1
|
Rao Z, Liu S, Li Z, Wang Q, Gao F, Peng H, Ren D, Zang Y, Li H, Li Y, Hu Q, He D, Xu H. Alarmin-loaded extracellular lipid droplets induce airway neutrophil infiltration during type 2 inflammation. Immunity 2024:S1074-7613(24)00445-X. [PMID: 39366382 DOI: 10.1016/j.immuni.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/20/2024] [Accepted: 09/04/2024] [Indexed: 10/06/2024]
Abstract
Group 2 innate lymphoid cells (ILC2s) play a crucial role in allergic diseases by coordinating a complex network of various effector cell lineages involved in type 2 inflammation. However, their function in regulating airway neutrophil infiltration, a deleterious symptom of severe asthma, remains unknown. Here, we observed ILC2-dependent neutrophil accumulation in the bronchoalveolar lavage fluid (BALF) of allergic mouse models. Chromatography followed by proteomics analysis identified the alarmin high mobility group box-1 (HMGB1) in the supernatant of lung ILC2s initiated neutrophil chemotaxis. Genetic perturbation of Hmgb1 in ILC2s reduced BALF neutrophil numbers and alleviated airway inflammation. HMGB1 was loaded onto the membrane of lipid droplets (LDs) released from activated lung ILC2s. Genetic inhibition of LD accumulation in ILC2s significantly decreased extracellular HMGB1 abundance and BALF neutrophil infiltration. These findings unveil a previously uncharacterized extracellular LD-mediated immune signaling delivery pathway by which ILC2s regulate airway neutrophil infiltration during allergic inflammation.
Collapse
Affiliation(s)
- Zebing Rao
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou, Zhejiang 310024, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Shaorui Liu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou, Zhejiang 310024, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Zhicheng Li
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou, Zhejiang 310024, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Qiuying Wang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou, Zhejiang 310024, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Feng Gao
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou, Zhejiang 310024, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Han Peng
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Deshan Ren
- National Resource Center for Mutant Mice, MOE Key Laboratory of Model Animals for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School of Nanjing University, Nanjing 210061, China
| | - Yang Zang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou, Zhejiang 310024, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Hui Li
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou, Zhejiang 310024, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Yan Li
- National Resource Center for Mutant Mice, MOE Key Laboratory of Model Animals for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School of Nanjing University, Nanjing 210061, China
| | - Qi Hu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Danyang He
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Laboratory of Neuroimmunology, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Heping Xu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou, Zhejiang 310024, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China.
| |
Collapse
|
2
|
Van Woerkom A, Harney DJ, Nagarajan SR, Hakeem-Sanni MF, Lin J, Hooke M, Pulpitel T, Cooney GJ, Larance M, Saunders DN, Brandon AE, Hoy AJ. Hepatic lipid droplet-associated proteome changes distinguish dietary-induced fatty liver from glucose tolerance in male mice. Am J Physiol Endocrinol Metab 2024; 326:E842-E855. [PMID: 38656127 PMCID: PMC11376491 DOI: 10.1152/ajpendo.00013.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
Fatty liver is characterized by the expansion of lipid droplets (LDs) and is associated with the development of many metabolic diseases. We assessed the morphology of hepatic LDs and performed quantitative proteomics in lean, glucose-tolerant mice compared with high-fat diet (HFD) fed mice that displayed hepatic steatosis and glucose intolerance as well as high-starch diet (HStD) fed mice who exhibited similar levels of hepatic steatosis but remained glucose tolerant. Both HFD- and HStD-fed mice had more and larger LDs than Chow-fed animals. We observed striking differences in liver LD proteomes of HFD- and HStD-fed mice compared with Chow-fed mice, with fewer differences between HFD and HStD. Taking advantage of our diet strategy, we identified a fatty liver LD proteome consisting of proteins common in HFD- and HStD-fed mice, as well as a proteome associated with glucose tolerance that included proteins shared in Chow and HStD but not HFD-fed mice. Notably, glucose intolerance was associated with changes in the ratio of adipose triglyceride lipase to perilipin 5 in the LD proteome, suggesting dysregulation of neutral lipid homeostasis in glucose-intolerant fatty liver. We conclude that our novel dietary approach uncouples ectopic lipid burden from insulin resistance-associated changes in the hepatic lipid droplet proteome.NEW & NOTEWORTHY This study identified a fatty liver lipid droplet proteome and one associated with glucose tolerance. Notably, glucose intolerance was linked with changes in the ratio of adipose triglyceride lipase to perilipin 5 that is indicative of dysregulation of neutral lipid homeostasis.
Collapse
Affiliation(s)
- Andries Van Woerkom
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Dylan J Harney
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Science, School of Life and Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Shilpa R Nagarajan
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Mariam F Hakeem-Sanni
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Jinfeng Lin
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Matthew Hooke
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Tamara Pulpitel
- Faculty of Science, School of Life and Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Gregory J Cooney
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Mark Larance
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Darren N Saunders
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Amanda E Brandon
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Science, School of Life and Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Andrew J Hoy
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Li L, Lixia D, Gan G, Li J, Yang L, Wu Y, Fang Z, Zhang X. Astrocytic HILPDA promotes lipid droplets generation to drive cognitive dysfunction in mice with sepsis-associated encephalopathy. CNS Neurosci Ther 2024; 30:e14758. [PMID: 38757390 PMCID: PMC11099789 DOI: 10.1111/cns.14758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024] Open
Abstract
AIMS Sepsis-associated encephalopathy (SAE) is manifested as a spectrum of disturbed cerebral function ranging from mild delirium to coma. However, the pathogenesis of SAE has not been clearly elucidated. Astrocytes play important roles in maintaining the function and metabolism of the brain. Most recently, it has been demonstrated that disorders of lipid metabolism, especially lipid droplets (LDs) dyshomeostasis, are involved in a variety of neurodegenerative diseases. The aim of this study was to investigate whether LDs are involved in the underlying mechanism of SAE. METHODS The open field test, Y-maze test, and contextual fear conditioning test (CFCT) were used to test cognitive function in SAE mice. Lipidomics was utilized to investigate alterations in hippocampal lipid metabolism in SAE mice. Western blotting and immunofluorescence labeling were applied for the observation of related proteins. RESULTS In the current study, we found that SAE mice showed severe cognitive dysfunction, including spatial working and contextual memory. Meanwhile, we demonstrated that lipid metabolism was widely dysregulated in the hippocampus by using lipidomic analysis. Furthermore, western blotting and immunofluorescence confirmed that LDs accumulation in hippocampal astrocytes was involved in the pathological process of cognitive dysfunction in SAE mice. We verified that LDs can be inhibited by specifically suppress hypoxia-inducible lipid droplet-associated protein (HILPDA) in astrocytes. Meanwhile, cognitive dysfunction in SAE was ameliorated by reducing A1 astrocyte activation and inhibiting presynaptic membrane transmitter release. CONCLUSION The accumulation of astrocytic lipid droplets plays a crucial role in the pathological process of SAE. HILPDA is an attractive therapeutic target for lipid metabolism regulation and cognitive improvement in septic patients.
Collapse
Affiliation(s)
- Ling Li
- Department of Critical Care MedicineXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care UnitXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
- Department of PediatricXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
| | - Du Lixia
- Department of Critical Care MedicineXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care UnitXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
| | - Guifen Gan
- Department of Critical Care MedicineQinghai University Affiliated HospitalXiningQinghaiChina
| | - Jin Li
- Department of Critical Care MedicineXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care UnitXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
| | - Lin Yang
- Department of Critical Care MedicineXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care UnitXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
| | - You Wu
- Department of Critical Care MedicineXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care UnitXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
| | - Zongping Fang
- Department of Critical Care MedicineXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care UnitXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
- Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Department of Critical Care MedicineShanghai Fourth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
| | - Xijing Zhang
- Department of Critical Care MedicineXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care UnitXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
| |
Collapse
|
4
|
Mathiowetz AJ, Olzmann JA. Lipid droplets and cellular lipid flux. Nat Cell Biol 2024; 26:331-345. [PMID: 38454048 PMCID: PMC11228001 DOI: 10.1038/s41556-024-01364-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 01/24/2024] [Indexed: 03/09/2024]
Abstract
Lipid droplets are dynamic organelles that store neutral lipids, serve the metabolic needs of cells, and sequester lipids to prevent lipotoxicity and membrane damage. Here we review the current understanding of the mechanisms of lipid droplet biogenesis and turnover, the transfer of lipids and metabolites at membrane contact sites, and the role of lipid droplets in regulating fatty acid flux in lipotoxicity and cell death.
Collapse
Affiliation(s)
- Alyssa J Mathiowetz
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - James A Olzmann
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA.
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA.
| |
Collapse
|
5
|
Wang XF, Vigouroux R, Syonov M, Baglaenko Y, Nikolakopoulou AM, Ringuette D, Rus H, DiStefano PV, Dufour S, Shabanzadeh AP, Lee S, Mueller BK, Charish J, Harada H, Fish JE, Wither J, Wälchli T, Cloutier JF, Zlokovic BV, Carlen PL, Monnier PP. The liver and muscle secreted HFE2-protein maintains central nervous system blood vessel integrity. Nat Commun 2024; 15:1037. [PMID: 38310100 PMCID: PMC10838306 DOI: 10.1038/s41467-024-45303-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/19/2024] [Indexed: 02/05/2024] Open
Abstract
Liver failure causes breakdown of the Blood CNS Barrier (BCB) leading to damages of the Central-Nervous-System (CNS), however the mechanisms whereby the liver influences BCB-integrity remain elusive. One possibility is that the liver secretes an as-yet to be identified molecule(s) that circulate in the serum to directly promote BCB-integrity. To study BCB-integrity, we developed light-sheet imaging for three-dimensional analysis. We show that liver- or muscle-specific knockout of Hfe2/Rgmc induces BCB-breakdown, leading to accumulation of toxic-blood-derived fibrinogen in the brain, lower cortical neuron numbers, and behavioral deficits in mice. Soluble HFE2 competes with its homologue RGMa for binding to Neogenin, thereby blocking RGMa-induced downregulation of PDGF-B and Claudin-5 in endothelial cells, triggering BCB-disruption. HFE2 administration in female mice with experimental autoimmune encephalomyelitis, a model for multiple sclerosis, prevented paralysis and immune cell infiltration by inhibiting RGMa-mediated BCB alteration. This study has implications for the pathogenesis and potential treatment of diseases associated with BCB-dysfunction.
