1
|
Carré A, Samassa F, Zhou Z, Perez-Hernandez J, Lekka C, Manganaro A, Oshima M, Liao H, Parker R, Nicastri A, Brandao B, Colli ML, Eizirik DL, Aluri J, Patel D, Göransson M, Burgos Morales O, Anderson A, Landry L, Kobaisi F, Scharfmann R, Marselli L, Marchetti P, You S, Nakayama M, Hadrup SR, Kent SC, Richardson SJ, Ternette N, Mallone R. Interferon-α promotes HLA-B-restricted presentation of conventional and alternative antigens in human pancreatic β-cells. Nat Commun 2025; 16:765. [PMID: 39824805 DOI: 10.1038/s41467-025-55908-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/03/2025] [Indexed: 01/20/2025] Open
Abstract
Interferon (IFN)-α is the earliest cytokine signature observed in individuals at risk for type 1 diabetes (T1D), but the effect of IFN-α on the antigen repertoire of HLA Class I (HLA-I) in pancreatic β-cells is unknown. Here we characterize the HLA-I antigen presentation in resting and IFN-α-exposed β-cells and find that IFN-α increases HLA-I expression and expands peptide repertoire to those derived from alternative mRNA splicing, protein cis-splicing and post-translational modifications. While the resting β-cell immunopeptidome is dominated by HLA-A-restricted peptides, IFN-α largely favors HLA-B and only marginally upregulates HLA-A, translating into increased HLA-B-restricted peptide presentation and activation of HLA-B-restricted CD8+ T cells. Lastly, islets of patients with T1D show preferential HLA-B hyper-expression when compared with non-diabetic donors, and islet-infiltrating CD8+ T cells reactive to HLA-B-restricted granule peptides are found in T1D donors. Thus, the inflammatory milieu of insulitis may skew the autoimmune response toward alternative epitopes presented by HLA-B, hence recruiting T cells with a distinct repertoire that may be relevant to T1D pathogenesis.
Collapse
Affiliation(s)
- Alexia Carré
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | | | - Zhicheng Zhou
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Javier Perez-Hernandez
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
- Department of Nutrition and Health, Valencian International University (VIU), Valencia, Spain
| | - Christiana Lekka
- Islet Biology Group, Exeter Centre of Excellence in Diabetes Research, University of Exeter Medical School, Exeter, UK
| | - Anthony Manganaro
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Masaya Oshima
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Hanqing Liao
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Robert Parker
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Annalisa Nicastri
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Barbara Brandao
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Maikel L Colli
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Jahnavi Aluri
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Deep Patel
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Marcus Göransson
- Department of Health Technology, Technical University of Denmark, Copenhagen, Denmark
| | | | - Amanda Anderson
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Laurie Landry
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Farah Kobaisi
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | | | - Lorella Marselli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Sylvaine You
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Maki Nakayama
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sine R Hadrup
- Department of Health Technology, Technical University of Denmark, Copenhagen, Denmark
| | - Sally C Kent
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Sarah J Richardson
- Islet Biology Group, Exeter Centre of Excellence in Diabetes Research, University of Exeter Medical School, Exeter, UK
| | - Nicola Ternette
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Roberto Mallone
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France.
- Indiana Biosciences Research Institute, Indianapolis, IN, USA.
- Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Paris, France.
| |
Collapse
|
2
|
Ning H, Yang Q, Ren Y, Qiu L. Systematic regulation of immune checkpoint molecules by redox regulators CNC-bZIP transcription factors. Discov Oncol 2024; 15:685. [PMID: 39565431 PMCID: PMC11579261 DOI: 10.1007/s12672-024-01574-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Although oxidative stress is strongly connected to the initiation and progression of cancer, the underlying molecular pathways remain unknown. The redox regulator CNC-bZIPs are important transcription factor groups that mediate the interplay of environmental cues and intercellular homeostasis. Immune checkpoint molecules (ICMs) are key molecules that mediate the communication between immune cells and tumor cells. This research sought to explore the transcriptional regulatory effects of CNC-bZIPs on ICMs. METHODS The potential role of CNC-bZIPs in tumors and the correlation between CNC-bZIPs and ICMs were analyzed by the gene expression characteristics, survival analysis, and correlation analysis in TCGA data. And the transcriptional regulatory effects of CNC-bZIPs on ICMs were verified through cis acting element analysis and promoter activity reporter experiments. RESULTS In this study, we found that high expression of CNC-bZIPs predicted poor prognosis, and we determined that CNC-bZIPs are universally connected to ICMs by analyzing gene expression correlation in TCGA tumor data. Specifically, CD47 and CD274 exhibit universally positive correlation with CNC-bZIPs in various tumor tissues. Promoter analysis revealed that there are several ARE elements, which are specifically recognized by CNC-bZIPs, in the promoter regions of CD47 and CD274 genes. Overexpression of NFE2L1 and NFE2L2 was used to explore the regulation of common ICM genes, such as CD47 and CD274, and the transcriptional regulatory effect of CNC-bZIPs on ICMs was confirmed using promoter activity reporter experiments. CONCLUSION In this study, the universal and systematic transcriptional regulatory role of the CNC-bZIP transcription factor family on ICMs was discovered. According to this study, the results and conclusions drawn are based on gene expression correlation and promoter activity assays, the CNC-bZIPs/ICMs transcriptional regulatory axis was revealed to be a potential regulatory axis that may drive redox signaling and anti-tumor immune responses.
Collapse
Affiliation(s)
- Haoming Ning
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Qiufang Yang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yonggang Ren
- Innovation Center for Basic Medicine, School of Basic Medical Sciences and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| | - Lu Qiu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China.
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Erqi District, No.1 East Jianshe Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
3
|
Zhang C, Zhou C, Magassa A, Jin X, Fang D, Zhang X. A platform for mapping reactive cysteines within the immunopeptidome. Nat Commun 2024; 15:9698. [PMID: 39516457 PMCID: PMC11549463 DOI: 10.1038/s41467-024-54139-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
The major histocompatibility complex class I antigen presentation pathways play pivotal roles in orchestrating immune responses. Recent studies have begun to explore the therapeutic potential of cysteines within the immunopeptidome, such as the use of covalent ligands to generate haptenated peptide neoepitopes for immunotherapy. In this work, we report a platform for mapping reactive cysteines on MHC-I-bound peptide antigens. We develop cell-impermeable sulfonated maleimide probes capable of capturing reactive cysteines on these antigens. Using these probes in chemoproteomic experiments, we discover that cysteines on MHC-I-bound antigens exhibit various degrees of reactivity. Moreover, interferon-gamma stimulation enhances the reactivity of cysteines at position 8 of 9-mer MHC-I-bound antigens. Finally, we demonstrate that targeting reactive cysteines on MHC-I-bound antigens with a maleimide-conjugated Fc-binding cyclic peptide contributes to the induction of antibody-dependent cellular phagocytosis.
Collapse
Affiliation(s)
- Chenlu Zhang
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Chen Zhou
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Assa Magassa
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Xiaokang Jin
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Xiaoyu Zhang
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA.
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA.
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
4
|
Liao H, Barra C, Zhou Z, Peng X, Woodhouse I, Tailor A, Parker R, Carré A, Borrow P, Hogan MJ, Paes W, Eisenlohr LC, Mallone R, Nielsen M, Ternette N. MARS an improved de novo peptide candidate selection method for non-canonical antigen target discovery in cancer. Nat Commun 2024; 15:661. [PMID: 38253617 PMCID: PMC10803737 DOI: 10.1038/s41467-023-44460-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Understanding the nature and extent of non-canonical human leukocyte antigen (HLA) presentation in tumour cells is a priority for target antigen discovery for the development of next generation immunotherapies in cancer. We here employ a de novo mass spectrometric sequencing approach with a refined, MHC-centric analysis strategy to detect non-canonical MHC-associated peptides specific to cancer without any prior knowledge of the target sequence from genomic or RNA sequencing data. Our strategy integrates MHC binding rank, Average local confidence scores, and peptide Retention time prediction for improved de novo candidate Selection; culminating in the machine learning model MARS. We benchmark our model on a large synthetic peptide library dataset and reanalysis of a published dataset of high-quality non-canonical MHC-associated peptide identifications in human cancer. We achieve almost 2-fold improvement for high quality spectral assignments in comparison to de novo sequencing alone with an estimated accuracy of above 85.7% when integrated with a stepwise peptide sequence mapping strategy. Finally, we utilize MARS to detect and validate lncRNA-derived peptides in human cervical tumour resections, demonstrating its suitability to discover novel, immunogenic, non-canonical peptide sequences in primary tumour tissue.
Collapse
Affiliation(s)
- Hanqing Liao
- The Jenner Institute, University of Oxford, Oxford, OX3 7BN, UK
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | | | - Zhicheng Zhou
- Université Paris Cité, Institut Cochin, CNRS, INSERM, 75014, Paris, France
| | - Xu Peng
- The Jenner Institute, University of Oxford, Oxford, OX3 7BN, UK
| | - Isaac Woodhouse
- The Jenner Institute, University of Oxford, Oxford, OX3 7BN, UK
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Arun Tailor
- The Jenner Institute, University of Oxford, Oxford, OX3 7BN, UK
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Robert Parker
- The Jenner Institute, University of Oxford, Oxford, OX3 7BN, UK
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Alexia Carré
- Université Paris Cité, Institut Cochin, CNRS, INSERM, 75014, Paris, France
| | - Persephone Borrow
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Michael J Hogan
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Wayne Paes
- The Jenner Institute, University of Oxford, Oxford, OX3 7BN, UK
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Laurence C Eisenlohr
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Roberto Mallone
- Université Paris Cité, Institut Cochin, CNRS, INSERM, 75014, Paris, France
- Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, 75014, Paris, France
| | | | - Nicola Ternette
- The Jenner Institute, University of Oxford, Oxford, OX3 7BN, UK.
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK.
- University of Utrecht, Department of Pharmaceutical Sciences, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
5
|
Yan T, Boatner LM, Cui L, Tontonoz PJ, Backus KM. Defining the Cell Surface Cysteinome Using Two-Step Enrichment Proteomics. JACS AU 2023; 3:3506-3523. [PMID: 38155636 PMCID: PMC10751780 DOI: 10.1021/jacsau.3c00707] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023]
Abstract
The plasma membrane proteome is a rich resource of functionally important and therapeutically relevant protein targets. Distinguished by high hydrophobicity, heavy glycosylation, disulfide-rich sequences, and low overall abundance, the cell surface proteome remains undersampled in established proteomic pipelines, including our own cysteine chemoproteomics platforms. Here, we paired cell surface glycoprotein capture with cysteine chemoproteomics to establish a two-stage enrichment method that enables chemoproteomic profiling of cell Surface Cysteinome. Our "Cys-Surf" platform captures >2,800 total membrane protein cysteines in 1,046 proteins, including 1,907 residues not previously captured by bulk proteomic analysis. By pairing Cys-Surf with an isotopic chemoproteomic readout, we uncovered 821 total ligandable cysteines, including known and novel sites. Cys-Surf also robustly delineates redox-sensitive cysteines, including cysteines prone to activation-dependent changes to cysteine oxidation state and residues sensitive to addition of exogenous reductants. Exemplifying the capacity of Cys-Surf to delineate functionally important cysteines, we identified a redox sensitive cysteine in the low-density lipoprotein receptor (LDLR) that impacts both the protein localization and uptake of low-density lipoprotein (LDL) particles. Taken together, the Cys-Surf platform, distinguished by its two-stage enrichment paradigm, represents a tailored approach to delineate the functional and therapeutic potential of the plasma membrane cysteinome.
Collapse
Affiliation(s)
- Tianyang Yan
- Department
of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Lisa M. Boatner
- Department
of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Liujuan Cui
- Department
of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department
of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, Los Angeles, California 90095, United States
| | - Peter J. Tontonoz
- Department
of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department
of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, Los Angeles, California 90095, United States
| | - Keriann M. Backus
- Department
of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
- DOE
Institute for Genomics and Proteomics, UCLA, Los Angeles, California 90095, United States
- Jonsson
Comprehensive Cancer Center, UCLA, Los Angeles, California 90095, United States
- Eli
and Edythe
Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California 90095, United States
| |
Collapse
|
6
|
Yan T, Boatner LM, Cui L, Tontonoz P, Backus KM. Defining the Cell Surface Cysteinome using Two-step Enrichment Proteomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.17.562832. [PMID: 37904933 PMCID: PMC10614875 DOI: 10.1101/2023.10.17.562832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
The plasma membrane proteome is a rich resource of functional and therapeutically relevant protein targets. Distinguished by high hydrophobicity, heavy glycosylation, disulfide-rich sequences, and low overall abundance, the cell surface proteome remains undersampled in established proteomic pipelines, including our own cysteine chemoproteomics platforms. Here we paired cell surface glycoprotein capture with cysteine chemoproteomics to establish a two-stage enrichment method that enables chemoproteomic profiling of cell Surface Cysteinome. Our "Cys-Surf" platform captures >2,800 total membrane protein cysteines in 1,046 proteins, including 1,907 residues not previously captured by bulk proteomic analysis. By pairing Cys-Surf with an isotopic chemoproteomic readout, we uncovered 821 total ligandable cysteines, including known and novel sites. Cys-Surf also robustly delineates redox-sensitive cysteines, including cysteines prone to activation-dependent changes to cysteine oxidation state and residues sensitive to addition of exogenous reductants. Exemplifying the capacity of Cys-Surf to delineate functionally important cysteines, we identified a redox sensitive cysteine in the low-density lipoprotein receptor (LDLR) that impacts both the protein localization and uptake of LDL particles. Taken together, the Cys-Surf platform, distinguished by its two-stage enrichment paradigm, represents a tailored approach to delineate the functional and therapeutic potential of the plasma membrane cysteinome.
