerization and sulfation provide enormous structural diversity, which is believed to underpin protein binding and regulatory properties. The ligand requirements of HS-binding proteins have, however, been defined in only a few cases. We describe here a synthetic methodology that can rapidly provide a library of well-defined HS oligosaccharides. It is based on the use of modular disaccharides to assemble several selectively protected tetrasaccharides that were subjected to selective chemical modifications such as regioselective O- and N-sulfation and selective de-sulfation. A number of the resulting compounds were subjected to enzymatic modifications by 3-O-sulfotransferases-1 (3-OST1) to provide 3-O-sulfated derivatives. The various approaches for diversification allowed one tetrasaccharide to be converted into 12 differently sulfated derivatives. By employing tetrasaccharides with different backbone compositions, a library of 47 HS-oligosaccharides was prepared and the resulting compounds were used to construct a HS microarray. The ligand requirements of a number of HS-binding proteins including fibroblast growth factor 2 (FGF-2), and the chemokines CCL2, CCL5, CCL7, CCL13, CXCL8, and CXCL10 were examined using the array. Although all proteins recognized multiple compounds, they exhibited clear differences in structure-binding characteristics. The HS microarray data guided the selection of compounds that could interfere in biological processes such as cell proliferation. Although the library does not cover the entire chemical space of HS-tetrasaccharides, the binding data support a notion that changes in cell surface HS composition can modulate protein function.
Collapse
Affiliation(s)
- Chengli Zong
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Andre Venot
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Xiuru Li
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Weigang Lu
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Wenyuan Xiao
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Jo-Setti L. Wilkes
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Catherina L. Salanga
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California—San Diego, 9500 Gilman Drive MC0684, La Jolla, California 92093, United States
| | - Tracy M. Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California—San Diego, 9500 Gilman Drive MC0684, La Jolla, California 92093, United States
| | - Lianchun Wang
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Margreet A. Wolfert
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
22
|
Pontejo SM, Murphy PM. Two glycosaminoglycan-binding domains of the mouse cytomegalovirus-encoded chemokine MCK-2 are critical for oligomerization of the full-length protein. J Biol Chem 2017; 292:9613-9626. [PMID: 28432120 DOI: 10.1074/jbc.m117.785121] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/20/2017] [Indexed: 01/22/2023] Open
Abstract
Chemokines are essential for antimicrobial host defenses and tissue repair. Herpesviruses and poxviruses also encode chemokines, copied from their hosts and repurposed for multiple functions, including immune evasion. The CC chemokine MCK-2 encoded by mouse CMV (MCMV) has an atypical structure consisting of a classic chemokine domain N-terminal to a second unique domain, resulting from the splicing of MCMV ORFs m131 and m129 MCK-2 is essential for full MCMV infectivity in macrophages and for persistent infection in the salivary gland. However, information about its mechanism of action and specific biochemical roles for the two domains has been lacking. Here, using genetic, chemical, and enzymatic analyses of multiple mouse cell lines as well as primary mouse fibroblasts from salivary gland and lung, we demonstrate that MCK-2 binds glycosaminoglycans (GAGs) with affinities in the following order: heparin > heparan sulfate > chondroitin sulfate = dermatan sulfate. Both MCK-2 domains bound these GAGs independently, and computational analysis together with site-directed mutagenesis identified five basic residues distributed across the N terminus and the 30s and 50s loops of the chemokine domain that are important GAG binding determinants. Both domains were required for GAG-dependent oligomerization of full-length MCK-2. Thus, MCK-2 is an atypical viral chemokine consisting of a CC chemokine domain and a unique non-chemokine domain, both of which bind GAGs and are critical for GAG-dependent oligomerization of the full-length protein.
