1
|
Börding T, Janik T, Bischoff P, Morkel M, Sers C, Horst D. GPA33 expression in colorectal cancer can be induced by WNT inhibition and targeted by cellular therapy. Oncogene 2025; 44:30-41. [PMID: 39472498 DOI: 10.1038/s41388-024-03200-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 01/07/2025]
Abstract
GPA33 is a promising surface antigen for targeted therapy in colorectal cancer (CRC). It is expressed almost exclusively in CRC and intestinal epithelia. However, previous clinical studies have not achieved expected response rates. We investigated GPA33 expression and regulation in CRC and developed a GPA33-targeted cellular therapy. We examined GPA33 expression in CRC cohorts using immunohistochemistry and immunofluorescence. We analyzed GPA33 regulation by interference with oncogenic signaling in vitro and in vivo using inhibitors and conditional inducible regulators. Furthermore, we engineered anti-GPA33-CAR T cells and assessed their activity in vitro and in vivo. GPA33 expression showed consistent intratumoral heterogeneity in CRC with antigen loss at the infiltrative tumor edge. This pattern was preserved at metastatic sites. GPA33-positive cells had a differentiated phenotype and low WNT activity. Low GPA33 expression levels were linked to tumor progression in patients with CRC. Downregulation of WNT activity induced GPA33 expression in vitro and in GPA33-negative tumor cell subpopulations in xenografts. GPA33-CAR T cells were activated in response to GPA33 and reduced xenograft growth in mice after intratumoral application. GPA33-targeted therapy may be improved by simultaneous WNT inhibition to enhance GPA33 expression. Furthermore, GPA33 is a promising target for cellular immunotherapy in CRC.
Collapse
Affiliation(s)
- Teresa Börding
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tobias Janik
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Philip Bischoff
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK) Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin, Germany
| | - Markus Morkel
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK) Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christine Sers
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK) Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Horst
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- German Cancer Consortium (DKTK) Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
2
|
Bardaweel SK, Al-salamat H, Hajjo R, Sabbah D, Almutairi S. Unveiling the Intricacies of Monoamine Oxidase-A (MAO-A) Inhibition in Colorectal Cancer: Computational Systems Biology, Expression Patterns, and the Anticancer Therapeutic Potential. ACS OMEGA 2024; 9:35703-35717. [PMID: 39184489 PMCID: PMC11339988 DOI: 10.1021/acsomega.4c04100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024]
Abstract
Colorectal cancer (CRC) remains a significant health burden globally, necessitating a deeper understanding of its molecular intricacies for effective therapeutic interventions. Elevated monoamine oxidase-A (MAO-A) expression has been consistently observed in CRC tissues, correlating with advanced disease stages and a poorer prognosis. This research explores the systems biology effects of MAO-A inhibition with small molecule inhibitor clorgyline regarding CRC. The applied systems biology approach starts with a chemocentric informatics approach to derive high-confidence hypotheses regarding the antiproliferative effects of MAO-A inhibitors and ends with experimental validation. Our computational results emphasized the anticancer effects of MAO-A inhibition and the chemogenomics similarities between clorgyline and structurally diverse groups of apoptosis inducers in addition to highlighting apoptotic, DNA-damage, and microRNAs in cancer pathways. Experimental validation results revealed that MAO inhibition results in antiproliferative antimigratory activities in addition to synergistic effects with doxorubicin. Moreover, the results demonstrated a putative role of MAO-A inhibition in commencing CRC cellular death by potentially mediating the induction of apoptosis.
Collapse
Affiliation(s)
- Sanaa K. Bardaweel
- Department
of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman - 11942, Jordan
| | - Husam Al-salamat
- Department
of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman - 11942, Jordan
| | - Rima Hajjo
- Department
of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah
University of Jordan, P.O. Box 130, Amman - 11733, Jordan
- Laboratory
for Molecular Modeling, Division of Chemical Biology and Medicinal
Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Board
Member, Jordan CDC, Amman - 11183, Jordan
| | - Dima Sabbah
- Department
of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah
University of Jordan, P.O. Box 130, Amman - 11733, Jordan
| | - Shriefa Almutairi
- Department
of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman - 11942, Jordan
| |
Collapse
|
3
|
Luo Y, Zhang G, Hu C, Huang L, Wang D, Chen Z, Wang Y. The Role of Natural Products from Herbal Medicine in TLR4 Signaling for Colorectal Cancer Treatment. Molecules 2024; 29:2727. [PMID: 38930793 PMCID: PMC11206024 DOI: 10.3390/molecules29122727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
The toll-like receptor 4 (TLR4) signaling pathway constitutes an intricate network of protein interactions primarily involved in inflammation and cancer. This pathway triggers intracellular signaling cascades, modulating transcription factors that regulate gene expression related to immunity and malignancy. Previous studies showed that colon cancer patients with low TLR4 expression exhibit extended survival times and the TLR4 signaling pathway holds a significant role in CRC pathogenesis. In recent years, traditional Chinese medicines (TCMs) have garnered substantial attention as an alternative therapeutic modality for CRC, primarily due to their multifaceted composition and ability to target multiple pathways. Emerging evidence indicates that specific TCM products, such as andrographolide, rosmarinic acid, baicalin, etc., have the potential to impede CRC development through the TLR4 signaling pathway. Here, we review the role and biochemical processes of the TLR4 signaling pathway in CRC, and natural products from TCMs affecting the TLR4 pathway. This review sheds light on potential treatment strategies utilizing natural TLR4 inhibitors for CRC, which contributes to the advancement of research and accelerates their clinical integration into CRC treatment.
Collapse
Affiliation(s)
- Yan Luo
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.L.); (G.Z.); (L.H.); (D.W.)
| | - Guochen Zhang
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.L.); (G.Z.); (L.H.); (D.W.)
| | - Chao Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
| | - Lijun Huang
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.L.); (G.Z.); (L.H.); (D.W.)
| | - Dong Wang
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.L.); (G.Z.); (L.H.); (D.W.)
| | - Zhejie Chen
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yumei Wang
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.L.); (G.Z.); (L.H.); (D.W.)
| |
Collapse
|
4
|
Scarini JF, Gonçalves MWA, de Lima-Souza RA, Lavareze L, de Carvalho Kimura T, Yang CC, Altemani A, Mariano FV, Soares HP, Fillmore GC, Egal ESA. Potential role of the Eph/ephrin system in colorectal cancer: emerging druggable molecular targets. Front Oncol 2024; 14:1275330. [PMID: 38651144 PMCID: PMC11033724 DOI: 10.3389/fonc.2024.1275330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/19/2024] [Indexed: 04/25/2024] Open
Abstract
The Eph/ephrin system regulates many developmental processes and adult tissue homeostasis. In colorectal cancer (CRC), it is involved in different processes including tumorigenesis, tumor angiogenesis, metastasis development, and cancer stem cell regeneration. However, conflicting data regarding Eph receptors in CRC, especially in its putative role as an oncogene or a suppressor gene, make the precise role of Eph-ephrin interaction confusing in CRC development. In this review, we provide an overview of the literature and highlight evidence that collaborates with these ambiguous roles of the Eph/ephrin system in CRC, as well as the molecular findings that represent promising therapeutic targets.
Collapse
Affiliation(s)
- João Figueira Scarini
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Moisés Willian Aparecido Gonçalves
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Reydson Alcides de Lima-Souza
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Luccas Lavareze
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Talita de Carvalho Kimura
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Ching-Chu Yang
- Department of Pathology, School of Medicine, University of Utah (UU), Salt Lake City, UT, United States
| | - Albina Altemani
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Fernanda Viviane Mariano
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Heloisa Prado Soares
- Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah (UU), Salt Lake City, UT, United States
| | - Gary Chris Fillmore
- Biorepository and Molecular Pathology, Huntsman Cancer Institute, University of Utah (UU), Salt Lake City, UT, United States
| | - Erika Said Abu Egal
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Biorepository and Molecular Pathology, Huntsman Cancer Institute, University of Utah (UU), Salt Lake City, UT, United States
| |
Collapse
|
5
|
Solé L, Lobo-Jarne T, Cabré-Romans JJ, González A, Fernández L, Marruecos L, Guix M, Cuatrecasas M, López S, Bellosillo B, Torres F, Iglesias M, Bigas A, Espinosa L. Loss of the epithelial marker CDX1 predicts poor prognosis in early-stage CRC patients. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119658. [PMID: 38216091 DOI: 10.1016/j.bbamcr.2024.119658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/18/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024]
Abstract
BACKGROUND We have previously shown that non-curative chemotherapy imposes fetal conversion and high metastatic capacity to cancer cells. From the set of genes differentially expressed in Chemotherapy Resistant Cells, we obtained a characteristic fetal intestinal cell signature that is present in a group of untreated tumors and is sufficient to predict patient prognosis. A feature of this fetal signature is the loss of CDX1. METHODS We have analyzed transcriptomic data in public datasets and performed immunohistochemistry analysis of paraffin embedded tumor samples from two cohorts of colorectal cancer patients. RESULTS We demonstrated that low levels of CDX1 are sufficient to identify patients with poorest outcome at the early tumor stages II and III. Presence tumor areas that are negative for CDX1 staining in stage I cancers is associated with tumor relapse. CONCLUSIONS Our results reveal the actual possibility of incorporating CDX1 immunostaining as a valuable biomarker for CRC patients.
Collapse
Affiliation(s)
- Laura Solé
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Teresa Lobo-Jarne
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Júlia-Jié Cabré-Romans
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Antón González
- Pathology Department, Hospital del Mar, Barcelona, Spain
| | | | - Laura Marruecos
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain; The Walter and Eliza Hall Institute, Melbourne, Australia
| | - Marta Guix
- Oncology Department, Hospital del Mar, Barcelona, Spain
| | - Miriam Cuatrecasas
- Pathology Department, Centre of Biomedical Diagnosis (CDB), Hospital Clinic, 08036 Barcelona, Spain; Centro de Investigacion Biomedica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Sandra López
- Pathology Department, Centre of Biomedical Diagnosis (CDB), Hospital Clinic, 08036 Barcelona, Spain; Centro de Investigacion Biomedica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain
| | | | - Ferran Torres
- Biostatistics Unit, Medical School, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Mar Iglesias
- Pathology Department, Hospital del Mar, Barcelona, Spain; Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
| | - Anna Bigas
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain; Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain; Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Lluís Espinosa
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain; Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain.
| |
Collapse
|
6
|
Challoner BR, Woolston A, Lau D, Buzzetti M, Fong C, Barber LJ, Anandappa G, Crux R, Assiotis I, Fenwick K, Begum R, Begum D, Lund T, Sivamanoharan N, Sansano HB, Domingo-Arada M, Tran A, Pandha H, Church D, Eccles B, Ellis R, Falk S, Hill M, Krell D, Murugaesu N, Nolan L, Potter V, Saunders M, Shiu KK, Guettler S, Alexander JL, Lázare-Iglesias H, Kinross J, Murphy J, von Loga K, Cunningham D, Chau I, Starling N, Ruiz-Bañobre J, Dhillon T, Gerlinger M. Genetic and immune landscape evolution in MMR-deficient colorectal cancer. J Pathol 2024; 262:226-239. [PMID: 37964706 DOI: 10.1002/path.6228] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/17/2023] [Accepted: 10/10/2023] [Indexed: 11/16/2023]
Abstract
Mismatch repair-deficient (MMRd) colorectal cancers (CRCs) have high mutation burdens, which make these tumours immunogenic and many respond to immune checkpoint inhibitors. The MMRd hypermutator phenotype may also promote intratumour heterogeneity (ITH) and cancer evolution. We applied multiregion sequencing and CD8 and programmed death ligand 1 (PD-L1) immunostaining to systematically investigate ITH and how genetic and immune landscapes coevolve. All cases had high truncal mutation burdens. Despite pervasive ITH, driver aberrations showed a clear hierarchy. Those in WNT/β-catenin, mitogen-activated protein kinase, and TGF-β receptor family genes were almost always truncal. Immune evasion (IE) drivers, such as inactivation of genes involved in antigen presentation or IFN-γ signalling, were predominantly subclonal and showed parallel evolution. These IE drivers have been implicated in immune checkpoint inhibitor resistance or sensitivity. Clonality assessments are therefore important for the development of predictive immunotherapy biomarkers in MMRd CRCs. Phylogenetic analysis identified three distinct patterns of IE driver evolution: pan-tumour evolution, subclonal evolution, and evolutionary stasis. These, but neither mutation burdens nor heterogeneity metrics, significantly correlated with T-cell densities, which were used as a surrogate marker of tumour immunogenicity. Furthermore, this revealed that genetic and T-cell infiltrates coevolve in MMRd CRCs. Low T-cell densities in the subgroup without any known IE drivers may indicate an, as yet unknown, IE mechanism. PD-L1 was expressed in the tumour microenvironment in most samples and correlated with T-cell densities. However, PD-L1 expression in cancer cells was independent of T-cell densities but strongly associated with loss of the intestinal homeobox transcription factor CDX2. This explains infrequent PD-L1 expression by cancer cells and may contribute to a higher recurrence risk of MMRd CRCs with impaired CDX2 expression. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
| | - Andrew Woolston
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - David Lau
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Marta Buzzetti
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | - Louise J Barber
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | - Richard Crux
- The Royal Marsden NHS Foundation Trust, London, UK
| | | | | | | | - Dipa Begum
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Tom Lund
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Nanna Sivamanoharan
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | | | | | - Amina Tran
- The Royal Marsden NHS Foundation Trust, London, UK
| | | | - David Church
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Bryony Eccles
- University Hospitals Dorset NHS Foundation Trust, Bournemouth, UK
| | | | - Stephen Falk
- University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Mark Hill
- Maidstone and Tunbridge Wells NHS Trust, Maidstone, UK
| | - Daniel Krell
- Royal Free London NHS Foundation Trust, London, UK
| | - Nirupa Murugaesu
- St George's University Hospitals NHS Foundation Trust, London, UK
- Genomics England, London, UK
| | - Luke Nolan
- Hampshire Hospitals NHS Foundation Trust, Winchester, UK
| | - Vanessa Potter
- University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | | | - Kai-Keen Shiu
- University College London Hospitals NHS Foundation Trust, London, UK
| | | | | | | | | | - Jamie Murphy
- Imperial College Healthcare NHS Trust, London, UK
| | - Katharina von Loga
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | | | - Ian Chau
- The Royal Marsden NHS Foundation Trust, London, UK
| | | | - Juan Ruiz-Bañobre
- University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
- University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Tony Dhillon
- Royal Surrey Hospital NHS Foundation Trust, Guildford, UK
| | - Marco Gerlinger
- Barts Cancer Institute, Queen Mary University of London, London, UK
- St Bartholomew's Hospital Cancer Centre, London, UK
| |
Collapse
|
7
|
Sinha S, Alcantara J, Perry K, Castillo V, Espinoza CR, Taheri S, Vidales E, Tindle C, Adel A, Amirfakhri S, Sawires JR, Yang J, Bouvet M, Sahoo D, Ghosh P. Machine-Learning Identifies a Strategy for Differentiation Therapy in Solid Tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.13.557628. [PMID: 37745574 PMCID: PMC10515918 DOI: 10.1101/2023.09.13.557628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
BACKGROUND Although differentiation therapy can cure some hematologic malignancies, its curative potential remains unrealized in solid tumors. This is because conventional computational approaches succumb to the thunderous noise of inter-/intratumoral heterogeneity. Using colorectal cancers (CRCs) as an example, here we outline a machine learning(ML)-based approach to track, differentiate, and selectively target cancer stem cells (CSCs). METHODS A transcriptomic network was built and validated using healthy colon and CRC tissues in diverse gene expression datasets (~5,000 human and >300 mouse samples). Therapeutic targets and perturbation strategies were prioritized using ML, with the goal of reinstating the expression of a transcriptional identifier of the differentiated colonocyte, CDX2, whose loss in poorly differentiated (CSC-enriched) CRCs doubles the risk of relapse/death. The top candidate target was then engaged with a clinical-grade drug and tested on 3 models: CRC lines in vitro, xenografts in mice, and in a prospective cohort of healthy (n = 3) and CRC (n = 23) patient-derived organoids (PDOs). RESULTS The drug shifts the network predictably, induces CDX2 and crypt differentiation, and shows cytotoxicity in all 3 models, with a high degree of selectivity towards all CDX2-negative cell lines, xenotransplants, and PDOs. The potential for effective pairing of therapeutic efficacy (IC50) and biomarker (CDX2-low state) is confirmed in PDOs using multivariate analyses. A 50-gene signature of therapeutic response is derived and tested on 9 independent cohorts (~1700 CRCs), revealing the impact of CDX2-reinstatement therapy could translate into a ~50% reduction in the risk of mortality/recurrence. CONCLUSIONS Findings not only validate the precision of the ML approach in targeting CSCs, and objectively assess its impact on clinical outcome, but also exemplify the use of ML in yielding clinical directive information for enhancing personalized medicine.