Collapse
Affiliation(s)
- Xue Fan Wang
- Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard St.,, Toronto, M5T 2O8, ON, Canada
- Institute of Biomedical and Biomaterial Engineering, University of Toronto, 1 King's College circle,, Toronto, M5S 1A8, ON, Canada
| | - Robin Vigouroux
- Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard St.,, Toronto, M5T 2O8, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College circle,, Toronto, M5S 1A8, ON, Canada
| | - Michal Syonov
- Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard St.,, Toronto, M5T 2O8, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College circle,, Toronto, M5S 1A8, ON, Canada
| | - Yuriy Baglaenko
- Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard St.,, Toronto, M5T 2O8, ON, Canada
| | - Angeliki M Nikolakopoulou
- Department of Physiology and Neuroscience, The Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Dene Ringuette
- Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard St.,, Toronto, M5T 2O8, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College circle,, Toronto, M5S 1A8, ON, Canada
| | - Horea Rus
- University of Maryland, School of Medicine, Department of Neurology, Baltimore, MD, 21201, USA
| | - Peter V DiStefano
- Toronto General Hospital Research Institute, University Health Network, 101 College St. Rm 3-308, Toronto, M5L 1L7, ON, Canada
| | - Suzie Dufour
- Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard St.,, Toronto, M5T 2O8, ON, Canada
| | - Alireza P Shabanzadeh
- Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard St.,, Toronto, M5T 2O8, ON, Canada
| | - Seunggi Lee
- Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard St.,, Toronto, M5T 2O8, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College circle,, Toronto, M5S 1A8, ON, Canada
| | | | - Jason Charish
- Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard St.,, Toronto, M5T 2O8, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College circle,, Toronto, M5S 1A8, ON, Canada
| | - Hidekiyo Harada
- Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard St.,, Toronto, M5T 2O8, ON, Canada
| | - Jason E Fish
- Toronto General Hospital Research Institute, University Health Network, 101 College St. Rm 3-308, Toronto, M5L 1L7, ON, Canada
| | - Joan Wither
- Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard St.,, Toronto, M5T 2O8, ON, Canada
| | - Thomas Wälchli
- Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard St.,, Toronto, M5T 2O8, ON, Canada
- Group of CNS Angiogenesis and Neurovascular Link, and Physician-Scientist Program, Institute for Regenerative Medicine, Neuroscience Center Zurich, and Division of Neurosurgery, University and University Hospital Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Jean-François Cloutier
- The Neuro - Montreal Neurological Institute and Hospital, 3801 Rue Université, Montréal, QC, H3A 2B4, Canada
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, The Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Peter L Carlen
- Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard St.,, Toronto, M5T 2O8, ON, Canada
- Institute of Biomedical and Biomaterial Engineering, University of Toronto, 1 King's College circle,, Toronto, M5S 1A8, ON, Canada
- Department of Physiology and Neuroscience, The Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Philippe P Monnier
- Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard St.,, Toronto, M5T 2O8, ON, Canada.
- Institute of Biomedical and Biomaterial Engineering, University of Toronto, 1 King's College circle,, Toronto, M5S 1A8, ON, Canada.
- Department of Ophthalmology and Vision Sciences, Faculty of Medicine, University of Toronto, 340 College St.,, ON, Toronto, M5T 3A9, Canada.
| |
Collapse
|
6
|
Bombarda-Rocha V, Silva D, Badr-Eddine A, Nogueira P, Gonçalves J, Fresco P. Challenges in Pharmacological Intervention in Perilipins (PLINs) to Modulate Lipid Droplet Dynamics in Obesity and Cancer. Cancers (Basel) 2023; 15:4013. [PMID: 37568828 PMCID: PMC10417315 DOI: 10.3390/cancers15154013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Perilipins (PLINs) are the most abundant proteins in lipid droplets (LD). These LD-associated proteins are responsible for upgrading LD from inert lipid storage structures to fully functional organelles, fundamentally integrated in the lipid metabolism. There are five distinct perilipins (PLIN1-5), each with specific expression patterns and metabolic activation, but all capable of regulating the activity of lipases on LD. This plurality creates a complex orchestrated mechanism that is directly related to the healthy balance between lipogenesis and lipolysis. Given the essential role of PLINs in the modulation of the lipid metabolism, these proteins can become interesting targets for the treatment of lipid-associated diseases. Since reprogrammed lipid metabolism is a recognized cancer hallmark, and obesity is a known risk factor for cancer and other comorbidities, the modulation of PLINs could either improve existing treatments or create new opportunities for the treatment of these diseases. Even though PLINs have not been, so far, directly considered for pharmacological interventions, there are many established drugs that can modulate PLINs activity. Therefore, the aim of this study is to assess the involvement of PLINs in diseases related to lipid metabolism dysregulation and whether PLINs can be viewed as potential therapeutic targets for cancer and obesity.
Collapse
Affiliation(s)
- Victória Bombarda-Rocha
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Dany Silva
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Allal Badr-Eddine
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
| | - Patrícia Nogueira
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Jorge Gonçalves
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paula Fresco
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
7
|
Povero D, Chen Y, Johnson SM, McMahon CE, Pan M, Bao H, Petterson XMT, Blake E, Lauer KP, O'Brien DR, Yu Y, Graham RP, Taner T, Han X, Razidlo GL, Liu J. HILPDA promotes NASH-driven HCC development by restraining intracellular fatty acid flux in hypoxia. J Hepatol 2023; 79:378-393. [PMID: 37061197 PMCID: PMC11238876 DOI: 10.1016/j.jhep.2023.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/23/2023] [Accepted: 03/26/2023] [Indexed: 04/17/2023]
Abstract
BACKGROUND & AIMS The prevalence of non-alcoholic steatohepatitis (NASH)-driven hepatocellular carcinoma (HCC) is rising rapidly, yet its underlying mechanisms remain unclear. Herein, we aim to determine the role of hypoxia-inducible lipid droplet associated protein (HILPDA)/hypoxia-inducible gene 2 (HIG2), a selective inhibitor of intracellular lipolysis, in NASH-driven HCC. METHODS The clinical significance of HILPDA was assessed in human NASH-driven HCC specimens by immunohistochemistry and transcriptomics analyses. The oncogenic effect of HILPDA was assessed in human HCC cells and in 3D epithelial spheroids upon exposure to free fatty acids and either normoxia or hypoxia. Lipidomics profiling of wild-type and HILPDA knockout HCC cells was assessed via shotgun and targeted approaches. Wild-type (Hilpdafl/fl) and hepatocyte-specific Hilpda knockout (HilpdaΔHep) mice were fed a Western diet and high sugar in drinking water while receiving carbon tetrachloride to induce NASH-driven HCC. RESULTS In patients with NASH-driven HCC, upregulated HILPDA expression is strongly associated with poor survival. In oxygen-deprived and lipid-loaded culture conditions, HILPDA promotes viability of human hepatoma cells and growth of 3D epithelial spheroids. Lack of HILPDA triggered flux of polyunsaturated fatty acids to membrane phospholipids and of saturated fatty acids to ceramide synthesis, exacerbating lipid peroxidation and apoptosis in hypoxia. The apoptosis induced by HILPDA deficiency was reversed by pharmacological inhibition of ceramide synthesis. In our experimental mouse model of NASH-driven HCC, HilpdaΔHep exhibited reduced hepatic steatosis and tumorigenesis but increased oxidative stress in the liver. Single-cell analysis supports a dual role of hepatic HILPDA in protecting HCC cells and facilitating the establishment of a pro-tumorigenic immune microenvironment in NASH. CONCLUSIONS Hepatic HILPDA is a pivotal oncometabolic factor in the NASH liver microenvironment and represents a potential novel therapeutic target. IMPACT AND IMPLICATIONS Non-alcoholic steatohepatitis (NASH, chronic metabolic liver disease caused by buildup of fat, inflammation and damage in the liver) is emerging as the leading risk factor and the fastest growing cause of hepatocellular carcinoma (HCC), the most common form of liver cancer. While curative therapeutic options exist for HCC, it frequently presents at a late stage when such options are no longer effective and only systemic therapies are available. However, systemic therapies are still associated with poor efficacy and some side effects. In addition, no approved drugs are available for NASH. Therefore, understanding the underlying metabolic alterations occurring during NASH-driven HCC is key to identifying new cancer treatments that target the unique metabolic needs of cancer cells.
Collapse
Affiliation(s)
- Davide Povero
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA; Department of Medicine, Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Yongbin Chen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA
| | - Scott M Johnson
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA
| | - Cailin E McMahon
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA
| | - Meixia Pan
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Hanmei Bao
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xuan-Mai T Petterson
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX 78229, USA
| | - Emily Blake
- Metabolomics Core, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA
| | - Kimberly P Lauer
- Metabolomics Core, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA
| | - Daniel R O'Brien
- Metabolomics Core, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA
| | - Yue Yu
- Metabolomics Core, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA
| | - Rondell P Graham
- Department of Quantitative Health Sciences, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA
| | - Timucin Taner
- Department of Laboratory Medicine and Pathology, Division of Anatomic Pathology, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA
| | - Xianlin Han
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA; Departments of Surgery and Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Gina L Razidlo
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA; Department of Medicine, Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jun Liu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA.
| |
Collapse
|
8
|
Adipose Triglyceride Lipase in Hepatic Physiology and Pathophysiology. Biomolecules 2021; 12:biom12010057. [PMID: 35053204 PMCID: PMC8773762 DOI: 10.3390/biom12010057] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 12/25/2022] Open
Abstract
The liver is extremely active in oxidizing triglycerides (TG) for energy production. An imbalance between TG synthesis and hydrolysis leads to metabolic disorders in the liver, including excessive lipid accumulation, oxidative stress, and ultimately liver damage. Adipose triglyceride lipase (ATGL) is the rate-limiting enzyme that catalyzes the first step of TG breakdown to glycerol and fatty acids. Although its role in controlling lipid homeostasis has been relatively well-studied in the adipose tissue, heart, and skeletal muscle, it remains largely unknown how and to what extent ATGL is regulated in the liver, responds to stimuli and regulators, and mediates disease progression. Therefore, in this review, we describe the current understanding of the structure–function relationship of ATGL, the molecular mechanisms of ATGL regulation at translational and post-translational levels, and—most importantly—its role in lipid and glucose homeostasis in health and disease with a focus on the liver. Advances in understanding the molecular mechanisms underlying hepatic lipid accumulation are crucial to the development of targeted therapies for treating hepatic metabolic disorders.
Collapse
|
9
|
Grabner GF, Xie H, Schweiger M, Zechner R. Lipolysis: cellular mechanisms for lipid mobilization from fat stores. Nat Metab 2021; 3:1445-1465. [PMID: 34799702 DOI: 10.1038/s42255-021-00493-6] [Citation(s) in RCA: 254] [Impact Index Per Article: 84.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022]
Abstract
The perception that intracellular lipolysis is a straightforward process that releases fatty acids from fat stores in adipose tissue to generate energy has experienced major revisions over the last two decades. The discovery of new lipolytic enzymes and coregulators, the demonstration that lipophagy and lysosomal lipolysis contribute to the degradation of cellular lipid stores and the characterization of numerous factors and signalling pathways that regulate lipid hydrolysis on transcriptional and post-transcriptional levels have revolutionized our understanding of lipolysis. In this review, we focus on the mechanisms that facilitate intracellular fatty-acid mobilization, drawing on canonical and noncanonical enzymatic pathways. We summarize how intracellular lipolysis affects lipid-mediated signalling, metabolic regulation and energy homeostasis in multiple organs. Finally, we examine how these processes affect pathogenesis and how lipolysis may be targeted to potentially prevent or treat various diseases.
