1
|
Wang CH, Tseng CY, Hsu WL, Tzen JTC. Nuezhenide of the fruits of Nuzhenzi (Ligustrum lucidum Ait.) is a functional analog of ghrelin. JOURNAL OF ETHNOPHARMACOLOGY 2025; 339:119108. [PMID: 39566863 DOI: 10.1016/j.jep.2024.119108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/01/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The dried fruit of Ligustrum lucidum Ait. (FLL), known as Nuzhenzi, is traditionally recognized for its anti-aging properties in Chinese medicine. Nuezhenide, a water-soluble secoiridoid present in FLL, has demonstrated various pharmacological activities including neuroprotection, enhancement of learning and memory, antiosteoporotic, and antiviral activities. These therapeutic benefits align with the anti-aging effects attributed to ghrelin, particularly in the modulation of growth hormone secretagogue receptor type 1a (GHSR-1a) signaling. AIM OF THE WORK This study aimed to investigate the potential of FLL extracts, particularly its major compound nuezhenide, as agonists of GHSR-1a, a receptor implicated in anti-aging mechanisms, utilizing a stable GHSR-1a-expressing cell line. MATERIALS AND METHODS HEK293T cells expressing GHSR-1a-mCherry were used to assess the effects of FLL extract and its major compound, nuezhenide, on cell viability and ERK1/2 signaling. Molecular docking simulations predicted the interaction between nuezhenide and the GHSR-1a binding pocket. The impact of nuezhenide on ERK1/2 phosphorylation was evaluated, along with the involvement of phospholipase C and calcium signaling in this process. RESULTS Molecular docking simulations indicated that nuezhenide could interact with the GHSR-1a receptor, similar to teaghrelin, another known ghrelin analog. Experimental data showed that FLL extracts and nuezhenide enhanced cell viability and ERK1/2 activation in GHSR1a-mCherry HEK293T cells. The effect was specifically mediated by GHSR-1a, as confirmed by SP-analog treatment. Further analysis revealed that nuezhenide-induced ERK1/2 activation is likely mediated through a phospholipase C-dependent pathway involving intracellular calcium release. CONCLUSION This study demonstrated for the first time that nuezhenide acts as a putative GHSR-1a agonist, promoting cell proliferation and activating ERK1/2 signaling via phospholipase C and calcium pathways. These findings support the traditional use of FLL as an anti-aging herbal remedy and suggest that nuezhenide could be developed as a therapeutic agent targeting GHSR-1a-mediated pathways.
Collapse
Affiliation(s)
- Chia-Hao Wang
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, 402, Taiwan
| | - Ching-Yu Tseng
- Graduate Institute of Microbiology and Public Health, National Chung-Hsing University, Taichung, 402, Taiwan
| | - Wei-Li Hsu
- Graduate Institute of Microbiology and Public Health, National Chung-Hsing University, Taichung, 402, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan.
| | - Jason T C Tzen
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|
2
|
Ohba A, Yamaguchi H. The Art of Chilling Out: How Neurons Regulate Torpor. Bioessays 2024:e202400190. [PMID: 39600072 DOI: 10.1002/bies.202400190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/29/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Endothermic animals expend significant energy to maintain high body temperatures, which offers adaptability to varying environmental conditions. However, this high metabolic rate requires increased food intake. In conditions of low environmental temperature and scarce food resources, some endothermic animals enter a hypometabolic state known as torpor to conserve energy. Torpor involves a marked reduction in body temperature, heart rate, respiratory rate, and locomotor activity, enabling energy conservation. Despite their biological significance and potential medical applications, the neuronal mechanisms regulating torpor still need to be fully understood. Recent studies have focused on fasting-induced daily torpor in mice due to their suitability for advanced neuroscientific techniques. In this review, we highlight recent advances that extend our understanding of neuronal mechanisms regulating torpor. We also discuss unresolved issues in this research field and future directions.
Collapse
Affiliation(s)
- Akinobu Ohba
- Department of Cell Physiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Yamaguchi
- Division of Multicellular Circuit Dynamics, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
3
|
Stark R, Dempsey H, Kleeman E, Sassi M, Osborne-Lawrence S, Sheybani-Deloui S, Rushby HJ, Mirth CK, Austin-Muttitt K, Mullins J, Zigman JM, Davies JS, Andrews ZB. Hunger signalling in the olfactory bulb primes exploration, food-seeking and peripheral metabolism. Mol Metab 2024; 89:102025. [PMID: 39236785 PMCID: PMC11471258 DOI: 10.1016/j.molmet.2024.102025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/15/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024] Open
Abstract
OBJECTIVE Although the metabolic state of an organism affects olfactory function, the precise mechanisms and their impact on behavior and metabolism remain unknown. Here, we assess whether ghrelin receptors (GHSRs) in the olfactory bulb (OB) increase olfactory function and influence foraging behaviors and metabolism. METHODS We performed a detailed behavioural and metabolic analysis in mice lacking GHSRs in the OB (OBGHSR deletion). We also analsyed OB scRNA-seq and spatial transcriptomic datasets to assess GHSR+ cells in the main and accessory olfactory bulbs, as well as the anterior olfactory nucleus. RESULTS OBGHSR deletion affected olfactory discrimination and habituation to both food and non-food odors. Anxiety-like and depression-like behaviors were significantly greater after OBGHSR deletion, whereas exploratory behavior was reduced, with the greatest effect under fasted conditions. OBGHSR deletion impacted feeding behavior as evidenced by altered bout number and duration, as well as buried food-seeking. OBGHSR deletion increased body weight and fat mass, spared fat utilisation on a chow diet and impaired glucose metabolism indicating metabolic dysfunction. Cross referenced analysis of OB scRNA-seq and spatial transcriptomic datasets revealed GHSR+ glutamate neurons in the main and accessory olfactory bulbs, as well as the anterior olfactory nucleus. Ablation of glutamate neurons in the OB reduced ghrelin-induced food finding and phenocopied results seen after OBGHSR deletion. CONCLUSIONS OBGHSRs help to maintain olfactory function, particularly during hunger, and facilitate behavioral adaptations that optimise food-seeking in anxiogenic environments, priming metabolic pathways in preparation for food consumption.
Collapse
Affiliation(s)
- Romana Stark
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia.
| | - Harry Dempsey
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Elizabeth Kleeman
- The Florey Institute of Neuroscience and Mental Health, Mental Health Division, Parkville, Melbourne, Australia
| | - Martina Sassi
- Institute of Life Sciences, School of Medicine, Swansea University, Swansea, UK
| | - Sherri Osborne-Lawrence
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sepideh Sheybani-Deloui
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Helen J Rushby
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Christen K Mirth
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Karl Austin-Muttitt
- Institute of Life Sciences, School of Medicine, Swansea University, Swansea, UK
| | - Jonathan Mullins
- Institute of Life Sciences, School of Medicine, Swansea University, Swansea, UK
| | - Jeffrey M Zigman
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey S Davies
- Institute of Life Sciences, School of Medicine, Swansea University, Swansea, UK
| | - Zane B Andrews
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
4
|
Beheshti S, Ershadi S, Zamani F, Azimzadeh M, Wesal MW. Differential impact of a ghrelin receptor antagonist or inverse agonist in the electrical kindling model of epilepsy. Epilepsy Res 2023; 197:107234. [PMID: 37793283 DOI: 10.1016/j.eplepsyres.2023.107234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/23/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023]
Abstract
Ghrelin is a peptide, which has been shown to affect seizures. However, there is not a consensus about its real impact on the control of seizure severity. We assessed the influence of intra-amygdala injections of a ghrelin receptor (GHSR) antagonist, as well as a GHSR inverse agonist on the electrical kindling-induced seizures. Two unipolar electrodes and a tripolar electrode twisted with a guide cannula were implanted in the skull surface or the basolateral amygdala of adult male rats, respectively. A rapid electrical kindling protocol was applied for kindling epileptogenesis. The stimulations were applied until rats showed three consecutive stage five seizures. Each rat was considered as its control. D-Lys-3-GHRP-6 (1, 12.5, and 25 μg/rat) or [D-Arg, D-phe, D-Trp, heu] substance P (D-SP) (50, 500 and 5000 ng/rat) as the GHSR antagonist or inverse agonist were injected into the basolateral amygdala. Seizure parameters including after-discharge duration (ADD), stage five duration (S5D), and seizure stage (SS) were documented thirty minutes following administration of the drugs or saline. Antagonism of the GHSR in the amygdala, significantly increased seizure induction in the kindled rats, in a dose-dependent manner, and induced spontaneous seizures leading to status epilepticus. Conversely, D-SP had a dose-dependent anticonvulsant activity, indicated by decreased ADD and S5D. The results show that GHSR inverse agonism suppressed seizure severity in the rat amygdala kindling model, whereas GHSR antagonism made seizures more severe. Therefore, when considering the ghrelin system to modulate seizures, it is crucial to note the differential impact of various GHSR ligands.
Collapse
Affiliation(s)
- Siamak Beheshti
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Shiva Ershadi
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Fatemeh Zamani
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mansour Azimzadeh
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran; Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysis, 43400 UPM Serdang, Selangor, Malaysia
| | - Mohammad Wasil Wesal
- Department of Biology, Faculty of Education, University of Ghazni, Gazni, Afghanistan
| |
Collapse
|
5
|
Ghrelin/GHS-R1A antagonism in memory test and its effects on central molecular signaling involved in addiction in rats. Pharmacol Biochem Behav 2023; 224:173528. [PMID: 36870422 DOI: 10.1016/j.pbb.2023.173528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/23/2022] [Accepted: 02/12/2023] [Indexed: 03/06/2023]
Abstract
Central ghrelin signaling seems to play important role in addiction as well as memory processing. Antagonism of the growth hormone secretagogue receptor (GHS-R1A) has been recently proposed as a promising tool for the unsatisfactory drug addiction therapy. However, molecular aspects of GHS-R1A involvement in specific brain regions remain unclear. The present study demonstrated for the first time that acute as well as subchronic (4 days) administration of the experimental GHS-R1A antagonist JMV2959 in usual intraperitoneal doses including 3 mg/kg, had no influence on memory functions tested in the Morris Water Maze in rats as well as no significant effects on the molecular markers linked with memory processing in selected brain areas in rats, specifically on the β-actin, c-Fos, two forms of the calcium/calmodulin-dependent protein kinase II (CaMKII, p-CaMKII) and the cAMP-response element binding protein (CREB, p-CREB), within the medial prefrontal cortex (mPFC), nucleus accumbens (NAc), dorsal striatum, and hippocampus (HIPP). Furthermore, following the methamphetamine intravenous self-administration in rats, the 3 mg/kg JMV2959 pretreatment significantly reduced or prevented the methamphetamine-induced significant decrease of hippocampal β-actin and c-Fos as well as it prevented the significant decrease of CREB in the NAC and mPFC. These results imply, that the GHS-R1A antagonist/JMV2959 might reduce/prevent some of the memory-linked molecular changes elicited by methamphetamine addiction within brain structures associated with memory (HIPP), reward (NAc), and motivation (mPFC), which may contribute to the previously observed significant JMV2959-induced reduction of the methamphetamine self-administration and drug-seeking behavior in the same animals. Further research is necessary to corroborate these results.
Collapse
|
6
|
Platelet P2Y 1 receptor exhibits constitutive G protein signaling and β-arrestin 2 recruitment. BMC Biol 2023; 21:14. [PMID: 36721118 PMCID: PMC9890698 DOI: 10.1186/s12915-023-01528-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 01/25/2023] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Purinergic P2Y1 and P2Y12 receptors (P2Y1-R and P2Y12-R) are G protein-coupled receptors (GPCR) activated by adenosine diphosphate (ADP) to mediate platelet activation, thereby playing a pivotal role in hemostasis and thrombosis. While P2Y12-R is the major target of antiplatelet drugs, no P2Y1-R antagonist has yet been developed for clinical use. However, accumulating data suggest that P2Y1-R inhibition would ensure efficient platelet inhibition with minimal effects on bleeding. In this context, an accurate characterization of P2Y1-R antagonists constitutes an important preliminary step. RESULTS Here, we investigated the pharmacology of P2Y1-R signaling through Gq and β-arrestin pathways in HEK293T cells and in mouse and human platelets using highly sensitive resonance energy transfer-based technologies (BRET/HTRF). We demonstrated that at basal state, in the absence of agonist ligand, P2Y1-R activates Gq protein signaling in HEK293T cells and in mouse and human platelets, indicating that P2Y1-R is constitutively active in physiological conditions. We showed that P2Y1-R also promotes constitutive recruitment of β-arrestin 2 in HEK293T cells. Moreover, the P2Y1-R antagonists MRS2179, MRS2279 and MRS2500 abolished the receptor dependent-constitutive activation, thus behaving as inverse agonists. CONCLUSIONS This study sheds new light on P2Y1-R pharmacology, highlighting for the first time the existence of a constitutively active P2Y1-R population in human platelets. Given the recent interest of P2Y12-R constitutive activity in patients with diabetes, this study suggests that modification of constitutive P2Y1-R signaling might be involved in pathological conditions, including bleeding syndrome or high susceptibility to thrombotic risk. Thus, targeting platelet P2Y1-R constitutive activation might be a promising and powerful strategy for future antiplatelet therapy.