Collapse
|
8
|
Chen JF, Wu SW, Shi ZM, Hu B. Traditional Chinese medicine for colorectal cancer treatment: potential targets and mechanisms of action. Chin Med 2023; 18:14. [PMID: 36782251 PMCID: PMC9923939 DOI: 10.1186/s13020-023-00719-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
Colorectal cancer (CRC) is a disease with complex pathogenesis, it is prone to metastasis, and its development involves abnormalities in multiple signaling pathways. Surgery, chemotherapy, radiotherapy, target therapy, and immunotherapy remain the main treatments for CRC, but improvement in the overall survival rate and quality of life is urgently needed. Traditional Chinese medicine (TCM) has a long history of preventing and treating CRC. It could affect CRC cell proliferation, apoptosis, cell cycle, migration, invasion, autophagy, epithelial-mesenchymal transition, angiogenesis, and chemoresistance by regulating multiple signaling pathways, such as PI3K/Akt, NF-κB, MAPK, Wnt/β-catenin, epidermal growth factor receptors, p53, TGF-β, mTOR, Hedgehog, and immunomodulatory signaling pathways. In this paper, the main signaling pathways and potential targets of TCM and its active ingredients in the treatment of CRC were systematically summarized, providing a theoretical basis for treating CRC with TCM and new ideas for further exploring the pathogenesis of CRC and developing new anti-CRC drugs.
Collapse
Affiliation(s)
- Jin-Fang Chen
- grid.412540.60000 0001 2372 7462Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China ,grid.412540.60000 0001 2372 7462Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China
| | - Shi-Wei Wu
- grid.412540.60000 0001 2372 7462Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China ,grid.412540.60000 0001 2372 7462Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China
| | - Zi-Man Shi
- grid.412540.60000 0001 2372 7462Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China ,grid.412540.60000 0001 2372 7462Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China
| | - Bing Hu
- Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, People's Republic of China. .,Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, People's Republic of China.
| |
Collapse
|
9
|
Giolito MV, La Rosa T, Farhat D, Bodoirat S, Guardia GDA, Domon‐Dell C, Galante PAF, Freund J, Plateroti M. Regulation of the THRA gene, encoding the thyroid hormone nuclear receptor TRα1, in intestinal lesions. Mol Oncol 2022; 16:3975-3993. [PMID: 36217307 PMCID: PMC9718118 DOI: 10.1002/1878-0261.13298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 07/05/2022] [Accepted: 07/29/2022] [Indexed: 12/24/2022] Open
Abstract
The THRA gene, encoding the thyroid hormone nuclear receptor TRα1, is expressed in an increasing gradient at the bottom of intestinal crypts, overlapping with high Wnt and Notch activities. Importantly, THRA is upregulated in colorectal cancers, particularly in the high-Wnt molecular subtype. The basis of this specific and/or altered expression pattern has remained unknown. To define the mechanisms controlling THRA transcription and TRα1 expression, we used multiple in vitro and ex vivo approaches. Promoter analysis demonstrated that transcription factors important for crypt homeostasis and altered in colorectal cancers, such as transcription factor 7-like 2 (TCF7L2; Wnt pathway), recombining binding protein suppressor of hairless (RBPJ; Notch pathway), and homeobox protein CDX2 (epithelial cell identity), modulate THRA activity. Specifically, although TCF7L2 and CDX2 stimulated THRA, RBPJ induced its repression. In-depth analysis of the Wnt-dependent increase showed direct regulation of the THRA promoter in cells and of TRα1 expression in murine enteroids. Given our previous results on the control of the Wnt pathway by TRα1, our new results unveil a complex regulatory loop and synergy between these endocrine and epithelial-cell-intrinsic signals. Our work describes, for the first time, the regulation of the THRA gene in specific cell and tumor contexts.
Collapse
Affiliation(s)
- Maria Virginia Giolito
- Inserm, IRFAC/UMR‐S1113, FMTS, Université de StrasbourgFrance,INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de LyonFrance
| | - Théo La Rosa
- INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de LyonFrance,Present address:
Stem‐Cell and Brain Research Institute, U1208 INSERM, USC1361 INRABronFrance
| | - Diana Farhat
- Inserm, IRFAC/UMR‐S1113, FMTS, Université de StrasbourgFrance,INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de LyonFrance
| | | | | | | | | | | | - Michelina Plateroti
- Inserm, IRFAC/UMR‐S1113, FMTS, Université de StrasbourgFrance,INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de LyonFrance
| |
Collapse
|
10
|
Jin Q, Gao Y, Shuai S, Chen Y, Wang K, Chen J, Peng J, Gao C. Cdx1b protects intestinal cell fate by repressing signaling networks for liver specification. J Genet Genomics 2022; 49:1101-1113. [PMID: 36460297 DOI: 10.1016/j.jgg.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
In mammals, the expression of the homeobox family member Cdx2/CDX2 is restricted within the intestine. Conditional ablation of the mouse Cdx2 in the endodermal cells causes a homeotic transformation of the intestine towards the esophagus or gastric fate. In this report, we show that null mutants of zebrafish cdx1b, encoding the counterpart of mammalian CDX2, could survive more than 10 days post fertilization, a stage when the zebrafish digestive system has been well developed. Through RNA sequencing (RNA-seq) and single-cell sequencing (scRNA-seq) of the dissected intestine from the mutant embryos, we demonstrate that the loss-of-function of the zebrafish cdx1b yields hepatocyte-like intestinal cells, a phenotype never observed in the mouse model. Further RNA-seq data analysis, and genetic double mutants and signaling inhibitor studies reveal that Cdx1b functions to guard the intestinal fate by repressing, directly or indirectly, a range of transcriptional factors and signaling pathways for liver specification. Finally, we demonstrate that heat shock-induced overexpression of cdx1b in a transgenic fish abolishes the liver formation. Therefore, we demonstrate that Cdx1b is a key repressor of hepatic fate during the intestine specification in zebrafish.
Collapse
Affiliation(s)
- Qingxia Jin
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yuqi Gao
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shimin Shuai
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yayue Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Kaiyuan Wang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jun Chen
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jinrong Peng
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Ce Gao
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
11
|
Two circPPFIA1s negatively regulate liver metastasis of colon cancer via miR-155-5p/CDX1 and HuR/RAB36. Mol Cancer 2022; 21:197. [PMID: 36224588 PMCID: PMC9555114 DOI: 10.1186/s12943-022-01667-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/26/2022] [Indexed: 12/24/2022] Open
Abstract
Background Circular RNAs (circRNAs) play a critical role in colorectal cancer (CRC) progression, including metastasis. However, the detailed molecular mechanism is not fully understood. Methods Differentially expressed circRNAs between primary KM12C and liver metastatic KM12L4 colon cancer cells were identified by microarray. The expression of circRNAs was measured by semi-quantitative (semi-qPCR) and real time-quantitative PCR (RT-qPCR). Metastatic potential including invasive and migratory abilities, and liver metastasis were examined by transwell assays and intrasplenic injection, respectively. CircPPFIA1-associated microRNA (miRNA) and RNA-binding protein (RBP) were screened by an antisense oligonucleotide (ASO) pulldown experiment. The effects of circPPFIA1 on target gene expression were evaluated by RT-qPCR and western blot analyses. Results By analyzing circRNA microarray data, we identified two anti-metastatic circRNAs generated from PPFIA1 with different length, which named circPPFIA1-L (long) and -S (short). They were significantly downregulated in liver metastatic KM12L4 cells compared to primary KM12C cells. The knockdown of circPPFIA1s in KM12C enhanced metastatic potential and increased liver metastasis. Conversely, overexpression of circPPFIA1s weakened metastatic potential and inhibited liver metastasis. circPPFIA1s were found to function as sponges of oncogenic miR-155-5p and Hu antigen R (HuR) by an ASO pulldown experiment. circPPFIA1s upregulated tumor-suppressing CDX1 expression and conversely downregulated oncogenic RAB36 by decoying miR-155-5p and by sequestering HuR, respectively. Conclusion Our findings demonstrate that circPPFIA1s inhibit the liver metastasis of CRC via the miR-155-5p/CDX1 and HuR/RAB36 pathways. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01667-w.
Collapse
|
12
|
Abdelmaksoud HF, Aboushousha TS, El-Ashkar AM. Deep glance on the antiparasitic anticancer activities of wheat germ oil in chronically infected immunosuppressed mice with cryptosporidiosis. J Parasit Dis 2022; 46:785-794. [PMID: 36091275 PMCID: PMC9458820 DOI: 10.1007/s12639-022-01497-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/07/2022] [Indexed: 11/25/2022] Open
Abstract
Cryptosporidium species are the major cause of water-borne epidemics of diarrhea in both developing and developed countries that vary from self-limited in immunocompetent patients to severe life-threatening in the immunocompromised hosts. There was a proven correlation between cryptosporidiosis and colorectal cancers, although, studies in this field are still limited. Wheat germ oil (WGO) is a natural product with a known antiparasitic effect and potential antiproliferative activities. This study aimed to evaluate the antiparasitic and anticancer activities of WGO in chronically infected immunosuppressed mice compared to Nitazoxanide (NTZ). This experimental case-control study was performed in the period from January till September 2021. Eighty immunosuppressed bred laboratory mice were divided into 4 groups, 20 mice each; GI non-infected; negative control (NC), GII infected non treated; positive control (PC), GII infected, and treated with NTZ, GIV infected, and treated with WGO. Parasitological, histopathological, and immunohistochemical examinations were performed with estimating the rate of maximal survival for the study groups. Parasitological examination revealed a marked reduction in the mean Cryptosporidium spp. oocyst counts in the stool of GIV compared to PC, and GIII (P-value < 0.001). Histopathological and immunohistochemical examinations showed the best results with GIV which revealed restoration of normal villous pattern, with no dysplasia or malignancy could be detected. GIV showed the best survival rate compared to PC and GIII. WGO is an extremely promising agent that has an excellent therapeutic effect against cryptosporidiosis with the ability to control the tumorigenesis process in the chronically infected immunosuppressed hosts.