Collapse
Affiliation(s)
- Tianyang Yan
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
| | - Lisa M. Boatner
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
| | - Liujuan Cui
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles; Los Angeles, CA 90095, USA
| | - Peter Tontonoz
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles; Los Angeles, CA 90095, USA
| | - Keriann M. Backus
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
- DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA 90095 (USA)
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095 (USA)
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095 (USA)
| |
Collapse
|
7
|
Carré A, Zhou Z, Perez-Hernandez J, Samassa F, Lekka C, Manganaro A, Oshima M, Liao H, Parker R, Nicastri A, Brandao B, Colli ML, Eizirik DL, Göransson M, Morales OB, Anderson A, Landry L, Kobaisi F, Scharfmann R, Marselli L, Marchetti P, You S, Nakayama M, Hadrup SR, Kent SC, Richardson SJ, Ternette N, Mallone R. Interferon-α promotes neo-antigen formation and preferential HLA-B-restricted antigen presentation in pancreatic β-cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.15.557918. [PMID: 37745505 PMCID: PMC10516036 DOI: 10.1101/2023.09.15.557918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Interferon (IFN)-α is the earliest cytokine signature observed in individuals at risk for type 1 diabetes (T1D), but its effect on the repertoire of HLA Class I (HLA-I)-bound peptides presented by pancreatic β-cells is unknown. Using immunopeptidomics, we characterized the peptide/HLA-I presentation in in-vitro resting and IFN-α-exposed β-cells. IFN-α increased HLA-I expression and peptide presentation, including neo-sequences derived from alternative mRNA splicing, post-translational modifications - notably glutathionylation - and protein cis-splicing. This antigenic landscape relied on processing by both the constitutive and immune proteasome. The resting β-cell immunopeptidome was dominated by HLA-A-restricted ligands. However, IFN-α only marginally upregulated HLA-A and largely favored HLA-B, translating into a major increase in HLA-B-restricted peptides and into an increased activation of HLA-B-restricted vs. HLA-A-restricted CD8+ T-cells. A preferential HLA-B hyper-expression was also observed in the islets of T1D vs. non-diabetic donors, and we identified islet-infiltrating CD8+ T-cells from T1D donors reactive to HLA-B-restricted granule peptides. Thus, the inflammatory milieu of insulitis may skew the autoimmune response toward epitopes presented by HLA-B, hence recruiting a distinct T-cell repertoire that may be relevant to T1D pathogenesis.
Collapse
Affiliation(s)
- Alexia Carré
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Zhicheng Zhou
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Javier Perez-Hernandez
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
- Department of Nutrition and Health, Valencian International University (VIU), Valencia, Spain
| | | | - Christiana Lekka
- Islet Biology Group, Exeter Centre of Excellence in Diabetes Research, University of Exeter Medical School, Exeter, UK
| | - Anthony Manganaro
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Masaya Oshima
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Hanqing Liao
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, UK
| | - Robert Parker
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, UK
| | - Annalisa Nicastri
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, UK
| | - Barbara Brandao
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Maikel L. Colli
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Decio L. Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Marcus Göransson
- Department of Health Technology, Technical University of Denmark, Copenhagen, Denmark
| | | | - Amanda Anderson
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Laurie Landry
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Farah Kobaisi
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | | | - Lorella Marselli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Sylvaine You
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Maki Nakayama
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sine R. Hadrup
- Department of Health Technology, Technical University of Denmark, Copenhagen, Denmark
| | - Sally C. Kent
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Sarah J. Richardson
- Islet Biology Group, Exeter Centre of Excellence in Diabetes Research, University of Exeter Medical School, Exeter, UK
| | - Nicola Ternette
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, UK
| | - Roberto Mallone
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
- Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Paris, France
| |
Collapse
|
8
|
Iizuka A, Akiyama Y, Sakura N, Kanematsu A, Kikuchi Y, Nagashima T, Urakami K, Shimoda Y, Ohshima K, Shiomi A, Ohde Y, Terashima M, Uesaka K, Mukaigawa T, Hirashima Y, Yoshikawa S, Katagiri H, Sugino T, Takahashi M, Kenmotsu H, Yamaguchi K. Generation of novel complete HLA class I monoallelic cell lines used in an MHC stabilization assay for neoantigen evaluation. Oncol Lett 2023; 26:324. [PMID: 37415627 PMCID: PMC10320429 DOI: 10.3892/ol.2023.13910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/16/2023] [Indexed: 07/08/2023] Open
Abstract
Immunogenic neoantigens derived from somatic mutations in cancer have been identified through clinical studies with the cloning of tumor-infiltrating T cells, and cancer driver gene mutation-derived epitopes have been reported; however, these are rare. At present, the validation of epitopes predicted in silico is difficult as human T-cell clonal diversity cannot be reproduced in vitro or in experimental animal models. To confirm the epitope peptides presented by human leukocyte antigen (HLA) class I molecules predicted in silico, biochemical methods such as major histocompatibility complex (MHC) stabilization assays and mass spectrometry-mediated identification have been developed based on HLA-A*02:01 monoallelic T2 cells and HLA-C*01:02 monoallelic LCL721.221 cells. Therefore, in the present study, to prevent confusion due to peptide cross-presentation among HLA molecules, HLA class I monoallelic B-cell clones were generated from the TISI cell line by knocking out HLA-ABC and TAP2, and knocking in HLA alleles. To explore cancer driver mutations as potential targets for immunotherapy, exome sequencing data from 5,143 patients with cancer enrolled in a comprehensive genome analysis project at the Shizuoka Cancer Center were used to identify somatic amino acid substituted mutations and the 50 most frequent mutations in five genes, TP53, EGFR, PIK3CA, KRAS and BRAF, were identified. Using NetMHC4.1, the present study predicted whether epitopes derived from these mutations are presented on major HLA-ABC alleles in Japanese individuals and synthesized 138 peptides for MHC stabilization assays. The authors also attempted to examine the candidate epitopes at physiological temperatures by using antibody clone G46-2.6, which can detect HLA-ABC, independent of β2-microglobulin association. In the assays, although the peptide-induced HLA expression levels were associated with the predicted affinities, the respective HLA alleles exhibited varying degrees of responsiveness, and unexpectedly, p53-mutant epitopes with predicted weak affinities exhibited strong responses. These results suggested that MHC stabilization assays using completely monoallelic HLA-expressing B-cell lines are useful for evaluating the presentation of neoantigen epitopes.
Collapse
Affiliation(s)
- Akira Iizuka
- Immunotherapy Division, Shizuoka Cancer Center Research Institute, Shizuoka 411-8777, Japan
| | - Yasuto Akiyama
- Immunotherapy Division, Shizuoka Cancer Center Research Institute, Shizuoka 411-8777, Japan
| | - Naoki Sakura
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka 411-8777, Japan
| | - Akari Kanematsu
- Immunotherapy Division, Shizuoka Cancer Center Research Institute, Shizuoka 411-8777, Japan
| | - Yasufumi Kikuchi
- Immunotherapy Division, Shizuoka Cancer Center Research Institute, Shizuoka 411-8777, Japan
| | - Takeshi Nagashima
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka 411-8777, Japan
- SRL, Inc., Tokyo 163-0409, Japan
| | - Kenichi Urakami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka 411-8777, Japan
| | - Yuji Shimoda
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka 411-8777, Japan
| | - Keiichi Ohshima
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka 411-8777, Japan
| | - Akio Shiomi
- Division of Colon and Rectal Surgery, Shizuoka Cancer Center Hospital, Shizuoka 411-8777, Japan
| | - Yasuhisa Ohde
- Division of Thoracic Surgery, Shizuoka Cancer Center Hospital, Shizuoka 411-8777, Japan
| | - Masanori Terashima
- Division of Gastric Surgery, Shizuoka Cancer Center Hospital, Shizuoka 411-8777, Japan
| | - Katsuhiko Uesaka
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center Hospital, Shizuoka 411-8777, Japan
| | - Takashi Mukaigawa
- Division of Head and Neck Surgery, Shizuoka Cancer Center Hospital, Shizuoka 411-8777, Japan
| | - Yasuyuki Hirashima
- Division of Gynecology, Shizuoka Cancer Center Hospital, Shizuoka 411-8777, Japan
| | - Shusuke Yoshikawa
- Division of Dermatology, Shizuoka Cancer Center Hospital, Shizuoka 411-8777, Japan
| | - Hirohisa Katagiri
- Division of Orthopedic Oncology, Shizuoka Cancer Center Hospital, Shizuoka 411-8777, Japan
| | - Takashi Sugino
- Division of Pathology, Shizuoka Cancer Center Hospital, Shizuoka 411-8777, Japan
| | - Mitsuru Takahashi
- Division of Orthopedic Oncology, Shizuoka Cancer Center Hospital, Shizuoka 411-8777, Japan
| | - Hirotsugu Kenmotsu
- Division of Thoracic Oncology, Shizuoka Cancer Center Hospital, Shizuoka 411-8777, Japan
| | - Ken Yamaguchi
- Office of The President, Shizuoka Cancer Center, Shizuoka 411-8777, Japan
| |
Collapse
|
9
|
Bruno PM, Timms RT, Abdelfattah NS, Leng Y, Lelis FJN, Wesemann DR, Yu XG, Elledge SJ. High-throughput, targeted MHC class I immunopeptidomics using a functional genetics screening platform. Nat Biotechnol 2023; 41:980-992. [PMID: 36593401 PMCID: PMC10314971 DOI: 10.1038/s41587-022-01566-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 10/13/2022] [Indexed: 01/03/2023]
Abstract
Identification of CD8+ T cell epitopes is critical for the development of immunotherapeutics. Existing methods for major histocompatibility complex class I (MHC class I) ligand discovery are time intensive, specialized and unable to interrogate specific proteins on a large scale. Here, we present EpiScan, which uses surface MHC class I levels as a readout for whether a genetically encoded peptide is an MHC class I ligand. Predetermined starting pools composed of >100,000 peptides can be designed using oligonucleotide synthesis, permitting large-scale MHC class I screening. We exploit this programmability of EpiScan to uncover an unappreciated role for cysteine that increases the number of predicted ligands by 9-21%, reveal affinity hierarchies by analysis of biased anchor peptide libraries and screen viral proteomes for MHC class I ligands. Using these data, we generate and iteratively refine peptide binding predictions to create EpiScan Predictor. EpiScan Predictor performs comparably to other state-of-the-art MHC class I peptide binding prediction algorithms without suffering from underrepresentation of cysteine-containing peptides. Thus, targeted immunopeptidomics using EpiScan will accelerate CD8+ T cell epitope discovery toward the goal of individual-specific immunotherapeutics.
Collapse
Affiliation(s)
- Peter M Bruno
- Department of Genetics, Harvard Medical School and Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Richard T Timms
- Department of Genetics, Harvard Medical School and Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Nouran S Abdelfattah
- Department of Genetics, Harvard Medical School and Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Yumei Leng
- Department of Genetics, Harvard Medical School and Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Felipe J N Lelis
- Department of Medicine, Division of Allergy and Immunology, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Duane R Wesemann
- Department of Medicine, Division of Allergy and Immunology, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA, USA
| | - Xu G Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Stephen J Elledge
- Department of Genetics, Harvard Medical School and Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
10
|
Bedran G, Gasser HC, Weke K, Wang T, Bedran D, Laird A, Battail C, Zanzotto FM, Pesquita C, Axelson H, Rajan A, Harrison DJ, Palkowski A, Pawlik M, Parys M, O'Neill JR, Brennan PM, Symeonides SN, Goodlett DR, Litchfield K, Fahraeus R, Hupp TR, Kote S, Alfaro JA. The Immunopeptidome from a Genomic Perspective: Establishing the Noncanonical Landscape of MHC Class I-Associated Peptides. Cancer Immunol Res 2023; 11:747-762. [PMID: 36961404 PMCID: PMC10236148 DOI: 10.1158/2326-6066.cir-22-0621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/25/2022] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
Tumor antigens can emerge through multiple mechanisms, including translation of noncoding genomic regions. This noncanonical category of tumor antigens has recently gained attention; however, our understanding of how they recur within and between cancer types is still in its infancy. Therefore, we developed a proteogenomic pipeline based on deep learning de novo mass spectrometry (MS) to enable the discovery of noncanonical MHC class I-associated peptides (ncMAP) from noncoding regions. Considering that the emergence of tumor antigens can also involve posttranslational modifications (PTM), we included an open search component in our pipeline. Leveraging the wealth of MS-based immunopeptidomics, we analyzed data from 26 MHC class I immunopeptidomic studies across 11 different cancer types. We validated the de novo identified ncMAPs, along with the most abundant PTMs, using spectral matching and controlled their FDR to 1%. The noncanonical presentation appeared to be 5 times enriched for the A03 HLA supertype, with a projected population coverage of 55%. The data reveal an atlas of 8,601 ncMAPs with varying levels of cancer selectivity and suggest 17 cancer-selective ncMAPs as attractive therapeutic targets according to a stringent cutoff. In summary, the combination of the open-source pipeline and the atlas of ncMAPs reported herein could facilitate the identification and screening of ncMAPs as targets for T-cell therapies or vaccine development.