Collapse
|
7
|
Gross JD, Zhou Y, Barak LS, Caron MG. Ghrelin receptor signaling in health and disease: a biased view. Trends Endocrinol Metab 2023; 34:106-118. [PMID: 36567228 PMCID: PMC9852078 DOI: 10.1016/j.tem.2022.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 12/25/2022]
Abstract
As allosteric complexes, G-protein-coupled receptors (GPCRs) respond to extracellular stimuli and pleiotropically couple to intracellular transducers to elicit signaling pathway-dependent effects in a process known as biased signaling or functional selectivity. One such GPCR, the ghrelin receptor (GHSR1a), has a crucial role in restoring and maintaining metabolic homeostasis during disrupted energy balance. Thus, pharmacological modulation of GHSR1a bias could offer a promising strategy to treat several metabolism-based disorders. Here, we summarize current evidence supporting GHSR1a functional selectivity in vivo and highlight recent structural data. We propose that precise determinations of GHSR1a molecular pharmacology and pathway-specific physiological effects will enable discovery of GHSR1a drugs with tailored signaling profiles, thereby providing safer and more effective treatments for metabolic diseases.
Collapse
Affiliation(s)
- Joshua D Gross
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Yang Zhou
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Lawrence S Barak
- Department of Cell Biology, Duke University, Durham, NC 27710, USA.
| | - Marc G Caron
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| |
Collapse
|
8
|
Azimzadeh M, Beheshti S. Down regulation of the hippocampal ghrelin receptor type-1a during electrical kindling-induced epileptogenesis. Epilepsy Res 2023; 189:107064. [PMID: 36516566 DOI: 10.1016/j.eplepsyres.2022.107064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/17/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Numerous studies have shown that the ghrelin hormone is involved in epileptic conditions. However, the profile of ghrelin or its functional receptor mRNAs in seizure-susceptible brain areas was not assessed during epileptogenesis. Here, we measured the expression levels of the hippocampal ghrelin or its receptor mRNAs during electrical kindling-induced epileptogenesis. The study was conducted on twenty adult male Wistar rats. One tri-polar and two uni-polar electrodes were stereotaxically implanted in the baso-lateral amygdala or skull surface, respectively. Animals were divided into four groups, consisting of two sham groups (sham1 and sham2), and two other groups, which were partially or fully kindled. After the establishment of partial or full kindling, the hippocampi of the animals and that of the corresponding sham groups were removed. A quantitative real-time PCR technique was used to measure the expression levels of ghrelin or its functional receptor mRNAs. The results indicated that the expression levels of ghrelin did not alter in either of the partially or fully kindled rats compared to the corresponding sham groups. Ghrelin receptor (ghrelinR) down regulated, significantly in the fully-kindled rats, compared to sham2 group. Meanwhile, the mRNA expression levels of ghrelinR did not change in partially-kindled rats compared to sham1 group. The outcomes of the current study highlight the crucial, unknown impact of the hippocampal ghrelinR through the development of electrical kindling epileptogenesis, and points out the importance of ghrelinR as a goal to adjust epileptogenic progression.
Collapse
Affiliation(s)
- Mansour Azimzadeh
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Siamak Beheshti
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
9
|
Wang CH, Tseng CY, Hsu WL, Tzen JTC. Establishment of a Cell Line Stably Expressing the Growth Hormone Secretagogue Receptor to Identify Crocin as a Ghrelin Agonist. Biomolecules 2022; 12:biom12121813. [PMID: 36551241 PMCID: PMC9775697 DOI: 10.3390/biom12121813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
The growth hormone secretagogue receptor-1a (GHSR1a) is the endogenous receptor for ghrelin. Activation of GHSR1a participates in many physiological processes including energy homeostasis and eating behavior. Due to its transitory half-life, the efficacy of ghrelin treatment in patients is restricted; hence the development of new adjuvant therapy is an urgent need. This study aimed to establish a cell line stably expressing GHSR1a, which could be employed to screen potential ghrelin agonists from natural compounds. First, by means of lentiviral transduction, the genome of a human HEK293T cell was modified, and a cell platform stably overexpressing GHSR1a was successfully established. In this platform, GHSR1a was expressed as a fusion protein tagged with mCherry, which allowed the monitoring of the dynamic cellular distribution of GHSR1a by fluorescent microscopy. Subsequently, the authenticity of the GHSR1a mediated signaling was further characterized by using ghrelin and teaghrelin, two molecules known to stimulate GHSR1a. The results indicated that both ghrelin and teaghrelin readily activated GHSR1a mediated signaling pathways, presumably via increasing phosphorylation levels of ERK. The specific GHSR1a signaling was further validated by using SP-analog, an antagonist of GHSR1a as well as using a cell model with the knockdown expression of GHSR1a. Molecular modeling predicted that crocin might be a potential ghrelin agonist, and this prediction was further confirmed by the established platform.
Collapse
Affiliation(s)
- Chia-Hao Wang
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402, Taiwan
| | - Ching-Yu Tseng
- Graduate Institute of Microbiology and Public Health, National Chung-Hsing University, Taichung 402, Taiwan
| | - Wei-Li Hsu
- Graduate Institute of Microbiology and Public Health, National Chung-Hsing University, Taichung 402, Taiwan
- Correspondence: (W.-L.H.); (J.T.C.T.)
| | - Jason T. C. Tzen
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402, Taiwan
- Correspondence: (W.-L.H.); (J.T.C.T.)
| |
Collapse
|
10
|
Holá L, Železná B, Karnošová A, Kuneš J, Fehrentz JA, Denoyelle S, Cantel S, Blechová M, Sýkora D, Myšková A, Maletínská L. A Novel Truncated Liver Enriched Antimicrobial Peptide-2 Palmitoylated at its N-Terminal Antagonizes Effects of Ghrelin. J Pharmacol Exp Ther 2022; 383:129-136. [PMID: 36198495 DOI: 10.1124/jpet.122.001322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/03/2022] [Indexed: 01/07/2023] Open
Abstract
Ghrelin is secreted in the stomach during fasting and targets the growth hormone secretagogue receptor (GHSR1a) in the hypothalamus and brainstem to exert its orexigenic effect. Recently, liver enriched antimicrobial peptide-2 (LEAP2) was identified as an endogenous high-affinity GHSR1a antagonist. LEAP2 is a 40-amino acid peptide with two disulfide bridges and GHRS1a affinity in the N-terminal hydrophobic part. In this study, we tested modified truncated N-terminal peptide LEAP2 (1-14), along with its myristoylated, palmitoylated, and stearoylated analogs, to determine their affinity to and activation of GHSR1a and their anorexigenic effects after acute peripheral administration. The lipidized analogs bound GHSR1a with affinity similar to that of natural LEAP2, and lipidization significantly enhanced the affinity of LEAP2(1-14) to GHSR1a. According to the beta-lactamase reporter gene response, the natural GHSR1a agonist ghrelin activated the receptor with nanomolar EC50 LEAP2(1-14) analogs behaved as inverse agonists of GHSR1a and suppressed internal activity of the receptor with EC50 values in the 10-8 M range. LEAP2(1-14) analogs significantly lowered acute food intake in overnight fasted mice, and palmitoylated LEAP2(1-14) was the most potent. In free-fed mice, all LEAP2(1-14) analogs significantly decreased the orexigenic effect of the stable ghrelin analog [Dpr3]Ghrelin. Moreover, palmitoylated LEAP2(1-14) inhibited the growth hormone (GH) release induced by [Dpr3] Ghrelin and exhibited an increased stability in rat plasma compared with LEAP2(1-14). In conclusion, palmitoylated LEAP2(1-14) had the most pronounced affinity for GHSR1a, had an anorexigenic effect, exhibited stability in rat plasma, and attenuated [Dpr3]Ghrelin-induced GH release. Such properties render palmitoylated LEAP2(1-14) a promising substance for antiobesity treatment. SIGNIFICANCE STATEMENT: The agonist and antagonist of one receptor are rarely found in one organism. For ghrelin receptor (growth hormone secretagogue receptor, GHSR), endogenous agonist ghrelin and endogenous antagonist/inverse agonist liver enriched antimicrobial peptide-2 (LEAP2) co-exist and differently control GHSR signaling. As ghrelin has a unique role in food intake regulation, energy homeostasis, and cytoprotection, lipidized truncated LEAP2 analogs presented in this study could serve not only to reveal the relationship between ghrelin and LEAP2 but also for development of potential anti-obesity agents.
Collapse
Affiliation(s)
- Lucie Holá
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic (L.H., B.Ž., A.K., J.K., M.B., A.M., L.M.); Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (J.K.); First Faculty of Medicine, Charles University, Prague, Czech Republic (L.H., A.K.); University of Chemistry and Technology, Prague, Czech Republic (D.S., A.M.); and IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France (J.A.F., S.C., S.D.)
| | - Blanka Železná
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic (L.H., B.Ž., A.K., J.K., M.B., A.M., L.M.); Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (J.K.); First Faculty of Medicine, Charles University, Prague, Czech Republic (L.H., A.K.); University of Chemistry and Technology, Prague, Czech Republic (D.S., A.M.); and IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France (J.A.F., S.C., S.D.)
| | - Alena Karnošová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic (L.H., B.Ž., A.K., J.K., M.B., A.M., L.M.); Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (J.K.); First Faculty of Medicine, Charles University, Prague, Czech Republic (L.H., A.K.); University of Chemistry and Technology, Prague, Czech Republic (D.S., A.M.); and IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France (J.A.F., S.C., S.D.)
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic (L.H., B.Ž., A.K., J.K., M.B., A.M., L.M.); Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (J.K.); First Faculty of Medicine, Charles University, Prague, Czech Republic (L.H., A.K.); University of Chemistry and Technology, Prague, Czech Republic (D.S., A.M.); and IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France (J.A.F., S.C., S.D.)
| | - Jean-Alain Fehrentz
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic (L.H., B.Ž., A.K., J.K., M.B., A.M., L.M.); Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (J.K.); First Faculty of Medicine, Charles University, Prague, Czech Republic (L.H., A.K.); University of Chemistry and Technology, Prague, Czech Republic (D.S., A.M.); and IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France (J.A.F., S.C., S.D.)
| | - Séverine Denoyelle
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic (L.H., B.Ž., A.K., J.K., M.B., A.M., L.M.); Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (J.K.); First Faculty of Medicine, Charles University, Prague, Czech Republic (L.H., A.K.); University of Chemistry and Technology, Prague, Czech Republic (D.S., A.M.); and IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France (J.A.F., S.C., S.D.)
| | - Sonia Cantel
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic (L.H., B.Ž., A.K., J.K., M.B., A.M., L.M.); Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (J.K.); First Faculty of Medicine, Charles University, Prague, Czech Republic (L.H., A.K.); University of Chemistry and Technology, Prague, Czech Republic (D.S., A.M.); and IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France (J.A.F., S.C., S.D.)
| | - Miroslava Blechová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic (L.H., B.Ž., A.K., J.K., M.B., A.M., L.M.); Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (J.K.); First Faculty of Medicine, Charles University, Prague, Czech Republic (L.H., A.K.); University of Chemistry and Technology, Prague, Czech Republic (D.S., A.M.); and IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France (J.A.F., S.C., S.D.)
| | - David Sýkora
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic (L.H., B.Ž., A.K., J.K., M.B., A.M., L.M.); Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (J.K.); First Faculty of Medicine, Charles University, Prague, Czech Republic (L.H., A.K.); University of Chemistry and Technology, Prague, Czech Republic (D.S., A.M.); and IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France (J.A.F., S.C., S.D.)
| | - Aneta Myšková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic (L.H., B.Ž., A.K., J.K., M.B., A.M., L.M.); Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (J.K.); First Faculty of Medicine, Charles University, Prague, Czech Republic (L.H., A.K.); University of Chemistry and Technology, Prague, Czech Republic (D.S., A.M.); and IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France (J.A.F., S.C., S.D.)
