1
|
Li Z, Hao L, Chen S, Fu W, Zhang H, Yin Z, Wang Y, Wang J. Forkhead box C1 promotes the pathology of osteoarthritis in subchondral bone osteoblasts via the Piezo1/YAP axis. Cell Signal 2024; 124:111463. [PMID: 39396563 DOI: 10.1016/j.cellsig.2024.111463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
Subchondral bone sclerosis is a key characteristic of osteoarthritis (OA). Prior research has shown that Forkhead box C1 (FoxC1) plays a role in the synovial inflammation of OA, but its specific role in the subchondral bone of OA has not been explored. Our research revealed elevated expression levels of FoxC1 and Piezo1 in OA subchondral bone tissues. Further experiments on OA subchondral bone osteoblasts with FoxC1 or Piezo1 overexpression showed increased cell proliferation activity, expression of Yes-associated Protein 1 (YAP) and osteogenic markers, and secretion of proinflammatory factors. Mechanistically, the overexpression of FoxC1 through Piezo1 activation, in combination with downstream YAP signaling, led to increased levels of alkaline phosphatase (ALP), collagen type 1 (COL1) A1, RUNX2, Osteocalcin, matrix metalloproteinase (MMP) 3, and MMP9 expression. Notably, inhibition of Piezo1 reversed the regulatory function of FoxC1. The binding of FoxC1 to the targeted area (ATATTTATTTA, residues +612 to +622) and the activation of Piezo1 transcription were verified by the dual luciferase assays. Additionally, Reduced subchondral osteosclerosis and microangiogenesis were observed in knee joints from FoxC1-conditional knockout (CKO) and Piezo1-CKO mice, indicating reduced lesions. Collectively, our study reveals the significant involvement of FoxC1 in the pathologic process of OA subchondral bone via the Piezo1/YAP signaling pathway, potentially establishing a novel therapeutic target.
Collapse
Affiliation(s)
- Zhengyuan Li
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Zoonoses, Anhui Medical University, Anhui, China
| | - Lin Hao
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Zoonoses, Anhui Medical University, Anhui, China
| | - Shenghong Chen
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Zoonoses, Anhui Medical University, Anhui, China
| | - Wenhan Fu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Zoonoses, Anhui Medical University, Anhui, China
| | - Hui Zhang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Road, Hefei 230022, Anhui, China
| | - Zongsheng Yin
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Road, Hefei 230022, Anhui, China.
| | - Yin Wang
- Department of Wound Repair & Plastic and Aesthetic Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui, China; Anhui Public Health Clinical Center, Anhui, China.
| | - Jun Wang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Road, Hefei 230022, Anhui, China.
| |
Collapse
|
2
|
Tawaratsumida H, Iuchi T, Masuda Y, Maesako S, Miyazaki T, Ijuin T, Maeda S, Taniguchi N. Zoledronate alleviates subchondral bone collapse and articular cartilage degeneration in a rat model of rotator cuff tear arthropathy. Osteoarthritis Cartilage 2024:S1063-4584(24)01354-2. [PMID: 39153568 DOI: 10.1016/j.joca.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/26/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
OBJECTIVE To evaluate the humeral head bone volume of patients with cuff tear arthropathy (CTA) and examine the therapeutic effect of zoledronate in a rat modified model of CTA (mCTA). DESIGN The bone mass in patients with CTA was measured using Hounsfield units from CT images. The mCTA was induced by transecting the rotator cuff, biceps brachii tendon, and superior half of the joint capsule in adult rat shoulders. A single subcutaneous injection of zoledronate was followed by bone histomorphometry and immunohistochemistry of the humeral head, as well as the Murine Shoulder Arthritis Score (MSAS) assessment. RESULTS The humeral head bone volume was decreased in patients with CTA. In the mCTA model, M1 macrophages were increased in the synovium and were decreased by zoledronate treatment. The increased expressions of TNF-α, IL-1β and IL-6 in mCTA synovium and articular cartilage were suppressed in the zoledronate-treated mCTA group. The expression of catabolic enzymes in the articular cartilage and MSAS showed similar results. The zoledronate-treated mCTA group showed a decreased subchondral bone collapse with a decreased RANKL/OPG expression ratio and a suppressed number of osteoclasts compared with the control mCTA group. The enhanced expressions of HMGB1 and S100A9 in the mCTA shoulders were eliminated in the zoledronate-treated mCTA group. CONCLUSIONS The humeral head subchondral bone was decreased in patients with CTA. In the mCTA model, the collapse and osteoarthritic changes were prevented by zoledronate administration. Zoledronate seemed to suppress the number of M1 macrophages in the synovium and osteoclasts in the subchondral bone.
Collapse
Affiliation(s)
- Hiroki Tawaratsumida
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima 890-8520, Japan.
| | - Tomohiro Iuchi
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima 890-8520, Japan; Department of Medical Joint Materials, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima 890-8520, Japan.
| | - Yusuke Masuda
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima 890-8520, Japan; Department of Locomotory Organ Regeneration, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima 890-8520, Japan.
| | - Shingo Maesako
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima 890-8520, Japan; Department of Bone and Joint Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima 890-8520, Japan.
| | - Takasuke Miyazaki
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima 890-8520, Japan.
| | - Toshiro Ijuin
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima 890-8520, Japan.
| | - Shingo Maeda
- Department of Bone and Joint Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima 890-8520, Japan.
| | - Noboru Taniguchi
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima 890-8520, Japan; Department of Medical Joint Materials, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima 890-8520, Japan; Department of Locomotory Organ Regeneration, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima 890-8520, Japan; Department of Bone and Joint Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima 890-8520, Japan.
| |
Collapse
|
3
|
Shao Z, Wang B, Gao H, Zhang S. Microenvironmental interference with intra-articular stem cell regeneration influences the onset and progression of arthritis. Front Genet 2024; 15:1380696. [PMID: 38841721 PMCID: PMC11150611 DOI: 10.3389/fgene.2024.1380696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/30/2024] [Indexed: 06/07/2024] Open
Abstract
Studies have indicated that the preservation of joint health and the facilitation of damage recovery are predominantly contingent upon the joint's microenvironment, including cell-cell interactions, the extracellular matrix's composition, and the existence of local growth factors. Mesenchymal stem cells (MSCs), which possess the capacity to self-renew and specialize in many directions, respond to cues from the microenvironment, and aid in the regeneration of bone and cartilage, are crucial to this process. Changes in the microenvironment (such as an increase in inflammatory mediators or the breakdown of the extracellular matrix) in the pathological context of arthritis might interfere with stem cell activation and reduce their ability to regenerate. This paper investigates the potential role of joint microenvironmental variables in promoting or inhibiting the development of arthritis by influencing stem cells' ability to regenerate. The present status of research on stem cell activity in the joint microenvironment is also outlined, and potential directions for developing new treatments for arthritis that make use of these intervention techniques to boost stem cell regenerative potential through altering the intra-articular environment are also investigated. This review's objectives are to investigate these processes, offer fresh perspectives, and offer a solid scientific foundation for the creation of arthritic treatment plans in the future.
Collapse
Affiliation(s)
| | | | | | - Shenqi Zhang
- Department of Joint and Sports Medicine, Zaozhuang Municipal Hospital Affiliated to Jining Medical University, Zaozhuang, Shandong, China
| |
Collapse
|
4
|
Yokota S, Ishizu H, Miyazaki T, Takahashi D, Iwasaki N, Shimizu T. Osteoporosis, Osteoarthritis, and Subchondral Insufficiency Fracture: Recent Insights. Biomedicines 2024; 12:843. [PMID: 38672197 PMCID: PMC11048726 DOI: 10.3390/biomedicines12040843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The increased incidence of osteoarthritis (OA), particularly knee and hip OA, and osteoporosis (OP), owing to population aging, have escalated the medical expense burden. Osteoarthritis is more prevalent in older women, and the involvement of subchondral bone fragility spotlights its association with OP. Notably, subchondral insufficiency fracture (SIF) may represent a more pronounced condition of OA pathophysiology. This review summarizes the relationship between OA and OP, incorporating recent insights into SIF. Progressive SIF leads to joint collapse and secondary OA and is associated with OP. Furthermore, the thinning and fragility of subchondral bone in early-stage OA suggest that SIF may be a subtype of OA (osteoporosis-related OA, OPOA) characterized by significant subchondral bone damage. The high bone mineral density observed in OA may be overestimated due to osteophytes and sclerosis and can potentially contribute to OPOA. The incidence of OPOA is expected to increase along with population aging. Therefore, prioritizing OP screening, early interventions for patients with early-stage OA, and fracture prevention measures such as rehabilitation, fracture liaison services, nutritional management, and medication guidance are essential.
Collapse
Affiliation(s)
| | | | | | | | | | - Tomohiro Shimizu
- Department of Orthopedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (S.Y.); (H.I.); (T.M.); (D.T.); (N.I.)
| |
Collapse
|
5
|
Liao Z, Umar M, Huang X, Qin L, Xiao G, Chen Y, Tong L, Chen D. Transient receptor potential vanilloid 1: A potential therapeutic target for the treatment of osteoarthritis and rheumatoid arthritis. Cell Prolif 2024; 57:e13569. [PMID: 37994506 PMCID: PMC10905355 DOI: 10.1111/cpr.13569] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/11/2023] [Accepted: 10/15/2023] [Indexed: 11/24/2023] Open
Abstract
This study aims to determine the molecular mechanisms and analgesic effects of transient receptor potential vanilloid 1 (TRPV1) in the treatments of osteoarthritis (OA) and rheumatoid arthritis (RA). We summarize and analyse current studies regarding the biological functions and mechanisms of TRPV1 in arthritis. We search and analyse the related literature in Google Scholar, Web of Science and PubMed databases from inception to September 2023 through the multi-combination of keywords like 'TRPV1', 'ion channel', 'osteoarthritis', 'rheumatoid arthritis' and 'pain'. TRPV1 plays a crucial role in regulating downstream gene expression and maintaining cellular function and homeostasis, especially in chondrocytes, synovial fibroblasts, macrophages and osteoclasts. In addition, TRPV1 is located in sensory nerve endings and plays an important role in nerve sensitization, defunctionalization or central sensitization. TRPV1 is a non-selective cation channel protein. Extensive evidence in recent years has established the significant involvement of TRPV1 in the development of arthritis pain and inflammation, positioning it as a promising therapeutic target for arthritis. TRPV1 likely represents a feasible therapeutic target for the treatment of OA and RA.
Collapse
Affiliation(s)
- Zhidong Liao
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
- Research Center for Computer‐aided Drug Discovery, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- Faculty of Pharmaceutical SciencesShenzhen Institute of Advanced TechnologyShenzhenChina
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co‐constructed by the Province and MinistryGuangxi Medical UniversityNanningGuangxiChina
| | - Muhammad Umar
- Research Center for Computer‐aided Drug Discovery, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- Faculty of Pharmaceutical SciencesShenzhen Institute of Advanced TechnologyShenzhenChina
| | - Xingyun Huang
- Research Center for Computer‐aided Drug Discovery, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- Faculty of Pharmaceutical SciencesShenzhen Institute of Advanced TechnologyShenzhenChina
| | - Ling Qin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research LaboratoryLi Ka Shing Institute of Health Sciences, The Chinese University of Hong KongHong KongChina
| | - Guozhi Xiao
- School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Yan Chen
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Liping Tong
- Research Center for Computer‐aided Drug Discovery, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Di Chen
- Research Center for Computer‐aided Drug Discovery, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- Faculty of Pharmaceutical SciencesShenzhen Institute of Advanced TechnologyShenzhenChina
| |
Collapse
|
6
|
Kaneguchi A, Yamaoka K, Ozawa J. Effects of Weight Bearing on Marrow Adipose Tissue and Trabecular Bone after Anterior Cruciate Ligament Reconstruction in the Rat Proximal Tibial Epiphysis. Acta Histochem Cytochem 2024; 57:15-24. [PMID: 38463204 PMCID: PMC10918432 DOI: 10.1267/ahc.23-00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/11/2024] [Indexed: 03/12/2024] Open
Abstract
The effects of mechanical unloading after anterior cruciate ligament (ACL) reconstruction on bone and marrow adipose tissue (MAT) are unclear. We investigated weight bearing effects on bone and MAT after ACL reconstruction. Rats underwent unilateral knee ACL transection and reconstruction, followed by hindlimb unloading (non-weight bearing), no intervention (low-weight bearing, the hindlimb standing time ratio (STR; operated/contralateral) during treadmill locomotion ranging from 0.55 to 0.91), or sustained morphine administration (moderate-weight bearing, STR ranging from 0.80 to 0.95). Untreated rats were used as controls. At 7 or 14 days after surgery, changes in trabecular bone and MAT in the proximal tibial were assessed histologically. Histological assessments at 7 or 14 days after surgery showed that ACL reconstruction without post-operative intervention did not significantly change trabecular bone and MAT areas. Hindlimb unloading after ACL reconstruction induced MAT accumulation with adipocyte hyperplasia and hypertrophy within 14 days, but did not significantly affect trabecular bone area. Increased weight bearing through morphine administration did not affect trabecular bone and MAT parameters. Our results suggest that early weight bearing after ACL reconstruction is important in reducing MAT accumulation, and that reduction in weight bearing alone is not sufficient to induce bone loss early after ACL reconstruction.
Collapse
Affiliation(s)
- Akinori Kaneguchi
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan
| | - Kaoru Yamaoka
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan
| | - Junya Ozawa
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
7
|
Boregowda SV, Haga CL, Supper VM, Booker CN, Phinney DG. Novel role for alpha-2-macroglobulin (A2M) as a disease modifying protein in senile osteoporosis. Front Cell Dev Biol 2023; 11:1294438. [PMID: 37965574 PMCID: PMC10642388 DOI: 10.3389/fcell.2023.1294438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023] Open
Abstract
Introduction: In the rapidly aging U.S. population, age-induced bone loss (senile osteoporosis) represents a major public health concern that is associated with a significant increased risk for low trauma fragility fractures, which are debilitating to patients, cause significant morbidity and mortality, and are costly to treat and manage. While various treatments exist to slow bone loss in osteoporosis patients, these suffer from poor tolerability and label restrictions that limit their overall effectiveness. Over the past decade, skeletal stem/progenitor cells (SSPCs), which are the main precursor of osteoblasts and adipocytes in adult bone marrow (BM), have emerged as important players in osteoporosis. Methods: Age-induced skeletal pathology was quantified in elderly (24-month-old) vs. mature (3-month-old) mice by micro-CT and changes in SSPC abundance in the BM of these mice was quantified by fluorescence-activated cell sorting (FACS). SSPCs from elderly vs. mature mice were also analyzed by RNA-Seq to identify differentially expressed genes (DEGs), and gain and loss-of-function studies were performed in human BM-derived mesenchymal stromal cells (BM-MSCs) to assess A2M function. Results: Elderly mice were shown to exhibit significant age-induced skeletal pathology, which correlated with a significant increase in SSPC abundance in BM. RNA-seq analysis identified alpha-2-macroglobulin (A2M), a pan-protease inhibitor that also binds inflammatory cytokines, as one of the most downregulated transcripts in SSPCs isolated from the BM of elderly vs. mature mice, and silencing of A2M expression in human BM-MSCs induced their proliferation and skewed their lineage bifurcation toward adipogenesis at the expense of osteogenesis thereby recapitulating critical aspects of age-induced stem cell dysfunction. Conclusion: These findings identify A2M as a novel disease modifying protein in osteoporosis, downregulation of which in bone marrow promotes SSPC dysfunction and imbalances in skeletal homeostasis.
