1
|
Wang X, Hu Y, Li X, Huang L, Yang Y, Liu C, Deng Q, Yang P, Li Y, Zhou Y, Xiao L, Wu H, He L. Mycoplasma genitalium membrane lipoprotein induces GAPDH malonylation in urethral epithelial cells to regulate cytokine response. Microb Pathog 2024; 195:106872. [PMID: 39173852 DOI: 10.1016/j.micpath.2024.106872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/12/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
Membrane lipoproteins serve as primary pro-inflammatory virulence factors in Mycoplasma genitalium. Membrane lipoproteins primarily induce inflammatory responses by activating Toll-like Receptor 2 (TLR2); however, the role of the metabolic status of urethral epithelial cells in inflammatory response remains unclear. In this study, we found that treatment of uroepithelial cell lines with M. genitalium membrane lipoprotein induced metabolic reprogramming, characterized by increased aerobic glycolysis, decreased oxidative phosphorylation, and increased production of the metabolic intermediates acetyl-CoA and malonyl-CoA. The metabolic shift induced by membrane lipoproteins is reversible upon blocking MyD88 and TRAM. Malonyl-CoA induces malonylation of glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and malonylated GAPDH could dissociate from the 3' untranslated region of TNF-α and IFN-γ mRNA. This dissociation greatly reduces the inhibitory effect on the translation of TNF-α and IFN-γ mRNA, thus achieving fine-tuning control over cytokine secretion. These findings suggest that GAPDH malonylation following M. genitalium infection is an important inflammatory signal that plays a crucial role in urogenital inflammatory diseases.
Collapse
Affiliation(s)
- Xiaoliu Wang
- Department of Dermatology, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Yi Hu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Xinru Li
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Liubin Huang
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Yan Yang
- Department of Clinical Laboratory, Shanghai Putuo People's Hospital, Tongji University, Shanghai, China
| | - Chang Liu
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Qing Deng
- Department of Dermatology, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Pei Yang
- Department of Dermatology, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Yilin Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Yiwen Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Lihua Xiao
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Haiying Wu
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Lu He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China.
| |
Collapse
|
2
|
Dmytriv TR, Storey KB, Lushchak VI. Intestinal barrier permeability: the influence of gut microbiota, nutrition, and exercise. Front Physiol 2024; 15:1380713. [PMID: 39040079 PMCID: PMC11260943 DOI: 10.3389/fphys.2024.1380713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/29/2024] [Indexed: 07/24/2024] Open
Abstract
The intestinal wall is a selectively permeable barrier between the content of the intestinal lumen and the internal environment of the body. Disturbances of intestinal wall permeability can potentially lead to unwanted activation of the enteric immune system due to excessive contact with gut microbiota and its components, and the development of endotoxemia, when the level of bacterial lipopolysaccharides increases in the blood, causing chronic low-intensity inflammation. In this review, the following aspects are covered: the structure of the intestinal wall barrier; the influence of the gut microbiota on the permeability of the intestinal wall via the regulation of functioning of tight junction proteins, synthesis/degradation of mucus and antioxidant effects; the molecular mechanisms of activation of the pro-inflammatory response caused by bacterial invasion through the TLR4-induced TIRAP/MyD88 and TRAM/TRIF signaling cascades; the influence of nutrition on intestinal permeability, and the influence of exercise with an emphasis on exercise-induced heat stress and hypoxia. Overall, this review provides some insight into how to prevent excessive intestinal barrier permeability and the associated inflammatory processes involved in many if not most pathologies. Some diets and physical exercise are supposed to be non-pharmacological approaches to maintain the integrity of intestinal barrier function and provide its efficient operation. However, at an early age, the increased intestinal permeability has a hormetic effect and contributes to the development of the immune system.
Collapse
Affiliation(s)
- Tetiana R. Dmytriv
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
- Research and Development University, Ivano-Frankivsk, Ukraine
| | | | - Volodymyr I. Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
- Research and Development University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
3
|
Izumi Y, O’Dell KA, Cashikar AG, Paul SM, Covey DF, Mennerick SJ, Zorumski CF. Neurosteroids mediate and modulate the effects of pro-inflammatory stimulation and toll-like receptors on hippocampal plasticity and learning. PLoS One 2024; 19:e0304481. [PMID: 38875235 PMCID: PMC11178232 DOI: 10.1371/journal.pone.0304481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/13/2024] [Indexed: 06/16/2024] Open
Abstract
Pro-inflammatory changes contribute to multiple neuropsychiatric illnesses. Understanding how these changes are involved in illnesses and identifying strategies to alter inflammatory responses offer paths to potentially novel treatments. We previously found that acute pro-inflammatory stimulation with high (μg/ml) lipopolysaccharide (LPS) for 10-15 min dampens long-term potentiation (LTP) in the hippocampus and impairs learning. Effects of LPS involved non-canonical inflammasome signaling but were independent of toll-like receptor 4 (TLR4), a known LPS receptor. Low (ng/ml) LPS also inhibits LTP when administered for 2-4 h, and here we report that this LPS exposure requires TLR4. We also found that effects of low LPS on LTP involve the oxysterol, 25-hydroxycholesterol, akin to high LPS. Effects of high LPS on LTP are blocked by inhibiting synthesis of 5α-reduced neurosteroids, indicating that neurosteroids mediate LTP inhibition. 5α-Neurosteroids also have anti-inflammatory effects, and we found that exogenous allopregnanolone (AlloP), a key 5α-reduced steroid, prevented effects of low but not high LPS on LTP. We also found that activation of TLR2, TLR3 and TLR7 inhibited LTP and that AlloP prevented the effects of TLR2 and TLR7, but not TLR3. The enantiomer of AlloP, a steroid that has anti-inflammatory actions but low activity at GABAA receptors, prevented LTP inhibition by TLR2, TLR3 and TLR7. In vivo, both AlloP enantiomers prevented LPS-induced learning defects. These studies indicate that neurosteroids play complex roles in network effects of acute neuroinflammation and have potential importance for development of AlloP analogues as therapeutic agents.
Collapse
Affiliation(s)
- Yukitoshi Izumi
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Kazuko A. O’Dell
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Anil G. Cashikar
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Steven M. Paul
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Douglas F. Covey
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States of America
- Developmental Biology and Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States of America
- Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Steven J. Mennerick
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Charles F. Zorumski
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States of America
| |
Collapse
|
4
|
Wang B, Shao Y, Wang X, Li C. Identification and functional analysis of Toll-like receptor 2 from razor clam Sinonovacula constricta. Int J Biol Macromol 2024; 265:131029. [PMID: 38518946 DOI: 10.1016/j.ijbiomac.2024.131029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Toll-like receptor 2 (TLR2) is a member of TLR family that plays important roles in the innate immune system, such as pathogen recognition and inflammation regulation. In this study, the TLR2 homologue was cloned from razor clam Sinonovacula constricta (denoted as ScTLR2) and its immune function was explored. The full-length cDNA of ScTLR2 comprised 2890 nucleotides with a 5'-UTR of 218 bp, an open reading frame of 2169 bp encoding 722 amino acids and a 3'-UTR of 503 bp. The deduced amino acid of ScTLR2 showed similar structure to TLR2 homologue with a conserved signal peptide, four LRR domains, one LRR-TYP domain, one LRR-CT domain, one transmembrane domain and a conserved TIR domain. ScTLR2 mRNA was detected in all examined tissues with the highest expression in the gill. After Vibrio parahaemolyticus challenge, the mRNA expression of ScTLR2 was significantly induced both in gill and haemocytes. The recombinant ScTLR2-LRR protein could bind all tested PAMPs including LPS, PGN and MAN. Bacterial agglutination assay showed that rScTLR2 could agglutinate the six tested bacteria with a calcium dependent manner. More importantly, ScTLR2 silencing by siRNA transfection could significantly depress the mRNA expression of Myd88, NF-κB, Tollip, IRF1, and IRF8. The survival rate of S. constricta was markedly decreased after V. parahaemolyticus challenge under this condition. Our current study demonstrated that ScTLR2 served as a pattern recognition receptor to induce immune response against invasive pathogen.
Collapse
Affiliation(s)
- Beibei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China
| | - Yina Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China.
| | - Xuelei Wang
- Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
5
|
Isali I, Wong TR, Batur AF, Wu CHW, Schumacher FR, Pope R, Hijaz A, Sheyn D. Recurrent urinary tract infection genetic risk: a systematic review and gene network analysis. Int Urogynecol J 2024; 35:259-271. [PMID: 37917182 DOI: 10.1007/s00192-023-05671-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/11/2023] [Indexed: 11/04/2023]
Abstract
INTRODUCTION AND HYPOTHESIS The development of recurrent urinary tract infections (rUTIs) is not completely understood. This review is aimed at investigating the connection between genetics and rUTIs and summarizing the results of studies that have documented variations in gene expression among individuals with rUTIs compared with healthy individuals. METHODS A systematic search was conducted in Cochrane, Ovid, and PubMed, limiting the results to articles published between 1 January 2000, and 5 July 2022. Only studies comparing the difference in gene expression between individuals with rUTI and healthy individuals utilizing molecular techniques to measure gene expression in blood or urine samples were included in this systematic review. Gene network and pathways analyses were performed using Cytoscape software, with input data obtained from our systematic review of differentially expressed genes in rUTIs. RESULTS Six studies met our criteria for inclusion. The selected studies used molecular biology methods to quantify gene expression data from blood specimens. The analysis revealed that gene expressions of CXCR1 and TLR4 decreased, whereas CXCR2, TRIF, and SIGIRR increased in patients with rUTI compared with healthy controls. The analysis demonstrated that the most significant pathways were associated with TLR receptor signaling and tolerance, I-kappa B kinase/NF-kappa B signaling, and MyD88-independent TLR signaling. CONCLUSIONS This systematic review uncovered gene expression variations in several candidate genes and identified a number of underlying biological pathways associated with rUTIs. These findings could shift the treatment and prevention strategies for rUTIs.
Collapse
Affiliation(s)
- Ilaha Isali
- Department of Urology, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA
| | - Thomas R Wong
- Department of Urology, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA
| | - Ali Furkan Batur
- Department of Urology, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA
| | - Chen-Han Wilfred Wu
- Department of Urology, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Fredrick R Schumacher
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Rachel Pope
- Department of Urology, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA
| | - Adonis Hijaz
- Department of Urology, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA
| | - David Sheyn
- Department of Urology, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA.
| |
Collapse
|
6
|
Tashkandi HM, Althagafy HS, Jaber FA, Alamri T, Al-Abbas NS, Shaer NA, Harakeh S, Hassanein EHM. Vinpocetine mitigates methotrexate-induced duodenal intoxication by modulating NF-κB, JAK1/STAT-3, and RIPK1/RIPK3/MLKL signals. Immunopharmacol Immunotoxicol 2024; 46:11-19. [PMID: 37493389 DOI: 10.1080/08923973.2023.2239491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023]
Abstract
OBJECTIVES Methotrexate (MTX) is an antimetabolite agent widely used to manage a variety of tumors and autoimmune diseases. Nonetheless, MTX-induced intestinal intoxication is a serious adverse effect limiting its clinical utility. Inflammation and oxidative stress are possible mechanisms for MTX-induced intestinal toxicity. Vinpocetine (VNP) is a derivative of the alkaloid vincamine with potent anti-inflammatory and antioxidant effects. The current study investigated the protective intestinal impact of VNP in attenuating MTX-induced intestinal intoxication in rats. MATERIALS AND METHODS VNP was administered orally in a dose of 20 mg/kg, while MTX was injected intraperitoneal in a dose of 20 mg/kg. RESULTS VNP administration attenuated drastic histological changes induced by MTX and preserved both normal villus and crypt histology. VNP significantly attenuated oxidative injury by upregulating intestinal Nrf2 and HO-1 expression. VNP attenuated inflammation by reducing MPO, NO2-, TNF-α, and IL-1β levels mediated by downregulating NF-κB, NDAPH-oxidase, IRF3, p-JAK-1, and p-STAT-3 expressions. Moreover, VNP potently counteracted intestinal necroptosis by effectively downregulating RIPK1, RIPK3, MLKL, and caspase-8 proteins. CONCLUSION Therefore, VNP may represent a promising approach that can attenuate intestinal toxicity in patients receiving MTX.
Collapse
Affiliation(s)
- Hanaa M Tashkandi
- Department of General Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Fatima A Jaber
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Turki Alamri
- Family and Community Medicine Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nouf S Al-Abbas
- Jamoum University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Nehad A Shaer
- Department of Chemistry, Al Lieth University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Yousef Abdul Lateef Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
7
|
Neshan M, Tsilimigras DI, Han X, Zhu H, Pawlik TM. Molecular Mechanisms of Cachexia: A Review. Cells 2024; 13:252. [PMID: 38334644 PMCID: PMC10854699 DOI: 10.3390/cells13030252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/18/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024] Open
Abstract
Cachexia is a condition characterized by substantial loss of body weight resulting from the depletion of skeletal muscle and adipose tissue. A considerable fraction of patients with advanced cancer, particularly those who have been diagnosed with pancreatic or gastric cancer, lung cancer, prostate cancer, colon cancer, breast cancer, or leukemias, are impacted by this condition. This syndrome manifests at all stages of cancer and is associated with an unfavorable prognosis. It heightens the susceptibility to surgical complications, chemotherapy toxicity, functional impairments, breathing difficulties, and fatigue. The early detection of patients with cancer cachexia has the potential to enhance both their quality of life and overall survival rates. Regarding this matter, blood biomarkers, although helpful, possess certain limitations and do not exhibit universal application. Additionally, the available treatment options for cachexia are currently limited, and there is a lack of comprehensive understanding of the underlying molecular pathways associated with this condition. Thus, this review aims to provide an overview of molecular mechanisms associated with cachexia and potential therapeutic targets for the development of effective treatments for this devastating condition.