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic (L.H., B.Ž., A.K., J.K., M.B., A.M., L.M.); Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (J.K.); First Faculty of Medicine, Charles University, Prague, Czech Republic (L.H., A.K.); University of Chemistry and Technology, Prague, Czech Republic (D.S., A.M.); and IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France (J.A.F., S.C., S.D.)
| |
Collapse
|
11
|
Pons V, Garcia C, Tidten-Luksch N, Mac Sweeney A, Caroff E, Galés C, Riederer MA. Inverse agonist efficacy of selatogrel blunts constitutive P2Y12 receptor signaling by inducing the inactive receptor conformation. Biochem Pharmacol 2022; 206:115291. [DOI: 10.1016/j.bcp.2022.115291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 11/02/2022]
|
12
|
Rémond E, Fehrentz J, Liénart L, Clément S, Banères J, Cavelier F. Fluorescent P‐Hydroxyphosphole for Peptide Labeling through P‐N Bond Formation. Chemistry 2022; 28:e202201526. [DOI: 10.1002/chem.202201526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Emmanuelle Rémond
- Institut des Biomolécules Max Mousseronm IBMM, UMR 5247 Pôle Chimie Balard 1919, route de Mende 34093 Montpellier cedex 5 France
| | - Jean‐Alain Fehrentz
- Institut des Biomolécules Max Mousseronm IBMM, UMR 5247 Pôle Chimie Balard 1919, route de Mende 34093 Montpellier cedex 5 France
| | - Laure Liénart
- Institut des Biomolécules Max Mousseronm IBMM, UMR 5247 Pôle Chimie Balard 1919, route de Mende 34093 Montpellier cedex 5 France
| | - Sébastien Clément
- Institut Charles Gerhardt Montpellier, ICGM, UMR 5253 Pôle Chimie Balard 1919, route de Mende 34093 Montpellier cedex 5 France
| | - Jean‐Louis Banères
- Institut des Biomolécules Max Mousseronm IBMM, UMR 5247 Pôle Chimie Balard 1919, route de Mende 34093 Montpellier cedex 5 France
| | - Florine Cavelier
- Institut des Biomolécules Max Mousseronm IBMM, UMR 5247 Pôle Chimie Balard 1919, route de Mende 34093 Montpellier cedex 5 France
| |
Collapse
|
13
|
Dysfunctional Heteroreceptor Complexes as Novel Targets for the Treatment of Major Depressive and Anxiety Disorders. Cells 2022; 11:cells11111826. [PMID: 35681521 PMCID: PMC9180493 DOI: 10.3390/cells11111826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/10/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
Among mental diseases, major depressive disorder (MDD) and anxiety deserve a special place due to their high prevalence and their negative impact both on society and patients suffering from these disorders. Consequently, the development of novel strategies designed to treat them quickly and efficiently, without or at least having limited side effects, is considered a highly important goal. Growing evidence indicates that emerging properties are developed on recognition, trafficking, and signaling of G-protein coupled receptors (GPCRs) upon their heteromerization with other types of GPCRs, receptor tyrosine kinases, and ionotropic receptors such as N-methyl-D-aspartate (NMDA) receptors. Therefore, to develop new treatments for MDD and anxiety, it will be important to identify the most vulnerable heteroreceptor complexes involved in MDD and anxiety. This review focuses on how GPCRs, especially serotonin, dopamine, galanin, and opioid heteroreceptor complexes, modulate synaptic and volume transmission in the limbic networks of the brain. We attempt to provide information showing how these emerging concepts can contribute to finding new ways to treat both MDD and anxiety disorders.
Collapse
|
14
|
Fernandez G, Cabral A, De Francesco PN, Uriarte M, Reynaldo M, Castrogiovanni D, Zubiría G, Giovambattista A, Cantel S, Denoyelle S, Fehrentz JA, Tolle V, Schiöth HB, Perello M. GHSR controls food deprivation-induced activation of CRF neurons of the hypothalamic paraventricular nucleus in a LEAP2-dependent manner. Cell Mol Life Sci 2022; 79:277. [PMID: 35504998 PMCID: PMC11072678 DOI: 10.1007/s00018-022-04302-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Prolonged fasting is a major challenge for living organisms. An appropriate metabolic response to food deprivation requires the activation of the corticotropin-releasing factor-producing neurons of the hypothalamic paraventricular nucleus (PVHCRF neurons), which are a part of the hypothalamic-pituitary-adrenal axis (HPA), as well as the growth hormone secretagogue receptor (GHSR) signaling, whose activity is up- or down-regulated, respectively, by the hormones ghrelin and the liver-expressed antimicrobial peptide 2 (LEAP2). Since ghrelin treatment potently up-regulates the HPA axis, we studied the role of GHSR in mediating food deprivation-induced activation of the PVHCRF neurons in mice. METHODS We estimated the activation of the PVHCRF neurons, using immuno-staining against CRF and the marker of neuronal activation c-Fos in brain sections, and assessed plasma levels of corticosterone and glucose in different pharmacologically or genetically manipulated mouse models exposed, or not, to a 2-day food deprivation protocol. In particular, we investigated ad libitum fed or food-deprived male mice that: (1) lacked GHSR gene expression, (2) had genetic deletion of the ghrelin gene, (3) displayed neurotoxic ablation of the hypothalamic arcuate nucleus, (4) were centrally treated with an anti-ghrelin antibody to block central ghrelin action, (5) were centrally treated with a GHSR ligand that blocks ghrelin-evoked and constitutive GHSR activities, or (6) received a continuous systemic infusion of LEAP2(1-12). RESULTS We found that food deprivation results in the activation of the PVHCRF neurons and in a rise of the ghrelin/LEAP2 molar ratio. Food deprivation-induced activation of PVHCRF neurons required the presence and the signaling of GHSR at hypothalamic level, but not of ghrelin. Finally, we found that preventing the food deprivation-induced fall of LEAP2 reverses the activation of the PVHCRF neurons in food-deprived mice, although it has no effect on body weight or blood glucose. CONCLUSION Food deprivation-induced activation of the PVHCRF neurons involves ghrelin-independent actions of GHSR at hypothalamic level and requires a decrease of plasma LEAP2 levels. We propose that the up-regulation of the actions of GHSR associated to the fall of plasma LEAP2 level are physiologically relevant neuroendocrine signals during a prolonged fasting.
Collapse
Affiliation(s)
- Gimena Fernandez
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata (UNLP)], Calle 526 S/N entre 10 y 11, La Plata, Buenos Aires, 1900, Argentina
| | - Agustina Cabral
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata (UNLP)], Calle 526 S/N entre 10 y 11, La Plata, Buenos Aires, 1900, Argentina
| | - Pablo N De Francesco
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata (UNLP)], Calle 526 S/N entre 10 y 11, La Plata, Buenos Aires, 1900, Argentina
| | - Maia Uriarte
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata (UNLP)], Calle 526 S/N entre 10 y 11, La Plata, Buenos Aires, 1900, Argentina
| | - Mirta Reynaldo
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata (UNLP)], Calle 526 S/N entre 10 y 11, La Plata, Buenos Aires, 1900, Argentina
| | - Daniel Castrogiovanni
- Cell Culture Facility, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata (UNLP)], Calle 526 S/N entre 10 y 11, La Plata, Buenos Aires, 1900, Argentina
| | - Guillermina Zubiría
- Laboratory of Neuroendocrinology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata (UNLP)], Calle 526 S/N entre 10 y 11, La Plata, Buenos Aires, 1900, Argentina
| | - Andrés Giovambattista
- Laboratory of Neuroendocrinology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata (UNLP)], Calle 526 S/N entre 10 y 11, La Plata, Buenos Aires, 1900, Argentina
| | - Sonia Cantel
- Institut Des Biomolécules Max Mousseron, UMR 5247 CNRS-Université Montpellier-ENSCM, Montpellier, France
| | - Severine Denoyelle
- Institut Des Biomolécules Max Mousseron, UMR 5247 CNRS-Université Montpellier-ENSCM, Montpellier, France
| | - Jean-Alain Fehrentz
- Institut Des Biomolécules Max Mousseron, UMR 5247 CNRS-Université Montpellier-ENSCM, Montpellier, France
| | - Virginie Tolle
- Institute of Psychiatry and Neuroscience of Paris, Université de Paris, UMR-S 1266 INSERM, Paris, France
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
- Institute for Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Mario Perello
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata (UNLP)], Calle 526 S/N entre 10 y 11, La Plata, Buenos Aires, 1900, Argentina.
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
15
|
Péraldi-Roux S, Bayle M, M'Kadmi C, Damian M, Vaillé J, Fernandez G, Paula Cornejo M, Marie J, Banères JL, Ben Haj Salah K, Fehrentz JA, Cantel S, Perello M, Denoyelle S, Oiry C, Neasta J. Design and Characterization of a Triazole-Based Growth Hormone Secretagogue Receptor Modulator Inhibiting the Glucoregulatory and Feeding Actions of Ghrelin. Biochem Pharmacol 2022; 202:115114. [DOI: 10.1016/j.bcp.2022.115114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 11/02/2022]
|
16
|
Discovery of a functionally selective ghrelin receptor (GHSR 1a) ligand for modulating brain dopamine. Proc Natl Acad Sci U S A 2022; 119:e2112397119. [PMID: 35239443 PMCID: PMC8915830 DOI: 10.1073/pnas.2112397119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The modulation of growth hormone secretagogue receptor-1a (GHSR1a) signaling is a promising strategy for treating brain conditions of metabolism, aging, and addiction. GHSR1a activation results in pleiotropic physiological outcomes through distinct and pharmacologically separable G protein– and β-arrestin (βarr)–dependent signaling pathways. Thus, pathway-selective modulation can enable improved pharmacotherapeutics that can promote therapeutic efficacy while mitigating side effects. Here, we describe the discovery of a brain-penetrant small molecule, N8279 (NCATS-SM8864), that biases GHSR1a conformations toward Gαq activation and reduces aberrant dopaminergic behavior in mice. N8279 represents a promising chemical scaffold to advance the development of better treatments for GHSR1a-related brain disorders involving the pathological dysregulation of dopamine. The growth hormone secretagogue receptor-1a (GHSR1a) is the cognate G protein–coupled receptor (GPCR) for the peptide hormone ghrelin. GHSR1a is a promising therapeutic target for a wide range of metabolic, age-related, and central nervous system (CNS)–based conditions. In addition, growing evidence supports that GHSR1a is a modulator of dopamine (DA) homeostasis and is neuroprotective within brain DA circuits. GHSR1a signaling originates from pharmacologically separable G protein– and β-arrestin (βarr)–dependent pathways, and consequently, GHSR1a-mediated physiological responses depend upon their distinctive signaling contributions. Thus, when treating disorders of disrupted DA homeostasis, a pharmacological strategy that modulates biased GHSR1a signaling may uncouple desired therapeutic outcomes from unwanted side effects. Here, we report the discovery of a small molecule GHSR1a agonist, N8279 (NCATS-SM8864), functionally selective for G protein signaling. Comprehensive pharmacological characterization reveals that N8279 elicits potent Gαq activity at the apo- and ghrelin-bound GHSR1a. Further biochemical analysis and molecular modeling demonstrate that N8279 signaling requires the extracellular domain of GHSR1a, especially extracellular loop 2. Collectively, these findings suggest that N8279 possesses an extended binding mode into the extracellular vestibule of the GHSR1a that preferentially favors Gαq signaling over alternative G proteins and βarr2-dependent cellular responses. Critically, N8279 is brain-penetrant in mice, exhibits CNS stability, and attenuates dysfunctional DA-mediated behaviors in both genetic and pharmacological mouse models of hyperdopaminergia. Our findings provide insight into the mechanisms governing GPCR functional selectivity and emphasize how biased ligand drug development can produce novel GHSR1a pharmacotherapeutics to treat pathological disruptions of brain DA homeostasis.
Collapse
|
17
|
Giorgioni G, Del Bello F, Quaglia W, Botticelli L, Cifani C, Micioni Di Bonaventura E, Micioni Di Bonaventura MV, Piergentili A. Advances in the Development of Nonpeptide Small Molecules Targeting Ghrelin Receptor. J Med Chem 2022; 65:3098-3118. [PMID: 35157454 PMCID: PMC8883476 DOI: 10.1021/acs.jmedchem.1c02191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ghrelin is an octanoylated peptide acting by the activation of the growth hormone secretagogue receptor, namely, GHS-R1a. The involvement of ghrelin in several physiological processes, including stimulation of food intake, gastric emptying, body energy balance, glucose homeostasis, reduction of insulin secretion, and lipogenesis validates the considerable interest in GHS-R1a as a promising target for the treatment of numerous disorders. Over the years, several GHS-R1a ligands have been identified and some of them have been extensively studied in clinical trials. The recently resolved structures of GHS-R1a bound to ghrelin or potent ligands have provided useful information for the design of new GHS-R1a drugs. This perspective is focused on the development of recent nonpeptide small molecules acting as GHS-R1a agonists, antagonists, and inverse agonists, bearing classical or new molecular scaffolds, as well as on radiolabeled GHS-R1a ligands developed for imaging. Moreover, the pharmacological effects of the most studied ligands have been discussed.