Collapse
Affiliation(s)
- Sergio M Pontejo
- From the Laboratory of Molecular Immunology, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Philip M Murphy
- From the Laboratory of Molecular Immunology, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
23
|
Lacalle RA, Blanco R, Carmona-Rodríguez L, Martín-Leal A, Mira E, Mañes S. Chemokine Receptor Signaling and the Hallmarks of Cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 331:181-244. [PMID: 28325212 DOI: 10.1016/bs.ircmb.2016.09.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The chemokines are a family of chemotactic cytokines that mediate their activity by acting on seven-transmembrane-spanning G protein-coupled receptors. Both the ability of the chemokines and their receptors to form homo- and heterodimers and the promiscuity of the chemokine-chemokine receptor interaction endow this protein family with enormous signaling plasticity and complexity that are not fully understood at present. Chemokines were initially identified as essential regulators of homeostatic and inflammatory trafficking of innate and adaptive leucocytes from lymphoid organs to tissues. Chemokines also mediate the host response to cancer. Nevertheless, chemokine function in this response is not limited to regulating leucocyte infiltration into the tumor microenvironment. It is now known that chemokines and their receptors influence most-if not all-hallmark processes of cancer; they act on both neoplastic and untransformed cells in the tumor microenvironment, including fibroblasts, endothelial cells (blood and lymphatic), bone marrow-derived stem cells, and, obviously, infiltrating leucocytes. This review begins with an overview of chemokine and chemokine receptor structure, to better define how chemokines affect the proliferation, survival, stemness, and metastatic potential of neoplastic cells. We also examine the main mechanisms by which chemokines regulate tumor angiogenesis and immune cell infiltration, emphasizing the pro- and antitumorigenic activity of this protein superfamily in these interrelated processes.
Collapse
Affiliation(s)
- R A Lacalle
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - R Blanco
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | | | - A Martín-Leal
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - E Mira
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - S Mañes
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain.
| |
Collapse
|
24
|
Gupta S, Feng J, Chan LJG, Petzold CJ, Ralston CY. Synchrotron X-ray footprinting as a method to visualize water in proteins. JOURNAL OF SYNCHROTRON RADIATION 2016; 23:1056-69. [PMID: 27577756 PMCID: PMC5006651 DOI: 10.1107/s1600577516009024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 06/03/2016] [Indexed: 05/23/2023]
Abstract
The vast majority of biomolecular processes are controlled or facilitated by water interactions. In enzymes, regulatory proteins, membrane-bound receptors and ion-channels, water bound to functionally important residues creates hydrogen-bonding networks that underlie the mechanism of action of the macromolecule. High-resolution X-ray structures are often difficult to obtain with many of these classes of proteins because sample conditions, such as the necessity of detergents, often impede crystallization. Other biophysical techniques such as neutron scattering, nuclear magnetic resonance and Fourier transform infrared spectroscopy are useful for studying internal water, though each has its own advantages and drawbacks, and often a hybrid approach is required to address important biological problems associated with protein-water interactions. One major area requiring more investigation is the study of bound water molecules which reside in cavities and channels and which are often involved in both the structural and functional aspects of receptor, transporter and ion channel proteins. In recent years, significant progress has been made in synchrotron-based radiolytic labeling and mass spectroscopy techniques for both the identification of bound waters and for characterizing the role of water in protein conformational changes at a high degree of spatial and temporal resolution. Here the latest developments and future capabilities of this method for investigating water-protein interactions and its synergy with other synchrotron-based methods are discussed.