Collapse
Affiliation(s)
| | | | - Ayman M. El-Ashkar
- Department of Medical Parasitology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Basic Medical Science, College of Medicine, University of Bisha, Bisha, Kingdom of Saudi Arabia
| |
Collapse
|
13
|
Jahan S, Awaja N, Hess B, Hajjar S, Sad S, Lohnes D. The transcription factor Cdx2 regulates inflammasome activity through expression of the NLRP3 suppressor TRIM31 to maintain intestinal homeostasis. J Biol Chem 2022; 298:102386. [PMID: 35985421 PMCID: PMC9508567 DOI: 10.1016/j.jbc.2022.102386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 11/03/2022] Open
Abstract
The intestine-specific transcription factor Cdx2 is essential for intestinal homeostasis and has been implicated in the pathogenesis of disorders including inflammatory bowel disease. However, the mechanism by which Cdx2 influences intestinal disease is not clear. Here, we present evidence supporting a novel Cdx2–TRIM31–NLRP3 (NLR family, pyrin domain containing 3) signaling pathway, which may represent a mechanistic means by which Cdx2 impacts intestinal inflammation. We found that conditional loss of Cdx function resulted in an increase in proinflammatory cytokines, including tumor necrosis factor alpha, interleukin (IL)-1β, and IL-6, in the mouse colon. We further show that TRIM31, which encodes a suppressor of NLRP3 (a central component of the NLRP3 inflammasome complex) is a novel Cdx2 target gene and is attenuated in the colon of Cdx conditional mutants. Consistent with this, we found that attenuation of TRIM31 in Cdx mutant intestine occurs concomitant with elevated levels of NLRP3 and an increase in inflammasome products. We demonstrate that specific inhibition of NLRP3 activity significantly reduced IL-1β and IL-6 levels and extended the life span of Cdx conditional mutants, reflecting the therapeutic potential of targeting NLRP3. Tumor necrosis factor-alpha levels were also induced independent of NLRP3, potentially via elevated activity of the proinflammatory NF-κB signaling pathway in Cdx mutants. Finally, in silico analysis of ulcerative colitis patients revealed attenuation of CDX2 and TRIM31 expression coincident with enhanced expression of proinflammatory cytokines. We conclude that the novel Cdx2–TRIM31–NLRP3 signaling pathway promotes proinflammatory cytokine expression, and its inhibition may have therapeutic potential in human intestinal diseases.
Collapse
Affiliation(s)
- Sanzida Jahan
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Nidaa Awaja
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Bradley Hess
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Stephanie Hajjar
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Subash Sad
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - David Lohnes
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
14
|
Barfield R, Qu C, Steinfelder RS, Zeng C, Harrison TA, Brezina S, Buchanan DD, Campbell PT, Casey G, Gallinger S, Giannakis M, Gruber SB, Gsur A, Hsu L, Huyghe JR, Moreno V, Newcomb PA, Ogino S, Phipps AI, Slattery ML, Thibodeau SN, Trinh QM, Toland AE, Hudson TJ, Sun W, Zaidi SH, Peters U. Association between germline variants and somatic mutations in colorectal cancer. Sci Rep 2022; 12:10207. [PMID: 35715570 PMCID: PMC9205954 DOI: 10.1038/s41598-022-14408-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 06/07/2022] [Indexed: 01/11/2023] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease with evidence of distinct tumor types that develop through different somatically altered pathways. To better understand the impact of the host genome on somatically mutated genes and pathways, we assessed associations of germline variations with somatic events via two complementary approaches. We first analyzed the association between individual germline genetic variants and the presence of non-silent somatic mutations in genes in 1375 CRC cases with genome-wide SNPs data and a tumor sequencing panel targeting 205 genes. In the second analysis, we tested if germline variants located within previously identified regions of somatic allelic imbalance were associated with overall CRC risk using summary statistics from a recent large scale GWAS (n≃125 k CRC cases and controls). The first analysis revealed that a variant (rs78963230) located within a CNA region associated with TLR3 was also associated with a non-silent mutation within gene FBXW7. In the secondary analysis, the variant rs2302274 located in CDX1/PDGFRB frequently gained/lost in colorectal tumors was associated with overall CRC risk (OR = 0.96, p = 7.50e-7). In summary, we demonstrate that an integrative analysis of somatic and germline variation can lead to new insights about CRC.
Collapse
Affiliation(s)
- Richard Barfield
- grid.26009.3d0000 0004 1936 7961Department of Biostatistics and Bioinformatics, Duke University, 11028A Hock Plaza, 2424 Erwin Road Suite 1106, Durham, NC 27705 USA
| | - Conghui Qu
- grid.270240.30000 0001 2180 1622Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA
| | - Robert S. Steinfelder
- grid.270240.30000 0001 2180 1622Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA
| | - Chenjie Zeng
- grid.280128.10000 0001 2233 9230National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA
| | - Tabitha A. Harrison
- grid.270240.30000 0001 2180 1622Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA
| | - Stefanie Brezina
- grid.22937.3d0000 0000 9259 8492Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Vienna, Austria
| | - Daniel D. Buchanan
- grid.1008.90000 0001 2179 088XColorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1008.90000 0001 2179 088XUniversity of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC 3010 Australia ,grid.416153.40000 0004 0624 1200Genomic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, VIC Australia
| | - Peter T. Campbell
- grid.251993.50000000121791997Department of Epidemiology and Population Science, Albert Einstein College of Medicine, Bronx, NY USA
| | - Graham Casey
- grid.27755.320000 0000 9136 933XCenter for Public Health Genomics, University of Virginia, Charlottesville, VA USA
| | - Steven Gallinger
- grid.250674.20000 0004 0626 6184Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON Canada
| | - Marios Giannakis
- grid.65499.370000 0001 2106 9910Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA USA ,grid.66859.340000 0004 0546 1623The Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Stephen B. Gruber
- grid.42505.360000 0001 2156 6853Department of Medical Oncology and Therapeuytic, University of Southern California, Los Angeles, CA USA
| | - Andrea Gsur
- grid.22937.3d0000 0000 9259 8492Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Vienna, Austria
| | - Li Hsu
- grid.270240.30000 0001 2180 1622Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA ,grid.34477.330000000122986657Department of Biostatistics, University of Washington, Seattle, WA USA
| | - Jeroen R. Huyghe
- grid.270240.30000 0001 2180 1622Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA
| | - Victor Moreno
- grid.418701.b0000 0001 2097 8389Oncology Data Analytics Program, Catalan Institute of Oncology-IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain ,grid.466571.70000 0004 1756 6246CIBER Epidemiología Y Salud Pública (CIBERESP), Madrid, Spain ,grid.5841.80000 0004 1937 0247Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain ,grid.418284.30000 0004 0427 2257ONCOBEL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Polly A. Newcomb
- grid.270240.30000 0001 2180 1622Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA ,grid.34477.330000000122986657School of Public Health, University of Washington, Seattle, WA USA
| | - Shuji Ogino
- grid.66859.340000 0004 0546 1623The Broad Institute of MIT and Harvard, Cambridge, MA USA ,grid.38142.3c000000041936754XProgram in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA ,Cancer Immunology Program, Dana-Farber Harvard Cancer Center, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Amanda I. Phipps
- grid.270240.30000 0001 2180 1622Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA ,Department of Epidemiology, Fred Hutchinson Cancer Research Center, University of Washington, 1100 Fairview Ave N, Mail Stop M4-B402, Seattle, WA 98109 USA
| | - Martha L. Slattery
- grid.223827.e0000 0001 2193 0096Department of Internal Medicine, University of Utah, Salt Lake City, UT USA
| | - Stephen N. Thibodeau
- grid.66875.3a0000 0004 0459 167XDivision of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN USA
| | - Quang M. Trinh
- grid.419890.d0000 0004 0626 690XOntario Institute for Cancer Research, Toronto, ON Canada
| | - Amanda E. Toland
- grid.261331.40000 0001 2285 7943Departments of Cancer Biology and Genetics and Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH USA
| | - Thomas J. Hudson
- grid.419890.d0000 0004 0626 690XOntario Institute for Cancer Research, Toronto, ON Canada
| | - Wei Sun
- grid.270240.30000 0001 2180 1622Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA ,grid.34477.330000000122986657Department of Biostatistics, University of Washington, Seattle, WA USA ,grid.410711.20000 0001 1034 1720Department of Biostatistics, University of North Carolina, Chapel Hill, NC USA
| | - Syed H. Zaidi
- grid.419890.d0000 0004 0626 690XOntario Institute for Cancer Research, Toronto, ON Canada
| | - Ulrike Peters
- grid.270240.30000 0001 2180 1622Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA ,Department of Epidemiology, Fred Hutchinson Cancer Research Center, University of Washington, 1100 Fairview Ave N, Mail Stop M4-B402, Seattle, WA 98109 USA
| |
Collapse
|
15
|
Shah K, Maradana MR, Joaquina Delàs M, Metidji A, Graelmann F, Llorian M, Chakravarty P, Li Y, Tolaini M, Shapiro M, Kelly G, Cheshire C, Bhurta D, Bharate SB, Stockinger B. Cell-intrinsic Aryl Hydrocarbon Receptor signalling is required for the resolution of injury-induced colonic stem cells. Nat Commun 2022; 13:1827. [PMID: 35383166 PMCID: PMC8983642 DOI: 10.1038/s41467-022-29098-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 02/23/2022] [Indexed: 12/17/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is an environmental sensor that integrates microbial and dietary cues to influence physiological processes within the intestinal microenvironment, protecting against colitis and colitis-associated colorectal cancer development. Rapid tissue regeneration upon injury is important for the reinstatement of barrier integrity and its dysregulation promotes malignant transformation. Here we show that AHR is important for the termination of the regenerative response and the reacquisition of mature epithelial cell identity post injury in vivo and in organoid cultures in vitro. Using an integrative multi-omics approach in colon organoids, we show that AHR is required for timely termination of the regenerative response through direct regulation of transcription factors involved in epithelial cell differentiation as well as restriction of chromatin accessibility to regeneration-associated Yap/Tead transcriptional targets. Safeguarding a regulated regenerative response places AHR at a pivotal position in the delicate balance between controlled regeneration and malignant transformation. Rapid intestinal regeneration after injury is critical to maintain barrier integrity and homeostasis, but must be tightly controlled to prevent tumorigenesis. Here they show that the aryl hydrocarbon receptor is required to terminate the regenerative response after wound healing.
Collapse
Affiliation(s)
| | | | | | - Amina Metidji
- Department of Oncology, St Jude Children's Hospital, Memphis, TN, USA
| | - Frederike Graelmann
- Immunology and Environment, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | | | | | - Ying Li
- The Francis Crick Institute, London, UK
| | | | | | | | | | - Deendyal Bhurta
- Natural Products & Medicinal Chemistry Division, CSIR - Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Sandip B Bharate
- Natural Products & Medicinal Chemistry Division, CSIR - Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | | |
Collapse
|
16
|
Feunteun J, Ostyn P, Delaloge S. TUMOR CELL MALIGNANCY: A COMPLEX TRAIT BUILT THROUGH RECIPROCAL INTERACTIONS BETWEEN TUMORS AND TISSUE-BODY SYSTEM. iScience 2022; 25:104217. [PMID: 35494254 PMCID: PMC9044163 DOI: 10.1016/j.isci.2022.104217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Since the discovery of oncogenes and tumor suppressor genes in the late past century, cancer research has been overwhelmingly focused on the genetics and biology of tumor cells and hence has addressed mostly cell-autonomous processes with emphasis on traditional driver/passenger genetic models. Nevertheless, over that same period, multiple seminal observations have accumulated highlighting the role of non-cell autonomous effectors in tumor growth and metastasis. However, given that cell autonomous and non-autonomous events are observed together at the time of diagnosis, it is in fact impossible to know whether the malignant transformation is initiated by cell autonomous oncogenic events or by non-cell autonomous conditions generated by alterations of the tissue-body ecosystem. This review aims at addressing this issue by taking the option of defining malignancy as a complex genetic trait incorporating genetically determined reciprocal interactions between tumor cells and tissue-body ecosystem.
Collapse
Affiliation(s)
- Jean Feunteun
- INSERM U981, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- UMR 9019, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Corresponding author
| | - Pauline Ostyn
- UMR 9019, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Suzette Delaloge
- Breast Cancer Group, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
17
|
Papadakos SP, Petrogiannopoulos L, Pergaris A, Theocharis S. The EPH/Ephrin System in Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23052761. [PMID: 35269901 PMCID: PMC8910949 DOI: 10.3390/ijms23052761] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/26/2022] [Accepted: 02/27/2022] [Indexed: 01/27/2023] Open
Abstract
The EPH/ephrin system constitutes a bidirectional signaling pathway comprised of a family of tyrosine kinase receptors in tandem with their plasma membrane-bound ligand (ephrins). Its significance in a wide variety of physiologic and pathologic processes has been recognized during the past decades. In carcinogenesis, EPH/ephrins coordinate a wide spectrum of pathologic processes, such as angiogenesis, vessel infiltration, and metastasis. Despite the recent advances in colorectal cancer (CRC) diagnosis and treatment, it remains a leading cause of death globally, accounting for 9.2% of all cancer deaths. A growing body of literature has been published lately revitalizing our scientific interest towards the role of EPH/ephrins in pathogenesis and the treatment of CRC. The aim of the present review is to present the recent CRC data which might lead to clinical practice changes in the future.
Collapse
Affiliation(s)
- Stavros P Papadakos
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Leonidas Petrogiannopoulos
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Alexandros Pergaris
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| |
Collapse
|
18
|
Chen K, Collins G, Wang H, Toh JWT. Pathological Features and Prognostication in Colorectal Cancer. Curr Oncol 2021; 28:5356-5383. [PMID: 34940086 PMCID: PMC8700531 DOI: 10.3390/curroncol28060447] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/01/2021] [Accepted: 12/07/2021] [Indexed: 02/06/2023] Open
Abstract
The prognostication of colorectal cancer (CRC) has traditionally relied on staging as defined by the Union for International Cancer Control (UICC) and American Joint Committee on Cancer (AJCC) TNM staging classifications. However, clinically, there appears to be differences in survival patterns independent of stage, suggesting a complex interaction of stage, pathological features, and biomarkers playing a role in guiding prognosis, risk stratification, and guiding neoadjuvant and adjuvant therapies. Histological features such as tumour budding, perineural invasion, apical lymph node involvement, lymph node yield, lymph node ratio, and molecular features such as MSI, KRAS, BRAF, and CDX2 may assist in prognostication and optimising adjuvant treatment. This study provides a comprehensive review of the pathological features and biomarkers that are important in the prognostication and treatment of CRC. We review the importance of pathological features and biomarkers that may be important in colorectal cancer based on the current evidence in the literature.