Collapse
Affiliation(s)
| | | | | | | | - Donald G. Phinney
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, United States
| |
Collapse
|
8
|
Peurière L, Mastrandrea C, Vanden-Bossche A, Linossier MT, Thomas M, Normand M, Lafage-Proust MH, Vico L. Hindlimb unloading in C57BL/6J mice induces bone loss at thermoneutrality without change in osteocyte and lacuno-canalicular network. Bone 2023; 169:116640. [PMID: 36526262 DOI: 10.1016/j.bone.2022.116640] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/13/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022]
Abstract
Impaired mechanical stimuli during hindlimb unloading (HLU) are believed to exacerbate osteocyte paracrine regulation of osteoclasts. We hypothesized that bone loss and deterioration of the osteocyte lacuno-canalicular network are attenuated in HLU mice housed at thermoneutrality (28 °C) compared with those housed at ambient temperature (22 °C). Following acclimatization, 20-week-old male C57BL/6J mice were submitted to HLU or kept in pair-fed control cages (CONT), for 5 days (5d) or 14d, at 22 °C or 28 °C. In the femur distal metaphysis, thermoneutral CONT mice had higher bone volume (p = 0.0007, BV/TV, in vivo μCT, vs. 14dCONT22) whilst osteoclastic surfaces of CONT and HLU were greater at 22 °C (5dCONT22 + 53 %, 5dHLU22 + 50 %, 14dCONT22 + 186 %, 14dHLU22 + 104 %, vs matching 28 °C group). In the femur diaphysis and at both temperatures, 14dHLU exhibited thinner cortices distally or proximally compared to controls; the mid-diaphysis being thicker at 28 °C than at 22 °C in all groups. Expression of cortical genes for proteolytic enzyme (Mmp13), markers for osteoclastogenic differentiation (MCSF, RANKL), and activity (TRAP, Ctsk) were increased following 22 °C HLU, whereas only Ctsk expression was increased following 28 °C HLU. Expression of cortical genes for apoptosis, senescence, and autophagy were not elevated following HLU at any temperature. Osteocyte density at the posterior mid-diaphysis was similar between groups, as was the proportion of empty lacunae (<0.5 %). However, analysis of the lacuno-canalicular network (LCN, fluorescein staining) revealed unstained areas in the 14dHLU22 group only, suggesting disrupted LCN flow in this group alone. In conclusion, 28 °C housing influences the HLU bone response but does not prevent bone loss. Furthermore, our results do not show osteocyte senescence or death, and at thermoneutrality, HLU-induced bone resorption is not triggered by osteoclastic activators RANKL and MCSF.
Collapse
Affiliation(s)
- Laura Peurière
- Université Jean Monnet Saint-Étienne, Mines Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023, Saint-Étienne, France.
| | - Carmelo Mastrandrea
- Université Jean Monnet Saint-Étienne, Mines Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023, Saint-Étienne, France
| | - Arnaud Vanden-Bossche
- Université Jean Monnet Saint-Étienne, Mines Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023, Saint-Étienne, France
| | - Marie-Thérèse Linossier
- Université Jean Monnet Saint-Étienne, Mines Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023, Saint-Étienne, France
| | - Mireille Thomas
- Université Jean Monnet Saint-Étienne, Mines Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023, Saint-Étienne, France
| | - Myriam Normand
- Université Jean Monnet Saint-Étienne, Mines Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023, Saint-Étienne, France
| | - Marie-Hélène Lafage-Proust
- Université Jean Monnet Saint-Étienne, Mines Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023, Saint-Étienne, France
| | - Laurence Vico
- Université Jean Monnet Saint-Étienne, Mines Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023, Saint-Étienne, France
| |
Collapse
|
9
|
Kaneguchi A, Yamaoka K, Ozawa J. Effects of joint immobilization and treadmill exercise on marrow adipose tissue and trabecular bone after anterior cruciate ligament reconstruction in the rat proximal tibial epiphysis. Acta Histochem 2023; 125:152012. [PMID: 36773546 DOI: 10.1016/j.acthis.2023.152012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023]
Abstract
Marrow adipose tissue (MAT) adversely affects bone metabolism under certain conditions. Although mechanical stress is an important factor in regulating MAT and bone mass, how stress from different rehabilitation protocols after anterior cruciate ligament (ACL) reconstruction affects trabecular bone and MAT is unclear. We aimed to examine the effects of joint immobilization and treadmill exercise on trabecular bone and MAT after ACL reconstruction. Rats received unilateral knee ACL transection and reconstruction surgery. After surgery, rats were reared without intervention, with joint immobilization, or with treadmill exercise (12 m/min, 60 min/day, six days/week), with untreated rats as controls. At two or four weeks after starting experiments, we examined histological changes in trabecular bone and MAT in the proximal tibial epiphysis. After ACL reconstruction, there were no significant changes in trabecular bone area and MAT area at both time points. Joint immobilization after ACL reconstruction resulted in reduced trabecular bone area and MAT accumulation due to adipocyte hyperplasia and hypertrophy within four weeks. Treadmill exercise after ACL reconstruction did not affect any parameters in trabecular bone and MAT. We detected a moderate negative correlation between trabecular bone area and MAT area. Therefore, MAT accumulation induced by joint immobilization may contribute, at least in part, to reducing trabecular bone area. To minimize trabecular bone loss and MAT accumulation, joint immobilization after ACL reconstruction should be minimized. Exercise after ACL reconstruction did not alter trabecular bone and MAT.
Collapse
Affiliation(s)
- Akinori Kaneguchi
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan.
| | - Kaoru Yamaoka
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan
| | - Junya Ozawa
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
10
|
Wölfel EM, Lademann F, Hemmatian H, Blouin S, Messmer P, Hofbauer LC, Busse B, Rauner M, Jähn-Rickert K, Tsourdi E. Reduced Bone Mass and Increased Osteocyte Tartrate-Resistant Acid Phosphatase (TRAP) Activity, But Not Low Mineralized Matrix Around Osteocyte Lacunae, Are Restored After Recovery From Exogenous Hyperthyroidism in Male Mice. J Bone Miner Res 2023; 38:131-143. [PMID: 36331133 DOI: 10.1002/jbmr.4736] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Hyperthyroidism causes secondary osteoporosis through favoring bone resorption over bone formation, leading to bone loss with elevated bone fragility. Osteocytes that reside within lacunae inside the mineralized bone matrix orchestrate the process of bone remodeling and can themselves actively resorb bone upon certain stimuli. Nevertheless, the interaction between thyroid hormones and osteocytes and the impact of hyperthyroidism on osteocyte cell function are still unknown. In a preliminary study, we analyzed bones from male C57BL/6 mice with drug-induced hyperthyroidism, which led to mild osteocytic osteolysis with 1.14-fold larger osteocyte lacunae and by 108.33% higher tartrate-resistant acid phosphatase (TRAP) activity in osteocytes of hyperthyroid mice compared to euthyroid mice. To test whether hyperthyroidism-induced bone changes are reversible, we rendered male mice hyperthyroid by adding levothyroxine into their drinking water for 4 weeks, followed by a weaning period of 4 weeks with access to normal drinking water. Hyperthyroid mice displayed cortical and trabecular bone loss due to high bone turnover, which recovered with weaning. Although canalicular number and osteocyte lacunar area were similar in euthyroid, hyperthyroid and weaned mice, the number of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL)-positive osteocytes was 100% lower in the weaning group compared to euthyroid mice and the osteocytic TRAP activity was eightfold higher in hyperthyroid animals. The latter, along with a 3.75% lower average mineralization around the osteocyte lacunae in trabecular bone, suggests osteocytic osteolysis activity that, however, did not result in significantly enlarged osteocyte lacunae. In conclusion, we show a recovery of bone microarchitecture and turnover after reversal of hyperthyroidism to a euthyroid state. In contrast, osteocytic osteolysis was initiated in hyperthyroidism, but its effects were not reversed after 4 weeks of weaning. Due to the vast number of osteocytes in bone, we speculate that even minor individual cell functions might contribute to altered bone quality and mineral homeostasis in the setting of hyperthyroidism-induced bone disease. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Eva Maria Wölfel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Lademann
- Department of Medicine III, Technische Universität Dresden Medical Center, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| | - Haniyeh Hemmatian
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stéphane Blouin
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria.,Vienna Bone and Growth Center, Vienna, Austria
| | - Phaedra Messmer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria.,Vienna Bone and Growth Center, Vienna, Austria
| | - Lorenz C Hofbauer
- Department of Medicine III, Technische Universität Dresden Medical Center, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Rauner
- Department of Medicine III, Technische Universität Dresden Medical Center, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| | - Katharina Jähn-Rickert
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Mildred Scheel Cancer Career Center Hamburg, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elena Tsourdi
- Department of Medicine III, Technische Universität Dresden Medical Center, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| |
Collapse
|
11
|
Wang JS, Wein MN. Pathways Controlling Formation and Maintenance of the Osteocyte Dendrite Network. Curr Osteoporos Rep 2022; 20:493-504. [PMID: 36087214 PMCID: PMC9718876 DOI: 10.1007/s11914-022-00753-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to discuss the molecular mechanisms involved in osteocyte dendrite formation, summarize the similarities between osteocytic and neuronal projections, and highlight the importance of osteocyte dendrite maintenance in human skeletal disease. RECENT FINDINGS It is suggested that there is a causal relationship between the loss of osteocyte dendrites and the increased osteocyte apoptosis during conditions including aging, microdamage, and skeletal disease. A few mechanisms are proposed to control dendrite formation and outgrowth, such as via the regulation of actin polymerization dynamics. This review addresses the impact of osteocyte dendrites in bone health and disease. Recent advances in multi-omics, in vivo and in vitro models, and microscopy-based imaging have provided novel approaches to reveal the underlying mechanisms that regulate dendrite development. Future therapeutic approaches are needed to target the process of osteocyte dendrite formation.
Collapse
Affiliation(s)
- Jialiang S Wang
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marc N Wein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
12
|
Tirado‐Cabrera I, Martin‐Guerrero E, Heredero‐Jimenez S, Ardura JA, Gortázar AR. PTH1R translocation to primary cilia in mechanically-stimulated ostecytes prevents osteoclast formation via regulation of CXCL5 and IL-6 secretion. J Cell Physiol 2022; 237:3927-3943. [PMID: 35933642 PMCID: PMC9804361 DOI: 10.1002/jcp.30849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/12/2022] [Accepted: 07/22/2022] [Indexed: 01/05/2023]
Abstract
Osteocytes respond to mechanical forces controlling osteoblast and osteoclast function. Mechanical stimulation decreases osteocyte apoptosis and promotes bone formation. Primary cilia have been described as potential mechanosensors in bone cells. Certain osteogenic responses induced by fluid flow (FF) in vitro are decreased by primary cilia inhibition in MLO-Y4 osteocytes. The parathyroid hormone (PTH) receptor type 1 (PTH1R) modulates osteoblast, osteoclast, and osteocyte effects upon activation by PTH or PTH-related protein (PTHrP) in osteoblastic cells. Moreover, some actions of PTH1R seem to be triggered directly by mechanical stimulation. We hypothesize that PTH1R forms a signaling complex in the primary cilium that is essential for mechanotransduction in osteocytes and affects osteocyte-osteoclast communication. MLO-Y4 osteocytes were stimulated by FF or PTHrP (1-37). PTH1R and primary cilia signaling were abrogated using PTH1R or primary cilia specific siRNAs or inhibitors, respectively. Conditioned media obtained from mechanically- or PTHrP-stimulated MLO-Y4 cells inhibited the migration of preosteoclastic cells and osteoclast differentiation. Redistribution of PTH1R along the entire cilium was observed in mechanically stimulated MLO-Y4 osteocytic cells. Preincubation of MLO-Y4 cells with the Gli-1 antagonist, the adenylate cyclase inhibitor (SQ22536), or with the phospholipase C inhibitor (U73122), affected the migration of osteoclast precursors and osteoclastogenesis. Proteomic analysis and neutralizing experiments showed that FF and PTH1R activation control osteoclast function through the modulation of C-X-C Motif Chemokine Ligand 5 (CXCL5) and interleukin-6 (IL-6) secretion in osteocytes. These novel findings indicate that both primary cilium and PTH1R are necessary in osteocytes for proper communication with osteoclasts and show that mechanical stimulation inhibits osteoclast recruitment and differentiation through CXCL5, while PTH1R activation regulate these processes via IL-6.
Collapse
Affiliation(s)
- Irene Tirado‐Cabrera
- Bone Physiopathology Laboratory, Applied Molecular Medicine Institute (IMMA), Universidad San Pablo‐CEU, CEU UniversitiesCampus MonteprincipeAlcorcónSpain,Department of Basic Medical Sciences, School of Medicine, Universidad San Pablo‐CEU, CEU UniversitiesCampus MonteprincipeAlcorcónMadridSpain
| | - Eduardo Martin‐Guerrero
- Bone Physiopathology Laboratory, Applied Molecular Medicine Institute (IMMA), Universidad San Pablo‐CEU, CEU UniversitiesCampus MonteprincipeAlcorcónSpain
| | - Sara Heredero‐Jimenez
- Bone Physiopathology Laboratory, Applied Molecular Medicine Institute (IMMA), Universidad San Pablo‐CEU, CEU UniversitiesCampus MonteprincipeAlcorcónSpain
| | - Juan A. Ardura
- Bone Physiopathology Laboratory, Applied Molecular Medicine Institute (IMMA), Universidad San Pablo‐CEU, CEU UniversitiesCampus MonteprincipeAlcorcónSpain,Department of Basic Medical Sciences, School of Medicine, Universidad San Pablo‐CEU, CEU UniversitiesCampus MonteprincipeAlcorcónMadridSpain
| | - Arancha R. Gortázar
- Bone Physiopathology Laboratory, Applied Molecular Medicine Institute (IMMA), Universidad San Pablo‐CEU, CEU UniversitiesCampus MonteprincipeAlcorcónSpain,Department of Basic Medical Sciences, School of Medicine, Universidad San Pablo‐CEU, CEU UniversitiesCampus MonteprincipeAlcorcónMadridSpain
| |
Collapse
|
13
|
Panahipour L, Abbasabadi AO, Kaiser V, Sordi MB, Kargarpour Z, Gruber R. Damaged Mesenchymal Cells Dampen the Inflammatory Response of Macrophages and the Formation of Osteoclasts. J Clin Med 2022; 11:jcm11144061. [PMID: 35887825 PMCID: PMC9319356 DOI: 10.3390/jcm11144061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/29/2022] [Accepted: 07/11/2022] [Indexed: 01/25/2023] Open
Abstract
Damage to mesenchymal cells occurs by dental implant drills as a consequence of shear forces and heat generation. However, how the damaged mesenchymal cells can affect the polarization of macrophages and their differentiation into osteoclastogenesis is not fully understood. To simulate cell damage, we exposed suspended ST2 murine bone marrow stromal cells to freeze/thawing or sonication cycles, followed by centrifugation. We then evaluated the lysates for their capacity to modulate lipopolysaccharide-induced macrophage polarization and RANKL-MCSF-TGF-β-induced osteoclastogenesis. We report that lysates of ST2, particularly when sonicated, greatly diminished the expression of inflammatory IL6 and COX2 as well as moderately increased arginase 1 in primary macrophages. That was confirmed by lysates obtained from the osteocytic cell line IDG-SW3. Moreover, the ST2 lysate lowered the phosphorylation of p65 and p38 as well as the nuclear translocation of p65. We further show herein that lysates of damaged ST2 reduced the formation of osteoclast-like cells characterized by their multinuclearity and the expression of tartrate-resistant phosphatase and cathepsin K. Taken together, our data suggest that thermal and mechanical damage of mesenchymal cells causes the release of as-yet-to-be-defined molecules that dampen an inflammatory response and the formation of osteoclasts in vitro.