Collapse
Affiliation(s)
- Gianfabio Giorgioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Wilma Quaglia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Luca Botticelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - E Micioni Di Bonaventura
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - M V Micioni Di Bonaventura
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - Alessandro Piergentili
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| |
Collapse
|
18
|
Sustkova-Fiserova M, Charalambous C, Khryakova A, Certilina A, Lapka M, Šlamberová R. The Role of Ghrelin/GHS-R1A Signaling in Nonalcohol Drug Addictions. Int J Mol Sci 2022; 23:761. [PMID: 35054944 PMCID: PMC8776007 DOI: 10.3390/ijms23020761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 01/27/2023] Open
Abstract
Drug addiction causes constant serious health, social, and economic burden within the human society. The current drug dependence pharmacotherapies, particularly relapse prevention, remain limited, unsatisfactory, unreliable for opioids and tobacco, and even symptomatic for stimulants and cannabinoids, thus, new more effective treatment strategies are researched. The antagonism of the growth hormone secretagogue receptor type A (GHS-R1A) has been recently proposed as a novel alcohol addiction treatment strategy, and it has been intensively studied in experimental models of other addictive drugs, such as nicotine, stimulants, opioids and cannabinoids. The role of ghrelin signaling in these drugs effects has also been investigated. The present review aims to provide a comprehensive overview of preclinical and clinical studies focused on ghrelin's/GHS-R1A possible involvement in these nonalcohol addictive drugs reinforcing effects and addiction. Although the investigation is still in its early stage, majority of the existing reviewed experimental results from rodents with the addition of few human studies, that searched correlations between the genetic variations of the ghrelin signaling or the ghrelin blood content with the addictive drugs effects, have indicated the importance of the ghrelin's/GHS-R1As involvement in the nonalcohol abused drugs pro-addictive effects. Further research is necessary to elucidate the exact involved mechanisms and to verify the future potential utilization and safety of the GHS-R1A antagonism use for these drug addiction therapies, particularly for reducing the risk of relapse.
Collapse
Affiliation(s)
- Magdalena Sustkova-Fiserova
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague, Czech Republic; (C.C.); (A.K.); (A.C.); (M.L.)
| | - Chrysostomos Charalambous
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague, Czech Republic; (C.C.); (A.K.); (A.C.); (M.L.)
| | - Anna Khryakova
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague, Czech Republic; (C.C.); (A.K.); (A.C.); (M.L.)
| | - Alina Certilina
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague, Czech Republic; (C.C.); (A.K.); (A.C.); (M.L.)
| | - Marek Lapka
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague, Czech Republic; (C.C.); (A.K.); (A.C.); (M.L.)
| | - Romana Šlamberová
- Department of Physiology, Third Faculty of Medicine, Charles University, Ke Karlovu 4, 120 00 Prague, Czech Republic;
| |
Collapse
|
19
|
Targeting the Ghrelin Receptor as a Novel Therapeutic Option for Epilepsy. Biomedicines 2021; 10:biomedicines10010053. [PMID: 35052733 PMCID: PMC8773216 DOI: 10.3390/biomedicines10010053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
Epilepsy is a neurological disease affecting more than 50 million individuals worldwide. Notwithstanding the availability of a broad array of antiseizure drugs (ASDs), 30% of patients suffer from pharmacoresistant epilepsy. This highlights the urgent need for novel therapeutic options, preferably with an emphasis on new targets, since “me too” drugs have been shown to be of no avail. One of the appealing novel targets for ASDs is the ghrelin receptor (ghrelin-R). In epilepsy patients, alterations in the plasma levels of its endogenous ligand, ghrelin, have been described, and various ghrelin-R ligands are anticonvulsant in preclinical seizure and epilepsy models. Up until now, the exact mechanism-of-action of ghrelin-R-mediated anticonvulsant effects has remained poorly understood and is further complicated by multiple downstream signaling pathways and the heteromerization properties of the receptor. This review compiles current knowledge, and discusses the potential mechanisms-of-action of the anticonvulsant effects mediated by the ghrelin-R.
Collapse
|
20
|
Louet M, Casiraghi M, Damian M, Costa MGS, Renault P, Gomes AAS, Batista PR, M'Kadmi C, Mary S, Cantel S, Denoyelle S, Ben Haj Salah K, Perahia D, Bisch PM, Fehrentz JA, Catoire LJ, Floquet N, Banères JL. Concerted conformational dynamics and water movements in the ghrelin G protein-coupled receptor. eLife 2021; 10:e63201. [PMID: 34477105 PMCID: PMC8416020 DOI: 10.7554/elife.63201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 07/23/2021] [Indexed: 12/03/2022] Open
Abstract
There is increasing support for water molecules playing a role in signal propagation through G protein-coupled receptors (GPCRs). However, exploration of the hydration features of GPCRs is still in its infancy. Here, we combined site-specific labeling with unnatural amino acids to molecular dynamics to delineate how local hydration of the ghrelin receptor growth hormone secretagogue receptor (GHSR) is rearranged upon activation. We found that GHSR is characterized by a specific hydration pattern that is selectively remodeled by pharmacologically distinct ligands and by the lipid environment. This process is directly related to the concerted movements of the transmembrane domains of the receptor. These results demonstrate that the conformational dynamics of GHSR are tightly coupled to the movements of internal water molecules, further enhancing our understanding of the molecular bases of GPCR-mediated signaling.
Collapse
Affiliation(s)
- Maxime Louet
- IBMM, Univ Montpellier, CNRS, ENSCMMontpellierFrance
| | - Marina Casiraghi
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS, Université de Paris, Institut de Biologie Physico-Chimique (FRC 550)ParisFrance
| | | | - Mauricio GS Costa
- Laboratoire de Biologie et Pharmacologie Appliquées, UMR 8113 CNRS, Ecole Normale Supérieure Paris-SaclayGif-sur-YvetteFrance
- Programa de Computação Científica, Fundação Oswaldo CruzRio de JaneiroBrazil
| | - Pedro Renault
- IBMM, Univ Montpellier, CNRS, ENSCMMontpellierFrance
| | - Antoniel AS Gomes
- IBMM, Univ Montpellier, CNRS, ENSCMMontpellierFrance
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de JaneiroRio de JaneiroBrazil
| | - Paulo R Batista
- Programa de Computação Científica, Fundação Oswaldo CruzRio de JaneiroBrazil
| | | | - Sophie Mary
- IBMM, Univ Montpellier, CNRS, ENSCMMontpellierFrance
| | - Sonia Cantel
- IBMM, Univ Montpellier, CNRS, ENSCMMontpellierFrance
| | | | | | - David Perahia
- Laboratoire de Biologie et Pharmacologie Appliquées, UMR 8113 CNRS, Ecole Normale Supérieure Paris-SaclayGif-sur-YvetteFrance
| | - Paulo M Bisch
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de JaneiroRio de JaneiroBrazil
| | | | - Laurent J Catoire
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS, Université de Paris, Institut de Biologie Physico-Chimique (FRC 550)ParisFrance
| | | | | |
Collapse
|
21
|
Mustafá ER, Cordisco González S, Damian M, Cantel S, Denoyelle S, Wagner R, Schiöth HB, Fehrentz JA, Banères JL, Perelló M, Raingo J. LEAP2 Impairs the Capability of the Growth Hormone Secretagogue Receptor to Regulate the Dopamine 2 Receptor Signaling. Front Pharmacol 2021; 12:712437. [PMID: 34447311 PMCID: PMC8383165 DOI: 10.3389/fphar.2021.712437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
The growth hormone secretagogue receptor (GHSR) signals in response to ghrelin, but also acts via ligand-independent mechanisms that include either constitutive activation or interaction with other G protein-coupled receptors, such as the dopamine 2 receptor (D2R). A key target of GHSR in neurons is voltage-gated calcium channels type 2.2 (CaV2.2). Recently, the liver-expressed antimicrobial peptide 2 (LEAP2) was recognized as a novel GHSR ligand, but the mechanism of action of LEAP2 on GHSR is not well understood. Here, we investigated the role of LEAP2 on the canonical and non-canonical modes of action of GHSR on CaV2.2 function. Using a heterologous expression system and patch-clamp recordings, we found that LEAP2 impairs the reduction of CaV2.2 currents induced by ghrelin-evoked and constitutive GHSR activities, acting as a GHSR antagonist and inverse agonist, respectively. We also found that LEAP2 prevents GHSR from modulating the effects of D2R signaling on CaV2.2 currents, and that the GHSR-binding N-terminal region LEAP2 underlies these effects. Using purified labeled receptors assembled into lipid nanodiscs and Forster Resonance Energy Transfer (FRET) assessments, we found that the N-terminal region of LEAP2 stabilizes an inactive conformation of GHSR that is dissociated from Gq protein and, consequently, reverses the effect of GHSR on D2R-dependent Gi activation. Thus, our results provide critical molecular insights into the mechanism mediating LEAP2 modulation of GHSR.
Collapse
Affiliation(s)
- Emilio R Mustafá
- Laboratory of Electrophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata (UNLP)], La Plata, Argentina
| | - Santiago Cordisco González
- Laboratory of Electrophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata (UNLP)], La Plata, Argentina
| | - Marjorie Damian
- Institut des Biomolécules Max Mousseron (IBMM), Université Montpellier, CNRS, Montpellier, France
| | - Sonia Cantel
- Institut des Biomolécules Max Mousseron (IBMM), Université Montpellier, CNRS, Montpellier, France
| | - Severine Denoyelle
- Institut des Biomolécules Max Mousseron (IBMM), Université Montpellier, CNRS, Montpellier, France
| | - Renaud Wagner
- Plateforme IMPReSs, CNRS UMR7242, Biotechnologie et Signalisation Cellulaire, École Supérieure de Biotechnologie de Strasbourg, Strasbourg, France
| | - Helgi B Schiöth
- Department of Neuroscience, Uppsala University, Uppsala, Sweden.,Institute for Translational Medicine and Biothechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Jean-Alain Fehrentz
- Institut des Biomolécules Max Mousseron (IBMM), Université Montpellier, CNRS, Montpellier, France
| | - Jean-Louis Banères
- Institut des Biomolécules Max Mousseron (IBMM), Université Montpellier, CNRS, Montpellier, France
| | - Mario Perelló
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata (UNLP)], La Plata, Argentina
| | - Jesica Raingo
- Laboratory of Electrophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata (UNLP)], La Plata, Argentina
| |
Collapse
|
22
|
Davis TR, Pierce MR, Novak SX, Hougland JL. Ghrelin octanoylation by ghrelin O-acyltransferase: protein acylation impacting metabolic and neuroendocrine signalling. Open Biol 2021; 11:210080. [PMID: 34315274 PMCID: PMC8316800 DOI: 10.1098/rsob.210080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The acylated peptide hormone ghrelin impacts a wide range of physiological processes but is most well known for controlling hunger and metabolic regulation. Ghrelin requires a unique posttranslational modification, serine octanoylation, to bind and activate signalling through its cognate GHS-R1a receptor. Ghrelin acylation is catalysed by ghrelin O-acyltransferase (GOAT), a member of the membrane-bound O-acyltransferase (MBOAT) enzyme family. The ghrelin/GOAT/GHS-R1a system is defined by multiple unique aspects within both protein biochemistry and endocrinology. Ghrelin serves as the only substrate for GOAT within the human proteome and, among the multiple hormones involved in energy homeostasis and metabolism such as insulin and leptin, acts as the only known hormone in circulation that directly stimulates appetite and hunger signalling. Advances in GOAT enzymology, structural modelling and inhibitor development have revolutionized our understanding of this enzyme and offered new tools for investigating ghrelin signalling at the molecular and organismal levels. In this review, we briefly summarize the current state of knowledge regarding ghrelin signalling and ghrelin/GOAT enzymology, discuss the GOAT structural model in the context of recently reported MBOAT enzyme superfamily member structures, and highlight the growing complement of GOAT inhibitors that offer options for both ghrelin signalling studies and therapeutic applications.
Collapse
Affiliation(s)
- Tasha R Davis
- Department of Chemistry, Syracuse University, Syracuse, NY 13244 USA
| | - Mariah R Pierce
- Department of Chemistry, Syracuse University, Syracuse, NY 13244 USA
| | - Sadie X Novak
- Department of Chemistry, Syracuse University, Syracuse, NY 13244 USA
| | - James L Hougland
- Department of Chemistry, Syracuse University, Syracuse, NY 13244 USA.,BioInspired Syracuse, Syracuse University, Syracuse, NY 13244 USA
| |
Collapse
|
23
|
Zindel D, Mensat P, Vol C, Homayed Z, Charrier-Savournin F, Trinquet E, Banères JL, Pin JP, Pannequin J, Roux T, Dupuis E, Prézeau L. G protein-coupled receptors can control the Hippo/YAP pathway through Gq signaling. FASEB J 2021; 35:e21668. [PMID: 34114695 DOI: 10.1096/fj.202002159r] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 04/21/2021] [Accepted: 04/30/2021] [Indexed: 11/11/2022]
Abstract
The Hippo pathway is an evolutionarily conserved kinase cascade involved in the control of tissue homeostasis, cellular differentiation, proliferation, and organ size, and is regulated by cell-cell contact, apical cell polarity, and mechanical signals. Miss-regulation of this pathway can lead to cancer. The Hippo pathway acts through the inhibition of the transcriptional coactivators YAP and TAZ through phosphorylation. Among the various signaling mechanisms controlling the hippo pathway, activation of G12/13 by G protein-coupled receptors (GPCR) recently emerged. Here we show that a GPCR, the ghrelin receptor, that activates several types of G proteins, including G12/13, Gi/o, and Gq, can activate YAP through Gq/11 exclusively, independently of G12/13. We revealed that a strong basal YAP activation results from the high constitutive activity of this receptor, which can be further increased upon agonist activation. Thus, acting on ghrelin receptor allowed to modulate up-and-down YAP activity, as activating the receptor increased YAP activity and blocking constitutive activity reduced YAP activity. Our results demonstrate that GPCRs can be used as molecular switches to finely up- or down-regulate YAP activity through a pure Gq pathway.