Collapse
Affiliation(s)
- Sayan Gupta
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jun Feng
- Experimental Systems, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Leanne Jade G. Chan
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Christopher J. Petzold
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Corie Y. Ralston
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
25
|
Williams AE, José RJ, Mercer PF, Brealey D, Parekh D, Thickett DR, O'Kane C, McAuley DF, Chambers RC. Evidence for chemokine synergy during neutrophil migration in ARDS. Thorax 2016; 72:66-73. [PMID: 27496101 PMCID: PMC5329051 DOI: 10.1136/thoraxjnl-2016-208597] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/07/2016] [Accepted: 07/02/2016] [Indexed: 01/05/2023]
Abstract
Background Acute respiratory distress syndrome (ARDS) is a life-threatening condition characterised by pulmonary oedema, respiratory failure and severe inflammation. ARDS is further characterised by the recruitment of neutrophils into the lung interstitium and alveolar space. Objectives The factors that regulate neutrophil infiltration into the inflamed lung and our understanding of the pathomechanisms in ARDS remain incomplete. This study aimed at determining the role of the chemokine (C-C motif) ligand (CCL)2 and CCL7 in ARDS. Methods CCL2 and CCL7 protein levels were measured in bronchoalveolar lavage (BAL) fluid obtained from lipopolysaccharide(LPS)-challenged human volunteers and two separate cohorts of patients with ARDS. Neutrophil chemotaxis to ARDS BAL fluid was evaluated and the contribution of each was assessed and compared with chemokine (C-X-C motif) ligand 8 (CXCL8). Chemokine receptor expression on neutrophils from blood or BAL fluid of patients with ARDS was analysed by flow cytometry. Results CCL2 and CCL7 were significantly elevated in BAL fluid recovered from LPS-challenged volunteers and patients with ARDS. BAL fluid from patients with ARDS was highly chemotactic for human neutrophils and neutralising either CCL2 or CCL7 attenuated the neutrophil chemotactic response. Moreover, CCL2 and CCL7 synergised with CXCL8 to promote neutrophil migration. Furthermore, neutrophils isolated from the blood or BAL fluid differentially regulated the cell surface expression of chemokine (C-X-C motif) receptor 1 and C-C chemokine receptor type 2 during ARDS. Conclusion This study highlights important inflammatory chemokines involved in regulating neutrophil migration, which may have potential value as therapeutic targets for the treatment of ARDS.
Collapse
Affiliation(s)
- Andrew E Williams
- Division of Medicine, Centre for Inflammation and Tissue Repair, UCL Respiratory, Rayne Institute, University College London (UCL), London, UK
| | - Ricardo J José
- Division of Medicine, Centre for Inflammation and Tissue Repair, UCL Respiratory, Rayne Institute, University College London (UCL), London, UK
| | - Paul F Mercer
- Division of Medicine, Centre for Inflammation and Tissue Repair, UCL Respiratory, Rayne Institute, University College London (UCL), London, UK
| | - David Brealey
- Bloomsbury Institute of Intensive Care Medicine, University College Hospital, London, UK
| | - Dhruv Parekh
- Institute of Inflammation and Aging, University of Birmingham, Birmingham, UK
| | - David R Thickett
- Institute of Inflammation and Aging, University of Birmingham, Birmingham, UK
| | - Cecelia O'Kane
- Centre for Experimental Medicine, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast and Regional Intensive Care Unit, Royal Victoria Hospital, Belfast, UK
| | - Danny F McAuley
- Centre for Experimental Medicine, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast and Regional Intensive Care Unit, Royal Victoria Hospital, Belfast, UK
| | - Rachel C Chambers
- Division of Medicine, Centre for Inflammation and Tissue Repair, UCL Respiratory, Rayne Institute, University College London (UCL), London, UK
| |
Collapse
|
26
|
Rivera-Delgado E, Sadeghi Z, Wang NX, Kenyon J, Satyanarayan S, Kavran M, Flask C, Hijaz AZ, von Recum HA. Local release from affinity-based polymers increases urethral concentration of the stem cell chemokine CCL7 in rats. ACTA ACUST UNITED AC 2016; 11:025022. [PMID: 27097800 DOI: 10.1088/1748-6041/11/2/025022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The protein chemokine (C-C motif) ligand 7 (CCL7) is significantly over-expressed in urethral and vaginal tissues immediately following vaginal distention in a rat model of stress urinary incontinence. Further evidence, in this scenario and other clinical scenarios, indicates CCL7 stimulates stem cell homing for regenerative repair. This CCL7 gradient is likely absent or compromised in the natural repair process of women who continue to suffer from SUI into advanced age. We evaluated the feasibility of locally providing this missing CCL7 gradient by means of an affinity-based implantable polymer. To engineer these polymers we screened the affinity of different proteoglycans, to use them as CCL7-binding hosts. We found heparin to be the strongest binding host for CCL7 with a 0.323 nM dissociation constant. Our experimental approach indicates conjugation of heparin to a polymer backbone (using either bovine serum albumin or poly (ethylene glycol) as the base polymer) can be used as a delivery system capable of providing sustained concentrations of CCL7 in a therapeutically useful range up to a month in vitro. With this approach we are able to detect, after polymer implantation, significant increase in CCL7 in the urethral tissue directly surrounding the polymer implants with only trace amounts of human CCL7 present in the blood of the animals. Whole animal serial sectioning shows evidence of retention of locally injected human mesenchymal stem cells (hMSCs) only in animals with sustained CCL7 delivery, 2 weeks after affinity-polymers were implanted.