Collapse
Affiliation(s)
- Georges Bedran
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | | | - Kenneth Weke
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Tongjie Wang
- School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Dominika Bedran
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Alexander Laird
- Urology Department, Western General Hospital, NHS Lothian, Edinburgh, United Kingdom
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Christophe Battail
- CEA, Grenoble Alpes University, INSERM, IRIG, Biosciences and Bioengineering for Health Laboratory (BGE) - UA13 INSERM-CEA-UGA, Grenoble, France
| | | | - Catia Pesquita
- LASIGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Håkan Axelson
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Ajitha Rajan
- School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - David J. Harrison
- School of Medicine, University of St Andrews, St Andrews, United Kingdom
| | - Aleksander Palkowski
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Maciej Pawlik
- Academic Computer Centre CYFRONET, AGH University of Science and Technology, Cracow, Poland
| | - Maciej Parys
- Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - J. Robert O'Neill
- Cambridge Oesophagogastric Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Paul M. Brennan
- Translational Neurosurgery, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Stefan N. Symeonides
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - David R. Goodlett
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
- University of Victoria Genome BC Proteome Centre, Victoria, Canada
| | - Kevin Litchfield
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
- Tumour Immunogenomics and Immunosurveillance Laboratory, University College London Cancer Institute, London, United Kingdom
| | - Robin Fahraeus
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Paris, France
| | - Ted R. Hupp
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Sachin Kote
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Javier A. Alfaro
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
- School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| |
Collapse
|
11
|
Tumor Vasculature as an Emerging Pharmacological Target to Promote Anti-Tumor Immunity. Int J Mol Sci 2023; 24:ijms24054422. [PMID: 36901858 PMCID: PMC10002465 DOI: 10.3390/ijms24054422] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 02/25/2023] Open
Abstract
Tumor vasculature abnormality creates a microenvironment that is not suitable for anti-tumor immune response and thereby induces resistance to immunotherapy. Remodeling of dysfunctional tumor blood vessels by anti-angiogenic approaches, known as vascular normalization, reshapes the tumor microenvironment toward an immune-favorable one and improves the effectiveness of immunotherapy. The tumor vasculature serves as a potential pharmacological target with the capacity of promoting an anti-tumor immune response. In this review, the molecular mechanisms involved in tumor vascular microenvironment-modulated immune reactions are summarized. In addition, the evidence of pre-clinical and clinical studies for the combined targeting of pro-angiogenic signaling and immune checkpoint molecules with therapeutic potential are highlighted. The heterogeneity of endothelial cells in tumors that regulate tissue-specific immune responses is also discussed. The crosstalk between tumor endothelial cells and immune cells in individual tissues is postulated to have a unique molecular signature and may be considered as a potential target for the development of new immunotherapeutic approaches.
Collapse
|
12
|
Milton-Laskibar I, Trepiana J, Macarulla MT, Gómez-Zorita S, Arellano-García L, Fernández-Quintela A, Portillo MP. Potential usefulness of Mediterranean diet polyphenols against COVID-19-induced inflammation: a review of the current knowledge. J Physiol Biochem 2022:10.1007/s13105-022-00926-0. [PMID: 36346507 PMCID: PMC9641689 DOI: 10.1007/s13105-022-00926-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/22/2022] [Indexed: 11/11/2022]
Abstract
The Mediterranean diet is a dietary pattern typical of the populations living in the Mediterranean basin during the 50s-60s of the last century. This diet has demonstrated beneficial effects in the prevention of several pathologies such as cardiovascular diseases, metabolic syndrome, or several cancer types, at least in part, due to its antioxidant compounds. Since the COVID-19 pandemic started, different authors have been studying the effects of certain dietary habits on the presence of COVID-19 and its severity, and the Mediterranean diet is one of them. This review gathers data from studies supporting the potential usefulness of the main phenolic compounds present in the Mediterranean diet, based on their antioxidant and anti-inflammatory effects, as preventive/therapeutic agents against COVID-19. The current evidence supports the potential benefits that hydroxytyrosol, resveratrol, flavonols such as quercetin, flavanols like catechins, and flavanones on the order of naringenin could have on COVID-19. This is due to the increase in the synthesis and translocations of Nrf-2, which increases the activity of antioxidant enzymes and thus reduces ROS production, the scavenging of free radicals, and the suppression of the activity of MMP-9, which is involved in the cytokine storm, and the inhibition of NF-κB.
Collapse
Affiliation(s)
- Iñaki Milton-Laskibar
- Precision Nutrition and Cardiometabolic Health Program, IMDEA- Food Institute (Madrid Institute for Advanced Studies), Spanish National Research Council, Campus of International Excellence (CEI) UAM+CSIC, 28049 Madrid, Spain ,CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Jenifer Trepiana
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain ,Nutrition and Obesity Group, Department of Nutrition and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Lucio Lascaray Research Center, 01006 Vitoria-Gasteiz, Spain ,BIOARABA Health Research Institute, 01006 Vitoria-Gasteiz, Spain
| | - María Teresa Macarulla
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain ,Nutrition and Obesity Group, Department of Nutrition and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Lucio Lascaray Research Center, 01006 Vitoria-Gasteiz, Spain ,BIOARABA Health Research Institute, 01006 Vitoria-Gasteiz, Spain
| | - Saioa Gómez-Zorita
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain ,Nutrition and Obesity Group, Department of Nutrition and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Lucio Lascaray Research Center, 01006 Vitoria-Gasteiz, Spain ,BIOARABA Health Research Institute, 01006 Vitoria-Gasteiz, Spain
| | - Laura Arellano-García
- Nutrition and Obesity Group, Department of Nutrition and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Lucio Lascaray Research Center, 01006 Vitoria-Gasteiz, Spain
| | - Alfredo Fernández-Quintela
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain ,Nutrition and Obesity Group, Department of Nutrition and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Lucio Lascaray Research Center, 01006 Vitoria-Gasteiz, Spain ,BIOARABA Health Research Institute, 01006 Vitoria-Gasteiz, Spain
| | - María P. Portillo
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain ,Nutrition and Obesity Group, Department of Nutrition and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Lucio Lascaray Research Center, 01006 Vitoria-Gasteiz, Spain ,BIOARABA Health Research Institute, 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
13
|
Brücksken KA, Loreto Palacio P, Hanschmann EM. Thiol Modifications in the Extracellular Space-Key Proteins in Inflammation and Viral Infection. Front Immunol 2022; 13:932525. [PMID: 35833136 PMCID: PMC9271835 DOI: 10.3389/fimmu.2022.932525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Posttranslational modifications (PTMs) allow to control molecular and cellular functions in response to specific signals and changes in the microenvironment of cells. They regulate structure, localization, stability, and function of proteins in a spatial and temporal manner. Among them, specific thiol modifications of cysteine (Cys) residues facilitate rapid signal transduction. In fact, Cys is unique because it contains the highly reactive thiol group that can undergo different reversible and irreversible modifications. Upon inflammation and changes in the cellular microenvironment, many extracellular soluble and membrane proteins undergo thiol modifications, particularly dithiol-disulfide exchange, S-glutathionylation, and S-nitrosylation. Among others, these thiol switches are essential for inflammatory signaling, regulation of gene expression, cytokine release, immunoglobulin function and isoform variation, and antigen presentation. Interestingly, also the redox state of bacterial and viral proteins depends on host cell-mediated redox reactions that are critical for invasion and infection. Here, we highlight mechanistic thiol switches in inflammatory pathways and infections including cholera, diphtheria, hepatitis, human immunodeficiency virus (HIV), influenza, and coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
| | | | - Eva-Maria Hanschmann
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
14
|
Nielsen M, Ternette N, Barra C. The interdependence of machine learning and LC-MS approaches for an unbiased understanding of the cellular immunopeptidome. Expert Rev Proteomics 2022; 19:77-88. [PMID: 35390265 DOI: 10.1080/14789450.2022.2064278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The comprehensive collection of peptides presented by Major Histocompatibility Complex (MHC) molecules on the cell surface is collectively known as the immunopeptidome. The analysis and interpretation of such data sets holds great promise for furthering our understanding of basic immunology and adaptive immune activation and regulation, and for direct rational discovery of T cell antigens and the design of T-cell based therapeutics and vaccines. These applications are however challenged by the complex nature of immunopeptidome data. AREAS COVERED Here, we describe the benefits and shortcomings of applying liquid chromatography-tandem mass spectrometry (MS) to obtain large scale immunopeptidome data sets and illustrate how the accurate analysis and optimal interpretation of such data is reliant on the availability of refined and highly optimized machine learning approaches. EXPERT OPINION Further we demonstrate how the accuracy of immunoinformatics prediction methods within the field of MHC antigen presentation has benefited greatly from the availability of MS-immunopeptidomics data, and exemplify how optimal antigen discovery is best performed in a synergistic combination of MS experiments and such in silico models trained on large scale immunopeptidomics data.
Collapse
Affiliation(s)
- Morten Nielsen
- Department of Health technology, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Nicola Ternette
- Centre for Cellular and Molecular Physiology, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Carolina Barra
- Department of Health technology, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
15
|
Yewdell JW. MHC Class I Immunopeptidome: Past, Present, and Future. Mol Cell Proteomics 2022; 21:100230. [PMID: 35395404 PMCID: PMC9243166 DOI: 10.1016/j.mcpro.2022.100230] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/14/2022] Open
Abstract
In the 35 years since the revelation that short peptides bound to major histocompatibility complex class I and II molecules are the secret of the major histocompatibility complex–restricted nature of T-cell recognition, there has been enormous progress in characterizing the immunopeptidome, the repertoire of peptide presented for immunosurveillance. Here, the major milestones in the journey are marked, the contribution of proteasome-mediated splicing to the immunopeptidome is discussed, and exciting recent findings relating the immunopeptidome to the translatome revealed by ribosome profiling (RiboSeq) is detailed. Finally, what is needed for continued progress is opined about, which includes the infusion of talented young scientists into the antigen-processing field, currently undergoing a renaissance; thanks in part to the astounding success of T-cell–based cancer immunotherapy. Concise history of the discoveries leading to the molecular explanation for the phenomenon of the MHC class I–restricted nature of T-cell recognition. Historical review of how MS became a critical technique for defining MHC class I–associated peptides and understanding how peptides are generated from proteins biosynthesized by the antigen-presenting cell. Critical review of recent findings linking the translatome to the MHC class I immunopeptidome and the controversy regarding contribution of proteasome-mediated peptide splicing to the immunopeptidome. Speculative discussion of the future contributions of MS to understanding the generation of the MHC class I immunopeptidome.
Collapse
Affiliation(s)
- Jonathan W Yewdell
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA.
| |
Collapse
|
16
|
Fazio S, Affuso F, Bellavite P. A Review of the Potential Roles of Antioxidant and Anti-Inflammatory Pharmacological Approaches for the Management of Mild-to-Moderate Symptomatic COVID-19. Med Sci Monit 2022; 28:e936292. [PMID: 35256581 PMCID: PMC8917781 DOI: 10.12659/msm.936292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/22/2022] [Indexed: 01/11/2023] Open
Abstract
In the past 2 years, the coronavirus disease 2019 (COVID-19) pandemic has driven investigational studies and controlled clinical trials on antiviral treatments and vaccines that have undergone regulatory approval. Now that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants may become endemic over time, there remains a need to identify drugs that treat the symptoms of COVID-19 and prevent progression toward severe cases, hospitalization, and death. Understanding the molecular mechanisms of SARS-CoV-2 infection is extremely important for the development of effective therapies against COVID-19. This review outlines the key pathways involved in the host response to SARS-CoV-2 infection and discusses the potential role of antioxidant and anti-inflammatory pharmacological approaches for the management of early mild-to-moderate COVID-19, using the examples of combined indomethacin, low-dose aspirin, omeprazole, hesperidin, quercetin, and vitamin C. The pharmacological targets of these substances are described here for their possible synergism in counteracting SARS-CoV-2 replication and progression of the infection from the upper respiratory airways to the blood, avoiding vascular complications and cytokine and bradykinin storms.
Collapse
Affiliation(s)
- Serafino Fazio
- Department of Internal Medicine (retired professor), Medical School University Federico II, Naples, Italy
| | | | - Paolo Bellavite
- Physiopathology Chair, Homeopathic Medical School of Verona, Verona, Italy
| |
Collapse
|
17
|
Rodríguez-Carrio J, Cerro-Pardo I, Lindholt JS, Bonzon-Kulichenko E, Martínez-López D, Roldán-Montero R, Escolà-Gil JC, Michel JB, Blanco-Colio LM, Vázquez J, Suárez A, Martín-Ventura JL. Malondialdehyde-modified HDL particles elicit a specific IgG response in abdominal aortic aneurysm. Free Radic Biol Med 2021; 174:171-181. [PMID: 34364980 DOI: 10.1016/j.freeradbiomed.2021.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/22/2021] [Accepted: 08/04/2021] [Indexed: 11/19/2022]
Abstract
High Density Lipoprotein (HDL) plays a protective role in abdominal aortic aneurysm (AAA); however, recent findings suggest that oxidative modifications could lead to dysfunctional HDL in AAA. This study aimed at testing the effect of oxidized HDL on aortic lesions and humoral immune responses in a mouse model of AAA induced by elastase, and evaluating whether antibodies against modified HDL can be found in AAA patients. HDL particles were oxidized with malondialdehyde (HDL-MDA) and the changes were studied by biochemical and proteomics approaches. Experimental AAA was induced in mice by elastase perfusion and then mice were treated with HDL-MDA, HDL or vehicle for 14 days. Aortic lesions were studied by histomorphometric analysis. Levels of anti-HDL-MDA IgG antibodies were measured by an in-house immunoassay in the mouse model, in human tissue-supernatants and in plasma samples from the VIVA cohort. HDL oxidation with MDA was confirmed by enhanced susceptibility to diene formation. Proteomics demonstrated the presence of MDA adducts on Lysine residues of HDL proteins, mainly ApoA-I. MDA-modification of HDL abrogated the protective effect of HDL on cultured endothelial cells as well as on AAA dilation in mice. Exposure to HDL-MDA elicited an anti-HDL-MDA IgG response in mice. Anti-HDL-MDA were also detected in tissue-conditioned media from AAA patients, mainly in intraluminal thrombus. Higher plasma levels of anti-HDL-MDA IgG antibodies were found in AAA patients compared to controls. Anti-HDL-MDA levels were associated with smoking and were independent predictors of overall mortality in AAA patients. Overall, MDA-oxidized HDL trigger a specific humoral immune response in mice. Besides, antibodies against HDL-MDA can be detected in tissue and plasma of AAA patients, suggesting its potential use as surrogate stable biomarkers of oxidative stress in AAA.