Collapse
Affiliation(s)
- Diana Zindel
- Institut de Génomique Fonctionnelle (IGF), Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Claire Vol
- Institut de Génomique Fonctionnelle (IGF), Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Zeinab Homayed
- Institut de Génomique Fonctionnelle (IGF), Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | | | | | - Jean-Louis Banères
- Institut des Biomolécules Max Mousseron, Univ. Montpellier, CNRS, Montpellier, France
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle (IGF), Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Julie Pannequin
- Institut de Génomique Fonctionnelle (IGF), Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | | | | | - Laurent Prézeau
- Institut de Génomique Fonctionnelle (IGF), Univ. Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
24
|
Karaki F, Oki T, Sakao Y, Sato N, Hirayama S, Miyano K, Uezono Y, Fujii H. Identification of a Putative β-Arrestin Superagonist of the Growth Hormone Secretagogue Receptor (GHSR). ChemMedChem 2021; 16:3463-3476. [PMID: 34278724 DOI: 10.1002/cmdc.202100322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/14/2021] [Indexed: 12/30/2022]
Abstract
Ghrelin is a pleiotropic feeding hormone which also has a pivotal role in the central nervous system. Upon the activation of its receptor, growth hormone secretagogue receptor (GHSR), the Gαq/11 -mediated and the β-arrestin-mediated signaling pathways are activated. As the β-arrestin pathway is a potential drug target, there is a strong need for β-arrestin-biased GHSR modulators. Activation of the β-arrestin pathway should inhibit the Gαq/11 -mediated calcium flux through internalization of the receptor. Hence, we used the antagonistic activity in the calcium assay as the first screening for the β-arrestin activation. By conducting the second screening assay for the β-arrestin activation based on extracellular signal regulated kinase (ERK) 1/2 phosphorylation, we discovered a putative β-arrestin-biased superagonist. The activity of the compound was not completely blocked with the competitive antagonist, which implies that the effect is mediated, at least partly, by allosteric binding of the compound.
Collapse
Affiliation(s)
- Fumika Karaki
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo, 108-8641, Japan.,Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Tomoya Oki
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Yuma Sakao
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Noriko Sato
- Analytical Unit for Organic Chemistry, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Shigeto Hirayama
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo, 108-8641, Japan.,Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Kanako Miyano
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Department of Pain Control Research, Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Yasuhito Uezono
- Department of Pain Control Research, Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan.,Supportive and Palliative Care Research Support Office, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa city, Chiba, 277-8577, Japan
| | - Hideaki Fujii
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo, 108-8641, Japan.,Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| |
Collapse
|
25
|
Buckinx A, Pierre A, Van Den Herrewegen Y, Guenther E, Gerlach M, Van Laethem G, Kooijman R, De Bundel D, Smolders I. Translational potential of the ghrelin receptor agonist macimorelin for seizure suppression in pharmacoresistant epilepsy. Eur J Neurol 2021; 28:3100-3112. [PMID: 34157194 DOI: 10.1111/ene.14992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 01/26/2023]
Abstract
BACKGROUND Current drugs for epilepsy affect seizures, but no antiepileptogenic or disease-modifying drugs are available that prevent or slow down epileptogenesis, which is characterized by neuronal cell loss, inflammation and aberrant network formation. Ghrelin and ghrelin receptor (ghrelin-R) agonists were previously found to exert anticonvulsant, neuroprotective and anti-inflammatory effects in seizure models and immediately after status epilepticus (SE). Therefore, the aim of this study was to assess whether the ghrelin-R agonist macimorelin is antiepileptogenic in the pharmacoresistant intrahippocampal kainic acid (IHKA) mouse model. METHODS SE was induced in C57BL/6 mice by unilateral IHKA injection. Starting 24 h after SE, mice were treated intraperitoneally with macimorelin (5 mg/kg) or saline twice daily for 2 weeks, followed by a 2-week wash-out. Mice were continuously electroencephalogram-monitored, and at the end of the experiment neuroprotection and gliosis were assessed. RESULTS Macimorelin significantly decreased the number and duration of seizures during the treatment period, but had no antiepileptogenic or disease-modifying effect in this dose regimen. While macimorelin did not significantly affect food intake or body weight over a 2-week treatment period, its acute orexigenic effect was preserved in epileptic mice but not in sham mice. CONCLUSIONS While the full ghrelin-R agonist macimorelin was not significantly antiepileptogenic nor disease-modifying, this is the first study to demonstrate its anticonvulsant effects in the IHKA model of drug-refractory temporal lobe epilepsy. These findings highlight the potential use of macimorelin as a novel treatment option for seizure suppression in pharmacoresistant epilepsy.
Collapse
Affiliation(s)
- An Buckinx
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Anouk Pierre
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Yana Van Den Herrewegen
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | | | - Gaetan Van Laethem
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Ron Kooijman
- Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Dimitri De Bundel
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Ilse Smolders
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
26
|
Damian M, Louet M, Gomes AAS, M'Kadmi C, Denoyelle S, Cantel S, Mary S, Bisch PM, Fehrentz JA, Catoire LJ, Floquet N, Banères JL. Allosteric modulation of ghrelin receptor signaling by lipids. Nat Commun 2021; 12:3938. [PMID: 34168117 PMCID: PMC8225672 DOI: 10.1038/s41467-021-23756-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/07/2021] [Indexed: 02/05/2023] Open
Abstract
The membrane is an integral component of the G protein-coupled receptor signaling machinery. Here we demonstrate that lipids regulate the signaling efficacy and selectivity of the ghrelin receptor GHSR through specific interactions and bulk effects. We find that PIP2 shifts the conformational equilibrium of GHSR away from its inactive state, favoring basal and agonist-induced G protein activation. This occurs because of a preferential binding of PIP2 to specific intracellular sites in the receptor active state. Another lipid, GM3, also binds GHSR and favors G protein activation, but mostly in a ghrelin-dependent manner. Finally, we find that not only selective interactions but also the thickness of the bilayer reshapes the conformational repertoire of GHSR, with direct consequences on G protein selectivity. Taken together, this data illuminates the multifaceted role of the membrane components as allosteric modulators of how ghrelin signal could be propagated.
Collapse
Affiliation(s)
- Marjorie Damian
- IBMM, UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Maxime Louet
- IBMM, UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Antoniel Augusto Severo Gomes
- IBMM, UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Céline M'Kadmi
- IBMM, UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Séverine Denoyelle
- IBMM, UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Sonia Cantel
- IBMM, UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Sophie Mary
- IBMM, UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Paulo M Bisch
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Laurent J Catoire
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS, Université de Paris, Institut de Biologie Physico-Chimique (FRC 550), Paris, France
| | - Nicolas Floquet
- IBMM, UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Jean-Louis Banères
- IBMM, UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France.
| |
Collapse
|
27
|
Biased signaling: A viable strategy to drug ghrelin receptors for the treatment of obesity. Cell Signal 2021; 83:109976. [PMID: 33713808 DOI: 10.1016/j.cellsig.2021.109976] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/23/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023]
Abstract
Obesity is a global burden and a chronic ailment with damaging overall health effects. Ghrelin, an octanoylated 28 amino acid peptide hormone, is secreted from the oxyntic mucosa of the stomach. Ghrelin acts on regions of the hypothalamus to regulate feeding behavior and glucose homeostasis through its G protein-coupled receptor. Recently, several central pathways modulating the metabolic actions of ghrelin have been reported. While these signaling pathways can be inhibited or activated by antagonists or agonists, they can also be discriminatingly activated in a "biased" response to impart different degrees of activation in distinct pathways downstream of the receptor. Here, we review recent ghrelin biased signaling findings as well as characteristics of ghrelin hormone and its receptors pertinent for biased signaling. We then evaluate the feasibility for ghrelin receptor biased signaling as a strategy for the development of effective pharmacotherapy in obesity treatment.
Collapse
|
28
|
Cannabinoid-Induced Conditioned Place Preference, Intravenous Self-Administration, and Behavioral Stimulation Influenced by Ghrelin Receptor Antagonism in Rats. Int J Mol Sci 2021; 22:ijms22052397. [PMID: 33673659 PMCID: PMC7957642 DOI: 10.3390/ijms22052397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/13/2021] [Accepted: 02/21/2021] [Indexed: 11/24/2022] Open
Abstract
Cannabis/cannabinoids are widely used for recreational and therapy purposes, but their risks are largely disregarded. However, cannabinoid-associated use disorders and dependence are alarmingly increasing and an effective treatment is lacking. Recently, the growth hormone secretagogue receptor (GHSR1A) antagonism was proposed as a promising mechanism for drug addiction therapy. However, the role of GHS-R1A and its endogenous ligand ghrelin in cannabinoid abuse remains unclear. Therefore, the aim of our study was to investigate whether the GHS-R1A antagonist JMV2959 could reduce the tetrahydrocannabinol (THC)-induced conditioned place preference (CPP) and behavioral stimulation, the WIN55,212-2 intravenous self-administration (IVSA), and the tendency to relapse. Following an ongoing WIN55,212-2 self-administration, JMV2959 3 mg/kg was administered intraperitoneally 20 min before three consequent daily 120-min IVSA sessions under a fixed ratio FR1, which significantly reduced the number of the active lever-pressing, the number of infusions, and the cannabinoid intake. Pretreatment with JMV2959 suggested reduction of the WIN55,212-2-seeking/relapse-like behavior tested in rats on the twelfth day of the forced abstinence period. On the contrary, pretreatment with ghrelin significantly increased the cannabinoid IVSA as well as enhanced the relapse-like behavior. Co-administration of ghrelin with JMV2959 abolished/reduced the significant efficacy of the GHS-R1A antagonist in the cannabinoid IVSA. Pretreatment with JMV2959 significantly and dose-dependently reduced the manifestation of THC-induced CPP. The THC-CPP development was reduced after the simultaneous administration of JMV2959 with THC during conditioning. JMV2959 also significantly reduced the THC-induced behavioral stimulation in the LABORAS cage. Our findings suggest that GHS-R1A importantly participates in the rewarding/reinforcing effects of cannabinoids.
Collapse
|
29
|
Hagemann CA, Zhang C, Hansen HH, Jorsal T, Rigbolt KTG, Madsen MR, Bergmann NC, Heimbürger SMN, Falkenhahn M, Theis S, Breitschopf K, Holm S, Hedegaard MA, Christensen MB, Vilsbøll T, Holst B, Vrang N, Jelsing J, Knop FK. Identification and Metabolic Profiling of a Novel Human Gut-derived LEAP2 Fragment. J Clin Endocrinol Metab 2021; 106:e966-e981. [PMID: 33135737 DOI: 10.1210/clinem/dgaa803] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Indexed: 02/06/2023]
Abstract
CONTEXT The mechanisms underlying Roux-en-Y gastric bypass (RYGB) surgery-induced weight loss and the immediate postoperative beneficial metabolic effects associated with the operation remain uncertain. Enteroendocrine cell (EEC) secretory function has been proposed as a key factor in the marked metabolic benefits from RYGB surgery. OBJECTIVE To identify novel gut-derived peptides with therapeutic potential in obesity and/or diabetes by profiling EEC-specific molecular changes in obese patients following RYGB-induced weight loss. SUBJECTS AND METHODS Genome-wide expression analysis was performed in isolated human small intestinal EECs obtained from 20 gut-biopsied obese subjects before and after RYGB. Targets of interest were profiled for preclinical and clinical metabolic effects. RESULTS Roux-en-Y gastric bypass consistently increased expression levels of the inverse ghrelin receptor agonist, liver-expressed antimicrobial peptide 2 (LEAP2). A secreted endogenous LEAP2 fragment (LEAP238-47) demonstrated robust insulinotropic properties, stimulating insulin release in human pancreatic islets comparable to the gut hormone glucagon-like peptide-1. LEAP238-47 showed reciprocal effects on growth hormone secretagogue receptor (GHSR) activity, suggesting that the insulinotropic action of the peptide may be directly linked to attenuation of tonic GHSR activity. The fragment was infused in healthy human individuals (n = 10), but no glucoregulatory effect was observed in the chosen dose as compared to placebo. CONCLUSIONS Small intestinal LEAP2 expression was upregulated after RYGB. The corresponding circulating LEAP238-47 fragment demonstrated strong insulinotropic action in vitro but failed to elicit glucoregulatory effects in healthy human subjects.