Collapse
Affiliation(s)
- Edgardo Rivera-Delgado
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Dyer DP, Salanga CL, Johns SC, Valdambrini E, Fuster MM, Milner CM, Day AJ, Handel TM. The Anti-inflammatory Protein TSG-6 Regulates Chemokine Function by Inhibiting Chemokine/Glycosaminoglycan Interactions. J Biol Chem 2016; 291:12627-12640. [PMID: 27044744 PMCID: PMC4933465 DOI: 10.1074/jbc.m116.720953] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Indexed: 12/14/2022] Open
Abstract
TNF-stimulated gene-6 (TSG-6) is a multifunctional protein secreted in response to pro-inflammatory stimuli by a wide range of cells, including neutrophils, monocytes, and endothelial cells. It has been shown to mediate anti-inflammatory and protective effects when administered in disease models, in part, by reducing neutrophil infiltration. Human TSG-6 inhibits neutrophil migration by binding CXCL8 through its Link module (Link_TSG6) and interfering with the presentation of CXCL8 on cell-surface glycosaminoglycans (GAGs), an interaction that is vital for the function of many chemokines. TSG-6 was also found to interact with chemokines CXCL11 and CCL5, suggesting the possibility that it may function as a broad specificity chemokine-binding protein, functionally similar to those encoded by viruses. This study was therefore undertaken to explore the ability of TSG-6 to regulate the function of other chemokines. Herein, we demonstrate that Link_TSG6 binds chemokines from both the CXC and CC families, including CXCL4, CXCL12, CCL2, CCL5, CCL7, CCL19, CCL21, and CCL27. We also show that the Link_TSG6-binding sites on chemokines overlap with chemokine GAG-binding sites, and that the affinities of Link_TSG6 for these chemokines (KD values 1–85 nm) broadly correlate with chemokine-GAG affinities. Link_TSG6 also inhibits chemokine presentation on endothelial cells not only through a direct interaction with chemokines but also by binding and therefore masking the availability of GAGs. Along with previous work, these findings suggest that TSG-6 functions as a pluripotent regulator of chemokines by modulating chemokine/GAG interactions, which may be a major mechanism by which TSG-6 produces its anti-inflammatory effects in vivo.
Collapse
Affiliation(s)
- Douglas P Dyer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0684; Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, Scotland, United Kingdom
| | - Catherina L Salanga
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0684
| | - Scott C Johns
- Medical and Research Sections, Veterans Affairs San Diego Healthcare System, La Jolla, California 92093; Department of Medicine, Division of Pulmonary and Critical Care, University of California, San Diego, La Jolla, California 92093
| | - Elena Valdambrini
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, United Kingdom; Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Mark M Fuster
- Medical and Research Sections, Veterans Affairs San Diego Healthcare System, La Jolla, California 92093; Department of Medicine, Division of Pulmonary and Critical Care, University of California, San Diego, La Jolla, California 92093
| | - Caroline M Milner
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, United Kingdom.
| | - Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, United Kingdom; Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom.