Collapse
Affiliation(s)
- Gernot F Grabner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Hao Xie
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Martina Schweiger
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
10
|
Shi Y, Pizzini J, Wang H, Das F, Abdul Azees PA, Ghosh Choudhury G, Barnes JL, Zang M, Weintraub ST, Yeh CK, Katz MS, Kamat A. β2-Adrenergic receptor agonist induced hepatic steatosis in mice: modeling nonalcoholic fatty liver disease in hyperadrenergic states. Am J Physiol Endocrinol Metab 2021; 321:E90-E104. [PMID: 34029162 PMCID: PMC8321826 DOI: 10.1152/ajpendo.00651.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/23/2021] [Accepted: 05/08/2021] [Indexed: 12/11/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a spectrum of disorders ranging from hepatic steatosis [excessive accumulation of triglycerides (TG)] to nonalcoholic steatohepatitis, which can progress to cirrhosis and hepatocellular carcinoma. The molecular pathogenesis of steatosis and progression to more severe NAFLD remains unclear. Obesity and aging, two principal risk factors for NAFLD, are associated with a hyperadrenergic state. β-Adrenergic responsiveness in liver increases in animal models of obesity and aging, and in both is linked to increased hepatic expression of β2-adrenergic receptors (β2-ARs). We previously showed that in aging rodents intracellular signaling from elevated hepatic levels of β2-ARs may contribute to liver steatosis. In this study we demonstrate that injection of formoterol, a highly selective β2-AR agonist, to mice acutely results in hepatic TG accumulation. Further, we have sought to define the intrahepatic mechanisms underlying β2-AR mediated steatosis by investigating changes in hepatic expression and cellular localization of enzymes, transcription factors, and coactivators involved in processes of lipid accrual and disposition-and also functional aspects thereof-in livers of formoterol-treated animals. Our results suggest that β2-AR activation by formoterol leads to increased hepatic TG synthesis and de novo lipogenesis, increased but incomplete β-oxidation of fatty acids with accumulation of potentially toxic long-chain acylcarnitine intermediates, and reduced TG secretion-all previously invoked as contributors to fatty liver disease. Experiments are ongoing to determine whether sustained activation of hepatic β2-AR signaling by formoterol might be utilized to model fatty liver changes occurring in hyperadrenergic states of obesity and aging, and thereby identify novel molecular targets for the prevention or treatment of NAFLD.NEW & NOTEWORTHY Results of our study suggest that β2-adrenergic receptor (β2-AR) activation by agonist formoterol leads to increased hepatic TG synthesis and de novo lipogenesis, incomplete β-oxidation of fatty acids with accumulation of long-chain acylcarnitine intermediates, and reduced TG secretion. These findings may, for the first time, implicate a role for β2-AR responsive dysregulation of hepatic lipid metabolism in the pathogenetic processes underlying NAFLD in hyperadrenergic states such as obesity and aging.
Collapse
Affiliation(s)
- Yun Shi
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Jason Pizzini
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Hanzhou Wang
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Falguni Das
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Parveez Ahamed Abdul Azees
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Goutam Ghosh Choudhury
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Jeffrey L Barnes
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Mengwei Zang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, Texas
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Geriatric Research, Education and Clinical Center, Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, Texas
| | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Chih-Ko Yeh
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Geriatric Research, Education and Clinical Center, Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, Texas
| | - Michael S Katz
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Geriatric Research, Education and Clinical Center, Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, Texas
| | - Amrita Kamat
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Geriatric Research, Education and Clinical Center, Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, Texas
| |
Collapse
|
11
|
The Propensity of the Human Liver to Form Large Lipid Droplets Is Associated with PNPLA3 Polymorphism, Reduced INSIG1 and NPC1L1 Expression and Increased Fibrogenetic Capacity. Int J Mol Sci 2021; 22:ijms22116100. [PMID: 34198853 PMCID: PMC8200978 DOI: 10.3390/ijms22116100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 12/12/2022] Open
Abstract
In nonalcoholic steatohepatitis animal models, an increased lipid droplet size in hepatocytes is associated with fibrogenesis. Hepatocytes with large droplet (Ld-MaS) or small droplet (Sd-MaS) macrovesicular steatosis may coexist in the human liver, but the factors associated with the predominance of one type over the other, including hepatic fibrogenic capacity, are unknown. In pre-ischemic liver biopsies from 225 consecutive liver transplant donors, we retrospectively counted hepatocytes with Ld-MaS and Sd-MaS and defined the predominant type of steatosis as involving ≥50% of steatotic hepatocytes. We analyzed a donor Patatin-like phospholipase domain-containing protein 3 (PNPLA3) rs738409 polymorphism, hepatic expression of proteins involved in lipid metabolism by RT-PCR, hepatic stellate cell (HSC) activation by α-SMA immunohistochemistry and, one year after transplantation, histological progression of fibrosis due to Hepatitis C Virus (HCV) recurrence. Seventy-four livers had no steatosis, and there were 98 and 53 with predominant Ld-MaS and Sd-MaS, respectively. In linear regression models, adjusted for many donor variables, the percentage of steatotic hepatocytes affected by Ld-MaS was inversely associated with hepatic expression of Insulin Induced Gene 1 (INSIG-1) and Niemann-Pick C1-Like 1 gene (NPC1L1) and directly with donor PNPLA3 variant M, HSC activation and progression of post-transplant fibrosis. In humans, Ld-MaS formation by hepatocytes is associated with abnormal PNPLA3-mediated lipolysis, downregulation of both the intracellular cholesterol sensor and cholesterol reabsorption from bile and increased hepatic fibrogenesis.
Collapse
|
12
|
Grachan JJ, Kery M, Giaccia AJ, Denko NC, Papandreou I. Lipid droplet storage promotes murine pancreatic tumor growth. Oncol Rep 2021; 45:21. [PMID: 33649859 PMCID: PMC8889526 DOI: 10.3892/or.2021.7972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/20/2020] [Indexed: 11/06/2022] Open
Abstract
Hypoxia Inducible Lipid Droplet Associated (HILPDA) is frequently overexpressed in tumors and promotes neutral lipid storage. The impact of Hilpda on pancreatic ductal adenocarcinoma (PDAC) tumor growth is not known. In order to evaluate Hilpda‑dependent lipid storage mechanisms, expression of Hilpda in murine pancreatic cells (KPC) was genetically manipulated. Lipid droplet (LD) abundance and triglyceride content in vitro were measured, and model tumor growth in nu/nu mice was determined. The results showed that excess lipid supply increased triglyceride storage and LD formation in KPC cells in a HILPDA‑dependent manner. Contrary to published results, inhibition of Adipose Triglyceride Lipase (ATGL) did not ameliorate the triglyceride abundance differences between Hilpda WT and KO cells. Hilpda ablation significantly decreased the growth rate of model tumors in immunocompromised mice. In conclusion, Hilpda is a positive regulator of triglyceride storage and lipid droplet formation in murine pancreatic cancer cells in vitro and lipid accumulation and tumor growth in vivo. Our data suggest that deregulated ATGL is not responsible for the absence of LDs in KO cells in this context.
Collapse
Affiliation(s)
- Jeremy J. Grachan
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Martin Kery
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Amato J. Giaccia
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Nicholas C. Denko
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Ioanna Papandreou
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
- Correspondence to: Dr Ioanna Papandreou, Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, 420 W. 12th Avenue, Columbus, OH 43210, USA, E-mail:
| |
Collapse
|
13
|
Zhang X, Xia H, Wang J, Leng R, Zhou X, Gao Q, He K, Liu D, Huang B. Effect of selenium-enriched kiwifruit on body fat reduction and liver protection in hyperlipidaemic mice. Food Funct 2021; 12:2044-2057. [PMID: 33532813 DOI: 10.1039/d0fo02410d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This study aimed to investigate the effects and mechanism of selenium-enriched kiwifruit (Se-Kiwi) on lipid-lowering and liver protection in hyperlipidaemic mice induced by consuming a long-term high-fat diet. Selenium-enriched cultivation can significantly improve the contents of vitamins and functional elements in kiwifruits, especially vitamin C, selenium, and manganese, thus enhancing the activity of antioxidant enzymes in Se-Kiwi. Se-Kiwi can significantly improve the activity of antioxidant enzymes in the liver of hyperlipidaemic mice, restore the liver morphology of mice close to normal, reduce the fat content in the liver, and inhibit the accumulation of abdominal fat cells. Meanwhile, the expression levels of inflammation-related factors (TNF-α and NF-κB) and lipid synthesis related genes (SREBP-1c and FAS) are inhibited at the gene transcription and protein expression levels, and the expression levels of energy expenditure related genes (PPAR-α and CPT1) are increased, resulting in lipid reductions and liver protection. In conclusion, our results indicate that the protective mechanism of Se-Kiwi on high-fat diet mice is associated with enhancing the activity of antioxidant enzymes, reducing the degree of the inflammatory reaction, inhibiting the fat synthesis, and accelerating body energy consumption.
Collapse
Affiliation(s)
- Xiaoni Zhang
- School of Life Sciences, Anhui University, Hefei 230601, China. and Center for Stem Cell and Translational Medicine, Anhui University, Hefei 230601, China
| | - Haidong Xia
- School of Life Sciences, Anhui University, Hefei 230601, China. and Center for Stem Cell and Translational Medicine, Anhui University, Hefei 230601, China
| | - Jie Wang
- School of Life Sciences, Anhui University, Hefei 230601, China. and Center for Stem Cell and Translational Medicine, Anhui University, Hefei 230601, China
| | - Ruyue Leng
- School of Life Sciences, Anhui University, Hefei 230601, China. and Center for Stem Cell and Translational Medicine, Anhui University, Hefei 230601, China
| | - Xiaojing Zhou
- School of Life Sciences, Anhui University, Hefei 230601, China. and Center for Stem Cell and Translational Medicine, Anhui University, Hefei 230601, China
| | - Qian Gao
- School of Life Sciences, Anhui University, Hefei 230601, China. and Center for Stem Cell and Translational Medicine, Anhui University, Hefei 230601, China
| | - Kan He
- School of Life Sciences, Anhui University, Hefei 230601, China. and Center for Stem Cell and Translational Medicine, Anhui University, Hefei 230601, China
| | - Dahai Liu
- Department of Basic Medicine and Biomedical Engineering, School of Stomatology and Medicine, Foshan University, Foshan, China
| | - Bei Huang
- School of Life Sciences, Anhui University, Hefei 230601, China. and Center for Stem Cell and Translational Medicine, Anhui University, Hefei 230601, China
| |
Collapse
|
14
|
van Dierendonck XAMH, de la Rosa Rodriguez MA, Georgiadi A, Mattijssen F, Dijk W, van Weeghel M, Singh R, Borst JW, Stienstra R, Kersten S. HILPDA Uncouples Lipid Droplet Accumulation in Adipose Tissue Macrophages from Inflammation and Metabolic Dysregulation. Cell Rep 2021; 30:1811-1822.e6. [PMID: 32049012 DOI: 10.1016/j.celrep.2020.01.046] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/10/2019] [Accepted: 01/15/2020] [Indexed: 01/15/2023] Open
Abstract
Obesity leads to a state of chronic, low-grade inflammation that features the accumulation of lipid-laden macrophages in adipose tissue. Here, we determined the role of macrophage lipid-droplet accumulation in the development of obesity-induced adipose-tissue inflammation, using mice with myeloid-specific deficiency of the lipid-inducible HILPDA protein. HILPDA deficiency markedly reduced intracellular lipid levels and accumulation of fluorescently labeled fatty acids. Decreased lipid storage in HILPDA-deficient macrophages can be rescued by inhibition of adipose triglyceride lipase (ATGL) and is associated with increased oxidative metabolism. In diet-induced obese mice, HILPDA deficiency does not alter inflammatory and metabolic parameters, despite markedly reducing lipid accumulation in macrophages. Overall, we find that HILPDA is a lipid-inducible, physiological inhibitor of ATGL-mediated lipolysis in macrophages and uncouples lipid storage in adipose tissue macrophages from inflammation and metabolic dysregulation. Our data question the contribution of lipid droplet accumulation in adipose tissue macrophages in obesity-induced inflammation and metabolic dysregulation.