Collapse
Affiliation(s)
- Mahdi Neshan
- Department of General Surgery, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd 8915887857, Iran;
| | - Diamantis I. Tsilimigras
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA; (D.I.T.); (X.H.); (H.Z.)
| | - Xu Han
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA; (D.I.T.); (X.H.); (H.Z.)
| | - Hua Zhu
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA; (D.I.T.); (X.H.); (H.Z.)
| | - Timothy M. Pawlik
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA; (D.I.T.); (X.H.); (H.Z.)
| |
Collapse
|
8
|
Lv M, Zhang J, Wang W, Jiang R, Su J. Re-identification and characterization of grass carp Ctenopharyngodon idella TLR20. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2023; 5:100119. [PMID: 37841419 PMCID: PMC10568090 DOI: 10.1016/j.fsirep.2023.100119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023] Open
Abstract
Toll-like receptors (TLRs) play a crucial role in the recognition of microbial-associated molecular patterns in the innate immune system. Fish TLRs have undergone significant gene expansion to adapt to complex aquatic environments. Among them, TLR20 from the TLR11 family actively responds to viral and bacterial invasions. Previous studies have reported two TLR20s in grass carp (Ctenopharyngodon idella), and in this study, we revised this conclusion. Based on the latest grass carp genome, we identified a new TLR20 member. These three TLR20s are arranged in tandem on chromosome 9, indicating that they are generated by gene duplication events. They were renamed CiTLR20.1 to CiTLR20.3 based on their chromosomal positions. The CiTLR20s in C. idella exhibit higher similarities with those in Danio rerio, Cyprinus carpio, and Megalobrama amblycephala, and lower similarities with those in other distantly related fish species. Selective pressure analysis revealed low conservation and negative evolution of TLR20s during evolution. The 3D structures of the three TLR20s showed significant differences, reflecting functional variations and different downstream adaptor molecule recruitment. Transcriptome data revealed tissue distribution differences of TLR20s, with TLR20.1 showing relatively low expression levels in all the tissues, while TLR20.2 and TLR20.3 showed higher expression in the head kidney, spleen, and gill. Additionally, TLR20.2 and TLR20.3 actively responded to GCRV-II infection, with higher upregulation of TLR20.2 in response to Aeromonas hydrophila challenge. In conclusion, this study corrected the number of grass carp TLR20 members and analyzed TLR20 from an evolutionary and structural perspective, exploring its role in antiviral and antibacterial defense. This study provides reference for future research on fish TLR20.
Collapse
Affiliation(s)
- Maolin Lv
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jingjing Zhang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Weicheng Wang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Rui Jiang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianguo Su
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
9
|
Cheng Z, Zheng Y, Yang W, Sun H, Zhou F, Huang C, Zhang S, Song Y, Liang Q, Yang N, Li M, Liu B, Feng L, Wang L. Pathogenic bacteria exploit transferrin receptor transcytosis to penetrate the blood-brain barrier. Proc Natl Acad Sci U S A 2023; 120:e2307899120. [PMID: 37733740 PMCID: PMC10523449 DOI: 10.1073/pnas.2307899120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/23/2023] [Indexed: 09/23/2023] Open
Abstract
The human blood-brain barrier (BBB) comprises a single layer of brain microvascular endothelial cells (HBMECs) protecting the brain from bloodborne pathogens. Meningitis is among the most serious diseases, but the mechanisms by which major meningitis-causing bacterial pathogens cross the BBB to reach the brain remain poorly understood. We found that Streptococcus pneumoniae, group B Streptococcus, and neonatal meningitis Escherichia coli commonly exploit a unique vesicle fusion mechanism to hitchhike on transferrin receptor (TfR) transcytosis to cross the BBB and illustrated the details of this process in human BBB model in vitro and mouse model. Toll-like receptor signals emanating from bacteria-containing vesicles (BCVs) trigger K33-linked polyubiquitination at Lys168 and Lys181 of the innate immune regulator TRAF3 and then activate the formation of a protein complex containing the guanine nucleotide exchange factor RCC2, the small GTPase RalA and exocyst subcomplex I (SC I) on BCVs. The distinct function of SEC6 in SC I, interacting directly with RalA on BCVs and the SNARE protein SNAP23 on TfR vesicles, tethers these two vesicles and initiates the fusion. Our results reveal that innate immunity triggers a unique modification of TRAF3 and the formation of the HBMEC-specific protein complex on BCVs to authenticate the precise recognition and selection of TfR vesicles to fuse with and facilitate bacterial penetration of the BBB.
Collapse
Affiliation(s)
- Zhihui Cheng
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin300071, China
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin300071, China
| | - Yangyang Zheng
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin300071, China
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin300457, China
| | - Wen Yang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin300071, China
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin300457, China
| | - Hongmin Sun
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin300071, China
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin300457, China
| | - Fangyu Zhou
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin300071, China
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin300457, China
| | - Chuangjie Huang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin300071, China
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin300457, China
| | - Shuwen Zhang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin300071, China
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin300457, China
| | - Yingying Song
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin300071, China
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin300457, China
| | - Qi’an Liang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin300071, China
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin300071, China
| | - Nan Yang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin300071, China
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin300071, China
| | - Meifang Li
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin300071, China
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin300071, China
| | - Bin Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin300071, China
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin300457, China
| | - Lu Feng
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin300071, China
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin300457, China
| | - Lei Wang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin300071, China
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin300457, China
| |
Collapse
|
10
|
An R, Guo Y, Gao M, Wang J. Subcutaneous Streptococcus dysgalactiae GAPDH vaccine in mice induces a proficient innate immune response. J Vet Sci 2023; 24:e72. [PMID: 38031651 PMCID: PMC10556295 DOI: 10.4142/jvs.23103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) on the surface of Streptococcus dysgalactiae, coded with gapC, is a glycolytic enzyme that was reported to be a moonlighting protein and virulence factor. OBJECTIVE This study assessed GAPDH as a potential immunization candidate protein to prevent streptococcus infections. METHODS Mice were vaccinated subcutaneously with recombinant GAPDH and challenged with S. dysgalactiae in vivo. They were then evaluated using histological methods. rGAPDH of mouse bone marrow-derived dendritic cells (BMDCs) was evaluated using immunoblotting, reverse transcription quantitative polymerase chain reaction, and enzyme-linked immunosorbent assay methods. RESULTS Vaccination with rGAPDH improved the survival rates and decreased the bacterial burdens in the mammary glands compared to the control group. The mechanism by which rGAPDH vaccination protects against S. dysgalactiae was investigated. In vitro experiments showed that rGAPDH boosted the generation of interleukin-10 and tumor necrosis factor-α. Treatment of BMDCs with TAK-242, a toll-like receptor 4 inhibitor, or C29, a toll-like receptor 2 inhibitor, reduced cytokines substantially, suggesting that rGAPDH may be a potential ligand for both TLR2 and TLR4. Subsequent investigations showed that rGAPDH may activate the phosphorylation of MAPKs and nuclear factor-κB. CONCLUSIONS GAPDH is a promising immunization candidate protein for targeting virulence and enhancing immune-mediated protection. Further investigations are warranted to understand the mechanisms underlying the activation of BMDCs by rGAPDH in a TLR2- and TLR4-dependent manner and the regulation of inflammatory cytokines contributing to mastitis pathogenesis.
Collapse
Affiliation(s)
- Ran An
- Heilongjiang Provincial Key Laboratory of Zoonosis, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150000, China
| | - Yongli Guo
- Department of Immunology, Heilongjiang Provincial Key Laboratory for Infection and Immunity, Harbin Medical University, Harbin 150000, China
| | - Mingchun Gao
- Heilongjiang Provincial Key Laboratory of Zoonosis, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150000, China.
| | - Junwei Wang
- Heilongjiang Provincial Key Laboratory of Zoonosis, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150000, China.
| |
Collapse
|
11
|
Petnicki-Ocwieja T, Sharma B, Powale U, Pathak D, Tan S, Hu LT. An AP-3-dependent pathway directs phagosome fusion with Rab8 and Rab11 vesicles involved in TLR2 signaling. Traffic 2022; 23:558-567. [PMID: 36224049 PMCID: PMC10757455 DOI: 10.1111/tra.12870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 01/20/2023]
Abstract
Intracellular compartmentalization of ligands, receptors and signaling molecules has been recognized as an important regulator of inflammation. The toll-like receptor (TLR) 2 pathway utilizes the trafficking molecule adaptor protein 3 (AP-3) to activate interleukin (IL)-6 signaling from within phagosomal compartments. To better understand the vesicular pathways that may contribute to intracellular signaling and cooperate with AP-3, we performed a vesicular siRNA screen. We identified Rab8 and Rab11 GTPases as important in IL-6 induction upon stimulation with the TLR2 ligand Pam3 CSK4 or the pathogen, Borrelia burgdorferi (Bb), the causative agent of Lyme disease. These Rabs were recruited to late and lysosomal stage phagosomes and co-transported with TLR2 signaling adaptors and effectors, such as MyD88, TRAM and TAK1, in an AP-3-dependent manner. Our data support a model where AP-3 mediates the recruitment of recycling and secretory vesicles and the assembly of signaling complexes at the phagosome.
Collapse
Affiliation(s)
- Tanja Petnicki-Ocwieja
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Bijaya Sharma
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Urmila Powale
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, Massachusetts, USA
| | - Devesh Pathak
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Linden T. Hu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Bono C, Guerrero P, Erades A, Jordán-Pla A, Yáñez A, Gil ML. Direct TLR2 signaling through mTOR and TBK1 induces C/EBPβ and IRF7-dependent macrophage differentiation in hematopoietic stem and progenitor cells. Stem Cells 2022; 40:949-962. [PMID: 35861517 DOI: 10.1093/stmcls/sxac053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022]
Abstract
During an infection, hematopoiesis is altered to increase the output of mature myeloid cells to fight off the pathogen. Despite convincing evidence that hematopoietic stem and progenitor cells (HSPCs) can sense pathogens directly, more mechanistic studies are needed to reveal whether pattern recognition receptor (PRR) signaling initiates myeloid development directly, or indirectly through the production of cytokines by HSPCs that can act in an autocrine/paracrine manner, or by a combination of both direct and indirect mechanisms. In this study, we have used an in vitro model of murine HSPCs to study myeloid differentiation in response to the TLR2 ligand Pam3CSK4 and showed that, besides indirect mechanisms, TLR2 stimulation of HSPCs promotes myelopoiesis directly by initiating a MyD88-dependent signaling. This direct differentiation program involves a combined activation of the transcription factors PU.1, C/EBPβ and IRF7 driven by TBK1 and PI3K/mTOR. Notably, downstream of MyD88, the activated TBK1 kinase can activate mTOR directly and IRF7 induction is mediated by both TBK1 and mTOR. TLR2 signaling also induces NF-κB dependent IL-6 production that may further induce indirect myeloid differentiation. Our results have identified the direct signaling pathways and the transcription factors involved in macrophage development from HSPCs in response to TLR2 engagement, a critical process to trigger a rapid immune response during infection.
Collapse
Affiliation(s)
- Cristina Bono
- Departamento de Microbiología y Ecología, Facultad de Ciencias Biológicas and Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Paula Guerrero
- Departamento de Microbiología y Ecología, Facultad de Ciencias Biológicas and Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Ana Erades
- Departamento de Microbiología y Ecología, Facultad de Ciencias Biológicas and Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Antonio Jordán-Pla
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Facultad de Ciencias Biológicas and Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Alberto Yáñez
- Departamento de Microbiología y Ecología, Facultad de Ciencias Biológicas and Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Burjassot, Spain
| | - María Luisa Gil
- Departamento de Microbiología y Ecología, Facultad de Ciencias Biológicas and Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Burjassot, Spain
| |
Collapse
|
13
|
Heidari A, Yazdanpanah N, Rezaei N. The role of Toll-like receptors and neuroinflammation in Parkinson's disease. J Neuroinflammation 2022; 19:135. [PMID: 35668422 PMCID: PMC9172200 DOI: 10.1186/s12974-022-02496-w] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/26/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder, characterized by motor and non-motor symptoms, significantly affecting patients' life. Pathologically, PD is associated with the extensive degeneration of dopaminergic neurons in various regions of the central nervous system (CNS), specifically the substantia nigra. This neuronal loss is accompanied by the aggregation of misfolded protein, named α-synuclein. MAIN TEXT Recent studies detected several clues of neuroinflammation in PD samples using postmortem human PD brains and various PD animal models. Some evidence of neuroinflammation in PD patients included higher levels of proinflammatory cytokines in serum and cerebrospinal fluid (CSF), presence of activated microglia in various brain regions such as substantia nigra, infiltration of peripheral inflammatory cells in affected brain regions, and altered function of cellular immunity like monocytes phagocytosis defects. On the other side, Toll-like receptors (TLRs) are innate immune receptors primarily located on microglia, as well as other immune and non-immune cells, expressing pivotal roles in recognizing exogenous and endogenous stimuli and triggering inflammatory responses. Most studies indicated an increased expression of TLRs in the brain and peripheral blood cells of PD samples. Besides, this upregulation was associated with excessive neuroinflammation followed by neurodegeneration in affected regions. Therefore, evidence proposed that TLR-mediated neuroinflammation might lead to a dopaminergic neural loss in PD patients. In this regard, TLR2, TLR4, and TLR9 have the most prominent roles. CONCLUSION Although the presence of inflammation in acute phases of PD might have protective effects concerning the clearance of α-synuclein and delaying the disease advancement, the chronic activation of TLRs and neuroinflammation might lead to neurodegeneration, resulting in the disease progression. Therefore, this study aimed to review additional evidence of the contribution of TLRs and neuroinflammation to PD pathogenesis, with the hope that TLRs could serve as novel disease-modifying therapeutic targets in PD patients in the future.