Collapse
Affiliation(s)
- Layla Panahipour
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (L.P.); (A.O.A.); (V.K.); (M.B.S.); (Z.K.)
| | - Azarakhsh Oladzad Abbasabadi
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (L.P.); (A.O.A.); (V.K.); (M.B.S.); (Z.K.)
| | - Viktoria Kaiser
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (L.P.); (A.O.A.); (V.K.); (M.B.S.); (Z.K.)
| | - Mariane Beatriz Sordi
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (L.P.); (A.O.A.); (V.K.); (M.B.S.); (Z.K.)
- Department of Dentistry, Federal University of Santa Catarina, Florianopolis 88040-900, Brazil
| | - Zahra Kargarpour
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (L.P.); (A.O.A.); (V.K.); (M.B.S.); (Z.K.)
| | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (L.P.); (A.O.A.); (V.K.); (M.B.S.); (Z.K.)
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Correspondence: ; Tel.: +43-(0)-1-40070-2660
| |
Collapse
|
14
|
Abstract
Disuse osteoporosis describes a state of bone loss due to local skeletal unloading or systemic immobilization. This review will discuss advances in the field that have shed light on clinical observations, mechanistic insights and options for the treatment of disuse osteoporosis. Clinical settings of disuse osteoporosis include spinal cord injury, other neurological and neuromuscular disorders, immobilization after fractures and bed rest (real or modeled). Furthermore, spaceflight-induced bone loss represents a well-known adaptive process to microgravity. Clinical studies have outlined that immobilization leads to immediate bone loss in both the trabecular and cortical compartments accompanied by relatively increased bone resorption and decreased bone formation. The fact that the low bone formation state has been linked to high levels of the osteocyte-secreted protein sclerostin is one of the many findings that has brought matrix-embedded, mechanosensitive osteocytes into focus in the search for mechanistic principles. Previous basic research has primarily involved rodent models based on tail suspension, spaceflight and other immobilization methods, which have underlined the importance of osteocytes in the pathogenesis of disuse osteoporosis. Furthermore, molecular-based in vitro and in vivo approaches have revealed that osteocytes sense mechanical loading through mechanosensors that translate extracellular mechanical signals to intracellular biochemical signals and regulate gene expression. Osteocytic mechanosensors include the osteocyte cytoskeleton and dendritic processes within the lacuno-canalicular system (LCS), ion channels (e.g., Piezo1), extracellular matrix, primary cilia, focal adhesions (integrin-based) and hemichannels and gap junctions (connexin-based). Overall, disuse represents one of the major factors contributing to immediate bone loss and osteoporosis, and alterations in osteocytic pathways appear crucial to the bone loss associated with unloading.
Collapse
Affiliation(s)
- Tim Rolvien
- Division of Orthopaedics, Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529, Hamburg, Germany.
| |
Collapse
|
15
|
Pin F, Jones AJ, Huot JR, Narasimhan A, Zimmers TA, Bonewald LF, Bonetto A. RANKL Blockade Reduces Cachexia and Bone Loss Induced by Non-Metastatic Ovarian Cancer in Mice. J Bone Miner Res 2022; 37:381-396. [PMID: 34904285 PMCID: PMC8940654 DOI: 10.1002/jbmr.4480] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 12/13/2022]
Abstract
Tumor- and bone-derived soluble factors have been proposed to participate in the alterations of skeletal muscle size and function in cachexia. We previously showed that mice bearing ovarian cancer (OvCa) exhibit cachexia associated with marked bone loss, whereas bone-targeting agents, such as bisphosphonates, are able to preserve muscle mass in animals exposed to anticancer drugs. De-identified CT images and plasma samples from female patients affected with OvCa were used for body composition assessment and quantification of circulating cross-linked C-telopeptide type I (CTX-I) and receptor activator of NF-kB ligand (RANKL), respectively. Female mice bearing ES-2 tumors were used to characterize cancer- and RANKL-associated effects on muscle and bone. Murine C2C12 and human HSMM myotube cultures were used to determine the OvCa- and RANKL-dependent effects on myofiber size. To the extent of isolating new regulators of bone and muscle in cachexia, here we demonstrate that subjects affected with OvCa display evidence of cachexia and increased bone turnover. Similarly, mice carrying OvCa present high RANKL levels. By using in vitro and in vivo experimental models, we found that elevated circulating RANKL is sufficient to cause skeletal muscle atrophy and bone resorption, whereas bone preservation by means of antiresorptive and anti-RANKL treatments concurrently benefit muscle mass and function in cancer cachexia. Altogether, our data contribute to identifying RANKL as a novel therapeutic target for the treatment of musculoskeletal complications associated with RANKL-expressing non-metastatic cancers. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Fabrizio Pin
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alexander J Jones
- Department of Otolaryngology-Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joshua R Huot
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ashok Narasimhan
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Teresa A Zimmers
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Otolaryngology-Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lynda F Bonewald
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.,Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrea Bonetto
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Otolaryngology-Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
16
|
Wu CJ, Liu RX, Huan SW, Tang W, Zeng YK, Zhang JC, Yang J, Li ZY, Zhou Y, Zha ZG, Zhang HT, Liu N. Senescent skeletal cells cross-talk with synovial cells plays a key role in the pathogenesis of osteoarthritis. Arthritis Res Ther 2022; 24:59. [PMID: 35227288 PMCID: PMC8883702 DOI: 10.1186/s13075-022-02747-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/14/2022] [Indexed: 12/20/2022] Open
Abstract
Osteoarthritis (OA) has been recognized as an age-related degenerative disease commonly seen in the elderly that affects the whole “organ” including cartilage, subchondral bone, synovium, and muscles. An increasing number of studies have suggested that the accumulation of senescent cells triggering by various stresses in the local joint contributes to the pathogenesis of age-related diseases including OA. In this review, we mainly focus on the role of the senescent skeletal cells (chondrocytes, osteoblasts, osteoclasts, osteocyte, and muscle cells) in initiating the development and progression of OA alone or through cross-talk with the macrophages/synovial cells. Accordingly, we summarize the current OA-targeted therapies based on the abovementioned theory, e.g., by eliminating senescent skeletal cells and/or inhibiting the senescence-associated secretory phenotype (SASP) that drives senescence. Furthermore, the existing animal models for the study of OA from the perspective of senescence are highlighted to fill the gap between basic research and clinical applications. Overall, in this review, we systematically assess the current understanding of cellular senescence in OA, which in turn might shed light on the stratified OA treatments.
Collapse
Affiliation(s)
- Chong-Jie Wu
- Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Ri-Xu Liu
- Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Song-Wei Huan
- Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China.,Institute of Orthopedic Diseases & The Bone and Joint Disease institute of Guangdong-Hong Kong-Macao Greater Bay Area, Jinan University, Guangzhou, 510630, China
| | - Wang Tang
- Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Yu-Kai Zeng
- Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Jun-Cheng Zhang
- Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Jie Yang
- Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China.,Institute of Orthopedic Diseases & The Bone and Joint Disease institute of Guangdong-Hong Kong-Macao Greater Bay Area, Jinan University, Guangzhou, 510630, China
| | - Zhen-Yan Li
- Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China.,Institute of Orthopedic Diseases & The Bone and Joint Disease institute of Guangdong-Hong Kong-Macao Greater Bay Area, Jinan University, Guangzhou, 510630, China
| | - Ying Zhou
- Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Zhen-Gang Zha
- Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China.,Institute of Orthopedic Diseases & The Bone and Joint Disease institute of Guangdong-Hong Kong-Macao Greater Bay Area, Jinan University, Guangzhou, 510630, China
| | - Huan-Tian Zhang
- Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China. .,Institute of Orthopedic Diseases & The Bone and Joint Disease institute of Guangdong-Hong Kong-Macao Greater Bay Area, Jinan University, Guangzhou, 510630, China.
| | - Ning Liu
- Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China. .,Institute of Orthopedic Diseases & The Bone and Joint Disease institute of Guangdong-Hong Kong-Macao Greater Bay Area, Jinan University, Guangzhou, 510630, China.
| |
Collapse
|
17
|
Wang K, Lu X, Li X, Zhang Y, Xu R, Lou Y, Wang Y, Zhang T, Qian Y. Dual protective role of velutin against articular cartilage degeneration and subchondral bone loss via the p38 signaling pathway in murine osteoarthritis. Front Endocrinol (Lausanne) 2022; 13:926934. [PMID: 35937813 PMCID: PMC9354239 DOI: 10.3389/fendo.2022.926934] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/30/2022] [Indexed: 11/28/2022] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint condition associated with inflammation and characterized by progressive degradation of the articular cartilage and subchondral bone loss in the early stages. Inflammation is closely associated with these two major pathophysiological changes in OA. Velutin, a flavonoid family member, reportedly exerts anti-inflammatory effects. However, the therapeutic effects of velutin in OA have not yet been characterized. In this study, we explore the effects of velutin in an OA mouse model. Histological staining and micro-CT revealed that velutin had a protective effect against cartilage degradation and subchondral bone loss in an OA mouse model generated by surgical destabilization of the medial meniscus (DMM). Additionally, velutin rescued IL-1β-induced inflammation in chondrocytes and inhibited RANKL-induced osteoclast formation and bone resorption in vitro. Mechanistically, the p38 signaling pathway was found to be implicated in the inhibitory effects of velutin. Our study reveals the dual protective effects of velutin against cartilage degradation and subchondral bone loss by inhibiting the p38 signaling pathway, thereby highlighting velutin as an alternative treatment for OA.
Collapse
Affiliation(s)
- Kelei Wang
- Department of Orthopedics, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
- Department of Orthopedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xuanyuan Lu
- Department of Orthopedics, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Xinyu Li
- Department of Orthopedics, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Yufeng Zhang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rongjian Xu
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yun Lou
- Department of Orthopedics, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Yanben Wang
- Department of Orthopedics, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
- Department of Orthopedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tan Zhang
- Department of Orthopedics, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Yu Qian
- Department of Orthopedics, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
- *Correspondence: Yu Qian,
| |
Collapse
|
18
|
Abstract
Osteocytes, former osteoblasts encapsulated by mineralized bone matrix, are far from being passive and metabolically inactive bone cells. Instead, osteocytes are multifunctional and dynamic cells capable of integrating hormonal and mechanical signals and transmitting them to effector cells in bone and in distant tissues. Osteocytes are a major source of molecules that regulate bone homeostasis by integrating both mechanical cues and hormonal signals that coordinate the differentiation and function of osteoclasts and osteoblasts. Osteocyte function is altered in both rare and common bone diseases, suggesting that osteocyte dysfunction is directly involved in the pathophysiology of several disorders affecting the skeleton. Advances in osteocyte biology initiated the development of novel therapeutics interfering with osteocyte-secreted molecules. Moreover, osteocytes are targets and key distributors of biological signals mediating the beneficial effects of several bone therapeutics used in the clinic. Here we review the most recent discoveries in osteocyte biology demonstrating that osteocytes regulate bone homeostasis and bone marrow fat via paracrine signaling, influence body composition and energy metabolism via endocrine signaling, and contribute to the damaging effects of diabetes mellitus and hematologic and metastatic cancers in the skeleton.
Collapse
Affiliation(s)
- Jesus Delgado-Calle
- 1Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas,2Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Teresita Bellido
- 1Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas,2Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas,3Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Osteocytes are considered to be the cells responsible for mastering the remodeling process that follows the exposure to unloading conditions. Given the invasiveness of bone biopsies in humans, both rodents and in vitro culture systems are largely adopted as models for studies in space missions or in simulated microgravity conditions models on Earth. RECENT FINDINGS After a brief recall of the main changes in bone mass and osteoclastic and osteoblastic activities in space-related models, this review focuses on the potential role of osteocytes in directing these changes. The role of the best-known signalling molecules is questioned, in particular in relation to osteocyte apoptosis. The mechanotransduction actors identified in spatial conditions and the problems related to fluid flow and shear stress changes, probably enhanced by the alteration in fluid flow and lack of convection during spaceflight, are recalled and discussed.
Collapse
Affiliation(s)
- Donata Iandolo
- U1059 INSERM - SAINBIOSE (SAnté INgéniérie BIOlogie St-Etienne) Campus Santé Innovation, Université Jean Monnet, Saint-Priest-en-Jarez, France
| | - Maura Strigini
- U1059 INSERM - SAINBIOSE (SAnté INgéniérie BIOlogie St-Etienne) Campus Santé Innovation, Université Jean Monnet, Saint-Priest-en-Jarez, France
| | - Alain Guignandon
- U1059 INSERM - SAINBIOSE (SAnté INgéniérie BIOlogie St-Etienne) Campus Santé Innovation, Université Jean Monnet, Saint-Priest-en-Jarez, France
| | - Laurence Vico
- U1059 INSERM - SAINBIOSE (SAnté INgéniérie BIOlogie St-Etienne) Campus Santé Innovation, Université Jean Monnet, Saint-Priest-en-Jarez, France.
| |
Collapse
|
20
|
Transcriptional responses of skeletal stem/progenitor cells to hindlimb unloading and recovery correlate with localized but not systemic multi-systems impacts. NPJ Microgravity 2021; 7:49. [PMID: 34836964 PMCID: PMC8626488 DOI: 10.1038/s41526-021-00178-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Disuse osteoporosis (DO) results from mechanical unloading of weight-bearing bones and causes structural changes that compromise skeletal integrity, leading to increased fracture risk. Although bone loss in DO results from imbalances in osteoblast vs. osteoclast activity, its effects on skeletal stem/progenitor cells (SSCs) is indeterminate. We modeled DO in mice by 8 and 14 weeks of hindlimb unloading (HU) or 8 weeks of unloading followed by 8 weeks of recovery (HUR) and monitored impacts on animal physiology and behavior, metabolism, marrow adipose tissue (MAT) volume, bone density and micro-architecture, and bone marrow (BM) leptin and tyrosine hydroxylase (TH) protein expression, and correlated multi-systems impacts of HU and HUR with the transcript profiles of Lin-LEPR+ SSCs and mesenchymal stem cells (MSCs) purified from BM. Using this integrative approach, we demonstrate that prolonged HU induces muscle atrophy, progressive bone loss, and MAT accumulation that paralleled increases in BM but not systemic leptin levels, which remained low in lipodystrophic HU mice. HU also induced SSC quiescence and downregulated bone anabolic and neurogenic pathways, which paralleled increases in BM TH expression, but had minimal impacts on MSCs, indicating a lack of HU memory in culture-expanded populations. Although most impacts of HU were reversed by HUR, trabecular micro-architecture remained compromised and time-resolved changes in the SSC transcriptome identified various signaling pathways implicated in bone formation that were unresponsive to HUR. These findings indicate that HU-induced alterations to the SSC transcriptome that persist after reloading may contribute to poor bone recovery.