Collapse
Affiliation(s)
- Xanthe A M H van Dierendonck
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands; Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein 8, 6525 GA Nijmegen, the Netherlands
| | - Montserrat A de la Rosa Rodriguez
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Anastasia Georgiadi
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Frits Mattijssen
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Wieneke Dijk
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Rajat Singh
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer 505D, Bronx, NY 10461, USA
| | - Jan Willem Borst
- Laboratory of Biochemistry, Microspectroscopy Research Facility, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Rinke Stienstra
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands; Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein 8, 6525 GA Nijmegen, the Netherlands.
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands.
| |
Collapse
|
15
|
de la Rosa Rodriguez MA, Deng L, Gemmink A, van Weeghel M, Aoun ML, Warnecke C, Singh R, Borst JW, Kersten S. Hypoxia-inducible lipid droplet-associated induces DGAT1 and promotes lipid storage in hepatocytes. Mol Metab 2021; 47:101168. [PMID: 33465519 PMCID: PMC7881268 DOI: 10.1016/j.molmet.2021.101168] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/26/2022] Open
Abstract
Objective Storage of triglycerides in lipid droplets is governed by a set of lipid droplet-associated proteins. One of these lipid droplet-associated proteins, hypoxia-inducible lipid droplet-associated (HILPDA), was found to impair lipid droplet breakdown in macrophages and cancer cells by inhibiting adipose triglyceride lipase. Here, we aimed to better characterize the role and mechanism of action of HILPDA in hepatocytes. Methods We performed studies in HILPDA-deficient and HILPDA-overexpressing liver cells, liver slices, and mice. The functional role and physical interactions of HILPDA were investigated using a variety of biochemical and microscopic techniques, including real-time fluorescence live-cell imaging and Förster resonance energy transfer-fluorescence lifetime imaging microscopy (FRET-FLIM). Results Levels of HILPDA were markedly induced by fatty acids in several hepatoma cell lines. Hepatocyte-specific deficiency of HILPDA in mice modestly but significantly reduced hepatic triglycerides in mice with non-alcoholic steatohepatitis. Similarly, deficiency of HILPDA in mouse liver slices and primary hepatocytes reduced lipid storage and accumulation of fluorescently-labeled fatty acids in lipid droplets, respectively, which was independent of adipose triglyceride lipase. Fluorescence microscopy showed that HILPDA partly colocalizes with lipid droplets and with the endoplasmic reticulum, is especially abundant in perinuclear areas, and mainly associates with newly added fatty acids. Real-time fluorescence live-cell imaging further revealed that HILPDA preferentially localizes to lipid droplets that are being remodeled. Overexpression of HILPDA in liver cells increased the activity of diacylglycerol acyltransferases (DGAT) and DGAT1 protein levels, concurrent with increased lipid storage. Confocal microscopy coupled to FRET-FLIM analysis demonstrated that HILPDA physically interacts with DGAT1 in living liver cells. The stimulatory effect of HILPDA on lipid storage via DGAT1 was corroborated in adipocytes. Conclusions Our data indicate that HILPDA physically interacts with DGAT1 and increases DGAT activity. Our findings suggest a novel regulatory mechanism by which fatty acids promote triglyceride synthesis and storage. HILPDA expression is induced by fatty acids in hepatoma cells. HILPDA deficiency modestly decreases liver triglyceride storage in mice with NASH. HILPDA preferentially associates with newly synthesized lipid droplets and active lipid droplets. HILPDA promotes lipid storage at least in part independently of ATGL. HILPDA physically interacts and induces DGAT1.
Collapse
Affiliation(s)
- Montserrat A de la Rosa Rodriguez
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, the Netherlands
| | - Lei Deng
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, the Netherlands
| | - Anne Gemmink
- Department of Nutrition and Movement Sciences, Maastricht University Medical Center+, Maastricht, 6200 MD, the Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, the Netherlands
| | - Marie Louise Aoun
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer 505D, Bronx, NY, 10461, USA
| | - Christina Warnecke
- Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Rajat Singh
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer 505D, Bronx, NY, 10461, USA
| | - Jan Willem Borst
- Laboratory of Biochemistry, Microspectroscopy Research Facility, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, the Netherlands
| | - Sander Kersten
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, the Netherlands.
| |
Collapse
|
16
|
Povero D, Johnson SM, Liu J. Hypoxia, hypoxia-inducible gene 2 (HIG2)/HILPDA, and intracellular lipolysis in cancer. Cancer Lett 2020; 493:71-79. [PMID: 32818550 PMCID: PMC11218043 DOI: 10.1016/j.canlet.2020.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/27/2020] [Accepted: 06/13/2020] [Indexed: 12/16/2022]
Abstract
Tumor tissues are chronically exposed to hypoxia owing to aberrant vascularity. Hypoxia induces metabolic alterations in cancer, thereby promoting aggressive malignancy and metastasis. While previous efforts largely focused on adaptive responses in glucose and glutamine metabolism, recent studies have begun to yield important insight into the hypoxic regulation of lipid metabolic reprogramming in cancer. Emerging evidence points to lipid droplet (LD) accumulation as a hallmark of hypoxic cancer cells. One critical underlying mechanism involves the inhibition of adipose triglyceride lipase (ATGL)-mediated intracellular lipolysis by a small protein encoded by hypoxia-inducible gene 2 (HIG2), also known as hypoxia inducible lipid droplet associated (HILPDA). In this review we summarize and discuss recent key findings on hypoxia-dependent regulation of metabolic adaptations especially lipolysis in cancer. We also pose several questions and hypotheses pertaining to the metabolic impact of lipolytic regulation in cancer under hypoxia and during hypoxia-reoxygenation transition.
Collapse
Affiliation(s)
- Davide Povero
- From Department of Biochemistry and Molecular Biology, Rochester, MN, 55905, USA; Division of Endocrinology, Rochester, MN, 55905, USA
| | - Scott M Johnson
- From Department of Biochemistry and Molecular Biology, Rochester, MN, 55905, USA; Mayo Clinic College of Medicine & Science, Rochester, MN, 55905, USA; Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, 55905, USA
| | - Jun Liu
- From Department of Biochemistry and Molecular Biology, Rochester, MN, 55905, USA; Division of Endocrinology, Rochester, MN, 55905, USA.
| |
Collapse
|
17
|
Adipocyte lipolysis: from molecular mechanisms of regulation to disease and therapeutics. Biochem J 2020; 477:985-1008. [PMID: 32168372 DOI: 10.1042/bcj20190468] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 12/20/2022]
Abstract
Fatty acids (FAs) are stored safely in the form of triacylglycerol (TAG) in lipid droplet (LD) organelles by professional storage cells called adipocytes. These lipids are mobilized during adipocyte lipolysis, the fundamental process of hydrolyzing TAG to FAs for internal or systemic energy use. Our understanding of adipocyte lipolysis has greatly increased over the past 50 years from a basic enzymatic process to a dynamic regulatory one, involving the assembly and disassembly of protein complexes on the surface of LDs. These dynamic interactions are regulated by hormonal signals such as catecholamines and insulin which have opposing effects on lipolysis. Upon stimulation, patatin-like phospholipase domain containing 2 (PNPLA2)/adipocyte triglyceride lipase (ATGL), the rate limiting enzyme for TAG hydrolysis, is activated by the interaction with its co-activator, alpha/beta hydrolase domain-containing protein 5 (ABHD5), which is normally bound to perilipin 1 (PLIN1). Recently identified negative regulators of lipolysis include G0/G1 switch gene 2 (G0S2) and PNPLA3 which interact with PNPLA2 and ABHD5, respectively. This review focuses on the dynamic protein-protein interactions involved in lipolysis and discusses some of the emerging concepts in the control of lipolysis that include allosteric regulation and protein turnover. Furthermore, recent research demonstrates that many of the proteins involved in adipocyte lipolysis are multifunctional enzymes and that lipolysis can mediate homeostatic metabolic signals at both the cellular and whole-body level to promote inter-organ communication. Finally, adipocyte lipolysis is involved in various diseases such as cancer, type 2 diabetes and fatty liver disease, and targeting adipocyte lipolysis is of therapeutic interest.
Collapse
|
18
|
de la Rosa Rodriguez MA, Kersten S. Regulation of lipid droplet homeostasis by hypoxia inducible lipid droplet associated HILPDA. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158738. [PMID: 32417386 DOI: 10.1016/j.bbalip.2020.158738] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/17/2020] [Accepted: 05/06/2020] [Indexed: 12/28/2022]
Abstract
Nearly all cell types have the ability to store excess energy as triglycerides in specialized organelles called lipid droplets. The formation and degradation of lipid droplets is governed by a diverse set of enzymes and lipid droplet-associated proteins. One of the lipid droplet-associated proteins is Hypoxia Inducible Lipid Droplet Associated (HILPDA). HILPDA was originally discovered in a screen to identify novel hypoxia-inducible proteins. Apart from hypoxia, levels of HILPDA are induced by fatty acids and adrenergic agonists. HILPDA is a small protein of 63 amino acids in humans and 64 amino acids in mice. Inside cells, HILPDA is located in the endoplasmic reticulum and around lipid droplets. Gain- and loss-of-function experiments have demonstrated that HILPDA promotes lipid storage in hepatocytes, macrophages and cancer cells. HILPDA increases lipid droplet accumulation at least partly by inhibiting triglyceride hydrolysis via ATGL and stimulating triglyceride synthesis via DGAT1. Overall, HILPDA is a novel regulatory signal that adjusts triglyceride storage and the intracellular availability of fatty acids to the external fatty acid supply and the capacity for oxidation.