Collapse
Affiliation(s)
- Arash Heidari
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Niloufar Yazdanpanah
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran. .,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran. .,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Komal S, Komal N, Mujtaba A, Wang SH, Zhang LR, Han SN. Potential therapeutic strategies for myocardial infarction: the role of Toll-like receptors. Immunol Res 2022; 70:607-623. [PMID: 35608723 DOI: 10.1007/s12026-022-09290-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/06/2022] [Indexed: 11/27/2022]
Abstract
Myocardial infarction (MI) is a life-threatening condition among patients with cardiovascular diseases. MI increases the risk of stroke and heart failure and is a leading cause of morbidity and mortality worldwide. Several genetic and epigenetic factors contribute to the development of MI, suggesting that further understanding of the pathomechanism of MI might help in the early management and treatment of this disease. Toll-like receptors (TLRs) are well-known members of the pattern recognition receptor (PRR) family and contribute to both adaptive and innate immunity. Collectively, studies suggest that TLRs have a cardioprotective effect. However, prolonged TLR activation in the response to signals generated by damage-associated molecular patterns (DAMPs) results in the release of inflammatory cytokines and contributes to the development and exacerbation of myocardial inflammation, MI, ischemia-reperfusion injury, myocarditis, and heart failure. The objective of this review is to discuss and summarize the association of TLRs with MI, highlighting their therapeutic potential for the development of advanced TLR-targeted therapies for MI.
Collapse
Affiliation(s)
- Sumra Komal
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Nimrah Komal
- Department of Pharmacology, Mohi-Ud-Din Islamic Medical College, Azad Jammu & Kashmir, Mirpur, 10250, Pakistan
| | - Ali Mujtaba
- Department of Pharmacology, Mohi-Ud-Din Islamic Medical College, Azad Jammu & Kashmir, Mirpur, 10250, Pakistan
| | - Shu-Hui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Li-Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Sheng-Na Han
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
15
|
Kobayashi N, Abe K, Akagi S, Kitamura M, Shiraishi Y, Yamaguchi A, Yutani M, Amatsu S, Matsumura T, Nomura N, Ozaki N, Obana N, Fujinaga Y. Membrane Vesicles Derived From Clostridium botulinum and Related Clostridial Species Induce Innate Immune Responses via MyD88/TRIF Signaling in vitro. Front Microbiol 2022; 13:720308. [PMID: 35185840 PMCID: PMC8851338 DOI: 10.3389/fmicb.2022.720308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 01/10/2022] [Indexed: 11/21/2022] Open
Abstract
Clostridium botulinum produces botulinum neurotoxin complexes that cause botulism. Previous studies elucidated the molecular pathogenesis of botulinum neurotoxin complexes; however, it currently remains unclear whether other components of the bacterium affect host cells. Recent studies provided insights into the role of bacterial membrane vesicles (MVs) produced by some bacterial species in host immunity and pathology. We herein examined and compared the cellular effects of MVs isolated from four strains of C. botulinum with those of closely related Clostridium sporogenes and two strains of the symbiont Clostridium scindens. MVs derived from all strains induced inflammatory cytokine expression in intestinal epithelial and macrophage cell lines. Cytokine expression was dependent on myeloid differentiation primary response (MyD) 88 and TIR-domain-containing adapter-inducing interferon-β (TRIF), essential adaptors for toll-like receptors (TLRs), and TLR1/2/4. The inhibition of actin polymerization impeded the uptake of MVs in RAW264.7 cells, however, did not reduce the induction of cytokine expression. On the other hand, the inhibition of dynamin or phosphatidylinositol-3 kinase (PI3K) suppressed the induction of cytokine expression by MVs, suggesting the importance of these factors downstream of TLR signaling. MVs also induced expression of Reg3 family antimicrobial peptides via MyD88/TRIF signaling in primary cultured mouse small intestinal epithelial cells (IECs). The present results indicate that MVs from C. botulinum and related clostridial species induce host innate immune responses.
Collapse
Affiliation(s)
- Nobuhide Kobayashi
- Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kimihiro Abe
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Sachiyo Akagi
- Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Mayu Kitamura
- Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yoshitake Shiraishi
- Department of Functional Anatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Aki Yamaguchi
- Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Masahiro Yutani
- Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Sho Amatsu
- Department of Forensic Medicine and Pathology, Graduate School of Medical Sciences, Kanazawa, Japan
| | - Takuhiro Matsumura
- Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Nobuhiko Nomura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan.,Microbiology Research Center for Sustainability, University of Tsukuba, Ibaraki, Japan
| | - Noriyuki Ozaki
- Department of Functional Anatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Nozomu Obana
- Microbiology Research Center for Sustainability, University of Tsukuba, Ibaraki, Japan.,Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yukako Fujinaga
- Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
16
|
Du YL, Sergeeva EG, Stein DG. Visual recovery following optic nerve crush in male and female wild-type and TRIF-deficient mice. Restor Neurol Neurosci 2021; 38:355-368. [PMID: 32986632 DOI: 10.3233/rnn-201019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND There is growing evidence that the TIR-domain-containing adapter-inducing interferon-β (TRIF) pathway is implicated in the modulation of neuroinflammation following injuries to the brain and retina. After exposure to injury or to excitotoxic pathogens, toll-like receptors (TLR) activate the innate immune system signaling cascade and stimulate the release of inflammatory cytokines. Inhibition of the TLR4 receptor has been shown to enhance retinal ganglion cell (RGC) survival in optic nerve crush (ONC) and in ischemic injury to other parts of the brain. OBJECTIVE Based on this evidence, we tested the hypothesis that mice with the TRIF gene knocked out (TKO) will demonstrate decreased inflammatory responses and greater functional recovery after ONC. METHODS Four experimental groups -TKO ONC (12 males and 8 females), WT ONC (10 males and 8 females), TKO sham (9 males and 5 females), and WT sham (7 males and 5 females) -were used as subjects. Visual evoked potentials (VEP) were recorded in the left and right primary visual cortices and optomotor response were assessed in all mice at 14, 30, and 80 days after ONC. GFAP and Iba-1 were used as markers for astrocytes and microglial cells respectively at 7 days after ONC, along with NF-kB to measure inflammatory effects downstream of TRIF activation; RMPBS marker was used to visualize RGC survival and GAP-43 was used as a marker of regenerating optic nerve axons at 30 days after ONC. RESULTS We found reduced inflammatory response in the retina at 7 days post-ONC, less RGC loss and greater axonal regeneration 30 days post-ONC, and better recovery of visual function 80 days post-ONC in TKO mice compared to WT mice. CONCLUSIONS Our study showed that the TRIF pathway is involved in post-ONC inflammatory response and gliosis and that deletion of TRIF induces better RGC survival and regeneration and better functional recovery in mice. Our results suggest the TRIF pathway as a potential therapeutic target for reducing the inflammatory damage caused by nervous system injury.
Collapse
Affiliation(s)
- Yimeng Lina Du
- Emory University College of Arts and Sciences, Neuroscience and Behavioral Biology Program, GA, USA
| | - Elena G Sergeeva
- Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Donald G Stein
- Emory University College of Arts and Sciences, Neuroscience and Behavioral Biology Program, GA, USA.,Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
17
|
TLRs in Mycobacterial Pathogenesis: Black and White or Shades of Gray. Curr Microbiol 2021; 78:2183-2193. [PMID: 33844035 DOI: 10.1007/s00284-021-02488-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 04/01/2021] [Indexed: 12/19/2022]
Abstract
Toll-like receptors (TLRs) play critical role in the innate recognition of pathogens besides orchestrating innate and adaptive immune responses. These receptors exhibit exquisite specificity for different pathogens or their products and, through a complex network of signalling, generate appropriate immune responses. TLRs induce both pro- and anti-inflammatory signals depending on interactions with the adapter molecules thereby impacting the outcome of infection. Hence, TLR signalling ought to be stringently regulated to avoid harmful effects on the host. Mycobacteria express antigens which are sensed by TLRs leading to activation of various signalling molecules important for initiating the death of infected cells and containment of pathogens. Conversely, it also utilizes TLRs for immune evasion and persistence. Due to the enormous diversity in the repertoire of virulence traits expressed by mycobacteria, genetic variations in TLRs often impair the host's ability to respond to mycobacterial-stress, affecting health and disease manifestations. Thus, understanding TLR signalling is of great importance for insights into host-mycobacterial interactions and designing effective measures for controlling the spread and persistence of the bacterium.
Collapse
|
18
|
Kangale LJ, Raoult D, Fournier PE, Abnave P, Ghigo E. Planarians (Platyhelminthes)-An Emerging Model Organism for Investigating Innate Immune Mechanisms. Front Cell Infect Microbiol 2021; 11:619081. [PMID: 33732660 PMCID: PMC7958881 DOI: 10.3389/fcimb.2021.619081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/18/2021] [Indexed: 12/15/2022] Open
Abstract
An organism responds to the invading pathogens such as bacteria, viruses, protozoans, and fungi by engaging innate and adaptive immune system, which functions by activating various signal transduction pathways. As invertebrate organisms (such as sponges, worms, cnidarians, molluscs, crustaceans, insects, and echinoderms) are devoid of an adaptive immune system, and their defense mechanisms solely rely on innate immune system components. Investigating the immune response in such organisms helps to elucidate the immune mechanisms that vertebrates have inherited or evolved from invertebrates. Planarians are non-parasitic invertebrates from the phylum Platyhelminthes and are being investigated for several decades for understanding the whole-body regeneration process. However, recent findings have emerged planarians as a useful model for studying innate immunity as they are resistant to a broad spectrum of bacteria. This review intends to highlight the research findings on various antimicrobial resistance genes, signaling pathways involved in innate immune recognition, immune-related memory and immune cells in planarian flatworms.
Collapse
Affiliation(s)
- Luis Johnson Kangale
- Aix-Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France.,Institut Hospitalo-Universitaire-Méditerranée-Infection, Marseille, France
| | - Didier Raoult
- Institut Hospitalo-Universitaire-Méditerranée-Infection, Marseille, France.,Aix-Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France.,Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Pierre-Edouard Fournier
- Aix-Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France.,Institut Hospitalo-Universitaire-Méditerranée-Infection, Marseille, France
| | | | - Eric Ghigo
- Institut Hospitalo-Universitaire-Méditerranée-Infection, Marseille, France.,TechnoJouvence, Marseille, France
| |
Collapse
|
19
|
Zhang H, He F, Li P, Hardwidge PR, Li N, Peng Y. The Role of Innate Immunity in Pulmonary Infections. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6646071. [PMID: 33553427 PMCID: PMC7847335 DOI: 10.1155/2021/6646071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/26/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023]
Abstract
Innate immunity forms a protective line of defense in the early stages of pulmonary infection. The primary cellular players of the innate immunity against respiratory infections are alveolar macrophages (AMs), dendritic cells (DCs), neutrophils, natural killer (NK) cells, and innate lymphoid cells (ILCs). They recognize conserved structures of microorganisms through membrane-bound and intracellular receptors to initiate appropriate responses. In this review, we focus on the prominent roles of innate immune cells and summarize transmembrane and cytosolic pattern recognition receptor (PRR) signaling recognition mechanisms during pulmonary microbial infections. Understanding the mechanisms of PRR signal recognition during pulmonary pathogen infections will help us to understand pulmonary immunopathology and lay a foundation for the development of effective therapies to treat and/or prevent pulmonary infections.