Collapse
Affiliation(s)
- Kabytto Chen
- Discipline of Surgery, Faculty of Medicine and Health, The University of Sydney, Westmead 2145, Australia; (G.C.); (H.W.)
- Division of Colorectal Surgery, Department of Surgery, Westmead Hospital, Westmead 2145, Australia
| | - Geoffrey Collins
- Discipline of Surgery, Faculty of Medicine and Health, The University of Sydney, Westmead 2145, Australia; (G.C.); (H.W.)
- Division of Colorectal Surgery, Department of Surgery, Westmead Hospital, Westmead 2145, Australia
| | - Henry Wang
- Discipline of Surgery, Faculty of Medicine and Health, The University of Sydney, Westmead 2145, Australia; (G.C.); (H.W.)
- Division of Colorectal Surgery, Department of Surgery, Westmead Hospital, Westmead 2145, Australia
| | - James Wei Tatt Toh
- Discipline of Surgery, Faculty of Medicine and Health, The University of Sydney, Westmead 2145, Australia; (G.C.); (H.W.)
- Division of Colorectal Surgery, Department of Surgery, Westmead Hospital, Westmead 2145, Australia
| |
Collapse
|
19
|
Abstract
The intestinal epithelium is a unique tissue, serving both as a barrier against pathogens and to conduct the end digestion and adsorption of nutrients. As regards the former, the intestinal epithelium contains a diverse repertoire of immune cells, including a variety of resident lymphocytes, macrophages and dendritic cells. These cells serve a number of roles including mitigation of infection and to stimulate regeneration in response to damage. The transcription factor Cdx2, and to a lesser extent Cdx1, plays essential roles in intestinal homeostasis, and acts as a context-dependent tumour suppressor in colorectal cancer. Deletion of Cdx2 from the murine intestinal epithelium leads to macrophage infiltration resulting in a chronic inflammatory response. However the mechanisms by which Cdx2 loss evokes this response are poorly understood. To better understand this relationship, we used a conditional mouse model lacking all intestinal Cdx function to identify potential target genes which may contribute to this inflammatory phenotype. One such candidate encodes the histocompatability complex protein H2-T3, which functions to regulate intestinal iCD8α lymphocyte activity. We found that Cdx2 occupies the H3-T3 promoter in vivo and directly regulates its expression via a Cdx response element. Loss of Cdx function leads to a rapid and pronounced attenuation of H2-T3, followed by a decrease in iCD8α cell number, an increase in macrophage infiltration and activation of pro-inflammatory cascades. These findings suggest a previously unrecognized role for Cdx in intestinal homeostasis through H2-T3-dependent regulation of iCD8α cells.
Collapse
|
20
|
Priya S, Kaur E, Kulshrestha S, Pandit A, Gross I, Kumar N, Agarwal H, Khan A, Shyam R, Bhagat P, Prabhu JS, Nagarajan P, Deo SVS, Bajaj A, Freund JN, Mukhopadhyay A, Sengupta S. CDX2 inducible microRNAs sustain colon cancer by targeting multiple DNA damage response pathway factors. J Cell Sci 2021; 134:jcs258601. [PMID: 34369561 DOI: 10.1242/jcs.258601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/05/2021] [Indexed: 12/15/2022] Open
Abstract
Meta-analysis of transcripts in colon adenocarcinoma patient tissues led to the identification of a DNA damage responsive miR signature called DNA damage sensitive miRs (DDSMs). DDSMs were experimentally validated in the cancerous colon tissues obtained from an independent cohort of colon cancer patients and in multiple cellular systems with high levels of endogenous DNA damage. All the tested DDSMs were transcriptionally upregulated by a common intestine-specific transcription factor, CDX2. Reciprocally, DDSMs were repressed via the recruitment of HDAC1/2-containing complexes onto the CDX2 promoter. These miRs downregulated multiple key targets in the DNA damage response (DDR) pathway, namely BRCA1, ATM, Chk1 (also known as CHEK1) and RNF8. CDX2 directly regulated the DDSMs, which led to increased tumor volume and metastasis in multiple preclinical models. In colon cancer patient tissues, the DDSMs negatively correlated with BRCA1 levels, were associated with decreased probability of survival and thereby could be used as a prognostic biomarker. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Swati Priya
- Signal Transduction Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ekjot Kaur
- Signal Transduction Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Swati Kulshrestha
- Signal Transduction Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Awadhesh Pandit
- Signal Transduction Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Isabelle Gross
- Université de Strasbourg, Inserm, IRFAC UMR_S1113, FMTS, 67200 Strasbourg, France
| | - Nitin Kumar
- Signal Transduction Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Himanshi Agarwal
- Signal Transduction Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Aamir Khan
- Signal Transduction Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Radhey Shyam
- Signal Transduction Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Prakash Bhagat
- Department of Surgical Oncology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Jyothi S Prabhu
- Division of Molecular Medicine, St. John's Research Institute, Bengaluru, Karnataka 560034, India
| | - Perumal Nagarajan
- Signal Transduction Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - S V S Deo
- Department of Surgical Oncology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Jean-Noël Freund
- Université de Strasbourg, Inserm, IRFAC UMR_S1113, FMTS, 67200 Strasbourg, France
| | - Arnab Mukhopadhyay
- Signal Transduction Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sagar Sengupta
- Signal Transduction Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
21
|
Galland A, Gourain V, Habbas K, Güler Y, Martin E, Ebel C, Tavian M, Vallat L, Chenard MP, Mauvieux L, Freund JN, Duluc I, Domon-Dell C. CDX2 expression in the hematopoietic lineage promotes leukemogenesis via TGFβ inhibition. Mol Oncol 2021; 15:2318-2329. [PMID: 33960108 PMCID: PMC8410536 DOI: 10.1002/1878-0261.12982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/23/2022] Open
Abstract
The intestine-specific caudal-related homeobox gene-2 (CDX2) homeobox gene, while being a tumor suppressor in the gut, is ectopically expressed in a large proportion of acute leukemia and is associated with poor prognosis. Here, we report that turning on human CDX2 expression in the hematopoietic lineage of mice induces acute monoblastic leukemia, characterized by the decrease in erythroid and lymphoid cells at the benefit of immature monocytic and granulocytic cells. One of the highly stimulated genes in leukemic bone marrow cells was BMP and activin membrane-bound inhibitor (Bambi), an inhibitor of transforming growth factor-β (TGF-β) signaling. The CDX2 protein was shown to bind to and activate the transcription of the human BAMBI promoter. Moreover, in a leukemic cell line established from CDX2-expressing mice, reducing the levels of CDX2 or Bambi stimulated the TGF-β-dependent expression of Cd11b, a marker of monocyte maturation. Taken together, this work demonstrates the strong oncogenic potential of the homeobox gene CDX2 in the hematopoietic lineage, in contrast with its physiological tumor suppressor activity exerted in the gut. It also reveals, through BAMBI and TGF-β signaling, the involvement of CDX2 in the perturbation of the interactions between leukemia cells and their microenvironment.
Collapse
Affiliation(s)
- Ava Galland
- Université de Strasbourg, Inserm, IRFAC / UMR-S1113, FHU ARRIMAGE, ITI InnoVec, FMTS, Strasbourg, France
| | - Victor Gourain
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, Germany
| | - Karima Habbas
- Université de Strasbourg, Inserm, IRFAC / UMR-S1113, FHU ARRIMAGE, ITI InnoVec, FMTS, Strasbourg, France
| | - Yonca Güler
- Université de Strasbourg, Inserm, IRFAC / UMR-S1113, FHU ARRIMAGE, ITI InnoVec, FMTS, Strasbourg, France
| | - Elisabeth Martin
- Université de Strasbourg, Inserm, IRFAC / UMR-S1113, FHU ARRIMAGE, ITI InnoVec, FMTS, Strasbourg, France
| | - Claudine Ebel
- Inserm, IGBMC, UMR-S 1258, Université de Strasbourg, Illkirch, France
| | - Manuela Tavian
- Université de Strasbourg, Inserm, IRFAC / UMR-S1113, FHU ARRIMAGE, ITI InnoVec, FMTS, Strasbourg, France
| | - Laurent Vallat
- Université de Strasbourg, Inserm, IRFAC / UMR-S1113, FHU ARRIMAGE, ITI InnoVec, FMTS, Strasbourg, France.,Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Strasbourg, France
| | - Marie-Pierre Chenard
- Département de Pathologie, Centre Hospitalier Universitaire de Strasbourg, France
| | - Laurent Mauvieux
- Université de Strasbourg, Inserm, IRFAC / UMR-S1113, FHU ARRIMAGE, ITI InnoVec, FMTS, Strasbourg, France.,Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Strasbourg, France
| | - Jean-Noël Freund
- Université de Strasbourg, Inserm, IRFAC / UMR-S1113, FHU ARRIMAGE, ITI InnoVec, FMTS, Strasbourg, France
| | - Isabelle Duluc
- Université de Strasbourg, Inserm, IRFAC / UMR-S1113, FHU ARRIMAGE, ITI InnoVec, FMTS, Strasbourg, France
| | - Claire Domon-Dell
- Université de Strasbourg, Inserm, IRFAC / UMR-S1113, FHU ARRIMAGE, ITI InnoVec, FMTS, Strasbourg, France
| |
Collapse
|
22
|
Lorzadeh A, Romero-Wolf M, Goel A, Jadhav U. Epigenetic Regulation of Intestinal Stem Cells and Disease: A Balancing Act of DNA and Histone Methylation. Gastroenterology 2021; 160:2267-2282. [PMID: 33775639 PMCID: PMC8169626 DOI: 10.1053/j.gastro.2021.03.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/10/2021] [Accepted: 03/23/2021] [Indexed: 02/08/2023]
Abstract
Genetic mutations or regulatory failures underlie cellular malfunction in many diseases, including colorectal cancer and inflammatory bowel diseases. However, mutational defects alone fail to explain the complexity of such disorders. Epigenetic regulation-control of gene action through chemical and structural changes of chromatin-provides a platform to integrate multiple extracellular inputs and prepares the cellular genome for appropriate gene expression responses. Coregulation by polycomb repressive complex 2-mediated trimethylation of lysine 27 on histone 3 and DNA methylation has emerged as one of the most influential epigenetic controls in colorectal cancer and many other diseases, but molecular details remain inadequate. Here we review the molecular interplay of these epigenetic features in relation to gastrointestinal development, homeostasis, and disease biology. We discuss other epigenetic mechanisms pertinent to the balance of trimethylation of lysine 27 on histone 3 and DNA methylation and their actions in gastrointestinal cancers. We also review the current molecular understanding of chromatin control in the pathogenesis of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Alireza Lorzadeh
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Maile Romero-Wolf
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Unmesh Jadhav
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California.
| |
Collapse
|
23
|
Zhu Y, Hryniuk A, Foley T, Hess B, Lohnes D. Cdx2 Regulates Intestinal EphrinB1 through the Notch Pathway. Genes (Basel) 2021; 12:genes12020188. [PMID: 33525395 PMCID: PMC7911442 DOI: 10.3390/genes12020188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/23/2021] [Indexed: 01/07/2023] Open
Abstract
The majority of colorectal cancers harbor loss-of-function mutations in APC, a negative regulator of canonical Wnt signaling, leading to intestinal polyps that are predisposed to malignant progression. Comparable murine APC alleles also evoke intestinal polyps, which are typically confined to the small intestine and proximal colon, but do not progress to carcinoma in the absence of additional mutations. The Cdx transcription factors Cdx1 and Cdx2 are essential for homeostasis of the intestinal epithelium, and loss of Cdx2 has been associated with more aggressive subtypes of colorectal cancer in the human population. Consistent with this, concomitant loss of Cdx1 and Cdx2 in a murine APC mutant background leads to an increase in polyps throughout the intestinal tract. These polyps also exhibit a villous phenotype associated with the loss of EphrinB1. However, the basis for these outcomes is poorly understood. To further explore this, we modeled Cdx2 loss in SW480 colorectal cancer cells. We found that Cdx2 impacted Notch signaling in SW480 cells, and that EphrinB1 is a Notch target gene. As EphrinB1 loss also leads to a villus tumor phenotype, these findings evoke a mechanism by which Cdx2 impacts colorectal cancer via Notch-dependent EphrinB1 signaling.
Collapse
Affiliation(s)
- Yalun Zhu
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (Y.Z.); (A.H.); (T.F.); (B.H.)
| | - Alexa Hryniuk
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (Y.Z.); (A.H.); (T.F.); (B.H.)
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada
| | - Tanya Foley
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (Y.Z.); (A.H.); (T.F.); (B.H.)
| | - Bradley Hess
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (Y.Z.); (A.H.); (T.F.); (B.H.)
| | - David Lohnes
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (Y.Z.); (A.H.); (T.F.); (B.H.)
- Correspondence: ; Tel.: +1-613-562-5800 (ext. 8684)
| |
Collapse
|
24
|
Improved detection of tumor suppressor events in single-cell RNA-Seq data. NPJ Genom Med 2020; 5:43. [PMID: 33083012 PMCID: PMC7541488 DOI: 10.1038/s41525-020-00151-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/21/2020] [Indexed: 12/17/2022] Open
Abstract
Tissue-specific transcription factors are frequently inactivated in cancer. To fully dissect the heterogeneity of such tumor suppressor events requires single-cell resolution, yet this is challenging because of the high dropout rate. Here we propose a simple yet effective computational strategy called SCIRA to infer regulatory activity of tissue-specific transcription factors at single-cell resolution and use this tool to identify tumor suppressor events in single-cell RNA-Seq cancer studies. We demonstrate that tissue-specific transcription factors are preferentially inactivated in the corresponding cancer cells, suggesting that these are driver events. For many known or suspected tumor suppressors, SCIRA predicts inactivation in single cancer cells where differential expression does not, indicating that SCIRA improves the sensitivity to detect changes in regulatory activity. We identify NKX2-1 and TBX4 inactivation as early tumor suppressor events in normal non-ciliated lung epithelial cells from smokers. In summary, SCIRA can help chart the heterogeneity of tumor suppressor events at single-cell resolution.