Collapse
Affiliation(s)
- Montserrat A de la Rosa Rodriguez
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands.
| |
Collapse
|
19
|
Hofer P, Taschler U, Schreiber R, Kotzbeck P, Schoiswohl G. The Lipolysome-A Highly Complex and Dynamic Protein Network Orchestrating Cytoplasmic Triacylglycerol Degradation. Metabolites 2020; 10:E147. [PMID: 32290093 PMCID: PMC7240967 DOI: 10.3390/metabo10040147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/03/2020] [Accepted: 04/08/2020] [Indexed: 12/25/2022] Open
Abstract
The catabolism of intracellular triacylglycerols (TAGs) involves the activity of cytoplasmic and lysosomal enzymes. Cytoplasmic TAG hydrolysis, commonly termed lipolysis, is catalyzed by the sequential action of three major hydrolases, namely adipose triglyceride lipase, hormone-sensitive lipase, and monoacylglycerol lipase. All three enzymes interact with numerous protein binding partners that modulate their activity, cellular localization, or stability. Deficiencies of these auxiliary proteins can lead to derangements in neutral lipid metabolism and energy homeostasis. In this review, we summarize the composition and the dynamics of the complex lipolytic machinery we like to call "lipolysome".
Collapse
Affiliation(s)
- Peter Hofer
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; (P.H.); (U.T.); (R.S.)
| | - Ulrike Taschler
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; (P.H.); (U.T.); (R.S.)
| | - Renate Schreiber
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; (P.H.); (U.T.); (R.S.)
| | - Petra Kotzbeck
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria;
| | - Gabriele Schoiswohl
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; (P.H.); (U.T.); (R.S.)
| |
Collapse
|
20
|
Kulminskaya N, Oberer M. Protein-protein interactions regulate the activity of Adipose Triglyceride Lipase in intracellular lipolysis. Biochimie 2020; 169:62-68. [DOI: 10.1016/j.biochi.2019.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/06/2019] [Indexed: 12/31/2022]
|
21
|
VandeKopple MJ, Wu J, Auer EN, Giaccia AJ, Denko NC, Papandreou I. HILPDA Regulates Lipid Metabolism, Lipid Droplet Abundance, and Response to Microenvironmental Stress in Solid Tumors. Mol Cancer Res 2019; 17:2089-2101. [PMID: 31308147 DOI: 10.1158/1541-7786.mcr-18-1343] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/24/2019] [Accepted: 07/10/2019] [Indexed: 01/05/2023]
Abstract
Accumulation of lipid droplets has been observed in an increasing range of tumors. However, the molecular determinants of this phenotype and the impact of the tumor microenvironment on lipid droplet dynamics are not well defined. The hypoxia-inducible and lipid droplet associated protein HILPDA is known to regulate lipid storage and physiologic responses to feeding conditions in mice, and was recently shown to promote hypoxic lipid droplet formation through inhibition of the rate-limiting lipase adipose triglyceride lipase (ATGL). Here, we identify fatty acid loading and nutrient deprivation-induced autophagy as stimuli of HILPDA-dependent lipid droplet growth. Using mouse embryonic fibroblasts and human tumor cells, we found that genetic ablation of HILPDA compromised hypoxia-fatty acid- and starvation-induced lipid droplet formation and triglyceride storage. Nutrient deprivation upregulated HILPDA protein posttranscriptionally by a mechanism requiring autophagic flux and lipid droplet turnover, independent of HIF1 transactivation. Mechanistically, loss of HILPDA led to elevated lipolysis, which could be corrected by inhibition of ATGL. Lipidomic analysis revealed not only quantitative but also qualitative differences in the glycerolipid and phospholipid profile of HILPDA wild-type and knockout cells, indicating additional HILPDA functions affecting lipid metabolism. Deletion studies of HILPDA mutants identified the N-terminal hydrophobic domain as sufficient for targeting to lipid droplets and restoration of triglyceride storage. In vivo, HILPDA-ablated cells showed decreased intratumoral triglyceride levels and impaired xenograft tumor growth associated with elevated levels of apoptosis. IMPLICATIONS: Tumor microenvironmental stresses induce changes in lipid droplet dynamics via HILPDA. Regulation of triglyceride hydrolysis is crucial for cell homeostasis and tumor growth.
Collapse
Affiliation(s)
- Matthew J VandeKopple
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Jinghai Wu
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Erich N Auer
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Amato J Giaccia
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Nicholas C Denko
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Ioanna Papandreou
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| |
Collapse
|
22
|
Cui C, Fu K, Yang L, Wu S, Cen Z, Meng X, Huang Q, Xie Z. Hypoxia-inducible gene 2 promotes the immune escape of hepatocellular carcinoma from nature killer cells through the interleukin-10-STAT3 signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:229. [PMID: 31142329 PMCID: PMC6542136 DOI: 10.1186/s13046-019-1233-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/15/2019] [Indexed: 01/07/2023]
Abstract
Background The study examines the expression and function of hypoxia-inducible gene 2 (HIG2) in hepatocellular carcinoma (HCC) tissues and cells. Methods Forty patients with HCC were included in the study. Bioinformatic analysis was used to analyze the clinical relevance of HIG2 expression in HCC tissue samples. Immunohistochemistry was employed to determine the expression of target proteins in tumor tissues. Hepatic HepG2 and SMMC-7721 cells were transfected with HIG2-targeting siRNA with Lipofectamine 2000. qRT-PCR was carried out to determine gene expression levels, while Western blotting was used to determine protein expression. A CCK-8 assay was performed to detect proliferation of cells, while migration and invasion of cells were studied by Transwell assay. Flow cytometry was carried out to detect surface markers and effector molecules in Nature killercells, as well as the killing effect of NK cells. Results HIG2 expression was upregulated in HCC. Silencing of HIG2 suppressed HCC cell migration and invasion. The killing effect of NK cells on HCC cells was enhanced after HIG2 was silenced in HCC cells. Conditioned media from HIG2-silenced SMMC-7721 cells inhibited the phenotype and function of NK cells. HCC cells with silenced expression of HIG2 modulated the activity of NK cells via STAT3. HIG2 promoted the evasion of HCC cells from killing by NK cells through upregulation of IL-10 expression. Conclusion The study demonstrates that HIG2 activates the STAT3 signaling pathway in NK cells by promoting IL-10 release by HCC cells, thereby inhibiting the killing activity of NK cells, and subsequently promoting the recurrence and metastasis of HCC.
Collapse
Affiliation(s)
- Chuanbao Cui
- Department of Epidemiology, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Kaiwen Fu
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - Lu Yang
- Department of Epidemiology, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Shuzhi Wu
- Department of Epidemiology, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zuojie Cen
- Department of Epidemiology, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xingxing Meng
- Department of Epidemiology, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Qiongguang Huang
- Department of Epidemiology, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zhichun Xie
- Department of Epidemiology, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
23
|
Key Genes of Lipid Metabolism and WNT-Signaling Are Downregulated in Subcutaneous Adipose Tissue with Moderate Weight Loss. Nutrients 2019; 11:nu11030639. [PMID: 30884788 PMCID: PMC6471921 DOI: 10.3390/nu11030639] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023] Open
Abstract
Smaller cross-sectional studies and bariatric surgery trials suggest that weight loss may change the expression of genes in adipose tissue that have been implicated in the development of metabolic diseases, but well-powered intervention trials are lacking. In post hoc analyses of data from a 12-week dietary intervention trial initially designed to compare metabolic effects of intermittent vs. continuous calorie restriction, we analyzed the effects of overall weight loss on the subcutaneous adipose tissue (SAT) transcriptome. Changes in the transcriptome were measured by microarray using SAT samples of 138 overweight or obese individuals (age range: 35–65 years, BMI range: 25–40, non-smokers, non-diabetics). Participants were grouped post hoc according to the degree of their weight loss by quartiles (average weight loss in quartiles 1 to 4: 0%, −3.2%, −5.9%, and −10.7%). Candidate genes showing differential expression with weight loss according to microarray analyses were validated by reverse transcription quantitative polymerase chain reaction (RT-qPCR), and fold changes (FCs) were calculated to quantify differences in gene expression. A comparison of individuals in the highest vs. the lowest weight loss quartile revealed 681 genes to be differentially expressed (corrected p < 0.05), with 40 showing FCs of at least 0.4. Out of these, expression changes in secreted frizzled-related protein 2 (SFRP2, FC = 0.65, p = 0.006), stearoyl-CoA desaturase (SCD, FC = −1.00, p < 0.001), and hypoxia inducible lipid droplet-associated (HILPDA, FC = −0.45, p = 0.001) with weight loss were confirmed by RT-qPCR. Dietary weight loss induces significant changes in the expression of genes implicated in lipid metabolism (SCD and HILPDA) and WNT-signaling (SFRP2) in SAT.
Collapse
|
24
|
Wu H, Ploeger JM, Kamarajugadda S, Mashek DG, Mashek MT, Manivel JC, Shekels LL, Lapiro JL, Albrecht JH. Evidence for a Novel Regulatory Interaction Involving Cyclin D1, Lipid Droplets, Lipolysis, and Cell Cycle Progression in Hepatocytes. Hepatol Commun 2019; 3:406-422. [PMID: 30859152 PMCID: PMC6396375 DOI: 10.1002/hep4.1316] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/22/2018] [Indexed: 12/12/2022] Open
Abstract
During normal proliferation, hepatocytes accumulate triglycerides (TGs) in lipid droplets (LDs), but the underlying mechanisms and functional significance of this steatosis are unknown. In the current study, we examined the coordinated regulation of cell cycle progression and LD accumulation. As previously shown, hepatocytes develop increased LD content after mitogen stimulation. Cyclin D1, in addition to regulating proliferation, was both necessary and sufficient to promote LD accumulation in response to mitogens. Interestingly, cyclin D1 promotes LD accumulation by inhibiting the breakdown of TGs by lipolysis through a mechanism involving decreased lipophagy, the autophagic degradation of LDs. To examine whether inhibition of lipolysis is important for cell cycle progression, we overexpressed adipose TG lipase (ATGL), a key enzyme involved in TG breakdown. As expected, ATGL reduced LD content but also markedly inhibited hepatocyte proliferation, suggesting that lipolysis regulates a previously uncharacterized cell cycle checkpoint. Consistent with this, in mitogen-stimulated cells with small interfering RNA-mediated depletion of cyclin D1 (which inhibits proliferation and stimulates lipolysis), concurrent ATGL knockdown restored progression into S phase. Following partial hepatectomy, a model of robust hepatocyte proliferation in vivo, ATGL overexpression led to decreased LD content, cell cycle inhibition, and marked liver injury, further indicating that down-regulation of lipolysis is important for normal hepatocyte proliferation. Conclusion: We suggest a new relationship between steatosis and proliferation in hepatocytes: cyclin D1 inhibits lipolysis, resulting in LD accumulation, and suppression of lipolysis is necessary for cell cycle progression.