Collapse
Affiliation(s)
- Huihui Zhang
- College of Animal Medicine, Southwest University, Chongqing, China
| | - Fang He
- College of Animal Medicine, Southwest University, Chongqing, China
| | - Pan Li
- College of Animal Medicine, Southwest University, Chongqing, China
| | | | - Nengzhang Li
- College of Animal Medicine, Southwest University, Chongqing, China
| | - Yuanyi Peng
- College of Animal Medicine, Southwest University, Chongqing, China
| |
Collapse
|
20
|
Iqbal MS, Sardar N, Akmal W, Sultan R, Abdullah H, Qindeel M, Dhama K, Bilal M. ROLE OF TOLL-LIKE RECEPTORS IN CORONAVIRUS INFECTION AND IMMUNE RESPONSE. ACTA ACUST UNITED AC 2020. [DOI: 10.18006/2020.8(spl-1-sars-cov-2).s66.s78] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The emergence of a novel coronavirus referred to as SARS-CoV-2 has become a global health apprehension due to rapid transmission tendency, severity, and wide geographical spread. This emergence was started from Wuhan, China in 2019 from the zoonotic source and spread worldwide, infecting almost half of the community on this earth. Many of the receptors are involved in proceeding with this infection in the organism's body. Toll-like receptors (TLRs) play essential and protective functions from a wide range of microbial pathogens. Small setup of TLR adaptor proteins leads to activate nuclear factor kappa B (NF-kB) and interferon-regulatory factor (IRF). Consequently, various advanced inflammatory cytokines, chemokines, and interferon reaction properties can be up-regulated. Similarly, TLR flagging works on autophagy in macrophages. Autophagy is a cell response to starvation that helps to eliminate damaged cytosol organelles and persistent proteins. It is also able to prevent the replication of intracellular pathogens. Several microbes subvert the autophagy pathways to sustain their viability. This review investigates how TLRs can modulate a macrophagic system and analyze the role of natural resistance autophagy.
Collapse
|
21
|
Oosenbrug T, van de Graaff MJ, Haks MC, van Kasteren S, Ressing ME. An alternative model for type I interferon induction downstream of human TLR2. J Biol Chem 2020; 295:14325-14342. [PMID: 32796029 DOI: 10.1074/jbc.ra120.015283] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/10/2020] [Indexed: 11/06/2022] Open
Abstract
Surface-exposed Toll-like receptors (TLRs) such as TLR2 and TLR4 survey the extracellular environment for pathogens. TLR activation initiates the production of various cytokines and chemokines, including type I interferons (IFN-I). Downstream of TLR4, IFNβ secretion is only vigorously triggered in macrophages when the receptor undergoes endocytosis and switches signaling adaptor; surface TLR4 engagement predominantly induces proinflammatory cytokines via the signaling adaptor MyD88. It is unclear whether this dichotomy is generally applicable to other TLRs, cell types, or differentiation states. Here, we report that diverse TLR2 ligands induce an IFN-I response in human monocyte-like cells, but not in differentiated macrophages. This TLR2-dependent IFN-I signaling originates from the cell surface and depends on MyD88; it involves combined activation of the transcription factors IRF3 and NF-κB, driven by the kinases TBK1 and TAK1-IKKβ, respectively. TLR2-stimulated monocytes produced modest IFNβ levels that caused productive downstream signaling, reflected by STAT1 phosphorylation and expression of numerous interferon-stimulated genes. Our findings reveal that the outcome of TLR2 signaling includes an IFN-I response in human monocytes, which is lost upon macrophage differentiation, and differs mechanistically from IFN-I-induction through TLR4. These findings point to molecular mechanisms tailored to the differentiation state of a cell and the nature of receptors activated to control and limit TLR-triggered IFN-I responses.
Collapse
Affiliation(s)
- Timo Oosenbrug
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michel J van de Graaff
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Mariëlle C Haks
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Sander van Kasteren
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Maaike E Ressing
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
22
|
Nguyen BN, Chávez-Arroyo A, Cheng MI, Krasilnikov M, Louie A, Portnoy DA. TLR2 and endosomal TLR-mediated secretion of IL-10 and immune suppression in response to phagosome-confined Listeria monocytogenes. PLoS Pathog 2020; 16:e1008622. [PMID: 32634175 PMCID: PMC7340287 DOI: 10.1371/journal.ppat.1008622] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/12/2020] [Indexed: 01/24/2023] Open
Abstract
Listeria monocytogenes is a facultative intracellular bacterial pathogen that escapes from phagosomes and induces a robust adaptive immune response in mice, while mutants unable to escape phagosomes fail to induce a robust adaptive immune response and suppress the immunity to wildtype bacteria when co-administered. The capacity to suppress immunity can be reversed by blocking IL-10. In this study, we sought to understand the host receptors that lead to secretion of IL-10 in response to phagosome-confined L. monocytogenes (Δhly), with the ultimate goal of generating strains that fail to induce IL-10. We conducted a transposon screen to identify Δhly L. monocytogenes mutants that induced significantly more or less IL-10 secretion in bone marrow-derived macrophages (BMMs). A transposon insertion in lgt, which encodes phosphatidylglycerol-prolipoprotein diacylglyceryl transferase and is essential for the formation of lipoproteins, induced significantly reduced IL-10 secretion. Mutants with transposon insertions in pgdA and oatA, which encode peptidoglycan N-acetylglucosamine deacetylase and O-acetyltransferase, are sensitive to lysozyme and induced enhanced IL-10 secretion. A ΔhlyΔpgdAΔoatA strain was killed in BMMs and induced enhanced IL-10 secretion that was dependent on Unc93b1, a trafficking molecule required for signaling of nucleic acid-sensing TLRs. These data revealed that nucleic acids released by bacteriolysis triggered endosomal TLR-mediated IL-10 secretion. Secretion of IL-10 in response to infection with the parental strain was mostly TLR2-dependent, while IL-10 secretion in response to lysozyme-sensitive strains was dependent on TLR2 and Unc93b1. In mice, the IL-10 response to vacuole-confined L. monocytogenes was also dependent on TLR2 and Unc93b1. Co-administration of Δhly and ΔactA resulted in suppressed immunity in WT mice, but not in mice with mutations in Unc93b1. These data revealed that secretion of IL-10 in response to L. monocytogenes infection in vitro is mostly TLR2-dependent and immune suppression by phagosome-confined bacteria in vivo is mostly dependent on endosomal TLRs.
Collapse
Affiliation(s)
- Brittney N. Nguyen
- Graduate Group in Microbiology, University of California, Berkeley, Berkeley, California, United States of America
| | - Alfredo Chávez-Arroyo
- Graduate Group in Microbiology, University of California, Berkeley, Berkeley, California, United States of America
| | - Mandy I. Cheng
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Maria Krasilnikov
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Alexander Louie
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Daniel A. Portnoy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|
23
|
Birra D, Benucci M, Landolfi L, Merchionda A, Loi G, Amato P, Licata G, Quartuccio L, Triggiani M, Moscato P. COVID 19: a clue from innate immunity. Immunol Res 2020; 68:161-168. [PMID: 32524333 PMCID: PMC7286633 DOI: 10.1007/s12026-020-09137-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The recent COVID-19 pandemic has had a significant impact on our lives and has rapidly expanded to reach more than 4 million cases worldwide by May 2020. These cases are characterized by extreme variability, from a mild or asymptomatic form lasting for a few days up to severe forms of interstitial pneumonia that may require ventilatory therapy and can lead to patient death.Several hypotheses have been drawn up to understand the role of the interaction between the infectious agent and the immune system in the development of the disease and the most severe forms; the role of the cytokine storm seems important.Innate immunity, as one of the first elements of guest interaction with different infectious agents, could play an important role in the development of the cytokine storm and be responsible for boosting more severe forms. Therefore, it seems important to study also this important arm of the immune system to adequately understand the pathogenesis of the disease. Research on this topic is also needed to develop therapeutic strategies for treatment of this disease.
Collapse
Affiliation(s)
- Domenico Birra
- UOC of Internal Medicine - Rheumatology Outpatients Unit, Azienda Ospedaliero-Universitaria San Giovanni di Dio e Ruggi D'Aragona, Via San Leonardo 1, Salerno, Italy.
| | | | - Luigi Landolfi
- UOC of Internal Medicine, Azienda Ospedaliero-Universitaria San Giovanni di Dio e Ruggi D'Aragona, Salerno, Italy
| | - Anna Merchionda
- UOC of Internal Medicine - Rheumatology Outpatients Unit, Azienda Ospedaliero-Universitaria San Giovanni di Dio e Ruggi D'Aragona, Via San Leonardo 1, Salerno, Italy
| | - Gabriella Loi
- UOC of Internal Medicine - Rheumatology Outpatients Unit, Azienda Ospedaliero-Universitaria San Giovanni di Dio e Ruggi D'Aragona, Via San Leonardo 1, Salerno, Italy
| | | | - Gaetano Licata
- Dermatology Unit, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Luca Quartuccio
- Clinic of Rheumatology, Department of Medicine (DAME), ASUFC, University of Udine, Udine, Italy
| | - Massimo Triggiani
- Division of Allergy and Clinical Immunology, University of Salerno, Fisciano, Italy
| | - Paolo Moscato
- UOC of Internal Medicine - Rheumatology Outpatients Unit, Azienda Ospedaliero-Universitaria San Giovanni di Dio e Ruggi D'Aragona, Via San Leonardo 1, Salerno, Italy
| |
Collapse
|
24
|
Modification of Adenovirus vaccine vector-induced immune responses by expression of a signalling molecule. Sci Rep 2020; 10:5716. [PMID: 32235848 PMCID: PMC7109070 DOI: 10.1038/s41598-020-61730-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/05/2020] [Indexed: 11/09/2022] Open
Abstract
Adenoviral vectors are being developed as vaccines against infectious agents and tumour-associated antigens, because of their ability to induce cellular immunity. However, the protection afforded in animal models has not easily translated into primates and clinical trials, underlying the need for improving adenoviral vaccines-induced immunogenicity. A Toll-like receptor signalling molecule, TRAM, was assessed for its ability to modify the immune responses induced by an adenovirus-based vaccine. Different adenovirus vectors either expressing TRAM alone or co-expressing TRAM along with a model antigen were constructed. The modification of T-cell and antibody responses induced by TRAM was assessed in vivo in mice and in primates. Co-expression of TRAM and an antigen from adenoviruses increased the transgene-specific CD8+ T cell responses in mice. Similar effects were seen when a TRAM expressing virus was co-administered with the antigen-expressing adenovirus. However, in primate studies, co-administration of a TRAM expressing adenovirus with a vaccine expressing the ME-TRAP malaria antigen had no significant effect on the immune responses. While these results support the idea that modification of innate immune signalling by genetic vectors modifies immunogenicity, they also emphasise the difficulty in generalising results from rodents into primates, where the regulatory pathway may be different to that in mice.
Collapse
|
25
|
Toll-like Receptors and the Control of Immunity. Cell 2020; 180:1044-1066. [DOI: 10.1016/j.cell.2020.02.041] [Citation(s) in RCA: 567] [Impact Index Per Article: 113.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/02/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022]
|
26
|
Zhou H, Urso CJ, Jadeja V. Saturated Fatty Acids in Obesity-Associated Inflammation. J Inflamm Res 2020; 13:1-14. [PMID: 32021375 PMCID: PMC6954080 DOI: 10.2147/jir.s229691] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/11/2019] [Indexed: 01/14/2023] Open
Abstract
Obesity is a major risk factor for the development of various pathological conditions including insulin resistance, diabetes, cardiovascular diseases, and non-alcoholic fatty liver disease (NAFLD). Central to these conditions is obesity-associated chronic low-grade inflammation in many tissues including adipose, liver, muscle, kidney, pancreas, and brain. There is increasing evidence that saturated fatty acids (SFAs) increase the phosphorylation of MAPKs, enhance the activation of transcription factors such as nuclear factor (NF)-κB, and elevate the expression of inflammatory genes. This paper focuses on the mechanisms by which SFAs induce inflammation. SFAs may induce the expression inflammatory genes via different pathways including toll-like receptor (TLR), protein kinase C (PKC), reactive oxygen species (ROS), NOD-like receptors (NLRs), and endoplasmic reticulum (ER) stress. These findings suggest that SFAs act as an important link between obesity and inflammation.
Collapse
Affiliation(s)
- Heping Zhou
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA
| | - C J Urso
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA
| | - Viren Jadeja
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA
| |
Collapse
|
27
|
Luo L, Lucas RM, Liu L, Stow JL. Signalling, sorting and scaffolding adaptors for Toll-like receptors. J Cell Sci 2019; 133:133/5/jcs239194. [PMID: 31889021 DOI: 10.1242/jcs.239194] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Toll-like receptors (TLRs) are danger-sensing receptors that typically propagate self-limiting inflammatory responses, but can unleash uncontrolled inflammation in non-homeostatic or disease settings. Activation of TLRs by pathogen- and/or host-derived stimuli triggers a range of signalling and transcriptional pathways to programme inflammatory and anti-microbial responses, including the production of a suite of inflammatory cytokines and other mediators. Multiple sorting and signalling adaptors are recruited to receptor complexes on the plasma membrane or endosomes where they act as scaffolds for downstream signalling kinases and effectors at these sites. So far, seven proximal TLR adaptors have been identified: MyD88, MAL, TRIF (also known as TICAM1), TRAM (TICAM2), SARM (SARM1), BCAP (PIK3AP1) and SCIMP. Most adaptors tether directly to TLRs through homotypic Toll/interleukin-1 receptor domain (TIR)-TIR interactions, whereas SCIMP binds to TLRs through an atypical TIR-non-TIR interaction. In this Review, we highlight the key roles for these adaptors in TLR signalling, scaffolding and receptor sorting and discuss how the adaptors thereby direct the differential outcomes of TLR-mediated responses. We further summarise TLR adaptor regulation and function, and make note of human diseases that might be associated with mutations in these adaptors.