Collapse
|
25
|
Wu CC, Hsu TW, Yeh CC, Huang HB. The role of transcription factor caudal-related homeobox transcription factor 2 in colorectal cancer. Tzu Chi Med J 2020; 32:305-311. [PMID: 33163374 PMCID: PMC7605288 DOI: 10.4103/tcmj.tcmj_49_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/24/2020] [Accepted: 05/06/2020] [Indexed: 12/25/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most malignant tumors in humans and causes mass mortality. In the age of precise medicine, more and more subtypes of CRC were classified. The caudal-related homeobox transcription factor 2 (CDX2) is an intestine-specific transcription factor which is implicated in differentiation, proliferation, cell-adhesion, and migration. The loss of CDX2 in immunohistochemical stain was reported to be a prognostic factor of colon cancer, but the clinical application remained controversial. Most of the CRCs expressed or over-expressed CDX2. Homeobox genes can display either an oncogenic or a tumor-suppressing activity. CDX2 regulates the developing intestinal epithelium and CRC by different pathways. The complex regulation of CDX2 and its complex targets cause the difficulties of application for CDX2 in the prediction of prognosis. However, CDX2 is a potential biomarker applied in the precise classification of CRC for personalized medicine. This review partially clarifies the role of CDX2 in CRC.
Collapse
Affiliation(s)
- Chin-Chia Wu
- Division of Colorectal Surgery, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan.,College of Medicine, Tzu Chi University, Hualien, Taiwan.,School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ta-Wen Hsu
- Division of Colorectal Surgery, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan.,College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chia-Chou Yeh
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Chinese Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Hsien-Bing Huang
- Department of Biomedical Sciences and Institute of Molecular Biology, National Chung Cheng University, Chiayi, Taiwan
| |
Collapse
|
26
|
Saller J, Al Diffalha S, Neill K, Bhaskar RA, Oliveri C, Boulware D, Levine H, Kalvaria I, Corbett FS, Khazanchi A, Klapman J, Coppola D. CDX-2 Expression in Esophageal Biopsies Without Goblet Cell Intestinal Metaplasia May Be Predictive of Barrett's Esophagus. Dig Dis Sci 2020; 65:1992-1998. [PMID: 31691172 PMCID: PMC7771382 DOI: 10.1007/s10620-019-05914-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 10/20/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND CDX-2 is a nuclear homeobox transcription factor not normally expressed in esophageal and gastric epithelia, reported to highlight intestinal metaplasia (IM) in the esophagus. Pathological absence of goblet cells at initial screening via hematoxylin and eosin (HE) and alcian blue (AB) staining results in patient exclusion from surveillance programs. AIMS This study aimed to determine whether non-goblet cell IM, as defined by CDX-2 positivity, can be considered to be a precursor to Barrett's esophagus (BE). METHODS This study received IRB approval (17,284). Patients with gastroesophageal reflux disease (n = 181) who underwent upper-gastrointestinal endoscopy with biopsies of the distal esophagus to rule out BE using HE/AB staining and CDX-2 immunostaining were followed for 3 years. Initial and follow-up staining results were evaluated for age/sex. RESULTS Differences between development of goblet cell IM in CDX-2-negative and CDX-2-positive groups were evaluated. A Kaplan-Meier curve showed that, out of the 134 patients initially positive for CDX-2, 25 (18.7%) had developed goblet cell IM after 2 years and 106 (79.1%) after 3 years. Conversely, of the 47 patients initially negative for CDX-2, 8 (17.9%) developed goblet cell IM after 24 months and only 11 (23.8%) after 40 to 45 months (P = .049; age-adjusted Cox proportional hazard regression model). CONCLUSION In cases that are initially AB negative and CDX-2 positive, CDX-2 was demonstrated to have a potential prognostic utility for early detection of progression to BE. CDX-2 expression is significantly predictive for risk of goblet cell IM development 40 to 45 months after initial biopsy.
Collapse
Affiliation(s)
- James Saller
- Departments of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Sameer Al Diffalha
- Departments of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Kevin Neill
- Departments of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Rahill A Bhaskar
- Departments of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | - David Boulware
- Biostatistics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | - Isaac Kalvaria
- Florida Digestive Health Specialists, Lakewood Ranch, FL, USA
| | - F Scott Corbett
- Florida Digestive Health Specialists, Lakewood Ranch, FL, USA
| | - Arun Khazanchi
- Florida Digestive Health Specialists, Lakewood Ranch, FL, USA
| | - Jason Klapman
- Endoscopy, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Domenico Coppola
- Departments of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
- Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA.
| |
Collapse
|
27
|
Davidsen J, Jessen SB, Watt SK, Larsen S, Dahlgaard K, Kirkegaard T, Gögenur I, Troelsen JT. CDX2 expression and perioperative patient serum affects the adhesion properties of cultured colon cancer cells. BMC Cancer 2020; 20:426. [PMID: 32408894 PMCID: PMC7227097 DOI: 10.1186/s12885-020-06941-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/10/2020] [Indexed: 02/28/2023] Open
Abstract
Background Colon cancer is one of the most commonly diagnosed types of cancer with surgical resection of the tumor being the primary choice of treatment. However, the surgical stress response induced during treatment may be related to a higher risk of recurrence. The aim of this study was to examine the effect of surgery on adhesion of cultured colon cancer cells with or without expression of the tumour suppressor CDX2. Method We enrolled 30 patients undergoing elective, curatively intended laparoscopic surgery for colon cancer in this study. Blood samples were drawn 1 day prior to surgery and 24 h after surgery. The samples of pre- and postoperative serum was applied to wild type colon cancer LS174T cells and CDX2 inducible LS174T cells and adhesion was measured with Real-Time Cell-Analysis iCELLigence using electrical impedance as a readout to monitor changes in the cellular adhesion. Results Adhesion abilities of wild type LS174T cells seeded in postoperative serum was significantly increased compared to cells seeded in preoperative serum. When seeding the CDX2 inducible LS174T cells without CDX2 expression in pre- and postoperative serum, no significant difference in adhesion was found. However, when inducing CDX2 expression in these cells, the adhesion abilities in pre- and postoperative serum resembled those of the LS174T wild type cell line. Conclusions We found that the adhesion of colon cancer cells was significantly increased in postoperative versus preoperative serum, and that CDX2 expression affected the adhesive ability of cancer cells. The results of this study may help to elucidate the pro-metastatic mechanisms in the perioperative phase and the role of CDX2 in colon cancer metastasis.
Collapse
Affiliation(s)
- Johanne Davidsen
- Department of Science and Environment, Enhanced Perioperative Oncology (EPeOnc) Consortium, Roskilde University, Universitetsvej 1, 4000, Roskilde, Denmark.,Center for Surgical Science, Enhanced Perioperative Oncology (EPeOnc) Consortium, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600, Køge, Denmark
| | - Stine Bull Jessen
- Department of Science and Environment, Enhanced Perioperative Oncology (EPeOnc) Consortium, Roskilde University, Universitetsvej 1, 4000, Roskilde, Denmark.,Center for Surgical Science, Enhanced Perioperative Oncology (EPeOnc) Consortium, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600, Køge, Denmark
| | - Sara Kehlet Watt
- Center for Surgical Science, Enhanced Perioperative Oncology (EPeOnc) Consortium, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600, Køge, Denmark
| | - Sylvester Larsen
- Department of Science and Environment, Enhanced Perioperative Oncology (EPeOnc) Consortium, Roskilde University, Universitetsvej 1, 4000, Roskilde, Denmark.,Department of Clinical Immunology, Naestved Hospital, Ringstedgade 77B, 4700, Naestved, Denmark
| | - Katja Dahlgaard
- Department of Science and Environment, Enhanced Perioperative Oncology (EPeOnc) Consortium, Roskilde University, Universitetsvej 1, 4000, Roskilde, Denmark
| | - Tove Kirkegaard
- Center for Surgical Science, Enhanced Perioperative Oncology (EPeOnc) Consortium, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600, Køge, Denmark
| | - Ismail Gögenur
- Center for Surgical Science, Enhanced Perioperative Oncology (EPeOnc) Consortium, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600, Køge, Denmark
| | - Jesper T Troelsen
- Department of Science and Environment, Enhanced Perioperative Oncology (EPeOnc) Consortium, Roskilde University, Universitetsvej 1, 4000, Roskilde, Denmark.
| |
Collapse
|
28
|
ÇALIK İ, ÇALIK M, ÖZERCAN İH, DAĞLI AF, ARTAŞ G, TÜRKEN G, SARIKAYA B. Decreased CDX2 Expression Adversely Effect On Prognosis Of Patients With Colorectal Cancer. DICLE MEDICAL JOURNAL 2020. [DOI: 10.5798/dicletip.706005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
29
|
Caudal-dependent cell positioning directs morphogenesis of the C. elegans ventral epidermis. Dev Biol 2020; 461:31-42. [PMID: 31923384 PMCID: PMC7181193 DOI: 10.1016/j.ydbio.2020.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/20/2019] [Accepted: 01/02/2020] [Indexed: 01/21/2023]
Abstract
Strikingly, epithelial morphogenesis remains incomplete at the end of C. elegans embryonic development; newly hatched larvae undergo extensive remodelling of their ventral epidermis during the first larval stage (L1), when newly-born epidermal cells move ventrally to complete the epidermal syncytium. Prior to this remodelling, undivided lateral seam cells produce anterior adherens junction processes that are inherited by the anterior daughter cells following an asymmetric division during L1. These adherens junction processes provide the ventral migratory route for these anterior daughters. Here, we show that these processes are perturbed in pal-1/caudal mutant animals, resulting in their inheritance by posterior, seam-fated daughters. This causes aberrant migration of seam daughter cells, disrupting the ventral epidermis. Using 4D-lineaging, we demonstrate that this larval epidermal morphogenesis defect in pal-1 mutants can be traced directly back to an initial cell positioning defect in the embryo. pal-1 expression, driven by a single intronic enhancer, is required to correctly position the seam cells in embryos such that the appropriate cell junctions support the correct migratory paths of seam daughters later in development, irrespective of their fate. Thus, during ventral epithelial remodelling in C. elegans, we show that the position of migrating cells, specified by pal-1/caudal, appears to be more important than their fate in driving morphogenesis. caudal/pal-1 is required to form the correct cell junctions during embryogenesis. Correctly placed cell junctions direct larval ventral epithelial cell migration. larval epithelial cell migration occurs independently of cell fate. Embryonic epidermal expression of pal-1 is dependent on a single intronic enhancer.
Collapse
|
30
|
Souris JS, Zhang HJ, Dougherty U, Chen NT, Waller JV, Lo LW, Hart J, Chen CT, Bissonnette M. A novel mouse model of sporadic colon cancer induced by combination of conditional Apc genes and chemical carcinogen in the absence of Cre recombinase. Carcinogenesis 2019; 40:1376-1386. [PMID: 30859181 PMCID: PMC6875902 DOI: 10.1093/carcin/bgz050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/27/2019] [Accepted: 03/08/2019] [Indexed: 02/07/2023] Open
Abstract
Although valuable insights into colon cancer biology have been garnered from human colon cancer cell lines and primary colonic tissues, and animal studies using human colon cancer xenografts, immunocompetent mouse models of spontaneous or chemically induced colon cancer better phenocopy human disease. As most sporadic human colon tumors present adenomatous polyposis coli (APC) gene mutations, considerable effort has gone into developing mice that express mutant Apc alleles that mimic human colon cancer pathogenesis. A serious limitation of many of these Apc-mutant murine models, however, is that these mice develop numerous tumors in the small intestine but few, if any, in the colon. In this work, we examined three spontaneous mouse models of colon tumorigenesis based upon the widely used multiple intestinal neoplasia (Min) mouse: mice with either constitutive or conditional Apc mutations alone or in combination with caudal-related homeobox transcription factor CDX2P-Cre transgene - either with or without exposure to the potent colon carcinogen azoxymethane. Using the CDX2 promoter to drive Cre recombinase transgene expression effectively inactivated Apc in colonocytes, creating a model with earlier tumor onset and increased tumor incidence/burden, but without the Min mouse model's small intestine tumorigenesis and susceptibility to intestinal perforation/ulceration/hemorrhage. Most significantly, azoxymethane-treated mice with conditional Apc expression, but absent the Cre recombinase gene, demonstrated nearly 50% tumor incidence with two or more large colon tumors per mouse of human-like histology, but no small intestine tumors - unlike the azoxymethane-resistant C57BL/6J-background Min mouse model. As such this model provides a robust platform for chemoprevention studies.