Collapse
Affiliation(s)
- Heng Wu
- Gastroenterology DivisionMinneapolis VA Health Care SystemMinneapolisMN
- Division of Gastroenterology, Hepatology, and NutritionUniversity of MinnesotaMinneapolisMN
| | - Jonathan M. Ploeger
- Department of Biochemistry, Molecular Biology, and BiophysicsUniversity of MinnesotaMinneapolisMN
| | | | - Douglas G. Mashek
- Department of Biochemistry, Molecular Biology, and BiophysicsUniversity of MinnesotaMinneapolisMN
| | - Mara T. Mashek
- Department of Biochemistry, Molecular Biology, and BiophysicsUniversity of MinnesotaMinneapolisMN
| | - Juan C. Manivel
- Department of PathologyMinneapolis VA Health Care SystemMinneapolisMN
| | - Laurie L. Shekels
- Gastroenterology DivisionMinneapolis VA Health Care SystemMinneapolisMN
| | - Jessica L. Lapiro
- Gastroenterology DivisionMinneapolis VA Health Care SystemMinneapolisMN
- Division of Gastroenterology, Hepatology, and NutritionUniversity of MinnesotaMinneapolisMN
| | - Jeffrey H. Albrecht
- Gastroenterology DivisionMinneapolis VA Health Care SystemMinneapolisMN
- Division of Gastroenterology, Hepatology, and NutritionUniversity of MinnesotaMinneapolisMN
| |
Collapse
|
25
|
Fu X, Zhong Z, Hu F, Zhang Y, Li C, Yan P, Feng L, Shen J, Huang B. The protective effects of selenium-enriched Spirulina platensis on chronic alcohol-induced liver injury in mice. Food Funct 2018; 9:3155-3165. [PMID: 29862408 DOI: 10.1039/c8fo00477c] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The aim of this study was to investigate the protective effect and mechanism of selenium-enriched Spirulina platensis (S. platensis) on chronic alcohol-induced liver injury. Selenium incubation raises the nutrition quality of S. platensis by absorption enhancement of functional elements. Our results demonstrated that the effective dose of selenium-enriched S. platensis on HL7702 cells treated with alcohol was 200 μg ml-1, containing 20% selenium. Selenium-enriched S. platensis could raise the cell survival rate by decreasing the expression of p53, Caspase3, LC3, and Caspase1 and by increasing the expression of p70s6k. In vivo experiments, where mice were pretreated with selenium-enriched S. platensis, exhibited obvious inhibition of the liver function index and this pretreatment enhanced the activity of GSH-Px and SOD in alcohol induced mice. In summary, our results indicate that the protective mechanism of selenium-enriched S. platensis on chronic alcoholic liver injury is associated with the activity enhancement of antioxidant enzymes and immunity, the inhibition of DNA damage and apoptosis, accompanied with autophagy and pyroptosis.
Collapse
Affiliation(s)
- Xiang Fu
- School of life Science, Anhui University, Hefei, 230601 China.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Altered exocrine function can drive adipose wasting in early pancreatic cancer. Nature 2018; 558:600-604. [PMID: 29925948 PMCID: PMC6112987 DOI: 10.1038/s41586-018-0235-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/21/2018] [Indexed: 01/01/2023]
Abstract
Changes in cell and organismal metabolism accompany malignancy1,2. Pancreatic ductal adenocarcinoma (PDAC) is associated with peripheral tissue wasting, a metabolic syndrome that lowers quality of life and is proposed to decrease cancer patient survival3,4. Tissue wasting is a multifactorial disease and targeting specific circulating factors to reverse this syndrome has been mostly ineffective in the clinic5,6. Here, we show that both adipose and muscle tissue loss occur early in pancreatic cancer development. Using syngeneic PDAC mouse models, we show that tumor growth in the pancreas but not in other sites leads to adipose tissue wasting, suggesting that tumor growth within the pancreatic environment contributes to this wasting phenotype. We find decreased exocrine pancreatic function drives adipose tissue loss and pancreatic enzyme replacement attenuates PDAC-associated peripheral tissue wasting. Paradoxically, reversal of adipose tissue loss impairs survival in mice with PDAC. Upon analysis of PDAC patients, we find that adipose and skeletal muscle depletion at the time of diagnosis is not associated with worse survival. Taken together, these results provide an explanation for adipose tissue wasting in early PDAC and suggest that early peripheral tissue loss associated with pancreatic cancer may not impair survival.
Collapse
|
27
|
Adam M, Heikelä H, Sobolewski C, Portius D, Mäki-Jouppila J, Mehmood A, Adhikari P, Esposito I, Elo LL, Zhang FP, Ruohonen ST, Strauss L, Foti M, Poutanen M. Hydroxysteroid (17β) dehydrogenase 13 deficiency triggers hepatic steatosis and inflammation in mice. FASEB J 2018; 32:3434-3447. [PMID: 29401633 DOI: 10.1096/fj.201700914r] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hydroxysteroid (17β) dehydrogenases (HSD17Bs) form an enzyme family characterized by their ability to catalyze reactions in steroid and lipid metabolism. In the present study, we characterized the phenotype of HSD17B13-knockout (HSD17B13KO) mice deficient in Hsd17b13. In these studies, hepatic steatosis was detected in HSD17B13KO male mice, indicated by histologic analysis and by the increased triglyceride concentration in the liver, whereas reproductive performance and serum steroid concentrations were normal in HSD17B13KO mice. In line with these changes, the expression of key proteins in fatty acid synthesis, such as FAS, acetyl-CoA carboxylase 1, and SCD1, was increased in the HSD17B13KO liver. Furthermore, the knockout liver showed an increase in 2 acylcarnitines, suggesting impaired mitochondrial β-oxidation in the presence of unaltered malonyl CoA and AMPK expression. The glucose tolerance did not differ between wild-type and HSD17B13KO mice in the presence of lower levels of glucose 6-phosphatase in HSD17B13KO liver compared with wild-type liver. Furthermore, microgranulomas and increased portal inflammation together with up-regulation of immune response genes were observed in HSD17B13KO mice. Our data indicate that disruption of Hsd17b13 impairs hepatic-lipid metabolism in mice, resulting in liver steatosis and inflammation, but the enzyme does not play a major role in the regulation of reproductive functions.-Adam, M., Heikelä, H., Sobolewski, C., Portius, D., Mäki-Jouppila, J., Mehmood, A., Adhikari, P., Esposito, I., Elo, L. L., Zhang, F.-P., Ruohonen, S. T., Strauss, L., Foti, M., Poutanen, M. Hydroxysteroid (17β) dehydrogenase 13 deficiency triggers hepatic steatosis and inflammation in mice.
Collapse
Affiliation(s)
- Marion Adam
- Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Hanna Heikelä
- Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Cyril Sobolewski
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Médical Universitaire, Geneva, Switzerland
| | - Dorothea Portius
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Médical Universitaire, Geneva, Switzerland
| | - Jenni Mäki-Jouppila
- Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Arfa Mehmood
- Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland.,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Prem Adhikari
- Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Irene Esposito
- Institute of Pathology, Technische Universität München, Munich, Germany; and
| | - Laura L Elo
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Fu-Ping Zhang
- Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Suvi T Ruohonen
- Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Leena Strauss
- Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Michelangelo Foti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Médical Universitaire, Geneva, Switzerland
| | - Matti Poutanen
- Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
28
|
Knight M, Braverman J, Asfaha K, Gronert K, Stanley S. Lipid droplet formation in Mycobacterium tuberculosis infected macrophages requires IFN-γ/HIF-1α signaling and supports host defense. PLoS Pathog 2018; 14:e1006874. [PMID: 29370315 PMCID: PMC5800697 DOI: 10.1371/journal.ppat.1006874] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/06/2018] [Accepted: 01/10/2018] [Indexed: 12/25/2022] Open
Abstract
Lipid droplet (LD) formation occurs during infection of macrophages with numerous intracellular pathogens, including Mycobacterium tuberculosis. It is believed that M. tuberculosis and other bacteria specifically provoke LD formation as a pathogenic strategy in order to create a depot of host lipids for use as a carbon source to fuel intracellular growth. Here we show that LD formation is not a bacterially driven process during M. tuberculosis infection, but rather occurs as a result of immune activation of macrophages as part of a host defense mechanism. We show that an IFN-γ driven, HIF-1α dependent signaling pathway, previously implicated in host defense, redistributes macrophage lipids into LDs. Furthermore, we show that M. tuberculosis is able to acquire host lipids in the absence of LDs, but not in the presence of IFN-γ induced LDs. This result uncouples macrophage LD formation from bacterial acquisition of host lipids. In addition, we show that IFN-γ driven LD formation supports the production of host protective eicosanoids including PGE2 and LXB4. Finally, we demonstrate that HIF-1α and its target gene Hig2 are required for the majority of LD formation in the lungs of mice infected with M. tuberculosis, thus demonstrating that immune activation provides the primary stimulus for LD formation in vivo. Taken together our data demonstrate that macrophage LD formation is a host-driven component of the adaptive immune response to M. tuberculosis, and suggest that macrophage LDs are not an important source of nutrients for M. tuberculosis.
Collapse
Affiliation(s)
- Matthew Knight
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Jonathan Braverman
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Kaleb Asfaha
- Vision Science Program, School of Optometry, University of California, Berkeley, Berkeley, California, United States of America
| | - Karsten Gronert
- Vision Science Program, School of Optometry, University of California, Berkeley, Berkeley, California, United States of America
| | - Sarah Stanley
- Department of Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California, Berkeley, Berkeley, California, United States of America
- School of Public Health, Division of Infectious Diseases and Vaccinology, University of California, Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
29
|
Padmanabha Das KM, Wechselberger L, Liziczai M, De la Rosa Rodriguez M, Grabner GF, Heier C, Viertlmayr R, Radler C, Lichtenegger J, Zimmermann R, Borst JW, Zechner R, Kersten S, Oberer M. Hypoxia-inducible lipid droplet-associated protein inhibits adipose triglyceride lipase. J Lipid Res 2018; 59:531-541. [PMID: 29326160 PMCID: PMC5832925 DOI: 10.1194/jlr.m082388] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/10/2018] [Indexed: 11/29/2022] Open
Abstract
Elaborate control mechanisms of intracellular triacylglycerol (TAG) breakdown are critically involved in the maintenance of energy homeostasis. Hypoxia-inducible lipid droplet-associated protein (HILPDA)/hypoxia-inducible gene-2 (Hig-2) has been shown to affect intracellular TAG levels, yet, the underlying molecular mechanisms are unclear. Here, we show that HILPDA inhibits adipose triglyceride lipase (ATGL), the enzyme catalyzing the first step of intracellular TAG hydrolysis. HILPDA shares structural similarity with G0/G1 switch gene 2 (G0S2), an established inhibitor of ATGL. HILPDA inhibits ATGL activity in a dose-dependent manner with an IC50 value of ∼2 μM. ATGL inhibition depends on the direct physical interaction of both proteins and involves the N-terminal hydrophobic region of HILPDA and the N-terminal patatin domain-containing segment of ATGL. Finally, confocal microscopy combined with Förster resonance energy transfer-fluorescence lifetime imaging microscopy analysis indicated that HILPDA and ATGL colocalize and physically interact intracellularly. These findings provide a rational biochemical explanation for the tissue-specific increased TAG accumulation in HILPDA-overexpressing transgenic mouse models.