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0684.
| |
Collapse
|
28
|
Fox JC, Tyler RC, Peterson FC, Dyer DP, Zhang F, Linhardt RJ, Handel TM, Volkman BF. Examination of Glycosaminoglycan Binding Sites on the XCL1 Dimer. Biochemistry 2016; 55:1214-25. [PMID: 26836755 DOI: 10.1021/acs.biochem.5b01329] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Known for its distinct metamorphic behavior, XCL1 interconverts between a canonical chemokine folded monomer (XCL1mon) that interacts with the receptor, XCR1, and a unique dimer (XCL1dim) that interacts with glycosaminoglycans and inhibits HIV-1 activity. This study presents the first detailed analysis of the GAG binding properties of XCL1dim. Basic residues within a conformationally selective dimeric variant of XCL1 (W55D) were mutated and analyzed for their effects on heparin binding. Mutation of Arg23 and Arg43 greatly diminished the level of heparin binding in both heparin Sepharose chromatography and surface plasmon resonance assays. To assess the contributions of different GAG structures to XCL1 binding, we developed a solution fluorescence polarization assay and correlated affinity with the length and level of sulfation of heparan sulfate oligosaccharides. It was recently demonstrated that the XCL1 GAG binding form, XCL1dim, is responsible for preventing HIV-1 infection through interactions with gp120. This study defines a GAG binding surface on XCL1dim that includes residues that are important for HIV-1 inhibition.
Collapse
Affiliation(s)
- Jamie C Fox
- Department of Biochemistry, Medical College of Wisconsin , Milwaukee, Wisconsin 53226, United States
| | - Robert C Tyler
- Department of Biochemistry, Medical College of Wisconsin , Milwaukee, Wisconsin 53226, United States
| | - Francis C Peterson
- Department of Biochemistry, Medical College of Wisconsin , Milwaukee, Wisconsin 53226, United States
| | - Douglas P Dyer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology, University of California at San Diego , La Jolla, California 92093, United States
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology, University of California at San Diego , La Jolla, California 92093, United States
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin , Milwaukee, Wisconsin 53226, United States
| |
Collapse
|
29
|
Sepuru KM, Rajarathnam K. CXCL1/MGSA Is a Novel Glycosaminoglycan (GAG)-binding Chemokine: STRUCTURAL EVIDENCE FOR TWO DISTINCT NON-OVERLAPPING BINDING DOMAINS. J Biol Chem 2015; 291:4247-55. [PMID: 26721883 DOI: 10.1074/jbc.m115.697888] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Indexed: 12/12/2022] Open
Abstract
In humans, the chemokine CXCL1/MGSA (hCXCL1) plays fundamental and diverse roles in pathophysiology, from microbial killing to cancer progression, by orchestrating the directed migration of immune and non-immune cells. Cellular trafficking is highly regulated and requires concentration gradients that are achieved by interactions with sulfated glycosaminoglycans (GAGs). However, very little is known regarding the structural basis underlying hCXCL1-GAG interactions. We addressed this by characterizing the binding of GAG heparin oligosaccharides to hCXCL1 using NMR spectroscopy. Binding experiments under conditions at which hCXCL1 exists as monomers and dimers indicate that the dimer is the high-affinity GAG ligand. NMR experiments and modeling studies indicate that lysine and arginine residues mediate binding and that they are located in two non-overlapping domains. One domain, consisting of N-loop and C-helical residues (defined as α-domain) has also been identified previously as the GAG-binding domain for the related chemokine CXCL8/IL-8. The second domain, consisting of residues from the N terminus, 40s turn, and third β-strand (defined as β-domain) is novel. Eliminating β-domain binding by mutagenesis does not perturb α-domain binding, indicating two independent GAG-binding sites. It is known that N-loop and N-terminal residues mediate receptor activation, and we show that these residues are also involved in extensive GAG interactions. We also show that the GAG-bound hCXCL1 completely occlude receptor binding. We conclude that hCXCL1-GAG interactions provide stringent control over regulating chemokine levels and receptor accessibility and activation, and that chemotactic gradients mediate cellular trafficking to the target site.