Collapse
Affiliation(s)
- Jeffrey S Souris
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Hannah J Zhang
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | | | - Nai-Tzu Chen
- Institute of New Drug Development, China Medical University, Taichung, Taiwan
| | - Joseph V Waller
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Leu-Wei Lo
- Department of Radiology, The University of Chicago, Chicago, IL, USA
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - John Hart
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Chin-Tu Chen
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Marc Bissonnette
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
31
|
Collier O, Stoven V, Vert JP. LOTUS: A single- and multitask machine learning algorithm for the prediction of cancer driver genes. PLoS Comput Biol 2019; 15:e1007381. [PMID: 31568528 PMCID: PMC6786659 DOI: 10.1371/journal.pcbi.1007381] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/10/2019] [Accepted: 09/04/2019] [Indexed: 12/16/2022] Open
Abstract
Cancer driver genes, i.e., oncogenes and tumor suppressor genes, are involved in the acquisition of important functions in tumors, providing a selective growth advantage, allowing uncontrolled proliferation and avoiding apoptosis. It is therefore important to identify these driver genes, both for the fundamental understanding of cancer and to help finding new therapeutic targets or biomarkers. Although the most frequently mutated driver genes have been identified, it is believed that many more remain to be discovered, particularly for driver genes specific to some cancer types. In this paper, we propose a new computational method called LOTUS to predict new driver genes. LOTUS is a machine-learning based approach which allows to integrate various types of data in a versatile manner, including information about gene mutations and protein-protein interactions. In addition, LOTUS can predict cancer driver genes in a pan-cancer setting as well as for specific cancer types, using a multitask learning strategy to share information across cancer types. We empirically show that LOTUS outperforms five other state-of-the-art driver gene prediction methods, both in terms of intrinsic consistency and prediction accuracy, and provide predictions of new cancer genes across many cancer types. Cancer development is driven by mutations and dysfunction of important, so-called cancer driver genes, that could be targeted by specific therapies. While a number of such cancer genes have already been identified, it is believed that many more remain to be discovered. To help prioritize experimental investigations of candidate genes, several computational methods have been proposed to rank promising candidates based on their mutations in large cohorts of cancer cases, or on their interactions with known driver genes in biological networks. We propose LOTUS, a new computational approach to identify genes with high oncogenic potential. LOTUS implements a machine learning approach to learn an oncogenic potential score from known driver genes, and brings two novelties compared to existing methods. First, it allows to easily combine heterogeneous sources of information into the scoring function, which we illustrate by learning a scoring function from both known mutations in large cancer cohorts and interactions in biological networks. Second, using a multitask learning strategy, it can predict different driver genes for different cancer types, while sharing information between them to improve the prediction for every type. We provide experimental results showing that LOTUS significantly outperforms several state-of-the-art cancer gene prediction software.
Collapse
Affiliation(s)
- Olivier Collier
- Modal’X, UPL, Univ Paris Nanterre, F-92000 Nanterre, France
- * E-mail: (OC); (J-PV)
| | - Véronique Stoven
- MINES ParisTech, PSL University, CBIO-Centre for Computational Biology, F-75006 Paris, France
- Institut Curie, F-75248 Paris Cedex 5, France
- INSERM U900, F-75248 Paris Cedex 5, France
| | - Jean-Philippe Vert
- MINES ParisTech, PSL University, CBIO-Centre for Computational Biology, F-75006 Paris, France
- Google Research, Brain team, F-75009 Paris, France
- * E-mail: (OC); (J-PV)
| |
Collapse
|
32
|
CDX2 and Muc2 immunohistochemistry as prognostic markers in stage II colon cancer. Hum Pathol 2019; 90:70-79. [PMID: 31121192 DOI: 10.1016/j.humpath.2019.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/09/2019] [Accepted: 05/14/2019] [Indexed: 12/31/2022]
Abstract
The treatment for colorectal cancer is largely surgical followed by adjuvant chemotherapy in high-risk cases. In patients with stage II cancer, there is no clear benefit for chemotherapy, and the current tools for assessment of risk are inadequate. A recent study identified that colorectal cancer with a gene signature similar to undifferentiated colonic stem cells was associated with a worse outcome. It was later shown that loss of CDX2 detected by immunohistochemistry (IHC) alone resulted in a worse prognosis and that this could be used to predict patients who would benefit from chemotherapy. Having observed that CDX2 expression can be patchy, we elected to validate these prior results for clinical practice using whole-slide IHC. The pathology of all cases was reviewed, and 3 blocks were selected for CDX2 IHC. We also expanded the panel beyond CDX2 to assess whether other markers in the gene signature including CDX1, Muc2, GPX2, and villin could better predict outcome. Among 210 cases, CDX2 expression was diffusely lost in 11% and focally lost in 23% of cases. There was no difference in survival based on CDX2 expression, but Muc2 loss was associated with reduced survival (hazard ratio, 3.32; 95% confidence interval, 1.20 to 9.20). No significant differences in outcome were identified based on CDX1, GPX2, or villin expression. In keeping with this, assessment of The Cancer Genome Atlas gene expression data demonstrated that decreased Muc2 expression was associated with reduced overall survival. Our results with whole-slide IHC are different from the previous studies and caution against the use of CDX2 in isolation as a prognostic marker in clinical practice. We have identified that loss of Muc2 is associated with reduced survival. This supports the use of the colonic differentiation gene expression signature to identify high-risk patients but cautions against the use of any one IHC-based marker in isolation.
Collapse
|
33
|
Xu W, Zhu Y, Shen W, Ding W, Wu T, Guo Y, Chen X, Zhou M, Chen Y, Cui L, Du P. Combination of CDX2 expression and T stage improves prognostic prediction of colorectal cancer. J Int Med Res 2019; 47:1829-1842. [PMID: 30616445 PMCID: PMC6567745 DOI: 10.1177/0300060518819620] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/22/2018] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE Prognostic prediction of colorectal cancer (CRC) remains challenging because of its heterogeneity. Aberrant expression of caudal-type homeobox transcription factor 2 (CDX2) is strongly correlated with the prognosis of CRC. METHODS Tissue samples of patients with CRC who underwent surgery in Xinhua Hospital (Shanghai, China) from January 2010 to January 2013 were collected. CDX2 expression was semiquantitatively evaluated via immunohistochemistry. RESULTS In total, 138 patients were enrolled in this study from a prospectively maintained institutional cancer database. The median follow-up duration was 57.5 months (interquartile range, 17.0-71.0 months). In the Cox proportional hazards model, low CDX2 expression combined with stage T4 CRC was significantly the worst prognostic factor for disease-free survival (hazard ratio = 7.020, 95% confidence interval = 3.922-12.564) and overall survival (hazard ratio = 5.176, 95% CI = 3.237-10.091). In the Kaplan-Meier survival analysis, patients with low CDX2 expression and stage T4 CRC showed significantly worse disease-free survival and overall survival than those with low CDX2 expression alone. CONCLUSION CDX2 expression combined with the T stage was more accurate for predicting the prognosis of CRC. Determining the prognosis of CRC using more than one variable is valuable in developing appropriate treatment and follow-up strategies.
Collapse
Affiliation(s)
- Weimin Xu
- Department of Colorectal Surgery, Xin-Hua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yilian Zhu
- Department of Colorectal Surgery, Xin-Hua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Shen
- Department of Colorectal Surgery, Xin-Hua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenjun Ding
- Department of Colorectal Surgery, Xin-Hua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Tingyu Wu
- Department of Colorectal Surgery, Xin-Hua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuegui Guo
- Department of Colorectal Surgery, Xin-Hua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaobing Chen
- Department of Oncology, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingxia Zhou
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yingwei Chen
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Long Cui
- Department of Colorectal Surgery, Xin-Hua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Peng Du
- Department of Colorectal Surgery, Xin-Hua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
34
|
Holst S, Wilding JL, Koprowska K, Rombouts Y, Wuhrer M. N-Glycomic and Transcriptomic Changes Associated with CDX1 mRNA Expression in Colorectal Cancer Cell Lines. Cells 2019; 8:cells8030273. [PMID: 30909444 PMCID: PMC6468459 DOI: 10.3390/cells8030273] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/13/2019] [Accepted: 03/18/2019] [Indexed: 12/13/2022] Open
Abstract
The caudal-related homeobox protein 1 (CDX1) is a transcription factor, which is important in the development, differentiation, and homeostasis of the gut. Although the involvement of CDX genes in the regulation of the expression levels of a few glycosyltransferases has been shown, associations between glycosylation phenotypes and CDX1 mRNA expression have hitherto not been well studied. Triggered by our previous study, we here characterized the N-glycomic phenotype of 16 colon cancer cell lines, selected for their differential CDX1 mRNA expression levels. We found that high CDX1 mRNA expression associated with a higher degree of multi-fucosylation on N-glycans, which is in line with our previous results and was supported by up-regulated gene expression of fucosyltransferases involved in antenna fucosylation. Interestingly, hepatocyte nuclear factors (HNF)4A and HNF1A were, among others, positively associated with high CDX1 mRNA expression and have been previously proven to regulate antenna fucosylation. Besides fucosylation, we found that high CDX1 mRNA expression in cancer cell lines also associated with low levels of sialylation and galactosylation and high levels of bisection on N-glycans. Altogether, our data highlight a possible role of CDX1 in altering the N-glycosylation of colorectal cancer cells, which is a hallmark of tumor development.
Collapse
Affiliation(s)
- Stephanie Holst
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| | - Jennifer L Wilding
- Cancer and Immunogenetics Laboratory, Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, UK.
| | - Kamila Koprowska
- Cancer and Immunogenetics Laboratory, Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, UK.
| | - Yoann Rombouts
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France.
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| |
Collapse
|
35
|
CDX1/2 and KLF5 Expression and Epigenetic Modulation of Sonic Hedgehog Signaling in Gastric Adenocarcinoma. Pathol Oncol Res 2019; 25:1215-1222. [DOI: 10.1007/s12253-019-00594-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 01/15/2019] [Indexed: 01/06/2023]
|
36
|
Lv S, Wang N, Lv H, Yang J, Liu J, Li WP, Zhang C, Chen ZJ. The Attenuation of Trophoblast Invasion Caused by the Downregulation of EZH2 Is Involved in the Pathogenesis of Human Recurrent Miscarriage. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 14:377-387. [PMID: 30710891 PMCID: PMC6356049 DOI: 10.1016/j.omtn.2018.12.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 10/28/2018] [Accepted: 12/18/2018] [Indexed: 12/17/2022]
Abstract
Recurrent miscarriage (RM) is currently defined as two or more losses of a clinically established intrauterine pregnancy. Despite years of research, RM continues to be a clinically frustrating challenge for patients and physicians, and its etiology remains poorly understood. Accumulating evidence has suggested that epigenetic modifications are involved in early embryogenesis, and defects in epigenetic patterning contribute to the development of RM. Here, we studied the role of enhancer of zeste homolog 2 (EZH2) in the pathogenesis of RM and found that the EZH2 expression was significantly decreased in the villi from women with RM compared with that in control villi. EZH2 promoted the invasion of trophoblast cells. Moreover, EZH2 could promote epithelial-mesenchymal transition by epigenetically silencing CDX1. Both chromatin immunoprecipitation (ChIP)-PCR and dual-luciferase report assays demonstrated that EZH2 repressed CDX1 transcription via direct binding to its promoter region and then trimethylating Histone3-Lysine27. Furthermore, we discovered that progesterone, which is used extensively in the treatment of miscarriage and RM, increased the expression of EZH2 via the extracellular signaling-regulated kinase (ERK1/2) pathway. These findings revealed that EZH2 may regulate trophoblast invasion as an epigenetic factor, suggesting that EZH2 might be a potential therapeutic target for RM.
Collapse
Affiliation(s)
- Shijian Lv
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Na Wang
- Obstetrical Department, Obstetrics and Gynecology Hospital of Fudan University, No. 128, Shenyang Road, Yangpu District, Shanghai 200090, China
| | - Hong Lv
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Jieqiong Yang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Jianwei Liu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Wei-Ping Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China.
| | - Cong Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 88 East Wenhua Road, Ji'nan, Shandong 250014, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China.
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China.
| |
Collapse
|
37
|
Deng X, Xiong F, Li X, Xiang B, Li Z, Wu X, Guo C, Li X, Li Y, Li G, Xiong W, Zeng Z. Application of atomic force microscopy in cancer research. J Nanobiotechnology 2018; 16:102. [PMID: 30538002 PMCID: PMC6288943 DOI: 10.1186/s12951-018-0428-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 11/24/2018] [Indexed: 12/16/2022] Open
Abstract
Atomic force microscopy (AFM) allows for nanometer-scale investigation of cells and molecules. Recent advances have enabled its application in cancer research and diagnosis. The physicochemical properties of live cells undergo changes when their physiological conditions are altered. These physicochemical properties can therefore reflect complex physiological processes occurring in cells. When cells are in the process of carcinogenesis and stimulated by external stimuli, their morphology, elasticity, and adhesion properties may change. AFM can perform surface imaging and ultrastructural observation of live cells with atomic resolution under near-physiological conditions, collecting force spectroscopy information which allows for the study of the mechanical properties of cells. For this reason, AFM has potential to be used as a tool for high resolution research into the ultrastructure and mechanical properties of tumor cells. This review describes the working principle, working mode, and technical points of atomic force microscopy, and reviews the applications and prospects of atomic force microscopy in cancer research.
Collapse
Affiliation(s)
- Xiangying Deng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Fang Xiong
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Xiayu Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Bo Xiang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Zheng Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Xu Wu
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Department of Chemistry, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Can Guo
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Xiaoling Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Yong Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Guiyuan Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Zhaoyang Zeng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
38
|
Liu W, Pan HF, Wang Q, Zhao ZM. The application of transgenic and gene knockout mice in the study of gastric precancerous lesions. Pathol Res Pract 2018; 214:1929-1939. [PMID: 30477641 DOI: 10.1016/j.prp.2018.10.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 12/13/2022]
Abstract
Gastric intestinal metaplasia is a precursor for gastric dysplasia, which is in turn, a risk factor for gastric adenocarcinoma. Gastric metaplasia and dysplasia are known as gastric precancerous lesions (GPLs), which are essential stages in the progression from normal gastric mucosa to gastric cancer (GC) or gastric adenocarcinoma. Genetically-engineered mice have become essential tools in various aspects of GC research, including mechanistic studies and drug discovery. Studies in mouse models have contributed significantly to our understanding of the pathogenesis and molecular mechanisms underlying GPLs and GC. With the development and improvement of gene transfer technology, investigators have created a variety of transgenic and gene knockout mouse models for GPLs, such as H/K-ATPase transgenic and knockout mutant mice and gastrin gene knockout mice. Combined with Helicobacter infection, and treatment with chemical carcinogens, these mice develop GPLs or GC and thus provide models for studying the molecular biology of GC, which may lead to the discovery and development of novel drugs. In this review, we discuss recent progress in the use of genetically-engineered mouse models for GPL research, with particular emphasis on the importance of examining the gastric mucosa at the histological level to investigate morphological changes of GPL and GC and associated protein and gene expression.