Collapse
Affiliation(s)
- Christoffer A Hagemann
- Gubra Aps, Hørsholm, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | | | | | - Tina Jorsal
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | | | | | - Natasha C Bergmann
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Sebastian M N Heimbürger
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | | | | | | | - Stephanie Holm
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten A Hedegaard
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel B Christensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Holst
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
30
|
Cornejo MP, Mustafá ER, Cassano D, Banères JL, Raingo J, Perello M. The ups and downs of growth hormone secretagogue receptor signaling. FEBS J 2021; 288:7213-7229. [PMID: 33460513 DOI: 10.1111/febs.15718] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/05/2021] [Accepted: 01/14/2021] [Indexed: 12/14/2022]
Abstract
The growth hormone secretagogue receptor (GHSR) has emerged as one of the most fascinating molecules from the perspective of neuroendocrine control. GHSR is mainly expressed in the pituitary and the brain, and plays key roles regulating not only growth hormone secretion but also food intake, adiposity, body weight, glucose homeostasis and other complex functions. Quite atypically, GHSR signaling displays a basal constitutive activity that can be up- or downregulated by two digestive system-derived hormones: the octanoylated-peptide ghrelin and the liver-expressed antimicrobial peptide 2 (LEAP2), which was recently recognized as an endogenous GHSR ligand. The existence of two ligands with contrary actions indicates that GHSR activity can be tightly regulated and that the receptor displays the capability to integrate such opposing inputs in order to provide a balanced intracellular signal. This article provides a summary of the current understanding of the biology of ghrelin, LEAP2 and GHSR and discusses the reconceptualization of the cellular and physiological implications of the ligand-regulated GHSR signaling, based on the latest findings.
Collapse
Affiliation(s)
- María P Cornejo
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET), Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], Buenos Aires, Argentina
| | - Emilio R Mustafá
- Laboratory of Electrophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET), Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], Buenos Aires, Argentina
| | - Daniela Cassano
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET), Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], Buenos Aires, Argentina
| | - Jean-Louis Banères
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier, Faculté de Pharmacie, Montpellier cedex 5, France
| | - Jesica Raingo
- Laboratory of Electrophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET), Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], Buenos Aires, Argentina
| | - Mario Perello
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET), Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], Buenos Aires, Argentina
| |
Collapse
|
31
|
Khelifa MS, Skov LJ, Holst B. Biased Ghrelin Receptor Signaling and the Dopaminergic System as Potential Targets for Metabolic and Psychological Symptoms of Anorexia Nervosa. Front Endocrinol (Lausanne) 2021; 12:734547. [PMID: 34646236 PMCID: PMC8503187 DOI: 10.3389/fendo.2021.734547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022] Open
Abstract
Anorexia Nervosa (AN) is a complex disease that impairs the metabolic, mental and physiological health of affected individuals in a severe and sometimes lethal way. Many of the common symptoms in AN patients, such as reduced food intake, anxiety, impaired gut motility or overexercising are connected to both the orexigenic gut hormone ghrelin and the dopaminergic system. Targeting the ghrelin receptor (GhrR) to treat AN seems a promising possibility in current research. However, GhrR signaling is highly complex. First, the GhrR can activate four known intracellular pathways Gαq, Gαi/o, Gα12/13 and the recruitment of β-arrestin. Biased signaling provides the possibility to activate or inhibit only one or a subset of the intracellular pathways of a pleiotropic receptor. This allows specific targeting of physiological functions without adverse effects. Currently little is known on how biased signaling could specifically modulate GhrR effects. Second, GhrR signaling has been shown to be interconnected with the dopaminergic system, particularly in the context of AN symptoms. This review highlights that a biased agonist for the GhrR may be a promising target for the treatment of AN, however extensive and systematic translational studies are still needed and the connection to the dopaminergic system has to be taken into account.
Collapse
|
32
|
Cornejo MP, Mustafá ER, Barrile F, Cassano D, De Francesco PN, Raingo J, Perello M. THE INTRIGUING LIGAND-DEPENDENT AND LIGAND-INDEPENDENT ACTIONS OF THE GROWTH HORMONE SECRETAGOGUE RECEPTOR ON REWARD-RELATED BEHAVIORS. Neurosci Biobehav Rev 2020; 120:401-416. [PMID: 33157147 DOI: 10.1016/j.neubiorev.2020.10.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023]
Abstract
The growth hormone secretagogue receptor (GHSR) is a G-protein-coupled receptor (GPCR) highly expressed in the brain, and also in some peripheral tissues. GHSR activity is evoked by the stomach-derived peptide hormone ghrelin and abrogated by the intestine-derived liver-expressed antimicrobial peptide 2 (LEAP2). In vitro, GHSR displays ligand-independent actions, including a high constitutive activity and an allosteric modulation of other GPCRs. Beyond its neuroendocrine and metabolic effects, cumulative evidence shows that GHSR regulates the activity of the mesocorticolimbic pathway and modulates complex reward-related behaviors towards different stimuli. Here, we review current evidence indicating that ligand-dependent and ligand-independent actions of GHSR enhance reward-related behaviors towards appetitive stimuli and drugs of abuse. We discuss putative neuronal networks and molecular mechanisms that GHSR would engage to modulate such reward-related behaviors. Finally, we briefly discuss imaging studies showing that ghrelin would also regulate reward processing in humans. Overall, we conclude that GHSR is a key regulator of the mesocorticolimbic pathway that influences its activity and, consequently, modulates reward-related behaviors via ligand-dependent and ligand-independent actions.
Collapse
Affiliation(s)
- María P Cornejo
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA). National University of La Plata], 1900 La Plata, Buenos Aires, Argentina
| | - Emilio R Mustafá
- Laboratory of Electrophysiology of the IMBICE, 1900 La Plata, Buenos Aires, Argentina
| | - Franco Barrile
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA). National University of La Plata], 1900 La Plata, Buenos Aires, Argentina
| | - Daniela Cassano
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA). National University of La Plata], 1900 La Plata, Buenos Aires, Argentina
| | - Pablo N De Francesco
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA). National University of La Plata], 1900 La Plata, Buenos Aires, Argentina
| | - Jesica Raingo
- Laboratory of Electrophysiology of the IMBICE, 1900 La Plata, Buenos Aires, Argentina
| | - Mario Perello
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA). National University of La Plata], 1900 La Plata, Buenos Aires, Argentina.
| |
Collapse
|
33
|
Schalla MA, Stengel A. Effects of microbiome changes on endocrine ghrelin signaling - A systematic review. Peptides 2020; 133:170388. [PMID: 32846187 DOI: 10.1016/j.peptides.2020.170388] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/12/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022]
Abstract
The 28-amino acid peptide hormone ghrelin plays a unique role in the gut-brain axis: It is mainly produced peripherally in gastric X/A-like cells but stimulates food intake centrally via hypothalamic nuclei; thus, providing orexigenic communication between the gut and central food intake-regulatory centers. Another component of the gut-brain axis that gained increasing interest in recent years due to its ability to influence central signaling via metabolites is the gut microbiome. Interestingly, there is increasing evidence that changes in the microbiome are related to alterations in ghrelin expression, secretion, activation and signaling. Since ghrelin is supposedly implicated in the pathogenesis of obesity, changes in the microbiome were hypothesized to improve obesity via modulation of ghrelin abundance and receptor interaction. To shed more light on the association between the microbiome and ghrelin a systematic search of Medline, EMBASE and Web of science using the search term combination "microbiome AND ghrelin" was performed. As a result of the search, 42 publications were included into this systematic review, of which 30 publications reported preclinical and 12 manuscripts presented clinical data. In addition to a critical analysis of the present data, gaps in knowledge were highlighted in order to foster further research.
Collapse
Affiliation(s)
- Martha A Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany; Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
34
|
Sustkova‐Fiserova M, Puskina N, Havlickova T, Lapka M, Syslova K, Pohorala V, Charalambous C. Ghrelin receptor antagonism of fentanyl-induced conditioned place preference, intravenous self-administration, and dopamine release in the nucleus accumbens in rats. Addict Biol 2020; 25:e12845. [PMID: 31696597 DOI: 10.1111/adb.12845] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 09/26/2019] [Accepted: 10/02/2019] [Indexed: 12/22/2022]
Abstract
The extended occurrence of fentanils abuse associated with the dramatic increase in opioid fatal overdoses and dependence strongly emphasizes insufficiencies in opioid addiction treatment. Recently, the growth hormone secretagogue receptor (GHS-R1A) antagonism was proposed as a promising mechanism for drug addiction therapy. However, the role of GHS-R1A and its endogenous ligand ghrelin in opioid abuse is still unclear. Therefore, the aim of our study was to clarify whether the GHS-R1A antagonist JMV2959 could reduce the fentanyl-induced conditioned place preference (CPP), the fentanyl intravenous self-administration (IVSA), and the tendency to relapse, but also whether JMV2959 could significantly influence the fentanyl-induced dopamine efflux in the nucleus accumbens (NAC) in rats, that importantly participates in opioids' reinforcing effects. Following an ongoing fentanyl self-administration, JMV2959 3 mg/kg was administered intraperitoneally 20 minutes before three consequent daily 360-minute IVSA sessions under a fixed ratio FR1, which significantly reduced the number of active lever-pressing, the number of infusions, and the fentanyl intake. Pretreatment with JMV2959 also reduced the fentanyl-seeking/relapse-like behaviour tested in rats on the 12th day of the forced abstinence period. Pretreatment with JMV2959 significantly and dose-dependently reduced the manifestation of fentanyl-CPP. The fentanyl-CPP development was reduced after the simultaneous administration of JMV2959 with fentanyl during conditioning. The JMV2959 significantly reduced the accumbens dopamine release induced by subcutaneous and intravenous fentanyl. Simultaneously, it affected the concentration of byproducts associated with dopamine metabolism in the NAC. Our findings suggest that GHS-R1A importantly participates in the rewarding/reinforcing effects of fentanyl.
Collapse
Affiliation(s)
| | - Nina Puskina
- Department of Addictology First Faculty of Medicine Charles University Czech Republic
| | - Tereza Havlickova
- Department of Pharmacology, Third Faculty of Medicine Charles University Czech Republic
| | - Marek Lapka
- Department of Pharmacology, Third Faculty of Medicine Charles University Czech Republic
| | - Kamila Syslova
- Laboratory of Medicinal Diagnostics Department of Organic Technology ICT Czech Republic
| | - Veronika Pohorala
- Department of Pharmacology, Third Faculty of Medicine Charles University Czech Republic
| | | |
Collapse
|
35
|
Haj Salah KB, Maingot M, Blayo AL, M'Kadmi C, Damian M, Mary S, Cantel S, Neasta J, Oiry C, Péraldi-Roux S, Fernandez G, Romero GG, Perello M, Marie J, Banères JL, Fehrentz JA, Denoyelle S. Development of Nonpeptidic Inverse Agonists of the Ghrelin Receptor (GHSR) Based on the 1,2,4-Triazole Scaffold. J Med Chem 2020; 63:10796-10815. [PMID: 32882134 DOI: 10.1021/acs.jmedchem.9b02122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
GHSR controls, among others, growth hormone and insulin secretion, adiposity, feeding, and glucose metabolism. Therefore, an inverse agonist ligand capable of selectively targeting GHSR and reducing its high constitutive activity appears to be a good candidate for the treatment of obesity-related metabolic diseases. In this context, we present a study that led to the development of several highly potent and selective inverse agonists of GHSR based on the 1,2,4-triazole scaffold. We demonstrate that, depending on the nature of the substituents on positions 3, 4, and 5, this scaffold leads to ligands that exert an intrinsic inverse agonist activity on GHSR-catalyzed G protein activation through the stabilization of a specific inactive receptor conformation. Thanks to an in vivo evaluation, we also show that one of the most promising ligands not only exerts an effect on insulin secretion in rat pancreatic islets but also affects the orexigenic effects of ghrelin in mice.