Collapse
Affiliation(s)
- Krishna Mohan Sepuru
- From the Department of Biochemistry and Molecular Biology and Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555
| | - Krishna Rajarathnam
- From the Department of Biochemistry and Molecular Biology and Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555
| |
Collapse
|
30
|
Monneau Y, Arenzana-Seisdedos F, Lortat-Jacob H. The sweet spot: how GAGs help chemokines guide migrating cells. J Leukoc Biol 2015; 99:935-53. [DOI: 10.1189/jlb.3mr0915-440r] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 11/24/2015] [Indexed: 12/19/2022] Open
|
31
|
Fox JC, Tyler RC, Guzzo C, Tuinstra RL, Peterson FC, Lusso P, Volkman BF. Engineering Metamorphic Chemokine Lymphotactin/XCL1 into the GAG-Binding, HIV-Inhibitory Dimer Conformation. ACS Chem Biol 2015; 10:2580-8. [PMID: 26302421 DOI: 10.1021/acschembio.5b00542] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Unlike other chemokines, XCL1 undergoes a distinct metamorphic interconversion between a canonical monomeric chemokine fold and a unique β-sandwich dimer. The monomeric conformation binds and activates the receptor XCR1, whereas the dimer binds extracellular matrix glycosaminoglycans and has been associated with anti-human immunodeficiency virus (HIV) activity. Functional studies of WT-XCL1 are complex, as both conformations are populated in solution. To overcome this limitation, we engineered a stabilized dimeric variant of XCL1 designated CC5. This variant features a new disulfide bond (A36C-A49C) that prevents structural interconversion by locking the chemokine into the β-sandwich dimeric conformation, as demonstrated by NMR structural analysis and hydrogen/deuterium exchange experiments. Functional studies analyzing glycosaminoglycan binding demonstrate that CC5 binds with high affinity to heparin. In addition, CC5 exhibits potent inhibition of HIV-1 activity in primary peripheral blood mononuclear cells (PBMCs), demonstrating the importance of the dimer in blocking viral infection. Conformational variants like CC5 are valuable tools for elucidating the biological relevance of the XCL1 native-state interconversion and will assist in future antiviral and functional studies.
Collapse
Affiliation(s)
- Jamie C. Fox
- Department
of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Robert C. Tyler
- Department
of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Christina Guzzo
- Laboratory
of Immunoregulation, National Institute of Allergy and Infectious
Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Robbyn L. Tuinstra
- Department
of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Francis C. Peterson
- Department
of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Paolo Lusso
- Laboratory
of Immunoregulation, National Institute of Allergy and Infectious
Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Brian F. Volkman
- Department
of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| |
Collapse
|
32
|
Dyer DP, Salanga CL, Volkman BF, Kawamura T, Handel TM. The dependence of chemokine-glycosaminoglycan interactions on chemokine oligomerization. Glycobiology 2015; 26:312-26. [PMID: 26582609 DOI: 10.1093/glycob/cwv100] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 10/30/2015] [Indexed: 01/14/2023] Open
Abstract
Both chemokine oligomerization and binding to glycosaminoglycans (GAGs) are required for their function in cell recruitment. Interactions with GAGs facilitate the formation of chemokine gradients, which provide directional cues for migrating cells. In contrast, chemokine oligomerization is thought to contribute to the affinity of GAG interactions by providing a more extensive binding surface than single subunits alone. However, the importance of chemokine oligomerization to GAG binding has not been extensively quantified. Additionally, the ability of chemokines to form different oligomers has been suggested to impart specificity to GAG interactions, but most studies have been limited to heparin. In this study, several differentially oligomerizing chemokines (CCL2, CCL3, CCL5, CCL7, CXCL4, CXCL8, CXCL11 and CXCL12) and select oligomerization-deficient mutants were systematically characterized by surface plasmon resonance to determine their relative affinities for heparin, heparan sulfate (HS) and chondroitin sulfate-A (CS-A). Wild-type chemokines demonstrated a hierarchy of binding affinities for heparin and HS that was markedly dependent on oligomerization. These results were corroborated by their relative propensity to accumulate on cells and the critical role of oligomerization in cell presentation. CS-A was found to exhibit greater chemokine selectivity than heparin or HS, as it only bound a subset of chemokines; moreover, binding to CS-A was ablated with oligomerization-deficient mutants. Overall, this study definitively demonstrates the importance of oligomerization for chemokine-GAG interactions, and demonstrates diversity in the affinity and specificity of different chemokines for GAGs. These data support the idea that GAG interactions provide a mechanism for fine-tuning chemokine function.