Collapse
Affiliation(s)
- Javier Rodríguez-Carrio
- Area of Immunology, University of Oviedo, Instituto de Salud Del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | | | - Jes S Lindholt
- Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, Odense, Denmark
| | - Elena Bonzon-Kulichenko
- Laboratorio de Proteómica Cardiovascular, CNIC, Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | | | | | - Joan-Carles Escolà-Gil
- Institut de Investigació Biomédica Sant Pau, Spain; CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), Barcelona, Spain
| | | | - Luis Miguel Blanco-Colio
- IIS-Fundación Jiménez-Díaz, Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Jesús Vázquez
- Laboratorio de Proteómica Cardiovascular, CNIC, Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Ana Suárez
- Area of Immunology, University of Oviedo, Instituto de Salud Del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - José Luis Martín-Ventura
- IIS-Fundación Jiménez-Díaz, Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| |
Collapse
|
18
|
Bailey A, Nicholas B, Darley R, Parkinson E, Teo Y, Aleksic M, Maxwell G, Elliott T, Ardern-Jones M, Skipp P. Characterization of the Class I MHC Peptidome Resulting From DNCB Exposure of HaCaT Cells. Toxicol Sci 2021; 180:136-147. [PMID: 33372950 PMCID: PMC7916740 DOI: 10.1093/toxsci/kfaa184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Skin sensitization following the covalent modification of proteins by low molecular weight chemicals (haptenation) is mediated by cytotoxic T lymphocyte (CTL) recognition of human leukocyte antigen (HLA) molecules presented on the surface of almost all nucleated cells. There exist 3 nonmutually exclusive hypotheses for how haptens mediate CTL recognition: direct stimulation by haptenated peptides, hapten modification of HLA leading to an altered HLA-peptide repertoire, or a hapten altered proteome leading to an altered HLA-peptide repertoire. To shed light on the mechanism underpinning skin sensitization, we set out to utilize proteomic analysis of keratinocyte presented antigens following exposure to 2,4-dinitrochlorobenzene (DNCB). We show that the following DNCB exposure, cultured keratinocytes present cysteine haptenated (dinitrophenylated) peptides in multiple HLA molecules. In addition, we find that one of the DNCB modified peptides derives from the active site of cytosolic glutathione-S transferase-ω. These results support the current view that a key mechanism of skin sensitization is stimulation of CTLs by haptenated peptides. Data are available via ProteomeXchange with identifier PXD021373.
Collapse
Affiliation(s)
- Alistair Bailey
- Centre for Proteomic Research, Biological Sciences and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK.,Centre for Cancer Immunology and Institute for Life Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Ben Nicholas
- Centre for Proteomic Research, Biological Sciences and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK.,Centre for Cancer Immunology and Institute for Life Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Rachel Darley
- Centre for Cancer Immunology and Institute for Life Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Erika Parkinson
- Centre for Proteomic Research, Biological Sciences and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Ying Teo
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Maja Aleksic
- Safety & Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook MK44 1LQ, UK
| | - Gavin Maxwell
- Safety & Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook MK44 1LQ, UK
| | - Tim Elliott
- Centre for Cancer Immunology and Institute for Life Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Michael Ardern-Jones
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Paul Skipp
- Centre for Proteomic Research, Biological Sciences and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
19
|
Isaguliants M, Krotova O, Petkov S, Jansons J, Bayurova E, Mezale D, Fridrihsone I, Kilpelainen A, Podschwadt P, Agapkina Y, Smirnova O, Kostic L, Saleem M, Latyshev O, Eliseeva O, Malkova A, Gorodnicheva T, Wahren B, Gordeychuk I, Starodubova E, Latanova A. Cellular Immune Response Induced by DNA Immunization of Mice with Drug Resistant Integrases of HIV-1 Clade A Offers Partial Protection against Growth and Metastatic Activity of Integrase-Expressing Adenocarcinoma Cells. Microorganisms 2021; 9:1219. [PMID: 34199989 PMCID: PMC8226624 DOI: 10.3390/microorganisms9061219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 02/07/2023] Open
Abstract
Therapeutic DNA-vaccination against drug-resistant HIV-1 may hinder emergence and spread of drug-resistant HIV-1, allowing for longer successful antiretroviral treatment (ART) up-to relief of ART. We designed DNA-vaccines against drug-resistant HIV-1 based on consensus clade A integrase (IN) resistant to raltegravir: IN_in_r1 (L74M/E92Q/V151I/N155H/G163R) or IN_in_r2 (E138K/G140S/Q148K) carrying D64V abrogating IN activity. INs, overexpressed in mammalian cells from synthetic genes, were assessed for stability, route of proteolytic degradation, and ability to induce oxidative stress. Both were found safe in immunotoxicity tests in mice, with no inherent carcinogenicity: their expression did not enhance tumorigenic or metastatic potential of adenocarcinoma 4T1 cells. DNA-immunization of mice with INs induced potent multicytokine T-cell response mainly against aa 209-239, and moderate IgG response cross-recognizing diverse IN variants. DNA-immunization with IN_in_r1 protected 60% of mice from challenge with 4Tlluc2 cells expressing non-mutated IN, while DNA-immunization with IN_in_r2 protected only 20% of mice, although tumor cells expressed IN matching the immunogen. Tumor size inversely correlated with IN-specific IFN-γ/IL-2 T-cell response. IN-expressing tumors displayed compromised metastatic activity restricted to lungs with reduced metastases size. Protective potential of IN immunogens relied on their immunogenicity for CD8+ T-cells, dependent on proteasomal processing and low level of oxidative stress.
Collapse
Affiliation(s)
- Maria Isaguliants
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (S.P.); (A.K.); (P.P.); (L.K.); (M.S.); (B.W.)
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia; (J.J.); (D.M.); (I.F.)
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (O.K.); (E.B.); (O.S.); (O.L.); (O.E.); (I.G.)
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia
| | - Olga Krotova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (O.K.); (E.B.); (O.S.); (O.L.); (O.E.); (I.G.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Stefan Petkov
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (S.P.); (A.K.); (P.P.); (L.K.); (M.S.); (B.W.)
| | - Juris Jansons
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia; (J.J.); (D.M.); (I.F.)
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia
| | - Ekaterina Bayurova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (O.K.); (E.B.); (O.S.); (O.L.); (O.E.); (I.G.)
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia
| | - Dzeina Mezale
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia; (J.J.); (D.M.); (I.F.)
| | - Ilze Fridrihsone
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia; (J.J.); (D.M.); (I.F.)
| | - Athina Kilpelainen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (S.P.); (A.K.); (P.P.); (L.K.); (M.S.); (B.W.)
| | - Philip Podschwadt
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (S.P.); (A.K.); (P.P.); (L.K.); (M.S.); (B.W.)
| | - Yulia Agapkina
- Department of Chemistry and Belozersky Institute of Physicochemical Biology, Moscow State University, 119991 Moscow, Russia;
| | - Olga Smirnova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (O.K.); (E.B.); (O.S.); (O.L.); (O.E.); (I.G.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Linda Kostic
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (S.P.); (A.K.); (P.P.); (L.K.); (M.S.); (B.W.)
| | - Mina Saleem
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (S.P.); (A.K.); (P.P.); (L.K.); (M.S.); (B.W.)
| | - Oleg Latyshev
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (O.K.); (E.B.); (O.S.); (O.L.); (O.E.); (I.G.)
| | - Olesja Eliseeva
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (O.K.); (E.B.); (O.S.); (O.L.); (O.E.); (I.G.)
| | - Anastasia Malkova
- Institute of Medical Biological Research and Technologies, 143090 Krasnoznamensk, Russia;
| | | | - Britta Wahren
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (S.P.); (A.K.); (P.P.); (L.K.); (M.S.); (B.W.)
| | - Ilya Gordeychuk
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (O.K.); (E.B.); (O.S.); (O.L.); (O.E.); (I.G.)
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 127994 Moscow, Russia
| | - Elizaveta Starodubova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasia Latanova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (O.K.); (E.B.); (O.S.); (O.L.); (O.E.); (I.G.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
20
|
Mapping the SARS-CoV-2 spike glycoprotein-derived peptidome presented by HLA class II on dendritic cells. Cell Rep 2021; 35:109179. [PMID: 34004174 PMCID: PMC8116342 DOI: 10.1016/j.celrep.2021.109179] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/16/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
Understanding and eliciting protective immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an urgent priority. To facilitate these objectives, we profile the repertoire of human leukocyte antigen class II (HLA-II)-bound peptides presented by HLA-DR diverse monocyte-derived dendritic cells pulsed with SARS-CoV-2 spike (S) protein. We identify 209 unique HLA-II-bound peptide sequences, many forming nested sets, which map to sites throughout S including glycosylated regions. Comparison of the glycosylation profile of the S protein to that of the HLA-II-bound S peptides reveals substantial trimming of glycan residues on the latter, likely induced during antigen processing. Our data also highlight the receptor-binding motif in S1 as a HLA-DR-binding peptide-rich region and identify S2-derived peptides with potential for targeting by cross-protective vaccine-elicited responses. Results from this study will aid analysis of CD4+ T cell responses in infected individuals and vaccine recipients and have application in next-generation vaccine design.
Collapse
|
21
|
Clemen R, Freund E, Mrochen D, Miebach L, Schmidt A, Rauch BH, Lackmann J, Martens U, Wende K, Lalk M, Delcea M, Bröker BM, Bekeschus S. Gas Plasma Technology Augments Ovalbumin Immunogenicity and OT-II T Cell Activation Conferring Tumor Protection in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003395. [PMID: 34026437 PMCID: PMC8132054 DOI: 10.1002/advs.202003395] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/22/2021] [Indexed: 05/04/2023]
Abstract
Reactive oxygen species (ROS/RNS) are produced during inflammation and elicit protein modifications, but the immunological consequences are largely unknown. Gas plasma technology capable of generating an unmatched variety of ROS/RNS is deployed to mimic inflammation and study the significance of ROS/RNS modifications using the model protein chicken ovalbumin (Ova vs oxOva). Dynamic light scattering and circular dichroism spectroscopy reveal structural modifications in oxOva compared to Ova. T cells from Ova-specific OT-II but not from C57BL/6 or SKH-1 wild type mice presents enhanced activation after Ova addition. OxOva exacerbates this activation when administered ex vivo or in vivo, along with an increased interferon-gamma production, a known anti-melanoma agent. OxOva vaccination of wild type mice followed by inoculation of syngeneic B16F10 Ova-expressing melanoma cells shows enhanced T cell number and activation, decreased tumor burden, and elevated numbers of antigen-presenting cells when compared to their Ova-vaccinated counterparts. Analysis of oxOva using mass spectrometry identifies three hot spots regions rich in oxidative modifications that are associated with the increased T cell activation. Using Ova as a model protein, the findings suggest an immunomodulating role of multi-ROS/RNS modifications that may spur novel research lines in inflammation research and for vaccination strategies in oncology.