Collapse
Affiliation(s)
| | - Mathieu Maingot
- IBMM, Univ Montpellier, CNRS, ENSCM, Faculty of Pharmacy, 34000 Montpellier, France
| | - Anne-Laure Blayo
- IBMM, Univ Montpellier, CNRS, ENSCM, Faculty of Pharmacy, 34000 Montpellier, France
| | - Céline M'Kadmi
- IBMM, Univ Montpellier, CNRS, ENSCM, Faculty of Pharmacy, 34000 Montpellier, France
| | - Marjorie Damian
- IBMM, Univ Montpellier, CNRS, ENSCM, Faculty of Pharmacy, 34000 Montpellier, France
| | - Sophie Mary
- IBMM, Univ Montpellier, CNRS, ENSCM, Faculty of Pharmacy, 34000 Montpellier, France
| | - Sonia Cantel
- IBMM, Univ Montpellier, CNRS, ENSCM, Faculty of Pharmacy, 34000 Montpellier, France
| | - Jérémie Neasta
- IBMM, Univ Montpellier, CNRS, ENSCM, Faculty of Pharmacy, 34000 Montpellier, France
| | - Catherine Oiry
- IBMM, Univ Montpellier, CNRS, ENSCM, Faculty of Pharmacy, 34000 Montpellier, France
| | - Sylvie Péraldi-Roux
- IBMM, Univ Montpellier, CNRS, ENSCM, Faculty of Pharmacy, 34000 Montpellier, France
| | - Gimena Fernandez
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell, La Plata, Buenos Aires 1900, Argentina
| | - Guadalupe García Romero
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell, La Plata, Buenos Aires 1900, Argentina
| | - Mario Perello
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell, La Plata, Buenos Aires 1900, Argentina
| | - Jacky Marie
- IBMM, Univ Montpellier, CNRS, ENSCM, Faculty of Pharmacy, 34000 Montpellier, France
| | - Jean-Louis Banères
- IBMM, Univ Montpellier, CNRS, ENSCM, Faculty of Pharmacy, 34000 Montpellier, France
| | - Jean-Alain Fehrentz
- IBMM, Univ Montpellier, CNRS, ENSCM, Faculty of Pharmacy, 34000 Montpellier, France
| | - Séverine Denoyelle
- IBMM, Univ Montpellier, CNRS, ENSCM, Faculty of Pharmacy, 34000 Montpellier, France
| |
Collapse
|
36
|
Biotinylated non-ionic amphipols for GPCR ligands screening. Methods 2020; 180:69-78. [PMID: 32505829 DOI: 10.1016/j.ymeth.2020.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 12/18/2022] Open
Abstract
We present herein the synthesis of biotin-functionalized polymers (BNAPols) that have been developed for the fixation of membrane proteins (MPs) onto surfaces. BNAPols were synthesized by free-radical polymerization of a tris(hydroxymethyl)acrylamidomethane (THAM)-derived amphiphilic monomer in the presence of a thiol-based transfer agent with an azido group. Then a Huisgen-cycloaddition reaction was performed with Biotin-(PEG)8-alkyne that resulted in formation of the biotinylated polymers. The designed structure of BNAPols was confirmed by NMR spectroscopy, and a HABA/avidin assay was used for estimating the percentage of biotin grafted on the polymer end chain. The colloidal characterization of these biotin-functionalized polymers was done using both dynamic light scattering (DLS) and small angle X-ray scattering (SAXS) techniques. BNAPols were used to stabilize a model G protein-coupled receptor (GPCR), the human Growth Hormone Secretagogue Receptor (GHSR), out of its membrane environment. Subsequent immobilization of the BNAPols:GHSR complex onto a streptavidin-coated surface allowed screening of ligands based on their ability to bind the immobilized receptor. This opens the way to the use of biotinylated NAPols to immobilize functional, unmodified, membrane proteins, providing original sensor devices for multiple applications including innovative ligand screening assays.
Collapse
|
37
|
Hedegaard MA, Holst B. The Complex Signaling Pathways of the Ghrelin Receptor. Endocrinology 2020; 161:5734640. [PMID: 32049280 DOI: 10.1210/endocr/bqaa020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/10/2020] [Indexed: 12/13/2022]
Abstract
The ghrelin receptor (GhrR) is known for its strong orexigenic effects in pharmacological doses and has long been considered as a promising target for the treatment of obesity. Several antagonists have been developed to decrease the orexigenic signaling, but none of these have been approved for the treatment of obesity because of adverse effects and lack of efficacy. Heterodimerization and biased signaling are important concepts for G-protein coupled receptor (GPCR) signaling, and the influence of these aspects on the GhrR may be important for feeding behavior and obesity. GhrR has been described to heterodimerize with other GPCRs, such as the dopamine receptors 1 and 2, leading to a modulation of the signaling properties of both dimerization partners. Another complicating factor of GhrR-mediated signaling is its ability to activate several different signaling pathways on ligand stimulation. Importantly, some ligands have shown to be "biased" or "functionally selective," implying that the ligand favors a particular signaling pathway. These unique signaling properties could have a sizeable impact on the physiological functions of the GhrR system. Importantly, heterodimerization may explain why the GhrR is expressed in areas of the brain that are difficult for peptide ligands to access. One possibility is that the purpose of GhrR expression is to modulate the function of other receptors in addition to merely being independently activated. We suggest that a deeper understanding of the signaling properties of the GhrR will facilitate future drug discovery in the areas of obesity and weight management.
Collapse
Affiliation(s)
- Morten Adler Hedegaard
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Holst
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
38
|
Ghrelin infused into the dorsomedial hypothalamus of male mice increases food intake and adiposity. Physiol Behav 2020; 220:112882. [PMID: 32205145 DOI: 10.1016/j.physbeh.2020.112882] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 02/07/2023]
Abstract
Ghrelin is a 28 amino acid peptide hormone that targets the brain to promote feeding and adiposity. The ghrelin receptor, the GHSR1a, is expressed within most hypothalamic nuclei, including the DMH, but the role of GHSR1a in this region on energy balance is unknown. In order to investigate whether GHSR1a within the DMH modulate energy balance, we implanted osmotic minipumps filled with saline, ghrelin, or the GHSR1a antagonist JMV2959, and connected it to a cannula aimed unilaterally at the DMH of adult male C57BLJ6 mice and assessed their metabolic profile. We found that chronic infusion of ghrelin in the DMH promoted an increase in caloric intake as well as a decrease in energy expenditure. This translated to an overall increase in weight gain, primarily in the form of adipose tissue in ghrelin treated animals. Further, chronic ghrelin unilateral infusion into the DMH slowed glucose clearance. These results suggest that GHSR in the DMH significantly contribute to the metabolic effects produced by ghrelin.
Collapse
|
39
|
Davenport AP, Scully CCG, de Graaf C, Brown AJH, Maguire JJ. Advances in therapeutic peptides targeting G protein-coupled receptors. Nat Rev Drug Discov 2020; 19:389-413. [PMID: 32494050 DOI: 10.1038/s41573-020-0062-z] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2020] [Indexed: 02/06/2023]
Abstract
Dysregulation of peptide-activated pathways causes a range of diseases, fostering the discovery and clinical development of peptide drugs. Many endogenous peptides activate G protein-coupled receptors (GPCRs) - nearly 50 GPCR peptide drugs have been approved to date, most of them for metabolic disease or oncology, and more than 10 potentially first-in-class peptide therapeutics are in the pipeline. The majority of existing peptide therapeutics are agonists, which reflects the currently dominant strategy of modifying the endogenous peptide sequence of ligands for peptide-binding GPCRs. Increasingly, novel strategies are being employed to develop both agonists and antagonists, to both introduce chemical novelty and improve drug-like properties. Pharmacodynamic improvements are evolving to allow biasing ligands to activate specific downstream signalling pathways, in order to optimize efficacy and reduce side effects. In pharmacokinetics, modifications that increase plasma half-life have been revolutionary. Here, we discuss the current status of the peptide drugs targeting GPCRs, with a focus on evolving strategies to improve pharmacokinetic and pharmacodynamic properties.
Collapse
Affiliation(s)
- Anthony P Davenport
- Experimental Medicine and Immunotherapeutics, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
| | | | | | | | - Janet J Maguire
- Experimental Medicine and Immunotherapeutics, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
40
|
A role for leptin and ghrelin in the augmentation of heroin seeking induced by chronic food restriction. Psychopharmacology (Berl) 2020; 237:787-800. [PMID: 31811350 DOI: 10.1007/s00213-019-05415-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022]
Abstract
RATIONAL Caloric restriction increases the risk of relapse in abstinent drug users. Hormones involved in the regulation of energy balance and food intake, such as leptin and ghrelin, are implicated in drug-related behaviors. OBJECTIVES We investigated the role of leptin and ghrelin in the augmentation of heroin seeking induced by chronic food restriction. METHODS Rats self-administered heroin (0.1 mg/kg/infusion) for 10 days followed by 14 days of drug withdrawal. During withdrawal, rats were food restricted to 90% of their original body weight or were given free access to food. In experiment 1, we measured the plasma concentrations of leptin and ghrelin following heroin self-administration and withdrawal. In experiment 2, leptin was administered centrally (2.0 or 4.0 μg; i.c.v.) prior to a heroin-seeking test under extinction conditions. High density of both leptin and ghrelin receptors was previously identified in the ventral tegmental area (VTA), suggesting a direct effect on reward and motivation. Hence, we administered leptin (experiment 3; 0.125 or 0.250 μg/side), or ghrelin receptor antagonist JMV 2959 (experiment 4; 2.0 or 10.0 μg/side) directly into the VTA prior to the heroin-seeking test. RESULTS Chronic food restriction significantly decreased plasma levels of leptin and elevated plasma levels of ghrelin. Central administration of leptin had no statistically significant effect on heroin seeking. Intra-VTA administration of either leptin or JMV 2959 dose-dependently and selectively decreased heroin seeking in the food-restricted rats. CONCLUSIONS Leptin and ghrelin transmission in the VTA can modulate the augmentation of heroin seeking induced by chronic food restriction.
Collapse
|
41
|
Behavioural characterization of ghrelin ligands, anamorelin and HM01: Appetite and reward-motivated effects in rodents. Neuropharmacology 2020; 168:108011. [PMID: 32067989 DOI: 10.1016/j.neuropharm.2020.108011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/14/2022]
Abstract
The ghrelinergic system has been steadily investigated as a therapeutic target in the treatment of metabolic disorders and modulation of appetite. While endogenous ghrelin activates the full complement of the growth hormone secretagogue receptor (GHSR-1a) pathways, synthetic GHSR-1a ligands display biased signalling and functional selectivity, which have a significant impact on the intended and indeed, unintended, therapeutic effects. The widespread expression of the GHSR-1a receptor in vivo also necessitates an imperative consideration of the biodistribution of GHSR-1a ligands. Here, we investigate anamorelin and HM01, two recently described synthetic GHSR-1a ligands which have shown promising effects on food intake in preclinical and clinical studies. We compare the downstream signalling pathways in cellular in vitro assays, including calcium mobilization, IP-one, internalization and β-arrestin recruitment assays. We describe a novel divergent activation of central reward circuitry by anamorelin and HM01 using c-Fos immunostaining as well as behavioural effects in food intake and reward paradigms. Interestingly, we found a paradoxical reduction in reward-related behaviour for anamorelin and HM01 treated animals in our chosen paradigms. The work highlights the critical importance to consider signalling bias in relation to future ghrelin-based therapies. In addition, central access of GHSR-1a ligands, particularly to reward areas of the brain, remains a crucial factor in eliciting potent appetite-stimulating effects. The precise characterization of downstream ghrelinergic signalling and biodistribution of novel GHSR-1a ligands will be decisive in their successful development and will allow predictive modelling and design of future synthetic ligands to combat metabolic and appetite disorders involving the ghrelinergic system. This article is part of the special issue on 'Neuropeptides'.
Collapse
|
42
|
Boutin JA, Legros C. The five dimensions of receptor pharmacology exemplified by melatonin receptors: An opinion. Pharmacol Res Perspect 2020; 8:e00556. [PMID: 31893125 PMCID: PMC6935684 DOI: 10.1002/prp2.556] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 12/22/2022] Open
Abstract
Receptology has been complicated with enhancements in our knowledge of G-protein-coupled-receptor (GPCR) biochemistry. This complexity is exemplified by the pharmacology of melatonin receptors. Here, we describe the complexity of GPCR biochemistry in five dimensions: (a) receptor expression, particularly in organs/tissues that are only partially understood; (b) ligands and receptor-associated proteins (interactome); (c) receptor function, which might be more complex than the known G-protein-coupled systems; (d) ligand bias, which favors a particular pathway; and (e) receptor dimerization, which might concern all receptors coexpressed in the same cell. Thus, receptor signaling might be modified or modulated, depending on the nature of the receptor complex. Fundamental studies are needed to clarify these points and find new ways to tackle receptor functionality. This opinion article emphasizes the global questions attached to new descriptions of GPCRs and aims to raise our awareness of the tremendous complexity of modern receptology.