Collapse
Affiliation(s)
- Lin Luo
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Richard M Lucas
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Liping Liu
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jennifer L Stow
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
28
|
Hameed A. Human Immunity Against Campylobacter Infection. Immune Netw 2019; 19:e38. [PMID: 31921468 PMCID: PMC6943174 DOI: 10.4110/in.2019.19.e38] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022] Open
Abstract
Campylobacter is a worldwide foodborne pathogen, associated with human gastroenteritis. The efficient translocation of Campylobacter and its ability to secrete toxins into host cells are the 2 key features of Campylobacter pathophysiology which trigger inflammation in intestinal cells and contribute to the development of gastrointestinal symptoms, particularly diarrhoea, in humans. The purpose of conducting this literature review is to summarise the current understanding of: i) the human immune responses involved in the elimination of Campylobacter infection and ii) the resistance potential in Campylobacter against these immune responses. This review has highlighted that the intestinal epithelial cells are the preliminary cells which sense Campylobacter cells by means of their cell-surface and cytosolic receptors, activate various receptors-dependent signalling pathways, and recruit the innate immune cells to the site of inflammation. The innate immune system, adaptive immune system, and networking between these systems play a crucial role in bacterial clearance. Different cellular constituents of Campylobacter, mainly cell membrane lipooligosaccharides, capsule, and toxins, provide protection to Campylobacter against the human immune system mediated killing. This review has also identified gaps in knowledge, which are related to the activation of following during Campylobacter infection: i) cathelicidins, bactericidal permeability-increasing proteins, chemokines, and inflammasomes in intestinal epithelial cells; ii) siglec-7 receptors in dendritic cell; iii) acute phase proteins in serum; and iv) T-cell subsets in lymphoid nodules. This review evaluates the existing literature to improve the understanding of human immunity against Campylobacter infection and identify some of the knowledge gaps for future research.
Collapse
Affiliation(s)
- Amber Hameed
- Division of Life Sciences, University of Northampton, Northampton NN1 5PH, UK
| |
Collapse
|
29
|
Cao H, Li D, Lu H, Sun J, Li H. Uncovering potential lncRNAs and nearby mRNAs in systemic lupus erythematosus from the Gene Expression Omnibus dataset. Epigenomics 2019; 11:1795-1809. [PMID: 31755746 DOI: 10.2217/epi-2019-0145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: The aim of this study was to find potential differentially expressed long noncoding RNAs (lncRNAs) and mRNAs in systemic lupus erythematosus. Materials & methods: Differentially expressed lncRNAs and mRNAs were obtained in the Gene Expression Omnibus dataset. Functional annotation of differentially expressed mRNAs was performed, followed by protein-protein interaction network analysis. Then, the interaction network of lncRNA-nearby targeted mRNA was built. Results: Several interaction pairs of lncRNA-nearby targeted mRNA including NRIR-RSAD2, RP11-153M7.5-TLR2, RP4-758J18.2-CCNL2, RP11-69E11.4-PABPC4 and RP11-496I9.1-IRF7/HRAS/PHRF1 were identified. Measles and MAPK were significantly enriched signaling pathways of differentially expressed mRNAs. Conclusion: Our study identified several differentially expressed lncRNAs and mRNAs. And their interactions may play a crucial role in the process of systemic lupus erythematosus.
Collapse
Affiliation(s)
- Haiyu Cao
- Department of Dermatology, The First Hospital of Shijiazhuang, Shijiazhuang, Hebei 050000, PR China
| | - Dong Li
- Department of Dermatology & Sexology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei 430030, PR China
| | - Huixiu Lu
- Department of Dermatology, The First Hospital of Shijiazhuang, Shijiazhuang, Hebei 050000, PR China
| | - Jing Sun
- Department of Dermatology, The First Hospital of Shijiazhuang, Shijiazhuang, Hebei 050000, PR China
| | - Haibin Li
- Department of Medicine, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China
| |
Collapse
|
30
|
Chen CY, Shih YC, Hung YF, Hsueh YP. Beyond defense: regulation of neuronal morphogenesis and brain functions via Toll-like receptors. J Biomed Sci 2019; 26:90. [PMID: 31684953 PMCID: PMC6827257 DOI: 10.1186/s12929-019-0584-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/23/2019] [Indexed: 12/16/2022] Open
Abstract
Toll-like receptors (TLRs) are well known as critical pattern recognition receptors that trigger innate immune responses. In addition, TLRs are expressed in neurons and may act as the gears in the neuronal detection/alarm system for making good connections. As neuronal differentiation and circuit formation take place along with programmed cell death, neurons face the challenge of connecting with appropriate targets while avoiding dying or dead neurons. Activation of neuronal TLR3, TLR7 and TLR8 with nucleic acids negatively modulates neurite outgrowth and alters synapse formation in a cell-autonomous manner. It consequently influences neural connectivity and brain function and leads to deficits related to neuropsychiatric disorders. Importantly, neuronal TLR activation does not simply duplicate the downstream signal pathways and effectors of classical innate immune responses. The differences in spatial and temporal expression of TLRs and their ligands likely account for the diverse signaling pathways of neuronal TLRs. In conclusion, the accumulated evidence strengthens the idea that the innate immune system of neurons serves as an alarm system that responds to exogenous pathogens as well as intrinsic danger signals and fine-tune developmental processes of neurons.
Collapse
Affiliation(s)
- Chiung-Ya Chen
- Institute of Molecular Biology, Academia Sinica, 128, Academia Rd., Sec. 2, Taipei, 11529, Taiwan, Republic of China.
| | - Yi-Chun Shih
- Institute of Molecular Biology, Academia Sinica, 128, Academia Rd., Sec. 2, Taipei, 11529, Taiwan, Republic of China
| | - Yun-Fen Hung
- Institute of Molecular Biology, Academia Sinica, 128, Academia Rd., Sec. 2, Taipei, 11529, Taiwan, Republic of China
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, 128, Academia Rd., Sec. 2, Taipei, 11529, Taiwan, Republic of China.
| |
Collapse
|
31
|
Musilova J, Mulcahy ME, Kuijk MM, McLoughlin RM, Bowie AG. Toll-like receptor 2-dependent endosomal signaling by Staphylococcus aureus in monocytes induces type I interferon and promotes intracellular survival. J Biol Chem 2019; 294:17031-17042. [PMID: 31558608 PMCID: PMC6851302 DOI: 10.1074/jbc.ra119.009302] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/24/2019] [Indexed: 12/11/2022] Open
Abstract
Pathogen activation of innate immune pattern recognition receptors (PRRs) such as Toll-like receptors (TLRs) stimulates cellular signaling pathways. This often leads to outcomes that contribute to pathogen clearance. Alternatively, activation of specific PRR pathways can aid pathogen survival. The human pathogen Staphylococcus aureus is a case in point, employing strategies to escape innate immune recognition and killing by the host. As for other bacteria, PRR-stimulated type I interferon (IFN-I) induction has been proposed as one such immune escape pathway that may favor S. aureus. Cell wall components of S. aureus elicit TLR2-dependent cellular responses, but the exact signaling pathways activated by S. aureus–TLR2 engagement and the consequences of their activation for the host and bacterium are not fully known. We previously showed that TLR2 activates both a cytoplasmic and an endosome-dependent signaling pathway, the latter leading to IFN-I production. Here, we demonstrate that S. aureus infection of human monocytes activates a TLR2-dependent endosomal signaling pathway, leading to IFN-I induction. We mapped the signaling components of this pathway and identified roles in IFN-I stimulation for the Toll-interleukin-1 receptor (TIR) adaptor Myd88 adaptor-like (Mal), TNF receptor-associated factor 6 (TRAF6), and IκB kinase (IKK)-related kinases, but not for TRIF-related adaptor molecule (TRAM) and TRAF3. Importantly, monocyte TLR2-dependent endosomal signaling enabled immune escape for S. aureus, because this pathway, but not IFN-I per se, contributed to intracellular bacterial survival. These results reveal a TLR2-dependent mechanism in human monocytes whereby S. aureus manipulates innate immune signaling for its survival in cells.
Collapse
Affiliation(s)
- Jana Musilova
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Michelle E Mulcahy
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Marieke M Kuijk
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Rachel M McLoughlin
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Andrew G Bowie
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
32
|
Interferon regulatory factor 3 plays a role in macrophage responses to interferon-γ. Immunobiology 2019; 224:565-574. [PMID: 31072630 DOI: 10.1016/j.imbio.2019.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 12/16/2022]
Abstract
IFN-γ produced during viral infections activates the IFN-γ receptor (IFNGR) complex for STAT1 transcriptional activity leading to expression of Interferon Regulatory Factors (IRF). Simultaneous activation of TBK/IKKε via TLR3 during viral infections activates the transcription factor IRF3. Together these transcription factors contributes to expression of intracellular proteins (e.g. ISG49, ISG54) and secreted proteins (e.g. IFN-β, IP-10, IL-15) that are essential to innate antiviral immunity. Here we examined the role of IRF3 in expression of innate anti-viral proteins produced in response to IFN-γ plus TLR3 agonist. Wild-type (WT) and IRF3KO RAW264.7 cells, each with ISG54-promoter-luciferase reporter vectors, were stimulated with IFN-γ, poly I:C, or both together. ISG54 promoter activity was significantly reduced in IRF3KO RAW264.7 cells responding to IFN-γ, poly I:C, or IFN-γ plus poly I:C, compared with WT RAW264.7 cells. These data were confirmed with western blot and qRT-PCR. Primary macrophages and dendritic cells (DCs) from IRF3KO mice also showed decreased ISG54 in response to IFN-γ, poly I:C, or IFN-γ plus poly I:C compared with those from WT mice. Moreover, pharmacological inhibition of TBK/IKKε significantly reduced ISG54 promoter activity in response to IFN-γ, poly I:C, or IFN-γ plus poly I:C. Similarly, expression of ISG49 and IL-15, but not IP-10, was impaired in IRF3KO RAW264.7 cells responding to IFN-γ or poly I:C, which also had impaired STAT1 phosphorylation and IRF1 expression. These data show that IRF3 contributes to IFN-γ/IFNGR signaling for expression of innate anti-viral proteins in macrophages.
Collapse
|
33
|
Ingram S, Mengozzi M, Sacre S, Mullen L, Ghezzi P. Differential induction of nuclear factor-like 2 signature genes with toll-like receptor stimulation. Free Radic Biol Med 2019; 135:245-250. [PMID: 30894323 DOI: 10.1016/j.freeradbiomed.2019.03.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 12/15/2022]
Abstract
Inflammation is associated with production of reactive oxygen species (ROS) and results in the induction of thioredoxin (TXN) and peroxiredoxins (PRDXs) and activation of nuclear factor-like 2 (Nrf2). In this study we have used the mouse RAW 264.7 macrophage and the human THP-1 monocyte cell line to investigate the pattern of expression of three Nrf2 target genes, PRDX1, TXN reductase (TXNRD1) and heme oxygenase (HMOX1), by activation of different Toll-like receptors (TLRs). We found that, while the TLR4 agonist lipopolysaccharide (LPS) induces all three genes, the pattern of induction with agonists for TLR1/2, TLR3, TLR2/6 and TLR7/8 differs depending on the gene and the cell line. In all cases, the extent of induction was HMOX1>TXNRD1>PRDX1. Since LPS was a good inducer of all genes in both cell lines, we studied the mechanisms mediating LPS induction of the three genes using mouse RAW 264.7 cells. To assess the role of ROS we used the antioxidant N-acetylcysteine (NAC). Only LPS induction of HMOX1 was inhibited by NAC while that of TXNRD1 and PRDX1 was unaffected. These three genes were also induced by phorbol myristate acetate (PMA), a ROS-inducer acting by activation of protein kinase C (PKC). The protein kinase inhibitor staurosporine inhibited the induction of all three genes by PMA but only that of HMOX1 by LPS. This indicates that activation of these genes by inflammatory agents is regulated by different mechanisms involving either ROS or protein kinases, or both.