Collapse
Affiliation(s)
- Ramona Clemen
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 2Greifswald17489Germany
| | - Eric Freund
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 2Greifswald17489Germany
- Department of GeneralVisceralThoracicand Vascular SurgeryUniversity Medicine GreifswaldSauerbruchstr. DZ7Greifswald17475Germany
| | - Daniel Mrochen
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 2Greifswald17489Germany
- Department of ImmunologyUniversity Medicine GreifswaldSauerbruchstr. DZ7Greifswald17475Germany
| | - Lea Miebach
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 2Greifswald17489Germany
- Department of GeneralVisceralThoracicand Vascular SurgeryUniversity Medicine GreifswaldSauerbruchstr. DZ7Greifswald17475Germany
| | - Anke Schmidt
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 2Greifswald17489Germany
| | - Bernhard H. Rauch
- Institute of Pharmacology (C_Dat)University Medicine GreifswaldFelix‐Hausdorff‐Str. 1Greifswald17489Germany
| | - Jan‐Wilm Lackmann
- CECAD proteomics facilityUniversity of CologneJoseph‐Stelzmann‐Str. 26Cologne50931Germany
| | - Ulrike Martens
- ZIK HIKEUniversity of GreifswaldFleischmannstr. 42–44Greifswald17489Germany
- Institute of BiochemistryUniversity of GreifswaldFelix‐Hausdorff‐Str. 4Greifswald17489Germany
| | - Kristian Wende
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 2Greifswald17489Germany
| | - Michael Lalk
- Institute of BiochemistryUniversity of GreifswaldFelix‐Hausdorff‐Str. 4Greifswald17489Germany
| | - Mihaela Delcea
- ZIK HIKEUniversity of GreifswaldFleischmannstr. 42–44Greifswald17489Germany
- Institute of BiochemistryUniversity of GreifswaldFelix‐Hausdorff‐Str. 4Greifswald17489Germany
| | - Barbara M. Bröker
- Department of ImmunologyUniversity Medicine GreifswaldSauerbruchstr. DZ7Greifswald17475Germany
| | - Sander Bekeschus
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 2Greifswald17489Germany
| |
Collapse
|
22
|
Aboelella NS, Brandle C, Kim T, Ding ZC, Zhou G. Oxidative Stress in the Tumor Microenvironment and Its Relevance to Cancer Immunotherapy. Cancers (Basel) 2021; 13:cancers13050986. [PMID: 33673398 PMCID: PMC7956301 DOI: 10.3390/cancers13050986] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Cancer cells are consistently under oxidative stress, as reflected by elevated basal level of reactive oxygen species (ROS), due to increased metabolism driven by aberrant cell growth. This feature has been exploited to develop therapeutic strategies that control tumor growth by modulating the oxidative stress in tumor cells. This review provides an overview of recent advances in cancer therapies targeting tumor oxidative stress, and highlights the emerging evidence implicating the effectiveness of cancer immunotherapies in intensifying tumor oxidative stress. The promises and challenges of combining ROS-inducing agents with cancer immunotherapy are also discussed. Abstract It has been well-established that cancer cells are under constant oxidative stress, as reflected by elevated basal level of reactive oxygen species (ROS), due to increased metabolism driven by aberrant cell growth. Cancer cells can adapt to maintain redox homeostasis through a variety of mechanisms. The prevalent perception about ROS is that they are one of the key drivers promoting tumor initiation, progression, metastasis, and drug resistance. Based on this notion, numerous antioxidants that aim to mitigate tumor oxidative stress have been tested for cancer prevention or treatment, although the effectiveness of this strategy has yet to be established. In recent years, it has been increasingly appreciated that ROS have a complex, multifaceted role in the tumor microenvironment (TME), and that tumor redox can be targeted to amplify oxidative stress inside the tumor to cause tumor destruction. Accumulating evidence indicates that cancer immunotherapies can alter tumor redox to intensify tumor oxidative stress, resulting in ROS-dependent tumor rejection. Herein we review the recent progresses regarding the impact of ROS on cancer cells and various immune cells in the TME, and discuss the emerging ROS-modulating strategies that can be used in combination with cancer immunotherapies to achieve enhanced antitumor effects.
Collapse
Affiliation(s)
- Nada S. Aboelella
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.S.A.); (C.B.); (Z.-C.D.)
- The Graduate School, Augusta University, Augusta, GA 30912, USA
| | - Caitlin Brandle
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.S.A.); (C.B.); (Z.-C.D.)
| | - Timothy Kim
- The Center for Undergraduate Research and Scholarship, Augusta University, Augusta, GA 30912, USA;
| | - Zhi-Chun Ding
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.S.A.); (C.B.); (Z.-C.D.)
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Gang Zhou
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.S.A.); (C.B.); (Z.-C.D.)
- The Graduate School, Augusta University, Augusta, GA 30912, USA
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Correspondence: ; Tel.: +1-706-721-4472
| |
Collapse
|
23
|
Gastaldello A, Ramarathinam SH, Bailey A, Owen R, Turner S, Kontouli N, Elliott T, Skipp P, Purcell AW, Siddle HV. The immunopeptidomes of two transmissible cancers and their host have a common, dominant peptide motif. Immunology 2021; 163:169-184. [PMID: 33460454 PMCID: PMC8114214 DOI: 10.1111/imm.13307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/16/2020] [Accepted: 01/04/2021] [Indexed: 12/28/2022] Open
Abstract
Transmissible cancers are malignant cells that can spread between individuals of a population, akin to both a parasite and a mobile graft. The survival of the Tasmanian devil, the largest remaining marsupial carnivore, is threatened by the remarkable emergence of two independent lineages of transmissible cancer, devil facial tumour (DFT) 1 and devil facial tumour 2 (DFT2). To aid the development of a vaccine and to interrogate how histocompatibility barriers can be overcome, we analysed the peptides bound to major histocompatibility complex class I (MHC‐I) molecules from Tasmanian devil cells and representative cell lines of each transmissible cancer. Here, we show that DFT1 + IFN‐γ and DFT2 cell lines express a restricted repertoire of MHC‐I allotypes compared with fibroblast cells, potentially reducing the breadth of peptide presentation. Comparison of the peptidomes from DFT1 + IFNγ, DFT2 and host fibroblast cells demonstrates a dominant motif, despite differences in MHC‐I allotypes between the cell lines, with preference for a hydrophobic leucine residue at position 3 and position Ω of peptides. DFT1 and DFT2 both present peptides derived from neural proteins, which reflects a shared cellular origin that could be exploited for vaccine design. These results suggest that polymorphisms in MHC‐I molecules between tumours and host can be ‘hidden’ by a common peptide motif, providing the potential for permissive passage of infectious cells and demonstrating complexity in mammalian histocompatibility barriers.
Collapse
Affiliation(s)
| | - Sri H Ramarathinam
- Department of Biochemistry and Molecular Biology and the Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Alistair Bailey
- Centre for Cancer Immunology, University of Southampton, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Rachel Owen
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Steven Turner
- Centre for Cancer Immunology, University of Southampton, Southampton, UK
| | - N Kontouli
- Centre for Cancer Immunology, University of Southampton, Southampton, UK
| | - Tim Elliott
- Centre for Cancer Immunology, University of Southampton, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Paul Skipp
- School of Biological Sciences, University of Southampton, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology and the Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Hannah V Siddle
- School of Biological Sciences, University of Southampton, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
24
|
Bosch-Camós L, López E, Navas MJ, Pina-Pedrero S, Accensi F, Correa-Fiz F, Park C, Carrascal M, Domínguez J, Salas ML, Nikolin V, Collado J, Rodríguez F. Identification of Promiscuous African Swine Fever Virus T-Cell Determinants Using a Multiple Technical Approach. Vaccines (Basel) 2021; 9:29. [PMID: 33430316 PMCID: PMC7825812 DOI: 10.3390/vaccines9010029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 11/23/2022] Open
Abstract
The development of subunit vaccines against African swine fever (ASF) is mainly hindered by the lack of knowledge regarding the specific ASF virus (ASFV) antigens involved in protection. As a good example, the identity of ASFV-specific CD8+ T-cell determinants remains largely unknown, despite their protective role being established a long time ago. Aiming to identify them, we implemented the IFNγ ELISpot as readout assay, using as effector cells peripheral blood mononuclear cells (PBMCs) from pigs surviving experimental challenge with Georgia2007/1. As stimuli for the ELISpot, ASFV-specific peptides or full-length proteins identified by three complementary strategies were used. In silico prediction of specific CD8+ T-cell epitopes allowed identifying a 19-mer peptide from MGF100-1L, as frequently recognized by surviving pigs. Complementarily, the repertoire of SLA I-bound peptides identified in ASFV-infected porcine alveolar macrophages (PAMs), allowed the characterization of five additional SLA I-restricted ASFV-specific epitopes. Finally, in vitro stimulation studies using fibroblasts transfected with plasmids encoding full-length ASFV proteins, led to the identification of MGF505-7R, A238L and MGF100-1L as promiscuously recognized antigens. Interestingly, each one of these proteins contain individual peptides recognized by surviving pigs. Identification of the same ASFV determinants by means of such different approaches reinforce the results presented here.
Collapse
Affiliation(s)
- Laia Bosch-Camós
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (L.B.-C.); (E.L.); (M.J.N.); (S.P.-P.); (F.C.-F.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain;
| | - Elisabet López
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (L.B.-C.); (E.L.); (M.J.N.); (S.P.-P.); (F.C.-F.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain;
| | - María Jesús Navas
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (L.B.-C.); (E.L.); (M.J.N.); (S.P.-P.); (F.C.-F.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain;
| | - Sonia Pina-Pedrero
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (L.B.-C.); (E.L.); (M.J.N.); (S.P.-P.); (F.C.-F.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain;
| | - Francesc Accensi
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain;
- UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, 08193 Bellaterra, Spain
| | - Florencia Correa-Fiz
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (L.B.-C.); (E.L.); (M.J.N.); (S.P.-P.); (F.C.-F.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain;
| | - Chankyu Park
- Department of Stem Cells and Regenerative Biology, Konkuk University, Seoul 05029, Korea;
| | - Montserrat Carrascal
- Instituto de Investigaciones Biomédicas de Barcelona-Unidad de Espectrometría de Masas Biológica y Proteómica, Consejo Superior de Investigaciones Científicas (CSIC), 08193 Bellaterra, Spain;
| | - Javier Domínguez
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28049 Madrid, Spain;
| | - Maria Luisa Salas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autònoma de Madrid, 28049 Madrid, Spain;
| | - Veljko Nikolin
- Boehringer Ingelheim Veterinary Research Center (BIVRC) GmbH & Co. KG, 30559 Hannover, Germany;
| | - Javier Collado
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
| | - Fernando Rodríguez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (L.B.-C.); (E.L.); (M.J.N.); (S.P.-P.); (F.C.-F.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain;
| |
Collapse
|
25
|
Sturm T, Sautter B, Wörner TP, Stevanović S, Rammensee HG, Planz O, Heck AJR, Aebersold R. Mild Acid Elution and MHC Immunoaffinity Chromatography Reveal Similar Albeit Not Identical Profiles of the HLA Class I Immunopeptidome. J Proteome Res 2020; 20:289-304. [PMID: 33141586 PMCID: PMC7786382 DOI: 10.1021/acs.jproteome.0c00386] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
To
understand and treat immunology-related diseases, a comprehensive,
unbiased characterization of major histocompatibility complex (MHC)
peptide ligands is of key importance. Preceding the analysis by mass
spectrometry, MHC class I peptide ligands are typically isolated by
MHC immunoaffinity chromatography (MHC-IAC) and less often by mild
acid elution (MAE). MAE may provide a cheap alternative to MHC-IAC
for suspension cells but has been hampered by the high number of contaminating,
MHC-unrelated peptides. Here, we optimized MAE, yielding MHC peptide
ligand purities of more than 80%. When compared with MHC-IAC, obtained
peptides were similar in numbers, identities, and to a large extent
intensities, while the percentage of cysteinylated peptides was 5
times higher in MAE. The latter benefitted the discovery of MHC-allotype-specific,
distinct cysteinylation frequencies at individual positions of MHC
peptide ligands. MAE revealed many MHC ligands with unmodified, N-terminal
cysteine residues which get lost in MHC-IAC workflows. The results
support the idea that MAE might be particularly valuable for the high-confidence
analysis of post-translational modifications by avoiding the exposure
of the investigated peptides to enzymes and reactive molecules in
the cell lysate. Our improved and carefully documented MAE workflow
represents a high-quality, cost-effective alternative to MHC-IAC for
suspension cells.
Collapse
Affiliation(s)
- Theo Sturm
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland.,Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Centre, 3584 CH Utrecht, The Netherlands.,Philochem AG, 8112 Otelfingen, Switzerland
| | - Benedikt Sautter
- Department of Immunology, Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Tobias P Wörner
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Centre, 3584 CH Utrecht, The Netherlands
| | - Stefan Stevanović
- Department of Immunology, Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Oliver Planz
- Department of Immunology, Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Centre, 3584 CH Utrecht, The Netherlands
| | - Ruedi Aebersold
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland.,Faculty of Science, University of Zurich, 8057 Zürich, Switzerland
| |
Collapse
|
26
|
Parker R, Partridge T, Wormald C, Kawahara R, Stalls V, Aggelakopoulou M, Parker J, Doherty RP, Morejon YA, Lee E, Saunders K, Haynes BF, Acharya P, Thaysen-Andersen M, Borrow P, Ternette N. Mapping the SARS-CoV-2 spike glycoprotein-derived peptidome presented by HLA class II on dendritic cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32839772 PMCID: PMC7444283 DOI: 10.1101/2020.08.19.255901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Understanding and eliciting protective immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an urgent priority. To facilitate these objectives, we have profiled the repertoire of human leukocyte antigen class II (HLA-II)-bound peptides presented by HLA-DR diverse monocyte-derived dendritic cells pulsed with SARS-CoV-2 spike (S) protein. We identify 209 unique HLA-II-bound peptide sequences, many forming nested sets, which map to sites throughout S including glycosylated regions. Comparison of the glycosylation profile of the S protein to that of the HLA-II-bound S peptides revealed substantial trimming of glycan residues on the latter, likely introduced during antigen processing. Our data also highlight the receptor-binding motif in S1 as a HLA-DR-binding peptide-rich region. Results from this study have application in vaccine design, and will aid analysis of CD4+ T cell responses in infected individuals and vaccine recipients.