Collapse
Affiliation(s)
| | - Lisa Wechselberger
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Márton Liziczai
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | | | - Gernot F Grabner
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Christoph Heier
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Roland Viertlmayr
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Claudia Radler
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Jörg Lichtenegger
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Robert Zimmermann
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria.,BioTechMed-Graz, 8010 Graz, Austria
| | - Jan Willem Borst
- Laboratory of Biochemistry and Microspectroscopy Research Facility, Wageningen University, Wageningen, The Netherlands
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria.,BioTechMed-Graz, 8010 Graz, Austria
| | - Sander Kersten
- Division of Human Nutrition University of Graz, 8010 Graz, Austria
| | - Monika Oberer
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria .,BioTechMed-Graz, 8010 Graz, Austria
| |
Collapse
|
30
|
Zhang X, Saarinen AM, Hitosugi T, Wang Z, Wang L, Ho TH, Liu J. Inhibition of intracellular lipolysis promotes human cancer cell adaptation to hypoxia. eLife 2017; 6:31132. [PMID: 29256392 PMCID: PMC5739538 DOI: 10.7554/elife.31132] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 12/02/2017] [Indexed: 12/16/2022] Open
Abstract
Tumor tissues are chronically exposed to hypoxia owing to aberrant vascularity. Lipid droplet (LD) accumulation is a hallmark of hypoxic cancer cells, yet how LDs form and function during hypoxia remains poorly understood. Herein, we report that in various cancer cells upon oxygen deprivation, HIF-1 activation down-modulates LD catabolism mediated by adipose triglyceride lipase (ATGL), the key enzyme for intracellular lipolysis. Proteomics and functional analyses identified hypoxia-inducible gene 2 (HIG2), a HIF-1 target, as a new inhibitor of ATGL. Knockout of HIG2 enhanced LD breakdown and fatty acid (FA) oxidation, leading to increased ROS production and apoptosis in hypoxic cancer cells as well as impaired growth of tumor xenografts. All of these effects were reversed by co-ablation of ATGL. Thus, by inhibiting ATGL, HIG2 acts downstream of HIF-1 to sequester FAs in LDs away from the mitochondrial pathways for oxidation and ROS generation, thereby sustaining cancer cell survival in hypoxia.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic in Arizona, Scottsdale, United States
| | - Alicia M Saarinen
- Department of Biochemistry and Molecular Biology, Mayo Clinic in Arizona, Scottsdale, United States.,HEALth Program, Mayo Clinic in Arizona, Scottsdale, United States
| | - Taro Hitosugi
- Department of Pharmacology, Mayo Clinic, Rochester, United States
| | - Zhenghe Wang
- Department of Genetics and Genome Sciences, Case Medical Center, Case Western Reserve University, Cleveland, United States
| | - Liguo Wang
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, United States
| | - Thai H Ho
- Division of Hematology and Medical Oncology, Mayo Clinic in Arizona, Scottsdale, United States
| | - Jun Liu
- Department of Biochemistry and Molecular Biology, Mayo Clinic in Arizona, Scottsdale, United States.,HEALth Program, Mayo Clinic in Arizona, Scottsdale, United States.,Division of Endocrinology, Mayo Clinic in Arizona, Scottsdale, United States
| |
Collapse
|
31
|
de la Rosa Rodriguez MA, Kersten S. Regulation of lipid droplet-associated proteins by peroxisome proliferator-activated receptors. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1212-1220. [DOI: 10.1016/j.bbalip.2017.07.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 12/24/2022]
|
32
|
VandeKopple MJ, Wu J, Baer LA, Bal NC, Maurya SK, Kalyanasundaram A, Periasamy M, Stanford KI, Giaccia AJ, Denko NC, Papandreou I. Stress-responsive HILPDA is necessary for thermoregulation during fasting. J Endocrinol 2017; 235:27-38. [PMID: 28739822 PMCID: PMC5567683 DOI: 10.1530/joe-17-0289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 07/24/2017] [Indexed: 02/02/2023]
Abstract
Hypoxia-inducible lipid droplet-associated protein (HILPDA) has been shown to localize to lipid droplets in nutrient-responsive cell types such as hepatocytes and adipocytes. However, its role in the control of whole-body homeostasis is not known. We sought to measure cell-intrinsic and systemic stress responses in a mouse strain harboring whole-body Hilpda deficiency. We generated a genetically engineered mouse model of whole-body HILPDA deficiency by replacing the coding Hilpda exon with luciferase. We subjected the knockout animals to environmental stresses and measured whole-animal metabolic and behavioral parameters. Brown adipocyte precursors were isolated and differentiated in vitro to quantify the impact of HILPDA ablation in lipid storage and mobilization in these cells. HILPDA-knockout animals are viable and fertile, but show reduced ambulatory activity and oxygen consumption at regular housing conditions. Acclimatization at thermoneutral conditions abolished the phenotypic differences observed at 22°C. When fasted, HILPDA KO mice are unable to maintain body temperature and become hypothermic at 22°C, without apparent abnormalities in blood chemistry parameters or tissue triglyceride content. HILPDA expression was upregulated during adipocyte differentiation and activation in vitro; however, it was not required for lipid droplet formation in brown adipocytes. We conclude that HILPDA is necessary for efficient fuel utilization suggesting a homeostatic role for Hilpda in sub-optimal environments.
Collapse
Affiliation(s)
| | - Jinghai Wu
- Department of Radiation OncologyThe Ohio State University, Columbus, Ohio, USA
| | - Lisa A Baer
- Dorothy M. Davis Heart and Lung Research InstituteDepartment of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA
| | - Naresh C Bal
- Department of Physiology and Cell BiologyThe Ohio State University, Columbus, Ohio, USA
| | - Santosh K Maurya
- Department of Physiology and Cell BiologyThe Ohio State University, Columbus, Ohio, USA
| | | | - Muthu Periasamy
- Department of Physiology and Cell BiologyThe Ohio State University, Columbus, Ohio, USA
| | - Kristin I Stanford
- Dorothy M. Davis Heart and Lung Research InstituteDepartment of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA
| | - Amato J Giaccia
- Department of Radiation OncologyStanford University, Stanford, CA, USA
| | - Nicholas C Denko
- Department of Radiation OncologyThe Ohio State University, Columbus, Ohio, USA
| | - Ioanna Papandreou
- Department of Radiation OncologyThe Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
33
|
Maier A, Wu H, Cordasic N, Oefner P, Dietel B, Thiele C, Weidemann A, Eckardt KU, Warnecke C. Hypoxia-inducible protein 2 Hig2/Hilpda mediates neutral lipid accumulation in macrophages and contributes to atherosclerosis in apolipoprotein E-deficient mice. FASEB J 2017; 31:4971-4984. [PMID: 28760743 DOI: 10.1096/fj.201700235r] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/10/2017] [Indexed: 01/09/2023]
Abstract
Recently we identified hypoxia-inducible protein 2 (HIG2)/hypoxia-inducible lipid droplet-associated (HILPDA) as lipid droplet (LD) protein. Because HILPDA is highly expressed in atherosclerotic plaques, we examined its regulation and function in murine macrophages, compared it to the LD adipose differentiation-related protein (Adrp)/perilipin 2 (Plin2), and investigated its effects on atherogenesis in apolipoprotein E-deficient (ApoE-/-) mice. Tie2-Cre-driven Hilpda conditional knockout (cKO) did not affect viability, proliferation, and ATP levels in macrophages. Hilpda proved to be a target of hypoxia-inducible factor 1 (Hif-1) and peroxisome proliferator-activated receptors. In contrast, Adrp/Plin2 was not induced by Hif-1. Hilpda localized to the endoplasmic reticulum-LD interface, the site of LD formation. Hypoxic lipid accumulation and storage of oxidized LDL, cholesteryl esters and triglycerides were abolished in Hilpda cKO macrophages, independent of the glycolytic switch, fatty acid or lipoprotein uptake. Hilpda depletion reduced resistance against lipid overload and increased production of reactive oxygen species after reoxygenation. LPS-stimulated prostaglandin-E2 production was dysregulated in macrophages, demonstrating the substrate buffer and reservoir function of LDs for eicosanoid production. In ApoE-/- Hilpda cKO mice, total aortic plaque area, plaque macrophages and vascular Vegf expression were reduced. Thus, macrophage Hilpda is crucial to foam-cell formation and lipid deposition, and to controlled prostaglandin-E2 production. By these means Hilpda promotes lesion formation and progression of atherosclerosis.-Maier, A., Wu, H., Cordasic, N., Oefner, P., Dietel, B., Thiele, C., Weidemann, A., Eckardt, K.-U., Warnecke, C. Hypoxia-inducible protein 2 Hig2/Hilpda mediates neutral lipid accumulation in macrophages and contributes to atherosclerosis in apolipoprotein E-deficient mice.
Collapse
Affiliation(s)
- Anja Maier
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Hao Wu
- Department of Molecular Biology and Genetics, and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nada Cordasic
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Peter Oefner
- Institute for Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Barbara Dietel
- Department of Molecular Cardiology and Angiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Thiele
- Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany; and
| | - Alexander Weidemann
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.,Department of Medicine I, Nephrology, Transplantation, and Medical Intensive Care, University Witten/Herdecke, Medical Center Cologne-Merheim, Cologne, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Christina Warnecke
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany;
| |
Collapse
|
34
|
Dijk W, Mattijssen F, de la Rosa Rodriguez M, Loza Valdes A, Loft A, Mandrup S, Kalkhoven E, Qi L, Borst JW, Kersten S. Hypoxia-Inducible Lipid Droplet-Associated Is Not a Direct Physiological Regulator of Lipolysis in Adipose Tissue. Endocrinology 2017; 158:1231-1251. [PMID: 28323980 PMCID: PMC5460841 DOI: 10.1210/en.2016-1809] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/13/2017] [Indexed: 12/20/2022]
Abstract
Triglycerides are stored in specialized organelles called lipid droplets. Numerous proteins have been shown to be physically associated with lipid droplets and govern their function. Previously, the protein hypoxia-inducible lipid droplet-associated (HILPDA) was localized to lipid droplets and was suggested to inhibit triglyceride lipolysis in hepatocytes. We confirm the partial localization of HILPDA to lipid droplets and show that HILPDA is highly abundant in adipose tissue, where its expression is controlled by the peroxisome proliferator-activated receptor γ and by β-adrenergic stimulation. Levels of HILPDA markedly increased during 3T3-L1 adipocyte differentiation. Nevertheless, silencing of Hilpda using small interfering RNA or overexpression of Hilpda using adenovirus did not show a clear impact on 3T3-L1 adipogenesis. Following β-adrenergic stimulation, the silencing of Hilpda in adipocytes did not significantly alter the release of nonesterified fatty acids (NEFA) and glycerol. By contrast, adenoviral-mediated overexpression of Hilpda modestly attenuated the release of NEFA from adipocytes following β-adrenergic stimulation. In mice, adipocyte-specific inactivation of Hilpda had no effect on plasma levels of NEFA and glycerol after fasting, cold exposure, or pharmacological β-adrenergic stimulation. In addition, other relevant metabolic parameters were unchanged by adipocyte-specific inactivation of Hilpda. Taken together, we find that HILPDA is highly abundant in adipose tissue, where its levels are induced by peroxisome proliferator-activated receptor γ and β-adrenergic stimulation. In contrast to the reported inhibition of lipolysis by HILPDA in hepatocytes, our data do not support an important direct role of HILPDA in the regulation of lipolysis in adipocytes in vivo and in vitro.