Collapse
Affiliation(s)
- Sonia Ingram
- Brighton and Sussex Medical School, Falmer, BN1 9PS, United Kingdom
| | - Manuela Mengozzi
- Brighton and Sussex Medical School, Falmer, BN1 9PS, United Kingdom
| | - Sandra Sacre
- Brighton and Sussex Medical School, Falmer, BN1 9PS, United Kingdom
| | - Lisa Mullen
- Brighton and Sussex Medical School, Falmer, BN1 9PS, United Kingdom
| | - Pietro Ghezzi
- Brighton and Sussex Medical School, Falmer, BN1 9PS, United Kingdom.
| |
Collapse
|
34
|
Bentley JK, Han M, Jaipalli S, Hinde JL, Lei J, Ishikawa T, Goldsmith AM, Rajput C, Hershenson MB. Myristoylated rhinovirus VP4 protein activates TLR2-dependent proinflammatory gene expression. Am J Physiol Lung Cell Mol Physiol 2019; 317:L57-L70. [PMID: 30908938 DOI: 10.1152/ajplung.00365.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Asthma exacerbations are often caused by rhinovirus (RV). We and others have shown that Toll-like receptor 2 (TLR2), a membrane surface receptor that recognizes bacterial lipopeptides and lipoteichoic acid, is required and sufficient for RV-induced proinflammatory responses in vitro and in vivo. We hypothesized that viral protein-4 (VP4), an internal capsid protein that is myristoylated upon viral replication and externalized upon viral binding, is a ligand for TLR2. Recombinant VP4 and myristoylated VP4 (MyrVP4) were purified by Ni-affinity chromatography. MyrVP4 was also purified from RV-A1B-infected HeLa cells by urea solubilization and anti-VP4 affinity chromatography. Finally, synthetic MyrVP4 was produced by chemical peptide synthesis. MyrVP4-TLR2 interactions were assessed by confocal fluorescence microscopy, fluorescence resonance energy transfer (FRET), and monitoring VP4-induced cytokine mRNA expression in the presence of anti-TLR2 and anti-VP4. MyrVP4 and TLR2 colocalized in TLR2-expressing HEK-293 cells, mouse bone marrow-derived macrophages, human bronchoalveolar macrophages, and human airway epithelial cells. Colocalization was absent in TLR2-null HEK-293 cells and blocked by anti-TLR2 and anti-VP4. Cy3-labeled MyrVP4 and Cy5-labeled anti-TLR2 showed an average fractional FRET efficiency of 0.24 ± 0.05, and Cy5-labeled anti-TLR2 increased and unlabeled MyrVP4 decreased FRET efficiency. MyrVP4-induced chemokine mRNA expression was higher than that elicited by VP4 alone and was attenuated by anti-TLR2 and anti-VP4. Cytokine expression was similarly increased by MyrVP4 purified from RV-infected HeLa cells and synthetic MyrVP4. We conclude that, during RV infection, MyrVP4 and TLR2 interact to generate a proinflammatory response.
Collapse
Affiliation(s)
- J Kelley Bentley
- Departments of Pediatrics and Communicable Diseases, University of Michigan , Ann Arbor, Michigan
| | - Mingyuan Han
- Departments of Pediatrics and Communicable Diseases, University of Michigan , Ann Arbor, Michigan
| | - Suraj Jaipalli
- Departments of Pediatrics and Communicable Diseases, University of Michigan , Ann Arbor, Michigan
| | - Joanna L Hinde
- Departments of Pediatrics and Communicable Diseases, University of Michigan , Ann Arbor, Michigan
| | - Jing Lei
- Departments of Pediatrics and Communicable Diseases, University of Michigan , Ann Arbor, Michigan
| | - Tomoko Ishikawa
- Departments of Pediatrics and Communicable Diseases, University of Michigan , Ann Arbor, Michigan
| | - Adam M Goldsmith
- Departments of Pediatrics and Communicable Diseases, University of Michigan , Ann Arbor, Michigan
| | - Charu Rajput
- Departments of Pediatrics and Communicable Diseases, University of Michigan , Ann Arbor, Michigan
| | - Marc B Hershenson
- Departments of Pediatrics and Communicable Diseases, University of Michigan , Ann Arbor, Michigan.,Department of Molecular and Integrative Physiology, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|
35
|
Skjesol A, Yurchenko M, Bösl K, Gravastrand C, Nilsen KE, Grøvdal LM, Agliano F, Patane F, Lentini G, Kim H, Teti G, Kumar Sharma A, Kandasamy RK, Sporsheim B, Starheim KK, Golenbock DT, Stenmark H, McCaffrey M, Espevik T, Husebye H. The TLR4 adaptor TRAM controls the phagocytosis of Gram-negative bacteria by interacting with the Rab11-family interacting protein 2. PLoS Pathog 2019; 15:e1007684. [PMID: 30883606 PMCID: PMC6438586 DOI: 10.1371/journal.ppat.1007684] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 03/28/2019] [Accepted: 03/07/2019] [Indexed: 02/06/2023] Open
Abstract
Phagocytosis is a complex process that eliminates microbes and is performed by specialised cells such as macrophages. Toll-like receptor 4 (TLR4) is expressed on the surface of macrophages and recognizes Gram-negative bacteria. Moreover, TLR4 has been suggested to play a role in the phagocytosis of Gram-negative bacteria, but the mechanisms remain unclear. Here we have used primary human macrophages and engineered THP-1 monocytes to show that the TLR4 sorting adapter, TRAM, is instrumental for phagocytosis of Escherichia coli as well as Staphylococcus aureus. We find that TRAM forms a complex with Rab11 family interacting protein 2 (FIP2) that is recruited to the phagocytic cups of E. coli. This promotes activation of the actin-regulatory GTPases Rac1 and Cdc42. Our results show that FIP2 guided TRAM recruitment orchestrates actin remodelling and IRF3 activation, two events that are both required for phagocytosis of Gram-negative bacteria. The Gram-negative bacteria E. coli is the most common cause of severe human pathological conditions like sepsis. Sepsis is a clinical syndrome defined by pathological changes due to systemic inflammation, resulting in paralysis of adaptive T-cell immunity with IFN-β as a critical factor. TLR4 is a key sensing receptor of lipopolysaccharide on Gram-negative bacteria. Inflammatory signalling by TLR4 is initiated by the use of alternative pair of TIR-adapters, MAL-MyD88 or TRAM-TRIF. MAL-MyD88 signaling occurs mainly from the plasma membrane giving pro-inflammatory cytokines like TNF, while TRAM-TRIF signaling occurs from vacuoles like endosomes and phagosomes to give type I interferons like IFN-β. It has previously been shown that TLR4 can control phagocytosis and phagosomal maturation through MAL-MyD88 in mice, however, these data have been disputed and published before the role of TRAM was defined in the induction of IFN-β. A role for TRAM or TRIF in phagocytosis has not previously been reported. Here we describe a novel mechanism where TRAM and its binding partner Rab11-FIP2 control phagocytosis of E. coli and regulate IRF3 dependent production of IFN-β. The significance of these results is that we define Rab11-FIP2 as a potential target for modulation of TLR4-dependent signalling in different pathological states.
Collapse
Affiliation(s)
- Astrid Skjesol
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mariia Yurchenko
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Korbinian Bösl
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Caroline Gravastrand
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kaja Elisabeth Nilsen
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Lene Melsæther Grøvdal
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Federica Agliano
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Francesco Patane
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Germana Lentini
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Hera Kim
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Giuseppe Teti
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Aditya Kumar Sharma
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Richard K. Kandasamy
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bjørnar Sporsheim
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kristian K. Starheim
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Douglas T. Golenbock
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Harald Stenmark
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department for Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo Norway
| | - Mary McCaffrey
- Molecular Cell Biology Laboratory, Biochemistry Department, Biosciences Institute, University College Cork, Cork, Ireland
| | - Terje Espevik
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- The Central Norway Regional Health Authority, St. Olavs Hospital HF, Trondheim, Norway
| | - Harald Husebye
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- The Central Norway Regional Health Authority, St. Olavs Hospital HF, Trondheim, Norway
- * E-mail:
| |
Collapse
|
36
|
Dimitrova P, Alipieva K, Stojanov K, Milanova V, Georgiev MI. Plant-derived verbascoside and isoverbascoside regulate Toll-like receptor 2 and 4-driven neutrophils priming and activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 55:105-118. [PMID: 30668420 DOI: 10.1016/j.phymed.2018.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/13/2018] [Accepted: 07/22/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Neutrophils have a short live in circulation and accelerate greatly local immune responses via increased granulopoiesis and migration at high numbers to infected or inflamed tissue. HYPOTHESIS Since neutrophils produce a variety of factors with destructive and pro-inflammatory potential the regulation of their homeostasis and functions might be eventually beneficial in inflammation-related pathological conditions. Herein we investigated the effect of natural-derived verbascoside (Verb) and its positional isomer isoverbascoside (IsoVerb) on neutrophil functions. METHODS We used purified murine bone marrow (BM) neutrophils to study cell responsiveness to priming or activation via Toll-like receptors (TLRs) 2 and 4. The expression of CD11b, chemokine (CXC motif) receptor 2 (CXCR2), the intracellular level of phosphorylated p38 mitogen-activated protein kinase (MAPK) and tumor necrosis factor (TNF)-α in neutrophils were determined by flow cytometry while the release of macrophage inflammatory protein (MIP)-2 in culture supernatant was determined by enzyme-linked immunosorbent assay (ELISA). RESULTS We found that Verb appeared less powerful inhibitor of TLR2 and TLR4-mediated apoptosis than IsoVerb. However at concentrations below 16 µM and in LPS priming conditions Verb was more selective inhibitor of CD11b and CXCR2 expression than IsoVerb. Both compounds showed similar activity on integrin/chemokine receptor expression when neutrophils were stimulated with ZY or were activated with LPS. Verb sustained CXCR2 expression and turnover via regulation of the cell responsiveness to its ligand KC (CXCL1) and via the release of MIP-2 (CXCL2). Both Verb and IsoVerb increased TNF-α production and inhibited p38 phosphorylation in TNF-α+ cells. We fail to discriminate sharply between Verb's and IsoVerb's efficacy when studying p38 phosphorylation in LPS stimulated neutrophils. The multi-parametric analysis provides critical insight on the range of on-target effects of Verb and IsoVerb. CONCLUSION The strength and selectivity of Verb and IsoVerb depended on the degree of activation and functional state of neutrophils, and both compounds are with potential to affect neutrophil-related pathologies/conditions in heterogenic populations.
Collapse
Affiliation(s)
- Petya Dimitrova
- Department of Immunology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd.,1113 Sofia, Bulgaria
| | - Kalina Alipieva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Kalin Stojanov
- Faculty of Medicine, University of Sofia Kliment Ohridski, 1407 Sofia, Bulgaria
| | - Viktoriya Milanova
- Department of Immunology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd.,1113 Sofia, Bulgaria
| | - Milen I Georgiev
- Group of Plant Cell Biotechnology and Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 4000 Plovdiv, Bulgaria.
| |
Collapse
|
37
|
Xu M, Liu PP, Li H. Innate Immune Signaling and Its Role in Metabolic and Cardiovascular Diseases. Physiol Rev 2019; 99:893-948. [PMID: 30565509 DOI: 10.1152/physrev.00065.2017] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The innate immune system is an evolutionarily conserved system that senses and defends against infection and irritation. Innate immune signaling is a complex cascade that quickly recognizes infectious threats through multiple germline-encoded cell surface or cytoplasmic receptors and transmits signals for the deployment of proper countermeasures through adaptors, kinases, and transcription factors, resulting in the production of cytokines. As the first response of the innate immune system to pathogenic signals, inflammatory responses must be rapid and specific to establish a physical barrier against the spread of infection and must subsequently be terminated once the pathogens have been cleared. Long-lasting and low-grade chronic inflammation is a distinguishing feature of type 2 diabetes and cardiovascular diseases, which are currently major public health problems. Cardiometabolic stress-induced inflammatory responses activate innate immune signaling, which directly contributes to the development of cardiometabolic diseases. Additionally, although the innate immune elements are highly conserved in higher-order jawed vertebrates, lower-grade jawless vertebrates lack several transcription factors and inflammatory cytokine genes downstream of the Toll-like receptors (TLRs) and retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) pathways, suggesting that innate immune signaling components may additionally function in an immune-independent way. Notably, recent studies from our group and others have revealed that innate immune signaling can function as a vital regulator of cardiometabolic homeostasis independent of its immune function. Therefore, further investigation of innate immune signaling in cardiometabolic systems may facilitate the discovery of new strategies to manage the initiation and progression of cardiometabolic disorders, leading to better treatments for these diseases. In this review, we summarize the current progress in innate immune signaling studies and the regulatory function of innate immunity in cardiometabolic diseases. Notably, we highlight the immune-independent effects of innate immune signaling components on the development of cardiometabolic disorders.
Collapse
Affiliation(s)
- Meng Xu
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan , China ; Medical Research Center, Zhongnan Hospital of Wuhan University , Wuhan , China ; Animal Experiment Center, Wuhan University , Wuhan , China ; Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Ontario , Canada
| | - Peter P Liu
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan , China ; Medical Research Center, Zhongnan Hospital of Wuhan University , Wuhan , China ; Animal Experiment Center, Wuhan University , Wuhan , China ; Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Ontario , Canada
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan , China ; Medical Research Center, Zhongnan Hospital of Wuhan University , Wuhan , China ; Animal Experiment Center, Wuhan University , Wuhan , China ; Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Ontario , Canada
| |
Collapse
|
38
|
O'Rourke F, Kempf VAJ. Interaction of bacteria and stem cells in health and disease. FEMS Microbiol Rev 2019; 43:162-180. [DOI: 10.1093/femsre/fuz003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/11/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Fiona O'Rourke
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, University Hospital, Goethe University, Paul-Ehrlich-Str. 40, D-60596 Frankfurt am Main, Germany
| | - Volkhard A J Kempf
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, University Hospital, Goethe University, Paul-Ehrlich-Str. 40, D-60596 Frankfurt am Main, Germany
| |
Collapse
|
39
|
Dang Y, An C, Li Y, Han D, Liu X, Zhang F, Xu Y, Zhong H, Karim Khan MK, Zou F, Sun X. Neutrophil-mediated and low density lipoprotein receptor-mediated dual-targeting nanoformulation enhances brain accumulation of scutellarin and exerts neuroprotective effects against ischemic stroke. RSC Adv 2019; 9:1299-1318. [PMID: 35518053 PMCID: PMC9059646 DOI: 10.1039/c8ra06688d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/05/2018] [Indexed: 11/21/2022] Open
Abstract
Delivery of poorly permeable drugs across the blood-brain barrier (BBB) is a great challenge in the treatment of ischemic stroke.