Collapse
|
27
|
Perez M, Bak DW, Bergholtz SE, Crooks DR, Arimilli BS, Yang Y, Weerapana E, Linehan WM, Meier JL. Heterogeneous adaptation of cysteine reactivity to a covalent oncometabolite. J Biol Chem 2020; 295:13410-13418. [PMID: 32820045 DOI: 10.1074/jbc.ac120.014993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/14/2020] [Indexed: 12/11/2022] Open
Abstract
An important context in which metabolism influences tumorigenesis is the genetic cancer syndrome hereditary leiomyomatosis and renal cell carcinoma (HLRCC), a disease in which mutation of the tricarboxylic acid cycle enzyme fumarate hydratase (FH) causes hyperaccumulation of fumarate. This electrophilic oncometabolite can alter gene activity at the level of transcription, via reversible inhibition of epigenetic dioxygenases, as well as posttranslationally, via covalent modification of cysteine residues. To better understand the potential for metabolites to influence posttranslational modifications important to tumorigenesis and cancer cell growth, here we report a chemoproteomic analysis of a kidney-derived HLRCC cell line. Using a general reactivity probe, we generated a data set of proteomic cysteine residues sensitive to the reduction in fumarate levels caused by genetic reintroduction of active FH into HLRCC cell lines. This revealed a broad up-regulation of cysteine reactivity upon FH rescue, which evidence suggests is caused by an approximately equal proportion of transcriptional and posttranslational modification-mediated regulation. Gene ontology analysis highlighted several new targets and pathways potentially modulated by FH mutation. Comparison of the new data set with prior studies highlights considerable heterogeneity in the adaptive response of cysteine-containing proteins in different models of HLRCC. This is consistent with emerging studies indicating the existence of cell- and tissue-specific cysteine-omes, further emphasizing the need for characterization of diverse models. Our analysis provides a resource for understanding the proteomic adaptation to fumarate accumulation and a foundation for future efforts to exploit this knowledge for cancer therapy.
Collapse
Affiliation(s)
- Minervo Perez
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Daniel W Bak
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts, USA
| | - Sarah E Bergholtz
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Daniel R Crooks
- Urologic Oncology Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland, USA
| | - Bhargav Srinivas Arimilli
- Urologic Oncology Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland, USA
| | - Youfeng Yang
- Urologic Oncology Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland, USA
| | - Eranthie Weerapana
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts, USA
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland, USA
| | - Jordan L Meier
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA.
| |
Collapse
|
28
|
Bellavite P, Donzelli A. Hesperidin and SARS-CoV-2: New Light on the Healthy Function of Citrus Fruits. Antioxidants (Basel) 2020; 9:E742. [PMID: 32823497 PMCID: PMC7465267 DOI: 10.3390/antiox9080742] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Among the many approaches to Coronavirus disease 2019 (COVID-19) prevention, the possible role of nutrition has so far been rather underestimated. Foods are very rich in substances, with a potential beneficial effect on health, and some of these could have an antiviral action or be important in modulating the immune system and in defending cells from the oxidative stress associated with infection. This short review draws the attention on some components of citrus fruits, and especially of the orange (Citrus sinensis), well known for its vitamin and flavonoid content. Among the flavonoids, hesperidin has recently attracted the attention of researchers, because it binds to the key proteins of the Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Several computational methods, independently applied by different researchers, showed that hesperidin has a low binding energy, both with the coronavirus "spike" protein, and with the main protease that transforms the early proteins of the virus (pp1a and ppa1b) into the complex responsible for viral replication. The binding energy of hesperidin to these important components is lower than that of lopinavir, ritonavir, and indinavir, suggesting that it could perform an effective antiviral action. Furthermore, both hesperidin and ascorbic acid counteract the cell damaging effects of the oxygen free radicals triggered by virus infection and inflammation. There is discussion about the preventive efficacy of vitamin C, at the dose achievable by the diet, but recent reviews suggest that this substance can be useful in the case of strong immune system burden caused by viral disease. Computational methods and laboratory studies support the need to undertake apposite preclinical, epidemiological, and experimental studies on the potential benefits of citrus fruit components for the prevention of infectious diseases, including COVID-19.
Collapse
Affiliation(s)
- Paolo Bellavite
- Department of Medicine, Section of General Pathology, University of Verona Medical School, Strada Le Grazie 8, 37134 Verona, Italy
| | - Alberto Donzelli
- Medical Doctor, Scientific Committee of Fondazione Allineare Sanità e Salute, 20122 Milano, Italy;
| |
Collapse
|
29
|
Kotsafti A, Scarpa M, Castagliuolo I, Scarpa M. Reactive Oxygen Species and Antitumor Immunity-From Surveillance to Evasion. Cancers (Basel) 2020; 12:E1748. [PMID: 32630174 PMCID: PMC7409327 DOI: 10.3390/cancers12071748] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/14/2022] Open
Abstract
The immune system is a crucial regulator of tumor biology with the capacity to support or inhibit cancer development, growth, invasion and metastasis. Emerging evidence show that reactive oxygen species (ROS) are not only mediators of oxidative stress but also players of immune regulation in tumor development. This review intends to discuss the mechanism by which ROS can affect the anti-tumor immune response, with particular emphasis on their role on cancer antigenicity, immunogenicity and shaping of the tumor immune microenvironment. Given the complex role that ROS play in the dynamics of cancer-immune cell interaction, further investigation is needed for the development of effective strategies combining ROS manipulation and immunotherapies for cancer treatment.
Collapse
Affiliation(s)
- Andromachi Kotsafti
- Laboratory of Advanced Translational Research, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy;
| | - Marco Scarpa
- General Surgery Unit, Azienda Ospedaliera di Padova, 35128 Padua, Italy;
| | | | - Melania Scarpa
- Laboratory of Advanced Translational Research, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy;
| |
Collapse
|
30
|
Griffiths HR, Rooney MCO, Perrie Y. Does Dysregulation of Redox State Underpin the Decline of Innate Immunity with Aging? Antioxid Redox Signal 2020; 32:1014-1030. [PMID: 31989832 DOI: 10.1089/ars.2020.8021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Antibacterial defense invokes the innate immune system as a first responder, with neutrophils phagocytozing and forming neutrophil extracellular traps around pathogens in a reactive oxygen species (ROS)-dependent manner. Increased NOX2 activity and mitochondrial ROS production in phagocytic, antigen-presenting cells (APCs) affect local cytokine secretion and proteolysis of antigens for presentation to T cells at the immune synapse. Uncontrolled oxidative post-translational modifications to surface and cytoplasmic proteins in APCs during aging can impair innate immunity. Recent Advances: NOX2 plays a role in the maturation of dendritic cells, but paradoxically NOX2 activity has also been shown to promote viral pathogenicity. Accumulating evidence suggests that a reducing environment is essential to inhibit pathogen proliferation, facilitate antigenic processing in the endosomal lumen, and enable an effective immune synapse between APCs and T cells. This suggests that the kinetics and location of ROS production and reducing potential are important for effective innate immunity. Critical Issues: During aging, innate immune cells are less well able to phagocytoze, kill bacteria/viruses, and process proteins into antigenic peptides-three key steps that are necessary for developing a specific targeted response to protect against future exposure. Aberrant control of ROS production and impaired Nrf2-dependent reducing potential may contribute to age-associated immune decline. Future Directions: Local changes in redox potential may be achieved through adjuvant formulations to improve innate immunity. Further work is needed to understand the timing of delivery for redox modulators to facilitate innate immune cell recruitment, survival, antigen processing and presentation activity without disrupting essential ROS-dependent bacterial killing.
Collapse
Affiliation(s)
- Helen R Griffiths
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Matthew C O Rooney
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Yvonne Perrie
- Department of Pharmacy, University of Strathclyde, Glasgow, Scotland
| |
Collapse
|
31
|
Boucau J, Das J, Joshi N, Le Gall S. Latency reversal agents modulate HIV antigen processing and presentation to CD8 T cells. PLoS Pathog 2020; 16:e1008442. [PMID: 32196533 PMCID: PMC7112239 DOI: 10.1371/journal.ppat.1008442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 04/01/2020] [Accepted: 02/28/2020] [Indexed: 01/03/2023] Open
Abstract
Latency reversal agents (LRA) variably induce HIV re-expression in CD4 T cells but reservoirs are not cleared. Whether HIV epitope presentation is similar between latency reversal and initial infection of CD4 T cells is unknown yet crucial to define immune responses able to detect HIV-infected CD4 T cells after latency reversal. HIV peptides displayed by MHC comes from the intracellular degradation of proteins by proteasomes and post-proteasomal peptidases but the impact of LRAs on antigen processing is not known. Here we show that HDAC inhibitors (HDCAi) reduced cytosolic proteolytic activities while PKC agonists (PKCa) increased them to a lesser extent than that induced by TCR activation. During the cytosolic degradation of long HIV peptides in LRA-treated CD4 T cells extracts, HDACi and PKCa modulated degradation patterns of peptides and altered the production of HIV epitopes in often opposite ways. Beyond known HIV epitopes, HDACi narrowed the coverage of HIV antigenic fragments by 8-11aa degradation peptides while PKCa broadened it. LRAs altered HIV infection kinetics and modulated CD8 T cell activation in an epitope- and time-dependent manner. Interestingly the efficiency of endogenous epitope processing and presentation to CD8 T cells was increased by PKCa Ingenol at early time points despite low levels of antigens. LRA-induced modulations of antigen processing should be considered and exploited to enhance and broaden HIV peptide presentation by CD4 T cells and to improve immune recognition after latency reversal. This property of LRAs, if confirmed with other antigens, might be exploited to improve immune detection of diseased cells beyond HIV. Latently HIV-infected CD4 T cells persist and remain invisible to the immune system. Strategies to flush out HIV reservoirs propose to re-express HIV with latency reversal agents (LRAs), leading to CD4 T cell death or clearance by HIV-specific immune responses. LRAs tested so far variably induced HIV re-expression but did not eliminate reservoirs. The activation of HIV-specific immune responses is triggered by HIV peptides displayed by infected cells after HIV intracellular degradation. Whether HIV antigens are similarly degraded and displayed by CD4 T cells after latency reversal or during initial infection is unknown. We showed that LRAs altered the activities of the degradation machinery and changed the degradation patterns of HIV into peptides. LRA-treated HIV-infected CD4 T cells were variably recognized by immune cells in a time- and peptide-dependent manner. Some LRAs increased the efficiency of HIV peptide presentation despite low levels of HIV antigens inside CD4 T cells. The modulation of HIV peptide presentation by current or future LRAs should be accounted for and exploited to improve HIV peptide presentation and enhance immune detection of HIV-infected CD4 T cells after latency reversal.
Collapse
Affiliation(s)
- Julie Boucau
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital and Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Jishnu Das
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Neelambari Joshi
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital and Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Sylvie Le Gall
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital and Harvard Medical School, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
32
|
Lacroix-Desmazes S, Voorberg J, Lillicrap D, Scott DW, Pratt KP. Tolerating Factor VIII: Recent Progress. Front Immunol 2020; 10:2991. [PMID: 31998296 PMCID: PMC6965068 DOI: 10.3389/fimmu.2019.02991] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 12/05/2019] [Indexed: 02/02/2023] Open
Abstract
Development of neutralizing antibodies against biotherapeutic agents administered to prevent or treat various clinical conditions is a longstanding and growing problem faced by patients, medical providers and pharmaceutical companies. The hemophilia A community has deep experience with attempting to manage such deleterious immune responses, as the lifesaving protein drug factor VIII (FVIII) has been in use for decades. Hemophilia A is a bleeding disorder caused by genetic mutations that result in absent or dysfunctional FVIII. Prophylactic treatment consists of regular intravenous FVIII infusions. Unfortunately, 1/4 to 1/3 of patients develop neutralizing anti-FVIII antibodies, referred to clinically as “inhibitors,” which result in a serious bleeding diathesis. Until recently, the only therapeutic option for these patients was “Immune Tolerance Induction,” consisting of intensive FVIII administration, which is extraordinarily expensive and fails in ~30% of cases. There has been tremendous recent progress in developing novel potential clinical alternatives for the treatment of hemophilia A, ranging from encouraging results of gene therapy trials, to use of other hemostatic agents (either promoting coagulation or slowing down anti-coagulant or fibrinolytic pathways) to “bypass” the need for FVIII or supplement FVIII replacement therapy. Although these approaches are promising, there is widespread agreement that preventing or reversing inhibitors remains a high priority. Risk profiles of novel therapies are still unknown or incomplete, and FVIII will likely continue to be considered the optimal hemostatic agent to support surgery and manage trauma, or to combine with other therapies. We describe here recent exciting studies, most still pre-clinical, that address FVIII immunogenicity and suggest novel interventions to prevent or reverse inhibitor development. Studies of FVIII uptake, processing and presentation on antigen-presenting cells, epitope mapping, and the roles of complement, heme, von Willebrand factor, glycans, and the microbiome in FVIII immunogenicity are elucidating mechanisms of primary and secondary immune responses and suggesting additional novel targets. Promising tolerogenic therapies include development of FVIII-Fc fusion proteins, nanoparticle-based therapies, oral tolerance, and engineering of regulatory or cytotoxic T cells to render them FVIII-specific. Importantly, these studies are highly applicable to other scenarios where establishing immune tolerance to a defined antigen is a clinical priority.