Collapse
Affiliation(s)
- Douglas P Dyer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, 9500 Gilman Drive MC0684, San Diego, La Jolla, CA 92093-0684, USA
| | - Catherina L Salanga
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, 9500 Gilman Drive MC0684, San Diego, La Jolla, CA 92093-0684, USA
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Tetsuya Kawamura
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, 9500 Gilman Drive MC0684, San Diego, La Jolla, CA 92093-0684, USA
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, 9500 Gilman Drive MC0684, San Diego, La Jolla, CA 92093-0684, USA
| |
Collapse
|
33
|
Bai X, Qi Z, Song G, Zhao X, Zhao H, Meng X, Liu C, Bing W, Bi Y. Effects of Monocyte Chemotactic Protein-1 and Nuclear Factor of Kappa B Pathway in Rejection of Cardiac Allograft in Rat. Transplant Proc 2015; 47:2010-6. [DOI: 10.1016/j.transproceed.2015.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/26/2015] [Accepted: 05/14/2015] [Indexed: 01/04/2023]
|
34
|
Suppression of cell division-associated genes by Helicobacter pylori attenuates proliferation of RAW264.7 monocytic macrophage cells. Sci Rep 2015; 5:11046. [PMID: 26078204 PMCID: PMC4468580 DOI: 10.1038/srep11046] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 05/07/2015] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori at multiplicity of infection (MOI ≥ 50) have been shown to cause apoptosis in RAW264.7 monocytic macrophage cells. Because chronic gastric infection by H. pylori results in the persistence of macrophages in the host's gut, it is likely that H. pylori is present at low to moderate, rather than high numbers in the infected host. At present, the effect of low-MOI H. pylori infection on macrophage has not been fully elucidated. In this study, we investigated the genome-wide transcriptional regulation of H. pylori-infected RAW264.7 cells at MOI 1, 5 and 10 in the absence of cellular apoptosis. Microarray data revealed up- and down-regulation of 1341 and 1591 genes, respectively. The expression of genes encoding for DNA replication and cell cycle-associated molecules, including Aurora-B kinase (AurkB) were down-regulated. Immunoblot analysis verified the decreased expression of AurkB and downstream phosphorylation of Cdk1 caused by H. pylori infection. Consistently, we observed that H. pylori infection inhibited cell proliferation and progression through the G1/S and G2/M checkpoints. In summary, we suggest that H. pylori disrupts expression of cell cycle-associated genes, thereby impeding proliferation of RAW264.7 cells, and such disruption may be an immunoevasive strategy utilized by H. pylori.