Collapse
|
40
|
Jin L, Bai R, Zhou J, Shi W, Xu L, Sheng J, Peng H, Jin Y, Yuan H. Association of Serum T cell Immunoglobulin Domain and Mucin-3 and Interleukin-17 with Systemic Lupus Erythematosus. Med Sci Monit Basic Res 2018; 24:168-176. [PMID: 30348938 PMCID: PMC6213872 DOI: 10.12659/msmbr.910949] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background Previous studies have shown that T cell immunoglobulin domain and mucin-3 (Tim-3) and interleukin-17 (IL-17) are implicated in the development of several autoimmune diseases. However, it is unclear whether these proteins contribute to the pathogenesis of systemic lupus erythematosus (SLE). The purpose of this study was to evaluate SLE patient serum Tim-3 and IL-17 levels, and to assess correlations between these proteins and major clinical parameters of SLE. Material/Methods Overall, 55 SLE patients and 55 healthy controls were recruited in a case-control study. Serum Tim-3 and IL-17 levels were quantified using an enzyme-linked immunosorbent assay (ELISA) kit. Results Serum Tim-3 and IL-17 levels in SLE patients were significantly elevated relative to healthy controls (all P<0.05). Serum Tim-3 levels were significantly lower in SLE patients with nephritis than in those SLE without nephritis (P<0.05), while no statistically significant correlation between serum IL-17 and nephritis was detected (P>0.05). Serum Tim-3 with IL-17 levels were positively correlated in SLE patients (rs=0.817, P<0.01); however, no statistically significant correlation was found between serum Tim-3 or IL-17 levels and systemic lupus erythematosus disease activity index (SLEDAI) scores in those with SLE (all P>0.05). In addition, serum Tim-3 was associated with central lesions in SLE patients, while there were no significant correlations between serum Tim-3 or IL-17 levels and other SLE clinical parameters. Conclusions Increased serum Tim-3 and IL-17 levels and their clinical associations in SLE patients suggest their possible role in this disease.
Collapse
Affiliation(s)
- Lairun Jin
- School of Public Health, Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Ran Bai
- School of Public Health, Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Jun Zhou
- School of Public Health, Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Wei Shi
- School of Public Health, Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Liang Xu
- Department of Rheumatology, Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Jun Sheng
- Department of Rheumatology, Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Hui Peng
- Administration Office of Hospital Admission and Discharge, Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Yuelong Jin
- School of Public Health, Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Hui Yuan
- School of Public Health, Wannan Medical College, Wuhu, Anhui, China (mainland)
| |
Collapse
|
41
|
TRIF is a key inflammatory mediator of acute sickness behavior and cancer cachexia. Brain Behav Immun 2018; 73:364-374. [PMID: 29852290 PMCID: PMC6129432 DOI: 10.1016/j.bbi.2018.05.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/21/2018] [Accepted: 05/27/2018] [Indexed: 12/11/2022] Open
Abstract
Hypothalamic inflammation is a key component of acute sickness behavior and cachexia, yet mechanisms of inflammatory signaling in the central nervous system remain unclear. Previous work from our lab and others showed that while MyD88 is an important inflammatory signaling pathway for sickness behavior, MyD88 knockout (MyD88KO) mice still experience sickness behavior after inflammatory stimuli challenge. We found that after systemic lipopolysaccharide (LPS) challenge, MyD88KO mice showed elevated expression of several cytokine and chemokine genes in the hypothalamus. We therefore assessed the role of an additional inflammatory signaling pathway, TRIF, in acute inflammation (LPS challenge) and in a chronic inflammatory state (cancer cachexia). TRIFKO mice resisted anorexia and weight loss after peripheral (intraperitoneal, IP) or central (intracerebroventricular, ICV) LPS challenge and in a model of pancreatic cancer cachexia. Compared to WT mice, TRIFKO mice showed attenuated upregulation of Il6, Ccl2, Ccl5, Cxcl1, Cxcl2, and Cxcl10 in the hypothalamus after IP LPS treatment, as well as attenuated microglial activation and neutrophil infiltration into the brain after ICV LPS treatment. Lastly, we found that TRIF was required for Ccl2 upregulation in the hypothalamus and induction of the catabolic genes, Mafbx, Murf1, and Foxo1 in gastrocnemius during pancreatic cancer. In summary, our results show that TRIF is an important inflammatory signaling mediator of sickness behavior and cachexia and presents a novel therapeutic target for these conditions.
Collapse
|
42
|
Liu D, Cao S, Zhou Y, Xiong Y. Recent advances in endotoxin tolerance. J Cell Biochem 2018; 120:56-70. [PMID: 30246452 DOI: 10.1002/jcb.27547] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022]
Abstract
Endotoxin tolerance is defined as a reduced capacity of a cell to respond endotoxin (lipopolysaccharide, LPS) challenge after an initial encounter with endotoxin in advance. The body becomes tolerant to subsequent challenge with a lethal dose of endotoxin and cytokines release and cell/tissue damage induced by inflammatory reaction are significantly reduced in the state of endotoxin tolerance. The main characteristics of endotoxin tolerance are downregulation of inflammatory mediators such as tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), and C-X-C motif chemokine 10 (CXCL10) and upregulation of anti-inflammatory cytokines such as IL-10 and transforming growth factor β (TGF-β). Therefore, endotoxin tolerance is often regarded as the regulatory mechanism of the host against excessive inflammation. Endotoxin tolerance is a complex pathophysiological process and involved in multiple cellular signal pathways, receptor alterations, and biological molecules. However, the exact mechanism remains elusive up to date. To better understand the underlying cellular and molecular mechanisms of endotoxin tolerance, it is crucial to investigate the comprehensive cellular signal pathways, signaling proteins, cell surface molecules, proinflammatory and anti-inflammatory cytokines, and other mediators. Endotoxin tolerance plays an important role in reducing the mortality of sepsis, endotoxin shock, and other endotoxin-related diseases. Recent reports indicated that endotoxin tolerance is also related to other diseases such as cystic fibrosis, acute coronary syndrome, liver ischemia-reperfusion injury, and cancer. The aim of this review is to discuss the recent advances in endotoxin tolerance mainly based on the cellular and molecular mechanisms by outline the current state of the knowledge of the involvement of the toll-like receptor 4 (TLR4) signaling pathways, negative regulate factor, microRNAs, apoptosis, chromatin modification, and gene reprogramming of immune cells in endotoxin tolerance. We hope to provide a new idea and scientific basis for the rational treatment of endotoxin-related diseases such as endotoxemia, sepsis, and endotoxin shock clinically.
Collapse
Affiliation(s)
- Dan Liu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Shousong Cao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yejiang Zhou
- Gastrointestinal Surgery, Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Yuxia Xiong
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
43
|
Ju H, Mao L, Zhang L, Liu S, Wu Y, Ruan M, Hu J, Ren G. Ultrasound hyperthermia enhances chemo‐sensitivity in oral squamous cell carcinoma by
TRIF
‐mediated pathway. J Oral Pathol Med 2018; 47:964-971. [PMID: 30113726 DOI: 10.1111/jop.12774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/11/2018] [Accepted: 08/04/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Houyu Ju
- Department of Oral Maxillofacial‐Head and Neck Oncology Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology National Clinical Research Center of Stomatology Shanghai China
| | - Lu Mao
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology National Clinical Research Center of Stomatology Shanghai China
- School of Stomatology Weifang Medical University Weifang Shandong China
| | - Liming Zhang
- Department of Oral Maxillofacial‐Head and Neck Oncology Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology National Clinical Research Center of Stomatology Shanghai China
| | - Shuli Liu
- Department of Oral Maxillofacial‐Head and Neck Oncology Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology National Clinical Research Center of Stomatology Shanghai China
| | - Yunteng Wu
- Department of Oral Maxillofacial‐Head and Neck Oncology Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology National Clinical Research Center of Stomatology Shanghai China
| | - Min Ruan
- Department of Oral Maxillofacial‐Head and Neck Oncology Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology National Clinical Research Center of Stomatology Shanghai China
| | - Jingzhou Hu
- Department of Oral Maxillofacial‐Head and Neck Oncology Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology National Clinical Research Center of Stomatology Shanghai China
| | - Guoxin Ren
- Department of Oral Maxillofacial‐Head and Neck Oncology Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology National Clinical Research Center of Stomatology Shanghai China
| |
Collapse
|
44
|
Tsoumtsa LL, Sougoufara S, Torre C, Lemichez E, Pontarotti P, Ghigo E. In silico analysis of Schmidtea mediterranea TIR domain-containing proteins. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 86:214-218. [PMID: 29746980 DOI: 10.1016/j.dci.2018.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/27/2018] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
While genetic evidence points towards an absence of Toll-Like Receptors (TLRs) in Platyhelminthes, the Toll/IL-1 Receptor (TIR)-domains that drive the assembly of signalling complexes downstream TLR are present in these organisms. Here, we undertook the characterisation of the repertoire of TIR-domain containing proteins in Schmidtea mediterranea in order to gain valuable information on TLR evolution in metazoan. We report the presence of twenty proteins containing between one and two TIR domains. In addition, our phylogenetic-based reconstruction approach identified Smed-SARM and Smed-MyD88 as conserved TLR adaptors.
Collapse
Affiliation(s)
- Landry Laure Tsoumtsa
- MEPHI, IRD, APHM, Institut Hospitalier Universitaire Méditerranée-Infection, 19-21 Bd Jean Moulin, 13385, Marseille Cedex 05, France
| | - Seynabou Sougoufara
- MEPHI, IRD, APHM, Institut Hospitalier Universitaire Méditerranée-Infection, 19-21 Bd Jean Moulin, 13385, Marseille Cedex 05, France
| | - Cedric Torre
- MEPHI, IRD, APHM, Institut Hospitalier Universitaire Méditerranée-Infection, 19-21 Bd Jean Moulin, 13385, Marseille Cedex 05, France
| | | | - Pierre Pontarotti
- MEPHI, IRD, APHM, Institut Hospitalier Universitaire Méditerranée-Infection, 19-21 Bd Jean Moulin, 13385, Marseille Cedex 05, France; CNRS, Centrale Marseille, I2M UMR 7373, Equipe Evolution Biologique et Modélisation, Aix-Marseille Université, 13284, Marseille, France; CNRS, 31 Chemin Joseph Aiguier, 13402, Marseille, France.
| | - Eric Ghigo
- CNRS, 31 Chemin Joseph Aiguier, 13402, Marseille, France; CNRS UMR 7278, IRD198, INSERM U1095, APHM, Institut Hospitalier Universitaire Méditerranée-Infection, Aix-Marseille Université, 19-21 Bd Jean Moulin, 13385, Marseille Cedex 05, France.
| |
Collapse
|
45
|
Perrin-Cocon L, Aublin-Gex A, Diaz O, Ramière C, Peri F, André P, Lotteau V. Toll-like Receptor 4-Induced Glycolytic Burst in Human Monocyte-Derived Dendritic Cells Results from p38-Dependent Stabilization of HIF-1α and Increased Hexokinase II Expression. THE JOURNAL OF IMMUNOLOGY 2018; 201:1510-1521. [PMID: 30037846 DOI: 10.4049/jimmunol.1701522] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 07/03/2018] [Indexed: 12/22/2022]
Abstract
Cell metabolism now appears as an essential regulator of immune cells activation. In particular, TLR stimulation triggers metabolic reprogramming of dendritic cells (DCs) with an increased glycolytic flux, whereas inhibition of glycolysis alters their functional activation. The molecular mechanisms involved in the control of glycolysis upon TLR stimulation are poorly understood for human DCs. TLR4 activation of human monocyte-derived DCs (MoDCs) stimulated glycolysis with an increased glucose consumption and lactate production. Global hexokinase (HK) activity, controlling the initial rate-limiting step of glycolysis, was also increased. TLR4-induced glycolytic burst correlated with a differential modulation of HK isoenzymes. LPS strongly enhanced the expression of HK2, whereas HK3 was reduced, HK1 remained unchanged, and HK4 was not expressed. Expression of the other rate-limiting glycolytic enzymes was not significantly increased. Exploring the signaling pathways involved in LPS-induced glycolysis with various specific inhibitors, we observed that only the inhibitors of p38-MAPK (SB203580) and of HIF-1α DNA binding (echinomycin) reduced both the glycolytic activity and production of cytokines triggered by TLR4 stimulation. In addition, LPS-induced HK2 expression required p38-MAPK-dependent HIF-1α accumulation and transcriptional activity. TLR1/2 and TLR2/6 stimulation increased glucose consumption by MoDCs through alternate mechanisms that are independent of p38-MAPK activation. TBK1 contributed to glycolysis regulation when DCs were stimulated via TLR2/6. Therefore, our results indicate that TLR4-dependent upregulation of glycolysis in human MoDCs involves a p38-MAPK-dependent HIF-1α accumulation, leading to an increased HK activity supported by enhanced HK2 expression.