Collapse
Affiliation(s)
| | - Jan Voorberg
- Sanquin Research and Landsteiner Laboratory, Department of Molecular and Cellular Hemostasis, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - David Lillicrap
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - David W Scott
- Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Kathleen P Pratt
- Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
33
|
Role of Glutathionylation in Infection and Inflammation. Nutrients 2019; 11:nu11081952. [PMID: 31434242 PMCID: PMC6723385 DOI: 10.3390/nu11081952] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/09/2019] [Accepted: 08/16/2019] [Indexed: 12/31/2022] Open
Abstract
Glutathionylation, that is, the formation of mixed disulfides between protein cysteines and glutathione (GSH) cysteines, is a reversible post-translational modification catalyzed by different cellular oxidoreductases, by which the redox state of the cell modulates protein function. So far, most studies on the identification of glutathionylated proteins have focused on cellular proteins, including proteins involved in host response to infection, but there is a growing number of reports showing that microbial proteins also undergo glutathionylation, with modification of their characteristics and functions. In the present review, we highlight the signaling role of GSH through glutathionylation, particularly focusing on microbial (viral and bacterial) glutathionylated proteins (GSSPs) and host GSSPs involved in the immune/inflammatory response to infection; moreover, we discuss the biological role of the process in microbial infections and related host responses.
Collapse
|
34
|
Purcell AW, Ramarathinam SH, Ternette N. Mass spectrometry-based identification of MHC-bound peptides for immunopeptidomics. Nat Protoc 2019; 14:1687-1707. [PMID: 31092913 DOI: 10.1038/s41596-019-0133-y] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 01/08/2019] [Indexed: 01/13/2023]
Abstract
Peptide antigens bound to molecules encoded by the major histocompatibility complex (MHC) and presented on the cell surface form the targets of T lymphocytes. This critical arm of the adaptive immune system facilitates the eradication of pathogen-infected and cancerous cells, as well as the production of antibodies. Methods to identify these peptide antigens are critical to the development of new vaccines, for which the goal is the generation of effective adaptive immune responses and long-lasting immune memory. Here, we describe a robust protocol for the identification of MHC-bound peptides from cell lines and tissues, using nano-ultra-performance liquid chromatography coupled to high-resolution mass spectrometry (nUPLC-MS/MS) and recent improvements in methods for isolation and characterization of these peptides. The protocol starts with the immunoaffinity capture of naturally processed MHC-peptide complexes. The peptides dissociate from the class I human leukocyte antigens (HLAs) upon acid denaturation. This peptide cargo is then extracted and separated into fractions by HPLC, and the peptides in these fractions are identified using nUPLC-MS/MS. With this protocol, several thousand peptides can be identified from a wide variety of cell types, including cancerous and infected cells and those from tissues, with a turnaround time of 2-3 d.
Collapse
Affiliation(s)
- Anthony W Purcell
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| | - Sri H Ramarathinam
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Nicola Ternette
- The Jenner Institute, Mass Spectrometry Laboratory, Target Discovery Institute, University of Oxford, Oxford, UK.
| |
Collapse
|
35
|
Argaev Frenkel L, Rozenfeld H, Rozenberg K, Sampson SR, Rosenzweig T. N-Acetyl-l-Cysteine Supplement in Early Life or Adulthood Reduces Progression of Diabetes in Nonobese Diabetic Mice. Curr Dev Nutr 2019; 3:nzy097. [PMID: 30993256 PMCID: PMC6459986 DOI: 10.1093/cdn/nzy097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 11/26/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Oxidative stress contributes to the pathologic process leading to the development, progression, and complications of type 1 diabetes (T1D). OBJECTIVE The aim of this study was to investigate the effect of the antioxidant N-acetyl-l-cysteine (NAC), supplemented during early life or adulthood on the development of T1D. METHODS NAC was administered to nonobese diabetic (NOD) female mice during pregnancy and lactation, and the development of diabetes was followed in offspring. In an additional set of experiments, offspring of untreated mice were given NAC during adulthood, and the development of T1D was followed. Morbidity rate, insulitis and serum cytokines were measured in the 2 sets of experiments. In addition, markers of oxidative stress, glutathione, lipid peroxidation, total antioxidant capacity and activity of antioxidant enzymes, were followed. RESULTS Morbidity rate was reduced in both treatment protocols. A decrease in interferon γ, tumor necrosis factor α, interleukin 1α, and other type 1 diabetes-associated proinflammatory cytokines was found in mice supplemented with NAC in adulthood or during early life compared with control NOD mice. The severity of insulitis was higher in control NOD mice than in treated groups. NAC administration significantly reduced oxidative stress, as determined by reduced lipid peroxidation and increased total antioxidant capacity in serum and pancreas of mice treated in early life or in adulthood and increased pancreatic glutathione when administrated in adulthood. The activity of antioxidant enzymes was not affected in mice given NAC in adulthood, whereas an increase in the activity of superoxide dismutase and catalase was demonstrated in the pancreas of their offspring. CONCLUSION NAC decreased morbidity of NOD mice by attenuating the immune response, presumably by eliminating oxidative stress, and might be beneficial in reducing morbidity rates of T1D in high-risk individuals.
Collapse
Affiliation(s)
- Lital Argaev Frenkel
- Department of Molecular Biology, School of Health Sciences, Ariel University, Ariel, Israel
- Department of Nutrition Sciences, School of Health Sciences, Ariel University, Ariel, Israel
| | - Hava Rozenfeld
- Department of Molecular Biology, School of Health Sciences, Ariel University, Ariel, Israel
- Department of Nutrition Sciences, School of Health Sciences, Ariel University, Ariel, Israel
| | - Konstantin Rozenberg
- Department of Molecular Biology, School of Health Sciences, Ariel University, Ariel, Israel
- Department of Nutrition Sciences, School of Health Sciences, Ariel University, Ariel, Israel
| | - Sanford R Sampson
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tovit Rosenzweig
- Department of Molecular Biology, School of Health Sciences, Ariel University, Ariel, Israel
- Department of Nutrition Sciences, School of Health Sciences, Ariel University, Ariel, Israel
| |
Collapse
|
36
|
Boucau J, Madouasse J, Kourjian G, Carlin CS, Wambua D, Berberich MJ, Le Gall S. The Activation State of CD4 T Cells Alters Cellular Peptidase Activities, HIV Antigen Processing, and MHC Class I Presentation in a Sequence-Dependent Manner. THE JOURNAL OF IMMUNOLOGY 2019; 202:2856-2872. [PMID: 30936293 DOI: 10.4049/jimmunol.1700950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 03/08/2019] [Indexed: 12/19/2022]
Abstract
CD4 T cell activation is critical to the initiation of adaptive immunity. CD4 T cells are also the main targets of HIV infection, and their activation status contributes to the maintenance and outcome of infection. Although the role of activation in the differentiation and proliferation of CD4 T cells is well studied, its impact on the processing and MHC class I (MHC-I) presentation of epitopes and immune recognition by CD8 T cells are not investigated. In this study, we show that the expression and hydrolytic activities of cellular peptidases are increased upon TCR-dependent and MHC-peptide activation of primary CD4 T cells from healthy or HIV-infected persons. Changes in peptidase activities altered the degradation patterns of HIV Ags analyzed by mass spectrometry, modifying the amount of MHC-I epitopes produced, the antigenicity of the degradation products, and the coverage of Ags by degradation peptides presentable by MHC-I. The computational analysis of 2237 degradation peptides generated during the degradation of various HIV-antigenic fragments in CD4 T cells identified cleavage sites that were predictably enhanced, reduced, or unchanged upon cellular activation. Epitope processing and presentation by CD4 T cells may be modulated by the activation state of cells in a sequence-dependent manner. Accordingly, cellular activation modified endogenous Ag processing and presentation and killing of HIV-infected CD4 T cells by CD8 T cells in a way that mirrored differences in in vitro epitope processing. The clearance of HIV-infected cells may rely on different immune responses according to activation state during HIV infection.
Collapse
Affiliation(s)
- Julie Boucau
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139
| | | | | | | | - Daniel Wambua
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139
| | | | - Sylvie Le Gall
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139
| |
Collapse
|
37
|
Ramarathinam SH, Croft NP, Illing PT, Faridi P, Purcell AW. Employing proteomics in the study of antigen presentation: an update. Expert Rev Proteomics 2018; 15:637-645. [PMID: 30080115 DOI: 10.1080/14789450.2018.1509000] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Our immune system discriminates self from non-self by examining the peptide cargo of human leukocyte antigen (HLA) molecules displayed on the cell surface. Successful recognition of HLA-bound non-self peptides can induce T cell responses leading to, for example, the destruction of infected cells. Today, largely due to advances in technology, we have an unprecedented capability to identify the nature of these presented peptides and unravel the true complexity of antigen presentation. Areas covered: In addition to conventional linear peptides, HLA molecules also present post-translationally modified sequences comprising a wealth of chemical and structural modifications, including a novel class of noncontiguous spliced peptides. This review focuses on these emerging themes in antigen presentation and how mass spectrometry in particular has contributed to a new view of the antigenic landscape that is presented to the immune system. Expert Commentary: Advances in the sensitivity of mass spectrometers and use of hybrid fragmentation technologies will provide more information-rich spectra of HLA bound peptides leading to more definitive identification of T cell epitopes. Coupled with improvements in sample preparation and new informatics workflows, studies will access novel classes of peptide antigen and allow interrogation of rare and clinically relevant samples.
Collapse
Affiliation(s)
- Sri H Ramarathinam
- a Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute , Monash University , Clayton , VIC , Australia
| | - Nathan P Croft
- a Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute , Monash University , Clayton , VIC , Australia
| | - Patricia T Illing
- a Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute , Monash University , Clayton , VIC , Australia
| | - Pouya Faridi
- a Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute , Monash University , Clayton , VIC , Australia
| | - Anthony W Purcell
- a Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute , Monash University , Clayton , VIC , Australia
| |
Collapse
|
38
|
Zhang J, Ye ZW, Singh S, Townsend DM, Tew KD. An evolving understanding of the S-glutathionylation cycle in pathways of redox regulation. Free Radic Biol Med 2018; 120:204-216. [PMID: 29578070 PMCID: PMC5940525 DOI: 10.1016/j.freeradbiomed.2018.03.038] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 12/20/2022]
Abstract
By nature of the reversibility of the addition of glutathione to low pKa cysteine residues, the post-translational modification of S-glutathionylation sanctions a cycle that can create a conduit for cell signaling events linked with cellular exposure to oxidative or nitrosative stress. The modification can also avert proteolysis by protection from over-oxidation of those clusters of target proteins that are substrates. Altered functions are associated with S-glutathionylation of proteins within the mitochondria and endoplasmic reticulum compartments, and these impact energy production and protein folding pathways. The existence of human polymorphisms of enzymes involved in the cycle (particularly glutathione S-transferase P) create a scenario for inter-individual variance in response to oxidative stress and a number of human diseases with associated aberrant S-glutathionylation have now been identified.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President Street, DDB410, Charleston, SC 29425, United States
| | - Zhi-Wei Ye
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President Street, DDB410, Charleston, SC 29425, United States
| | - Shweta Singh
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President Street, DDB410, Charleston, SC 29425, United States
| | - Danyelle M Townsend
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, 274 Calhoun Street, MSC141, Charleston, SC 29425, United States
| | - Kenneth D Tew
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President Street, DDB410, Charleston, SC 29425, United States.
| |
Collapse
|
39
|
Ramarathinam SH, Gras S, Alcantara S, Yeung AWS, Mifsud NA, Sonza S, Illing PT, Glaros EN, Center RJ, Thomas SR, Kent SJ, Ternette N, Purcell DFJ, Rossjohn J, Purcell AW. Identification of Native and Posttranslationally Modified HLA-B*57:01-Restricted HIV Envelope Derived Epitopes Using Immunoproteomics. Proteomics 2018; 18:e1700253. [PMID: 29437277 DOI: 10.1002/pmic.201700253] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/29/2018] [Indexed: 12/20/2022]
Abstract
The recognition of pathogen-derived peptides by T lymphocytes is the cornerstone of adaptive immunity, whereby intracellular antigens are degraded in the cytosol and short peptides assemble with class I human leukocyte antigen (HLA) molecules in the ER. These peptide-HLA complexes egress to the cell surface and are scrutinized by cytotoxic CD8+ T-cells leading to the eradication of the infected cell. Here, naturally presented HLA-B*57:01 bound peptides derived from the envelope protein of the human immunodeficiency virus (HIVenv) are identified. HIVenv peptides are present at a very small percentage of the overall HLA-B*57:01 peptidome (<0.1%) and both native and posttranslationally modified forms of two distinct HIV peptides are identified. Notably, a peptide bearing a natively encoded C-terminal tryptophan residue is also present in a modified form containing a kynurenine residue. Kynurenine is a major product of tryptophan catabolism and is abundant during inflammation and infection. Binding of these peptides at a molecular level and their immunogenicity in preliminary functional studies are examined. Modest immune responses are observed to the modified HIVenv peptide, highlighting a potential role for kynurenine-modified peptides in the immune response to HIV and other viral infections.