Collapse
Affiliation(s)
- Wei Liu
- Institute of Gastroenterology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Hua-Feng Pan
- Institute of Gastroenterology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zi-Ming Zhao
- Guangdong Province Engineering Technology Research Institute of T.C.M., Guangzhou 510095, China
| |
Collapse
|
39
|
Davidsen J, Larsen S, Coskun M, Gögenur I, Dahlgaard K, Bennett EP, Troelsen JT. The VTI1A-TCF4 colon cancer fusion protein is a dominant negative regulator of Wnt signaling and is transcriptionally regulated by intestinal homeodomain factor CDX2. PLoS One 2018; 13:e0200215. [PMID: 29975781 PMCID: PMC6033461 DOI: 10.1371/journal.pone.0200215] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/21/2018] [Indexed: 02/07/2023] Open
Abstract
Sequencing of primary colorectal tumors has identified a gene fusion in approximately 3% of colorectal cancer patients of the VTI1A and TCF7L2 genes, encoding a VTI1A-TCF4 fusion protein containing a truncated TCF4. As dysregulation of the Wnt signaling pathway is associated with colorectal cancer development and progression, the functional properties and transcriptional regulation of the VTI1A-TCF4 fusion protein may also play a role in these processes. Functional characteristics of the VTI1A-TCF4 fusion protein in Wnt signaling were analyzed in NCI-H508 and LS174T colon cancer cell lines. The NCI-H508 cell line, containing the VTI1A-TCF7L2 fusion gene, showed no active Wnt signaling, and overexpression of the VTI1A-TCF4 fusion protein in LS174T cells along with a Wnt signaling luciferase reporter plasmid showed inhibition of activity. The transcriptional regulation of the VTI1A-TCF4 fusion gene was investigated in LS174T cells where the activity of the VTI1A promoter was compared to that of the TCF7L2 promoter, and the transcription factor CDX2 was analyzed for gene regulatory activity of the VTI1A promoter through luciferase reporter gene assay using colon cancer cell lines as a model. Transfection of LS174T cells showed that the VTI1A promoter is highly active compared to the TCF7L2 promoter, and that CDX2 activates transcription of VTI1A. These results suggest that the VTI1A-TCF4 fusion protein is a dominant negative regulator of the Wnt signaling pathway, and that transcription of VTI1A is activated by CDX2.
Collapse
Affiliation(s)
- Johanne Davidsen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
- Department of Surgery, Zealand University Hospital, Roskilde, Denmark
| | - Sylvester Larsen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
- Department of Clinical Immunology, Naestved Hospital, Naestved, Denmark
| | - Mehmet Coskun
- Department of Gastroenterology, Herlev Hospital, Herlev, Denmark
| | - Ismail Gögenur
- Department of Surgery, Zealand University Hospital, Roskilde, Denmark
| | - Katja Dahlgaard
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Eric Paul Bennett
- Copenhagen Center for Glycomics, Department of Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
40
|
Qi L, Ding Y. Analysis of metastasis associated signal regulatory network in colorectal cancer. Biochem Biophys Res Commun 2018; 501:113-118. [DOI: 10.1016/j.bbrc.2018.04.186] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 04/24/2018] [Indexed: 11/27/2022]
|
41
|
Neumann J, Heinemann V, Engel J, Kirchner T, Stintzing S. The prognostic impact of CDX2 correlates with the underlying mismatch repair status and BRAF mutational status but not with distant metastasis in colorectal cancer. Virchows Arch 2018; 473:199-207. [PMID: 29675807 DOI: 10.1007/s00428-018-2360-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/04/2018] [Accepted: 04/08/2018] [Indexed: 12/22/2022]
Abstract
Loss of CDX2 expression has been proposed to be a prognostic biomarker in colorectal cancer (CRC) correlating with shorter overall (OS) and progression-free survival (PFS). Since metastatic disease, mismatch repair (MMR) deficiency, and the mutational status of BRAF are considered to be important prognostic determinants in CRC, the present study aimed to analyze CDX2 expression in correlation with these parameters. Immunohistochemistry for CDX2, hMLH1, and hMSH2 was applied to a study cohort of 503 CRC specimens (FIRE-3) and a matched case-control collection of 50 right-sided CRC specimens with synchronous distant metastases and 50 right-sided CRCs without distant metastases. Furthermore, the mutational status of BRAF gene was analyzed utilizing pyrosequencing. CDX2 expression significantly correlates with reduced OS (p = 0.008) within the study population. In both cohorts, a significant correlation of CDX2 expression and MMR deficiency as well as the presence of a BRAF mutation (each p > 0.001) was observed, whereas no correlation of CDX2 expression and synchronous metastasis could be obtained. In the case-control study, only patients with proficient MMR status showed a correlation of CDX2 loss and synchronous metastasis, whereas in patients with deficient MMR status and CDX2 loss, no distant metastases at the time of diagnosis were found (p = 0.003). We could demonstrate that the reduced OS of CDX2-negative CRC patients is not caused by higher rates of distant metastases. Furthermore, our data indicate that the prognostic impact of CDX2 depends on the MMR status and the BRAF mutational status of the tumors. Thus, it could be concluded that CDX2 is not an independent prognostic biomarker in CRC.
Collapse
Affiliation(s)
- Jens Neumann
- Institute of Pathology, Medical Faculty, Ludwig-Maximilians-Universität München, Thalkirchner Straße 36, 80337, Munich, Germany.
| | - Volker Heinemann
- Department of Medicine III, University Hospital Grosshadern, Ludwig-Maximilians-Universität München, Munich, Germany.,German Cancer Consortium (DKTK), 69120, Heidelberg, Germany.,German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Jutta Engel
- Munich Cancer Registry (MCR) of the Munich Tumor Centre (TZM) at the Department of Medical Information Processing, Biometry and Epidemiology (IBE), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Thomas Kirchner
- Institute of Pathology, Medical Faculty, Ludwig-Maximilians-Universität München, Thalkirchner Straße 36, 80337, Munich, Germany.,German Cancer Consortium (DKTK), 69120, Heidelberg, Germany.,German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Sebastian Stintzing
- Department of Medicine III, University Hospital Grosshadern, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
42
|
|
43
|
The miR-196b miRNA inhibits the GATA6 intestinal transcription factor and is upregulated in colon cancer patients. Oncotarget 2018; 8:4747-4759. [PMID: 27902469 PMCID: PMC5354868 DOI: 10.18632/oncotarget.13580] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 11/11/2016] [Indexed: 12/22/2022] Open
Abstract
Objective To explore the possible misexpression of the microRNA miR-196b in colorectal cancer (CRC) and its role in controlling the expression of GATA6, a putative target gene crucial to intestinal cell homeostasis and tumorigenesis. Design The expression of miR-196b was analysed by qRT-PCR in surgical resection samples from a cohort of sporadic colon cancer patients. Manipulations of miR-196b expression were performed to demonstrate its inhibition of GATA6 protein levels. Results We found that miR-196b is significantly upregulated in pre-treatment surgical resection samples from a cohort of sporadic colon cancer patients. The upregulation of miR-196b correlates with less severe clinicopathological characteristics, such as early tumor stage and absence of lymph node metastases. We show that in CRC cells, miR-196b targets the mRNA of GATA6, a transcription factor involved in the homeostasis and differentiation of intestinal epithelial cells, and a positive regulator of the Wnt/β-catenin pathway. We moreover found that the increase of miR-196b correlates with a reduced GATA6 protein expression in colon cancer patients. Conclusion Our results establish miR-196b as a post-transcriptional inhibitor of GATA6 in CRC cells, implicating miR-196b function in gene regulatory pathways crucial to intestinal cell homeostasis and tumorigenesis. Our results furthermore suggest a role of miR-196b expression in CRC, as an antagonist of GATA6 function in tumor cells, thus providing the basis for a potential targeting strategy for the treatment of CRC.
Collapse
|
44
|
Balbinot C, Armant O, Elarouci N, Marisa L, Martin E, De Clara E, Onea A, Deschamps J, Beck F, Freund JN, Duluc I. The Cdx2 homeobox gene suppresses intestinal tumorigenesis through non-cell-autonomous mechanisms. J Exp Med 2018; 215:911-926. [PMID: 29439001 PMCID: PMC5839756 DOI: 10.1084/jem.20170934] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 11/13/2017] [Accepted: 01/18/2018] [Indexed: 12/16/2022] Open
Abstract
Balbinot et al. show that intestinal epithelial cells depleted in the homeobox gene Cdx2 acquire an imperfect gastric-type metaplastic phenotype that, through changes in the microenvironment, induces the tumorigenic evolution of adjacent Cdx2-intact cells without themselves becoming cancerous. Developmental genes contribute to cancer, as reported for the homeobox gene Cdx2 playing a tumor suppressor role in the gut. In this study, we show that human colon cancers exhibiting the highest reduction in CDX2 expression belong to the serrated subtype with the worst evolution. In mice, mosaic knockout of Cdx2 in the adult intestinal epithelium induces the formation of imperfect gastric-type metaplastic lesions. The metaplastic knockout cells do not spontaneously become tumorigenic. However, they induce profound modifications of the microenvironment that facilitate the tumorigenic evolution of adjacent Cdx2-intact tumor-prone cells at the surface of the lesions through NF-κB activation, induction of inducible nitric oxide synthase, and stochastic loss of function of Apc. This study presents a novel paradigm in that metaplastic cells, generally considered as precancerous, can induce tumorigenesis from neighboring nonmetaplastic cells without themselves becoming cancerous. It unveils the novel property of non–cell-autonomous tumor suppressor gene for the Cdx2 gene in the gut.
Collapse
Affiliation(s)
- Camille Balbinot
- Université de Strasbourg, Institut National de la Santé et de la Recherche Médicale, IRFAC UMR-S1113, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Olivier Armant
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Karlsruhe, Germany
| | - Nabila Elarouci
- Cartes d'Identité des Tumeurs Program, Ligue Nationale Contre le Cancer, Paris, France
| | - Laetitia Marisa
- Cartes d'Identité des Tumeurs Program, Ligue Nationale Contre le Cancer, Paris, France
| | - Elisabeth Martin
- Université de Strasbourg, Institut National de la Santé et de la Recherche Médicale, IRFAC UMR-S1113, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Etienne De Clara
- Université de Strasbourg, Institut National de la Santé et de la Recherche Médicale, IRFAC UMR-S1113, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Alina Onea
- Département de Pathologie, Centre Hospitalier Universitaire de Strasbourg, Strasbourg, France
| | - Jacqueline Deschamps
- Developmental Biology and Stem Cell Research, Hubrecht Institute, Utrecht, Netherlands
| | - Felix Beck
- Barts and The London School of Medicine and Dentistry, London, England, UK
| | - Jean-Noël Freund
- Université de Strasbourg, Institut National de la Santé et de la Recherche Médicale, IRFAC UMR-S1113, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Isabelle Duluc
- Université de Strasbourg, Institut National de la Santé et de la Recherche Médicale, IRFAC UMR-S1113, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| |
Collapse
|
45
|
Onstenk W, Sieuwerts AM, Mostert B, Lalmahomed Z, Bolt-de Vries JB, van Galen A, Smid M, Kraan J, Van M, de Weerd V, Ramírez-Moreno R, Biermann K, Verhoef C, Grünhagen DJ, IJzermans JNM, Gratama JW, Martens JWM, Foekens JA, Sleijfer S. Molecular characteristics of circulating tumor cells resemble the liver metastasis more closely than the primary tumor in metastatic colorectal cancer. Oncotarget 2018; 7:59058-59069. [PMID: 27340863 PMCID: PMC5312295 DOI: 10.18632/oncotarget.10175] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/29/2016] [Indexed: 12/21/2022] Open
Abstract
Background CTCs are a promising alternative for metastatic tissue biopsies for use in precision medicine approaches. We investigated to what extent the molecular characteristics of circulating tumor cells (CTCs) resemble the liver metastasis and/or the primary tumor from patients with metastatic colorectal cancer (mCRC). Results The CTC profiles were concordant with the liver metastasis in 17/23 patients (74%) and with the primary tumor in 13 patients (57%). The CTCs better resembled the liver metastasis in 13 patients (57%), and the primary tumor in five patients (22%). The strength of the correlations was not associated with clinical parameters. Nine genes (CDH1, CDH17, CDX1, CEACAM5, FABP1, FCGBP, IGFBP3, IGFBP4, and MAPT) displayed significant differential expressions, all of which were downregulated, in CTCs compared to the tissues in the 23 patients. Patients and Methods Patients were retrospectively selected from a prospective study. Using the CellSearch System, CTCs were enumerated and isolated just prior to liver metastasectomy. A panel of 25 CTC-specific genes was measured by RT-qPCR in matching CTCs, primary tumors, and liver metastases. Spearman correlation coefficients were calculated and considered as continuous variables with r=1 representing absolute concordance and r= -1 representing absolute discordance. A cut-off of r>0.1 was applied in order to consider profiles to be concordant. Conclusions In the majority of the patients, CTCs reflected the molecular characteristics of metastatic cells better than the primary tumors. Genes involved in cell adhesion and epithelial-to-mesenchymal transition were downregulated in the CTCs. Our results support the use of CTC characterization as a liquid biopsy for precision medicine.