Collapse
Affiliation(s)
- Wieneke Dijk
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Frits Mattijssen
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Montserrat de la Rosa Rodriguez
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Angel Loza Valdes
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Anne Loft
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense, Denmark
| | - Susanne Mandrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense, Denmark
| | - Eric Kalkhoven
- Molecular Cancer Research and Center for Molecular Medicine, University Medical Centre Utrecht, 3584 CG Utrecht, The Netherlands
| | - Ling Qi
- University of Michigan Medical School, Ann Arbor, Michigan 48105
| | - Jan Willem Borst
- Laboratory of Biochemistry, Microspectroscopy Centre, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Sander Kersten
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition, Wageningen University, 6708 WE Wageningen, The Netherlands
- University of Michigan Medical School, Ann Arbor, Michigan 48105
| |
Collapse
|
35
|
Zhang X, Wang Y, Liu P. Omic studies reveal the pathogenic lipid droplet proteins in non-alcoholic fatty liver disease. Protein Cell 2016; 8:4-13. [PMID: 27757845 PMCID: PMC5233612 DOI: 10.1007/s13238-016-0327-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 09/19/2016] [Indexed: 12/21/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an epidemic metabolic condition driven by an underlying lipid homeostasis disorder. The lipid droplet (LD), the main organelle involved in neutral lipid storage and hydrolysis, is a potential target for NAFLD therapeutic treatment. In this review, we summarize recent progress elucidating the connections between LD-associated proteins and NAFLD found by genome-wide association studies (GWAS), genomic and proteomic studies. Finally, we discuss a possible mechanism by which the protein 17β-hydroxysteroid dehydrogenase 13 (17β-HSD13) may promote the development of NAFLD.
Collapse
Affiliation(s)
- Xuelin Zhang
- School of Kinesiology and Health, Capital University of Physical Education and Sports, Beijing, 100191, China.
| | - Yang Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Pingsheng Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
36
|
DiStefano MT, Roth Flach RJ, Senol-Cosar O, Danai LV, Virbasius JV, Nicoloro SM, Straubhaar J, Dagdeviren S, Wabitsch M, Gupta OT, Kim JK, Czech MP. Adipocyte-specific Hypoxia-inducible gene 2 promotes fat deposition and diet-induced insulin resistance. Mol Metab 2016; 5:1149-1161. [PMID: 27900258 PMCID: PMC5123203 DOI: 10.1016/j.molmet.2016.09.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 09/15/2016] [Accepted: 09/19/2016] [Indexed: 12/18/2022] Open
Abstract
Objective Adipose tissue relies on lipid droplet (LD) proteins in its role as a lipid-storing endocrine organ that controls whole body metabolism. Hypoxia-inducible Gene 2 (Hig2) is a recently identified LD-associated protein in hepatocytes that promotes hepatic lipid storage, but its role in the adipocyte had not been investigated. Here we tested the hypothesis that Hig2 localization to LDs in adipocytes promotes adipose tissue lipid deposition and systemic glucose homeostasis. Method White and brown adipocyte-deficient (Hig2fl/fl × Adiponection cre+) and selective brown/beige adipocyte-deficient (Hig2fl/fl × Ucp1 cre+) mice were generated to investigate the role of Hig2 in adipose depots. Additionally, we used multiple housing temperatures to investigate the role of active brown/beige adipocytes in this process. Results Hig2 localized to LDs in SGBS cells, a human adipocyte cell strain. Mice with adipocyte-specific Hig2 deficiency in all adipose depots demonstrated reduced visceral adipose tissue weight and increased glucose tolerance. This metabolic effect could be attributed to brown/beige adipocyte-specific Hig2 deficiency since Hig2fl/fl × Ucp1 cre+ mice displayed the same phenotype. Furthermore, when adipocyte-deficient Hig2 mice were moved to thermoneutral conditions in which non-shivering thermogenesis is deactivated, these improvements were abrogated and glucose intolerance ensued. Adipocyte-specific Hig2 deficient animals displayed no detectable changes in adipocyte lipolysis or energy expenditure, suggesting that Hig2 may not mediate these metabolic effects by restraining lipolysis in adipocytes. Conclusions We conclude that Hig2 localizes to LDs in adipocytes, promoting adipose tissue lipid deposition and that its selective deficiency in active brown/beige adipose tissue mediates improved glucose tolerance at 23 °C. Reversal of this phenotype at thermoneutrality in the absence of detectable changes in energy expenditure, adipose mass, or liver triglyceride suggests that Hig2 deficiency triggers a deleterious endocrine or neuroendocrine pathway emanating from brown/beige fat cells. Hig2 localizes to lipid droplets in adipocytes and promotes adipose tissue lipid deposition. Its selective deficiency in active brown/beige adipose tissue mediates improved glucose tolerance at 23 °C. Metabolic improvements are independent of changes in lipolysis.
Collapse
Key Words
- Adipocyte
- BAT, brown adipose tissue
- FFA, free fatty acid
- GTT, glucose tolerance test
- HFD, high fat diet
- Hig2, Hypoxia-inducible gene 2
- Hypoxia-inducible gene 2 (Hig2)
- ITT, insulin tolerance test
- LD, lipid droplet
- Lipid droplet
- Lipolysis
- NEFA, non-esterified fatty acid
- Obesity
- RER, respiratory exchange ratio
- SGBS, Simpson-Golabi-Behmel syndrome
- SVF, stromal vascular fraction
- TG, triglyceride
- Ucp1, uncoupling protein 1
- WAT, white adipose tissue
- eWAT, epididymal white adipose tissue
- iWAT, inguinal white adipose tissue
Collapse
Affiliation(s)
- Marina T DiStefano
- From the Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Rachel J Roth Flach
- From the Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ozlem Senol-Cosar
- From the Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Laura V Danai
- From the Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Joseph V Virbasius
- From the Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sarah M Nicoloro
- From the Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Juerg Straubhaar
- From the Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sezin Dagdeviren
- From the Program in Molecular Medicine and the Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Martin Wabitsch
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm 89075, Germany
| | - Olga T Gupta
- From the Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jason K Kim
- From the Program in Molecular Medicine and the Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Michael P Czech
- From the Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
37
|
Nido SA, Shituleni SA, Mengistu BM, Liu Y, Khan AZ, Gan F, Kumbhar S, Huang K. Effects of Selenium-Enriched Probiotics on Lipid Metabolism, Antioxidative Status, Histopathological Lesions, and Related Gene Expression in Mice Fed a High-Fat Diet. Biol Trace Elem Res 2016; 171:399-409. [PMID: 26546553 DOI: 10.1007/s12011-015-0552-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/21/2015] [Indexed: 12/16/2022]
Abstract
A total of 80 female albino mice were randomly allotted into five groups (n = 16) as follows: (A) normal control, (B) high-fat diet (HFD),; (C) HFD + probiotics (P), (D) HFD + sodium selenite (SS), and (E) HFD + selenium-enriched probiotics (SP). The selenium content of diets in groups A, B, C, D, and E was 0.05, 0.05, 0.05, 0.3, and 0.3 μg/g, respectively. The amount of probiotics contained in groups C and E was similar (Lactobacillus acidophilus 0.25 × 10(11)/mL and Saccharomyces cerevisiae 0.25 × 10(9)/mL colony-forming units (CFU)). The high-fat diet was composed of 15 % lard, 1 % cholesterol, 0.3 % cholic acid, and 83.7 % basal diet. At the end of the 4-week experiment, blood and liver samples were collected for the measurements of lipid metabolism, antioxidative status, histopathological lesions, and related gene expressions. The result shows that HFD significantly increased the body weights and liver damages compared to control, while P, SS, or SP supplementation attenuated the body weights and liver damages in mice. P, SS, or SP supplementation also significantly reversed the changes of alanine aminotransferase (AST), aspartate aminotransferase (ALT), total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL), total protein (TP), high-density lipoprotein (HDL), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), catalasa (CAT), and malondialdehyde (MDA) levels induced by HFD. Generally, adding P, SS, or SP up-regulated mRNA expression of carnitine palmitoyltransferase-I (CPT1), carnitine palmitoyltransferase II (CPT2), acetyl-CoA acetyltransferase II (ACAT2), acyl-coenzyme A oxidase (ACOX2), and peroxisome proliferator-activated receptor alpha (PPARα) and down-regulated mRNA expression of fatty acid synthase (FAS), lipoprotein lipase (LPL), peroxisome proliferator-activated receptor gamma (PPARγ), and sterol regulatory element-binding protein-1 (SREBP1) involved in lipid metabolism. Among the group, adding SP has a maximum effect in improving lipid metabolism, antioxidative status, histopathological lesions, and related gene expression in mice fed a HFD.
Collapse
Affiliation(s)
- Sonia Agostinho Nido
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowl, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Departamento de Ciências Naturais e Matemática, Universidade Pedagógica de Moçambique, Campus Universitarios de Chiuaula, P. O. Box 4, Delegação de Niassa, Lichinga, Moçambique
| | - Shituleni Andreas Shituleni
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowl, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Berhe Mekonnen Mengistu
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowl, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Yunhuan Liu
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowl, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Alam Zeb Khan
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowl, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Fang Gan
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowl, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Shahnawaz Kumbhar
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowl, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Kehe Huang
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowl, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
38
|
Carr RM, Ahima RS. Pathophysiology of lipid droplet proteins in liver diseases. Exp Cell Res 2015; 340:187-92. [PMID: 26515554 DOI: 10.1016/j.yexcr.2015.10.021] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/21/2015] [Accepted: 10/23/2015] [Indexed: 02/07/2023]
Abstract
Cytosolic lipid droplets (LDs) are present in most cell types, and consist of a core comprising neutral lipids, mainly triglycerides and sterol esters, surrounded by a monolayer of phospholipids. LDs are heterogeneous in their structure, chemical composition, and tissue distribution. LDs are coated by several proteins, including perilipins and other structural proteins, lipogenic enzymes, lipases and membrane-trafficking proteins. Five proteins of the perilipin (PLIN) family (PLIN1 (perilipin), PLIN2 (adipose differentiation-related protein), PLIN3 (tail-interacting protein of 47kDa), PLIN4 (S3-12), and PLIN5 (myocardial lipid droplet protein)), are associated with LD formation. More recently, the CIDE family of proteins, hypoxia-inducible protein 2 (HIG2), and patanin-like phospholipase domain-containing 3 (PNPLA3) have also gained attention in hepatic LD biology. Evidence suggests that LD proteins are involved in the pathophysiology of fatty liver diseases characterized by excessive lipid accumulation in hepatocytes. This review article will focus on how hepatic LDs and their associated proteins are involved in the pathogenesis of three chronic liver conditions: hepatitis C virus infection, non-alcoholic fatty liver disease, and alcoholic liver disease.
Collapse
Affiliation(s)
- Rotonya M Carr
- Department of Medicine, Gastroenterology and Hepatology Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Rexford S Ahima
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|