Collapse
|
21
|
Sulaiman SZS, Tan WM, Radzi R, Shafie INF, Ajat M, Mansor R, Mohamed S, Ng AMH, Lau SF. Comparison of bone and articular cartilage changes in osteoarthritis: a micro-computed tomography and histological study of surgically and chemically induced osteoarthritic rabbit models. J Orthop Surg Res 2021; 16:663. [PMID: 34749769 PMCID: PMC8577030 DOI: 10.1186/s13018-021-02781-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/06/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a multifaceted condition that affects both the subchondral bones and the articular cartilage. Animal models are widely used as an effective supplement and simulation for human OA studies in investigating disease mechanisms and pathophysiology. This study is aimed to evaluate the temporal changes of bone and cartilage in surgically and chemically induced osteoarthritis using micro-computed tomography and histology. METHODS Thirty rabbits underwent either anterior cruciate ligament transection (ACLT) procedure or injected intraarticularly with monosodium iodoacetate (MIA, 8 mg) at the right knee joint. The subchondral bones were scanned via micro-CT, and articular cartilage was assessed histologically at 4-, 8- and 12-week post-induction. RESULTS Based on bone micro-architecture parameters, the surgically induced group revealed bone remodelling processes, indicated by increase bone volume, thickening of trabeculae, reduced trabecular separation and reduced porosity. On the other hand, the chemically induced group showed active bone resorption processes depicted by decrease bone volume, thinning of trabeculae, increased separation of trabecular and increased porosity consistently until week 12. Histologically, the chemically induced group showed more severe articular cartilage damage compared to the surgically induced group. CONCLUSIONS It can be concluded that in the ACLT group, subchondral bone remodelling precedes articular cartilage damage and vice versa in the MIA group. The findings revealed distinct pathogenic pathways for both induction methods, providing insight into tailored therapeutic strategies, as well as disease progression and treatment outcomes monitoring.
Collapse
Affiliation(s)
- Sharifah Zakiah Syed Sulaiman
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Wei Miao Tan
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Rozanaliza Radzi
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Intan Nur Fatiha Shafie
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Mokrish Ajat
- Department of Veterinary Preclinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Rozaihan Mansor
- Department of Farm and Exotic Animals Medicine and Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Suhaila Mohamed
- UPM-Makna Cancer Research Laboratory (CANRES), Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Angela Min Hwei Ng
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Seng Fong Lau
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- UPM-Makna Cancer Research Laboratory (CANRES), Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
22
|
Garg P, Strigini M, Peurière L, Vico L, Iandolo D. The Skeletal Cellular and Molecular Underpinning of the Murine Hindlimb Unloading Model. Front Physiol 2021; 12:749464. [PMID: 34737712 PMCID: PMC8562483 DOI: 10.3389/fphys.2021.749464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/23/2021] [Indexed: 01/08/2023] Open
Abstract
Bone adaptation to spaceflight results in bone loss at weight bearing sites following the absence of the stimulus represented by ground force. The rodent hindlimb unloading model was designed to mimic the loss of mechanical loading experienced by astronauts in spaceflight to better understand the mechanisms causing this disuse-induced bone loss. The model has also been largely adopted to study disuse osteopenia and therefore to test drugs for its treatment. Loss of trabecular and cortical bone is observed in long bones of hindlimbs in tail-suspended rodents. Over the years, osteocytes have been shown to play a key role in sensing mechanical stress/stimulus via the ECM-integrin-cytoskeletal axis and to respond to it by regulating different cytokines such as SOST and RANKL. Colder experimental environments (~20-22°C) below thermoneutral temperatures (~28-32°C) exacerbate bone loss. Hence, it is important to consider the role of environmental temperatures on the experimental outcomes. We provide insights into the cellular and molecular pathways that have been shown to play a role in the hindlimb unloading and recommendations to minimize the effects of conditions that we refer to as confounding factors.
Collapse
Affiliation(s)
- Priyanka Garg
- INSERM, U1059 Sainbiose, Université Jean Monnet, Mines Saint-Étienne, Université de Lyon, Saint-Étienne, France
| | - Maura Strigini
- INSERM, U1059 Sainbiose, Université Jean Monnet, Mines Saint-Étienne, Université de Lyon, Saint-Étienne, France
| | - Laura Peurière
- INSERM, U1059 Sainbiose, Université Jean Monnet, Mines Saint-Étienne, Université de Lyon, Saint-Étienne, France
| | - Laurence Vico
- INSERM, U1059 Sainbiose, Université Jean Monnet, Mines Saint-Étienne, Université de Lyon, Saint-Étienne, France
| | - Donata Iandolo
- INSERM, U1059 Sainbiose, Université Jean Monnet, Mines Saint-Étienne, Université de Lyon, Saint-Étienne, France
| |
Collapse
|
23
|
Kaplan M, Kalajzic Z, Choi T, Maleeh I, Ricupero CL, Skelton MN, Daily ML, Chen J, Wadhwa S. The role of inhibition of osteocyte apoptosis in mediating orthodontic tooth movement and periodontal remodeling: a pilot study. Prog Orthod 2021; 22:21. [PMID: 34308514 PMCID: PMC8310814 DOI: 10.1186/s40510-021-00366-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/07/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Orthodontic tooth movement (OTM) has been shown to induce osteocyte apoptosis in alveolar bone shortly after force application. However, how osteocyte apoptosis affects orthodontic tooth movement is unknown. The goal of this study was to assess the effect of inhibition of osteocyte apoptosis on osteoclastogenesis, changes in the alveolar bone density, and the magnitude of OTM using a bisphosphonate analog (IG9402), a drug that affects osteocyte and osteoblast apoptosis but does not affect osteoclasts. MATERIAL AND METHODS Two sets of experiments were performed. Experiment 1 was used to specifically evaluate the effect of IG9402 on osteocyte apoptosis in the alveolar bone during 24 h of OTM. For this experiment, twelve mice were divided into two groups: group 1, saline administration + OTM24-h (n=6), and group 2, IG9402 administration + OTM24-h (n=6). The contralateral unloaded sides served as the control. The goal of experiment 2 was to evaluate the role of osteocyte apoptosis on OTM magnitude and osteoclastogenesis 10 days after OTM. Twenty mice were divided into 4 groups: group 1, saline administration without OTM (n=5); group 2, IG9402 administration without OTM (n=5); group 3, saline + OTM10-day (n=6); and group 4, IG9402 + OTM10-day (n=4). For both experiments, tooth movement was achieved using Ultra Light (25g) Sentalloy Closed Coil Springs attached between the first maxillary molar and the central incisor. Linear measurements of tooth movement and alveolar bone density (BVF) were assessed by MicroCT analysis. Cell death (or apoptosis) was assessed by terminal dUTP nick-end labeling (TUNEL) assay, while osteoclast and macrophage formation were assessed by tartrate-resistant acid phosphatase (TRAP) staining and F4/80+ immunostaining. RESULTS We found that IG9402 significantly blocked osteocyte apoptosis in alveolar bone (AB) at 24 h of OTM. At 10 days, IG9402 prevented OTM-induced loss of alveolar bone density and changed the morphology and quality of osteoclasts and macrophages, but did not significantly affect the amount of tooth movement. CONCLUSION Our study demonstrates that osteocyte apoptosis may play a significant role in osteoclast and macrophage formation during OTM, but does not seem to play a role in the magnitude of orthodontic tooth movement.
Collapse
Affiliation(s)
- Michele Kaplan
- Division of Orthodontics, College of Dental Medicine, Columbia University, New York, NY, USA.
| | - Zana Kalajzic
- Department of Oral Health and Diagnostic Sciences, Division of Oral Medicine, UConn Health, Farmington, CT, USA
| | - Thomas Choi
- Division of Orthodontics, College of Dental Medicine, Columbia University, New York, NY, USA
| | - Imad Maleeh
- Division of Orthodontics, College of Dental Medicine, Columbia University, New York, NY, USA
| | - Christopher L Ricupero
- Division of Orthodontics, College of Dental Medicine, Columbia University, New York, NY, USA
| | - Michelle N Skelton
- Division of Orthodontics, College of Dental Medicine, Columbia University, New York, NY, USA
| | - Madeleine L Daily
- Division of Orthodontics, College of Dental Medicine, Columbia University, New York, NY, USA
| | - Jing Chen
- Division of Orthodontics, College of Dental Medicine, Columbia University, New York, NY, USA
| | - Sunil Wadhwa
- Division of Orthodontics, College of Dental Medicine, Columbia University, New York, NY, USA
| |
Collapse
|
24
|
Yan T, Xie Y, He H, Fan W, Huang F. Role of nitric oxide in orthodontic tooth movement (Review). Int J Mol Med 2021; 48:168. [PMID: 34278439 PMCID: PMC8285047 DOI: 10.3892/ijmm.2021.5001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022] Open
Abstract
Nitric oxide (NO) is an ubiquitous signaling molecule that mediates numerous cellular processes associated with cardiovascular, nervous and immune systems. NO also plays an essential role in bone homeostasis regulation. The present review article summarized the effects of NO on bone metabolism during orthodontic tooth movement in order to provide insight into the regulatory role of NO in orthodontic tooth movement. Orthodontic tooth movement is a process in which the periodontal tissue and alveolar bone are reconstructed due to the effect of orthodontic forces. Accumulating evidence has indicated that NO and its downstream signaling molecule, cyclic guanosine monophosphate (cGMP), mediate the mechanical signals during orthodontic-related bone remodeling, and exert complex effects on osteogenesis and osteoclastogenesis. NO has a regulatory effect on the cellular activities and functional states of osteoclasts, osteocytes and periodontal ligament fibroblasts involved in orthodontic tooth movement. Variations of NO synthase (NOS) expression levels and NO production in periodontal tissues or gingival crevicular fluid (GCF) have been found on the tension and compression sides during tooth movement in both orthodontic animal models and patients. Furthermore, NO precursor and NOS inhibitor administration increased and reduced the tooth movement in animal models, respectively. Further research is required in order to further elucidate the underlying mechanisms and the clinical application prospect of NO in orthodontic tooth movement.
Collapse
Affiliation(s)
- Tong Yan
- Department of Pediatric Dentistry, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Yongjian Xie
- Department of Orthodontic Dentistry, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Wenguo Fan
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Fang Huang
- Department of Pediatric Dentistry, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
25
|
Osteocyte Dysfunction in Joint Homeostasis and Osteoarthritis. Int J Mol Sci 2021; 22:ijms22126522. [PMID: 34204587 PMCID: PMC8233862 DOI: 10.3390/ijms22126522] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 01/29/2023] Open
Abstract
Structural disturbances of the subchondral bone are a hallmark of osteoarthritis (OA), including sclerotic changes, cystic lesions, and osteophyte formation. Osteocytes act as mechanosensory units for the micro-cracks in response to mechanical loading. Once stimulated, osteocytes initiate the reparative process by recruiting bone-resorbing cells and bone-forming cells to maintain bone homeostasis. Osteocyte-expressed sclerostin is known as a negative regulator of bone formation through Wnt signaling and the RANKL pathway. In this review, we will summarize current understandings of osteocytes at the crossroad of allometry and mechanobiology to exploit the relationship between osteocyte morphology and function in the context of joint aging and osteoarthritis. We also aimed to summarize the osteocyte dysfunction and its link with structural and functional disturbances of the osteoarthritic subchondral bone at the molecular level. Compared with normal bones, the osteoarthritic subchondral bone is characterized by a higher bone volume fraction, a larger trabecular bone number in the load-bearing region, and an increase in thickness of pre-existing trabeculae. This may relate to the aberrant expressions of sclerostin, periostin, dentin matrix protein 1, matrix extracellular phosphoglycoprotein, insulin-like growth factor 1, and transforming growth factor-beta, among others. The number of osteocyte lacunae embedded in OA bone is also significantly higher, yet the volume of individual lacuna is relatively smaller, which could suggest abnormal metabolism in association with allometry. The remarkably lower percentage of sclerostin-positive osteocytes, together with clustering of Runx-2 positive pre-osteoblasts, may suggest altered regulation of osteoblast differentiation and osteoblast-osteocyte transformation affected by both signaling molecules and the extracellular matrix. Aberrant osteocyte morphology and function, along with anomalies in molecular signaling mechanisms, might explain in part, if not all, the pre-osteoblast clustering and the uncoupled bone remodeling in OA subchondral bone.
Collapse
|
26
|
Chakraborty N, Zamarioli A, Gautam A, Campbell R, Mendenhall SK, Childress PJ, Dimitrov G, Sowe B, Tucker A, Zhao L, Hammamieh R, Kacena MA. Gene-metabolite networks associated with impediment of bone fracture repair in spaceflight. Comput Struct Biotechnol J 2021; 19:3507-3520. [PMID: 34194674 PMCID: PMC8220416 DOI: 10.1016/j.csbj.2021.05.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/26/2021] [Accepted: 05/30/2021] [Indexed: 01/05/2023] Open
Abstract
Adverse effects of spaceflight on musculoskeletal health increase the risk of bone injury and impairment of fracture healing. Its yet elusive molecular comprehension warrants immediate attention, since space travel is becoming more frequent. Here we examined the effects of spaceflight on bone fracture healing using a 2 mm femoral segmental bone defect (SBD) model. Forty, 9-week-old, male C57BL/6J mice were randomized into 4 groups: 1) Sham surgery on Ground (G-Sham); 2) Sham surgery housed in Spaceflight (FLT-Sham); 3) SBD surgery on Ground (G-Surgery); and 4) SBD surgery housed in Spaceflight (FLT-Surgery). Surgery procedures occurred 4 days prior to launch; post-launch, the spaceflight mice were house in the rodent habitats on the International Space Station (ISS) for approximately 4 weeks before euthanasia. Mice remaining on the Earth were subjected to identical housing and experimental conditions. The right femur from half of the spaceflight and ground groups was investigated by micro-computed tomography (µCT). In the remaining mice, the callus regions from surgery groups and corresponding femoral segments in sham mice were probed by global transcriptomic and metabolomic assays. µCT confirmed escalated bone loss in FLT-Sham compared to G-Sham mice. Comparing to their respective on-ground counterparts, the morbidity gene-network signal was inhibited in sham spaceflight mice but activated in the spaceflight callus. µCT analyses of spaceflight callus revealed increased trabecular spacing and decreased trabecular connectivity. Activated apoptotic signals in spaceflight callus were synchronized with inhibited cell migration signals that potentially hindered the wound site to recruit growth factors. A major pro-apoptotic and anti-migration gene network, namely the RANK-NFκB axis, emerged as the central node in spaceflight callus. Concluding, spaceflight suppressed a unique biomolecular mechanism in callus tissue to facilitate a failed regeneration, which merits a customized intervention strategy.