Collapse
Affiliation(s)
- Laure Perrin-Cocon
- Centre International de Recherche en Infectiologie, Biologie Cellulaire des Infections Virales, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Hospices Civils de Lyon, Université de Lyon, Lyon, France; and
| | - Anne Aublin-Gex
- Centre International de Recherche en Infectiologie, Biologie Cellulaire des Infections Virales, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Hospices Civils de Lyon, Université de Lyon, Lyon, France; and
| | - Olivier Diaz
- Centre International de Recherche en Infectiologie, Biologie Cellulaire des Infections Virales, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Hospices Civils de Lyon, Université de Lyon, Lyon, France; and
| | - Christophe Ramière
- Centre International de Recherche en Infectiologie, Biologie Cellulaire des Infections Virales, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Hospices Civils de Lyon, Université de Lyon, Lyon, France; and
| | - Francesco Peri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - Patrice André
- Centre International de Recherche en Infectiologie, Biologie Cellulaire des Infections Virales, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Hospices Civils de Lyon, Université de Lyon, Lyon, France; and
| | - Vincent Lotteau
- Centre International de Recherche en Infectiologie, Biologie Cellulaire des Infections Virales, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Hospices Civils de Lyon, Université de Lyon, Lyon, France; and
| |
Collapse
|
46
|
Davis S, Cirone AM, Menzie J, Russell F, Dorey CK, Shibata Y, Wei J, Nan C. Phagocytosis-mediated M1 activation by chitin but not by chitosan. Am J Physiol Cell Physiol 2018; 315:C62-C72. [PMID: 29719169 PMCID: PMC6087726 DOI: 10.1152/ajpcell.00268.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 04/16/2018] [Accepted: 04/16/2018] [Indexed: 02/06/2023]
Abstract
Chitin particles have been used to understand host response to chitin-containing pathogens and allergens and are known to induce a wide range of polarized macrophage activations, depending, at least in part, on particle size. Nonphagocytosable particles larger than a macrophage induce tissue repair M2 activation. In contrast, phagocytosable chitin microparticles (CMPs, 1-10 μm diameters) induce M1 macrophages that kill intracellular microbes and damage tissues. However, chitosan (deacetylated) microparticles (de-CMPs, 1-10 µm) induce poor M1 activation. Toll-like receptor 2 (TLR2) and associated coreceptors in macrophages appear to be required for the M1 activation. To understand the exact mechanism of phagocytosis-mediated M1 activation by chitin, we isolated macrophage proteins that bind to CMPs during early phagocytosis and determined that TLR1, TLR2, CD14, late endosomal/lysosomal adaptor MAPK and mechanistic target of rapamycin activator 1 (LAMTOR1), Lck/Yes novel tyrosine kinase (Lyn), and β-actin formed phagosomal CMP-TLR2 clusters. These proteins were also detected in TLR2 phagosomal clusters in macrophages phagocytosing de-CMPs, but at relatively lower levels than in the CMP-TLR2 clusters. Importantly, CMP-TLR2 clusters further recruited myeloid differentiation primary response gene 88 (MyD88) and Toll-IL-1 receptor-containing adaptor protein (TIRAP) and phosphorylated Lyn, whereas neither the adaptors nor phosphorylated Lyn was detected in the de-CMP clusters. The results indicate that the acetyl group played an obligatory, phagocytosis-dependent role in the initiation of an integrated signal for TLR2-mediated M1 activation.
Collapse
Affiliation(s)
- Spring Davis
- Florida Atlantic University , Boca Raton, Florida
| | | | - Janet Menzie
- Florida Atlantic University , Boca Raton, Florida
| | | | - C Kathleen Dorey
- Virginia Tech Carilion School of Medicine and Research Institute , Roanoke, Virginia
| | | | - Jianning Wei
- Florida Atlantic University , Boca Raton, Florida
| | | |
Collapse
|
47
|
Chen X, Zhao Q, Xie Q, Xing Y, Chen Z. MCPIP1 negatively regulate cellular antiviral innate immune responses through DUB and disruption of TRAF3-TBK1-IKKε complex. Biochem Biophys Res Commun 2018; 503:830-836. [PMID: 29920243 PMCID: PMC7092953 DOI: 10.1016/j.bbrc.2018.06.083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/16/2018] [Indexed: 01/12/2023]
Abstract
IFNβ innate immune plays an essential role in antiviral immune. Previous reports suggested that many important regulatory proteins in innate immune pathway may be modified by ubiquitin and that many de-ubiquitination (DUB) proteins may affect immunity. Monocyte chemotactic protein-inducing protein 1 (MCPIP1), one of the CCCH Zn finger-containing proteins, was reported to have DUB function, but its effect on IFNβ innate immune was not fully understood. In this study, we uncovered a novel mechanism that may explain how MCPIP1 efficiently inhibits IFNβ innate immune. It was found that MCPIP1 negatively regulates the IFNβ expression activated by RIG-I, STING, TBK1, IRF3. Furthermore, MCPIP1 inhibits the nuclear translocation of IRF3 upon stimulation with virus, which plays a key role in type I IFN expression. Additionally, MCPIP1 interacts with important modulators of IFNβ expression pathway including IPS1, TRAF3, TBK1 and IKKε. Meanwhile, the interaction between the components in TRAF3-TBK1-IKKε complex was disrupted by MCPIP1. These results collectively suggest MCPIP1 as an innate immune regulator encoded by the host and point to a new mechanism through which MCPIP1 negatively regulates IRF3 activation and type I IFNβ expression.
Collapse
Affiliation(s)
- Xiaojuan Chen
- Division of Infection and Immunity, Department of Biological Technology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Qian Zhao
- Division of Infection and Immunity, Department of Biological Technology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Qing Xie
- Division of Infection and Immunity, Department of Biological Technology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yaling Xing
- Division of Infection and Immunity, Department of Biological Technology, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Zhongbin Chen
- Division of Infection and Immunity, Department of Biological Technology, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| |
Collapse
|
48
|
Takeda Y, Azuma M, Hatsugai R, Fujimoto Y, Hashimoto M, Fukase K, Matsumoto M, Seya T. The second and third amino acids of Pam2 lipopeptides are key for the proliferation of cytotoxic T cells. Innate Immun 2018; 24:323-331. [PMID: 29848176 PMCID: PMC6830919 DOI: 10.1177/1753425918777598] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The TLR2 agonist, dipalmitoyl lipopeptide (Pam2LP), has been used as an immune
adjuvant without much success. Pam2LP is recognised by TLR2/6 receptors in
humans and in mice. This study examined the proliferative activity of cytotoxic
T lymphocytes (CTL) using mouse Ag-presenting dendritic cells (DCs) and OT-I
assay system, where a library of synthetic Pam2LP was utilised from the
Staphylococcus aureus database. Ag-specific CTL expansion
and IFN-γ levels largely depended on the Pam2LP peptide sequence. The first Aa
is cysteine (Cys), which has an active SH residue to bridge fatty acids, and the
second and third Aa are hydrophilic or non-polar. The sequence structurally
adapted to the residual constitution of the reported TLR2/6 pocket. The inactive
sequence contained proline or leucine/isoleucine after the first Cys. Notably,
no direct activation of OT-I cells was detected without DCs by stimulation with
the active Pam2LP having the Cys-Ser sequence. MyD88, but not TICAM-1 or IFN
pathways, in DCs participates in DC maturation characterised by upregulation of
CD40, CD80 and CD86. Hence, the active Pam2LPs appear suitable for dimeric
TLR2/6 on DCs, resulting in induction of DC maturation.
Collapse
Affiliation(s)
- Yohei Takeda
- 1 Department of Vaccine Immunology, Graduate School of Medicine, Hokkaido University, Japan
| | - Masahiro Azuma
- 1 Department of Vaccine Immunology, Graduate School of Medicine, Hokkaido University, Japan
| | - Ryoko Hatsugai
- 1 Department of Vaccine Immunology, Graduate School of Medicine, Hokkaido University, Japan
| | - Yukari Fujimoto
- 2 Faculty of Science and Technology, Keio University, Japan.,3 Department of Chemistry, Graduate School of Science, Osaka University, Japan
| | - Masahito Hashimoto
- 4 Department of Nanostructure and Advanced Materials, Kagoshima University, Japan
| | - Koichi Fukase
- 3 Department of Chemistry, Graduate School of Science, Osaka University, Japan
| | - Misako Matsumoto
- 1 Department of Vaccine Immunology, Graduate School of Medicine, Hokkaido University, Japan
| | - Tsukasa Seya
- 1 Department of Vaccine Immunology, Graduate School of Medicine, Hokkaido University, Japan
| |
Collapse
|
49
|
McCarthy GM, Warden AS, Bridges CR, Blednov YA, Harris RA. Chronic ethanol consumption: role of TLR3/TRIF-dependent signaling. Addict Biol 2018; 23:889-903. [PMID: 28840972 PMCID: PMC5828779 DOI: 10.1111/adb.12539] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 12/27/2022]
Abstract
Chronic ethanol consumption stimulates neuroimmune signaling in the brain, and Toll-like receptor (TLR) activation plays a key role in ethanol-induced inflammation. However, it is unknown which of the TLR signaling pathways, the myeloid differentiation primary response gene 88 (MyD88) dependent or the TIR-domain-containing adapter-inducing interferon-β (TRIF) dependent, is activated in response to chronic ethanol. We used voluntary (every-other-day) chronic ethanol consumption in adult C57BL/6J mice and measured expression of TLRs and their signaling molecules immediately following consumption and 24 hours after removing alcohol. We focused on the prefrontal cortex where neuroimmune changes are the most robust and also investigated the nucleus accumbens and amygdala. Tlr mRNA and components of the TRIF-dependent pathway (mRNA and protein) were increased in the prefrontal cortex 24 hours after ethanol and Cxcl10 expression increased 0 hour after ethanol. Expression of Tlr3 and TRIF-related components increased in the nucleus accumbens, but slightly decreased in the amygdala. In addition, we demonstrate that the IKKε/TBK1 inhibitor Amlexanox decreases immune activation of TRIF-dependent pathway in the brain and reduces ethanol consumption, suggesting the TRIF-dependent pathway regulates drinking. Our results support the importance of TLR3 and the TRIF-dependent pathway in ethanol-induced neuroimmune signaling and suggest that this pathway could be a target in the treatment of alcohol use disorders.
Collapse
Affiliation(s)
- Gizelle M. McCarthy
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX USA
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX USA
| | - Anna S. Warden
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX USA
- Insitute for Neuroscience, University of Texas at Austin, Austin, TX USA
| | - Courtney R. Bridges
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX USA
| | - Yuri A. Blednov
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX USA
| | - R. Adron Harris
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX USA
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX USA
- Insitute for Neuroscience, University of Texas at Austin, Austin, TX USA
| |
Collapse
|
50
|
Takeda Y, Azuma M, Funami K, Shime H, Matsumoto M, Seya T. Type I Interferon-Independent Dendritic Cell Priming and Antitumor T Cell Activation Induced by a Mycoplasma fermentans Lipopeptide. Front Immunol 2018; 9:496. [PMID: 29593736 PMCID: PMC5861346 DOI: 10.3389/fimmu.2018.00496] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/26/2018] [Indexed: 12/12/2022] Open
Abstract
Mycoplasma fermentans-derived diacylated lipoprotein M161Ag (MALP404) is recognized by human/mouse toll-like receptor (TLR) 2/TLR6. Short proteolytic products including macrophage-activating lipopeptide 2 (MALP2) have been utilized as antitumor immune-enhancing adjuvants. We have chemically synthesized a short form of MALP2 named MALP2s (S-[2,3-bis(palmitoyloxy)propyl]-CGNNDE). MALP2 and MALP2s provoke natural killer (NK) cell activation in vitro but only poorly induce tumor regression using in vivo mouse models loading NK-sensitive tumors. Here, we identified the functional mechanism of MALP2s on dendritic cell (DC)-priming and cytotoxic T lymphocyte (CTL)-dependent tumor eradication using CTL-sensitive tumor-implant models EG7 and B16-OVA. Programmed death ligand-1 (PD-L1) blockade therapy in combination with MALP2s + ovalbumin (OVA) showed a significant additive effect on tumor growth suppression. MALP2s increased co-stimulators CD80/86 and CD40, which were totally MyD88-dependent, with no participation of toll-IL-1R homology domain-containing adaptor molecule-1 or type I interferon signaling in DC priming. MALP2s + OVA consequently augmented proliferation of OVA-specific CTLs in the spleen and at tumor sites. Chemokines and cytolytic factors were upregulated in the tumor. Strikingly, longer duration and reinvigoration of CTLs in spleen and tumors were accomplished by the addition of MALP2s + OVA to α-PD-L1 antibody (Ab) therapy compared to α-PD-L1 Ab monotherapy. Then, tumors regressed better in the MALP2s/OVA combination than in the α-PD-L1 Ab monotherapy. Hence, MALP2s/tumor-associated antigens combined with α-PD-L1 Ab is a good therapeutic strategy in some mouse models. Unfortunately, numerous patients are still resistant to PD-1/PD-L1 blockade, and good DC-priming adjuvants are desired. Cytokine toxicity by MALP2s remains to be settled, which should be improved by chemical modification in future studies.
Collapse
Affiliation(s)
- Yohei Takeda
- Department of Vaccine Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masahiro Azuma
- Department of Vaccine Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kenji Funami
- Department of Vaccine Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hiroaki Shime
- Department of Vaccine Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Misako Matsumoto
- Department of Vaccine Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tsukasa Seya
- Department of Vaccine Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|