Collapse
Affiliation(s)
- Jean A. Boutin
- Institut de Recherches Internationales ServierSuresnesFrance
| | - Céline Legros
- Institut de Recherches ServierCroissy‐sur‐SeineFrance
| |
Collapse
|
43
|
Legros C, Dupré C, Brasseur C, Bonnaud A, Bruno O, Valour D, Shabajee P, Giganti A, Nosjean O, Kenakin TP, Boutin JA. Characterization of the various functional pathways elicited by synthetic agonists or antagonists at the melatonin MT 1 and MT 2 receptors. Pharmacol Res Perspect 2020; 8:e00539. [PMID: 31893123 PMCID: PMC6935685 DOI: 10.1002/prp2.539] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 09/30/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022] Open
Abstract
Melatonin is a neurohormone that translates the circadian rhythm to the peripheral organs through a series of binding sites identified as G protein-coupled receptors MT1 and MT2. Due to minute amounts of receptor proteins in target organs, the main tool of studies of the melatoninergic system is recombinant expression of the receptors in cellular hosts. Although a number of studies exist on these receptors, studies of several signaling pathways using a large number of melatoninergic compounds are rather limited. We chose to fill this gap to better describe a panel of compounds that have been only partially characterized in terms of functionality. First, we characterized HEK cells expressing MT1 or MT2, and several signaling routes with melatonin itself to validate the approach: GTPγS, cAMP production, internalization, β-arrestin recruitment, and cell morphology changes (CellKey ® ). Second, we chose 21 compounds from our large melatoninergic chemical library and characterized them using this panel of signaling pathways. Notably, antagonists were infrequent, and their functionality depended largely on the pathway studied. This will permit redefining the availability of molecular tools that can be used to better understand the in situ activity and roles of these receptors.
Collapse
Affiliation(s)
- Céline Legros
- Pôle d’Expertise BiotechnologieChimie & BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Clémence Dupré
- Pôle d’Expertise BiotechnologieChimie & BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Chantal Brasseur
- Pôle d’Expertise BiotechnologieChimie & BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Anne Bonnaud
- Pôle d’Expertise BiotechnologieChimie & BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Olivier Bruno
- Pôle d’Expertise BiotechnologieChimie & BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Damien Valour
- Pôle d’Expetise Méthodologie et Valorisation des DonnéesInstitut de Recherches Internationales ServierSuresnesFrance
| | - Preety Shabajee
- Pôle d’Expertise BiotechnologieChimie & BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Adeline Giganti
- Pôle d’Expertise BiotechnologieChimie & BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Olivier Nosjean
- Pôle d’Expertise BiotechnologieChimie & BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
- Present address:
Institut de Recherches Internationales SERVIERSuresnesFrance
| | - Terrence P. Kenakin
- Department of PharmacologyUniversity of North Carolina School of MedicineChapel HillNCUSA
| | - Jean A. Boutin
- Pôle d’Expertise BiotechnologieChimie & BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
- Present address:
Institut de Recherches Internationales SERVIERSuresnesFrance
| |
Collapse
|
44
|
Neasta J, Darcq E, Jeanblanc J, Carnicella S, Ben Hamida S. GPCR and Alcohol-Related Behaviors in Genetically Modified Mice. Neurotherapeutics 2020; 17:17-42. [PMID: 31919661 PMCID: PMC7007453 DOI: 10.1007/s13311-019-00828-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
G protein-coupled receptors (GPCRs) constitute the largest class of cell surface signaling receptors and regulate major neurobiological processes. Accordingly, GPCRs represent primary targets for the treatment of brain disorders. Several human genetic polymorphisms affecting GPCRs have been associated to different components of alcohol use disorder (AUD). Moreover, GPCRs have been reported to contribute to several features of alcohol-related behaviors in animal models. Besides traditional pharmacological tools, genetic-based approaches mostly aimed at deleting GPCR genes provided substantial information on how key GPCRs drive alcohol-related behaviors. In this review, we summarize the alcohol phenotypes that ensue from genetic manipulation, in particular gene deletion, of key GPCRs in rodents. We focused on GPCRs that belong to fundamental neuronal systems that have been shown as potential targets for the development of AUD treatment. Data are reviewed with particular emphasis on alcohol reward, seeking, and consumption which are behaviors that capture essential aspects of AUD. Literature survey indicates that in most cases, there is still a gap in defining the intracellular transducers and the functional crosstalk of GPCRs as well as the neuronal populations in which their signaling regulates alcohol actions. Further, the implication of only a few orphan GPCRs has been so far investigated in animal models. Combining advanced pharmacological technologies with more specific genetically modified animals and behavioral preclinical models is likely necessary to deepen our understanding in how GPCR signaling contributes to AUD and for drug discovery.
Collapse
Affiliation(s)
- Jérémie Neasta
- Laboratoire de Pharmacologie, Faculté de Pharmacie, University of Montpellier, 34093, Montpellier, France
| | - Emmanuel Darcq
- Douglas Hospital Research Center, Department of Psychiatry, McGill University, 6875 Boulevard LaSalle, Montreal, Quebec, H4H 1R3, Canada
| | - Jérôme Jeanblanc
- Research Group on Alcohol and Pharmacodependences-INSERM U1247, University of Picardie Jules Verne, 80025, Amiens, France
| | - Sebastien Carnicella
- INSERM U1216, Grenoble Institut des Neurosciences (GIN), University of Grenoble Alpes, 38000, Grenoble, France
| | - Sami Ben Hamida
- Douglas Hospital Research Center, Department of Psychiatry, McGill University, 6875 Boulevard LaSalle, Montreal, Quebec, H4H 1R3, Canada.
| |
Collapse
|
45
|
Torres-Fuentes C, Golubeva AV, Zhdanov AV, Wallace S, Arboleya S, Papkovsky DB, El Aidy S, Ross P, Roy BL, Stanton C, Dinan TG, Cryan JF, Schellekens H. Short-chain fatty acids and microbiota metabolites attenuate ghrelin receptor signaling. FASEB J 2019; 33:13546-13559. [DOI: 10.1096/fj.201901433r] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Cristina Torres-Fuentes
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
| | - Anna V. Golubeva
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | | - Shauna Wallace
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
| | - Silvia Arboleya
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Cork, Ireland
| | | | - Sahar El Aidy
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paul Ross
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Catherine Stanton
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Cork, Ireland
| | - Timothy G. Dinan
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - John F. Cryan
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Harriet Schellekens
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
46
|
Cornejo MP, Castrogiovanni D, Schiöth HB, Reynaldo M, Marie J, Fehrentz JA, Perello M. Growth hormone secretagogue receptor signalling affects high-fat intake independently of plasma levels of ghrelin and LEAP2, in a 4-day binge eating model. J Neuroendocrinol 2019; 31:e12785. [PMID: 31469195 DOI: 10.1111/jne.12785] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/16/2019] [Accepted: 08/27/2019] [Indexed: 12/25/2022]
Abstract
The growth hormone secretagogue receptor (GHSR) is a G protein-coupled receptor that is highly expressed in the central nervous system. GHSR acts as a receptor for ghrelin and for liver-expressed antimicrobial peptide 2 (LEAP2), which blocks ghrelin-evoked activity. GHSR also displays ligand-independent activity, including a high constitutive activity that signals in the absence of ghrelin and is reduced by LEAP2. GHSR activity modulates a variety of food intake-related behaviours, including binge eating. Previously, we reported that GHSR-deficient mice daily and time-limited exposed to a high-fat (HF) diet display an attenuated binge-like HF intake compared to wild-type mice. In the present study, we aimed to determine whether ligand-independent GHSR activity affects binge-like HF intake in a 4-day binge-like eating protocol. We found that plasma levels of ghrelin and LEAP2 were not modified in mice exposed to this binge-like eating protocol. Moreover, systemic administration of ghrelin or LEAP2 did not alter HF intake in our experimental conditions. Interestingly, we found that central administration of LEAP2 or K-(D-1-Nal)-FwLL-NH2 , which are both blockers of constitutive GHSR activity, reduced binge-like HF intake, whereas central administration of ghrelin or the ghrelin-evoked GHSR activity blockers [D-Lys3]-GHRP-6 and JMV2959 did not modify binge-like HF intake. Taken together, current data indicate that GHSR activity in the brain affects binge-like HF intake in mice independently of plasma levels of ghrelin and LEAP2.
Collapse
Affiliation(s)
- María Paula Cornejo
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology, IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata, La Plata, Argentina
| | - Daniel Castrogiovanni
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology, IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata, La Plata, Argentina
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Mirta Reynaldo
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology, IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata, La Plata, Argentina
| | - Jacky Marie
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-Université Montpellier-ENSCM, Montpellier, France
| | - Jean-Alain Fehrentz
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-Université Montpellier-ENSCM, Montpellier, France
| | - Mario Perello
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology, IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata, La Plata, Argentina
| |
Collapse
|
47
|
Nicke L, Müller R, Geyer A, Els-Heindl S. Side Chain Orientation of Tryptophan Analogues Determines Agonism and Inverse Agonism in Short Ghrelin Peptides. ChemMedChem 2019; 14:1849-1855. [PMID: 31442005 PMCID: PMC6899459 DOI: 10.1002/cmdc.201900409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/23/2019] [Indexed: 02/06/2023]
Abstract
We describe two synthetic amino acids with inverted side chain stereochemistry, which induce opposite biological activity. Phe4 is an important part of the activation motif of ghrelin, and in short peptide inverse agonists such as KwFwLL-NH2 , the aromatic core is necessary for inactivation of the receptor. To restrict indole/phenyl mobility and simultaneously strengthen the interaction between peptide and receptor, we exchanged the natural monoaryl amino acids for diaryl amino acids derived from tryptophan. By standard solid-phase peptide synthesis, each of them was inserted into ghrelin or in the aromatic core of the inverse agonist. Both ghrelin analogues showed nanomolar activity, indicating sufficient space to accommodate the additional side chain. In contrast, diaryl amino acids in the inverse agonist had considerable influence on receptor signaling. Whereas the introduction of Wsf maintains inverse agonism of the peptide, Wrf shifts the receptor more to active states and can induce agonism depending on its introduction site.
Collapse
Affiliation(s)
- Lennart Nicke
- Faculty of Chemistry, Philipps-University Marburg, Hans-Meerwein-Strasse 4, 35032, Marburg, Germany
| | - Ronny Müller
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, Brüderstrasse 34, 04103, Leipzig, Germany
| | - Armin Geyer
- Faculty of Chemistry, Philipps-University Marburg, Hans-Meerwein-Strasse 4, 35032, Marburg, Germany
| | - Sylvia Els-Heindl
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, Brüderstrasse 34, 04103, Leipzig, Germany
| |
Collapse
|
48
|
Gray SM, Niu J, Zhang A, Svendsen B, Campbell JE, D'Alessio DA, Tong J. Intraislet Ghrelin Signaling Does Not Regulate Insulin Secretion From Adult Mice. Diabetes 2019; 68:1795-1805. [PMID: 31201280 PMCID: PMC6702634 DOI: 10.2337/db19-0079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 06/06/2019] [Indexed: 01/08/2023]
Abstract
Exogenous ghrelin reduces glucose-stimulated insulin secretion and endogenous ghrelin protects against hypoglycemia during starvation. Islet ε-cells produce ghrelin and δ-cells express growth hormone secretagogue receptor (GHSR), suggesting the possibility of a paracrine mechanism for islet ghrelin to reach high local concentrations and affect insulin secretion. GHSR has high constitutive activity and may act independently of ghrelin. The objective in this study was to determine whether an intraislet ghrelin-GHSR axis modulates insulin secretion and glucose metabolism using mouse models lacking ghrelin (Ghrl-/- ) or GHSR (Ghsr-/- ). Ghsr-/- and Ghsr+/+ mice had comparable islet ghrelin concentrations. Exogenous ghrelin decreased insulin secretion in perifused isolated islets in a GHSR-dependent manner. Islets isolated from Ghrl-/- or Ghsr-/- mice did not differ from controls in glucose-, alanine-, or GLP-1-stimulated insulin secretion during perifusion. Consistent with this finding, Ghrl-/- and Ghsr-/- male mice studied after either 6 or 16 h of fasting had blood glucose concentrations comparable with those of controls following intraperitoneal glucose, or insulin tolerance tests, or after mixed nutrient meals. Collectively, our data provide strong evidence against a paracrine ghrelin-GHSR axis mediating insulin secretion or glucose tolerance in lean, chow-fed adult mice.
Collapse
Affiliation(s)
| | | | | | | | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Durham, NC
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - David A D'Alessio
- Duke Molecular Physiology Institute, Durham, NC
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University, Durham, NC
| | - Jenny Tong
- Duke Molecular Physiology Institute, Durham, NC
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University, Durham, NC
| |
Collapse
|
49
|
Mustafá ER, Cordisco Gonzalez S, Raingo J. Ghrelin Selectively Inhibits CaV3.3 Subtype of Low-Voltage-Gated Calcium Channels. Mol Neurobiol 2019; 57:722-735. [DOI: 10.1007/s12035-019-01738-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/16/2019] [Indexed: 01/01/2023]
|
50
|
A ghrelin receptor and oxytocin receptor heterocomplex impairs oxytocin mediated signalling. Neuropharmacology 2019; 152:90-101. [DOI: 10.1016/j.neuropharm.2018.12.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/21/2018] [Accepted: 12/18/2018] [Indexed: 12/31/2022]
|