Collapse
Affiliation(s)
| | - Ariane Zamarioli
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Orthopaedics and Anaesthesiology, Ribeirão Preto Medical School, SP, Brazil
| | - Aarti Gautam
- Medical Readiness Systems Biology, CMPN, WRAIR, Silver Spring, MD, USA
| | - Ross Campbell
- Medical Readiness Systems Biology, CMPN, WRAIR, Silver Spring, MD, USA
- Geneva Foundation, Medical Readiness Systems Biology, CMPN, WRAIR, Silver Spring, MD, USA
| | - Stephen K Mendenhall
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Paul J. Childress
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - George Dimitrov
- Medical Readiness Systems Biology, CMPN, WRAIR, Silver Spring, MD, USA
- Geneva Foundation, Medical Readiness Systems Biology, CMPN, WRAIR, Silver Spring, MD, USA
| | - Bintu Sowe
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- ORISE, Medical Readiness Systems Biology, CMPN, WRAIR, Silver Spring, MD, USA
| | - Aamir Tucker
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Liming Zhao
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, CMPN, WRAIR, Silver Spring, MD, USA
| | - Melissa A. Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
27
|
Gao X, Wang S, Zhang J, Wang S, Bai F, Liang J, Wu J, Wang H, Gao Y, Chang H. Differential bone remodeling mechanism in hindlimb unloaded rats and hibernating Daurian ground squirrels: a comparison between artificial and natural disuse. J Comp Physiol B 2021; 191:793-814. [PMID: 34002279 DOI: 10.1007/s00360-021-01375-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/02/2021] [Accepted: 04/20/2021] [Indexed: 11/30/2022]
Abstract
To determine that differential bone remodeling mechanism (especially Wnt signaling) in hindlimb unloaded rats and hibernating Daurian ground squirrels, the bone microstructure, mechanical properties, and expression levels of bone remodeling related proteins and key proteins of Wnt/β-catenin signaling were analyzed in this study. The thickness of cortical and trabecular bone was decreased in femur of hindlimb unloaded rats, while it was maintained in femur of hibernating ground squirrels. Interestingly, the ultimate bending energy and ultimate normalized displacement were reduced and the bending rigidity was increased in tibia of hibernating ground squirrels. Besides, the protein level of Runx2 was decreased in femur and tibia of unloaded rats, while it was maintained in tibia and even increased in femur of hibernating ground squirrels. The protein levels of RANKL and MMP-9 were increased in femur and tibia in unloaded rats, while they were maintained in both femur and tibia of hibernating ground squirrels. The protein level of GSK-3β was increased in femur and tibia of unloaded rats, while it was maintained in both femur and tibia of hibernating ground squirrels. The phospho-β-catenin expression was increased in both femur and tibia of unloaded rats, while it was only decreased in femur, but maintained in tibia of hibernating ground squirrels. In conclusion, the femur and tibia in hindlimb unloaded rats showed obvious bone loss, while they mitigated disuse-induced bone loss in hibernating ground squirrels, involving differential protein expression of key molecules in bone remodeling. In comparison with hindlimb unloaded rats, promoting osteoblast differentiation through activating canonical GSK-3β/β-catenin signaling involving Runx2 might be an adaptation to natural disuse in femur of hibernating Daurian ground squirrels. However, there was no statistical change in the protein levels of bone formation related proteins, GSK-3β and phospho-β-catenin in tibia of hibernating Daurian ground squirrels.
Collapse
Affiliation(s)
- Xuli Gao
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, 710069, People's Republic of China.,Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi'an, 710069, People's Republic of China
| | - Siqi Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi'an, 710069, People's Republic of China
| | - Jie Zhang
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, 710069, People's Republic of China.,Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi'an, 710069, People's Republic of China
| | - Shuyao Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi'an, 710069, People's Republic of China
| | - Feiyan Bai
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi'an, 710069, People's Republic of China
| | - Jing Liang
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi'an, 710069, People's Republic of China
| | - Jiawei Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi'an, 710069, People's Republic of China
| | - Huiping Wang
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, 710069, People's Republic of China.,Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi'an, 710069, People's Republic of China
| | - Yunfang Gao
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, 710069, People's Republic of China. .,Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi'an, 710069, People's Republic of China.
| | - Hui Chang
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, 710069, People's Republic of China. .,Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi'an, 710069, People's Republic of China.
| |
Collapse
|
28
|
Hu W, Chen Y, Dou C, Dong S. Microenvironment in subchondral bone: predominant regulator for the treatment of osteoarthritis. Ann Rheum Dis 2021; 80:413-422. [PMID: 33158879 PMCID: PMC7958096 DOI: 10.1136/annrheumdis-2020-218089] [Citation(s) in RCA: 207] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022]
Abstract
Osteoarthritis (OA) is a degenerative joint disease in the elderly. Although OA has been considered as primarily a disease of the articular cartilage, the participation of subchondral bone in the pathogenesis of OA has attracted increasing attention. This review summarises the microstructural and histopathological changes in subchondral bone during OA progression that are due, at the cellular level, to changes in the interactions among osteocytes, osteoblasts, osteoclasts (OCs), endothelial cells and sensory neurons. Therefore, we focus on how pathological cellular interactions in the subchondral bone microenvironment promote subchondral bone destruction at different stages of OA progression. In addition, the limited amount of research on the communication between OCs in subchondral bone and chondrocytes (CCs) in articular cartilage during OA progression is reviewed. We propose the concept of 'OC-CC crosstalk' and describe the various pathways by which the two cell types might interact. Based on the 'OC-CC crosstalk', we elaborate potential therapeutic strategies for the treatment of OA, including restoring abnormal subchondral bone remodelling and blocking the bridge-subchondral type H vessels. Finally, the review summarises the current understanding of how the subchondral bone microenvironment is related to OA pain and describes potential interventions to reduce OA pain by targeting the subchondral bone microenvironment.
Collapse
Affiliation(s)
- Wenhui Hu
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, China
| | - Yueqi Chen
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, China
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ce Dou
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, China
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, China
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China
| |
Collapse
|
29
|
Coffman AA, Basta-Pljakic J, Guerra RM, Ebetino FH, Lundy MW, Majeska RJ, Schaffler MB. A Bisphosphonate With a Low Hydroxyapatite Binding Affinity Prevents Bone Loss in Mice After Ovariectomy and Reverses Rapidly With Treatment Cessation. JBMR Plus 2021; 5:e10476. [PMID: 33869992 PMCID: PMC8046044 DOI: 10.1002/jbm4.10476] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/04/2021] [Indexed: 12/30/2022] Open
Abstract
Bisphosphonates (BPs) are a mainstay of osteoporosis treatment; however, concerns about bone health based on oversuppression of remodeling remain. Long‐term bone remodeling suppression adversely affects bone material properties with microdamage accumulation and reduced fracture toughness in animals and increases in matrix mineralization and atypical femur fractures in patients. Although a “drug holiday” from BPs to restore remodeling and improve bone quality seems reasonable, clinical BPs have long functional half‐lives because of their high hydroxyapatite (HAP) binding affinities. This places a practical limit on the reversibility and effectiveness of a drug holiday. BPs with low HAP affinity and strong osteoclast inhibition potentially offer an alternative approach; their antiresorptive effect should reverse rapidly when dosing is discontinued. This study tested this concept using NE‐58025, a BP with low HAP affinity and moderate osteoclast inhibition potential. Young adult female C57Bl/6 mice were ovariectomized (OVX) and treated with NE‐58025, risedronate, or PBS vehicle for 3 months to test effectiveness in preventing long‐term bone loss. Bone microarchitecture, histomorphometry, and whole‐bone mechanical properties were assessed. To test reversibility, OVX mice were similarly treated for 3 months, treatment was stopped, and bone was assessed up to 3 months post‐treatment. NE‐58025 and RIS inhibited long‐term OVX‐induced bone loss, but NE‐58025 antiresorptive effects were more pronounced. Withdrawing NE‐58025 treatment led to the rapid onset of trabecular resorption with a 200% increase in osteoclast surface and bone loss within 1 month. Cessation of risedronate treatment did not lead to increases in resorption indices or bone loss. These results show that NE‐58025 prevents OVX‐induced bone loss, and its effects reverse quickly following cessation treatment in vivo. Low‐HAP affinity BPs may have use as reversible, antiresorptive agents with a rapid on/off profile, which may be useful for maintaining bone health with long‐term BP treatment. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Abigail A Coffman
- Department of Biomedical Engineering The City College of New York New York NY USA
| | - Jelena Basta-Pljakic
- Department of Biomedical Engineering The City College of New York New York NY USA
| | - Rosa M Guerra
- Department of Biomedical Engineering The City College of New York New York NY USA
| | - Frank H Ebetino
- Department of Chemistry University of Rochester Rochester NY USA.,BioVinc, LLC Pasadena CA USA
| | - Mark W Lundy
- BioVinc, LLC Pasadena CA USA.,Department of Anatomy and Cell Biology Indiana University Indianapolis IN USA
| | - Robert J Majeska
- Department of Biomedical Engineering The City College of New York New York NY USA
| | - Mitchell B Schaffler
- Department of Biomedical Engineering The City College of New York New York NY USA
| |
Collapse
|
30
|
Raptis K, Makris K, Trovas G, Galanos A, Koutserimpas C, Papaioannou N, Vlamis I, Vlasis K, Tournis S. Does Vitamin D affects changes in volumetric bone mineral density and architecture in postmenopausal women after conservatively treated distal radius fractures? JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2021; 21:93-103. [PMID: 33657759 PMCID: PMC8020027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE We examined the role of vitamin D on volumetric bone mineral density (vBMD) and architecture during the first week's post-fracture in postmenopausal women (PMW) with distal radial fractures (DRF) treated conservatively using peripheral Quantitative Computed Tomography (pQCT). METHODS Patients were classified into 2 groups according to initial median 25(OH)D level; Group A (25(OH)D ≥15 ng/ml) and group B (25(OH)D <15 ng/ml). All patients were followed for 12 weeks at three visits: baseline, 6 weeks and 12 weeks post fracture. pQCT was performed at baseline in fractured and contralateral non-fractured radius and at 6th and 12th week on the fractured side. RESULTS 39 patients completed the protocol. Mean 25(OH)D levels were 15.60±7.35 ng/ml (3.5-41.7). Trabecular (trab) bone mineral content (BMC) and trabvBMD increased at 6 wk. vs. baseline (p<0.001). Cortical BMC, cortvBMD and cross- sectional area (CSA) progressively decreased (p<0.001) during the 12 weeks. There was no interaction between baseline 25(OH)D levels and changes in trabecular and cortical BMC, vBMD and CSA. Advanced age and higher CTX and P1NP were associated with higher cortical bone loss. CONCLUSION Vitamin D deficiency does not affect the early architectural changes after a DRF. Advanced age and higher bone remodeling were associated with higher cortical bone loss, probably related to immobilization and independent of vitamin D levels.
Collapse
Affiliation(s)
- Konstantinos Raptis
- Laboratory for Research of the Musculoskeletal System “Th. Garofalidis”, National and Kapodistrian University of Athens, KAT Hospital, Athens, Greece,Department of Orthopaedics and Traumatology, 251 HAF - VA Hospital, Athens, Greece
| | | | - George Trovas
- Laboratory for Research of the Musculoskeletal System “Th. Garofalidis”, National and Kapodistrian University of Athens, KAT Hospital, Athens, Greece
| | - Antonios Galanos
- Laboratory for Research of the Musculoskeletal System “Th. Garofalidis”, National and Kapodistrian University of Athens, KAT Hospital, Athens, Greece
| | | | - Nikolaos Papaioannou
- Laboratory for Research of the Musculoskeletal System “Th. Garofalidis”, National and Kapodistrian University of Athens, KAT Hospital, Athens, Greece
| | - Ioannis Vlamis
- 3rd Department of Orthopaedics, National and Kapodistrian University of Athens, General Hospital KAT, Athens, Greece
| | - Konstantinos Vlasis
- Department of Anatomy, Medical School, National and Kapodistrian University of Athens, Greece
| | - Symeon Tournis
- Laboratory for Research of the Musculoskeletal System “Th. Garofalidis”, National and Kapodistrian University of Athens, KAT Hospital, Athens, Greece,Corresponding author: Symeon Tournis MD, PhD, Laboratory for Research of the Musculoskeletal System “Th. Garofalidis”, National and Kapodistrian University of Athens, KAT Hospital, Athens, Greece E-mail:
| |
Collapse
|
31
|
Huang X, Xie M, Xie Y, Mei F, Lu X, Li X, Chen L. The roles of osteocytes in alveolar bone destruction in periodontitis. J Transl Med 2020; 18:479. [PMID: 33308247 PMCID: PMC7733264 DOI: 10.1186/s12967-020-02664-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023] Open
Abstract
Periodontitis, a bacterium-induced inflammatory disease that is characterized by alveolar bone loss, is highly prevalent worldwide. Elucidating the underlying mechanisms of alveolar bone loss in periodontitis is crucial for understanding its pathogenesis. Classically, bone cells, such as osteoclasts, osteoblasts and bone marrow stromal cells, are thought to dominate the development of bone destruction in periodontitis. Recently, osteocytes, the cells embedded in the mineral matrix, have gained attention. This review demonstrates the key contributing role of osteocytes in periodontitis, especially in alveolar bone loss. Osteocytes not only initiate physiological bone remodeling but also assist in inflammation-related changes in bone remodeling. The latest evidence suggests that osteocytes are involved in regulating bone anabolism and catabolism in the progression of periodontitis. The altered secretion of receptor activator of NF-κB ligand (RANKL), sclerostin and Dickkopf-related protein 1 (DKK1) by osteocytes affects the balance of bone resorption and formation and promotes bone loss. In addition, the accumulation of prematurely senescent and apoptotic osteocytes observed in alveolar bone may exacerbate local destruction. Based on their communication with the bloodstream, it is noteworthy that osteocytes may participate in the interaction between local periodontitis lesions and systemic diseases. Overall, further investigations of osteocytes may provide vital insights that improve our understanding of the pathophysiology of periodontitis.