Collapse
|
35
|
Øynebråten I, Barois N, Bergeland T, Küchler AM, Bakke O, Haraldsen G. Oligomerized, filamentous surface presentation of RANTES/CCL5 on vascular endothelial cells. Sci Rep 2015; 5:9261. [PMID: 25791723 PMCID: PMC4367157 DOI: 10.1038/srep09261] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/02/2015] [Indexed: 12/23/2022] Open
Abstract
Vascular endothelial cells present luminal chemokines that arrest rolling leukocytes
by activating integrins. It appears that several chemokines must form higher-order
oligomers to elicit proper in vivo effects, as mutants restricted to forming
dimers have lost the ability to recruit leukocytes to sites of inflammation. Here,
we show for the first time that the chemokine RANTES/CCL5 binds to the surface of
human endothelial cells in a regular filamentous pattern. Furthermore, the filaments
bound to the surface in a heparan sulfate-dependent manner. By electron microscopy
we observed labeling for RANTES on membrane projections as well as on the remaining
plasma membrane. Mutant constructs of RANTES restricted either in binding to
heparin, or in forming dimers or tetramers, appeared either in a granular,
non-filamentous pattern or were not detectable on the cell surface. The RANTES
filaments were also present after exposure to flow, suggesting that they can be
present in vivo. Taken together with the lacking in vivo or in
vitro effects of RANTES mutants, we suggest that the filamentous structures
of RANTES may be of physiological importance in leukocyte recruitment.
Collapse
Affiliation(s)
- Inger Øynebråten
- 1] Department of Pathology, Oslo University Hospital and University of Oslo, PO Box 4950 Nydalen, N-0424 Oslo, Norway [2] Centre for Immune Regulation, University of Oslo, RikshospitaletPO Box 4950 Nydalen, N-0424 Oslo, Norway
| | - Nicolas Barois
- The Department of Biosciences, University of Oslo, PO Box 1041 Blindern, 0316 N-Oslo, Norway
| | - Trygve Bergeland
- The Department of Biosciences, University of Oslo, PO Box 1041 Blindern, 0316 N-Oslo, Norway
| | - Axel M Küchler
- Department of Pathology, Oslo University Hospital and University of Oslo, PO Box 4950 Nydalen, N-0424 Oslo, Norway
| | - Oddmund Bakke
- 1] Centre for Immune Regulation, University of Oslo, RikshospitaletPO Box 4950 Nydalen, N-0424 Oslo, Norway [2] The Department of Biosciences, University of Oslo, PO Box 1041 Blindern, 0316 N-Oslo, Norway
| | - Guttorm Haraldsen
- 1] Department of Pathology, Oslo University Hospital and University of Oslo, PO Box 4950 Nydalen, N-0424 Oslo, Norway [2] K. G. Jebsen Inflammation Research Centre, University of Oslo, RikshospitaletPO Box 4950 Nydalen, N-0424 Oslo, Norway
| |
Collapse
|
36
|
Kufareva I, Salanga CL, Handel TM. Chemokine and chemokine receptor structure and interactions: implications for therapeutic strategies. Immunol Cell Biol 2015; 93:372-83. [PMID: 25708536 DOI: 10.1038/icb.2015.15] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 01/09/2015] [Accepted: 01/09/2015] [Indexed: 12/15/2022]
Abstract
The control of cell migration by chemokines involves interactions with two types of receptors: seven transmembrane chemokine-type G protein-coupled receptors and cell surface or extracellular matrix-associated glycosaminoglycans. Coordinated interaction of chemokines with both types of receptors is required for directional migration of cells in numerous physiological and pathological processes. Accumulated structural information, culminating most recently in the structure of a chemokine receptor in complex with a chemokine, has led to a view where chemokine oligomers bind to glycosaminoglycans through epitopes formed when chemokine subunits come together, while chemokine monomers bind to receptors in a pseudo two-step mechanism of receptor activation. Exploitation of this structural knowledge has and will continue to provide important information for therapeutic strategies, as described in this review.
Collapse
Affiliation(s)
- Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Catherina L Salanga
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|