Collapse
Affiliation(s)
- Sri H Ramarathinam
- Infection and Immunity Program, Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Stephanie Gras
- Infection and Immunity Program, Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Australia
| | - Sheilajen Alcantara
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| | - Amanda W S Yeung
- Mechanisms of Disease and Translational Medicine, Department of Pathology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Nicole A Mifsud
- Infection and Immunity Program, Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Secondo Sonza
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| | - Patricia T Illing
- Infection and Immunity Program, Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Elias N Glaros
- Mechanisms of Disease and Translational Medicine, Department of Pathology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Robert J Center
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia.,Burnet Institute, Melbourne, Australia
| | - Shane R Thomas
- Mechanisms of Disease and Translational Medicine, Department of Pathology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia.,Melbourne Sexual Health Centre, Central Clinical School, Monash University, Melbourne, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, Australia
| | - Nicola Ternette
- The Jenner Institute, Target Discovery Institute Mass Spectrometry Laboratory, University of Oxford, Oxford, UK
| | - Damian F J Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program, Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Australia.,Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Anthony W Purcell
- Infection and Immunity Program, Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| |
Collapse
|
40
|
Peyron I, Dimitrov JD, Delignat S, Gangadharan B, Srivastava A, Kaveri SV, Lacroix-Desmazes S. Oxidation of factor VIII increases its immunogenicity in mice with severe hemophilia A. Cell Immunol 2018; 325:64-68. [PMID: 29395036 DOI: 10.1016/j.cellimm.2018.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/30/2017] [Accepted: 01/13/2018] [Indexed: 02/04/2023]
Abstract
The development of antibodies against therapeutic factor VIII (FVIII) represents the major complication of replacement therapy in patients with severe hemophilia A. Amongst the environmental risk factors that influence the anti-FVIII immune response, the presence of active bleeding or hemarthrosis has been evoked. Endothelium damage is typically associated with the release of oxidative compounds. Here, we addressed whether oxidation contributes to FVIII immunogenicity. The control with N-acetyl cysteine of the oxidative status in FVIII-deficient mice, a model of severe hemophilia A, reduced the immune response to exogenous FVIII. Ex vivo exposure of therapeutic FVIII to HOCl induced a mild oxidation of the molecule as evidenced by the loss of free amines and resulted in increased FVIII immunogenicity in vivo when compared to native FVIII. The increased immunogenicity of oxidized FVIII was not reverted by treatment of mice with N-acetyl cysteine, and did not implicate an increased maturation of professional antigen-presenting cells. Our data document that oxidation influences the immunogenicity of therapeutic FVIII.
Collapse
Affiliation(s)
- Ivan Peyron
- INSERM, UMR S 1138, Centre de recherche des Cordeliers, Paris F-75006, France; Université Pierre et Marie Curie-Paris6, UMR S 1138, Centre de recherche des Cordeliers, Paris F-75006, France; Université Paris Descartes, UMR S 1138, Centre de recherche des Cordeliers, Paris F-75006, France
| | - Jordan D Dimitrov
- INSERM, UMR S 1138, Centre de recherche des Cordeliers, Paris F-75006, France; Université Pierre et Marie Curie-Paris6, UMR S 1138, Centre de recherche des Cordeliers, Paris F-75006, France; Université Paris Descartes, UMR S 1138, Centre de recherche des Cordeliers, Paris F-75006, France
| | - Sandrine Delignat
- INSERM, UMR S 1138, Centre de recherche des Cordeliers, Paris F-75006, France; Université Pierre et Marie Curie-Paris6, UMR S 1138, Centre de recherche des Cordeliers, Paris F-75006, France; Université Paris Descartes, UMR S 1138, Centre de recherche des Cordeliers, Paris F-75006, France
| | - Bagirath Gangadharan
- INSERM, UMR S 1138, Centre de recherche des Cordeliers, Paris F-75006, France; Université Pierre et Marie Curie-Paris6, UMR S 1138, Centre de recherche des Cordeliers, Paris F-75006, France; Université Paris Descartes, UMR S 1138, Centre de recherche des Cordeliers, Paris F-75006, France
| | - Alok Srivastava
- Department of Haematology, Christian Medical College, Vellore, India
| | - Srinivas V Kaveri
- INSERM, UMR S 1138, Centre de recherche des Cordeliers, Paris F-75006, France; Université Pierre et Marie Curie-Paris6, UMR S 1138, Centre de recherche des Cordeliers, Paris F-75006, France; Université Paris Descartes, UMR S 1138, Centre de recherche des Cordeliers, Paris F-75006, France
| | - Sébastien Lacroix-Desmazes
- INSERM, UMR S 1138, Centre de recherche des Cordeliers, Paris F-75006, France; Université Pierre et Marie Curie-Paris6, UMR S 1138, Centre de recherche des Cordeliers, Paris F-75006, France; Université Paris Descartes, UMR S 1138, Centre de recherche des Cordeliers, Paris F-75006, France.
| |
Collapse
|
41
|
Caron E, Kowalewski DJ, Chiek Koh C, Sturm T, Schuster H, Aebersold R. Analysis of Major Histocompatibility Complex (MHC) Immunopeptidomes Using Mass Spectrometry. Mol Cell Proteomics 2016; 14:3105-17. [PMID: 26628741 DOI: 10.1074/mcp.o115.052431] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The myriad of peptides presented at the cell surface by class I and class II major histocompatibility complex (MHC) molecules are referred to as the immunopeptidome and are of great importance for basic and translational science. For basic science, the immunopeptidome is a critical component for understanding the immune system; for translational science, exact knowledge of the immunopeptidome can directly fuel and guide the development of next-generation vaccines and immunotherapies against autoimmunity, infectious diseases, and cancers. In this mini-review, we summarize established isolation techniques as well as emerging mass spectrometry-based platforms (i.e. SWATH-MS) to identify and quantify MHC-associated peptides. We also highlight selected biological applications and discuss important current technical limitations that need to be solved to accelerate the development of this field.
Collapse
Affiliation(s)
- Etienne Caron
- From the ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland;
| | - Daniel J Kowalewski
- §Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Ching Chiek Koh
- From the ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Theo Sturm
- From the ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Heiko Schuster
- §Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Ruedi Aebersold
- From the ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland; ¶Faculty of Science, University of Zurich, Zurich, Switzerland
| |
Collapse
|
42
|
Wynne JW, Woon AP, Dudek NL, Croft NP, Ng JHJ, Baker ML, Wang LF, Purcell AW. Characterization of the Antigen Processing Machinery and Endogenous Peptide Presentation of a Bat MHC Class I Molecule. THE JOURNAL OF IMMUNOLOGY 2016; 196:4468-76. [PMID: 27183594 DOI: 10.4049/jimmunol.1502062] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 03/23/2016] [Indexed: 11/19/2022]
Abstract
Bats are a major reservoir of emerging and re-emerging infectious diseases, including severe acute respiratory syndrome-like coronaviruses, henipaviruses, and Ebola virus. Although highly pathogenic to their spillover hosts, bats harbor these viruses, and a large number of other viruses, with little or no clinical signs of disease. How bats asymptomatically coexist with these viruses is unknown. In particular, little is known about bat adaptive immunity, and the presence of functional MHC molecules is mostly inferred from recently described genomes. In this study, we used an affinity purification/mass spectrometry approach to demonstrate that a bat MHC class I molecule, Ptal-N*01:01, binds antigenic peptides and associates with peptide-loading complex components. We identified several bat MHC class I-binding partners, including calnexin, calreticulin, protein disulfide isomerase A3, tapasin, TAP1, and TAP2. Additionally, endogenous peptide ligands isolated from Ptal-N*01:01 displayed a relatively broad length distribution and an unusual preference for a C-terminal proline residue. Finally, we demonstrate that this preference for C-terminal proline residues was observed in Hendra virus-derived peptides presented by Ptal-N*01:01 on the surface of infected cells. To our knowledge, this is the first study to identify endogenous and viral MHC class I ligands for any bat species and, as such, provides an important avenue for monitoring and development of vaccines against major bat-borne viruses both in the reservoir and spillover hosts. Additionally, it will provide a foundation to understand the role of adaptive immunity in bat antiviral responses.
Collapse
Affiliation(s)
- James W Wynne
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria 3220, Australia
| | - Amanda P Woon
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; and
| | - Nadine L Dudek
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; and
| | - Nathan P Croft
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; and
| | - Justin H J Ng
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Graduate Medical School, Singapore 169857, Republic of Singapore
| | - Michelle L Baker
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria 3220, Australia
| | - Lin-Fa Wang
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Graduate Medical School, Singapore 169857, Republic of Singapore
| | - Anthony W Purcell
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; and
| |
Collapse
|
43
|
Affiliation(s)
- Jayajit Das
- Battelle Center for Mathematical Medicine; The Research Institute at the Nationwide Children's Hospital and the Departments of Pediatrics and Physics; The Ohio State University; Columbus OH USA
| | - Salim I. Khakoo
- Clinical and Experimental Sciences; Faculty of Medicine; University of Southampton; Southampton UK
| |
Collapse
|
44
|
Shytaj IL, Savarino A. Cell-mediated anti-Gag immunity in pharmacologically induced functional cure of simian AIDS: a 'bottleneck effect'? J Med Primatol 2015; 44:227-40. [PMID: 26058990 DOI: 10.1111/jmp.12176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND Administration of antiretroviral therapy and two experimental drugs, auranofin and buthionine sulfoximine (BSO), was previously shown to be followed by drug-free control of chronic SIVmac251 infection, decreased immune activation and increased cell-mediated anti-Gag responses. METHODS Phylogeny was analysed with Phylogeny.fr. Entropy was calculated with the specific tool of the HIV Sequence Database. The capsid Gag structure was computed using SPDBV. The bottleneck effect was simulated through an appropriate online tool. RESULTS The region of Gag predominantly targeted during control of SIVmac251 infection is highly conserved in primate lentiviruses and plays an important role in capsid architecture. Computer-aided simulations support the view that the preferential development of immune responses against this region is derived from a 'bottleneck effect' after restriction, by auranofin and BSO, of the activated lymphocyte pool. CONCLUSIONS Restriction of immune activation through auranofin/BSO may result in stochastic selection of cell clones targeting conserved epitopes leading to a functional cure-like condition.
Collapse
|
45
|
Muller GC, Gottlieb MGV, Luz Correa B, Gomes Filho I, Moresco RN, Bauer ME. The inverted CD4:CD8 ratio is associated with gender-related changes in oxidative stress during aging. Cell Immunol 2015; 296:149-54. [PMID: 26051633 DOI: 10.1016/j.cellimm.2015.05.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/22/2015] [Accepted: 05/25/2015] [Indexed: 01/11/2023]
Abstract
Aging has been associated with increased generation of free radicals as well as immunosenescence. Previous studies have identified older individuals with inverted T CD4:CD8 cell ratio and increased immunity to cytomegalovirus (CMV). Here, we investigated markers of oxidative stress and antioxidant defences in older individuals with inverted CD4:CD8 T-cell ratio. Sixty-one subjects were identified with inverted CD4:CD8 ratio. Older individuals with a CD4:CD8 ratio <1 had increased levels of plasma advanced oxidation protein products (AOPP) and ferric reducing ability of plasma (FRAP), but reduced levels of thiobarbituric acid reactive substances (TBARS) as compared to subjects with normal CD4:CD8 ratio. The CMV IgG serology was negatively correlated with CD4:CD8 ratio. These markers were more evident among elderly men than women. Our data suggest a close relationship between chronic CMV infection and oxidative profile in older individuals in the midst of its influence on the peripheral T-cell subsets.
Collapse
Affiliation(s)
- Guilherme Cerutti Muller
- Laboratory of Immunosenescence, Institute of Biomedical Research, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Health School, University of Vale do Rio dos Sinos (UNISINOS), Sao Leopoldo, Brazil.
| | | | - Bruna Luz Correa
- Laboratory of Immunosenescence, Institute of Biomedical Research, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Irênio Gomes Filho
- Institute of Geriatrics and Gerontology (IGG), PUCRS, Porto Alegre, Brazil
| | - Rafael Noal Moresco
- Health Sciences Center, Department of Clinical and Toxicological Analysis, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Moisés Evandro Bauer
- Laboratory of Immunosenescence, Institute of Biomedical Research, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| |
Collapse
|
46
|
Ye ZW, Zhang J, Townsend DM, Tew KD. Oxidative stress, redox regulation and diseases of cellular differentiation. Biochim Biophys Acta Gen Subj 2014; 1850:1607-21. [PMID: 25445706 DOI: 10.1016/j.bbagen.2014.11.010] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 10/31/2014] [Accepted: 11/10/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND Within cells, there is a narrow concentration threshold that governs whether reactive oxygen species (ROS) induce toxicity or act as second messengers. SCOPE OF REVIEW We discuss current understanding of how ROS arise, facilitate cell signaling, cause toxicities and disease related to abnormal cell differentiation and those (primarily) sulfur based pathways that provide nucleophilicity to offset these effects. PRIMARY CONCLUSIONS Cellular redox homeostasis mediates a plethora of cellular pathways that determine life and death events. For example, ROS intersect with GSH based enzyme pathways to influence cell differentiation, a process integral to normal hematopoiesis, but also affecting a number of diverse cell differentiation related human diseases. Recent attempts to manage such pathologies have focused on intervening in some of these pathways, with the consequence that differentiation therapy targeting redox homeostasis has provided a platform for drug discovery and development. GENERAL SIGNIFICANCE The balance between electrophilic oxidative stress and protective biomolecular nucleophiles predisposes the evolution of modern life forms. Imbalances of the two can produce aberrant redox homeostasis with resultant pathologies. Understanding the pathways involved provides opportunities to consider interventional strategies. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.
Collapse
Affiliation(s)
- Zhi-Wei Ye
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President St., DD410, Charleston, SC 29425, USA
| | - Jie Zhang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President St., DD410, Charleston, SC 29425, USA
| | - Danyelle M Townsend
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, 274 Calhoun Street MSC 141, Charleston, SC 29425-1410, USA
| | - Kenneth D Tew
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President St., DD410, Charleston, SC 29425, USA.
| |
Collapse
|