Collapse
Affiliation(s)
- Xiaofei Huang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Mengru Xie
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yanling Xie
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Feng Mei
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Xiaofeng Lu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Xiaoshuang Li
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| |
Collapse
|
32
|
Prasad B, Grimm D, Strauch SM, Erzinger GS, Corydon TJ, Lebert M, Magnusson NE, Infanger M, Richter P, Krüger M. Influence of Microgravity on Apoptosis in Cells, Tissues, and Other Systems In Vivo and In Vitro. Int J Mol Sci 2020; 21:E9373. [PMID: 33317046 PMCID: PMC7764784 DOI: 10.3390/ijms21249373] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 02/07/2023] Open
Abstract
All life forms have evolved under the constant force of gravity on Earth and developed ways to counterbalance acceleration load. In space, shear forces, buoyance-driven convection, and hydrostatic pressure are nullified or strongly reduced. When subjected to microgravity in space, the equilibrium between cell architecture and the external force is disturbed, resulting in changes at the cellular and sub-cellular levels (e.g., cytoskeleton, signal transduction, membrane permeability, etc.). Cosmic radiation also poses great health risks to astronauts because it has high linear energy transfer values that evoke complex DNA and other cellular damage. Space environmental conditions have been shown to influence apoptosis in various cell types. Apoptosis has important functions in morphogenesis, organ development, and wound healing. This review provides an overview of microgravity research platforms and apoptosis. The sections summarize the current knowledge of the impact of microgravity and cosmic radiation on cells with respect to apoptosis. Apoptosis-related microgravity experiments conducted with different mammalian model systems are presented. Recent findings in cells of the immune system, cardiovascular system, brain, eyes, cartilage, bone, gastrointestinal tract, liver, and pancreas, as well as cancer cells investigated under real and simulated microgravity conditions, are discussed. This comprehensive review indicates the potential of the space environment in biomedical research.
Collapse
Affiliation(s)
- Binod Prasad
- Gravitational Biology Group, Department of Biology, Friedrich-Alexander University, Staudtstraße 5, 91058 Erlangen, Germany; (B.P.); (M.L.)
| | - Daniela Grimm
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus C, Denmark; (D.G.); (T.J.C.)
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (M.I.); (M.K.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Sebastian M. Strauch
- Postgraduate Program in Health and Environment, University of Joinville Region, Rua Paulo Malschitzki, 10 - Zona Industrial Norte, Joinville, SC 89219-710, Brazil; (S.M.S.); (G.S.E.)
| | - Gilmar Sidnei Erzinger
- Postgraduate Program in Health and Environment, University of Joinville Region, Rua Paulo Malschitzki, 10 - Zona Industrial Norte, Joinville, SC 89219-710, Brazil; (S.M.S.); (G.S.E.)
| | - Thomas J. Corydon
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus C, Denmark; (D.G.); (T.J.C.)
- Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, 8200 Aarhus N, Denmark
| | - Michael Lebert
- Gravitational Biology Group, Department of Biology, Friedrich-Alexander University, Staudtstraße 5, 91058 Erlangen, Germany; (B.P.); (M.L.)
- Space Biology Unlimited SAS, 24 Cours de l’Intendance, 33000 Bordeaux, France
| | - Nils E. Magnusson
- Diabetes and Hormone Diseases, Medical Research Laboratory, Department of Clinical Medicine, Faculty of Health, Aarhus University, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark;
| | - Manfred Infanger
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (M.I.); (M.K.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Peter Richter
- Gravitational Biology Group, Department of Biology, Friedrich-Alexander University, Staudtstraße 5, 91058 Erlangen, Germany; (B.P.); (M.L.)
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (M.I.); (M.K.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| |
Collapse
|
33
|
Ruiz-Gaspà S, Guañabens N, Jurado S, Combalia A, Peris P, Monegal A, Parés A. Bilirubin and bile acids in osteocytes and bone tissue. Potential role in the cholestatic-induced osteoporosis. Liver Int 2020; 40:2767-2775. [PMID: 32749754 DOI: 10.1111/liv.14630] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND AIMS Osteoporosis is a common complication in patients with primary biliary cholangitis. Both bilirubin and lithocholic acid (LCA) result in detrimental effects on osteoblastic cells, and ursodeoxycholic acid (UDCA) counteracts these outcomes. However, there is no information on the consequences of these retained substances of cholestasis and sera from cholestatic patients in osteocytes. METHODS The impact of bilirubin, LCA, UDCA and serum from jaundiced patients on viability, differentiation, mineralization and apoptosis has been assessed in MLO-Y4 and MLO-A5 osteocyte cell lines. Effects on gene expression were assessed in these cells and in human bone fragments. RESULTS Lithocholic acid 10 μmol/L and bilirubin 50 μmol/L decreased viability in MLO-Y4 and MLO-A5 cells (11% and 53% respectively; P ≤ .01). UDCA alone or combined with LCA or bilirubin increased cell viability. Jaundiced sera decreased cell viability (56%), an effect which was reverted by UDCA. Bilirubin decreased differentiation by 47% in MLO-Y4 (P ≤ .01) and mineralization (87%) after 21 days in MLO-A5 (P ≤ .03). Both bilirubin and LCA increased apoptosis in MLO-Y4, and UDCA diminished the apoptotic effect. Moreover, bilirubin down-regulated RUNX2 and up-regulated RANKL gene expression in bone tissue, MLO-Y4 and MLO-A5 cells, and LCA up-regulated RANKL expression in bone tissue. UDCA 100 μmol/L increased the gene expression of all these genes in bone tissue and MLO-Y4 cells and neutralized the decreased RUNX2 expression induced by bilirubin. CONCLUSION Bilirubin and LCA have damaging consequences in osteocytes by decreasing viability, differentiation and mineralization, increasing apoptosis and modifying gene expression, effects that are neutralized by UDCA.
Collapse
Affiliation(s)
- Silvia Ruiz-Gaspà
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain.,Metabolic Bone Diseases Unit, Department of Rheumatology, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Núria Guañabens
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain.,Metabolic Bone Diseases Unit, Department of Rheumatology, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Susana Jurado
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain.,Metabolic Bone Diseases Unit, Department of Rheumatology, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Andreu Combalia
- Metabolic Bone Diseases Unit, Department of Rheumatology, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Pilar Peris
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain.,Metabolic Bone Diseases Unit, Department of Rheumatology, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Ana Monegal
- Metabolic Bone Diseases Unit, Department of Rheumatology, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Albert Parés
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain.,Liver Unit, Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain
| |
Collapse
|
34
|
Yang J, Dong D, Luo X, Zhou J, Shang P, Zhang H. Iron Overload-Induced Osteocyte Apoptosis Stimulates Osteoclast Differentiation Through Increasing Osteocytic RANKL Production In Vitro. Calcif Tissue Int 2020; 107:499-509. [PMID: 32995951 DOI: 10.1007/s00223-020-00735-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/21/2020] [Indexed: 12/23/2022]
Abstract
Iron overload is closely associated with osteoporosis, the potential cellular mechanism involved in decreased osteoblast differentiation and increased osteoclast formation. However, the effect of iron overload on the biological behavior in osteocytes has not been reported. This study aims to investigate the changes of osteocytic activity, apoptosis, and its regulation on osteoclastogenesis in response to iron overload. MLO-Y4 osteocyte-like cells and primary osteocytes from mice were processed with ferric ammonium citrate (FAC) and deferoxamine (DFO), the conditioned medium (CM) was harvested and co-cultured with Raw264.7 cells and bone marrow-derived macrophages (BMDMs) to induce them to differentiate into osteoclasts. Osteocyte apoptosis, osteoclast differentiation, osteocytic gene expression and protein secretion of receptor activator of nuclear factor κB ligand (RANKL) and osteoprotegerin (OPG) was examined. Excessive iron has a toxic effect on MLO-Y4 osteocyte-like cells. Increased cell apoptosis in MLO-Y4 cells and primary osteocytes was induced by iron overload. The osteoclastic formation, differentiation-related gene expression, and osteoclastic bone-resorption capability were significantly increased after treated with the CM from iron overload-exposed osteocytes. Excessive iron exposure significantly promoted the gene expression and protein secretion of the RANKL in MLO-Y4 cells. Addition of RANKL-blocking antibody completely abolished the increase of osteoclast formation and bone resorption capacity induced by the CM from osteocytes exposed to excessive iron. Moreover, the pan-caspase apoptosis inhibitor, QVD (quinolyl-valyl-O-methylaspartyl-[-2,6-difluorophenoxy]-methylketone) was used to inhibit osteocyte apoptosis. The results showed osteocyte apoptosis induced by iron overload was reduced by QVD and accompanied by the decrease of soluble RANKL (sRANKL) in supernatant. The increase of osteoclast formation and bone resorption capacity induced by the CM from osteocytes exposed to excessive iron was significantly decreased by QVD. These results indicated that iron overload-induced osteocyte apoptosis is required to regulate osteoclast differentiation by increasing osteocytic RANKL production. This study, for the first time, reveals the indirect effect of iron overload on osteoclast differentiation through regulating osteocytes.
Collapse
Affiliation(s)
- Jiancheng Yang
- Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Southern Medical University, No. 38, Jinglong Construction Road, Shenzhen, 518109, Guangdong, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 West Youyi Road, Beilin District, Xi'an, 710072, Shaanxi, China
| | - Dandan Dong
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 West Youyi Road, Beilin District, Xi'an, 710072, Shaanxi, China
| | - Xinle Luo
- Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Southern Medical University, No. 38, Jinglong Construction Road, Shenzhen, 518109, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, China
| | - Jianhua Zhou
- Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Southern Medical University, No. 38, Jinglong Construction Road, Shenzhen, 518109, Guangdong, China
| | - Peng Shang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 West Youyi Road, Beilin District, Xi'an, 710072, Shaanxi, China.
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China.
| | - Hao Zhang
- Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Southern Medical University, No. 38, Jinglong Construction Road, Shenzhen, 518109, Guangdong, China.
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, China.
| |
Collapse
|
35
|
Hughes JM, Castellani CM, Popp KL, Guerriere KI, Matheny RW, Nindl BC, Bouxsein ML. The Central Role of Osteocytes in the Four Adaptive Pathways of Bone's Mechanostat. Exerc Sport Sci Rev 2020; 48:140-148. [PMID: 32568926 DOI: 10.1249/jes.0000000000000225] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We review evidence supporting an updated mechanostat model in bone that highlights the central role of osteocytes within bone's four mechanoadaptive pathways: 1) formation modeling and 2) targeted remodeling, which occur with heightened mechanical loading, 3) resorption modeling, and 4) disuse-mediated remodeling, which occur with disuse. These four pathways regulate whole-bone stiffness in response to changing mechanical demands.
Collapse
Affiliation(s)
- Julie M Hughes
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick
| | - Colleen M Castellani
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick
| | | | - Katelyn I Guerriere
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick
| | - Ronald W Matheny
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick
| | - Bradley C Nindl
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA
| | | |
Collapse
|
36
|
Osteocyte apoptosis: the roles and key molecular mechanisms in resorption-related bone diseases. Cell Death Dis 2020; 11:846. [PMID: 33046704 PMCID: PMC7552426 DOI: 10.1038/s41419-020-03059-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 01/18/2023]
Abstract
Vital osteocytes have been well known to function as an important orchestrator in the preservation of robustness and fidelity of the bone remodeling process. Nevertheless, some key pathological factors, such as sex steroid deficiency and excess glucocorticoids, and so on, are implicated in inducing a bulk of apoptotic osteocytes, subsequently resulting in resorption-related bone loss. As much, osteocyte apoptosis, under homeostatic conditions, is in an optimal state of balance tightly controlled by pro- and anti-apoptotic mechanism pathways. Importantly, there exist many essential signaling proteins in the process of osteocyte apoptosis, which has a crucial role in maintaining a homeostatic environment. While increasing in vitro and in vivo studies have established, in part, key signaling pathways and cross-talk mechanism on osteocyte apoptosis, intrinsic and complex mechanism underlying osteocyte apoptosis occurs in various states of pathologies remains ill-defined. In this review, we discuss not only essential pro- and anti-apoptotic signaling pathways and key biomarkers involved in these key mechanisms under different pathological agents, but also the pivotal role of apoptotic osteocytes in osteoclastogenesis-triggered bone loss, hopefully shedding new light on the attractive and proper actions of pharmacotherapeutics of targeting apoptosis and ensuing resorption-related bone diseases such as osteoporosis and fragility fractures.
Collapse
|
37
|
Farley A, Gnyubkin V, Vanden-Bossche A, Laroche N, Neefs M, Baatout S, Baselet B, Vico L, Mastrandrea C. Unloading-Induced Cortical Bone Loss is Exacerbated by Low-Dose Irradiation During a Simulated Deep Space Exploration Mission. Calcif Tissue Int 2020; 107:170-179. [PMID: 32451574 DOI: 10.1007/s00223-020-00708-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/14/2020] [Indexed: 01/08/2023]
Abstract
Spaceflight-induced bone losses have been reliably reproduced in Hind-Limb-Unloading (HLU) rodent models. However, a considerable knowledge gap exists regarding the effects of low-dose radiation and microgravity together. Ten-week-old male C57BL/6J mice, randomly allocated to Control (CONT), Hind-Limb Unloading (HLU), and Hind-Limb Unloading plus Irradiation (HLUIR), were acclimatized at 28 °C, close to thermoneutral temperature, for 28 days prior to the 14-day HLU protocol. HLUIR mice received a 25 mGy dose of X-ray irradiation, simulating 14 days of exposure to the deep space radiation environment, on day 7 of the HLU protocol. Trabecular bone mass was similarly reduced in HLU and HLUIR mice when compared to CONT, with losses driven by osteoclastic bone resorption rather than changes to osteoblastic bone formation. Femoral cortical thickness was reduced only in the HLUIR mice (102 μm, 97.5-107) as compared to CONT (108.5 μm, 102.5-120.5). Bone surface area was also reduced only in the HLUIR group, with no difference between HLU and CONT. Cortical losses were driven by osteoclastic resorption on the posterior endosteal surface of the distal femoral diaphysis, with no increase in the numbers of dead osteocytes. In conclusion, we show that low-dose radiation exposure negatively influences bone physiology beyond that induced by microgravity alone.