Collapse
Affiliation(s)
- Wendy Onstenk
- Erasmus MC Cancer Institute, Department of Medical Oncology and Cancer Genomics Netherlands, Rotterdam, The Netherlands
| | - Anieta M Sieuwerts
- Erasmus MC Cancer Institute, Department of Medical Oncology and Cancer Genomics Netherlands, Rotterdam, The Netherlands
| | - Bianca Mostert
- Erasmus MC Cancer Institute, Department of Medical Oncology and Cancer Genomics Netherlands, Rotterdam, The Netherlands
| | - Zarina Lalmahomed
- Department of Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Joan B Bolt-de Vries
- Erasmus MC Cancer Institute, Department of Medical Oncology and Cancer Genomics Netherlands, Rotterdam, The Netherlands
| | - Anne van Galen
- Erasmus MC Cancer Institute, Department of Medical Oncology and Cancer Genomics Netherlands, Rotterdam, The Netherlands
| | - Marcel Smid
- Erasmus MC Cancer Institute, Department of Medical Oncology and Cancer Genomics Netherlands, Rotterdam, The Netherlands
| | - Jaco Kraan
- Erasmus MC Cancer Institute, Department of Medical Oncology and Cancer Genomics Netherlands, Rotterdam, The Netherlands
| | - Mai Van
- Erasmus MC Cancer Institute, Department of Medical Oncology and Cancer Genomics Netherlands, Rotterdam, The Netherlands
| | - Vanja de Weerd
- Erasmus MC Cancer Institute, Department of Medical Oncology and Cancer Genomics Netherlands, Rotterdam, The Netherlands
| | - Raquel Ramírez-Moreno
- Erasmus MC Cancer Institute, Department of Medical Oncology and Cancer Genomics Netherlands, Rotterdam, The Netherlands
| | - Katharina Biermann
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Cornelis Verhoef
- Department of Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dirk J Grünhagen
- Department of Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jan N M IJzermans
- Department of Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jan W Gratama
- Erasmus MC Cancer Institute, Department of Medical Oncology and Cancer Genomics Netherlands, Rotterdam, The Netherlands
| | - John W M Martens
- Erasmus MC Cancer Institute, Department of Medical Oncology and Cancer Genomics Netherlands, Rotterdam, The Netherlands
| | - John A Foekens
- Erasmus MC Cancer Institute, Department of Medical Oncology and Cancer Genomics Netherlands, Rotterdam, The Netherlands
| | - Stefan Sleijfer
- Erasmus MC Cancer Institute, Department of Medical Oncology and Cancer Genomics Netherlands, Rotterdam, The Netherlands
| |
Collapse
|
46
|
Tóth C, Sükösd F, Valicsek E, Herpel E, Schirmacher P, Tiszlavicz L. Loss of CDX2 gene expression is associated with DNA repair proteins and is a crucial member of the Wnt signaling pathway in liver metastasis of colorectal cancer. Oncol Lett 2018; 15:3586-3593. [PMID: 29467879 PMCID: PMC5796384 DOI: 10.3892/ol.2018.7756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 12/13/2017] [Indexed: 12/23/2022] Open
Abstract
Caudal type homeobox 2 (CDX2) has been well-established as a diagnostic marker for colorectal cancer (CRC); however, less is known about its regulation, particularly its potential interactions with the DNA repair proteins, adenomatous polyposis coli (APC) and β-catenin, in a non-transcriptional manner. In the present study, the protein expression of CDX2 was analyzed, depending on the expression of the DNA repair proteins, mismatch repair (MMR), O6-methylguanine DNA methyltransferase (MGMT) and excision repair cross-complementing 1 (ERCC1), and its importance in Wnt signaling was also determined. A total of 101 liver metastases were punched into tissue microarray (TMA) blocks and serial sections were cut for immunohistochemistry. For each protein, an immunoreactive score was generated according to literature data and the scores were fitted to TMA. Subsequently, statistical analysis was performed to compare the levels of expression with each other and with clinical data. CDX2 loss of expression was observed in 38.5% of the CRC liver metastasis cases. A statistically significant association between CDX2 and each of the investigated MMRs was observed: MutL Homolog 1 (P<0.01), MutS protein Homolog (MSH) 2 (P<0.01), MSH6 (P<0.01), and postmeiotic segregation increased 2 (P=0.040). Furthermore, loss of MGMT and ERCC1 was also associated with CDX2 loss (P=0.039 and P<0.01, respectively). In addition, CDX2 and ERCC1 were inversely associated with metastatic tumor size (P=0.038 and P=0.027, respectively). Sustained CDX2 expression was associated with a higher expression of cytoplasmic/membranous β-catenin and with nuclear APC expression (P=0.042 and P<0.01, respectively). In conclusion, CDX2 loss of expression was not a rare event in liver metastasis of CRC and the results suggested that CDX2 may be involved in mechanisms resulting in the loss of DNA repair protein expression, and in turn methylation; however, its exact function in this context remains to be elucidated.
Collapse
Affiliation(s)
- Csaba Tóth
- Institute of Pathology, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Farkas Sükösd
- Department of Pathology, University of Szeged, 6725 Szeged, Hungary
| | - Erzsébet Valicsek
- Department of Oncotherapy, University of Szeged, 6725 Szeged, Hungary
| | - Esther Herpel
- Institute of Pathology, University Hospital Heidelberg, D-69120 Heidelberg, Germany.,Tissue Bank of The National Center for Tumor Diseases (NCT), D-69120 Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| | | |
Collapse
|
47
|
Delker DA, Wood AC, Snow AK, Samadder NJ, Samowitz WS, Affolter KE, Boucher KM, Pappas LM, Stijleman IJ, Kanth P, Byrne KR, Burt RW, Bernard PS, Neklason DW. Chemoprevention with Cyclooxygenase and Epidermal Growth Factor Receptor Inhibitors in Familial Adenomatous Polyposis Patients: mRNA Signatures of Duodenal Neoplasia. Cancer Prev Res (Phila) 2018; 11:4-15. [PMID: 29109117 PMCID: PMC5754246 DOI: 10.1158/1940-6207.capr-17-0130] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/31/2017] [Accepted: 10/02/2017] [Indexed: 12/20/2022]
Abstract
To identify gene expression biomarkers and pathways targeted by sulindac and erlotinib given in a chemoprevention trial with a significant decrease in duodenal polyp burden at 6 months (P < 0.001) in familial adenomatous polyposis (FAP) patients, we biopsied normal and polyp duodenal tissues from patients on drug versus placebo and analyzed the RNA expression. RNA sequencing was performed on biopsies from the duodenum of FAP patients obtained at baseline and 6-month endpoint endoscopy. Ten FAP patients on placebo and 10 on sulindac and erlotinib were selected for analysis. Purity of biopsied polyp tissue was calculated from RNA expression data. RNAs differentially expressed between endpoint polyp and paired baseline normal were determined for each group and mapped to biological pathways. Key genes in candidate pathways were further validated by quantitative RT-PCR. RNA expression analyses of endpoint polyp compared with paired baseline normal for patients on placebo and drug show that pathways activated in polyp growth and proliferation are blocked by this drug combination. Directly comparing polyp gene expression between patients on drug and placebo also identified innate immune response genes (IL12 and IFNγ) preferentially expressed in patients on drug. Gene expression analyses from tissue obtained at endpoint of the trial demonstrated inhibition of the cancer pathways COX2/PGE2, EGFR, and WNT. These findings provide molecular evidence that the drug combination of sulindac and erlotinib reached the intended tissue and was on target for the predicted pathways. Furthermore, activation of innate immune pathways from patients on drug may have contributed to polyp regression. Cancer Prev Res; 11(1); 4-15. ©2017 AACRSee related editorial by Shureiqi, p. 1.
Collapse
Affiliation(s)
- Don A Delker
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Austin C Wood
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Angela K Snow
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - N Jewel Samadder
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Wade S Samowitz
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Kajsa E Affolter
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Kenneth M Boucher
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Lisa M Pappas
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Inge J Stijleman
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Priyanka Kanth
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Kathryn R Byrne
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Randall W Burt
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Philip S Bernard
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Deborah W Neklason
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah.
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| |
Collapse
|
48
|
MiRNA-155 promotes proliferation by targeting caudal-type homeobox 1 (CDX1) in glioma cells. Biomed Pharmacother 2017; 95:1759-1764. [DOI: 10.1016/j.biopha.2017.08.088] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/16/2017] [Accepted: 08/23/2017] [Indexed: 12/11/2022] Open
|
49
|
Tse JWT, Jenkins LJ, Chionh F, Mariadason JM. Aberrant DNA Methylation in Colorectal Cancer: What Should We Target? Trends Cancer 2017; 3:698-712. [PMID: 28958388 DOI: 10.1016/j.trecan.2017.08.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 12/16/2022]
Abstract
Colorectal cancers (CRCs) are characterized by global hypomethylation and promoter-specific DNA methylation. A subset of CRCs with extensive and co-ordinate patterns of promoter methylation has also been identified, termed the CpG-island methylator phenotype. Some genes methylated in CRC are established tumor suppressors; however, for the majority, direct roles in disease initiation or progression have not been established. Herein, we examine functional evidence of specific methylated genes contributing to CRC pathogenesis, focusing on components of commonly deregulated signaling pathways. We also review current knowledge of the mechanisms underpinning promoter methylation in CRC, including genetic events, altered transcription factor binding, and DNA damage. Finally, we summarize clinical trials of DNA methyltransferase inhibitors in CRC, and propose strategies for enhancing their efficacy.
Collapse
Affiliation(s)
- Janson W T Tse
- Olivia Newton-John Cancer Research Institute, Melbourne, Australia; These authors contributed equally
| | - Laura J Jenkins
- Olivia Newton-John Cancer Research Institute, Melbourne, Australia; School of Cancer Medicine, La Trobe University, Melbourne, Australia; These authors contributed equally
| | - Fiona Chionh
- Olivia Newton-John Cancer Research Institute, Melbourne, Australia
| | - John M Mariadason
- Olivia Newton-John Cancer Research Institute, Melbourne, Australia; School of Cancer Medicine, La Trobe University, Melbourne, Australia.
| |
Collapse
|
50
|
Balbinot C, Vanier M, Armant O, Nair A, Penichon J, Soret C, Martin E, Saandi T, Reimund JM, Deschamps J, Beck F, Domon-Dell C, Gross I, Duluc I, Freund JN. Fine-tuning and autoregulation of the intestinal determinant and tumor suppressor homeobox gene CDX2 by alternative splicing. Cell Death Differ 2017; 24:2173-2186. [PMID: 28862703 DOI: 10.1038/cdd.2017.140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/23/2017] [Accepted: 07/25/2017] [Indexed: 12/20/2022] Open
Abstract
On the basis of phylogenetic analyses, we uncovered a variant of the CDX2 homeobox gene, a major regulator of the development and homeostasis of the gut epithelium, also involved in cancer. This variant, miniCDX2, is generated by alternative splicing coupled to alternative translation initiation, and contains the DNA-binding homeodomain but is devoid of transactivation domain. It is predominantly expressed in crypt cells, whereas the CDX2 protein is present in crypt cells but also in differentiated villous cells. Functional studies revealed a dominant-negative effect exerted by miniCDX2 on the transcriptional activity of CDX2, and conversely similar effects regarding several transcription-independent functions of CDX2. In addition, a regulatory role played by the CDX2 and miniCDX2 homeoproteins on their pre-mRNA splicing is displayed, through interactions with splicing factors. Overexpression of miniCDX2 in the duodenal Brunner glands leads to the expansion of the territory of these glands and ultimately to brunneroma. As a whole, this study characterized a new and original variant of the CDX2 homeobox gene. The production of this variant represents not only a novel level of regulation of this gene, but also a novel way to fine-tune its biological activity through the versatile functions exerted by the truncated variant compared to the full-length homeoprotein. This study highlights the relevance of generating protein diversity through alternative splicing in the gut and its diseases.
Collapse
Affiliation(s)
- Camille Balbinot
- Université de Strasbourg, Inserm, UMR_S1113, FMTS, Strasbourg 67000, France
| | - Marie Vanier
- Université de Strasbourg, Inserm, UMR_S1113, FMTS, Strasbourg 67000, France
| | - Olivier Armant
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Postfach 3640, Karlsruhe 76021, Germany
| | - Asmaa Nair
- Université de Strasbourg, Inserm, UMR_S1113, FMTS, Strasbourg 67000, France
| | - Julien Penichon
- Université de Strasbourg, Inserm, UMR_S1113, FMTS, Strasbourg 67000, France
| | - Christine Soret
- Université de Strasbourg, Inserm, UMR_S1113, FMTS, Strasbourg 67000, France
| | - Elisabeth Martin
- Université de Strasbourg, Inserm, UMR_S1113, FMTS, Strasbourg 67000, France
| | - Thoueiba Saandi
- Université de Strasbourg, Inserm, UMR_S1113, FMTS, Strasbourg 67000, France
| | - Jean-Marie Reimund
- Université de Strasbourg, Inserm, UMR_S1113, FMTS, Strasbourg 67000, France
| | - Jacqueline Deschamps
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Uppsalalaan 8, Utrecht 3584 CT, The Netherlands
| | - Felix Beck
- Barts and The London School of Medicine and Dentistry, London E1 2ES, UK
| | - Claire Domon-Dell
- Université de Strasbourg, Inserm, UMR_S1113, FMTS, Strasbourg 67000, France
| | - Isabelle Gross
- Université de Strasbourg, Inserm, UMR_S1113, FMTS, Strasbourg 67000, France
| | - Isabelle Duluc
- Université de Strasbourg, Inserm, UMR_S1113, FMTS, Strasbourg 67000, France
| | - Jean-Noël Freund
- Université de Strasbourg, Inserm, UMR_S1113, FMTS, Strasbourg 67000, France
| |
Collapse
|