Collapse
Affiliation(s)
- Antoine Farley
- INSERM U1059-SAINBIOSE, Université de Lyon, 10 rue de la Marandière, 42270, Saint-Priest-en-Jarez, France
| | - Vasily Gnyubkin
- INSERM U1059-SAINBIOSE, Université de Lyon, 10 rue de la Marandière, 42270, Saint-Priest-en-Jarez, France
| | - Arnaud Vanden-Bossche
- INSERM U1059-SAINBIOSE, Université de Lyon, 10 rue de la Marandière, 42270, Saint-Priest-en-Jarez, France
| | - Norbert Laroche
- INSERM U1059-SAINBIOSE, Université de Lyon, 10 rue de la Marandière, 42270, Saint-Priest-en-Jarez, France
| | - Mieke Neefs
- SCK CEN, Radiobiology Unit, Boeretang 200, 2400, Mol, Belgium
| | - Sarah Baatout
- SCK CEN, Radiobiology Unit, Boeretang 200, 2400, Mol, Belgium
| | - Bjorn Baselet
- SCK CEN, Radiobiology Unit, Boeretang 200, 2400, Mol, Belgium
| | - Laurence Vico
- INSERM U1059-SAINBIOSE, Université de Lyon, 10 rue de la Marandière, 42270, Saint-Priest-en-Jarez, France.
| | - Carmelo Mastrandrea
- INSERM U1059-SAINBIOSE, Université de Lyon, 10 rue de la Marandière, 42270, Saint-Priest-en-Jarez, France
| |
Collapse
|
38
|
Functional Block of Interleukin-6 Reduces a Bone Pain Marker but Not Bone Loss in Hindlimb-Unloaded Mice. Int J Mol Sci 2020; 21:ijms21103521. [PMID: 32429268 PMCID: PMC7278999 DOI: 10.3390/ijms21103521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/08/2020] [Accepted: 05/13/2020] [Indexed: 12/21/2022] Open
Abstract
Interleukin-6 (IL-6) is widely accepted to stimulate osteoclasts. Our aim in this study was to examine whether the inhibitory effect of IL-6 on bone loss and skeletal pain associated with osteoporosis in hindlimb-unloaded (HU) mice in comparison with bisphosphonate. Eight-week-old male ddY mice were tail suspended for 2 weeks. Starting immediately after reload, vehicle (HU group), alendronate (HU-ALN group), or anti-IL-6 receptor antibody (HU-IL-6i group) was injected subcutaneously. After a 2-week treatment, pain-related behavior was examined using von Frey filaments. The bilateral distal femoral and proximal tibial metaphyses were analyzed three-dimensionally with micro-computed tomography. Calcitonin gene-related peptide (CGRP) expressions in dorsal root ganglion (DRG) neurons innervating the hindlimbs were examined using immunohistochemistry. HU mice with tail suspension developed bone loss. The HU mice showed mechanical hyperalgesia in the hindlimbs and increased CGRP immunoreactive neurons in the L3-5 DRG. Treatment with IL-6i and ALN prevented HU-induced mechanical hyperalgesia and upregulation of CGRP expressions in DRG neurons. Furthermore, ALN but not IL-6i prevented HU-induced bone loss. In summary, treatment with IL-6i prevented mechanical hyperalgesia in hindlimbs and suppressed CGRP expressions in DRG neurons of osteoporotic models. The novelty of this research suggests that IL-6 is one of the causes of immobility-induced osteoporotic pain regardless improvement of bone loss.
Collapse
|
39
|
Plotkin LI, Buvinic S, Balanta-Melo J. In vitro and in vivo studies using non-traditional bisphosphonates. Bone 2020; 134:115301. [PMID: 32112989 PMCID: PMC7138726 DOI: 10.1016/j.bone.2020.115301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/06/2020] [Accepted: 02/22/2020] [Indexed: 01/26/2023]
Abstract
Non-traditional bisphosphonates, that is, bisphosphonates that do not inhibit osteoclast viability or function, were initially reported in the 1990s by Socrates Papapoulos' group. Originally designed to study the role of the R1 residue of aminobisphosphonates on bisphosphonate affinity for hydroxyapatite, these modified bisphosphonates retained similar affinity for mineralized bone as their parent compounds, but they lacked the potential to inhibit the mevalonate pathway or bone resorption. We found that, similar to classical bisphosphonates, these non-traditional compounds prevented osteoblast and osteocyte apoptosis in vitro through a pathway that requires the expression of the gap junction protein connexin 43, and the activation of the Src/MEK/ERK signaling pathway. Furthermore, one of those compounds named IG9402 (also known as amino-olpadronate or lidadronate), was able to inhibit osteoblast and osteocyte apoptosis, without affecting osteoclast number or bone resorption in vivo in a model of glucocorticoid-induced osteoporosis. IG9402 administration also ameliorated the decrease in bone mass and in bone mechanical properties induced by glucocorticoids. Similarly, IG9402 prevented apoptosis of osteoblastic cells in a model of immobilization due to hindlimb unloading. However, in this case, the bisphosphonate was not able to preserve the bone mass, and only partially prevented the decrease in bone mechanical properties induced by immobilization. The effect of IG9402 administration was also tested in a mouse model of masticatory hypofunction through the induction of masseter muscle atrophy by unilateral injection of botulinum toxin type A (BoNTA). IG9402 partially inhibited the loss of trabecular bone microstructure in the mandibular condyle, but not the decrease in masseter muscle mass induced by BoNTA administration. In summary, these non-traditional bisphosphonates that lack anti-resorptive activity but are able to preserve osteoblast and osteocyte viability could constitute useful tools to study the consequences of preventing apoptosis of osteoblastic cells in animal models. Furthermore, they could be used to treat conditions associated with reduced bone mass and increased bone fragility in which a reduction of bone remodeling is not desirable.
Collapse
Affiliation(s)
- Lilian I Plotkin
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States of America; Indiana Center for Musculoskeletal Health, Indianapolis, IN, United States of America.
| | - Sonja Buvinic
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile; Center for Exercise, Metabolism and Cancer CEMC2016, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Julián Balanta-Melo
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile; School of Dentistry, Universidad del Valle, Cali, Colombia; Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
40
|
Pal S, Mittapelly N, Husain A, Kushwaha S, Chattopadhyay S, Kumar P, Ramakrishna E, Kumar S, Maurya R, Sanyal S, Gayen JR, Mishra PR, Chattopadhyay N. A butanolic fraction from the standardized stem extract of Cassia occidentalis L delivered by a self-emulsifying drug delivery system protects rats from glucocorticoid-induced osteopenia and muscle atrophy. Sci Rep 2020; 10:195. [PMID: 31932603 PMCID: PMC6957531 DOI: 10.1038/s41598-019-56853-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023] Open
Abstract
We recently reported that a butanol soluble fraction from the stem of Cassia occidentalis (CSE-Bu) consisting of osteogenic compounds mitigated methylprednisone (MP)-induced osteopenia in rats, albeit failed to afford complete protection thus leaving a substantial scope for further improvement. To this aim, we prepared an oral formulation that was a lipid-based self-nano emulsifying drug delivery system (CSE-BuF). The globule size of CSE-BuF was in the range of 100–180 nm of diluted emulsion and the zeta potential was −28 mV. CSE-BuF enhanced the circulating levels of five osteogenic compounds compared to CSE-Bu. CSE-BuF (50 mg/kg) promoted bone regeneration at the osteotomy site and completely prevented MP-induced loss of bone mass and strength by concomitant osteogenic and anti-resorptive mechanisms. The MP-induced downregulations of miR29a (the positive regulator of the osteoblast transcription factor, Runx2) and miR17 and miR20a (the negative regulators of the osteoclastogenic cytokine RANKL) in bone was prevented by CSE-BuF. In addition, CSE-BuF protected rats from the MP-induced sarcopenia and/or muscle atrophy by downregulating the skeletal muscle atrogenes, adverse changes in body weight and composition. CSE-BuF did not impact the anti-inflammatory effect of MP. Our preclinical study established CSE-BuF as a prophylactic agent against MP-induced osteopenia and muscle atrophy.
Collapse
Affiliation(s)
- Subhashis Pal
- Division of Endocrinology and Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, 226031, India
| | | | - Athar Husain
- Division of Pharmacokinetics, CSIR-CDRI, Lucknow, 226031, India
| | | | - Sourav Chattopadhyay
- Division of Biochemistry, CSIR-CDRI, Lucknow, 226031, India.,AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow, 226031, India
| | - Padam Kumar
- Division of Medicinal & Process Chemistry, CSIR-CDRI, Lucknow, 226031, India
| | | | - Sudhir Kumar
- Division of Medicinal & Process Chemistry, CSIR-CDRI, Lucknow, 226031, India
| | - Rakesh Maurya
- Division of Medicinal & Process Chemistry, CSIR-CDRI, Lucknow, 226031, India
| | - Sabyasachi Sanyal
- Division of Biochemistry, CSIR-CDRI, Lucknow, 226031, India.,AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow, 226031, India
| | - Jiaur R Gayen
- Division of Pharmacokinetics, CSIR-CDRI, Lucknow, 226031, India
| | | | - Naibedya Chattopadhyay
- Division of Endocrinology and Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, 226031, India.
| |
Collapse
|
41
|
Cao H, Yan Q, Wang D, Lai Y, Zhou B, Zhang Q, Jin W, Lin S, Lei Y, Ma L, Guo Y, Wang Y, Wang Y, Bai X, Liu C, Feng JQ, Wu C, Chen D, Cao X, Xiao G. Focal adhesion protein Kindlin-2 regulates bone homeostasis in mice. Bone Res 2020; 8:2. [PMID: 31934494 PMCID: PMC6946678 DOI: 10.1038/s41413-019-0073-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/03/2019] [Accepted: 07/25/2019] [Indexed: 12/23/2022] Open
Abstract
Our recent studies demonstrate that the focal adhesion protein Kindlin-2 is critical for chondrogenesis and early skeletal development. Here, we show that deleting Kindlin-2 from osteoblasts using the 2.3-kb mouse Col1a1-Cre transgene minimally impacts bone mass in mice, but deleting Kindlin-2 using the 10-kb mouse Dmp1-Cre transgene, which targets osteocytes and mature osteoblasts, results in striking osteopenia in mice. Kindlin-2 loss reduces the osteoblastic population but increases the osteoclastic and adipocytic populations in the bone microenvironment. Kindlin-2 loss upregulates sclerostin in osteocytes, downregulates β-catenin in osteoblasts, and inhibits osteoblast formation and differentiation in vitro and in vivo. Upregulation of β-catenin in the mutant cells reverses the osteopenia induced by Kindlin-2 deficiency. Kindlin-2 loss additionally increases the expression of RANKL in osteocytes and increases osteoclast formation and bone resorption. Kindlin-2 deletion in osteocytes promotes osteoclast formation in osteocyte/bone marrow monocyte cocultures, which is significantly blocked by an anti-RANKL-neutralizing antibody. Finally, Kindlin-2 loss increases osteocyte apoptosis and impairs osteocyte spreading and dendrite formation. Thus, we demonstrate an important role of Kindlin-2 in the regulation of bone homeostasis and provide a potential target for the treatment of metabolic bone diseases.
Collapse
Affiliation(s)
- Huiling Cao
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Qinnan Yan
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Dong Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001 China
| | - Yumei Lai
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612 USA
| | - Bo Zhou
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Qi Zhang
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Wenfei Jin
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Simin Lin
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Yiming Lei
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Liting Ma
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Yuxi Guo
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Yishu Wang
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Yilin Wang
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Xiaochun Bai
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China
| | - Chuanju Liu
- Department of Orthopedic Surgery, New York University School of Medicine, New York, NY 10003 USA
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016 USA
| | - Jian Q. Feng
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246 USA
| | - Chuanyue Wu
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Di Chen
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612 USA
| | - Xu Cao
- Department of Orthopedic Surgery, The Johns Hopkins University, Baltimore, MD 21205 USA
| | - Guozhi Xiao
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 China
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612 USA
| |
Collapse
|
42
|
Yang J, Li J, Cui X, Li W, Xue Y, Shang P, Zhang H. Blocking glucocorticoid signaling in osteoblasts and osteocytes prevents mechanical unloading-induced cortical bone loss. Bone 2020; 130:115108. [PMID: 31704341 DOI: 10.1016/j.bone.2019.115108] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/25/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022]
Abstract
Bone loss has been supposed to be the greatest damage to the health of astronauts. It is generally believed that the mechanical unloading induced by microgravity is the main cause of bone loss. However, besides mechanical unloading, many evidences from animal models and spaceflight missions indicate that microgravity conditions can cause some stress reactions and elevated endogenous glucocorticoid (GC) levels. High levels of GCs can lead to bone loss. This study aimed to investigate whether elevated GC levels are involved in hindlimb unloading (HLU)-induced bone loss in mice. Col2.3-11β-hydroxysteroid dehydrogenase type 2 (Col2.3-11β-HSD2) transgenic mice which are characterized by specific blocking GC signaling in mature osteoblasts and osteocytes were used. Male 14-week-old Col2.3-11β-HSD2 transgenic mice and wild type littermates were tail-suspended or kept under ambulatory conditions. At the endpoint, the tibias were examined by micro-computed tomography and histomorphometry, and bone turnover was analyzed by serum biochemistry, histochemistry staining, immunohistochemistry, and real-time PCR. Mice exposed to unloading occurred a significant increase in serum GC concentrations. Compared with non-unloaded controls, HLU led to a severe damage in cortical bone microstructure and bone strength of the tibia in wild type mice but not transgenic littermates. Osteoblast activity and bone formation were inhibited, whereas osteoclast activity and bone resorption were promoted in the tibial cortical bone of wild type mice following HLU, features absented in transgenic mice. Furthermore, HLU resulted in a significant increase in the number of sclerostin-producing and receptor activator of nuclear factor-κ B ligand (RANKL)-positive osteocytes, and apoptotic osteoblasts and osteocytes in wild type mice of unloading but not in unloaded transgenic mice. In conclusion, cortical bone loss during HLU is mediated through enhancing GC signaling in osteoblasts and osteocytes and subsequently restraining bone formation and activating bone resorption. It suggests that elevated GC levels play an important role in cortical bone loss in response to mechanical unloading.
Collapse
Affiliation(s)
- Jiancheng Yang
- Department of Spinal Surgery, People's Hospital of Longhua Shenzhen, Shenzhen, China; School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, China
| | - Jingbao Li
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, China
| | - Xiaobin Cui
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, China
| | - Wenbin Li
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, China
| | - Yanru Xue
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, China
| | - Peng Shang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, China.
| | - Hao Zhang
- Department of Spinal Surgery, People's Hospital of Longhua Shenzhen, Shenzhen, China.
| |
Collapse
|
43
|
Abstract
Bone is the most frequent site of breast cancer and prostate cancer metastasis, and one of the most common sites of metastasis for many solid tumors. Once cancer cells colonize in the bone, it imposes a major clinical challenge for the treatment of the disease, and fatality rates increase drastically. Bone, the largest organ in the body, provides a fertile microenvironment enriched with nutrients, growth factors and hormones, a generous reward for cancer cells. Dependent on cancer type, cancer cells can cause osteoblastic (bone forming) or osteolytic lesions to promote the net resorption and/or release of growth factors from the bone extracellular matrix. These processes activate a "vicious cycle", leading to disruption of bone integrity and promoting cancer cell growth and migration. Cancer cells influence the bone microenvironment favoring their colonization and growth. In order to metastasize to the bone, cancer cells must first migrate from the site of origin, and once established within the bone, they must overcome the dormant inducing effects of resident cells. If successful, cancer cells can then colonize and continually disrupt bone homeostasis that is primarily maintained by osteocytes, the most abundant bone cell type. For example, it has been shown that exercise induces osteocytes to release anabolic factors that inhibit osteoclast resorptive activity, promote dormancy and the release of anti-cancer factors that inhibit breast cancer cell metastasis. In this review, we will summarize recent research findings and provide mechanistic insights related to the role of osteocytes in osteolytic metastasis.
Collapse
|
44
|
Falfushynska HI, Horyn OI, Poznansky DV, Osadchuk DV, Savchyn TО, Krytskyi TІ, Merva LS, Hrabra SZ. Oxidative stress and thiols depletion impair tibia fracture healing in young men with type 2 diabetes. UKRAINIAN BIOCHEMICAL JOURNAL 2019. [DOI: 10.15407/ubj91.06.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
45
|
Abstract
PURPOSE OF REVIEW There is ample evidence that patients with type 2 diabetes (T2D) have increased risk of fracture even though they have normal or high bone mineral density. As a result, poor bone quality is suggested to contribute to skeletal fragility in this population. Thus, our goal was to conduct a comprehensive literature review to understand how bone quality components are altered in T2D and their effects on bone biomechanics and fracture risk. RECENT FINDINGS T2D does affect bone quality via alterations in bone microarchitecture, organic matrix, and cellular behavior. Further, studies indicate that bone biomechanical properties are generally deteriorated in T2D, but there are few reports in patients. Additional work is needed to better understand molecular and cellular mechanisms that contribute to skeletal fragility in T2D. This knowledge can contribute to the development of improved diagnostic tools and drug targets to for improved quality of life for those with T2D.
Collapse
Affiliation(s)
- Lamya Karim
- Department of Bioengineering, University of Massachusetts Dartmouth, 285 Old Westport Road, Dartmouth, MA, 02747, USA.
| | - Taraneh Rezaee
- Department of Bioengineering, University of Massachusetts Dartmouth, 285 Old Westport Road, Dartmouth, MA, 02747, USA
| | - Rachana Vaidya
- Department of Bioengineering, University of Massachusetts Dartmouth, 285 Old Westport Road, Dartmouth, MA, 02747, USA
| |
Collapse
|
46
|
Wang X, He Y, Tian S, Zhu F, Huang B, Zhang J, Chen Z, Wang H. Fluid Shear Stress Increases Osteocyte and Inhibits Osteoclasts via Downregulating Receptor-Activator of Nuclear Factor κB (RANK)/Osteoprotegerin Expression in Myeloma Microenvironment. Med Sci Monit 2019; 25:5961-5968. [PMID: 31400110 PMCID: PMC6699202 DOI: 10.12659/msm.915986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background The aim of this study was to determine the effects of myeloma cells exposed to fluid shear stress on osteocytes and osteoclasts, and clarify the potential underlying mechanisms. Material/methods A flow and a non-flow model were established using a flow fluid chamber. The myeloma cell line U266 and murine osteocytic MLO-Y4 cells were cultured in vitro. The osteocytes and osteoclasts were examined under a microscope. Osteoclasts were stained for tartrate-resistant acid phosphatase (TRAP) activity. RANKL and osteoprotegerin (OPG) gene expression were detected using reverse transcription-quantitative polymerase chain reaction. Results Compared with the controls, Y4 cells cultured with U266 culture supernatant showed altered morphology, fewer osteocytes, increased RANKL gene expression, a higher RANKL/OPG gene ratio, and a greater number of TRAP-positive osteoclasts (P<0.05 for all). Compared to the no-flow model, the flow model showed a higher number of Y4 cells, increased OPG gene expression, decreased RANKL gene expression, a lower RANKL/OPG gene ratio, and fewer TRAP-positive osteoclasts (P<0.05 for all). Conclusions Our study revealed that fluid shear stress ameliorated the inhibitory effects of myeloma cells on osteocyte growth and inhibited osteoclast proliferation by means of decreasing RANKL/OPG gene expression. This may have clinical implications in patients with multiple myeloma in that mechanical loading with low-intensity vibration or mild exercise may prevent the progression of myeloma bone disease.
Collapse
Affiliation(s)
- Xiaotao Wang
- Department of Hematology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China (mainland)
| | - Yuchan He
- Department of Hematology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China (mainland)
| | - Shen Tian
- Department of Hematology, The Second Affiliated Hospital of Guilin Medical University,, Guilin, Guangxi, China (mainland)
| | - Fangxiao Zhu
- Department of Rheumatic Immunology, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China (mainland)
| | - Bo Huang
- Department of Hematology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China (mainland)
| | - Junyan Zhang
- Department of Hematology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China (mainland)
| | - Zhong Chen
- Department of Hematology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China (mainland)
| | - Hangfei Wang
- Department of Hematology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China (mainland)
| |
Collapse
|
47
|
Osteocytes respond to particles of clinically-relevant conventional and cross-linked polyethylene and metal alloys by up-regulation of resorptive and inflammatory pathways. Acta Biomater 2019; 87:296-306. [PMID: 30690207 DOI: 10.1016/j.actbio.2019.01.047] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 02/06/2023]
Abstract
Periprosthetic osteolysis is a major cause of implant failure in total hip replacements. Aseptic loosening caused by osteolytic lesions is associated with the production of bioactive wear particles from the articulations of implants. Wear particles infiltrate the surrounding tissue of implants, promoting inflammation as well as bone resorption. Osteocytes have been shown to both regulate physiological osteoclastogenesis and directly remodel their perilacunar bone matrix by the process of osteocytic osteolysis. We hypothesise that osteocytes respond to wear debris of orthopaedic implant materials by adopting a pro-catabolic phenotype and thus contribute to periprosthetic osteolysis through the known pathways of bone loss. Osteocyte responses to particles derived from clinically relevant materials, ultra-high molecular weight polyethylene (UHMWPE), highly cross-linked polyethylene (XLPE) and metal alloys, Ti6Al4V and CoCrMo, were examined in vitro in human primary osteocyte-like cultures. Osteocyte-like cells exposed to both polyethylene and metal wear particle types showed upregulated expression of catabolic markers associated with osteocytic osteolysis, MMP13, carbonic anhydrase 2 (CA2) and cathepsin K (CTSK). In addition, pro-osteoclastogenesis markers RANKL and M-CSF were induced, as well as the expression of pro-inflammatory cytokines, IL-6 and TNFα, albeit with different kinetics. These findings suggest a previously unrecognised action of wear particles of multiple orthopaedic materials on osteocytes, and suggest a multifaceted role for osteocytes in periprosthetic osteolysis. STATEMENT OF SIGNIFICANCE: This study addresses periprosthetic osteolysis, a major clinical problem leading to aseptic loosening of orthopaedic implants. It is well accepted that wear particles of polyethylene and of other implant materials stimulate the activity of bone resorbing osteoclasts. Our recent work provided evidence that commercial particles of ultra-high molecular weight polyethylene (UHMWPE) stimulated osteocytes to adopt a bone catabolic state. In this study we demonstrate for the first time that particles derived from materials in clinical use, conventional UHMWPE, highly cross-linked polyethylene (XLPE), and Ti6Al4V and CoCrMo metal alloys, all stimulate human osteocyte activities of osteocyte-regulated osteoclastogenesis, osteocytic osteolysis, proinflammatory responses, osteocyte apoptosis, albeit to varying extents. This study provides further mechanistic insight into orthopaedic wear particle mediated bone disease in terms of the osteocyte, the most abundant and key controlling cell type in bone.
Collapse
|
48
|
Liu W, Dan X, Lu WW, Zhao X, Ruan C, Wang T, Cui X, Zhai X, Ma Y, Wang D, Huang W, Pan H. Spatial Distribution of Biomaterial Microenvironment pH and Its Modulatory Effect on Osteoclasts at the Early Stage of Bone Defect Regeneration. ACS APPLIED MATERIALS & INTERFACES 2019; 11:9557-9572. [PMID: 30720276 DOI: 10.1021/acsami.8b20580] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
It is generally accepted that biodegradable materials greatly influence the nearby microenvironment where cells reside; however, the range of interfacial properties has seldom been discussed due to technical bottlenecks. This study aims to depict biomaterial microenvironment boundaries by correlating interfacial H+ distribution with surrounding cell behaviors. Using a disuse-related osteoporotic mouse model, we confirmed that the abnormal activated osteoclasts could be suppressed under relatively alkaline conditions. The differentiation and apatite-resorption capability of osteoclasts were "switched off" when cultured in titrated material extracts with pH values higher than 7.8. To generate a localized alkaline microenvironment, a series of borosilicates were fabricated and their interfacial H+ distributions were monitored spatiotemporally by employing noninvasive microtest technology. By correlating interfacial H+ distribution with osteoclast "switch on/off" behavior, the microenvironment boundary of the tested material was found to be 400 ± 50 μm, which is broader than the generally accepted value, 300 μm. Furthermore, osteoporotic mice implanted with materials with higher interfacial pH values and boarder effective ranges had lower osteoclast activities and a thicker new bone. To conclude, effective proton microenvironment boundaries of degradable biomaterials were depicted and a weak alkaline microenvironment was shown to promote regeneration of osteoporotic bones possibly by suppressing abnormal activated osteoclasts.
Collapse
Affiliation(s)
- Wenlong Liu
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
| | - Xiuli Dan
- School of Biomedical Sciences, Faculty of Medicine , The Chinese University of Hong Kong , 999077 Hong Kong , China
| | - William W Lu
- Department of Orthopaedics and Traumatology, Faculty of Medicine , The University of Hong Kong , 999077 Hong Kong , China
| | - Xiaoli Zhao
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
| | - Changshun Ruan
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
| | - Ting Wang
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics , The University of Hong Kong-Shenzhen Hospital, University of Hong Kong , Shenzhen 518053 , China
| | - Xu Cui
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
| | - Xinyun Zhai
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
- Department of Orthopaedics and Traumatology, Faculty of Medicine , The University of Hong Kong , 999077 Hong Kong , China
| | - Yufei Ma
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
| | - Deping Wang
- Institute of Bioengineering and Information Technology Materials, School of Materials Science and Engineering , Tongji University , Shanghai 200092 , China
| | - Wenhai Huang
- Institute of Bioengineering and Information Technology Materials, School of Materials Science and Engineering , Tongji University , Shanghai 200092 , China
| | - Haobo Pan
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
| |
Collapse
|
49
|
Atkinson EG, Delgado‐Calle J. The Emerging Role of Osteocytes in Cancer in Bone. JBMR Plus 2019; 3:e10186. [PMID: 30918922 PMCID: PMC6419608 DOI: 10.1002/jbm4.10186] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/29/2019] [Accepted: 02/06/2019] [Indexed: 12/13/2022] Open
Abstract
Advances in the last decade have established the osteocyte, the most abundant cell in bone, as a dynamic and multifunctional cell capable of controlling bone homeostasis by regulating the function of both osteoblasts and osteoclasts. In addition, accumulating evidence demonstrates that osteocyte function is altered in several skeletal disorders, and targeting osteocytes and their derived factors improves skeletal health. Despite the remarkable progress in our understanding of osteocyte biology, there has been a paucity of information regarding the role of osteocytes in the progression of cancer in bone. Exciting, recent discoveries suggest that tumor cells communicate with osteocytes to generate a microenvironment that supports the growth and survival of cancer cells and stimulates bone destruction. This review features these novel findings and discussions regarding the impact of chemotherapy on osteocyte function and the potential of targeting osteocytes for the treatment of cancer in bone. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Emily G Atkinson
- Department of Anatomy and Cell BiologyIndiana University School of MedicineIndianapolisINUSA
| | - Jesús Delgado‐Calle
- Department of Anatomy and Cell BiologyIndiana University School of MedicineIndianapolisINUSA
- Department of MedicineDivision of Hematology/OncologyIndiana University School of MedicineIndianapolisINUSA
- Indiana Center for Musculoskeletal HealthIndiana University School of MedicineIndianapolisINUSA
| |
Collapse
|
50
|
Villaseñor A, Aedo-Martín D, Obeso D, Erjavec I, Rodríguez-Coira J, Buendía I, Ardura JA, Barbas C, Gortazar AR. Metabolomics reveals citric acid secretion in mechanically-stimulated osteocytes is inhibited by high glucose. Sci Rep 2019; 9:2295. [PMID: 30783155 PMCID: PMC6381120 DOI: 10.1038/s41598-018-38154-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 12/19/2018] [Indexed: 01/15/2023] Open
Abstract
Osteocytes are the main cells of bone tissue and play a crucial role in bone formation and resorption. Recent studies have indicated that Diabetes Mellitus (DM) affects bone mass and potentially causes higher bone fracture risk. Previous work on osteocyte cell cultures has demonstrated that mechanotransduction is impaired after culture under diabetic pre-conditioning with high glucose (HG), specifically osteoclast recruitment and differentiation. The aim of this study was to analyze the extracellular metabolic changes of osteocytes regarding two conditions: pre-conditioning to either basal levels of glucose (B), mannitol (M) or HG cell media, and mechanical stimulation by fluid flow (FF) in contrast to static condition (SC). Secretomes were analyzed using Liquid Chromatography and Capillary Electrophoresis both coupled to Mass Spectrometry (LC-MS and CE-MS, respectively). Results showed the osteocyte profile was very similar under SC, regardless of their pre-conditioning treatment, while, after FF stimulation, secretomes followed different metabolic signatures depending on the pre-conditioning treatment. An important increment of citrate pointed out that osteocytes release citrate outside of the cell to induce osteoblast activation, while HG environment impaired FF effect. This study demonstrates for the first time that osteocytes increase citrate excretion under mechanical stimulation, and that HG environment impaired this effect.
Collapse
Affiliation(s)
- Alma Villaseñor
- IMMA, Institute of Applied Molecular Medicine, School of Medicine, CEU San Pablo University, Campus Monteprincipe, Boadilla del Monte, 28668, Madrid, Spain
| | - Daniel Aedo-Martín
- IMMA, Institute of Applied Molecular Medicine, School of Medicine, CEU San Pablo University, Campus Monteprincipe, Boadilla del Monte, 28668, Madrid, Spain
| | - David Obeso
- IMMA, Institute of Applied Molecular Medicine, School of Medicine, CEU San Pablo University, Campus Monteprincipe, Boadilla del Monte, 28668, Madrid, Spain.,Centre for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, CEU San Pablo University, Campus Monteprincipe, Boadilla del Monte, 28668, Madrid, Spain
| | - Igor Erjavec
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Juan Rodríguez-Coira
- IMMA, Institute of Applied Molecular Medicine, School of Medicine, CEU San Pablo University, Campus Monteprincipe, Boadilla del Monte, 28668, Madrid, Spain
| | - Irene Buendía
- IMMA, Institute of Applied Molecular Medicine, School of Medicine, CEU San Pablo University, Campus Monteprincipe, Boadilla del Monte, 28668, Madrid, Spain
| | - Juan Antonio Ardura
- IMMA, Institute of Applied Molecular Medicine, School of Medicine, CEU San Pablo University, Campus Monteprincipe, Boadilla del Monte, 28668, Madrid, Spain.,Basic Medical Sciences Department, School of Medicine, CEU San Pablo University, Campus Monteprincipe, Boadilla del Monte, 28668, Madrid, Spain
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, CEU San Pablo University, Campus Monteprincipe, Boadilla del Monte, 28668, Madrid, Spain
| | - Arancha R Gortazar
- IMMA, Institute of Applied Molecular Medicine, School of Medicine, CEU San Pablo University, Campus Monteprincipe, Boadilla del Monte, 28668, Madrid, Spain. .,Basic Medical Sciences Department, School of Medicine, CEU San Pablo University, Campus Monteprincipe, Boadilla del Monte, 28668, Madrid, Spain.
| |
Collapse
|